i915_cmd_parser.c revision 1.26 1 /* $NetBSD: i915_cmd_parser.c,v 1.26 2021/12/19 11:16:48 riastradh Exp $ */
2
3 /*
4 * Copyright 2013 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 *
25 * Authors:
26 * Brad Volkin <bradley.d.volkin (at) intel.com>
27 *
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: i915_cmd_parser.c,v 1.26 2021/12/19 11:16:48 riastradh Exp $");
32
33 #include "gt/intel_engine.h"
34
35 #include "i915_drv.h"
36 #include "i915_memcpy.h"
37
38 /**
39 * DOC: batch buffer command parser
40 *
41 * Motivation:
42 * Certain OpenGL features (e.g. transform feedback, performance monitoring)
43 * require userspace code to submit batches containing commands such as
44 * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
45 * generations of the hardware will noop these commands in "unsecure" batches
46 * (which includes all userspace batches submitted via i915) even though the
47 * commands may be safe and represent the intended programming model of the
48 * device.
49 *
50 * The software command parser is similar in operation to the command parsing
51 * done in hardware for unsecure batches. However, the software parser allows
52 * some operations that would be noop'd by hardware, if the parser determines
53 * the operation is safe, and submits the batch as "secure" to prevent hardware
54 * parsing.
55 *
56 * Threats:
57 * At a high level, the hardware (and software) checks attempt to prevent
58 * granting userspace undue privileges. There are three categories of privilege.
59 *
60 * First, commands which are explicitly defined as privileged or which should
61 * only be used by the kernel driver. The parser rejects such commands
62 *
63 * Second, commands which access registers. To support correct/enhanced
64 * userspace functionality, particularly certain OpenGL extensions, the parser
65 * provides a whitelist of registers which userspace may safely access
66 *
67 * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
68 * The parser always rejects such commands.
69 *
70 * The majority of the problematic commands fall in the MI_* range, with only a
71 * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
72 *
73 * Implementation:
74 * Each engine maintains tables of commands and registers which the parser
75 * uses in scanning batch buffers submitted to that engine.
76 *
77 * Since the set of commands that the parser must check for is significantly
78 * smaller than the number of commands supported, the parser tables contain only
79 * those commands required by the parser. This generally works because command
80 * opcode ranges have standard command length encodings. So for commands that
81 * the parser does not need to check, it can easily skip them. This is
82 * implemented via a per-engine length decoding vfunc.
83 *
84 * Unfortunately, there are a number of commands that do not follow the standard
85 * length encoding for their opcode range, primarily amongst the MI_* commands.
86 * To handle this, the parser provides a way to define explicit "skip" entries
87 * in the per-engine command tables.
88 *
89 * Other command table entries map fairly directly to high level categories
90 * mentioned above: rejected, register whitelist. The parser implements a number
91 * of checks, including the privileged memory checks, via a general bitmasking
92 * mechanism.
93 */
94
95 /*
96 * A command that requires special handling by the command parser.
97 */
98 struct drm_i915_cmd_descriptor {
99 /*
100 * Flags describing how the command parser processes the command.
101 *
102 * CMD_DESC_FIXED: The command has a fixed length if this is set,
103 * a length mask if not set
104 * CMD_DESC_SKIP: The command is allowed but does not follow the
105 * standard length encoding for the opcode range in
106 * which it falls
107 * CMD_DESC_REJECT: The command is never allowed
108 * CMD_DESC_REGISTER: The command should be checked against the
109 * register whitelist for the appropriate ring
110 */
111 u32 flags;
112 #define CMD_DESC_FIXED (1<<0)
113 #define CMD_DESC_SKIP (1<<1)
114 #define CMD_DESC_REJECT (1<<2)
115 #define CMD_DESC_REGISTER (1<<3)
116 #define CMD_DESC_BITMASK (1<<4)
117
118 /*
119 * The command's unique identification bits and the bitmask to get them.
120 * This isn't strictly the opcode field as defined in the spec and may
121 * also include type, subtype, and/or subop fields.
122 */
123 struct {
124 u32 value;
125 u32 mask;
126 } cmd;
127
128 /*
129 * The command's length. The command is either fixed length (i.e. does
130 * not include a length field) or has a length field mask. The flag
131 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
132 * a length mask. All command entries in a command table must include
133 * length information.
134 */
135 union {
136 u32 fixed;
137 u32 mask;
138 } length;
139
140 /*
141 * Describes where to find a register address in the command to check
142 * against the ring's register whitelist. Only valid if flags has the
143 * CMD_DESC_REGISTER bit set.
144 *
145 * A non-zero step value implies that the command may access multiple
146 * registers in sequence (e.g. LRI), in that case step gives the
147 * distance in dwords between individual offset fields.
148 */
149 struct {
150 u32 offset;
151 u32 mask;
152 u32 step;
153 } reg;
154
155 #define MAX_CMD_DESC_BITMASKS 3
156 /*
157 * Describes command checks where a particular dword is masked and
158 * compared against an expected value. If the command does not match
159 * the expected value, the parser rejects it. Only valid if flags has
160 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
161 * are valid.
162 *
163 * If the check specifies a non-zero condition_mask then the parser
164 * only performs the check when the bits specified by condition_mask
165 * are non-zero.
166 */
167 struct {
168 u32 offset;
169 u32 mask;
170 u32 expected;
171 u32 condition_offset;
172 u32 condition_mask;
173 } bits[MAX_CMD_DESC_BITMASKS];
174 };
175
176 /*
177 * A table of commands requiring special handling by the command parser.
178 *
179 * Each engine has an array of tables. Each table consists of an array of
180 * command descriptors, which must be sorted with command opcodes in
181 * ascending order.
182 */
183 struct drm_i915_cmd_table {
184 const struct drm_i915_cmd_descriptor *table;
185 int count;
186 };
187
188 #define STD_MI_OPCODE_SHIFT (32 - 9)
189 #define STD_3D_OPCODE_SHIFT (32 - 16)
190 #define STD_2D_OPCODE_SHIFT (32 - 10)
191 #define STD_MFX_OPCODE_SHIFT (32 - 16)
192 #define MIN_OPCODE_SHIFT 16
193
194 #define CMD(op, opm, f, lm, fl, ...) \
195 { \
196 .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \
197 .cmd = { (op & ~0u << (opm)), ~0u << (opm) }, \
198 .length = { (lm) }, \
199 __VA_ARGS__ \
200 }
201
202 /* Convenience macros to compress the tables */
203 #define SMI STD_MI_OPCODE_SHIFT
204 #define S3D STD_3D_OPCODE_SHIFT
205 #define S2D STD_2D_OPCODE_SHIFT
206 #define SMFX STD_MFX_OPCODE_SHIFT
207 #define F true
208 #define S CMD_DESC_SKIP
209 #define R CMD_DESC_REJECT
210 #define W CMD_DESC_REGISTER
211 #define B CMD_DESC_BITMASK
212
213 /* Command Mask Fixed Len Action
214 ---------------------------------------------------------- */
215 static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = {
216 CMD( MI_NOOP, SMI, F, 1, S ),
217 CMD( MI_USER_INTERRUPT, SMI, F, 1, R ),
218 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, R ),
219 CMD( MI_ARB_CHECK, SMI, F, 1, S ),
220 CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
221 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
222 CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ),
223 CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ),
224 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
225 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
226 CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B,
227 .reg = { .offset = 1, .mask = 0x007FFFFC },
228 .bits = {{
229 .offset = 0,
230 .mask = MI_GLOBAL_GTT,
231 .expected = 0,
232 }}, ),
233 CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B,
234 .reg = { .offset = 1, .mask = 0x007FFFFC },
235 .bits = {{
236 .offset = 0,
237 .mask = MI_GLOBAL_GTT,
238 .expected = 0,
239 }}, ),
240 /*
241 * MI_BATCH_BUFFER_START requires some special handling. It's not
242 * really a 'skip' action but it doesn't seem like it's worth adding
243 * a new action. See intel_engine_cmd_parser().
244 */
245 CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ),
246 };
247
248 static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = {
249 CMD( MI_FLUSH, SMI, F, 1, S ),
250 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
251 CMD( MI_PREDICATE, SMI, F, 1, S ),
252 CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ),
253 CMD( MI_SET_APPID, SMI, F, 1, S ),
254 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
255 CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ),
256 CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ),
257 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B,
258 .bits = {{
259 .offset = 0,
260 .mask = MI_GLOBAL_GTT,
261 .expected = 0,
262 }}, ),
263 CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ),
264 CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B,
265 .bits = {{
266 .offset = 0,
267 .mask = MI_GLOBAL_GTT,
268 .expected = 0,
269 }}, ),
270 CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B,
271 .bits = {{
272 .offset = 1,
273 .mask = MI_REPORT_PERF_COUNT_GGTT,
274 .expected = 0,
275 }}, ),
276 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
277 .bits = {{
278 .offset = 0,
279 .mask = MI_GLOBAL_GTT,
280 .expected = 0,
281 }}, ),
282 CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ),
283 CMD( PIPELINE_SELECT, S3D, F, 1, S ),
284 CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B,
285 .bits = {{
286 .offset = 2,
287 .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
288 .expected = 0,
289 }}, ),
290 CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ),
291 CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ),
292 CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ),
293 CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B,
294 .bits = {{
295 .offset = 1,
296 .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
297 .expected = 0,
298 },
299 {
300 .offset = 1,
301 .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
302 PIPE_CONTROL_STORE_DATA_INDEX),
303 .expected = 0,
304 .condition_offset = 1,
305 .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
306 }}, ),
307 };
308
309 static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
310 CMD( MI_SET_PREDICATE, SMI, F, 1, S ),
311 CMD( MI_RS_CONTROL, SMI, F, 1, S ),
312 CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ),
313 CMD( MI_SET_APPID, SMI, F, 1, S ),
314 CMD( MI_RS_CONTEXT, SMI, F, 1, S ),
315 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ),
316 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
317 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
318 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
319 CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ),
320 CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ),
321 CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ),
322 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ),
323 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ),
324
325 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ),
326 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ),
327 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ),
328 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ),
329 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ),
330 };
331
332 static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = {
333 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
334 CMD( MI_SET_APPID, SMI, F, 1, S ),
335 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
336 .bits = {{
337 .offset = 0,
338 .mask = MI_GLOBAL_GTT,
339 .expected = 0,
340 }}, ),
341 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
342 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
343 .bits = {{
344 .offset = 0,
345 .mask = MI_FLUSH_DW_NOTIFY,
346 .expected = 0,
347 },
348 {
349 .offset = 1,
350 .mask = MI_FLUSH_DW_USE_GTT,
351 .expected = 0,
352 .condition_offset = 0,
353 .condition_mask = MI_FLUSH_DW_OP_MASK,
354 },
355 {
356 .offset = 0,
357 .mask = MI_FLUSH_DW_STORE_INDEX,
358 .expected = 0,
359 .condition_offset = 0,
360 .condition_mask = MI_FLUSH_DW_OP_MASK,
361 }}, ),
362 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
363 .bits = {{
364 .offset = 0,
365 .mask = MI_GLOBAL_GTT,
366 .expected = 0,
367 }}, ),
368 /*
369 * MFX_WAIT doesn't fit the way we handle length for most commands.
370 * It has a length field but it uses a non-standard length bias.
371 * It is always 1 dword though, so just treat it as fixed length.
372 */
373 CMD( MFX_WAIT, SMFX, F, 1, S ),
374 };
375
376 static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = {
377 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
378 CMD( MI_SET_APPID, SMI, F, 1, S ),
379 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
380 .bits = {{
381 .offset = 0,
382 .mask = MI_GLOBAL_GTT,
383 .expected = 0,
384 }}, ),
385 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
386 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
387 .bits = {{
388 .offset = 0,
389 .mask = MI_FLUSH_DW_NOTIFY,
390 .expected = 0,
391 },
392 {
393 .offset = 1,
394 .mask = MI_FLUSH_DW_USE_GTT,
395 .expected = 0,
396 .condition_offset = 0,
397 .condition_mask = MI_FLUSH_DW_OP_MASK,
398 },
399 {
400 .offset = 0,
401 .mask = MI_FLUSH_DW_STORE_INDEX,
402 .expected = 0,
403 .condition_offset = 0,
404 .condition_mask = MI_FLUSH_DW_OP_MASK,
405 }}, ),
406 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
407 .bits = {{
408 .offset = 0,
409 .mask = MI_GLOBAL_GTT,
410 .expected = 0,
411 }}, ),
412 };
413
414 static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = {
415 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
416 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B,
417 .bits = {{
418 .offset = 0,
419 .mask = MI_GLOBAL_GTT,
420 .expected = 0,
421 }}, ),
422 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
423 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
424 .bits = {{
425 .offset = 0,
426 .mask = MI_FLUSH_DW_NOTIFY,
427 .expected = 0,
428 },
429 {
430 .offset = 1,
431 .mask = MI_FLUSH_DW_USE_GTT,
432 .expected = 0,
433 .condition_offset = 0,
434 .condition_mask = MI_FLUSH_DW_OP_MASK,
435 },
436 {
437 .offset = 0,
438 .mask = MI_FLUSH_DW_STORE_INDEX,
439 .expected = 0,
440 .condition_offset = 0,
441 .condition_mask = MI_FLUSH_DW_OP_MASK,
442 }}, ),
443 CMD( COLOR_BLT, S2D, !F, 0x3F, S ),
444 CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ),
445 };
446
447 static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
448 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ),
449 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
450 };
451
452 /*
453 * For Gen9 we can still rely on the h/w to enforce cmd security, and only
454 * need to re-enforce the register access checks. We therefore only need to
455 * teach the cmdparser how to find the end of each command, and identify
456 * register accesses. The table doesn't need to reject any commands, and so
457 * the only commands listed here are:
458 * 1) Those that touch registers
459 * 2) Those that do not have the default 8-bit length
460 *
461 * Note that the default MI length mask chosen for this table is 0xFF, not
462 * the 0x3F used on older devices. This is because the vast majority of MI
463 * cmds on Gen9 use a standard 8-bit Length field.
464 * All the Gen9 blitter instructions are standard 0xFF length mask, and
465 * none allow access to non-general registers, so in fact no BLT cmds are
466 * included in the table at all.
467 *
468 */
469 static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = {
470 CMD( MI_NOOP, SMI, F, 1, S ),
471 CMD( MI_USER_INTERRUPT, SMI, F, 1, S ),
472 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, S ),
473 CMD( MI_FLUSH, SMI, F, 1, S ),
474 CMD( MI_ARB_CHECK, SMI, F, 1, S ),
475 CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
476 CMD( MI_ARB_ON_OFF, SMI, F, 1, S ),
477 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
478 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, S ),
479 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, S ),
480 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, S ),
481 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
482 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
483 CMD( MI_UPDATE_GTT, SMI, !F, 0x3FF, S ),
484 CMD( MI_STORE_REGISTER_MEM_GEN8, SMI, F, 4, W,
485 .reg = { .offset = 1, .mask = 0x007FFFFC } ),
486 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, S ),
487 CMD( MI_LOAD_REGISTER_MEM_GEN8, SMI, F, 4, W,
488 .reg = { .offset = 1, .mask = 0x007FFFFC } ),
489 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
490 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
491
492 /*
493 * We allow BB_START but apply further checks. We just sanitize the
494 * basic fields here.
495 */
496 #define MI_BB_START_OPERAND_MASK GENMASK(SMI-1, 0)
497 #define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1)
498 CMD( MI_BATCH_BUFFER_START_GEN8, SMI, !F, 0xFF, B,
499 .bits = {{
500 .offset = 0,
501 .mask = MI_BB_START_OPERAND_MASK,
502 .expected = MI_BB_START_OPERAND_EXPECT,
503 }}, ),
504 };
505
506 static const struct drm_i915_cmd_descriptor noop_desc =
507 CMD(MI_NOOP, SMI, F, 1, S);
508
509 #undef CMD
510 #undef SMI
511 #undef S3D
512 #undef S2D
513 #undef SMFX
514 #undef F
515 #undef S
516 #undef R
517 #undef W
518 #undef B
519
520 static const struct drm_i915_cmd_table gen7_render_cmd_table[] = {
521 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
522 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
523 };
524
525 static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = {
526 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
527 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
528 { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
529 };
530
531 static const struct drm_i915_cmd_table gen7_video_cmd_table[] = {
532 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
533 { gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) },
534 };
535
536 static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = {
537 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
538 { gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) },
539 };
540
541 static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = {
542 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
543 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
544 };
545
546 static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = {
547 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
548 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
549 { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
550 };
551
552 static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = {
553 { gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) },
554 };
555
556
557 /*
558 * Register whitelists, sorted by increasing register offset.
559 */
560
561 /*
562 * An individual whitelist entry granting access to register addr. If
563 * mask is non-zero the argument of immediate register writes will be
564 * AND-ed with mask, and the command will be rejected if the result
565 * doesn't match value.
566 *
567 * Registers with non-zero mask are only allowed to be written using
568 * LRI.
569 */
570 struct drm_i915_reg_descriptor {
571 i915_reg_t addr;
572 u32 mask;
573 u32 value;
574 };
575
576 /* Convenience macro for adding 32-bit registers. */
577 #define REG32(_reg, ...) \
578 { .addr = (_reg), __VA_ARGS__ }
579
580 /*
581 * Convenience macro for adding 64-bit registers.
582 *
583 * Some registers that userspace accesses are 64 bits. The register
584 * access commands only allow 32-bit accesses. Hence, we have to include
585 * entries for both halves of the 64-bit registers.
586 */
587 #define REG64(_reg) \
588 { .addr = _reg }, \
589 { .addr = _reg ## _UDW }
590
591 #define REG64_IDX(_reg, idx) \
592 { .addr = _reg(idx) }, \
593 { .addr = _reg ## _UDW(idx) }
594
595 static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
596 REG64(GPGPU_THREADS_DISPATCHED),
597 REG64(HS_INVOCATION_COUNT),
598 REG64(DS_INVOCATION_COUNT),
599 REG64(IA_VERTICES_COUNT),
600 REG64(IA_PRIMITIVES_COUNT),
601 REG64(VS_INVOCATION_COUNT),
602 REG64(GS_INVOCATION_COUNT),
603 REG64(GS_PRIMITIVES_COUNT),
604 REG64(CL_INVOCATION_COUNT),
605 REG64(CL_PRIMITIVES_COUNT),
606 REG64(PS_INVOCATION_COUNT),
607 REG64(PS_DEPTH_COUNT),
608 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
609 REG64(MI_PREDICATE_SRC0),
610 REG64(MI_PREDICATE_SRC1),
611 REG32(GEN7_3DPRIM_END_OFFSET),
612 REG32(GEN7_3DPRIM_START_VERTEX),
613 REG32(GEN7_3DPRIM_VERTEX_COUNT),
614 REG32(GEN7_3DPRIM_INSTANCE_COUNT),
615 REG32(GEN7_3DPRIM_START_INSTANCE),
616 REG32(GEN7_3DPRIM_BASE_VERTEX),
617 REG32(GEN7_GPGPU_DISPATCHDIMX),
618 REG32(GEN7_GPGPU_DISPATCHDIMY),
619 REG32(GEN7_GPGPU_DISPATCHDIMZ),
620 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
621 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0),
622 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1),
623 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2),
624 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3),
625 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0),
626 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1),
627 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2),
628 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3),
629 REG32(GEN7_SO_WRITE_OFFSET(0)),
630 REG32(GEN7_SO_WRITE_OFFSET(1)),
631 REG32(GEN7_SO_WRITE_OFFSET(2)),
632 REG32(GEN7_SO_WRITE_OFFSET(3)),
633 REG32(GEN7_L3SQCREG1),
634 REG32(GEN7_L3CNTLREG2),
635 REG32(GEN7_L3CNTLREG3),
636 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
637 };
638
639 static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
640 REG64_IDX(HSW_CS_GPR, 0),
641 REG64_IDX(HSW_CS_GPR, 1),
642 REG64_IDX(HSW_CS_GPR, 2),
643 REG64_IDX(HSW_CS_GPR, 3),
644 REG64_IDX(HSW_CS_GPR, 4),
645 REG64_IDX(HSW_CS_GPR, 5),
646 REG64_IDX(HSW_CS_GPR, 6),
647 REG64_IDX(HSW_CS_GPR, 7),
648 REG64_IDX(HSW_CS_GPR, 8),
649 REG64_IDX(HSW_CS_GPR, 9),
650 REG64_IDX(HSW_CS_GPR, 10),
651 REG64_IDX(HSW_CS_GPR, 11),
652 REG64_IDX(HSW_CS_GPR, 12),
653 REG64_IDX(HSW_CS_GPR, 13),
654 REG64_IDX(HSW_CS_GPR, 14),
655 REG64_IDX(HSW_CS_GPR, 15),
656 REG32(HSW_SCRATCH1,
657 .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
658 .value = 0),
659 REG32(HSW_ROW_CHICKEN3,
660 .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
661 HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
662 .value = 0),
663 };
664
665 static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
666 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
667 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
668 REG32(BCS_SWCTRL),
669 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
670 };
671
672 static const struct drm_i915_reg_descriptor gen9_blt_regs[] = {
673 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
674 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
675 REG32(BCS_SWCTRL),
676 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
677 REG64_IDX(BCS_GPR, 0),
678 REG64_IDX(BCS_GPR, 1),
679 REG64_IDX(BCS_GPR, 2),
680 REG64_IDX(BCS_GPR, 3),
681 REG64_IDX(BCS_GPR, 4),
682 REG64_IDX(BCS_GPR, 5),
683 REG64_IDX(BCS_GPR, 6),
684 REG64_IDX(BCS_GPR, 7),
685 REG64_IDX(BCS_GPR, 8),
686 REG64_IDX(BCS_GPR, 9),
687 REG64_IDX(BCS_GPR, 10),
688 REG64_IDX(BCS_GPR, 11),
689 REG64_IDX(BCS_GPR, 12),
690 REG64_IDX(BCS_GPR, 13),
691 REG64_IDX(BCS_GPR, 14),
692 REG64_IDX(BCS_GPR, 15),
693 };
694
695 #undef REG64
696 #undef REG32
697
698 struct drm_i915_reg_table {
699 const struct drm_i915_reg_descriptor *regs;
700 int num_regs;
701 };
702
703 static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
704 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
705 };
706
707 static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
708 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
709 };
710
711 static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
712 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
713 { hsw_render_regs, ARRAY_SIZE(hsw_render_regs) },
714 };
715
716 static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
717 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
718 };
719
720 static const struct drm_i915_reg_table gen9_blt_reg_tables[] = {
721 { gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) },
722 };
723
724 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
725 {
726 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
727 u32 subclient =
728 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
729
730 if (client == INSTR_MI_CLIENT)
731 return 0x3F;
732 else if (client == INSTR_RC_CLIENT) {
733 if (subclient == INSTR_MEDIA_SUBCLIENT)
734 return 0xFFFF;
735 else
736 return 0xFF;
737 }
738
739 DRM_DEBUG("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
740 return 0;
741 }
742
743 static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
744 {
745 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
746 u32 subclient =
747 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
748 u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
749
750 if (client == INSTR_MI_CLIENT)
751 return 0x3F;
752 else if (client == INSTR_RC_CLIENT) {
753 if (subclient == INSTR_MEDIA_SUBCLIENT) {
754 if (op == 6)
755 return 0xFFFF;
756 else
757 return 0xFFF;
758 } else
759 return 0xFF;
760 }
761
762 DRM_DEBUG("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
763 return 0;
764 }
765
766 static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
767 {
768 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
769
770 if (client == INSTR_MI_CLIENT)
771 return 0x3F;
772 else if (client == INSTR_BC_CLIENT)
773 return 0xFF;
774
775 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
776 return 0;
777 }
778
779 static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header)
780 {
781 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
782
783 if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT)
784 return 0xFF;
785
786 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
787 return 0;
788 }
789
790 static bool validate_cmds_sorted(const struct intel_engine_cs *engine,
791 const struct drm_i915_cmd_table *cmd_tables,
792 int cmd_table_count)
793 {
794 int i;
795 bool ret = true;
796
797 if (!cmd_tables || cmd_table_count == 0)
798 return true;
799
800 for (i = 0; i < cmd_table_count; i++) {
801 const struct drm_i915_cmd_table *table = &cmd_tables[i];
802 u32 previous = 0;
803 int j;
804
805 for (j = 0; j < table->count; j++) {
806 const struct drm_i915_cmd_descriptor *desc =
807 &table->table[j];
808 u32 curr = desc->cmd.value & desc->cmd.mask;
809
810 if (curr < previous) {
811 DRM_ERROR("CMD: %s [%d] command table not sorted: "
812 "table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
813 engine->name, engine->id,
814 i, j, curr, previous);
815 ret = false;
816 }
817
818 previous = curr;
819 }
820 }
821
822 return ret;
823 }
824
825 static bool check_sorted(const struct intel_engine_cs *engine,
826 const struct drm_i915_reg_descriptor *reg_table,
827 int reg_count)
828 {
829 int i;
830 u32 previous = 0;
831 bool ret = true;
832
833 for (i = 0; i < reg_count; i++) {
834 u32 curr = i915_mmio_reg_offset(reg_table[i].addr);
835
836 if (curr < previous) {
837 DRM_ERROR("CMD: %s [%d] register table not sorted: "
838 "entry=%d reg=0x%08X prev=0x%08X\n",
839 engine->name, engine->id,
840 i, curr, previous);
841 ret = false;
842 }
843
844 previous = curr;
845 }
846
847 return ret;
848 }
849
850 static bool validate_regs_sorted(struct intel_engine_cs *engine)
851 {
852 int i;
853 const struct drm_i915_reg_table *table;
854
855 for (i = 0; i < engine->reg_table_count; i++) {
856 table = &engine->reg_tables[i];
857 if (!check_sorted(engine, table->regs, table->num_regs))
858 return false;
859 }
860
861 return true;
862 }
863
864 struct cmd_node {
865 const struct drm_i915_cmd_descriptor *desc;
866 struct hlist_node node;
867 };
868
869 /*
870 * Different command ranges have different numbers of bits for the opcode. For
871 * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
872 * problem is that, for example, MI commands use bits 22:16 for other fields
873 * such as GGTT vs PPGTT bits. If we include those bits in the mask then when
874 * we mask a command from a batch it could hash to the wrong bucket due to
875 * non-opcode bits being set. But if we don't include those bits, some 3D
876 * commands may hash to the same bucket due to not including opcode bits that
877 * make the command unique. For now, we will risk hashing to the same bucket.
878 */
879 static inline u32 cmd_header_key(u32 x)
880 {
881 switch (x >> INSTR_CLIENT_SHIFT) {
882 default:
883 case INSTR_MI_CLIENT:
884 return x >> STD_MI_OPCODE_SHIFT;
885 case INSTR_RC_CLIENT:
886 return x >> STD_3D_OPCODE_SHIFT;
887 case INSTR_BC_CLIENT:
888 return x >> STD_2D_OPCODE_SHIFT;
889 }
890 }
891
892 static int init_hash_table(struct intel_engine_cs *engine,
893 const struct drm_i915_cmd_table *cmd_tables,
894 int cmd_table_count)
895 {
896 int i, j;
897
898 hash_init(engine->cmd_hash);
899
900 for (i = 0; i < cmd_table_count; i++) {
901 const struct drm_i915_cmd_table *table = &cmd_tables[i];
902
903 for (j = 0; j < table->count; j++) {
904 const struct drm_i915_cmd_descriptor *desc =
905 &table->table[j];
906 struct cmd_node *desc_node =
907 kmalloc(sizeof(*desc_node), GFP_KERNEL);
908
909 if (!desc_node)
910 return -ENOMEM;
911
912 desc_node->desc = desc;
913 hash_add(engine->cmd_hash, &desc_node->node,
914 cmd_header_key(desc->cmd.value));
915 }
916 }
917
918 return 0;
919 }
920
921 static void fini_hash_table(struct intel_engine_cs *engine)
922 {
923 struct hlist_node *tmp;
924 struct cmd_node *desc_node;
925 int i;
926
927 hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
928 hash_del(&desc_node->node);
929 kfree(desc_node);
930 }
931 }
932
933 /**
934 * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine
935 * @engine: the engine to initialize
936 *
937 * Optionally initializes fields related to batch buffer command parsing in the
938 * struct intel_engine_cs based on whether the platform requires software
939 * command parsing.
940 */
941 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
942 {
943 const struct drm_i915_cmd_table *cmd_tables;
944 int cmd_table_count;
945 int ret;
946
947 if (!IS_GEN(engine->i915, 7) && !(IS_GEN(engine->i915, 9) &&
948 engine->class == COPY_ENGINE_CLASS))
949 return;
950
951 switch (engine->class) {
952 case RENDER_CLASS:
953 if (IS_HASWELL(engine->i915)) {
954 cmd_tables = hsw_render_ring_cmd_table;
955 cmd_table_count =
956 ARRAY_SIZE(hsw_render_ring_cmd_table);
957 } else {
958 cmd_tables = gen7_render_cmd_table;
959 cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table);
960 }
961
962 if (IS_HASWELL(engine->i915)) {
963 engine->reg_tables = hsw_render_reg_tables;
964 engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
965 } else {
966 engine->reg_tables = ivb_render_reg_tables;
967 engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
968 }
969 engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
970 break;
971 case VIDEO_DECODE_CLASS:
972 cmd_tables = gen7_video_cmd_table;
973 cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table);
974 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
975 break;
976 case COPY_ENGINE_CLASS:
977 engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
978 if (IS_GEN(engine->i915, 9)) {
979 cmd_tables = gen9_blt_cmd_table;
980 cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table);
981 engine->get_cmd_length_mask =
982 gen9_blt_get_cmd_length_mask;
983
984 /* BCS Engine unsafe without parser */
985 engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER;
986 } else if (IS_HASWELL(engine->i915)) {
987 cmd_tables = hsw_blt_ring_cmd_table;
988 cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table);
989 } else {
990 cmd_tables = gen7_blt_cmd_table;
991 cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table);
992 }
993
994 if (IS_GEN(engine->i915, 9)) {
995 engine->reg_tables = gen9_blt_reg_tables;
996 engine->reg_table_count =
997 ARRAY_SIZE(gen9_blt_reg_tables);
998 } else if (IS_HASWELL(engine->i915)) {
999 engine->reg_tables = hsw_blt_reg_tables;
1000 engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
1001 } else {
1002 engine->reg_tables = ivb_blt_reg_tables;
1003 engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
1004 }
1005 break;
1006 case VIDEO_ENHANCEMENT_CLASS:
1007 cmd_tables = hsw_vebox_cmd_table;
1008 cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table);
1009 /* VECS can use the same length_mask function as VCS */
1010 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
1011 break;
1012 default:
1013 MISSING_CASE(engine->class);
1014 return;
1015 }
1016
1017 if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) {
1018 DRM_ERROR("%s: command descriptions are not sorted\n",
1019 engine->name);
1020 return;
1021 }
1022 if (!validate_regs_sorted(engine)) {
1023 DRM_ERROR("%s: registers are not sorted\n", engine->name);
1024 return;
1025 }
1026
1027 ret = init_hash_table(engine, cmd_tables, cmd_table_count);
1028 if (ret) {
1029 DRM_ERROR("%s: initialised failed!\n", engine->name);
1030 fini_hash_table(engine);
1031 return;
1032 }
1033
1034 engine->flags |= I915_ENGINE_USING_CMD_PARSER;
1035 }
1036
1037 /**
1038 * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields
1039 * @engine: the engine to clean up
1040 *
1041 * Releases any resources related to command parsing that may have been
1042 * initialized for the specified engine.
1043 */
1044 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine)
1045 {
1046 if (!intel_engine_using_cmd_parser(engine))
1047 return;
1048
1049 fini_hash_table(engine);
1050 }
1051
1052 static const struct drm_i915_cmd_descriptor*
1053 find_cmd_in_table(struct intel_engine_cs *engine,
1054 u32 cmd_header)
1055 {
1056 struct cmd_node *desc_node;
1057
1058 hash_for_each_possible(engine->cmd_hash, desc_node, node,
1059 cmd_header_key(cmd_header)) {
1060 const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
1061 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1062 return desc;
1063 }
1064
1065 return NULL;
1066 }
1067
1068 /*
1069 * Returns a pointer to a descriptor for the command specified by cmd_header.
1070 *
1071 * The caller must supply space for a default descriptor via the default_desc
1072 * parameter. If no descriptor for the specified command exists in the engine's
1073 * command parser tables, this function fills in default_desc based on the
1074 * engine's default length encoding and returns default_desc.
1075 */
1076 static const struct drm_i915_cmd_descriptor*
1077 find_cmd(struct intel_engine_cs *engine,
1078 u32 cmd_header,
1079 const struct drm_i915_cmd_descriptor *desc,
1080 struct drm_i915_cmd_descriptor *default_desc)
1081 {
1082 u32 mask;
1083
1084 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1085 return desc;
1086
1087 desc = find_cmd_in_table(engine, cmd_header);
1088 if (desc)
1089 return desc;
1090
1091 mask = engine->get_cmd_length_mask(cmd_header);
1092 if (!mask)
1093 return NULL;
1094
1095 default_desc->cmd.value = cmd_header;
1096 default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT;
1097 default_desc->length.mask = mask;
1098 default_desc->flags = CMD_DESC_SKIP;
1099 return default_desc;
1100 }
1101
1102 static const struct drm_i915_reg_descriptor *
1103 __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr)
1104 {
1105 int start = 0, end = count;
1106 while (start < end) {
1107 int mid = start + (end - start) / 2;
1108 int ret = addr - i915_mmio_reg_offset(table[mid].addr);
1109 if (ret < 0)
1110 end = mid;
1111 else if (ret > 0)
1112 start = mid + 1;
1113 else
1114 return &table[mid];
1115 }
1116 return NULL;
1117 }
1118
1119 static const struct drm_i915_reg_descriptor *
1120 find_reg(const struct intel_engine_cs *engine, u32 addr)
1121 {
1122 const struct drm_i915_reg_table *table = engine->reg_tables;
1123 const struct drm_i915_reg_descriptor *reg = NULL;
1124 int count = engine->reg_table_count;
1125
1126 for (; !reg && (count > 0); ++table, --count)
1127 reg = __find_reg(table->regs, table->num_regs, addr);
1128
1129 return reg;
1130 }
1131
1132 /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */
1133 static u32 *copy_batch(struct drm_i915_gem_object *dst_obj,
1134 struct drm_i915_gem_object *src_obj,
1135 u32 offset, u32 length)
1136 {
1137 bool needs_clflush;
1138 void *dst, *src;
1139 int ret;
1140
1141 dst = i915_gem_object_pin_map(dst_obj, I915_MAP_FORCE_WB);
1142 if (IS_ERR(dst))
1143 return dst;
1144
1145 ret = i915_gem_object_pin_pages(src_obj);
1146 if (ret) {
1147 i915_gem_object_unpin_map(dst_obj);
1148 return ERR_PTR(ret);
1149 }
1150
1151 needs_clflush =
1152 !(src_obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ);
1153
1154 src = ERR_PTR(-ENODEV);
1155 if (needs_clflush && i915_has_memcpy_from_wc()) {
1156 src = i915_gem_object_pin_map(src_obj, I915_MAP_WC);
1157 if (!IS_ERR(src)) {
1158 i915_unaligned_memcpy_from_wc(dst,
1159 (char *)src + offset,
1160 length);
1161 i915_gem_object_unpin_map(src_obj);
1162 }
1163 }
1164 if (IS_ERR(src)) {
1165 void *ptr;
1166 int x, n;
1167
1168 /*
1169 * We can avoid clflushing partial cachelines before the write
1170 * if we only every write full cache-lines. Since we know that
1171 * both the source and destination are in multiples of
1172 * PAGE_SIZE, we can simply round up to the next cacheline.
1173 * We don't care about copying too much here as we only
1174 * validate up to the end of the batch.
1175 */
1176 if (!(dst_obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) {
1177 #ifdef __NetBSD__
1178 length = round_up(length,
1179 cpu_info_primary.ci_cflush_lsize);
1180 #else
1181 length = round_up(length,
1182 boot_cpu_data.x86_clflush_size);
1183 #endif
1184 }
1185
1186 ptr = dst;
1187 x = offset_in_page(offset);
1188 for (n = offset >> PAGE_SHIFT; length; n++) {
1189 int len = min_t(int, length, PAGE_SIZE - x);
1190
1191 src = kmap_atomic(i915_gem_object_get_page(src_obj, n));
1192 if (needs_clflush)
1193 drm_clflush_virt_range((char *)src + x, len);
1194 memcpy(ptr, (char *)src + x, len);
1195 kunmap_atomic(src);
1196
1197 ptr = (char *)ptr + len;
1198 length -= len;
1199 x = 0;
1200 }
1201 }
1202
1203 i915_gem_object_unpin_pages(src_obj);
1204
1205 /* dst_obj is returned with vmap pinned */
1206 return dst;
1207 }
1208
1209 static bool check_cmd(const struct intel_engine_cs *engine,
1210 const struct drm_i915_cmd_descriptor *desc,
1211 const u32 *cmd, u32 length)
1212 {
1213 if (desc->flags & CMD_DESC_SKIP)
1214 return true;
1215
1216 if (desc->flags & CMD_DESC_REJECT) {
1217 DRM_DEBUG("CMD: Rejected command: 0x%08X\n", *cmd);
1218 return false;
1219 }
1220
1221 if (desc->flags & CMD_DESC_REGISTER) {
1222 /*
1223 * Get the distance between individual register offset
1224 * fields if the command can perform more than one
1225 * access at a time.
1226 */
1227 const u32 step = desc->reg.step ? desc->reg.step : length;
1228 u32 offset;
1229
1230 for (offset = desc->reg.offset; offset < length;
1231 offset += step) {
1232 const u32 reg_addr = cmd[offset] & desc->reg.mask;
1233 const struct drm_i915_reg_descriptor *reg =
1234 find_reg(engine, reg_addr);
1235
1236 if (!reg) {
1237 DRM_DEBUG("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n",
1238 reg_addr, *cmd, engine->name);
1239 return false;
1240 }
1241
1242 /*
1243 * Check the value written to the register against the
1244 * allowed mask/value pair given in the whitelist entry.
1245 */
1246 if (reg->mask) {
1247 if (desc->cmd.value == MI_LOAD_REGISTER_MEM) {
1248 DRM_DEBUG("CMD: Rejected LRM to masked register 0x%08X\n",
1249 reg_addr);
1250 return false;
1251 }
1252
1253 if (desc->cmd.value == MI_LOAD_REGISTER_REG) {
1254 DRM_DEBUG("CMD: Rejected LRR to masked register 0x%08X\n",
1255 reg_addr);
1256 return false;
1257 }
1258
1259 if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1) &&
1260 (offset + 2 > length ||
1261 (cmd[offset + 1] & reg->mask) != reg->value)) {
1262 DRM_DEBUG("CMD: Rejected LRI to masked register 0x%08X\n",
1263 reg_addr);
1264 return false;
1265 }
1266 }
1267 }
1268 }
1269
1270 if (desc->flags & CMD_DESC_BITMASK) {
1271 int i;
1272
1273 for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
1274 u32 dword;
1275
1276 if (desc->bits[i].mask == 0)
1277 break;
1278
1279 if (desc->bits[i].condition_mask != 0) {
1280 u32 offset =
1281 desc->bits[i].condition_offset;
1282 u32 condition = cmd[offset] &
1283 desc->bits[i].condition_mask;
1284
1285 if (condition == 0)
1286 continue;
1287 }
1288
1289 if (desc->bits[i].offset >= length) {
1290 DRM_DEBUG("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n",
1291 *cmd, engine->name);
1292 return false;
1293 }
1294
1295 dword = cmd[desc->bits[i].offset] &
1296 desc->bits[i].mask;
1297
1298 if (dword != desc->bits[i].expected) {
1299 DRM_DEBUG("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n",
1300 *cmd,
1301 desc->bits[i].mask,
1302 desc->bits[i].expected,
1303 dword, engine->name);
1304 return false;
1305 }
1306 }
1307 }
1308
1309 return true;
1310 }
1311
1312 static int check_bbstart(u32 *cmd, u32 offset, u32 length,
1313 u32 batch_length,
1314 u64 batch_addr,
1315 u64 shadow_addr,
1316 const unsigned long *jump_whitelist)
1317 {
1318 u64 jump_offset, jump_target;
1319 u32 target_cmd_offset, target_cmd_index;
1320
1321 /* For igt compatibility on older platforms */
1322 if (!jump_whitelist) {
1323 DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n");
1324 return -EACCES;
1325 }
1326
1327 if (length != 3) {
1328 DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n",
1329 length);
1330 return -EINVAL;
1331 }
1332
1333 jump_target = *(u64 *)(cmd + 1);
1334 jump_offset = jump_target - batch_addr;
1335
1336 /*
1337 * Any underflow of jump_target is guaranteed to be outside the range
1338 * of a u32, so >= test catches both too large and too small
1339 */
1340 if (jump_offset >= batch_length) {
1341 DRM_DEBUG("CMD: BB_START to 0x%"PRIx64" jumps out of BB\n",
1342 jump_target);
1343 return -EINVAL;
1344 }
1345
1346 /*
1347 * This cannot overflow a u32 because we already checked jump_offset
1348 * is within the BB, and the batch_length is a u32
1349 */
1350 target_cmd_offset = lower_32_bits(jump_offset);
1351 target_cmd_index = target_cmd_offset / sizeof(u32);
1352
1353 *(u64 *)(cmd + 1) = shadow_addr + target_cmd_offset;
1354
1355 if (target_cmd_index == offset)
1356 return 0;
1357
1358 if (IS_ERR(jump_whitelist))
1359 return PTR_ERR(jump_whitelist);
1360
1361 if (!test_bit(target_cmd_index, jump_whitelist)) {
1362 DRM_DEBUG("CMD: BB_START to 0x%"PRIx64" not a previously executed cmd\n",
1363 jump_target);
1364 return -EINVAL;
1365 }
1366
1367 return 0;
1368 }
1369
1370 static unsigned long *alloc_whitelist(u32 batch_length)
1371 {
1372 unsigned long *jmp;
1373
1374 /*
1375 * We expect batch_length to be less than 256KiB for known users,
1376 * i.e. we need at most an 8KiB bitmap allocation which should be
1377 * reasonably cheap due to kmalloc caches.
1378 */
1379
1380 /* Prefer to report transient allocation failure rather than hit oom */
1381 jmp = bitmap_zalloc(DIV_ROUND_UP(batch_length, sizeof(u32)),
1382 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
1383 if (!jmp)
1384 return ERR_PTR(-ENOMEM);
1385
1386 return jmp;
1387 }
1388
1389 #define LENGTH_BIAS 2
1390
1391 static bool shadow_needs_clflush(struct drm_i915_gem_object *obj)
1392 {
1393 return !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE);
1394 }
1395
1396 /**
1397 * intel_engine_cmd_parser() - parse a batch buffer for privilege violations
1398 * @engine: the engine on which the batch is to execute
1399 * @batch: the batch buffer in question
1400 * @batch_offset: byte offset in the batch at which execution starts
1401 * @batch_length: length of the commands in batch_obj
1402 * @shadow: validated copy of the batch buffer in question
1403 * @trampoline: whether to emit a conditional trampoline at the end of the batch
1404 *
1405 * Parses the specified batch buffer looking for privilege violations as
1406 * described in the overview.
1407 *
1408 * Return: non-zero if the parser finds violations or otherwise fails; -EACCES
1409 * if the batch appears legal but should use hardware parsing
1410 */
1411 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
1412 struct i915_vma *batch,
1413 u32 batch_offset,
1414 u32 batch_length,
1415 struct i915_vma *shadow,
1416 bool trampoline)
1417 {
1418 u32 *cmd, *batch_end, offset = 0;
1419 struct drm_i915_cmd_descriptor default_desc = noop_desc;
1420 const struct drm_i915_cmd_descriptor *desc = &default_desc;
1421 unsigned long *jump_whitelist;
1422 u64 batch_addr, shadow_addr;
1423 int ret = 0;
1424
1425 GEM_BUG_ON(!IS_ALIGNED(batch_offset, sizeof(*cmd)));
1426 GEM_BUG_ON(!IS_ALIGNED(batch_length, sizeof(*cmd)));
1427 GEM_BUG_ON(range_overflows_t(u64, batch_offset, batch_length,
1428 batch->size));
1429 GEM_BUG_ON(!batch_length);
1430
1431 cmd = copy_batch(shadow->obj, batch->obj, batch_offset, batch_length);
1432 if (IS_ERR(cmd)) {
1433 DRM_DEBUG("CMD: Failed to copy batch\n");
1434 return PTR_ERR(cmd);
1435 }
1436
1437 jump_whitelist = NULL;
1438 if (!trampoline)
1439 /* Defer failure until attempted use */
1440 jump_whitelist = alloc_whitelist(batch_length);
1441
1442 shadow_addr = gen8_canonical_addr(shadow->node.start);
1443 batch_addr = gen8_canonical_addr(batch->node.start + batch_offset);
1444
1445 /*
1446 * We use the batch length as size because the shadow object is as
1447 * large or larger and copy_batch() will write MI_NOPs to the extra
1448 * space. Parsing should be faster in some cases this way.
1449 */
1450 batch_end = cmd + batch_length / sizeof(*batch_end);
1451 do {
1452 u32 length;
1453
1454 if (*cmd == MI_BATCH_BUFFER_END)
1455 break;
1456
1457 desc = find_cmd(engine, *cmd, desc, &default_desc);
1458 if (!desc) {
1459 DRM_DEBUG("CMD: Unrecognized command: 0x%08X\n", *cmd);
1460 ret = -EINVAL;
1461 break;
1462 }
1463
1464 if (desc->flags & CMD_DESC_FIXED)
1465 length = desc->length.fixed;
1466 else
1467 length = (*cmd & desc->length.mask) + LENGTH_BIAS;
1468
1469 if ((batch_end - cmd) < length) {
1470 DRM_DEBUG("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
1471 *cmd,
1472 length,
1473 batch_end - cmd);
1474 ret = -EINVAL;
1475 break;
1476 }
1477
1478 if (!check_cmd(engine, desc, cmd, length)) {
1479 ret = -EACCES;
1480 break;
1481 }
1482
1483 if (desc->cmd.value == MI_BATCH_BUFFER_START) {
1484 ret = check_bbstart(cmd, offset, length, batch_length,
1485 batch_addr, shadow_addr,
1486 jump_whitelist);
1487 break;
1488 }
1489
1490 if (!IS_ERR_OR_NULL(jump_whitelist))
1491 __set_bit(offset, jump_whitelist);
1492
1493 cmd += length;
1494 offset += length;
1495 if (cmd >= batch_end) {
1496 DRM_DEBUG("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
1497 ret = -EINVAL;
1498 break;
1499 }
1500 } while (1);
1501
1502 if (trampoline) {
1503 /*
1504 * With the trampoline, the shadow is executed twice.
1505 *
1506 * 1 - starting at offset 0, in privileged mode
1507 * 2 - starting at offset batch_len, as non-privileged
1508 *
1509 * Only if the batch is valid and safe to execute, do we
1510 * allow the first privileged execution to proceed. If not,
1511 * we terminate the first batch and use the second batchbuffer
1512 * entry to chain to the original unsafe non-privileged batch,
1513 * leaving it to the HW to validate.
1514 */
1515 *batch_end = MI_BATCH_BUFFER_END;
1516
1517 if (ret) {
1518 /* Batch unsafe to execute with privileges, cancel! */
1519 cmd = page_mask_bits(shadow->obj->mm.mapping);
1520 *cmd = MI_BATCH_BUFFER_END;
1521
1522 /* If batch is unsafe but valid, jump to the original */
1523 if (ret == -EACCES) {
1524 unsigned int flags;
1525
1526 flags = MI_BATCH_NON_SECURE_I965;
1527 if (IS_HASWELL(engine->i915))
1528 flags = MI_BATCH_NON_SECURE_HSW;
1529
1530 GEM_BUG_ON(!IS_GEN_RANGE(engine->i915, 6, 7));
1531 __gen6_emit_bb_start(batch_end,
1532 batch_addr,
1533 flags);
1534
1535 ret = 0; /* allow execution */
1536 }
1537 }
1538
1539 if (shadow_needs_clflush(shadow->obj))
1540 drm_clflush_virt_range(batch_end, 8);
1541 }
1542
1543 if (shadow_needs_clflush(shadow->obj)) {
1544 void *ptr = page_mask_bits(shadow->obj->mm.mapping);
1545
1546 drm_clflush_virt_range(ptr, (void *)(cmd + 1) - ptr);
1547 }
1548
1549 if (!IS_ERR_OR_NULL(jump_whitelist))
1550 kfree(jump_whitelist);
1551 i915_gem_object_unpin_map(shadow->obj);
1552 return ret;
1553 }
1554
1555 /**
1556 * i915_cmd_parser_get_version() - get the cmd parser version number
1557 * @dev_priv: i915 device private
1558 *
1559 * The cmd parser maintains a simple increasing integer version number suitable
1560 * for passing to userspace clients to determine what operations are permitted.
1561 *
1562 * Return: the current version number of the cmd parser
1563 */
1564 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
1565 {
1566 struct intel_engine_cs *engine;
1567 bool active = false;
1568
1569 /* If the command parser is not enabled, report 0 - unsupported */
1570 for_each_uabi_engine(engine, dev_priv) {
1571 if (intel_engine_using_cmd_parser(engine)) {
1572 active = true;
1573 break;
1574 }
1575 }
1576 if (!active)
1577 return 0;
1578
1579 /*
1580 * Command parser version history
1581 *
1582 * 1. Initial version. Checks batches and reports violations, but leaves
1583 * hardware parsing enabled (so does not allow new use cases).
1584 * 2. Allow access to the MI_PREDICATE_SRC0 and
1585 * MI_PREDICATE_SRC1 registers.
1586 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
1587 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
1588 * 5. GPGPU dispatch compute indirect registers.
1589 * 6. TIMESTAMP register and Haswell CS GPR registers
1590 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers.
1591 * 8. Don't report cmd_check() failures as EINVAL errors to userspace;
1592 * rely on the HW to NOOP disallowed commands as it would without
1593 * the parser enabled.
1594 * 9. Don't whitelist or handle oacontrol specially, as ownership
1595 * for oacontrol state is moving to i915-perf.
1596 * 10. Support for Gen9 BCS Parsing
1597 */
1598 return 10;
1599 }
1600