i915_active.c revision 1.10 1 /* $NetBSD: i915_active.c,v 1.10 2021/12/24 00:14:03 riastradh Exp $ */
2
3 /*
4 * SPDX-License-Identifier: MIT
5 *
6 * Copyright 2019 Intel Corporation
7 */
8
9 #include <sys/cdefs.h>
10 __KERNEL_RCSID(0, "$NetBSD: i915_active.c,v 1.10 2021/12/24 00:14:03 riastradh Exp $");
11
12 #include <linux/debugobjects.h>
13
14 #include "gt/intel_context.h"
15 #include "gt/intel_engine_pm.h"
16 #include "gt/intel_ring.h"
17
18 #include "i915_drv.h"
19 #include "i915_active.h"
20 #include "i915_globals.h"
21
22 #include <linux/nbsd-namespace.h>
23
24 /*
25 * Active refs memory management
26 *
27 * To be more economical with memory, we reap all the i915_active trees as
28 * they idle (when we know the active requests are inactive) and allocate the
29 * nodes from a local slab cache to hopefully reduce the fragmentation.
30 */
31 static struct i915_global_active {
32 struct i915_global base;
33 struct kmem_cache *slab_cache;
34 } global;
35
36 struct active_node {
37 struct i915_active_fence base;
38 struct i915_active *ref;
39 struct rb_node node;
40 u64 timeline;
41 struct intel_engine_cs *engine;
42 };
43
44 static inline struct active_node *
45 node_from_active(struct i915_active_fence *active)
46 {
47 return container_of(active, struct active_node, base);
48 }
49
50 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
51
52 static inline bool is_barrier(const struct i915_active_fence *active)
53 {
54 return IS_ERR(rcu_access_pointer(active->fence));
55 }
56
57 static inline struct llist_node *barrier_to_ll(struct active_node *node)
58 {
59 GEM_BUG_ON(!is_barrier(&node->base));
60 return &node->base.llist;
61 }
62
63 static inline struct intel_engine_cs *
64 __barrier_to_engine(struct active_node *node)
65 {
66 return READ_ONCE(node->engine);
67 }
68
69 static inline struct intel_engine_cs *
70 barrier_to_engine(struct active_node *node)
71 {
72 GEM_BUG_ON(!is_barrier(&node->base));
73 return __barrier_to_engine(node);
74 }
75
76 static inline struct active_node *barrier_from_ll(struct llist_node *x)
77 {
78 return container_of(x, struct active_node, base.llist);
79 }
80
81 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
82
83 static void *active_debug_hint(void *addr)
84 {
85 struct i915_active *ref = addr;
86
87 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
88 }
89
90 static struct debug_obj_descr active_debug_desc = {
91 .name = "i915_active",
92 .debug_hint = active_debug_hint,
93 };
94
95 static void debug_active_init(struct i915_active *ref)
96 {
97 debug_object_init(ref, &active_debug_desc);
98 }
99
100 static void debug_active_activate(struct i915_active *ref)
101 {
102 lockdep_assert_held(&ref->tree_lock);
103 if (!atomic_read(&ref->count)) /* before the first inc */
104 debug_object_activate(ref, &active_debug_desc);
105 }
106
107 static void debug_active_deactivate(struct i915_active *ref)
108 {
109 lockdep_assert_held(&ref->tree_lock);
110 if (!atomic_read(&ref->count)) /* after the last dec */
111 debug_object_deactivate(ref, &active_debug_desc);
112 }
113
114 static void debug_active_fini(struct i915_active *ref)
115 {
116 debug_object_free(ref, &active_debug_desc);
117 }
118
119 static void debug_active_assert(struct i915_active *ref)
120 {
121 debug_object_assert_init(ref, &active_debug_desc);
122 }
123
124 #else
125
126 static inline void debug_active_init(struct i915_active *ref) { }
127 static inline void debug_active_activate(struct i915_active *ref) { }
128 static inline void debug_active_deactivate(struct i915_active *ref) { }
129 static inline void debug_active_fini(struct i915_active *ref) { }
130 static inline void debug_active_assert(struct i915_active *ref) { }
131
132 #endif
133
134 #ifdef __NetBSD__
135
136 static int
137 compare_nodes(void *cookie, const void *va, const void *vb)
138 {
139 const struct active_node *a = va;
140 const struct active_node *b = vb;
141
142 if (a->timeline < b->timeline)
143 return -1;
144 if (a->timeline > b->timeline)
145 return +1;
146 if ((uintptr_t)a < (uintptr_t)b)
147 return -1;
148 if ((uintptr_t)a > (uintptr_t)b)
149 return +1;
150 return 0;
151 }
152
153 static int
154 compare_node_key(void *cookie, const void *vn, const void *vk)
155 {
156 const struct active_node *a = vn;
157 const uint64_t *k = vk;
158
159 if (a->timeline < *k)
160 return -1;
161 if (a->timeline > *k)
162 return +1;
163 return 0;
164 }
165
166 static const rb_tree_ops_t active_rb_ops = {
167 .rbto_compare_nodes = compare_nodes,
168 .rbto_compare_key = compare_node_key,
169 .rbto_node_offset = offsetof(struct active_node, node),
170 };
171
172 #endif
173
174 static void
175 __active_retire(struct i915_active *ref)
176 {
177 struct active_node *it, *n;
178 struct rb_root root;
179 unsigned long flags;
180
181 GEM_BUG_ON(i915_active_is_idle(ref));
182
183 /* return the unused nodes to our slabcache -- flushing the allocator */
184 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
185 return;
186
187 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
188 debug_active_deactivate(ref);
189
190 root = ref->tree;
191 #ifdef __NetBSD__
192 rb_tree_init(&ref->tree.rbr_tree, &active_rb_ops);
193 #else
194 ref->tree = RB_ROOT;
195 #endif
196 ref->cache = NULL;
197
198 DRM_SPIN_WAKEUP_ALL(&ref->tree_wq, &ref->tree_lock);
199
200 spin_unlock_irqrestore(&ref->tree_lock, flags);
201
202 /* After the final retire, the entire struct may be freed */
203 if (ref->retire)
204 ref->retire(ref);
205
206 /* ... except if you wait on it, you must manage your own references! */
207
208 rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
209 GEM_BUG_ON(i915_active_fence_isset(&it->base));
210 kmem_cache_free(global.slab_cache, it);
211 }
212 }
213
214 static void
215 active_work(struct work_struct *wrk)
216 {
217 struct i915_active *ref = container_of(wrk, typeof(*ref), work);
218
219 GEM_BUG_ON(!atomic_read(&ref->count));
220 if (atomic_add_unless(&ref->count, -1, 1))
221 return;
222
223 __active_retire(ref);
224 }
225
226 static void
227 active_retire(struct i915_active *ref)
228 {
229 GEM_BUG_ON(!atomic_read(&ref->count));
230 if (atomic_add_unless(&ref->count, -1, 1))
231 return;
232
233 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
234 queue_work(system_unbound_wq, &ref->work);
235 return;
236 }
237
238 __active_retire(ref);
239 }
240
241 static inline struct dma_fence **
242 __active_fence_slot(struct i915_active_fence *active)
243 {
244 return (struct dma_fence ** __force)&active->fence;
245 }
246
247 static inline bool
248 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
249 {
250 struct i915_active_fence *active =
251 container_of(cb, typeof(*active), cb);
252
253 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
254 }
255
256 static void
257 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
258 {
259 if (active_fence_cb(fence, cb))
260 active_retire(container_of(cb, struct active_node, base.cb)->ref);
261 }
262
263 static void
264 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
265 {
266 if (active_fence_cb(fence, cb))
267 active_retire(container_of(cb, struct i915_active, excl.cb));
268 }
269
270 static struct i915_active_fence *
271 active_instance(struct i915_active *ref, struct intel_timeline *tl)
272 {
273 struct active_node *node, *prealloc;
274 struct rb_node **p, *parent;
275 u64 idx = tl->fence_context;
276
277 /*
278 * We track the most recently used timeline to skip a rbtree search
279 * for the common case, under typical loads we never need the rbtree
280 * at all. We can reuse the last slot if it is empty, that is
281 * after the previous activity has been retired, or if it matches the
282 * current timeline.
283 */
284 node = READ_ONCE(ref->cache);
285 if (node && node->timeline == idx)
286 return &node->base;
287
288 /* Preallocate a replacement, just in case */
289 prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
290 if (!prealloc)
291 return NULL;
292 memset(prealloc, 0, sizeof(*prealloc));
293
294 spin_lock_irq(&ref->tree_lock);
295 GEM_BUG_ON(i915_active_is_idle(ref));
296
297 #ifdef __NetBSD__
298 __USE(parent);
299 __USE(p);
300 node = rb_tree_find_node(&ref->tree.rbr_tree, &idx);
301 if (node) {
302 KASSERT(node->timeline == idx);
303 kmem_cache_free(global.slab_cache, prealloc);
304 goto out;
305 }
306 #else
307 parent = NULL;
308 p = &ref->tree.rb_node;
309 while (*p) {
310 parent = *p;
311
312 node = rb_entry(parent, struct active_node, node);
313 if (node->timeline == idx) {
314 kmem_cache_free(global.slab_cache, prealloc);
315 goto out;
316 }
317
318 if (node->timeline < idx)
319 p = &parent->rb_right;
320 else
321 p = &parent->rb_left;
322 }
323 #endif
324
325 node = prealloc;
326 __i915_active_fence_init(&node->base, NULL, node_retire);
327 node->ref = ref;
328 node->timeline = idx;
329
330 #ifdef __NetBSD__
331 struct active_node *collision __diagused;
332 collision = rb_tree_insert_node(&ref->tree.rbr_tree, node);
333 KASSERT(collision == node);
334 #else
335 rb_link_node(&node->node, parent, p);
336 rb_insert_color(&node->node, &ref->tree);
337 #endif
338
339 out:
340 ref->cache = node;
341 spin_unlock_irq(&ref->tree_lock);
342
343 BUILD_BUG_ON(offsetof(typeof(*node), base));
344 return &node->base;
345 }
346
347 void __i915_active_init(struct i915_active *ref,
348 int (*active)(struct i915_active *ref),
349 void (*retire)(struct i915_active *ref),
350 struct lock_class_key *mkey,
351 struct lock_class_key *wkey)
352 {
353 unsigned long bits;
354
355 debug_active_init(ref);
356
357 ref->flags = 0;
358 ref->active = active;
359 ref->retire = ptr_unpack_bits(retire, &bits, 2);
360 if (bits & I915_ACTIVE_MAY_SLEEP)
361 ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
362
363 spin_lock_init(&ref->tree_lock);
364 DRM_INIT_WAITQUEUE(&ref->tree_wq, "i915act");
365 #ifdef __NetBSD__
366 rb_tree_init(&ref->tree.rbr_tree, &active_rb_ops);
367 #else
368 ref->tree = RB_ROOT;
369 #endif
370 ref->cache = NULL;
371
372 init_llist_head(&ref->preallocated_barriers);
373 atomic_set(&ref->count, 0);
374 __mutex_init(&ref->mutex, "i915_active", mkey);
375 __i915_active_fence_init(&ref->excl, NULL, excl_retire);
376 INIT_WORK(&ref->work, active_work);
377 #if IS_ENABLED(CONFIG_LOCKDEP)
378 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
379 #endif
380 }
381
382 static bool ____active_del_barrier(struct i915_active *ref,
383 struct active_node *node,
384 struct intel_engine_cs *engine)
385
386 {
387 struct llist_node *head = NULL, *tail = NULL;
388 struct llist_node *pos, *next;
389
390 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
391
392 /*
393 * Rebuild the llist excluding our node. We may perform this
394 * outside of the kernel_context timeline mutex and so someone
395 * else may be manipulating the engine->barrier_tasks, in
396 * which case either we or they will be upset :)
397 *
398 * A second __active_del_barrier() will report failure to claim
399 * the active_node and the caller will just shrug and know not to
400 * claim ownership of its node.
401 *
402 * A concurrent i915_request_add_active_barriers() will miss adding
403 * any of the tasks, but we will try again on the next -- and since
404 * we are actively using the barrier, we know that there will be
405 * at least another opportunity when we idle.
406 */
407 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
408 if (node == barrier_from_ll(pos)) {
409 node = NULL;
410 continue;
411 }
412
413 pos->next = head;
414 head = pos;
415 if (!tail)
416 tail = pos;
417 }
418 if (head)
419 llist_add_batch(head, tail, &engine->barrier_tasks);
420
421 return !node;
422 }
423
424 static bool
425 __active_del_barrier(struct i915_active *ref, struct active_node *node)
426 {
427 return ____active_del_barrier(ref, node, barrier_to_engine(node));
428 }
429
430 int i915_active_ref(struct i915_active *ref,
431 struct intel_timeline *tl,
432 struct dma_fence *fence)
433 {
434 struct i915_active_fence *active;
435 int err;
436
437 lockdep_assert_held(&tl->mutex);
438
439 /* Prevent reaping in case we malloc/wait while building the tree */
440 err = i915_active_acquire(ref);
441 if (err)
442 return err;
443
444 active = active_instance(ref, tl);
445 if (!active) {
446 err = -ENOMEM;
447 goto out;
448 }
449
450 if (is_barrier(active)) { /* proto-node used by our idle barrier */
451 /*
452 * This request is on the kernel_context timeline, and so
453 * we can use it to substitute for the pending idle-barrer
454 * request that we want to emit on the kernel_context.
455 */
456 __active_del_barrier(ref, node_from_active(active));
457 RCU_INIT_POINTER(active->fence, NULL);
458 atomic_dec(&ref->count);
459 }
460 if (!__i915_active_fence_set(active, fence))
461 atomic_inc(&ref->count);
462
463 out:
464 i915_active_release(ref);
465 return err;
466 }
467
468 void i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
469 {
470 /* We expect the caller to manage the exclusive timeline ordering */
471 GEM_BUG_ON(i915_active_is_idle(ref));
472
473 if (!__i915_active_fence_set(&ref->excl, f))
474 atomic_inc(&ref->count);
475 }
476
477 bool i915_active_acquire_if_busy(struct i915_active *ref)
478 {
479 debug_active_assert(ref);
480 return atomic_add_unless(&ref->count, 1, 0);
481 }
482
483 int i915_active_acquire(struct i915_active *ref)
484 {
485 int err;
486
487 if (i915_active_acquire_if_busy(ref))
488 return 0;
489
490 err = mutex_lock_interruptible(&ref->mutex);
491 if (err)
492 return err;
493
494 if (likely(!i915_active_acquire_if_busy(ref))) {
495 if (ref->active)
496 err = ref->active(ref);
497 if (!err) {
498 spin_lock_irq(&ref->tree_lock); /* __active_retire() */
499 debug_active_activate(ref);
500 atomic_inc(&ref->count);
501 spin_unlock_irq(&ref->tree_lock);
502 }
503 }
504
505 mutex_unlock(&ref->mutex);
506
507 return err;
508 }
509
510 void i915_active_release(struct i915_active *ref)
511 {
512 debug_active_assert(ref);
513 active_retire(ref);
514 }
515
516 static void enable_signaling(struct i915_active_fence *active)
517 {
518 struct dma_fence *fence;
519
520 fence = i915_active_fence_get(active);
521 if (!fence)
522 return;
523
524 dma_fence_enable_sw_signaling(fence);
525 dma_fence_put(fence);
526 }
527
528 int i915_active_wait(struct i915_active *ref)
529 {
530 struct active_node *it, *n;
531 int err = 0;
532
533 might_sleep();
534
535 if (!i915_active_acquire_if_busy(ref))
536 return 0;
537
538 /* Flush lazy signals */
539 enable_signaling(&ref->excl);
540 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
541 if (is_barrier(&it->base)) /* unconnected idle barrier */
542 continue;
543
544 enable_signaling(&it->base);
545 }
546 /* Any fence added after the wait begins will not be auto-signaled */
547
548 i915_active_release(ref);
549 if (err)
550 return err;
551
552 spin_lock(&ref->tree_lock);
553 DRM_SPIN_WAIT_UNTIL(err, &ref->tree_wq, &ref->tree_lock,
554 i915_active_is_idle(ref));
555 spin_unlock(&ref->tree_lock);
556 if (err)
557 return err;
558
559 flush_work(&ref->work);
560 return 0;
561 }
562
563 int i915_request_await_active(struct i915_request *rq, struct i915_active *ref)
564 {
565 int err = 0;
566
567 if (rcu_access_pointer(ref->excl.fence)) {
568 struct dma_fence *fence;
569
570 rcu_read_lock();
571 fence = dma_fence_get_rcu_safe(&ref->excl.fence);
572 rcu_read_unlock();
573 if (fence) {
574 err = i915_request_await_dma_fence(rq, fence);
575 dma_fence_put(fence);
576 }
577 }
578
579 /* In the future we may choose to await on all fences */
580
581 return err;
582 }
583
584 void i915_active_fini(struct i915_active *ref)
585 {
586 debug_active_fini(ref);
587 GEM_BUG_ON(atomic_read(&ref->count));
588 GEM_BUG_ON(work_pending(&ref->work));
589 GEM_BUG_ON(!RB_EMPTY_ROOT(&ref->tree));
590 mutex_destroy(&ref->mutex);
591 spin_lock_destroy(&ref->tree_lock);
592 }
593
594 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
595 {
596 return node->timeline == idx && !i915_active_fence_isset(&node->base);
597 }
598
599 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
600 {
601 struct rb_node *prev, *p;
602
603 if (RB_EMPTY_ROOT(&ref->tree))
604 return NULL;
605
606 spin_lock_irq(&ref->tree_lock);
607 GEM_BUG_ON(i915_active_is_idle(ref));
608
609 /*
610 * Try to reuse any existing barrier nodes already allocated for this
611 * i915_active, due to overlapping active phases there is likely a
612 * node kept alive (as we reuse before parking). We prefer to reuse
613 * completely idle barriers (less hassle in manipulating the llists),
614 * but otherwise any will do.
615 */
616 if (ref->cache && is_idle_barrier(ref->cache, idx)) {
617 p = &ref->cache->node;
618 goto match;
619 }
620
621 #ifdef __NetBSD__
622 {
623 struct active_node *node =
624 rb_tree_find_node_leq(&ref->tree.rbr_tree, &idx);
625 if (node) {
626 if (node->timeline == idx && is_idle_barrier(node, idx)) {
627 p = &node->node;
628 goto match;
629 }
630 prev = &node->node;
631 } else {
632 prev = NULL;
633 }
634 }
635 #else
636 prev = NULL;
637 p = ref->tree.rb_node;
638 while (p) {
639 struct active_node *node =
640 rb_entry(p, struct active_node, node);
641
642 if (is_idle_barrier(node, idx))
643 goto match;
644
645 prev = p;
646 if (node->timeline < idx)
647 p = p->rb_right;
648 else
649 p = p->rb_left;
650 }
651 #endif
652
653 /*
654 * No quick match, but we did find the leftmost rb_node for the
655 * kernel_context. Walk the rb_tree in-order to see if there were
656 * any idle-barriers on this timeline that we missed, or just use
657 * the first pending barrier.
658 */
659 for (p = prev; p; p = rb_next2(&ref->tree, p)) {
660 struct active_node *node =
661 rb_entry(p, struct active_node, node);
662 struct intel_engine_cs *engine;
663
664 if (node->timeline > idx)
665 break;
666
667 if (node->timeline < idx)
668 continue;
669
670 if (is_idle_barrier(node, idx))
671 goto match;
672
673 /*
674 * The list of pending barriers is protected by the
675 * kernel_context timeline, which notably we do not hold
676 * here. i915_request_add_active_barriers() may consume
677 * the barrier before we claim it, so we have to check
678 * for success.
679 */
680 engine = __barrier_to_engine(node);
681 smp_rmb(); /* serialise with add_active_barriers */
682 if (is_barrier(&node->base) &&
683 ____active_del_barrier(ref, node, engine))
684 goto match;
685 }
686
687 spin_unlock_irq(&ref->tree_lock);
688
689 return NULL;
690
691 match:
692 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
693 if (p == &ref->cache->node)
694 ref->cache = NULL;
695 spin_unlock_irq(&ref->tree_lock);
696
697 return rb_entry(p, struct active_node, node);
698 }
699
700 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
701 struct intel_engine_cs *engine)
702 {
703 intel_engine_mask_t tmp, mask = engine->mask;
704 struct llist_node *first = NULL, *last = NULL;
705 struct intel_gt *gt = engine->gt;
706 int err;
707
708 GEM_BUG_ON(i915_active_is_idle(ref));
709
710 /* Wait until the previous preallocation is completed */
711 while (!llist_empty(&ref->preallocated_barriers))
712 cond_resched();
713
714 /*
715 * Preallocate a node for each physical engine supporting the target
716 * engine (remember virtual engines have more than one sibling).
717 * We can then use the preallocated nodes in
718 * i915_active_acquire_barrier()
719 */
720 for_each_engine_masked(engine, gt, mask, tmp) {
721 u64 idx = engine->kernel_context->timeline->fence_context;
722 struct llist_node *prev = first;
723 struct active_node *node;
724
725 node = reuse_idle_barrier(ref, idx);
726 if (!node) {
727 node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
728 if (!node) {
729 err = ENOMEM;
730 goto unwind;
731 }
732
733 memset(node, 0, sizeof(*node));
734 RCU_INIT_POINTER(node->base.fence, NULL);
735 node->base.cb.func = node_retire;
736 node->timeline = idx;
737 node->ref = ref;
738 }
739
740 if (!i915_active_fence_isset(&node->base)) {
741 /*
742 * Mark this as being *our* unconnected proto-node.
743 *
744 * Since this node is not in any list, and we have
745 * decoupled it from the rbtree, we can reuse the
746 * request to indicate this is an idle-barrier node
747 * and then we can use the rb_node and list pointers
748 * for our tracking of the pending barrier.
749 */
750 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
751 node->engine = engine;
752 atomic_inc(&ref->count);
753 }
754 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
755
756 GEM_BUG_ON(barrier_to_engine(node) != engine);
757 first = barrier_to_ll(node);
758 first->next = prev;
759 if (!last)
760 last = first;
761 intel_engine_pm_get(engine);
762 }
763
764 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
765 llist_add_batch(first, last, &ref->preallocated_barriers);
766
767 return 0;
768
769 unwind:
770 while (first) {
771 struct active_node *node = barrier_from_ll(first);
772
773 first = first->next;
774
775 atomic_dec(&ref->count);
776 intel_engine_pm_put(barrier_to_engine(node));
777
778 kmem_cache_free(global.slab_cache, node);
779 }
780 return err;
781 }
782
783 void i915_active_acquire_barrier(struct i915_active *ref)
784 {
785 struct llist_node *pos, *next;
786 unsigned long flags;
787
788 GEM_BUG_ON(i915_active_is_idle(ref));
789
790 /*
791 * Transfer the list of preallocated barriers into the
792 * i915_active rbtree, but only as proto-nodes. They will be
793 * populated by i915_request_add_active_barriers() to point to the
794 * request that will eventually release them.
795 */
796 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
797 struct active_node *node = barrier_from_ll(pos);
798 struct intel_engine_cs *engine = barrier_to_engine(node);
799 struct rb_node **p, *parent;
800
801 spin_lock_irqsave_nested(&ref->tree_lock, flags,
802 SINGLE_DEPTH_NESTING);
803 #ifdef __NetBSD__
804 __USE(p);
805 __USE(parent);
806 struct active_node *collision __diagused;
807 collision = rb_tree_insert_node(&ref->tree.rbr_tree, node);
808 KASSERT(collision == node);
809 #else
810 parent = NULL;
811 p = &ref->tree.rb_node;
812 while (*p) {
813 struct active_node *it;
814
815 parent = *p;
816
817 it = rb_entry(parent, struct active_node, node);
818 if (it->timeline < node->timeline)
819 p = &parent->rb_right;
820 else
821 p = &parent->rb_left;
822 }
823 rb_link_node(&node->node, parent, p);
824 rb_insert_color(&node->node, &ref->tree);
825 #endif
826 spin_unlock_irqrestore(&ref->tree_lock, flags);
827
828 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
829 llist_add(barrier_to_ll(node), &engine->barrier_tasks);
830 intel_engine_pm_put(engine);
831 }
832 }
833
834 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
835 {
836 return __active_fence_slot(&barrier_from_ll(node)->base);
837 }
838
839 void i915_request_add_active_barriers(struct i915_request *rq)
840 {
841 struct intel_engine_cs *engine = rq->engine;
842 struct llist_node *node, *next;
843 unsigned long flags;
844
845 GEM_BUG_ON(!intel_context_is_barrier(rq->context));
846 GEM_BUG_ON(intel_engine_is_virtual(engine));
847 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
848
849 node = llist_del_all(&engine->barrier_tasks);
850 if (!node)
851 return;
852 /*
853 * Attach the list of proto-fences to the in-flight request such
854 * that the parent i915_active will be released when this request
855 * is retired.
856 */
857 spin_lock_irqsave(&rq->lock, flags);
858 llist_for_each_safe(node, next, node) {
859 /* serialise with reuse_idle_barrier */
860 smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
861 #ifdef __NetBSD__
862 /* XXX ugh bletch */
863 struct i915_active_fence *active =
864 container_of(node, struct i915_active_fence, llist);
865 /* XXX something bad went wrong in making this code */
866 KASSERT(active->cb.func == node_retire ||
867 active->cb.func == excl_retire ||
868 active->cb.func == i915_active_noop);
869 KASSERTMSG(active->fence == &rq->fence,
870 "active=%p fence=%p; rq=%p fence=%p",
871 active, active->fence, rq, &rq->fence);
872 KASSERTMSG(!active->cb.fcb_onqueue, "active=%p", active);
873 active->cb.fcb_onqueue = true;
874 TAILQ_INSERT_TAIL(&rq->fence.f_callbacks, &active->cb,
875 fcb_entry);
876 #else
877 list_add_tail((struct list_head *)node, &rq->fence.cb_list);
878 #endif
879 }
880 spin_unlock_irqrestore(&rq->lock, flags);
881 }
882
883 /*
884 * __i915_active_fence_set: Update the last active fence along its timeline
885 * @active: the active tracker
886 * @fence: the new fence (under construction)
887 *
888 * Records the new @fence as the last active fence along its timeline in
889 * this active tracker, moving the tracking callbacks from the previous
890 * fence onto this one. Returns the previous fence (if not already completed),
891 * which the caller must ensure is executed before the new fence. To ensure
892 * that the order of fences within the timeline of the i915_active_fence is
893 * understood, it should be locked by the caller.
894 */
895 struct dma_fence *
896 __i915_active_fence_set(struct i915_active_fence *active,
897 struct dma_fence *fence)
898 {
899 struct dma_fence *prev;
900 unsigned long flags;
901
902 if (fence == rcu_access_pointer(active->fence))
903 return fence;
904
905 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
906
907 /*
908 * Consider that we have two threads arriving (A and B), with
909 * C already resident as the active->fence.
910 *
911 * A does the xchg first, and so it sees C or NULL depending
912 * on the timing of the interrupt handler. If it is NULL, the
913 * previous fence must have been signaled and we know that
914 * we are first on the timeline. If it is still present,
915 * we acquire the lock on that fence and serialise with the interrupt
916 * handler, in the process removing it from any future interrupt
917 * callback. A will then wait on C before executing (if present).
918 *
919 * As B is second, it sees A as the previous fence and so waits for
920 * it to complete its transition and takes over the occupancy for
921 * itself -- remembering that it needs to wait on A before executing.
922 *
923 * Note the strong ordering of the timeline also provides consistent
924 * nesting rules for the fence->lock; the inner lock is always the
925 * older lock.
926 */
927 spin_lock_irqsave(fence->lock, flags);
928 prev = xchg(__active_fence_slot(active), fence);
929 if (prev) {
930 GEM_BUG_ON(prev == fence);
931 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
932 #ifdef __NetBSD__
933 /* XXX ugh bletch */
934 KASSERT(active->cb.func == node_retire ||
935 active->cb.func == excl_retire ||
936 active->cb.func == i915_active_noop);
937 if (active->cb.fcb_onqueue) {
938 TAILQ_REMOVE(&prev->f_callbacks, &active->cb,
939 fcb_entry);
940 active->cb.fcb_onqueue = false;
941 }
942 #else
943 __list_del_entry(&active->cb.node);
944 #endif
945 spin_unlock(prev->lock); /* serialise with prev->cb_list */
946 }
947 GEM_BUG_ON(rcu_access_pointer(active->fence) != fence);
948 #ifdef __NetBSD__
949 /* XXX ugh bletch */
950 KASSERT(!active->cb.fcb_onqueue);
951 active->cb.fcb_onqueue = true;
952 TAILQ_INSERT_TAIL(&fence->f_callbacks, &active->cb, fcb_entry);
953 #else
954 list_add_tail(&active->cb.node, &fence->cb_list);
955 #endif
956 spin_unlock_irqrestore(fence->lock, flags);
957
958 return prev;
959 }
960
961 int i915_active_fence_set(struct i915_active_fence *active,
962 struct i915_request *rq)
963 {
964 struct dma_fence *fence;
965 int err = 0;
966
967 /* Must maintain timeline ordering wrt previous active requests */
968 rcu_read_lock();
969 fence = __i915_active_fence_set(active, &rq->fence);
970 if (fence) /* but the previous fence may not belong to that timeline! */
971 fence = dma_fence_get_rcu(fence);
972 rcu_read_unlock();
973 if (fence) {
974 err = i915_request_await_dma_fence(rq, fence);
975 dma_fence_put(fence);
976 }
977
978 return err;
979 }
980
981 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
982 {
983 active_fence_cb(fence, cb);
984 }
985
986 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
987 #include "selftests/i915_active.c"
988 #endif
989
990 static void i915_global_active_shrink(void)
991 {
992 kmem_cache_shrink(global.slab_cache);
993 }
994
995 static void i915_global_active_exit(void)
996 {
997 kmem_cache_destroy(global.slab_cache);
998 }
999
1000 static struct i915_global_active global = { {
1001 .shrink = i915_global_active_shrink,
1002 .exit = i915_global_active_exit,
1003 } };
1004
1005 int __init i915_global_active_init(void)
1006 {
1007 global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1008 if (!global.slab_cache)
1009 return -ENOMEM;
1010
1011 i915_global_register(&global.base);
1012 return 0;
1013 }
1014