i915_active.c revision 1.4 1 /* $NetBSD: i915_active.c,v 1.4 2021/12/19 11:52:07 riastradh Exp $ */
2
3 /*
4 * SPDX-License-Identifier: MIT
5 *
6 * Copyright 2019 Intel Corporation
7 */
8
9 #include <sys/cdefs.h>
10 __KERNEL_RCSID(0, "$NetBSD: i915_active.c,v 1.4 2021/12/19 11:52:07 riastradh Exp $");
11
12 #include <linux/debugobjects.h>
13
14 #include "gt/intel_context.h"
15 #include "gt/intel_engine_pm.h"
16 #include "gt/intel_ring.h"
17
18 #include "i915_drv.h"
19 #include "i915_active.h"
20 #include "i915_globals.h"
21
22 #include <linux/nbsd-namespace.h>
23
24 /*
25 * Active refs memory management
26 *
27 * To be more economical with memory, we reap all the i915_active trees as
28 * they idle (when we know the active requests are inactive) and allocate the
29 * nodes from a local slab cache to hopefully reduce the fragmentation.
30 */
31 static struct i915_global_active {
32 struct i915_global base;
33 struct kmem_cache *slab_cache;
34 } global;
35
36 struct active_node {
37 struct i915_active_fence base;
38 struct i915_active *ref;
39 struct rb_node node;
40 u64 timeline;
41 struct intel_engine_cs *engine;
42 };
43
44 static inline struct active_node *
45 node_from_active(struct i915_active_fence *active)
46 {
47 return container_of(active, struct active_node, base);
48 }
49
50 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
51
52 static inline bool is_barrier(const struct i915_active_fence *active)
53 {
54 return IS_ERR(rcu_access_pointer(active->fence));
55 }
56
57 static inline struct llist_node *barrier_to_ll(struct active_node *node)
58 {
59 GEM_BUG_ON(!is_barrier(&node->base));
60 return &node->base.llist;
61 }
62
63 static inline struct intel_engine_cs *
64 __barrier_to_engine(struct active_node *node)
65 {
66 return READ_ONCE(node->engine);
67 }
68
69 static inline struct intel_engine_cs *
70 barrier_to_engine(struct active_node *node)
71 {
72 GEM_BUG_ON(!is_barrier(&node->base));
73 return __barrier_to_engine(node);
74 }
75
76 static inline struct active_node *barrier_from_ll(struct llist_node *x)
77 {
78 return container_of(x, struct active_node, base.llist);
79 }
80
81 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
82
83 static void *active_debug_hint(void *addr)
84 {
85 struct i915_active *ref = addr;
86
87 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
88 }
89
90 static struct debug_obj_descr active_debug_desc = {
91 .name = "i915_active",
92 .debug_hint = active_debug_hint,
93 };
94
95 static void debug_active_init(struct i915_active *ref)
96 {
97 debug_object_init(ref, &active_debug_desc);
98 }
99
100 static void debug_active_activate(struct i915_active *ref)
101 {
102 lockdep_assert_held(&ref->tree_lock);
103 if (!atomic_read(&ref->count)) /* before the first inc */
104 debug_object_activate(ref, &active_debug_desc);
105 }
106
107 static void debug_active_deactivate(struct i915_active *ref)
108 {
109 lockdep_assert_held(&ref->tree_lock);
110 if (!atomic_read(&ref->count)) /* after the last dec */
111 debug_object_deactivate(ref, &active_debug_desc);
112 }
113
114 static void debug_active_fini(struct i915_active *ref)
115 {
116 debug_object_free(ref, &active_debug_desc);
117 }
118
119 static void debug_active_assert(struct i915_active *ref)
120 {
121 debug_object_assert_init(ref, &active_debug_desc);
122 }
123
124 #else
125
126 static inline void debug_active_init(struct i915_active *ref) { }
127 static inline void debug_active_activate(struct i915_active *ref) { }
128 static inline void debug_active_deactivate(struct i915_active *ref) { }
129 static inline void debug_active_fini(struct i915_active *ref) { }
130 static inline void debug_active_assert(struct i915_active *ref) { }
131
132 #endif
133
134 #ifdef __NetBSD__
135
136 static int
137 compare_nodes(void *cookie, const void *va, const void *vb)
138 {
139 const struct active_node *a = va;
140 const struct active_node *b = vb;
141
142 if (a->timeline < b->timeline)
143 return -1;
144 if (a->timeline > b->timeline)
145 return +1;
146 return 0;
147 }
148
149 static int
150 compare_node_key(void *cookie, const void *vn, const void *vk)
151 {
152 const struct active_node *a = vn;
153 const uint64_t *k = vk;
154
155 if (a->timeline < *k)
156 return -1;
157 if (a->timeline > *k)
158 return +1;
159 return 0;
160 }
161
162 static const rb_tree_ops_t active_rb_ops = {
163 .rbto_compare_nodes = compare_nodes,
164 .rbto_compare_key = compare_node_key,
165 .rbto_node_offset = offsetof(struct active_node, node),
166 };
167
168 #endif
169
170 static void
171 __active_retire(struct i915_active *ref)
172 {
173 struct active_node *it, *n;
174 struct rb_root root;
175 unsigned long flags;
176
177 GEM_BUG_ON(i915_active_is_idle(ref));
178
179 /* return the unused nodes to our slabcache -- flushing the allocator */
180 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
181 return;
182
183 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
184 debug_active_deactivate(ref);
185
186 root = ref->tree;
187 #ifdef __NetBSD__
188 rb_tree_init(&ref->tree.rbr_tree, &active_rb_ops);
189 #else
190 ref->tree = RB_ROOT;
191 #endif
192 ref->cache = NULL;
193
194 DRM_SPIN_WAKEUP_ALL(&ref->tree_wq, &ref->tree_lock);
195
196 spin_unlock_irqrestore(&ref->tree_lock, flags);
197
198 /* After the final retire, the entire struct may be freed */
199 if (ref->retire)
200 ref->retire(ref);
201
202 /* ... except if you wait on it, you must manage your own references! */
203
204 rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
205 GEM_BUG_ON(i915_active_fence_isset(&it->base));
206 kmem_cache_free(global.slab_cache, it);
207 }
208 }
209
210 static void
211 active_work(struct work_struct *wrk)
212 {
213 struct i915_active *ref = container_of(wrk, typeof(*ref), work);
214
215 GEM_BUG_ON(!atomic_read(&ref->count));
216 if (atomic_add_unless(&ref->count, -1, 1))
217 return;
218
219 __active_retire(ref);
220 }
221
222 static void
223 active_retire(struct i915_active *ref)
224 {
225 GEM_BUG_ON(!atomic_read(&ref->count));
226 if (atomic_add_unless(&ref->count, -1, 1))
227 return;
228
229 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
230 queue_work(system_unbound_wq, &ref->work);
231 return;
232 }
233
234 __active_retire(ref);
235 }
236
237 static inline struct dma_fence **
238 __active_fence_slot(struct i915_active_fence *active)
239 {
240 return (struct dma_fence ** __force)&active->fence;
241 }
242
243 static inline bool
244 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
245 {
246 struct i915_active_fence *active =
247 container_of(cb, typeof(*active), cb);
248
249 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
250 }
251
252 static void
253 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
254 {
255 if (active_fence_cb(fence, cb))
256 active_retire(container_of(cb, struct active_node, base.cb)->ref);
257 }
258
259 static void
260 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
261 {
262 if (active_fence_cb(fence, cb))
263 active_retire(container_of(cb, struct i915_active, excl.cb));
264 }
265
266 static struct i915_active_fence *
267 active_instance(struct i915_active *ref, struct intel_timeline *tl)
268 {
269 struct active_node *node, *prealloc;
270 struct rb_node **p, *parent;
271 u64 idx = tl->fence_context;
272
273 /*
274 * We track the most recently used timeline to skip a rbtree search
275 * for the common case, under typical loads we never need the rbtree
276 * at all. We can reuse the last slot if it is empty, that is
277 * after the previous activity has been retired, or if it matches the
278 * current timeline.
279 */
280 node = READ_ONCE(ref->cache);
281 if (node && node->timeline == idx)
282 return &node->base;
283
284 /* Preallocate a replacement, just in case */
285 prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
286 if (!prealloc)
287 return NULL;
288
289 spin_lock_irq(&ref->tree_lock);
290 GEM_BUG_ON(i915_active_is_idle(ref));
291
292 #ifdef __NetBSD__
293 __USE(parent);
294 __USE(p);
295 node = rb_tree_find_node(&ref->tree.rbr_tree, &idx);
296 if (node) {
297 KASSERT(node->timeline == idx);
298 goto out;
299 }
300 #else
301 parent = NULL;
302 p = &ref->tree.rb_node;
303 while (*p) {
304 parent = *p;
305
306 node = rb_entry(parent, struct active_node, node);
307 if (node->timeline == idx) {
308 kmem_cache_free(global.slab_cache, prealloc);
309 goto out;
310 }
311
312 if (node->timeline < idx)
313 p = &parent->rb_right;
314 else
315 p = &parent->rb_left;
316 }
317 #endif
318
319 node = prealloc;
320 __i915_active_fence_init(&node->base, NULL, node_retire);
321 node->ref = ref;
322 node->timeline = idx;
323
324 #ifdef __NetBSD__
325 struct active_node *collision __diagused;
326 collision = rb_tree_insert_node(&ref->tree.rbr_tree, node);
327 KASSERT(collision == node);
328 #else
329 rb_link_node(&node->node, parent, p);
330 rb_insert_color(&node->node, &ref->tree);
331 #endif
332
333 out:
334 ref->cache = node;
335 spin_unlock_irq(&ref->tree_lock);
336
337 BUILD_BUG_ON(offsetof(typeof(*node), base));
338 return &node->base;
339 }
340
341 void __i915_active_init(struct i915_active *ref,
342 int (*active)(struct i915_active *ref),
343 void (*retire)(struct i915_active *ref),
344 struct lock_class_key *mkey,
345 struct lock_class_key *wkey)
346 {
347 unsigned long bits;
348
349 debug_active_init(ref);
350
351 ref->flags = 0;
352 ref->active = active;
353 ref->retire = ptr_unpack_bits(retire, &bits, 2);
354 if (bits & I915_ACTIVE_MAY_SLEEP)
355 ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
356
357 spin_lock_init(&ref->tree_lock);
358 DRM_INIT_WAITQUEUE(&ref->tree_wq, "i915act");
359 #ifdef __NetBSD__
360 rb_tree_init(&ref->tree.rbr_tree, &active_rb_ops);
361 #else
362 ref->tree = RB_ROOT;
363 #endif
364 ref->cache = NULL;
365
366 init_llist_head(&ref->preallocated_barriers);
367 atomic_set(&ref->count, 0);
368 __mutex_init(&ref->mutex, "i915_active", mkey);
369 __i915_active_fence_init(&ref->excl, NULL, excl_retire);
370 INIT_WORK(&ref->work, active_work);
371 #if IS_ENABLED(CONFIG_LOCKDEP)
372 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
373 #endif
374 }
375
376 static bool ____active_del_barrier(struct i915_active *ref,
377 struct active_node *node,
378 struct intel_engine_cs *engine)
379
380 {
381 struct llist_node *head = NULL, *tail = NULL;
382 struct llist_node *pos, *next;
383
384 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
385
386 /*
387 * Rebuild the llist excluding our node. We may perform this
388 * outside of the kernel_context timeline mutex and so someone
389 * else may be manipulating the engine->barrier_tasks, in
390 * which case either we or they will be upset :)
391 *
392 * A second __active_del_barrier() will report failure to claim
393 * the active_node and the caller will just shrug and know not to
394 * claim ownership of its node.
395 *
396 * A concurrent i915_request_add_active_barriers() will miss adding
397 * any of the tasks, but we will try again on the next -- and since
398 * we are actively using the barrier, we know that there will be
399 * at least another opportunity when we idle.
400 */
401 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
402 if (node == barrier_from_ll(pos)) {
403 node = NULL;
404 continue;
405 }
406
407 pos->next = head;
408 head = pos;
409 if (!tail)
410 tail = pos;
411 }
412 if (head)
413 llist_add_batch(head, tail, &engine->barrier_tasks);
414
415 return !node;
416 }
417
418 static bool
419 __active_del_barrier(struct i915_active *ref, struct active_node *node)
420 {
421 return ____active_del_barrier(ref, node, barrier_to_engine(node));
422 }
423
424 int i915_active_ref(struct i915_active *ref,
425 struct intel_timeline *tl,
426 struct dma_fence *fence)
427 {
428 struct i915_active_fence *active;
429 int err;
430
431 lockdep_assert_held(&tl->mutex);
432
433 /* Prevent reaping in case we malloc/wait while building the tree */
434 err = i915_active_acquire(ref);
435 if (err)
436 return err;
437
438 active = active_instance(ref, tl);
439 if (!active) {
440 err = -ENOMEM;
441 goto out;
442 }
443
444 if (is_barrier(active)) { /* proto-node used by our idle barrier */
445 /*
446 * This request is on the kernel_context timeline, and so
447 * we can use it to substitute for the pending idle-barrer
448 * request that we want to emit on the kernel_context.
449 */
450 __active_del_barrier(ref, node_from_active(active));
451 RCU_INIT_POINTER(active->fence, NULL);
452 atomic_dec(&ref->count);
453 }
454 if (!__i915_active_fence_set(active, fence))
455 atomic_inc(&ref->count);
456
457 out:
458 i915_active_release(ref);
459 return err;
460 }
461
462 void i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
463 {
464 /* We expect the caller to manage the exclusive timeline ordering */
465 GEM_BUG_ON(i915_active_is_idle(ref));
466
467 if (!__i915_active_fence_set(&ref->excl, f))
468 atomic_inc(&ref->count);
469 }
470
471 bool i915_active_acquire_if_busy(struct i915_active *ref)
472 {
473 debug_active_assert(ref);
474 return atomic_add_unless(&ref->count, 1, 0);
475 }
476
477 int i915_active_acquire(struct i915_active *ref)
478 {
479 int err;
480
481 if (i915_active_acquire_if_busy(ref))
482 return 0;
483
484 err = mutex_lock_interruptible(&ref->mutex);
485 if (err)
486 return err;
487
488 if (likely(!i915_active_acquire_if_busy(ref))) {
489 if (ref->active)
490 err = ref->active(ref);
491 if (!err) {
492 spin_lock_irq(&ref->tree_lock); /* __active_retire() */
493 debug_active_activate(ref);
494 atomic_inc(&ref->count);
495 spin_unlock_irq(&ref->tree_lock);
496 }
497 }
498
499 mutex_unlock(&ref->mutex);
500
501 return err;
502 }
503
504 void i915_active_release(struct i915_active *ref)
505 {
506 debug_active_assert(ref);
507 active_retire(ref);
508 }
509
510 static void enable_signaling(struct i915_active_fence *active)
511 {
512 struct dma_fence *fence;
513
514 fence = i915_active_fence_get(active);
515 if (!fence)
516 return;
517
518 dma_fence_enable_sw_signaling(fence);
519 dma_fence_put(fence);
520 }
521
522 int i915_active_wait(struct i915_active *ref)
523 {
524 struct active_node *it, *n;
525 int err = 0;
526
527 might_sleep();
528
529 if (!i915_active_acquire_if_busy(ref))
530 return 0;
531
532 /* Flush lazy signals */
533 enable_signaling(&ref->excl);
534 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
535 if (is_barrier(&it->base)) /* unconnected idle barrier */
536 continue;
537
538 enable_signaling(&it->base);
539 }
540 /* Any fence added after the wait begins will not be auto-signaled */
541
542 i915_active_release(ref);
543 if (err)
544 return err;
545
546 spin_lock(&ref->tree_lock);
547 DRM_SPIN_WAIT_UNTIL(err, &ref->tree_wq, &ref->tree_lock,
548 i915_active_is_idle(ref));
549 spin_unlock(&ref->tree_lock);
550 if (err)
551 return err;
552
553 flush_work(&ref->work);
554 return 0;
555 }
556
557 int i915_request_await_active(struct i915_request *rq, struct i915_active *ref)
558 {
559 int err = 0;
560
561 if (rcu_access_pointer(ref->excl.fence)) {
562 struct dma_fence *fence;
563
564 rcu_read_lock();
565 fence = dma_fence_get_rcu_safe(&ref->excl.fence);
566 rcu_read_unlock();
567 if (fence) {
568 err = i915_request_await_dma_fence(rq, fence);
569 dma_fence_put(fence);
570 }
571 }
572
573 /* In the future we may choose to await on all fences */
574
575 return err;
576 }
577
578 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
579 void i915_active_fini(struct i915_active *ref)
580 {
581 debug_active_fini(ref);
582 GEM_BUG_ON(atomic_read(&ref->count));
583 GEM_BUG_ON(work_pending(&ref->work));
584 GEM_BUG_ON(!RB_EMPTY_ROOT(&ref->tree));
585 mutex_destroy(&ref->mutex);
586 }
587 #endif
588
589 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
590 {
591 return node->timeline == idx && !i915_active_fence_isset(&node->base);
592 }
593
594 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
595 {
596 struct rb_node *prev, *p;
597
598 if (RB_EMPTY_ROOT(&ref->tree))
599 return NULL;
600
601 spin_lock_irq(&ref->tree_lock);
602 GEM_BUG_ON(i915_active_is_idle(ref));
603
604 /*
605 * Try to reuse any existing barrier nodes already allocated for this
606 * i915_active, due to overlapping active phases there is likely a
607 * node kept alive (as we reuse before parking). We prefer to reuse
608 * completely idle barriers (less hassle in manipulating the llists),
609 * but otherwise any will do.
610 */
611 if (ref->cache && is_idle_barrier(ref->cache, idx)) {
612 p = &ref->cache->node;
613 goto match;
614 }
615
616 #ifdef __NetBSD__
617 {
618 struct active_node *node =
619 rb_tree_find_node_leq(&ref->tree.rbr_tree, &idx);
620 if (node) {
621 if (node->timeline == idx && is_idle_barrier(node, idx)) {
622 p = &node->node;
623 goto match;
624 }
625 prev = &node->node;
626 } else {
627 prev = NULL;
628 }
629 }
630 #else
631 prev = NULL;
632 p = ref->tree.rb_node;
633 while (p) {
634 struct active_node *node =
635 rb_entry(p, struct active_node, node);
636
637 if (is_idle_barrier(node, idx))
638 goto match;
639
640 prev = p;
641 if (node->timeline < idx)
642 p = p->rb_right;
643 else
644 p = p->rb_left;
645 }
646 #endif
647
648 /*
649 * No quick match, but we did find the leftmost rb_node for the
650 * kernel_context. Walk the rb_tree in-order to see if there were
651 * any idle-barriers on this timeline that we missed, or just use
652 * the first pending barrier.
653 */
654 for (p = prev; p; p = rb_next2(&ref->tree, p)) {
655 struct active_node *node =
656 rb_entry(p, struct active_node, node);
657 struct intel_engine_cs *engine;
658
659 if (node->timeline > idx)
660 break;
661
662 if (node->timeline < idx)
663 continue;
664
665 if (is_idle_barrier(node, idx))
666 goto match;
667
668 /*
669 * The list of pending barriers is protected by the
670 * kernel_context timeline, which notably we do not hold
671 * here. i915_request_add_active_barriers() may consume
672 * the barrier before we claim it, so we have to check
673 * for success.
674 */
675 engine = __barrier_to_engine(node);
676 smp_rmb(); /* serialise with add_active_barriers */
677 if (is_barrier(&node->base) &&
678 ____active_del_barrier(ref, node, engine))
679 goto match;
680 }
681
682 spin_unlock_irq(&ref->tree_lock);
683
684 return NULL;
685
686 match:
687 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
688 if (p == &ref->cache->node)
689 ref->cache = NULL;
690 spin_unlock_irq(&ref->tree_lock);
691
692 return rb_entry(p, struct active_node, node);
693 }
694
695 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
696 struct intel_engine_cs *engine)
697 {
698 intel_engine_mask_t tmp, mask = engine->mask;
699 struct llist_node *first = NULL, *last = NULL;
700 struct intel_gt *gt = engine->gt;
701 int err;
702
703 GEM_BUG_ON(i915_active_is_idle(ref));
704
705 /* Wait until the previous preallocation is completed */
706 while (!llist_empty(&ref->preallocated_barriers))
707 cond_resched();
708
709 /*
710 * Preallocate a node for each physical engine supporting the target
711 * engine (remember virtual engines have more than one sibling).
712 * We can then use the preallocated nodes in
713 * i915_active_acquire_barrier()
714 */
715 for_each_engine_masked(engine, gt, mask, tmp) {
716 u64 idx = engine->kernel_context->timeline->fence_context;
717 struct llist_node *prev = first;
718 struct active_node *node;
719
720 node = reuse_idle_barrier(ref, idx);
721 if (!node) {
722 node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
723 if (!node) {
724 err = ENOMEM;
725 goto unwind;
726 }
727
728 RCU_INIT_POINTER(node->base.fence, NULL);
729 node->base.cb.func = node_retire;
730 node->timeline = idx;
731 node->ref = ref;
732 }
733
734 if (!i915_active_fence_isset(&node->base)) {
735 /*
736 * Mark this as being *our* unconnected proto-node.
737 *
738 * Since this node is not in any list, and we have
739 * decoupled it from the rbtree, we can reuse the
740 * request to indicate this is an idle-barrier node
741 * and then we can use the rb_node and list pointers
742 * for our tracking of the pending barrier.
743 */
744 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
745 node->engine = engine;
746 atomic_inc(&ref->count);
747 }
748 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
749
750 GEM_BUG_ON(barrier_to_engine(node) != engine);
751 first = barrier_to_ll(node);
752 first->next = prev;
753 if (!last)
754 last = first;
755 intel_engine_pm_get(engine);
756 }
757
758 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
759 llist_add_batch(first, last, &ref->preallocated_barriers);
760
761 return 0;
762
763 unwind:
764 while (first) {
765 struct active_node *node = barrier_from_ll(first);
766
767 first = first->next;
768
769 atomic_dec(&ref->count);
770 intel_engine_pm_put(barrier_to_engine(node));
771
772 kmem_cache_free(global.slab_cache, node);
773 }
774 return err;
775 }
776
777 void i915_active_acquire_barrier(struct i915_active *ref)
778 {
779 struct llist_node *pos, *next;
780 unsigned long flags;
781
782 GEM_BUG_ON(i915_active_is_idle(ref));
783
784 /*
785 * Transfer the list of preallocated barriers into the
786 * i915_active rbtree, but only as proto-nodes. They will be
787 * populated by i915_request_add_active_barriers() to point to the
788 * request that will eventually release them.
789 */
790 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
791 struct active_node *node = barrier_from_ll(pos);
792 struct intel_engine_cs *engine = barrier_to_engine(node);
793 struct rb_node **p, *parent;
794
795 spin_lock_irqsave_nested(&ref->tree_lock, flags,
796 SINGLE_DEPTH_NESTING);
797 #ifdef __NetBSD__
798 __USE(p);
799 __USE(parent);
800 struct active_node *collision __diagused;
801 collision = rb_tree_insert_node(&ref->tree.rbr_tree, node);
802 KASSERT(collision == node);
803 #else
804 parent = NULL;
805 p = &ref->tree.rb_node;
806 while (*p) {
807 struct active_node *it;
808
809 parent = *p;
810
811 it = rb_entry(parent, struct active_node, node);
812 if (it->timeline < node->timeline)
813 p = &parent->rb_right;
814 else
815 p = &parent->rb_left;
816 }
817 rb_link_node(&node->node, parent, p);
818 rb_insert_color(&node->node, &ref->tree);
819 #endif
820 spin_unlock_irqrestore(&ref->tree_lock, flags);
821
822 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
823 llist_add(barrier_to_ll(node), &engine->barrier_tasks);
824 intel_engine_pm_put(engine);
825 }
826 }
827
828 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
829 {
830 return __active_fence_slot(&barrier_from_ll(node)->base);
831 }
832
833 void i915_request_add_active_barriers(struct i915_request *rq)
834 {
835 struct intel_engine_cs *engine = rq->engine;
836 struct llist_node *node, *next;
837 unsigned long flags;
838
839 GEM_BUG_ON(!intel_context_is_barrier(rq->context));
840 GEM_BUG_ON(intel_engine_is_virtual(engine));
841 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
842
843 node = llist_del_all(&engine->barrier_tasks);
844 if (!node)
845 return;
846 /*
847 * Attach the list of proto-fences to the in-flight request such
848 * that the parent i915_active will be released when this request
849 * is retired.
850 */
851 spin_lock_irqsave(&rq->lock, flags);
852 llist_for_each_safe(node, next, node) {
853 /* serialise with reuse_idle_barrier */
854 smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
855 #ifdef __NetBSD__
856 spin_unlock(&rq->lock);
857 struct i915_active_fence *fence =
858 container_of(node, struct i915_active_fence, llist);
859 /* XXX something bad went wrong in making this code */
860 KASSERT(fence->cb.func == node_retire);
861 (void)dma_fence_add_callback(fence->fence, &fence->cb,
862 node_retire);
863 spin_lock(&rq->lock);
864 #else
865 list_add_tail((struct list_head *)node, &rq->fence.cb_list);
866 #endif
867 }
868 spin_unlock_irqrestore(&rq->lock, flags);
869 }
870
871 /*
872 * __i915_active_fence_set: Update the last active fence along its timeline
873 * @active: the active tracker
874 * @fence: the new fence (under construction)
875 *
876 * Records the new @fence as the last active fence along its timeline in
877 * this active tracker, moving the tracking callbacks from the previous
878 * fence onto this one. Returns the previous fence (if not already completed),
879 * which the caller must ensure is executed before the new fence. To ensure
880 * that the order of fences within the timeline of the i915_active_fence is
881 * understood, it should be locked by the caller.
882 */
883 struct dma_fence *
884 __i915_active_fence_set(struct i915_active_fence *active,
885 struct dma_fence *fence)
886 {
887 struct dma_fence *prev;
888 unsigned long flags;
889
890 if (fence == rcu_access_pointer(active->fence))
891 return fence;
892
893 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
894
895 /*
896 * Consider that we have two threads arriving (A and B), with
897 * C already resident as the active->fence.
898 *
899 * A does the xchg first, and so it sees C or NULL depending
900 * on the timing of the interrupt handler. If it is NULL, the
901 * previous fence must have been signaled and we know that
902 * we are first on the timeline. If it is still present,
903 * we acquire the lock on that fence and serialise with the interrupt
904 * handler, in the process removing it from any future interrupt
905 * callback. A will then wait on C before executing (if present).
906 *
907 * As B is second, it sees A as the previous fence and so waits for
908 * it to complete its transition and takes over the occupancy for
909 * itself -- remembering that it needs to wait on A before executing.
910 *
911 * Note the strong ordering of the timeline also provides consistent
912 * nesting rules for the fence->lock; the inner lock is always the
913 * older lock.
914 */
915 spin_lock_irqsave(fence->lock, flags);
916 prev = xchg(__active_fence_slot(active), fence);
917 if (prev) {
918 GEM_BUG_ON(prev == fence);
919 #ifdef __NetBSD__
920 KASSERT(active->cb.func == node_retire);
921 (void)dma_fence_remove_callback(prev, &active->cb);
922 #else
923 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
924 __list_del_entry(&active->cb.node);
925 spin_unlock(prev->lock); /* serialise with prev->cb_list */
926 #endif
927 }
928 GEM_BUG_ON(rcu_access_pointer(active->fence) != fence);
929 #ifndef __NetBSD__
930 list_add_tail(&active->cb.node, &fence->cb_list);
931 #endif
932 spin_unlock_irqrestore(fence->lock, flags);
933
934 #ifdef __NetBSD__
935 KASSERT(active->cb.func == node_retire);
936 dma_fence_add_callback(fence, &active->cb, node_retire);
937 #endif
938
939 return prev;
940 }
941
942 int i915_active_fence_set(struct i915_active_fence *active,
943 struct i915_request *rq)
944 {
945 struct dma_fence *fence;
946 int err = 0;
947
948 /* Must maintain timeline ordering wrt previous active requests */
949 rcu_read_lock();
950 fence = __i915_active_fence_set(active, &rq->fence);
951 if (fence) /* but the previous fence may not belong to that timeline! */
952 fence = dma_fence_get_rcu(fence);
953 rcu_read_unlock();
954 if (fence) {
955 err = i915_request_await_dma_fence(rq, fence);
956 dma_fence_put(fence);
957 }
958
959 return err;
960 }
961
962 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
963 {
964 active_fence_cb(fence, cb);
965 }
966
967 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
968 #include "selftests/i915_active.c"
969 #endif
970
971 static void i915_global_active_shrink(void)
972 {
973 kmem_cache_shrink(global.slab_cache);
974 }
975
976 static void i915_global_active_exit(void)
977 {
978 kmem_cache_destroy(global.slab_cache);
979 }
980
981 static struct i915_global_active global = { {
982 .shrink = i915_global_active_shrink,
983 .exit = i915_global_active_exit,
984 } };
985
986 int __init i915_global_active_init(void)
987 {
988 global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
989 if (!global.slab_cache)
990 return -ENOMEM;
991
992 i915_global_register(&global.base);
993 return 0;
994 }
995