i915_active.c revision 1.1 1 /* $NetBSD: i915_active.c,v 1.1 2021/12/18 20:15:24 riastradh Exp $ */
2
3 /*
4 * SPDX-License-Identifier: MIT
5 *
6 * Copyright 2019 Intel Corporation
7 */
8
9 #include <sys/cdefs.h>
10 __KERNEL_RCSID(0, "$NetBSD: i915_active.c,v 1.1 2021/12/18 20:15:24 riastradh Exp $");
11
12 #include <linux/debugobjects.h>
13
14 #include "gt/intel_context.h"
15 #include "gt/intel_engine_pm.h"
16 #include "gt/intel_ring.h"
17
18 #include "i915_drv.h"
19 #include "i915_active.h"
20 #include "i915_globals.h"
21
22 /*
23 * Active refs memory management
24 *
25 * To be more economical with memory, we reap all the i915_active trees as
26 * they idle (when we know the active requests are inactive) and allocate the
27 * nodes from a local slab cache to hopefully reduce the fragmentation.
28 */
29 static struct i915_global_active {
30 struct i915_global base;
31 struct kmem_cache *slab_cache;
32 } global;
33
34 struct active_node {
35 struct i915_active_fence base;
36 struct i915_active *ref;
37 struct rb_node node;
38 u64 timeline;
39 };
40
41 static inline struct active_node *
42 node_from_active(struct i915_active_fence *active)
43 {
44 return container_of(active, struct active_node, base);
45 }
46
47 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
48
49 static inline bool is_barrier(const struct i915_active_fence *active)
50 {
51 return IS_ERR(rcu_access_pointer(active->fence));
52 }
53
54 static inline struct llist_node *barrier_to_ll(struct active_node *node)
55 {
56 GEM_BUG_ON(!is_barrier(&node->base));
57 return (struct llist_node *)&node->base.cb.node;
58 }
59
60 static inline struct intel_engine_cs *
61 __barrier_to_engine(struct active_node *node)
62 {
63 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
64 }
65
66 static inline struct intel_engine_cs *
67 barrier_to_engine(struct active_node *node)
68 {
69 GEM_BUG_ON(!is_barrier(&node->base));
70 return __barrier_to_engine(node);
71 }
72
73 static inline struct active_node *barrier_from_ll(struct llist_node *x)
74 {
75 return container_of((struct list_head *)x,
76 struct active_node, base.cb.node);
77 }
78
79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
80
81 static void *active_debug_hint(void *addr)
82 {
83 struct i915_active *ref = addr;
84
85 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
86 }
87
88 static struct debug_obj_descr active_debug_desc = {
89 .name = "i915_active",
90 .debug_hint = active_debug_hint,
91 };
92
93 static void debug_active_init(struct i915_active *ref)
94 {
95 debug_object_init(ref, &active_debug_desc);
96 }
97
98 static void debug_active_activate(struct i915_active *ref)
99 {
100 lockdep_assert_held(&ref->tree_lock);
101 if (!atomic_read(&ref->count)) /* before the first inc */
102 debug_object_activate(ref, &active_debug_desc);
103 }
104
105 static void debug_active_deactivate(struct i915_active *ref)
106 {
107 lockdep_assert_held(&ref->tree_lock);
108 if (!atomic_read(&ref->count)) /* after the last dec */
109 debug_object_deactivate(ref, &active_debug_desc);
110 }
111
112 static void debug_active_fini(struct i915_active *ref)
113 {
114 debug_object_free(ref, &active_debug_desc);
115 }
116
117 static void debug_active_assert(struct i915_active *ref)
118 {
119 debug_object_assert_init(ref, &active_debug_desc);
120 }
121
122 #else
123
124 static inline void debug_active_init(struct i915_active *ref) { }
125 static inline void debug_active_activate(struct i915_active *ref) { }
126 static inline void debug_active_deactivate(struct i915_active *ref) { }
127 static inline void debug_active_fini(struct i915_active *ref) { }
128 static inline void debug_active_assert(struct i915_active *ref) { }
129
130 #endif
131
132 static void
133 __active_retire(struct i915_active *ref)
134 {
135 struct active_node *it, *n;
136 struct rb_root root;
137 unsigned long flags;
138
139 GEM_BUG_ON(i915_active_is_idle(ref));
140
141 /* return the unused nodes to our slabcache -- flushing the allocator */
142 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
143 return;
144
145 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
146 debug_active_deactivate(ref);
147
148 root = ref->tree;
149 ref->tree = RB_ROOT;
150 ref->cache = NULL;
151
152 spin_unlock_irqrestore(&ref->tree_lock, flags);
153
154 /* After the final retire, the entire struct may be freed */
155 if (ref->retire)
156 ref->retire(ref);
157
158 /* ... except if you wait on it, you must manage your own references! */
159 wake_up_var(ref);
160
161 rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
162 GEM_BUG_ON(i915_active_fence_isset(&it->base));
163 kmem_cache_free(global.slab_cache, it);
164 }
165 }
166
167 static void
168 active_work(struct work_struct *wrk)
169 {
170 struct i915_active *ref = container_of(wrk, typeof(*ref), work);
171
172 GEM_BUG_ON(!atomic_read(&ref->count));
173 if (atomic_add_unless(&ref->count, -1, 1))
174 return;
175
176 __active_retire(ref);
177 }
178
179 static void
180 active_retire(struct i915_active *ref)
181 {
182 GEM_BUG_ON(!atomic_read(&ref->count));
183 if (atomic_add_unless(&ref->count, -1, 1))
184 return;
185
186 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
187 queue_work(system_unbound_wq, &ref->work);
188 return;
189 }
190
191 __active_retire(ref);
192 }
193
194 static inline struct dma_fence **
195 __active_fence_slot(struct i915_active_fence *active)
196 {
197 return (struct dma_fence ** __force)&active->fence;
198 }
199
200 static inline bool
201 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
202 {
203 struct i915_active_fence *active =
204 container_of(cb, typeof(*active), cb);
205
206 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
207 }
208
209 static void
210 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
211 {
212 if (active_fence_cb(fence, cb))
213 active_retire(container_of(cb, struct active_node, base.cb)->ref);
214 }
215
216 static void
217 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
218 {
219 if (active_fence_cb(fence, cb))
220 active_retire(container_of(cb, struct i915_active, excl.cb));
221 }
222
223 static struct i915_active_fence *
224 active_instance(struct i915_active *ref, struct intel_timeline *tl)
225 {
226 struct active_node *node, *prealloc;
227 struct rb_node **p, *parent;
228 u64 idx = tl->fence_context;
229
230 /*
231 * We track the most recently used timeline to skip a rbtree search
232 * for the common case, under typical loads we never need the rbtree
233 * at all. We can reuse the last slot if it is empty, that is
234 * after the previous activity has been retired, or if it matches the
235 * current timeline.
236 */
237 node = READ_ONCE(ref->cache);
238 if (node && node->timeline == idx)
239 return &node->base;
240
241 /* Preallocate a replacement, just in case */
242 prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
243 if (!prealloc)
244 return NULL;
245
246 spin_lock_irq(&ref->tree_lock);
247 GEM_BUG_ON(i915_active_is_idle(ref));
248
249 parent = NULL;
250 p = &ref->tree.rb_node;
251 while (*p) {
252 parent = *p;
253
254 node = rb_entry(parent, struct active_node, node);
255 if (node->timeline == idx) {
256 kmem_cache_free(global.slab_cache, prealloc);
257 goto out;
258 }
259
260 if (node->timeline < idx)
261 p = &parent->rb_right;
262 else
263 p = &parent->rb_left;
264 }
265
266 node = prealloc;
267 __i915_active_fence_init(&node->base, NULL, node_retire);
268 node->ref = ref;
269 node->timeline = idx;
270
271 rb_link_node(&node->node, parent, p);
272 rb_insert_color(&node->node, &ref->tree);
273
274 out:
275 ref->cache = node;
276 spin_unlock_irq(&ref->tree_lock);
277
278 BUILD_BUG_ON(offsetof(typeof(*node), base));
279 return &node->base;
280 }
281
282 void __i915_active_init(struct i915_active *ref,
283 int (*active)(struct i915_active *ref),
284 void (*retire)(struct i915_active *ref),
285 struct lock_class_key *mkey,
286 struct lock_class_key *wkey)
287 {
288 unsigned long bits;
289
290 debug_active_init(ref);
291
292 ref->flags = 0;
293 ref->active = active;
294 ref->retire = ptr_unpack_bits(retire, &bits, 2);
295 if (bits & I915_ACTIVE_MAY_SLEEP)
296 ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
297
298 spin_lock_init(&ref->tree_lock);
299 ref->tree = RB_ROOT;
300 ref->cache = NULL;
301
302 init_llist_head(&ref->preallocated_barriers);
303 atomic_set(&ref->count, 0);
304 __mutex_init(&ref->mutex, "i915_active", mkey);
305 __i915_active_fence_init(&ref->excl, NULL, excl_retire);
306 INIT_WORK(&ref->work, active_work);
307 #if IS_ENABLED(CONFIG_LOCKDEP)
308 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
309 #endif
310 }
311
312 static bool ____active_del_barrier(struct i915_active *ref,
313 struct active_node *node,
314 struct intel_engine_cs *engine)
315
316 {
317 struct llist_node *head = NULL, *tail = NULL;
318 struct llist_node *pos, *next;
319
320 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
321
322 /*
323 * Rebuild the llist excluding our node. We may perform this
324 * outside of the kernel_context timeline mutex and so someone
325 * else may be manipulating the engine->barrier_tasks, in
326 * which case either we or they will be upset :)
327 *
328 * A second __active_del_barrier() will report failure to claim
329 * the active_node and the caller will just shrug and know not to
330 * claim ownership of its node.
331 *
332 * A concurrent i915_request_add_active_barriers() will miss adding
333 * any of the tasks, but we will try again on the next -- and since
334 * we are actively using the barrier, we know that there will be
335 * at least another opportunity when we idle.
336 */
337 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
338 if (node == barrier_from_ll(pos)) {
339 node = NULL;
340 continue;
341 }
342
343 pos->next = head;
344 head = pos;
345 if (!tail)
346 tail = pos;
347 }
348 if (head)
349 llist_add_batch(head, tail, &engine->barrier_tasks);
350
351 return !node;
352 }
353
354 static bool
355 __active_del_barrier(struct i915_active *ref, struct active_node *node)
356 {
357 return ____active_del_barrier(ref, node, barrier_to_engine(node));
358 }
359
360 int i915_active_ref(struct i915_active *ref,
361 struct intel_timeline *tl,
362 struct dma_fence *fence)
363 {
364 struct i915_active_fence *active;
365 int err;
366
367 lockdep_assert_held(&tl->mutex);
368
369 /* Prevent reaping in case we malloc/wait while building the tree */
370 err = i915_active_acquire(ref);
371 if (err)
372 return err;
373
374 active = active_instance(ref, tl);
375 if (!active) {
376 err = -ENOMEM;
377 goto out;
378 }
379
380 if (is_barrier(active)) { /* proto-node used by our idle barrier */
381 /*
382 * This request is on the kernel_context timeline, and so
383 * we can use it to substitute for the pending idle-barrer
384 * request that we want to emit on the kernel_context.
385 */
386 __active_del_barrier(ref, node_from_active(active));
387 RCU_INIT_POINTER(active->fence, NULL);
388 atomic_dec(&ref->count);
389 }
390 if (!__i915_active_fence_set(active, fence))
391 atomic_inc(&ref->count);
392
393 out:
394 i915_active_release(ref);
395 return err;
396 }
397
398 void i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
399 {
400 /* We expect the caller to manage the exclusive timeline ordering */
401 GEM_BUG_ON(i915_active_is_idle(ref));
402
403 if (!__i915_active_fence_set(&ref->excl, f))
404 atomic_inc(&ref->count);
405 }
406
407 bool i915_active_acquire_if_busy(struct i915_active *ref)
408 {
409 debug_active_assert(ref);
410 return atomic_add_unless(&ref->count, 1, 0);
411 }
412
413 int i915_active_acquire(struct i915_active *ref)
414 {
415 int err;
416
417 if (i915_active_acquire_if_busy(ref))
418 return 0;
419
420 err = mutex_lock_interruptible(&ref->mutex);
421 if (err)
422 return err;
423
424 if (likely(!i915_active_acquire_if_busy(ref))) {
425 if (ref->active)
426 err = ref->active(ref);
427 if (!err) {
428 spin_lock_irq(&ref->tree_lock); /* __active_retire() */
429 debug_active_activate(ref);
430 atomic_inc(&ref->count);
431 spin_unlock_irq(&ref->tree_lock);
432 }
433 }
434
435 mutex_unlock(&ref->mutex);
436
437 return err;
438 }
439
440 void i915_active_release(struct i915_active *ref)
441 {
442 debug_active_assert(ref);
443 active_retire(ref);
444 }
445
446 static void enable_signaling(struct i915_active_fence *active)
447 {
448 struct dma_fence *fence;
449
450 fence = i915_active_fence_get(active);
451 if (!fence)
452 return;
453
454 dma_fence_enable_sw_signaling(fence);
455 dma_fence_put(fence);
456 }
457
458 int i915_active_wait(struct i915_active *ref)
459 {
460 struct active_node *it, *n;
461 int err = 0;
462
463 might_sleep();
464
465 if (!i915_active_acquire_if_busy(ref))
466 return 0;
467
468 /* Flush lazy signals */
469 enable_signaling(&ref->excl);
470 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
471 if (is_barrier(&it->base)) /* unconnected idle barrier */
472 continue;
473
474 enable_signaling(&it->base);
475 }
476 /* Any fence added after the wait begins will not be auto-signaled */
477
478 i915_active_release(ref);
479 if (err)
480 return err;
481
482 if (wait_var_event_interruptible(ref, i915_active_is_idle(ref)))
483 return -EINTR;
484
485 flush_work(&ref->work);
486 return 0;
487 }
488
489 int i915_request_await_active(struct i915_request *rq, struct i915_active *ref)
490 {
491 int err = 0;
492
493 if (rcu_access_pointer(ref->excl.fence)) {
494 struct dma_fence *fence;
495
496 rcu_read_lock();
497 fence = dma_fence_get_rcu_safe(&ref->excl.fence);
498 rcu_read_unlock();
499 if (fence) {
500 err = i915_request_await_dma_fence(rq, fence);
501 dma_fence_put(fence);
502 }
503 }
504
505 /* In the future we may choose to await on all fences */
506
507 return err;
508 }
509
510 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
511 void i915_active_fini(struct i915_active *ref)
512 {
513 debug_active_fini(ref);
514 GEM_BUG_ON(atomic_read(&ref->count));
515 GEM_BUG_ON(work_pending(&ref->work));
516 GEM_BUG_ON(!RB_EMPTY_ROOT(&ref->tree));
517 mutex_destroy(&ref->mutex);
518 }
519 #endif
520
521 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
522 {
523 return node->timeline == idx && !i915_active_fence_isset(&node->base);
524 }
525
526 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
527 {
528 struct rb_node *prev, *p;
529
530 if (RB_EMPTY_ROOT(&ref->tree))
531 return NULL;
532
533 spin_lock_irq(&ref->tree_lock);
534 GEM_BUG_ON(i915_active_is_idle(ref));
535
536 /*
537 * Try to reuse any existing barrier nodes already allocated for this
538 * i915_active, due to overlapping active phases there is likely a
539 * node kept alive (as we reuse before parking). We prefer to reuse
540 * completely idle barriers (less hassle in manipulating the llists),
541 * but otherwise any will do.
542 */
543 if (ref->cache && is_idle_barrier(ref->cache, idx)) {
544 p = &ref->cache->node;
545 goto match;
546 }
547
548 prev = NULL;
549 p = ref->tree.rb_node;
550 while (p) {
551 struct active_node *node =
552 rb_entry(p, struct active_node, node);
553
554 if (is_idle_barrier(node, idx))
555 goto match;
556
557 prev = p;
558 if (node->timeline < idx)
559 p = p->rb_right;
560 else
561 p = p->rb_left;
562 }
563
564 /*
565 * No quick match, but we did find the leftmost rb_node for the
566 * kernel_context. Walk the rb_tree in-order to see if there were
567 * any idle-barriers on this timeline that we missed, or just use
568 * the first pending barrier.
569 */
570 for (p = prev; p; p = rb_next(p)) {
571 struct active_node *node =
572 rb_entry(p, struct active_node, node);
573 struct intel_engine_cs *engine;
574
575 if (node->timeline > idx)
576 break;
577
578 if (node->timeline < idx)
579 continue;
580
581 if (is_idle_barrier(node, idx))
582 goto match;
583
584 /*
585 * The list of pending barriers is protected by the
586 * kernel_context timeline, which notably we do not hold
587 * here. i915_request_add_active_barriers() may consume
588 * the barrier before we claim it, so we have to check
589 * for success.
590 */
591 engine = __barrier_to_engine(node);
592 smp_rmb(); /* serialise with add_active_barriers */
593 if (is_barrier(&node->base) &&
594 ____active_del_barrier(ref, node, engine))
595 goto match;
596 }
597
598 spin_unlock_irq(&ref->tree_lock);
599
600 return NULL;
601
602 match:
603 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
604 if (p == &ref->cache->node)
605 ref->cache = NULL;
606 spin_unlock_irq(&ref->tree_lock);
607
608 return rb_entry(p, struct active_node, node);
609 }
610
611 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
612 struct intel_engine_cs *engine)
613 {
614 intel_engine_mask_t tmp, mask = engine->mask;
615 struct llist_node *first = NULL, *last = NULL;
616 struct intel_gt *gt = engine->gt;
617 int err;
618
619 GEM_BUG_ON(i915_active_is_idle(ref));
620
621 /* Wait until the previous preallocation is completed */
622 while (!llist_empty(&ref->preallocated_barriers))
623 cond_resched();
624
625 /*
626 * Preallocate a node for each physical engine supporting the target
627 * engine (remember virtual engines have more than one sibling).
628 * We can then use the preallocated nodes in
629 * i915_active_acquire_barrier()
630 */
631 for_each_engine_masked(engine, gt, mask, tmp) {
632 u64 idx = engine->kernel_context->timeline->fence_context;
633 struct llist_node *prev = first;
634 struct active_node *node;
635
636 node = reuse_idle_barrier(ref, idx);
637 if (!node) {
638 node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
639 if (!node) {
640 err = ENOMEM;
641 goto unwind;
642 }
643
644 RCU_INIT_POINTER(node->base.fence, NULL);
645 node->base.cb.func = node_retire;
646 node->timeline = idx;
647 node->ref = ref;
648 }
649
650 if (!i915_active_fence_isset(&node->base)) {
651 /*
652 * Mark this as being *our* unconnected proto-node.
653 *
654 * Since this node is not in any list, and we have
655 * decoupled it from the rbtree, we can reuse the
656 * request to indicate this is an idle-barrier node
657 * and then we can use the rb_node and list pointers
658 * for our tracking of the pending barrier.
659 */
660 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
661 node->base.cb.node.prev = (void *)engine;
662 atomic_inc(&ref->count);
663 }
664 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
665
666 GEM_BUG_ON(barrier_to_engine(node) != engine);
667 first = barrier_to_ll(node);
668 first->next = prev;
669 if (!last)
670 last = first;
671 intel_engine_pm_get(engine);
672 }
673
674 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
675 llist_add_batch(first, last, &ref->preallocated_barriers);
676
677 return 0;
678
679 unwind:
680 while (first) {
681 struct active_node *node = barrier_from_ll(first);
682
683 first = first->next;
684
685 atomic_dec(&ref->count);
686 intel_engine_pm_put(barrier_to_engine(node));
687
688 kmem_cache_free(global.slab_cache, node);
689 }
690 return err;
691 }
692
693 void i915_active_acquire_barrier(struct i915_active *ref)
694 {
695 struct llist_node *pos, *next;
696 unsigned long flags;
697
698 GEM_BUG_ON(i915_active_is_idle(ref));
699
700 /*
701 * Transfer the list of preallocated barriers into the
702 * i915_active rbtree, but only as proto-nodes. They will be
703 * populated by i915_request_add_active_barriers() to point to the
704 * request that will eventually release them.
705 */
706 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
707 struct active_node *node = barrier_from_ll(pos);
708 struct intel_engine_cs *engine = barrier_to_engine(node);
709 struct rb_node **p, *parent;
710
711 spin_lock_irqsave_nested(&ref->tree_lock, flags,
712 SINGLE_DEPTH_NESTING);
713 parent = NULL;
714 p = &ref->tree.rb_node;
715 while (*p) {
716 struct active_node *it;
717
718 parent = *p;
719
720 it = rb_entry(parent, struct active_node, node);
721 if (it->timeline < node->timeline)
722 p = &parent->rb_right;
723 else
724 p = &parent->rb_left;
725 }
726 rb_link_node(&node->node, parent, p);
727 rb_insert_color(&node->node, &ref->tree);
728 spin_unlock_irqrestore(&ref->tree_lock, flags);
729
730 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
731 llist_add(barrier_to_ll(node), &engine->barrier_tasks);
732 intel_engine_pm_put(engine);
733 }
734 }
735
736 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
737 {
738 return __active_fence_slot(&barrier_from_ll(node)->base);
739 }
740
741 void i915_request_add_active_barriers(struct i915_request *rq)
742 {
743 struct intel_engine_cs *engine = rq->engine;
744 struct llist_node *node, *next;
745 unsigned long flags;
746
747 GEM_BUG_ON(!intel_context_is_barrier(rq->context));
748 GEM_BUG_ON(intel_engine_is_virtual(engine));
749 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
750
751 node = llist_del_all(&engine->barrier_tasks);
752 if (!node)
753 return;
754 /*
755 * Attach the list of proto-fences to the in-flight request such
756 * that the parent i915_active will be released when this request
757 * is retired.
758 */
759 spin_lock_irqsave(&rq->lock, flags);
760 llist_for_each_safe(node, next, node) {
761 /* serialise with reuse_idle_barrier */
762 smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
763 list_add_tail((struct list_head *)node, &rq->fence.cb_list);
764 }
765 spin_unlock_irqrestore(&rq->lock, flags);
766 }
767
768 /*
769 * __i915_active_fence_set: Update the last active fence along its timeline
770 * @active: the active tracker
771 * @fence: the new fence (under construction)
772 *
773 * Records the new @fence as the last active fence along its timeline in
774 * this active tracker, moving the tracking callbacks from the previous
775 * fence onto this one. Returns the previous fence (if not already completed),
776 * which the caller must ensure is executed before the new fence. To ensure
777 * that the order of fences within the timeline of the i915_active_fence is
778 * understood, it should be locked by the caller.
779 */
780 struct dma_fence *
781 __i915_active_fence_set(struct i915_active_fence *active,
782 struct dma_fence *fence)
783 {
784 struct dma_fence *prev;
785 unsigned long flags;
786
787 if (fence == rcu_access_pointer(active->fence))
788 return fence;
789
790 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
791
792 /*
793 * Consider that we have two threads arriving (A and B), with
794 * C already resident as the active->fence.
795 *
796 * A does the xchg first, and so it sees C or NULL depending
797 * on the timing of the interrupt handler. If it is NULL, the
798 * previous fence must have been signaled and we know that
799 * we are first on the timeline. If it is still present,
800 * we acquire the lock on that fence and serialise with the interrupt
801 * handler, in the process removing it from any future interrupt
802 * callback. A will then wait on C before executing (if present).
803 *
804 * As B is second, it sees A as the previous fence and so waits for
805 * it to complete its transition and takes over the occupancy for
806 * itself -- remembering that it needs to wait on A before executing.
807 *
808 * Note the strong ordering of the timeline also provides consistent
809 * nesting rules for the fence->lock; the inner lock is always the
810 * older lock.
811 */
812 spin_lock_irqsave(fence->lock, flags);
813 prev = xchg(__active_fence_slot(active), fence);
814 if (prev) {
815 GEM_BUG_ON(prev == fence);
816 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
817 __list_del_entry(&active->cb.node);
818 spin_unlock(prev->lock); /* serialise with prev->cb_list */
819 }
820 GEM_BUG_ON(rcu_access_pointer(active->fence) != fence);
821 list_add_tail(&active->cb.node, &fence->cb_list);
822 spin_unlock_irqrestore(fence->lock, flags);
823
824 return prev;
825 }
826
827 int i915_active_fence_set(struct i915_active_fence *active,
828 struct i915_request *rq)
829 {
830 struct dma_fence *fence;
831 int err = 0;
832
833 /* Must maintain timeline ordering wrt previous active requests */
834 rcu_read_lock();
835 fence = __i915_active_fence_set(active, &rq->fence);
836 if (fence) /* but the previous fence may not belong to that timeline! */
837 fence = dma_fence_get_rcu(fence);
838 rcu_read_unlock();
839 if (fence) {
840 err = i915_request_await_dma_fence(rq, fence);
841 dma_fence_put(fence);
842 }
843
844 return err;
845 }
846
847 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
848 {
849 active_fence_cb(fence, cb);
850 }
851
852 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
853 #include "selftests/i915_active.c"
854 #endif
855
856 static void i915_global_active_shrink(void)
857 {
858 kmem_cache_shrink(global.slab_cache);
859 }
860
861 static void i915_global_active_exit(void)
862 {
863 kmem_cache_destroy(global.slab_cache);
864 }
865
866 static struct i915_global_active global = { {
867 .shrink = i915_global_active_shrink,
868 .exit = i915_global_active_exit,
869 } };
870
871 int __init i915_global_active_init(void)
872 {
873 global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
874 if (!global.slab_cache)
875 return -ENOMEM;
876
877 i915_global_register(&global.base);
878 return 0;
879 }
880