i915_cmd_parser.c revision 1.18.4.1 1 /* $NetBSD: i915_cmd_parser.c,v 1.18.4.1 2019/12/12 21:00:32 martin Exp $ */
2
3 /*
4 * Copyright 2013 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 *
25 * Authors:
26 * Brad Volkin <bradley.d.volkin (at) intel.com>
27 *
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: i915_cmd_parser.c,v 1.18.4.1 2019/12/12 21:00:32 martin Exp $");
32
33 #include "i915_drv.h"
34 #include <linux/bitmap.h>
35 #include <linux/log2.h>
36
37 /**
38 * DOC: batch buffer command parser
39 *
40 * Motivation:
41 * Certain OpenGL features (e.g. transform feedback, performance monitoring)
42 * require userspace code to submit batches containing commands such as
43 * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
44 * generations of the hardware will noop these commands in "unsecure" batches
45 * (which includes all userspace batches submitted via i915) even though the
46 * commands may be safe and represent the intended programming model of the
47 * device.
48 *
49 * The software command parser is similar in operation to the command parsing
50 * done in hardware for unsecure batches. However, the software parser allows
51 * some operations that would be noop'd by hardware, if the parser determines
52 * the operation is safe, and submits the batch as "secure" to prevent hardware
53 * parsing.
54 *
55 * Threats:
56 * At a high level, the hardware (and software) checks attempt to prevent
57 * granting userspace undue privileges. There are three categories of privilege.
58 *
59 * First, commands which are explicitly defined as privileged or which should
60 * only be used by the kernel driver. The parser rejects such commands
61 *
62 * Second, commands which access registers. To support correct/enhanced
63 * userspace functionality, particularly certain OpenGL extensions, the parser
64 * provides a whitelist of registers which userspace may safely access
65 *
66 * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
67 * The parser always rejects such commands.
68 *
69 * The majority of the problematic commands fall in the MI_* range, with only a
70 * few specific commands on each ring (e.g. PIPE_CONTROL and MI_FLUSH_DW).
71 *
72 * Implementation:
73 * Each ring maintains tables of commands and registers which the parser uses in
74 * scanning batch buffers submitted to that ring.
75 *
76 * Since the set of commands that the parser must check for is significantly
77 * smaller than the number of commands supported, the parser tables contain only
78 * those commands required by the parser. This generally works because command
79 * opcode ranges have standard command length encodings. So for commands that
80 * the parser does not need to check, it can easily skip them. This is
81 * implemented via a per-ring length decoding vfunc.
82 *
83 * Unfortunately, there are a number of commands that do not follow the standard
84 * length encoding for their opcode range, primarily amongst the MI_* commands.
85 * To handle this, the parser provides a way to define explicit "skip" entries
86 * in the per-ring command tables.
87 *
88 * Other command table entries map fairly directly to high level categories
89 * mentioned above: rejected, register whitelist. The parser implements a number
90 * of checks, including the privileged memory checks, via a general bitmasking
91 * mechanism.
92 */
93
94 #define STD_MI_OPCODE_MASK 0xFF800000
95 #define STD_3D_OPCODE_MASK 0xFFFF0000
96 #define STD_2D_OPCODE_MASK 0xFFC00000
97 #define STD_MFX_OPCODE_MASK 0xFFFF0000
98
99 #define CMD(op, opm, f, lm, fl, ...) \
100 { \
101 .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \
102 .cmd = { (op) & (opm), (opm) }, \
103 .length = { (lm) }, \
104 __VA_ARGS__ \
105 }
106
107 /* Convenience macros to compress the tables */
108 #define SMI STD_MI_OPCODE_MASK
109 #define S3D STD_3D_OPCODE_MASK
110 #define S2D STD_2D_OPCODE_MASK
111 #define SMFX STD_MFX_OPCODE_MASK
112 #define F true
113 #define S CMD_DESC_SKIP
114 #define R CMD_DESC_REJECT
115 #define W CMD_DESC_REGISTER
116 #define B CMD_DESC_BITMASK
117
118 /* Command Mask Fixed Len Action
119 ---------------------------------------------------------- */
120 static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = {
121 CMD( MI_NOOP, SMI, F, 1, S ),
122 CMD( MI_USER_INTERRUPT, SMI, F, 1, R ),
123 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, R ),
124 CMD( MI_ARB_CHECK, SMI, F, 1, S ),
125 CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
126 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
127 CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ),
128 CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ),
129 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
130 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
131 CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B,
132 .reg = { .offset = 1, .mask = 0x007FFFFC },
133 .bits = {{
134 .offset = 0,
135 .mask = MI_GLOBAL_GTT,
136 .expected = 0,
137 }}, ),
138 CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B,
139 .reg = { .offset = 1, .mask = 0x007FFFFC },
140 .bits = {{
141 .offset = 0,
142 .mask = MI_GLOBAL_GTT,
143 .expected = 0,
144 }}, ),
145 /*
146 * MI_BATCH_BUFFER_START requires some special handling. It's not
147 * really a 'skip' action but it doesn't seem like it's worth adding
148 * a new action. See i915_parse_cmds().
149 */
150 CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ),
151 };
152
153 static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = {
154 CMD( MI_FLUSH, SMI, F, 1, S ),
155 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
156 CMD( MI_PREDICATE, SMI, F, 1, S ),
157 CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ),
158 CMD( MI_SET_APPID, SMI, F, 1, S ),
159 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
160 CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ),
161 CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ),
162 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B,
163 .bits = {{
164 .offset = 0,
165 .mask = MI_GLOBAL_GTT,
166 .expected = 0,
167 }}, ),
168 CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ),
169 CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B,
170 .bits = {{
171 .offset = 0,
172 .mask = MI_GLOBAL_GTT,
173 .expected = 0,
174 }}, ),
175 CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B,
176 .bits = {{
177 .offset = 1,
178 .mask = MI_REPORT_PERF_COUNT_GGTT,
179 .expected = 0,
180 }}, ),
181 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
182 .bits = {{
183 .offset = 0,
184 .mask = MI_GLOBAL_GTT,
185 .expected = 0,
186 }}, ),
187 CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ),
188 CMD( PIPELINE_SELECT, S3D, F, 1, S ),
189 CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B,
190 .bits = {{
191 .offset = 2,
192 .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
193 .expected = 0,
194 }}, ),
195 CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ),
196 CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ),
197 CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ),
198 CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B,
199 .bits = {{
200 .offset = 1,
201 .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
202 .expected = 0,
203 },
204 {
205 .offset = 1,
206 .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
207 PIPE_CONTROL_STORE_DATA_INDEX),
208 .expected = 0,
209 .condition_offset = 1,
210 .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
211 }}, ),
212 };
213
214 static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
215 CMD( MI_SET_PREDICATE, SMI, F, 1, S ),
216 CMD( MI_RS_CONTROL, SMI, F, 1, S ),
217 CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ),
218 CMD( MI_SET_APPID, SMI, F, 1, S ),
219 CMD( MI_RS_CONTEXT, SMI, F, 1, S ),
220 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ),
221 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
222 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, R ),
223 CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ),
224 CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ),
225 CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ),
226 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ),
227 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ),
228
229 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ),
230 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ),
231 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ),
232 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ),
233 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ),
234 };
235
236 static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = {
237 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
238 CMD( MI_SET_APPID, SMI, F, 1, S ),
239 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
240 .bits = {{
241 .offset = 0,
242 .mask = MI_GLOBAL_GTT,
243 .expected = 0,
244 }}, ),
245 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
246 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
247 .bits = {{
248 .offset = 0,
249 .mask = MI_FLUSH_DW_NOTIFY,
250 .expected = 0,
251 },
252 {
253 .offset = 1,
254 .mask = MI_FLUSH_DW_USE_GTT,
255 .expected = 0,
256 .condition_offset = 0,
257 .condition_mask = MI_FLUSH_DW_OP_MASK,
258 },
259 {
260 .offset = 0,
261 .mask = MI_FLUSH_DW_STORE_INDEX,
262 .expected = 0,
263 .condition_offset = 0,
264 .condition_mask = MI_FLUSH_DW_OP_MASK,
265 }}, ),
266 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
267 .bits = {{
268 .offset = 0,
269 .mask = MI_GLOBAL_GTT,
270 .expected = 0,
271 }}, ),
272 /*
273 * MFX_WAIT doesn't fit the way we handle length for most commands.
274 * It has a length field but it uses a non-standard length bias.
275 * It is always 1 dword though, so just treat it as fixed length.
276 */
277 CMD( MFX_WAIT, SMFX, F, 1, S ),
278 };
279
280 static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = {
281 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
282 CMD( MI_SET_APPID, SMI, F, 1, S ),
283 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
284 .bits = {{
285 .offset = 0,
286 .mask = MI_GLOBAL_GTT,
287 .expected = 0,
288 }}, ),
289 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
290 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
291 .bits = {{
292 .offset = 0,
293 .mask = MI_FLUSH_DW_NOTIFY,
294 .expected = 0,
295 },
296 {
297 .offset = 1,
298 .mask = MI_FLUSH_DW_USE_GTT,
299 .expected = 0,
300 .condition_offset = 0,
301 .condition_mask = MI_FLUSH_DW_OP_MASK,
302 },
303 {
304 .offset = 0,
305 .mask = MI_FLUSH_DW_STORE_INDEX,
306 .expected = 0,
307 .condition_offset = 0,
308 .condition_mask = MI_FLUSH_DW_OP_MASK,
309 }}, ),
310 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
311 .bits = {{
312 .offset = 0,
313 .mask = MI_GLOBAL_GTT,
314 .expected = 0,
315 }}, ),
316 };
317
318 static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = {
319 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
320 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B,
321 .bits = {{
322 .offset = 0,
323 .mask = MI_GLOBAL_GTT,
324 .expected = 0,
325 }}, ),
326 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
327 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
328 .bits = {{
329 .offset = 0,
330 .mask = MI_FLUSH_DW_NOTIFY,
331 .expected = 0,
332 },
333 {
334 .offset = 1,
335 .mask = MI_FLUSH_DW_USE_GTT,
336 .expected = 0,
337 .condition_offset = 0,
338 .condition_mask = MI_FLUSH_DW_OP_MASK,
339 },
340 {
341 .offset = 0,
342 .mask = MI_FLUSH_DW_STORE_INDEX,
343 .expected = 0,
344 .condition_offset = 0,
345 .condition_mask = MI_FLUSH_DW_OP_MASK,
346 }}, ),
347 CMD( COLOR_BLT, S2D, !F, 0x3F, S ),
348 CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ),
349 };
350
351 static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
352 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ),
353 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
354 };
355
356 /*
357 * For Gen9 we can still rely on the h/w to enforce cmd security, and only
358 * need to re-enforce the register access checks. We therefore only need to
359 * teach the cmdparser how to find the end of each command, and identify
360 * register accesses. The table doesn't need to reject any commands, and so
361 * the only commands listed here are:
362 * 1) Those that touch registers
363 * 2) Those that do not have the default 8-bit length
364 *
365 * Note that the default MI length mask chosen for this table is 0xFF, not
366 * the 0x3F used on older devices. This is because the vast majority of MI
367 * cmds on Gen9 use a standard 8-bit Length field.
368 * All the Gen9 blitter instructions are standard 0xFF length mask, and
369 * none allow access to non-general registers, so in fact no BLT cmds are
370 * included in the table at all.
371 *
372 */
373 static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = {
374 CMD( MI_NOOP, SMI, F, 1, S ),
375 CMD( MI_USER_INTERRUPT, SMI, F, 1, S ),
376 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, S ),
377 CMD( MI_FLUSH, SMI, F, 1, S ),
378 CMD( MI_ARB_CHECK, SMI, F, 1, S ),
379 CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
380 CMD( MI_ARB_ON_OFF, SMI, F, 1, S ),
381 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
382 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, S ),
383 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, S ),
384 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, S ),
385 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
386 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
387 CMD( MI_UPDATE_GTT, SMI, !F, 0x3FF, S ),
388 CMD( MI_STORE_REGISTER_MEM_GEN8, SMI, F, 4, W,
389 .reg = { .offset = 1, .mask = 0x007FFFFC } ),
390 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, S ),
391 CMD( MI_LOAD_REGISTER_MEM_GEN8, SMI, F, 4, W,
392 .reg = { .offset = 1, .mask = 0x007FFFFC } ),
393 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
394 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
395
396 /*
397 * We allow BB_START but apply further checks. We just sanitize the
398 * basic fields here.
399 */
400 CMD( MI_BATCH_BUFFER_START_GEN8, SMI, !F, 0xFF, B,
401 .bits = {{
402 .offset = 0,
403 .mask = ~SMI,
404 .expected = (MI_BATCH_PPGTT_HSW | 1),
405 }}, ),
406 };
407
408 #undef CMD
409 #undef SMI
410 #undef S3D
411 #undef S2D
412 #undef SMFX
413 #undef F
414 #undef S
415 #undef R
416 #undef W
417 #undef B
418
419 static const struct drm_i915_cmd_table gen7_render_cmd_table[] = {
420 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
421 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
422 };
423
424 static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = {
425 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
426 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
427 { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
428 };
429
430 static const struct drm_i915_cmd_table gen7_video_cmd_table[] = {
431 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
432 { gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) },
433 };
434
435 static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = {
436 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
437 { gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) },
438 };
439
440 static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = {
441 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
442 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
443 };
444
445 static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = {
446 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
447 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
448 { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
449 };
450
451 static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = {
452 { gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) },
453 };
454
455
456 /*
457 * Register whitelists, sorted by increasing register offset.
458 */
459
460 /*
461 * An individual whitelist entry granting access to register addr. If
462 * mask is non-zero the argument of immediate register writes will be
463 * AND-ed with mask, and the command will be rejected if the result
464 * doesn't match value.
465 *
466 * Registers with non-zero mask are only allowed to be written using
467 * LRI.
468 */
469 struct drm_i915_reg_descriptor {
470 u32 addr;
471 u32 mask;
472 u32 value;
473 };
474
475 /* Convenience macro for adding 32-bit registers. */
476 #define REG32(address, ...) \
477 { .addr = address, __VA_ARGS__ }
478
479 /*
480 * Convenience macro for adding 64-bit registers.
481 *
482 * Some registers that userspace accesses are 64 bits. The register
483 * access commands only allow 32-bit accesses. Hence, we have to include
484 * entries for both halves of the 64-bit registers.
485 */
486 #define REG64(addr) \
487 REG32(addr), REG32(addr + sizeof(u32))
488
489 #define REG64_IDX(_reg, idx) \
490 { .addr = _reg(idx) }, \
491 { .addr = _reg ## _UDW(idx) }
492
493 static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
494 REG64(GPGPU_THREADS_DISPATCHED),
495 REG64(HS_INVOCATION_COUNT),
496 REG64(DS_INVOCATION_COUNT),
497 REG64(IA_VERTICES_COUNT),
498 REG64(IA_PRIMITIVES_COUNT),
499 REG64(VS_INVOCATION_COUNT),
500 REG64(GS_INVOCATION_COUNT),
501 REG64(GS_PRIMITIVES_COUNT),
502 REG64(CL_INVOCATION_COUNT),
503 REG64(CL_PRIMITIVES_COUNT),
504 REG64(PS_INVOCATION_COUNT),
505 REG64(PS_DEPTH_COUNT),
506 REG32(OACONTROL), /* Only allowed for LRI and SRM. See below. */
507 REG64(MI_PREDICATE_SRC0),
508 REG64(MI_PREDICATE_SRC1),
509 REG32(GEN7_3DPRIM_END_OFFSET),
510 REG32(GEN7_3DPRIM_START_VERTEX),
511 REG32(GEN7_3DPRIM_VERTEX_COUNT),
512 REG32(GEN7_3DPRIM_INSTANCE_COUNT),
513 REG32(GEN7_3DPRIM_START_INSTANCE),
514 REG32(GEN7_3DPRIM_BASE_VERTEX),
515 REG32(GEN7_GPGPU_DISPATCHDIMX),
516 REG32(GEN7_GPGPU_DISPATCHDIMY),
517 REG32(GEN7_GPGPU_DISPATCHDIMZ),
518 REG64(GEN7_SO_NUM_PRIMS_WRITTEN(0)),
519 REG64(GEN7_SO_NUM_PRIMS_WRITTEN(1)),
520 REG64(GEN7_SO_NUM_PRIMS_WRITTEN(2)),
521 REG64(GEN7_SO_NUM_PRIMS_WRITTEN(3)),
522 REG64(GEN7_SO_PRIM_STORAGE_NEEDED(0)),
523 REG64(GEN7_SO_PRIM_STORAGE_NEEDED(1)),
524 REG64(GEN7_SO_PRIM_STORAGE_NEEDED(2)),
525 REG64(GEN7_SO_PRIM_STORAGE_NEEDED(3)),
526 REG32(GEN7_SO_WRITE_OFFSET(0)),
527 REG32(GEN7_SO_WRITE_OFFSET(1)),
528 REG32(GEN7_SO_WRITE_OFFSET(2)),
529 REG32(GEN7_SO_WRITE_OFFSET(3)),
530 REG32(GEN7_L3SQCREG1),
531 REG32(GEN7_L3CNTLREG2),
532 REG32(GEN7_L3CNTLREG3),
533 REG32(HSW_SCRATCH1,
534 .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
535 .value = 0),
536 REG32(HSW_ROW_CHICKEN3,
537 .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
538 HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
539 .value = 0),
540 };
541
542 static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
543 REG32(BCS_SWCTRL),
544 };
545
546 static const struct drm_i915_reg_descriptor gen9_blt_regs[] = {
547 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
548 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
549 REG32(BCS_SWCTRL),
550 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
551 REG64_IDX(BCS_GPR, 0),
552 REG64_IDX(BCS_GPR, 1),
553 REG64_IDX(BCS_GPR, 2),
554 REG64_IDX(BCS_GPR, 3),
555 REG64_IDX(BCS_GPR, 4),
556 REG64_IDX(BCS_GPR, 5),
557 REG64_IDX(BCS_GPR, 6),
558 REG64_IDX(BCS_GPR, 7),
559 REG64_IDX(BCS_GPR, 8),
560 REG64_IDX(BCS_GPR, 9),
561 REG64_IDX(BCS_GPR, 10),
562 REG64_IDX(BCS_GPR, 11),
563 REG64_IDX(BCS_GPR, 12),
564 REG64_IDX(BCS_GPR, 13),
565 REG64_IDX(BCS_GPR, 14),
566 REG64_IDX(BCS_GPR, 15),
567 };
568
569 #undef REG64
570 #undef REG32
571
572 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
573 {
574 u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT;
575 u32 subclient =
576 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
577
578 if (client == INSTR_MI_CLIENT)
579 return 0x3F;
580 else if (client == INSTR_RC_CLIENT) {
581 if (subclient == INSTR_MEDIA_SUBCLIENT)
582 return 0xFFFF;
583 else
584 return 0xFF;
585 }
586
587 DRM_DEBUG_DRIVER("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
588 return 0;
589 }
590
591 static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
592 {
593 u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT;
594 u32 subclient =
595 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
596 u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
597
598 if (client == INSTR_MI_CLIENT)
599 return 0x3F;
600 else if (client == INSTR_RC_CLIENT) {
601 if (subclient == INSTR_MEDIA_SUBCLIENT) {
602 if (op == 6)
603 return 0xFFFF;
604 else
605 return 0xFFF;
606 } else
607 return 0xFF;
608 }
609
610 DRM_DEBUG_DRIVER("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
611 return 0;
612 }
613
614 static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
615 {
616 u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT;
617
618 if (client == INSTR_MI_CLIENT)
619 return 0x3F;
620 else if (client == INSTR_BC_CLIENT)
621 return 0xFF;
622
623 DRM_DEBUG_DRIVER("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
624 return 0;
625 }
626
627 static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header)
628 {
629 u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT;
630
631 if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT)
632 return 0xFF;
633
634 DRM_DEBUG_DRIVER("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
635 return 0;
636 }
637
638 __diagused
639 static bool validate_cmds_sorted(struct intel_engine_cs *ring,
640 const struct drm_i915_cmd_table *cmd_tables,
641 int cmd_table_count)
642 {
643 int i;
644 bool ret = true;
645
646 if (!cmd_tables || cmd_table_count == 0)
647 return true;
648
649 for (i = 0; i < cmd_table_count; i++) {
650 const struct drm_i915_cmd_table *table = &cmd_tables[i];
651 u32 previous = 0;
652 int j;
653
654 for (j = 0; j < table->count; j++) {
655 const struct drm_i915_cmd_descriptor *desc =
656 &table->table[j];
657 u32 curr = desc->cmd.value & desc->cmd.mask;
658
659 if (curr < previous) {
660 DRM_ERROR("CMD: table not sorted ring=%d table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
661 ring->id, i, j, curr, previous);
662 ret = false;
663 }
664
665 previous = curr;
666 }
667 }
668
669 return ret;
670 }
671
672 static bool check_sorted(int ring_id,
673 const struct drm_i915_reg_descriptor *reg_table,
674 int reg_count)
675 {
676 int i;
677 u32 previous = 0;
678 bool ret = true;
679
680 for (i = 0; i < reg_count; i++) {
681 u32 curr = reg_table[i].addr;
682
683 if (curr < previous) {
684 DRM_ERROR("CMD: table not sorted ring=%d entry=%d reg=0x%08X prev=0x%08X\n",
685 ring_id, i, curr, previous);
686 ret = false;
687 }
688
689 previous = curr;
690 }
691
692 return ret;
693 }
694
695 __diagused
696 static bool validate_regs_sorted(struct intel_engine_cs *ring)
697 {
698 return check_sorted(ring->id, ring->reg_table, ring->reg_count);
699 }
700
701 struct cmd_node {
702 const struct drm_i915_cmd_descriptor *desc;
703 struct hlist_node node;
704 };
705
706 /*
707 * Different command ranges have different numbers of bits for the opcode. For
708 * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
709 * problem is that, for example, MI commands use bits 22:16 for other fields
710 * such as GGTT vs PPGTT bits. If we include those bits in the mask then when
711 * we mask a command from a batch it could hash to the wrong bucket due to
712 * non-opcode bits being set. But if we don't include those bits, some 3D
713 * commands may hash to the same bucket due to not including opcode bits that
714 * make the command unique. For now, we will risk hashing to the same bucket.
715 *
716 * If we attempt to generate a perfect hash, we should be able to look at bits
717 * 31:29 of a command from a batch buffer and use the full mask for that
718 * client. The existing INSTR_CLIENT_MASK/SHIFT defines can be used for this.
719 */
720 #define CMD_HASH_MASK STD_MI_OPCODE_MASK
721
722 static int init_hash_table(struct intel_engine_cs *ring,
723 const struct drm_i915_cmd_table *cmd_tables,
724 int cmd_table_count)
725 {
726 int i, j;
727
728 hash_init(ring->cmd_hash);
729
730 for (i = 0; i < cmd_table_count; i++) {
731 const struct drm_i915_cmd_table *table = &cmd_tables[i];
732
733 for (j = 0; j < table->count; j++) {
734 const struct drm_i915_cmd_descriptor *desc =
735 &table->table[j];
736 struct cmd_node *desc_node =
737 kmalloc(sizeof(*desc_node), GFP_KERNEL);
738
739 if (!desc_node)
740 return -ENOMEM;
741
742 desc_node->desc = desc;
743 hash_add(ring->cmd_hash, &desc_node->node,
744 desc->cmd.value & CMD_HASH_MASK);
745 }
746 }
747
748 return 0;
749 }
750
751 static void fini_hash_table(struct intel_engine_cs *ring)
752 {
753 struct hlist_node *tmp;
754 struct cmd_node *desc_node;
755 int i;
756
757 hash_for_each_safe(ring->cmd_hash, i, tmp, desc_node, node) {
758 hash_del(&desc_node->node);
759 kfree(desc_node);
760 }
761 }
762
763 /**
764 * i915_cmd_parser_init_ring() - set cmd parser related fields for a ringbuffer
765 * @ring: the ringbuffer to initialize
766 *
767 * Optionally initializes fields related to batch buffer command parsing in the
768 * struct intel_engine_cs based on whether the platform requires software
769 * command parsing.
770 *
771 * Return: non-zero if initialization fails
772 */
773 int i915_cmd_parser_init_ring(struct intel_engine_cs *ring)
774 {
775 const struct drm_i915_cmd_table *cmd_tables;
776 int cmd_table_count;
777 int ret;
778
779 if (!IS_GEN7(ring->dev) && !(IS_GEN9(ring->dev) && ring->id == BCS))
780 return 0;
781
782 switch (ring->id) {
783 case RCS:
784 if (IS_HASWELL(ring->dev)) {
785 cmd_tables = hsw_render_ring_cmd_table;
786 cmd_table_count =
787 ARRAY_SIZE(hsw_render_ring_cmd_table);
788 } else {
789 cmd_tables = gen7_render_cmd_table;
790 cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table);
791 }
792
793 ring->reg_table = gen7_render_regs;
794 ring->reg_count = ARRAY_SIZE(gen7_render_regs);
795
796 ring->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
797 break;
798 case VCS:
799 cmd_tables = gen7_video_cmd_table;
800 cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table);
801 ring->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
802 break;
803 case BCS:
804 ring->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
805 if (IS_GEN9(ring->dev)) {
806 cmd_tables = gen9_blt_cmd_table;
807 cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table);
808 ring->get_cmd_length_mask =
809 gen9_blt_get_cmd_length_mask;
810
811 /* BCS Engine unsafe without parser */
812 ring->requires_cmd_parser = 1;
813 }
814 else if (IS_HASWELL(ring->dev)) {
815 cmd_tables = hsw_blt_ring_cmd_table;
816 cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table);
817 } else {
818 cmd_tables = gen7_blt_cmd_table;
819 cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table);
820 }
821
822 if (IS_GEN9(ring->dev)) {
823 ring->reg_table = gen9_blt_regs;
824 ring->reg_count = ARRAY_SIZE(gen9_blt_regs);
825 } else {
826 ring->reg_table = gen7_blt_regs;
827 ring->reg_count = ARRAY_SIZE(gen7_blt_regs);
828 }
829
830 break;
831 case VECS:
832 cmd_tables = hsw_vebox_cmd_table;
833 cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table);
834 /* VECS can use the same length_mask function as VCS */
835 ring->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
836 break;
837 default:
838 DRM_ERROR("CMD: cmd_parser_init with unknown ring: %d\n",
839 ring->id);
840 BUG();
841 }
842
843 BUG_ON(!validate_cmds_sorted(ring, cmd_tables, cmd_table_count));
844 BUG_ON(!validate_regs_sorted(ring));
845
846 WARN_ON(!hash_empty(ring->cmd_hash));
847
848 ret = init_hash_table(ring, cmd_tables, cmd_table_count);
849 if (ret) {
850 DRM_ERROR("CMD: cmd_parser_init failed!\n");
851 fini_hash_table(ring);
852 return ret;
853 }
854
855 ring->using_cmd_parser = true;
856
857 return 0;
858 }
859
860 /**
861 * i915_cmd_parser_fini_ring() - clean up cmd parser related fields
862 * @ring: the ringbuffer to clean up
863 *
864 * Releases any resources related to command parsing that may have been
865 * initialized for the specified ring.
866 */
867 void i915_cmd_parser_fini_ring(struct intel_engine_cs *ring)
868 {
869 if (!ring->using_cmd_parser)
870 return;
871
872 fini_hash_table(ring);
873 }
874
875 static const struct drm_i915_cmd_descriptor*
876 find_cmd_in_table(struct intel_engine_cs *ring,
877 u32 cmd_header)
878 {
879 struct cmd_node *desc_node;
880
881 hash_for_each_possible(ring->cmd_hash, desc_node, node,
882 cmd_header & CMD_HASH_MASK) {
883 const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
884 u32 masked_cmd = desc->cmd.mask & cmd_header;
885 u32 masked_value = desc->cmd.value & desc->cmd.mask;
886
887 if (masked_cmd == masked_value)
888 return desc;
889 }
890
891 return NULL;
892 }
893
894 /*
895 * Returns a pointer to a descriptor for the command specified by cmd_header.
896 *
897 * The caller must supply space for a default descriptor via the default_desc
898 * parameter. If no descriptor for the specified command exists in the ring's
899 * command parser tables, this function fills in default_desc based on the
900 * ring's default length encoding and returns default_desc.
901 */
902 static const struct drm_i915_cmd_descriptor*
903 find_cmd(struct intel_engine_cs *ring,
904 u32 cmd_header,
905 struct drm_i915_cmd_descriptor *default_desc)
906 {
907 const struct drm_i915_cmd_descriptor *desc;
908 u32 mask;
909
910 desc = find_cmd_in_table(ring, cmd_header);
911 if (desc)
912 return desc;
913
914 mask = ring->get_cmd_length_mask(cmd_header);
915 if (!mask)
916 return NULL;
917
918 BUG_ON(!default_desc);
919 default_desc->flags = CMD_DESC_SKIP;
920 default_desc->length.mask = mask;
921
922 return default_desc;
923 }
924
925 static const struct drm_i915_reg_descriptor *
926 find_reg(const struct drm_i915_reg_descriptor *table,
927 int count, u32 addr)
928 {
929 if (table) {
930 int i;
931
932 for (i = 0; i < count; i++) {
933 if (table[i].addr == addr)
934 return &table[i];
935 }
936 }
937
938 return NULL;
939 }
940
941 #ifndef __NetBSD__
942 static u32 *vmap_batch(struct drm_i915_gem_object *obj,
943 unsigned start, unsigned len)
944 {
945 int i;
946 void *addr = NULL;
947 struct sg_page_iter sg_iter;
948 int first_page = start >> PAGE_SHIFT;
949 int last_page = (len + start + 4095) >> PAGE_SHIFT;
950 int npages = last_page - first_page;
951 struct page **pages;
952
953 pages = drm_malloc_ab(npages, sizeof(*pages));
954 if (pages == NULL) {
955 DRM_DEBUG_DRIVER("Failed to get space for pages\n");
956 goto finish;
957 }
958
959 i = 0;
960 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, first_page) {
961 pages[i++] = sg_page_iter_page(&sg_iter);
962 if (i == npages)
963 break;
964 }
965
966 addr = vmap(pages, i, 0, PAGE_KERNEL);
967 if (addr == NULL) {
968 DRM_DEBUG_DRIVER("Failed to vmap pages\n");
969 goto finish;
970 }
971
972 finish:
973 if (pages)
974 drm_free_large(pages);
975 return (u32*)addr;
976 }
977 #endif /* __NetBSD__ */
978
979 /* Returns a vmap'd pointer to dest_obj, which the caller must unmap */
980 static u32 *copy_batch(struct drm_i915_gem_object *dest_obj,
981 struct drm_i915_gem_object *src_obj,
982 u32 batch_start_offset,
983 u32 batch_len)
984 {
985 int needs_clflush = 0;
986 const void *src_base, *src;
987 void *dst = NULL;
988 int ret;
989
990 if (batch_len > dest_obj->base.size ||
991 batch_len + batch_start_offset > src_obj->base.size)
992 return ERR_PTR(-E2BIG);
993
994 if (WARN_ON(dest_obj->pages_pin_count == 0))
995 return ERR_PTR(-ENODEV);
996
997 ret = i915_gem_obj_prepare_shmem_read(src_obj, &needs_clflush);
998 if (ret) {
999 DRM_DEBUG_DRIVER("CMD: failed to prepare shadow batch\n");
1000 return ERR_PTR(ret);
1001 }
1002
1003 #ifdef __NetBSD__
1004 const u32 srcstart = rounddown(batch_start_offset, PAGE_SIZE);
1005 const u32 srclen = roundup(batch_start_offset + batch_len, PAGE_SIZE)
1006 - srcstart;
1007 vaddr_t srcva = 0; /* hint */
1008
1009 /* Acquire a reference for uvm_map to consume. */
1010 uao_reference(src_obj->base.filp);
1011
1012 /* XXX errno NetBSD->Linux */
1013 ret = -uvm_map(kernel_map, &srcva, srclen, src_obj->base.filp,
1014 srcstart, PAGE_SIZE, UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1015 UVM_INH_NONE, UVM_ADV_SEQUENTIAL, UVM_FLAG_NOWAIT));
1016 if (ret) {
1017 uao_detach(src_obj->base.filp);
1018 DRM_DEBUG_DRIVER("CMD: Failed to vmap batch: %d\n", ret);
1019 goto unpin_src;
1020 }
1021 src_base = (const void *)srcva;
1022 #else
1023 src_base = vmap_batch(src_obj, batch_start_offset, batch_len);
1024 if (!src_base) {
1025 DRM_DEBUG_DRIVER("CMD: Failed to vmap batch\n");
1026 ret = -ENOMEM;
1027 goto unpin_src;
1028 }
1029 #endif
1030
1031 ret = i915_gem_object_set_to_cpu_domain(dest_obj, true);
1032 if (ret) {
1033 DRM_DEBUG_DRIVER("CMD: Failed to set shadow batch to CPU\n");
1034 goto unmap_src;
1035 }
1036
1037 #ifdef __NetBSD__
1038 const u32 dststart = rounddown(0, PAGE_SIZE);
1039 const u32 dstlen = roundup(0 + batch_len, PAGE_SIZE) - dststart;
1040 vaddr_t dstva = 0; /* hint */
1041
1042 /* Acquire a reference for uvm_map to consume. */
1043 uao_reference(dest_obj->base.filp);
1044
1045 /* XXX errno NetBSD->Linux */
1046 ret = -uvm_map(kernel_map, &dstva, dstlen, dest_obj->base.filp,
1047 dststart, PAGE_SIZE, UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1048 UVM_INH_NONE, UVM_ADV_SEQUENTIAL, UVM_FLAG_NOWAIT));
1049 if (ret) {
1050 uao_detach(dest_obj->base.filp);
1051 DRM_DEBUG_DRIVER("CMD: Failed to vmap shadow batch: %d\n", ret);
1052 goto unmap_src;
1053 }
1054 dst = (void *)dstva;
1055 #else
1056 dst = vmap_batch(dest_obj, 0, batch_len);
1057 if (!dst) {
1058 DRM_DEBUG_DRIVER("CMD: Failed to vmap shadow batch\n");
1059 ret = -ENOMEM;
1060 goto unmap_src;
1061 }
1062 #endif
1063
1064 src = (const char *)src_base + offset_in_page(batch_start_offset);
1065 if (needs_clflush)
1066 drm_clflush_virt_range(src, batch_len);
1067
1068 #ifdef __NetBSD__
1069 ret = -kcopy(src, dst, batch_len);
1070 if (ret) {
1071 uvm_unmap(kernel_map, dstva, dstva + dstlen);
1072 goto unmap_src;
1073 }
1074 #else
1075 memcpy(dst, src, batch_len);
1076 #endif
1077
1078 unmap_src:
1079 #ifdef __NetBSD__
1080 uvm_unmap(kernel_map, srcva, srcva + srclen);
1081 #else
1082 vunmap(src_base);
1083 #endif
1084 unpin_src:
1085 i915_gem_object_unpin_pages(src_obj);
1086
1087 return ret ? ERR_PTR(ret) : dst;
1088 }
1089
1090 static int check_cmd(const struct intel_engine_cs *ring,
1091 const struct drm_i915_cmd_descriptor *desc,
1092 const u32 *cmd, u32 length,
1093 bool *oacontrol_set)
1094 {
1095 if (desc->flags & CMD_DESC_REJECT) {
1096 DRM_DEBUG_DRIVER("CMD: Rejected command: 0x%08X\n", *cmd);
1097 return false;
1098 }
1099
1100 if (desc->flags & CMD_DESC_REGISTER) {
1101 /*
1102 * Get the distance between individual register offset
1103 * fields if the command can perform more than one
1104 * access at a time.
1105 */
1106 const u32 step = desc->reg.step ? desc->reg.step : length;
1107 u32 offset;
1108
1109 for (offset = desc->reg.offset; offset < length;
1110 offset += step) {
1111 const u32 reg_addr = cmd[offset] & desc->reg.mask;
1112 const struct drm_i915_reg_descriptor *reg =
1113 find_reg(ring->reg_table, ring->reg_count,
1114 reg_addr);
1115
1116 if (!reg) {
1117 DRM_DEBUG_DRIVER("CMD: Rejected register 0x%08X in command: 0x%08X (ring=%d)\n",
1118 reg_addr, *cmd, ring->id);
1119 return false;
1120 }
1121
1122 /*
1123 * OACONTROL requires some special handling for
1124 * writes. We want to make sure that any batch which
1125 * enables OA also disables it before the end of the
1126 * batch. The goal is to prevent one process from
1127 * snooping on the perf data from another process. To do
1128 * that, we need to check the value that will be written
1129 * to the register. Hence, limit OACONTROL writes to
1130 * only MI_LOAD_REGISTER_IMM commands.
1131 */
1132 if (reg_addr == OACONTROL) {
1133 if (desc->cmd.value == MI_LOAD_REGISTER_MEM) {
1134 DRM_DEBUG_DRIVER("CMD: Rejected LRM to OACONTROL\n");
1135 return false;
1136 }
1137
1138 if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1))
1139 *oacontrol_set = (cmd[offset + 1] != 0);
1140 }
1141
1142 /*
1143 * Check the value written to the register against the
1144 * allowed mask/value pair given in the whitelist entry.
1145 */
1146 if (reg->mask) {
1147 if (desc->cmd.value == MI_LOAD_REGISTER_MEM) {
1148 DRM_DEBUG_DRIVER("CMD: Rejected LRM to masked register 0x%08X\n",
1149 reg_addr);
1150 return false;
1151 }
1152
1153 if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1) &&
1154 (offset + 2 > length ||
1155 (cmd[offset + 1] & reg->mask) != reg->value)) {
1156 DRM_DEBUG_DRIVER("CMD: Rejected LRI to masked register 0x%08X\n",
1157 reg_addr);
1158 return false;
1159 }
1160 }
1161 }
1162 }
1163
1164 if (desc->flags & CMD_DESC_BITMASK) {
1165 int i;
1166
1167 for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
1168 u32 dword;
1169
1170 if (desc->bits[i].mask == 0)
1171 break;
1172
1173 if (desc->bits[i].condition_mask != 0) {
1174 u32 offset =
1175 desc->bits[i].condition_offset;
1176 u32 condition = cmd[offset] &
1177 desc->bits[i].condition_mask;
1178
1179 if (condition == 0)
1180 continue;
1181 }
1182
1183 dword = cmd[desc->bits[i].offset] &
1184 desc->bits[i].mask;
1185
1186 if (dword != desc->bits[i].expected) {
1187 DRM_DEBUG_DRIVER("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (ring=%d)\n",
1188 *cmd,
1189 desc->bits[i].mask,
1190 desc->bits[i].expected,
1191 dword, ring->id);
1192 return false;
1193 }
1194 }
1195 }
1196
1197 return true;
1198 }
1199
1200 static int check_bbstart(struct intel_context *ctx,
1201 u32 *cmd, u64 offset, u32 length,
1202 u32 batch_len,
1203 u64 batch_start,
1204 u64 shadow_batch_start)
1205 {
1206
1207 u64 jump_offset, jump_target;
1208 u32 target_cmd_offset, target_cmd_index;
1209
1210 /* For igt compatibility on older platforms */
1211 if (CMDPARSER_USES_GGTT(ctx->i915)) {
1212 DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n");
1213 return -EACCES;
1214 }
1215
1216 if (length != 3) {
1217 DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n",
1218 length);
1219 return -EINVAL;
1220 }
1221
1222 jump_target = *(u64*)(cmd+1);
1223 jump_offset = jump_target - batch_start;
1224
1225 /*
1226 * Any underflow of jump_target is guaranteed to be outside the range
1227 * of a u32, so >= test catches both too large and too small
1228 */
1229 if (jump_offset >= batch_len) {
1230 DRM_DEBUG("CMD: BB_START to 0x%"PRIx64" jumps out of BB\n",
1231 jump_target);
1232 return -EINVAL;
1233 }
1234
1235 /*
1236 * This cannot overflow a u32 because we already checked jump_offset
1237 * is within the BB, and the batch_len is a u32
1238 */
1239 target_cmd_offset = lower_32_bits(jump_offset);
1240 target_cmd_index = target_cmd_offset / sizeof(u32);
1241
1242 *(u64*)(cmd + 1) = shadow_batch_start + target_cmd_offset;
1243
1244 if (target_cmd_index == offset)
1245 return 0;
1246
1247 if (ctx->jump_whitelist_cmds <= target_cmd_index) {
1248 DRM_DEBUG("CMD: Rejecting BB_START - truncated whitelist array\n");
1249 return -EINVAL;
1250 } else if (!test_bit(target_cmd_index, ctx->jump_whitelist)) {
1251 DRM_DEBUG("CMD: BB_START to 0x%"PRIx64" not a previously executed cmd\n",
1252 jump_target);
1253 return -EINVAL;
1254 }
1255
1256 return 0;
1257 }
1258
1259 static void init_whitelist(struct intel_context *ctx, u32 batch_len)
1260 {
1261 const u32 batch_cmds = DIV_ROUND_UP(batch_len, sizeof(u32));
1262 const u32 exact_size = BITS_TO_LONGS(batch_cmds);
1263 u32 next_size = BITS_TO_LONGS(roundup_pow_of_two(batch_cmds));
1264 unsigned long *next_whitelist;
1265
1266 if (CMDPARSER_USES_GGTT(ctx->i915))
1267 return;
1268
1269 if (batch_cmds <= ctx->jump_whitelist_cmds) {
1270 bitmap_zero(ctx->jump_whitelist, batch_cmds);
1271 return;
1272 }
1273
1274 again:
1275 next_whitelist = kcalloc(next_size, sizeof(long), GFP_KERNEL);
1276 if (next_whitelist) {
1277 kfree(ctx->jump_whitelist);
1278 ctx->jump_whitelist = next_whitelist;
1279 ctx->jump_whitelist_cmds =
1280 next_size * BITS_PER_BYTE * sizeof(long);
1281 return;
1282 }
1283
1284 if (next_size > exact_size) {
1285 next_size = exact_size;
1286 goto again;
1287 }
1288
1289 DRM_DEBUG("CMD: Failed to extend whitelist. BB_START may be disallowed\n");
1290 bitmap_zero(ctx->jump_whitelist, ctx->jump_whitelist_cmds);
1291
1292 return;
1293 }
1294
1295 #define LENGTH_BIAS 2
1296
1297 /**
1298 * i915_parse_cmds() - parse a submitted batch buffer for privilege violations
1299 * @ctx: the context in which the batch is to execute
1300 * @ring: the ring on which the batch is to execute
1301 * @batch_obj: the batch buffer in question
1302 * @user_batch_start: Canonical base address of original user batch
1303 * @batch_start_offset: byte offset in the batch at which execution starts
1304 * @batch_len: length of the commands in batch_obj
1305 * @shadow_batch_obj: copy of the batch buffer in question
1306 * @shadow_batch_start: Canonical base address of shadow_batch_obj
1307 *
1308 * Parses the specified batch buffer looking for privilege violations as
1309 * described in the overview.
1310 *
1311 * Return: non-zero if the parser finds violations or otherwise fails; -EACCES
1312 * if the batch appears legal but should use hardware parsing
1313 */
1314 int i915_parse_cmds(struct intel_context *ctx,
1315 struct intel_engine_cs *ring,
1316 struct drm_i915_gem_object *batch_obj,
1317 u64 user_batch_start,
1318 u32 batch_start_offset,
1319 u32 batch_len,
1320 struct drm_i915_gem_object *shadow_batch_obj,
1321 u64 shadow_batch_start)
1322 {
1323 u32 *cmd, *batch_base, *batch_end, offset = 0;
1324 static const struct drm_i915_cmd_descriptor zero_default_desc;
1325 struct drm_i915_cmd_descriptor default_desc = zero_default_desc;
1326 bool oacontrol_set = false; /* OACONTROL tracking. See check_cmd() */
1327 int ret = 0;
1328
1329 batch_base = copy_batch(shadow_batch_obj, batch_obj,
1330 batch_start_offset, batch_len);
1331 if (IS_ERR(batch_base)) {
1332 DRM_DEBUG_DRIVER("CMD: Failed to copy batch\n");
1333 return PTR_ERR(batch_base);
1334 }
1335
1336 init_whitelist(ctx, batch_len);
1337
1338 /*
1339 * We use the batch length as size because the shadow object is as
1340 * large or larger and copy_batch() will write MI_NOPs to the extra
1341 * space. Parsing should be faster in some cases this way.
1342 */
1343 batch_end = batch_base + (batch_len / sizeof(*batch_end));
1344
1345 cmd = batch_base;
1346 while (cmd < batch_end) {
1347 const struct drm_i915_cmd_descriptor *desc;
1348 u32 length;
1349
1350 if (*cmd == MI_BATCH_BUFFER_END)
1351 break;
1352
1353 desc = find_cmd(ring, *cmd, &default_desc);
1354 if (!desc) {
1355 DRM_DEBUG_DRIVER("CMD: Unrecognized command: 0x%08X\n",
1356 *cmd);
1357 ret = -EINVAL;
1358 break;
1359 }
1360
1361 if (desc->flags & CMD_DESC_FIXED)
1362 length = desc->length.fixed;
1363 else
1364 length = ((*cmd & desc->length.mask) + LENGTH_BIAS);
1365
1366 if ((batch_end - cmd) < length) {
1367 DRM_DEBUG_DRIVER("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
1368 *cmd,
1369 length,
1370 batch_end - cmd);
1371 ret = -EINVAL;
1372 break;
1373 }
1374
1375 if (!check_cmd(ring, desc, cmd, length, &oacontrol_set)) {
1376 ret = CMDPARSER_USES_GGTT(ring->dev) ? -EINVAL : -EACCES;
1377 break;
1378 }
1379
1380 if (desc->cmd.value == MI_BATCH_BUFFER_START) {
1381 ret = check_bbstart(ctx, cmd, offset, length,
1382 batch_len, user_batch_start,
1383 shadow_batch_start);
1384 break;
1385 }
1386
1387 if (ctx->jump_whitelist_cmds > offset)
1388 set_bit(offset, ctx->jump_whitelist);
1389
1390 cmd += length;
1391 offset += length;
1392 }
1393
1394 if (oacontrol_set) {
1395 DRM_DEBUG_DRIVER("CMD: batch set OACONTROL but did not clear it\n");
1396 ret = -EINVAL;
1397 }
1398
1399 if (cmd >= batch_end) {
1400 DRM_DEBUG_DRIVER("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
1401 ret = -EINVAL;
1402 }
1403
1404 #ifdef __NetBSD__
1405 uvm_unmap(kernel_map, (vaddr_t)batch_base,
1406 (vaddr_t)batch_base + roundup(batch_len, PAGE_SIZE));
1407 #else
1408 vunmap(batch_base);
1409 #endif
1410
1411 return ret;
1412 }
1413
1414 /**
1415 * i915_cmd_parser_get_version() - get the cmd parser version number
1416 *
1417 * The cmd parser maintains a simple increasing integer version number suitable
1418 * for passing to userspace clients to determine what operations are permitted.
1419 *
1420 * Return: the current version number of the cmd parser
1421 */
1422 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
1423 {
1424 /*
1425 * Command parser version history
1426 *
1427 * 1. Initial version. Checks batches and reports violations, but leaves
1428 * hardware parsing enabled (so does not allow new use cases).
1429 * 2. Allow access to the MI_PREDICATE_SRC0 and
1430 * MI_PREDICATE_SRC1 registers.
1431 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
1432 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
1433 * 5. GPGPU dispatch compute indirect registers.
1434 * 10. Gen9 only - Supports the new ppgtt based BLIT parser
1435 */
1436 return CMDPARSER_USES_GGTT(dev_priv) ? 5 : 10;
1437 }
1438