1 1.3 riastrad /* $NetBSD: i915_active.h,v 1.3 2021/12/19 11:59:04 riastradh Exp $ */ 2 1.1 riastrad 3 1.1 riastrad /* 4 1.1 riastrad * SPDX-License-Identifier: MIT 5 1.1 riastrad * 6 1.1 riastrad * Copyright 2019 Intel Corporation 7 1.1 riastrad */ 8 1.1 riastrad 9 1.1 riastrad #ifndef _I915_ACTIVE_H_ 10 1.1 riastrad #define _I915_ACTIVE_H_ 11 1.1 riastrad 12 1.1 riastrad #include <linux/lockdep.h> 13 1.1 riastrad 14 1.1 riastrad #include "i915_active_types.h" 15 1.1 riastrad #include "i915_request.h" 16 1.1 riastrad 17 1.1 riastrad struct i915_request; 18 1.1 riastrad struct intel_engine_cs; 19 1.1 riastrad struct intel_timeline; 20 1.1 riastrad 21 1.1 riastrad /* 22 1.1 riastrad * We treat requests as fences. This is not be to confused with our 23 1.1 riastrad * "fence registers" but pipeline synchronisation objects ala GL_ARB_sync. 24 1.1 riastrad * We use the fences to synchronize access from the CPU with activity on the 25 1.1 riastrad * GPU, for example, we should not rewrite an object's PTE whilst the GPU 26 1.1 riastrad * is reading them. We also track fences at a higher level to provide 27 1.1 riastrad * implicit synchronisation around GEM objects, e.g. set-domain will wait 28 1.1 riastrad * for outstanding GPU rendering before marking the object ready for CPU 29 1.1 riastrad * access, or a pageflip will wait until the GPU is complete before showing 30 1.1 riastrad * the frame on the scanout. 31 1.1 riastrad * 32 1.1 riastrad * In order to use a fence, the object must track the fence it needs to 33 1.1 riastrad * serialise with. For example, GEM objects want to track both read and 34 1.1 riastrad * write access so that we can perform concurrent read operations between 35 1.1 riastrad * the CPU and GPU engines, as well as waiting for all rendering to 36 1.1 riastrad * complete, or waiting for the last GPU user of a "fence register". The 37 1.1 riastrad * object then embeds a #i915_active_fence to track the most recent (in 38 1.1 riastrad * retirement order) request relevant for the desired mode of access. 39 1.1 riastrad * The #i915_active_fence is updated with i915_active_fence_set() to 40 1.1 riastrad * track the most recent fence request, typically this is done as part of 41 1.1 riastrad * i915_vma_move_to_active(). 42 1.1 riastrad * 43 1.1 riastrad * When the #i915_active_fence completes (is retired), it will 44 1.1 riastrad * signal its completion to the owner through a callback as well as mark 45 1.1 riastrad * itself as idle (i915_active_fence.request == NULL). The owner 46 1.1 riastrad * can then perform any action, such as delayed freeing of an active 47 1.1 riastrad * resource including itself. 48 1.1 riastrad */ 49 1.1 riastrad 50 1.1 riastrad void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb); 51 1.1 riastrad 52 1.1 riastrad /** 53 1.1 riastrad * __i915_active_fence_init - prepares the activity tracker for use 54 1.1 riastrad * @active - the active tracker 55 1.1 riastrad * @fence - initial fence to track, can be NULL 56 1.1 riastrad * @func - a callback when then the tracker is retired (becomes idle), 57 1.1 riastrad * can be NULL 58 1.1 riastrad * 59 1.1 riastrad * i915_active_fence_init() prepares the embedded @active struct for use as 60 1.1 riastrad * an activity tracker, that is for tracking the last known active fence 61 1.1 riastrad * associated with it. When the last fence becomes idle, when it is retired 62 1.1 riastrad * after completion, the optional callback @func is invoked. 63 1.1 riastrad */ 64 1.1 riastrad static inline void 65 1.1 riastrad __i915_active_fence_init(struct i915_active_fence *active, 66 1.1 riastrad void *fence, 67 1.1 riastrad dma_fence_func_t fn) 68 1.1 riastrad { 69 1.1 riastrad RCU_INIT_POINTER(active->fence, fence); 70 1.1 riastrad active->cb.func = fn ?: i915_active_noop; 71 1.1 riastrad } 72 1.1 riastrad 73 1.1 riastrad #define INIT_ACTIVE_FENCE(A) \ 74 1.1 riastrad __i915_active_fence_init((A), NULL, NULL) 75 1.1 riastrad 76 1.1 riastrad struct dma_fence * 77 1.1 riastrad __i915_active_fence_set(struct i915_active_fence *active, 78 1.1 riastrad struct dma_fence *fence); 79 1.1 riastrad 80 1.1 riastrad /** 81 1.1 riastrad * i915_active_fence_set - updates the tracker to watch the current fence 82 1.1 riastrad * @active - the active tracker 83 1.1 riastrad * @rq - the request to watch 84 1.1 riastrad * 85 1.1 riastrad * i915_active_fence_set() watches the given @rq for completion. While 86 1.1 riastrad * that @rq is busy, the @active reports busy. When that @rq is signaled 87 1.1 riastrad * (or else retired) the @active tracker is updated to report idle. 88 1.1 riastrad */ 89 1.1 riastrad int __must_check 90 1.1 riastrad i915_active_fence_set(struct i915_active_fence *active, 91 1.1 riastrad struct i915_request *rq); 92 1.1 riastrad /** 93 1.1 riastrad * i915_active_fence_get - return a reference to the active fence 94 1.1 riastrad * @active - the active tracker 95 1.1 riastrad * 96 1.1 riastrad * i915_active_fence_get() returns a reference to the active fence, 97 1.1 riastrad * or NULL if the active tracker is idle. The reference is obtained under RCU, 98 1.1 riastrad * so no locking is required by the caller. 99 1.1 riastrad * 100 1.1 riastrad * The reference should be freed with dma_fence_put(). 101 1.1 riastrad */ 102 1.1 riastrad static inline struct dma_fence * 103 1.1 riastrad i915_active_fence_get(struct i915_active_fence *active) 104 1.1 riastrad { 105 1.1 riastrad struct dma_fence *fence; 106 1.1 riastrad 107 1.1 riastrad rcu_read_lock(); 108 1.1 riastrad fence = dma_fence_get_rcu_safe(&active->fence); 109 1.1 riastrad rcu_read_unlock(); 110 1.1 riastrad 111 1.1 riastrad return fence; 112 1.1 riastrad } 113 1.1 riastrad 114 1.1 riastrad /** 115 1.1 riastrad * i915_active_fence_isset - report whether the active tracker is assigned 116 1.1 riastrad * @active - the active tracker 117 1.1 riastrad * 118 1.1 riastrad * i915_active_fence_isset() returns true if the active tracker is currently 119 1.1 riastrad * assigned to a fence. Due to the lazy retiring, that fence may be idle 120 1.1 riastrad * and this may report stale information. 121 1.1 riastrad */ 122 1.1 riastrad static inline bool 123 1.1 riastrad i915_active_fence_isset(const struct i915_active_fence *active) 124 1.1 riastrad { 125 1.1 riastrad return rcu_access_pointer(active->fence); 126 1.1 riastrad } 127 1.1 riastrad 128 1.1 riastrad /* 129 1.1 riastrad * GPU activity tracking 130 1.1 riastrad * 131 1.1 riastrad * Each set of commands submitted to the GPU compromises a single request that 132 1.1 riastrad * signals a fence upon completion. struct i915_request combines the 133 1.1 riastrad * command submission, scheduling and fence signaling roles. If we want to see 134 1.1 riastrad * if a particular task is complete, we need to grab the fence (struct 135 1.1 riastrad * i915_request) for that task and check or wait for it to be signaled. More 136 1.1 riastrad * often though we want to track the status of a bunch of tasks, for example 137 1.1 riastrad * to wait for the GPU to finish accessing some memory across a variety of 138 1.1 riastrad * different command pipelines from different clients. We could choose to 139 1.1 riastrad * track every single request associated with the task, but knowing that 140 1.1 riastrad * each request belongs to an ordered timeline (later requests within a 141 1.1 riastrad * timeline must wait for earlier requests), we need only track the 142 1.1 riastrad * latest request in each timeline to determine the overall status of the 143 1.1 riastrad * task. 144 1.1 riastrad * 145 1.1 riastrad * struct i915_active provides this tracking across timelines. It builds a 146 1.1 riastrad * composite shared-fence, and is updated as new work is submitted to the task, 147 1.1 riastrad * forming a snapshot of the current status. It should be embedded into the 148 1.1 riastrad * different resources that need to track their associated GPU activity to 149 1.1 riastrad * provide a callback when that GPU activity has ceased, or otherwise to 150 1.1 riastrad * provide a serialisation point either for request submission or for CPU 151 1.1 riastrad * synchronisation. 152 1.1 riastrad */ 153 1.1 riastrad 154 1.1 riastrad void __i915_active_init(struct i915_active *ref, 155 1.1 riastrad int (*active)(struct i915_active *ref), 156 1.1 riastrad void (*retire)(struct i915_active *ref), 157 1.1 riastrad struct lock_class_key *mkey, 158 1.1 riastrad struct lock_class_key *wkey); 159 1.1 riastrad 160 1.1 riastrad /* Specialise each class of i915_active to avoid impossible lockdep cycles. */ 161 1.1 riastrad #define i915_active_init(ref, active, retire) do { \ 162 1.1 riastrad static struct lock_class_key __mkey; \ 163 1.1 riastrad static struct lock_class_key __wkey; \ 164 1.1 riastrad \ 165 1.1 riastrad __i915_active_init(ref, active, retire, &__mkey, &__wkey); \ 166 1.1 riastrad } while (0) 167 1.1 riastrad 168 1.1 riastrad int i915_active_ref(struct i915_active *ref, 169 1.1 riastrad struct intel_timeline *tl, 170 1.1 riastrad struct dma_fence *fence); 171 1.1 riastrad 172 1.1 riastrad static inline int 173 1.1 riastrad i915_active_add_request(struct i915_active *ref, struct i915_request *rq) 174 1.1 riastrad { 175 1.1 riastrad return i915_active_ref(ref, i915_request_timeline(rq), &rq->fence); 176 1.1 riastrad } 177 1.1 riastrad 178 1.1 riastrad void i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f); 179 1.1 riastrad 180 1.1 riastrad static inline bool i915_active_has_exclusive(struct i915_active *ref) 181 1.1 riastrad { 182 1.1 riastrad return rcu_access_pointer(ref->excl.fence); 183 1.1 riastrad } 184 1.1 riastrad 185 1.1 riastrad int i915_active_wait(struct i915_active *ref); 186 1.1 riastrad 187 1.1 riastrad int i915_request_await_active(struct i915_request *rq, struct i915_active *ref); 188 1.1 riastrad 189 1.1 riastrad int i915_active_acquire(struct i915_active *ref); 190 1.1 riastrad bool i915_active_acquire_if_busy(struct i915_active *ref); 191 1.1 riastrad void i915_active_release(struct i915_active *ref); 192 1.1 riastrad 193 1.1 riastrad static inline void __i915_active_acquire(struct i915_active *ref) 194 1.1 riastrad { 195 1.1 riastrad GEM_BUG_ON(!atomic_read(&ref->count)); 196 1.1 riastrad atomic_inc(&ref->count); 197 1.1 riastrad } 198 1.1 riastrad 199 1.1 riastrad static inline bool 200 1.1 riastrad i915_active_is_idle(const struct i915_active *ref) 201 1.1 riastrad { 202 1.1 riastrad return !atomic_read(&ref->count); 203 1.1 riastrad } 204 1.1 riastrad 205 1.1 riastrad void i915_active_fini(struct i915_active *ref); 206 1.1 riastrad 207 1.1 riastrad int i915_active_acquire_preallocate_barrier(struct i915_active *ref, 208 1.1 riastrad struct intel_engine_cs *engine); 209 1.1 riastrad void i915_active_acquire_barrier(struct i915_active *ref); 210 1.1 riastrad void i915_request_add_active_barriers(struct i915_request *rq); 211 1.1 riastrad 212 1.1 riastrad void i915_active_print(struct i915_active *ref, struct drm_printer *m); 213 1.1 riastrad void i915_active_unlock_wait(struct i915_active *ref); 214 1.1 riastrad 215 1.1 riastrad #endif /* _I915_ACTIVE_H_ */ 216