i915_drv.c revision 1.16.4.1 1 /* $NetBSD: i915_drv.c,v 1.16.4.1 2019/12/12 21:00:32 martin Exp $ */
2
3 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
4 */
5 /*
6 *
7 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
8 * All Rights Reserved.
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a
11 * copy of this software and associated documentation files (the
12 * "Software"), to deal in the Software without restriction, including
13 * without limitation the rights to use, copy, modify, merge, publish,
14 * distribute, sub license, and/or sell copies of the Software, and to
15 * permit persons to whom the Software is furnished to do so, subject to
16 * the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
23 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
25 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
26 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
27 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
28 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29 *
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: i915_drv.c,v 1.16.4.1 2019/12/12 21:00:32 martin Exp $");
34
35 #include <linux/device.h>
36 #include <linux/acpi.h>
37 #include <linux/moduleparam.h>
38 #include <linux/time.h>
39 #include <drm/drmP.h>
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 #include "i915_trace.h"
43 #include "intel_drv.h"
44
45 #include <linux/console.h>
46 #include <linux/module.h>
47 #include <linux/pm_runtime.h>
48 #include <drm/drm_crtc_helper.h>
49
50 static struct drm_driver driver;
51
52 #ifdef __NetBSD__
53 /* XXX Kludge to expose this to NetBSD driver attachment goop. */
54 struct drm_driver *const i915_drm_driver = &driver;
55 #endif
56
57 #define GEN_DEFAULT_PIPEOFFSETS \
58 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
59 PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \
60 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
61 TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \
62 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET }
63
64 #define GEN_CHV_PIPEOFFSETS \
65 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
66 CHV_PIPE_C_OFFSET }, \
67 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
68 CHV_TRANSCODER_C_OFFSET, }, \
69 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \
70 CHV_PALETTE_C_OFFSET }
71
72 #define CURSOR_OFFSETS \
73 .cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET }
74
75 #define IVB_CURSOR_OFFSETS \
76 .cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET }
77
78 static const struct intel_device_info intel_i830_info = {
79 .gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2,
80 .has_overlay = 1, .overlay_needs_physical = 1,
81 .ring_mask = RENDER_RING,
82 GEN_DEFAULT_PIPEOFFSETS,
83 CURSOR_OFFSETS,
84 };
85
86 static const struct intel_device_info intel_845g_info = {
87 .gen = 2, .num_pipes = 1,
88 .has_overlay = 1, .overlay_needs_physical = 1,
89 .ring_mask = RENDER_RING,
90 GEN_DEFAULT_PIPEOFFSETS,
91 CURSOR_OFFSETS,
92 };
93
94 static const struct intel_device_info intel_i85x_info = {
95 .gen = 2, .is_i85x = 1, .is_mobile = 1, .num_pipes = 2,
96 .cursor_needs_physical = 1,
97 .has_overlay = 1, .overlay_needs_physical = 1,
98 .has_fbc = 1,
99 .ring_mask = RENDER_RING,
100 GEN_DEFAULT_PIPEOFFSETS,
101 CURSOR_OFFSETS,
102 };
103
104 static const struct intel_device_info intel_i865g_info = {
105 .gen = 2, .num_pipes = 1,
106 .has_overlay = 1, .overlay_needs_physical = 1,
107 .ring_mask = RENDER_RING,
108 GEN_DEFAULT_PIPEOFFSETS,
109 CURSOR_OFFSETS,
110 };
111
112 static const struct intel_device_info intel_i915g_info = {
113 .gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2,
114 .has_overlay = 1, .overlay_needs_physical = 1,
115 .ring_mask = RENDER_RING,
116 GEN_DEFAULT_PIPEOFFSETS,
117 CURSOR_OFFSETS,
118 };
119 static const struct intel_device_info intel_i915gm_info = {
120 .gen = 3, .is_mobile = 1, .num_pipes = 2,
121 .cursor_needs_physical = 1,
122 .has_overlay = 1, .overlay_needs_physical = 1,
123 .supports_tv = 1,
124 .has_fbc = 1,
125 .ring_mask = RENDER_RING,
126 GEN_DEFAULT_PIPEOFFSETS,
127 CURSOR_OFFSETS,
128 };
129 static const struct intel_device_info intel_i945g_info = {
130 .gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2,
131 .has_overlay = 1, .overlay_needs_physical = 1,
132 .ring_mask = RENDER_RING,
133 GEN_DEFAULT_PIPEOFFSETS,
134 CURSOR_OFFSETS,
135 };
136 static const struct intel_device_info intel_i945gm_info = {
137 .gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2,
138 .has_hotplug = 1, .cursor_needs_physical = 1,
139 .has_overlay = 1, .overlay_needs_physical = 1,
140 .supports_tv = 1,
141 .has_fbc = 1,
142 .ring_mask = RENDER_RING,
143 GEN_DEFAULT_PIPEOFFSETS,
144 CURSOR_OFFSETS,
145 };
146
147 static const struct intel_device_info intel_i965g_info = {
148 .gen = 4, .is_broadwater = 1, .num_pipes = 2,
149 .has_hotplug = 1,
150 .has_overlay = 1,
151 .ring_mask = RENDER_RING,
152 GEN_DEFAULT_PIPEOFFSETS,
153 CURSOR_OFFSETS,
154 };
155
156 static const struct intel_device_info intel_i965gm_info = {
157 .gen = 4, .is_crestline = 1, .num_pipes = 2,
158 .is_mobile = 1, .has_fbc = 1, .has_hotplug = 1,
159 .has_overlay = 1,
160 .supports_tv = 1,
161 .ring_mask = RENDER_RING,
162 GEN_DEFAULT_PIPEOFFSETS,
163 CURSOR_OFFSETS,
164 };
165
166 static const struct intel_device_info intel_g33_info = {
167 .gen = 3, .is_g33 = 1, .num_pipes = 2,
168 .need_gfx_hws = 1, .has_hotplug = 1,
169 .has_overlay = 1,
170 .ring_mask = RENDER_RING,
171 GEN_DEFAULT_PIPEOFFSETS,
172 CURSOR_OFFSETS,
173 };
174
175 static const struct intel_device_info intel_g45_info = {
176 .gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2,
177 .has_pipe_cxsr = 1, .has_hotplug = 1,
178 .ring_mask = RENDER_RING | BSD_RING,
179 GEN_DEFAULT_PIPEOFFSETS,
180 CURSOR_OFFSETS,
181 };
182
183 static const struct intel_device_info intel_gm45_info = {
184 .gen = 4, .is_g4x = 1, .num_pipes = 2,
185 .is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1,
186 .has_pipe_cxsr = 1, .has_hotplug = 1,
187 .supports_tv = 1,
188 .ring_mask = RENDER_RING | BSD_RING,
189 GEN_DEFAULT_PIPEOFFSETS,
190 CURSOR_OFFSETS,
191 };
192
193 static const struct intel_device_info intel_pineview_info = {
194 .gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2,
195 .need_gfx_hws = 1, .has_hotplug = 1,
196 .has_overlay = 1,
197 GEN_DEFAULT_PIPEOFFSETS,
198 CURSOR_OFFSETS,
199 };
200
201 static const struct intel_device_info intel_ironlake_d_info = {
202 .gen = 5, .num_pipes = 2,
203 .need_gfx_hws = 1, .has_hotplug = 1,
204 .ring_mask = RENDER_RING | BSD_RING,
205 GEN_DEFAULT_PIPEOFFSETS,
206 CURSOR_OFFSETS,
207 };
208
209 static const struct intel_device_info intel_ironlake_m_info = {
210 .gen = 5, .is_mobile = 1, .num_pipes = 2,
211 .need_gfx_hws = 1, .has_hotplug = 1,
212 .has_fbc = 1,
213 .ring_mask = RENDER_RING | BSD_RING,
214 GEN_DEFAULT_PIPEOFFSETS,
215 CURSOR_OFFSETS,
216 };
217
218 static const struct intel_device_info intel_sandybridge_d_info = {
219 .gen = 6, .num_pipes = 2,
220 .need_gfx_hws = 1, .has_hotplug = 1,
221 .has_fbc = 1,
222 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
223 .has_llc = 1,
224 GEN_DEFAULT_PIPEOFFSETS,
225 CURSOR_OFFSETS,
226 };
227
228 static const struct intel_device_info intel_sandybridge_m_info = {
229 .gen = 6, .is_mobile = 1, .num_pipes = 2,
230 .need_gfx_hws = 1, .has_hotplug = 1,
231 .has_fbc = 1,
232 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
233 .has_llc = 1,
234 GEN_DEFAULT_PIPEOFFSETS,
235 CURSOR_OFFSETS,
236 };
237
238 #define GEN7_FEATURES \
239 .gen = 7, .num_pipes = 3, \
240 .need_gfx_hws = 1, .has_hotplug = 1, \
241 .has_fbc = 1, \
242 .ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
243 .has_llc = 1
244
245 static const struct intel_device_info intel_ivybridge_d_info = {
246 GEN7_FEATURES,
247 .is_ivybridge = 1,
248 GEN_DEFAULT_PIPEOFFSETS,
249 IVB_CURSOR_OFFSETS,
250 };
251
252 static const struct intel_device_info intel_ivybridge_m_info = {
253 GEN7_FEATURES,
254 .is_ivybridge = 1,
255 .is_mobile = 1,
256 GEN_DEFAULT_PIPEOFFSETS,
257 IVB_CURSOR_OFFSETS,
258 };
259
260 static const struct intel_device_info intel_ivybridge_q_info = {
261 GEN7_FEATURES,
262 .is_ivybridge = 1,
263 .num_pipes = 0, /* legal, last one wins */
264 GEN_DEFAULT_PIPEOFFSETS,
265 IVB_CURSOR_OFFSETS,
266 };
267
268 static const struct intel_device_info intel_valleyview_m_info = {
269 GEN7_FEATURES,
270 .is_mobile = 1,
271 .num_pipes = 2,
272 .is_valleyview = 1,
273 .display_mmio_offset = VLV_DISPLAY_BASE,
274 .has_fbc = 0, /* legal, last one wins */
275 .has_llc = 0, /* legal, last one wins */
276 GEN_DEFAULT_PIPEOFFSETS,
277 CURSOR_OFFSETS,
278 };
279
280 static const struct intel_device_info intel_valleyview_d_info = {
281 GEN7_FEATURES,
282 .num_pipes = 2,
283 .is_valleyview = 1,
284 .display_mmio_offset = VLV_DISPLAY_BASE,
285 .has_fbc = 0, /* legal, last one wins */
286 .has_llc = 0, /* legal, last one wins */
287 GEN_DEFAULT_PIPEOFFSETS,
288 CURSOR_OFFSETS,
289 };
290
291 static const struct intel_device_info intel_haswell_d_info = {
292 GEN7_FEATURES,
293 .is_haswell = 1,
294 .has_ddi = 1,
295 .has_fpga_dbg = 1,
296 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
297 GEN_DEFAULT_PIPEOFFSETS,
298 IVB_CURSOR_OFFSETS,
299 };
300
301 static const struct intel_device_info intel_haswell_m_info = {
302 GEN7_FEATURES,
303 .is_haswell = 1,
304 .is_mobile = 1,
305 .has_ddi = 1,
306 .has_fpga_dbg = 1,
307 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
308 GEN_DEFAULT_PIPEOFFSETS,
309 IVB_CURSOR_OFFSETS,
310 };
311
312 static const struct intel_device_info intel_broadwell_d_info = {
313 .gen = 8, .num_pipes = 3,
314 .need_gfx_hws = 1, .has_hotplug = 1,
315 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
316 .has_llc = 1,
317 .has_ddi = 1,
318 .has_fpga_dbg = 1,
319 .has_fbc = 1,
320 GEN_DEFAULT_PIPEOFFSETS,
321 IVB_CURSOR_OFFSETS,
322 };
323
324 static const struct intel_device_info intel_broadwell_m_info = {
325 .gen = 8, .is_mobile = 1, .num_pipes = 3,
326 .need_gfx_hws = 1, .has_hotplug = 1,
327 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
328 .has_llc = 1,
329 .has_ddi = 1,
330 .has_fpga_dbg = 1,
331 .has_fbc = 1,
332 GEN_DEFAULT_PIPEOFFSETS,
333 IVB_CURSOR_OFFSETS,
334 };
335
336 static const struct intel_device_info intel_broadwell_gt3d_info = {
337 .gen = 8, .num_pipes = 3,
338 .need_gfx_hws = 1, .has_hotplug = 1,
339 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
340 .has_llc = 1,
341 .has_ddi = 1,
342 .has_fpga_dbg = 1,
343 .has_fbc = 1,
344 GEN_DEFAULT_PIPEOFFSETS,
345 IVB_CURSOR_OFFSETS,
346 };
347
348 static const struct intel_device_info intel_broadwell_gt3m_info = {
349 .gen = 8, .is_mobile = 1, .num_pipes = 3,
350 .need_gfx_hws = 1, .has_hotplug = 1,
351 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
352 .has_llc = 1,
353 .has_ddi = 1,
354 .has_fpga_dbg = 1,
355 .has_fbc = 1,
356 GEN_DEFAULT_PIPEOFFSETS,
357 IVB_CURSOR_OFFSETS,
358 };
359
360 static const struct intel_device_info intel_cherryview_info = {
361 .gen = 8, .num_pipes = 3,
362 .need_gfx_hws = 1, .has_hotplug = 1,
363 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
364 .is_valleyview = 1,
365 .display_mmio_offset = VLV_DISPLAY_BASE,
366 GEN_CHV_PIPEOFFSETS,
367 CURSOR_OFFSETS,
368 };
369
370 static const struct intel_device_info intel_skylake_info = {
371 .is_skylake = 1,
372 .gen = 9, .num_pipes = 3,
373 .need_gfx_hws = 1, .has_hotplug = 1,
374 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
375 .has_llc = 1,
376 .has_ddi = 1,
377 .has_fpga_dbg = 1,
378 .has_fbc = 1,
379 GEN_DEFAULT_PIPEOFFSETS,
380 IVB_CURSOR_OFFSETS,
381 };
382
383 static const struct intel_device_info intel_skylake_gt3_info = {
384 .is_skylake = 1,
385 .gen = 9, .num_pipes = 3,
386 .need_gfx_hws = 1, .has_hotplug = 1,
387 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
388 .has_llc = 1,
389 .has_ddi = 1,
390 .has_fpga_dbg = 1,
391 .has_fbc = 1,
392 GEN_DEFAULT_PIPEOFFSETS,
393 IVB_CURSOR_OFFSETS,
394 };
395
396 static const struct intel_device_info intel_broxton_info = {
397 .is_preliminary = 1,
398 .gen = 9,
399 .need_gfx_hws = 1, .has_hotplug = 1,
400 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
401 .num_pipes = 3,
402 .has_ddi = 1,
403 .has_fpga_dbg = 1,
404 .has_fbc = 1,
405 GEN_DEFAULT_PIPEOFFSETS,
406 IVB_CURSOR_OFFSETS,
407 };
408
409 static const struct intel_device_info intel_kabylake_info = {
410 .is_kabylake = 1,
411 .gen = 9,
412 .num_pipes = 3,
413 .need_gfx_hws = 1, .has_hotplug = 1,
414 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
415 .has_llc = 1,
416 .has_ddi = 1,
417 .has_fpga_dbg = 1,
418 .has_fbc = 1,
419 GEN_DEFAULT_PIPEOFFSETS,
420 IVB_CURSOR_OFFSETS,
421 };
422
423 static const struct intel_device_info intel_kabylake_gt3_info = {
424 .is_kabylake = 1,
425 .gen = 9,
426 .num_pipes = 3,
427 .need_gfx_hws = 1, .has_hotplug = 1,
428 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
429 .has_llc = 1,
430 .has_ddi = 1,
431 .has_fpga_dbg = 1,
432 .has_fbc = 1,
433 GEN_DEFAULT_PIPEOFFSETS,
434 IVB_CURSOR_OFFSETS,
435 };
436
437 /*
438 * Make sure any device matches here are from most specific to most
439 * general. For example, since the Quanta match is based on the subsystem
440 * and subvendor IDs, we need it to come before the more general IVB
441 * PCI ID matches, otherwise we'll use the wrong info struct above.
442 */
443 #define INTEL_PCI_IDS \
444 INTEL_I830_IDS(&intel_i830_info), \
445 INTEL_I845G_IDS(&intel_845g_info), \
446 INTEL_I85X_IDS(&intel_i85x_info), \
447 INTEL_I865G_IDS(&intel_i865g_info), \
448 INTEL_I915G_IDS(&intel_i915g_info), \
449 INTEL_I915GM_IDS(&intel_i915gm_info), \
450 INTEL_I945G_IDS(&intel_i945g_info), \
451 INTEL_I945GM_IDS(&intel_i945gm_info), \
452 INTEL_I965G_IDS(&intel_i965g_info), \
453 INTEL_G33_IDS(&intel_g33_info), \
454 INTEL_I965GM_IDS(&intel_i965gm_info), \
455 INTEL_GM45_IDS(&intel_gm45_info), \
456 INTEL_G45_IDS(&intel_g45_info), \
457 INTEL_PINEVIEW_IDS(&intel_pineview_info), \
458 INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info), \
459 INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info), \
460 INTEL_SNB_D_IDS(&intel_sandybridge_d_info), \
461 INTEL_SNB_M_IDS(&intel_sandybridge_m_info), \
462 INTEL_IVB_Q_IDS(&intel_ivybridge_q_info), /* must be first IVB */ \
463 INTEL_IVB_M_IDS(&intel_ivybridge_m_info), \
464 INTEL_IVB_D_IDS(&intel_ivybridge_d_info), \
465 INTEL_HSW_D_IDS(&intel_haswell_d_info), \
466 INTEL_HSW_M_IDS(&intel_haswell_m_info), \
467 INTEL_VLV_M_IDS(&intel_valleyview_m_info), \
468 INTEL_VLV_D_IDS(&intel_valleyview_d_info), \
469 INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info), \
470 INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info), \
471 INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info), \
472 INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info), \
473 INTEL_CHV_IDS(&intel_cherryview_info), \
474 INTEL_SKL_GT1_IDS(&intel_skylake_info), \
475 INTEL_SKL_GT2_IDS(&intel_skylake_info), \
476 INTEL_SKL_GT3_IDS(&intel_skylake_gt3_info), \
477 INTEL_SKL_GT4_IDS(&intel_skylake_gt3_info), \
478 INTEL_BXT_IDS(&intel_broxton_info), \
479 INTEL_KBL_GT1_IDS(&intel_kabylake_info), \
480 INTEL_KBL_GT2_IDS(&intel_kabylake_info), \
481 INTEL_KBL_GT3_IDS(&intel_kabylake_gt3_info), \
482 INTEL_KBL_GT4_IDS(&intel_kabylake_gt3_info)
483
484
485 static const struct pci_device_id pciidlist[] = { /* aka */
486 INTEL_PCI_IDS,
487 {0, 0, 0, 0, 0, 0, 0}
488 };
489
490 MODULE_DEVICE_TABLE(pci, pciidlist);
491
492 static enum intel_pch intel_virt_detect_pch(struct drm_device *dev)
493 {
494 enum intel_pch ret = PCH_NOP;
495
496 /*
497 * In a virtualized passthrough environment we can be in a
498 * setup where the ISA bridge is not able to be passed through.
499 * In this case, a south bridge can be emulated and we have to
500 * make an educated guess as to which PCH is really there.
501 */
502
503 if (IS_GEN5(dev)) {
504 ret = PCH_IBX;
505 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
506 } else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
507 ret = PCH_CPT;
508 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
509 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
510 ret = PCH_LPT;
511 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
512 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
513 ret = PCH_SPT;
514 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
515 }
516
517 return ret;
518 }
519
520 #ifdef __NetBSD__
521 /* XXX Kludge to expose this to NetBSD driver attachment goop. */
522 const struct pci_device_id *const i915_device_ids = pciidlist;
523 const size_t i915_n_device_ids = __arraycount(pciidlist);
524 #endif
525
526 void intel_detect_pch(struct drm_device *dev)
527 {
528 struct drm_i915_private *dev_priv = dev->dev_private;
529 struct pci_dev *pch = NULL;
530
531 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
532 * (which really amounts to a PCH but no South Display).
533 */
534 if (INTEL_INFO(dev)->num_pipes == 0) {
535 dev_priv->pch_type = PCH_NOP;
536 return;
537 }
538
539 /*
540 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
541 * make graphics device passthrough work easy for VMM, that only
542 * need to expose ISA bridge to let driver know the real hardware
543 * underneath. This is a requirement from virtualization team.
544 *
545 * In some virtualized environments (e.g. XEN), there is irrelevant
546 * ISA bridge in the system. To work reliably, we should scan trhough
547 * all the ISA bridge devices and check for the first match, instead
548 * of only checking the first one.
549 */
550 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
551 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
552 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
553 dev_priv->pch_id = id;
554
555 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
556 dev_priv->pch_type = PCH_IBX;
557 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
558 WARN_ON(!IS_GEN5(dev));
559 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
560 dev_priv->pch_type = PCH_CPT;
561 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
562 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
563 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
564 /* PantherPoint is CPT compatible */
565 dev_priv->pch_type = PCH_CPT;
566 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
567 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
568 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
569 dev_priv->pch_type = PCH_LPT;
570 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
571 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
572 WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
573 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
574 dev_priv->pch_type = PCH_LPT;
575 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
576 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
577 WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
578 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
579 dev_priv->pch_type = PCH_SPT;
580 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
581 WARN_ON(!IS_SKYLAKE(dev) &&
582 !IS_KABYLAKE(dev));
583 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
584 dev_priv->pch_type = PCH_SPT;
585 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
586 WARN_ON(!IS_SKYLAKE(dev) &&
587 !IS_KABYLAKE(dev));
588 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
589 dev_priv->pch_type = PCH_KBP;
590 DRM_DEBUG_KMS("Found KabyPoint PCH\n");
591 WARN_ON(!IS_KABYLAKE(dev_priv));
592 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
593 ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
594 pch->subsystem_vendor == 0x1af4 &&
595 pch->subsystem_device == 0x1100)) {
596 dev_priv->pch_type = intel_virt_detect_pch(dev);
597 } else
598 continue;
599
600 break;
601 }
602 }
603 if (!pch)
604 DRM_DEBUG_KMS("No PCH found.\n");
605
606 pci_dev_put(pch);
607 }
608
609 bool i915_semaphore_is_enabled(struct drm_device *dev)
610 {
611 if (INTEL_INFO(dev)->gen < 6)
612 return false;
613
614 if (i915.semaphores >= 0)
615 return i915.semaphores;
616
617 /* TODO: make semaphores and Execlists play nicely together */
618 if (i915.enable_execlists)
619 return false;
620
621 /* Until we get further testing... */
622 if (IS_GEN8(dev))
623 return false;
624
625 #ifdef CONFIG_INTEL_IOMMU
626 /* Enable semaphores on SNB when IO remapping is off */
627 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
628 return false;
629 #endif
630
631 return true;
632 }
633
634 void i915_firmware_load_error_print(const char *fw_path, int err)
635 {
636 DRM_ERROR("failed to load firmware %s (%d)\n", fw_path, err);
637
638 /*
639 * If the reason is not known assume -ENOENT since that's the most
640 * usual failure mode.
641 */
642 if (!err)
643 err = -ENOENT;
644
645 if (!(IS_BUILTIN(CONFIG_DRM_I915) && err == -ENOENT))
646 return;
647
648 DRM_ERROR(
649 "The driver is built-in, so to load the firmware you need to\n"
650 "include it either in the kernel (see CONFIG_EXTRA_FIRMWARE) or\n"
651 "in your initrd/initramfs image.\n");
652 }
653
654 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
655 {
656 struct drm_device *dev = dev_priv->dev;
657 struct drm_encoder *encoder;
658
659 drm_modeset_lock_all(dev);
660 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
661 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
662
663 if (intel_encoder->suspend)
664 intel_encoder->suspend(intel_encoder);
665 }
666 drm_modeset_unlock_all(dev);
667 }
668
669 static int intel_suspend_complete(struct drm_i915_private *dev_priv);
670 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
671 bool rpm_resume);
672 static int skl_resume_prepare(struct drm_i915_private *dev_priv);
673 static int bxt_resume_prepare(struct drm_i915_private *dev_priv);
674
675
676 int i915_drm_suspend(struct drm_device *dev)
677 {
678 struct drm_i915_private *dev_priv = dev->dev_private;
679 pci_power_t opregion_target_state;
680 int error;
681
682 /* ignore lid events during suspend */
683 mutex_lock(&dev_priv->modeset_restore_lock);
684 dev_priv->modeset_restore = MODESET_SUSPENDED;
685 mutex_unlock(&dev_priv->modeset_restore_lock);
686
687 /* We do a lot of poking in a lot of registers, make sure they work
688 * properly. */
689 intel_display_set_init_power(dev_priv, true);
690
691 drm_kms_helper_poll_disable(dev);
692
693 #ifndef __NetBSD__ /* pmf handles this for us. */
694 pci_save_state(dev->pdev);
695 #endif
696
697 error = i915_gem_suspend(dev);
698 if (error) {
699 #ifdef __NetBSD__
700 dev_err(pci_dev_dev(dev->pdev),
701 "GEM idle failed, resume might fail\n");
702 #else
703 dev_err(&dev->pdev->dev,
704 "GEM idle failed, resume might fail\n");
705 #endif
706 return error;
707 }
708
709 intel_guc_suspend(dev);
710
711 intel_suspend_gt_powersave(dev);
712
713 /*
714 * Disable CRTCs directly since we want to preserve sw state
715 * for _thaw. Also, power gate the CRTC power wells.
716 */
717 drm_modeset_lock_all(dev);
718 intel_display_suspend(dev);
719 drm_modeset_unlock_all(dev);
720
721 intel_dp_mst_suspend(dev);
722
723 intel_runtime_pm_disable_interrupts(dev_priv);
724 intel_hpd_cancel_work(dev_priv);
725
726 intel_suspend_encoders(dev_priv);
727
728 intel_suspend_hw(dev);
729
730 i915_gem_suspend_gtt_mappings(dev);
731
732 i915_save_state(dev);
733
734 opregion_target_state = PCI_D3cold;
735 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
736 if (acpi_target_system_state() < ACPI_STATE_S3)
737 opregion_target_state = PCI_D1;
738 #endif
739 intel_opregion_notify_adapter(dev, opregion_target_state);
740
741 intel_uncore_forcewake_reset(dev, false);
742 intel_opregion_fini(dev);
743
744 #ifndef __NetBSD__ /* XXX fb */
745 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
746 #endif
747
748 dev_priv->suspend_count++;
749
750 intel_display_set_init_power(dev_priv, false);
751
752 return 0;
753 }
754
755 int i915_drm_suspend_late(struct drm_device *drm_dev, bool hibernation)
756 {
757 struct drm_i915_private *dev_priv = drm_dev->dev_private;
758 int ret;
759
760 ret = intel_suspend_complete(dev_priv);
761
762 if (ret) {
763 DRM_ERROR("Suspend complete failed: %d\n", ret);
764
765 return ret;
766 }
767
768 i915_rc6_ctx_wa_suspend(dev_priv);
769
770 #ifndef __NetBSD__ /* pmf handles this for us. */
771 pci_disable_device(drm_dev->pdev);
772 /*
773 * During hibernation on some platforms the BIOS may try to access
774 * the device even though it's already in D3 and hang the machine. So
775 * leave the device in D0 on those platforms and hope the BIOS will
776 * power down the device properly. The issue was seen on multiple old
777 * GENs with different BIOS vendors, so having an explicit blacklist
778 * is inpractical; apply the workaround on everything pre GEN6. The
779 * platforms where the issue was seen:
780 * Lenovo Thinkpad X301, X61s, X60, T60, X41
781 * Fujitsu FSC S7110
782 * Acer Aspire 1830T
783 */
784 if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
785 pci_set_power_state(drm_dev->pdev, PCI_D3hot);
786 #endif
787
788 return 0;
789 }
790
791 int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
792 {
793 int error;
794
795 if (!dev || !dev->dev_private) {
796 DRM_ERROR("dev: %p\n", dev);
797 DRM_ERROR("DRM not initialized, aborting suspend.\n");
798 return -ENODEV;
799 }
800
801 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
802 state.event != PM_EVENT_FREEZE))
803 return -EINVAL;
804
805 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
806 return 0;
807
808 error = i915_drm_suspend(dev);
809 if (error)
810 return error;
811
812 return i915_drm_suspend_late(dev, false);
813 }
814
815 int i915_drm_resume(struct drm_device *dev)
816 {
817 struct drm_i915_private *dev_priv = dev->dev_private;
818
819 mutex_lock(&dev->struct_mutex);
820 i915_gem_restore_gtt_mappings(dev);
821 mutex_unlock(&dev->struct_mutex);
822
823 i915_restore_state(dev);
824 intel_opregion_setup(dev);
825
826 intel_init_pch_refclk(dev);
827 drm_mode_config_reset(dev);
828
829 /*
830 * Interrupts have to be enabled before any batches are run. If not the
831 * GPU will hang. i915_gem_init_hw() will initiate batches to
832 * update/restore the context.
833 *
834 * Modeset enabling in intel_modeset_init_hw() also needs working
835 * interrupts.
836 */
837 intel_runtime_pm_enable_interrupts(dev_priv);
838
839 mutex_lock(&dev->struct_mutex);
840 if (i915_gem_init_hw(dev)) {
841 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
842 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
843 }
844 mutex_unlock(&dev->struct_mutex);
845
846 intel_guc_resume(dev);
847
848 intel_modeset_init_hw(dev);
849
850 spin_lock_irq(&dev_priv->irq_lock);
851 if (dev_priv->display.hpd_irq_setup)
852 dev_priv->display.hpd_irq_setup(dev);
853 spin_unlock_irq(&dev_priv->irq_lock);
854
855 drm_modeset_lock_all(dev);
856 intel_display_resume(dev);
857 drm_modeset_unlock_all(dev);
858
859 intel_dp_mst_resume(dev);
860
861 /*
862 * ... but also need to make sure that hotplug processing
863 * doesn't cause havoc. Like in the driver load code we don't
864 * bother with the tiny race here where we might loose hotplug
865 * notifications.
866 * */
867 intel_hpd_init(dev_priv);
868 /* Config may have changed between suspend and resume */
869 drm_helper_hpd_irq_event(dev);
870
871 intel_opregion_init(dev);
872
873 #ifndef __NetBSD__ /* XXX fb */
874 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
875 #endif
876
877 mutex_lock(&dev_priv->modeset_restore_lock);
878 dev_priv->modeset_restore = MODESET_DONE;
879 mutex_unlock(&dev_priv->modeset_restore_lock);
880
881 intel_opregion_notify_adapter(dev, PCI_D0);
882
883 drm_kms_helper_poll_enable(dev);
884
885 return 0;
886 }
887
888 int i915_drm_resume_early(struct drm_device *dev)
889 {
890 struct drm_i915_private *dev_priv = dev->dev_private;
891 int ret = 0;
892
893 #ifndef __NetBSD__ /* pmf handles this for us. */
894 /*
895 * We have a resume ordering issue with the snd-hda driver also
896 * requiring our device to be power up. Due to the lack of a
897 * parent/child relationship we currently solve this with an early
898 * resume hook.
899 *
900 * FIXME: This should be solved with a special hdmi sink device or
901 * similar so that power domains can be employed.
902 */
903 if (pci_enable_device(dev->pdev))
904 return -EIO;
905 #endif
906
907 /* XXX pmf probably handles this for us too. */
908 pci_set_master(dev->pdev);
909
910 if (IS_VALLEYVIEW(dev_priv))
911 ret = vlv_resume_prepare(dev_priv, false);
912 if (ret)
913 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
914 ret);
915
916 intel_uncore_early_sanitize(dev, true);
917
918 if (IS_BROXTON(dev))
919 ret = bxt_resume_prepare(dev_priv);
920 else if (IS_SKYLAKE(dev_priv))
921 ret = skl_resume_prepare(dev_priv);
922 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
923 hsw_disable_pc8(dev_priv);
924
925 intel_uncore_sanitize(dev);
926 intel_power_domains_init_hw(dev_priv);
927
928 i915_rc6_ctx_wa_resume(dev_priv);
929
930 return ret;
931 }
932
933 int i915_resume_switcheroo(struct drm_device *dev)
934 {
935 int ret;
936
937 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
938 return 0;
939
940 ret = i915_drm_resume_early(dev);
941 if (ret)
942 return ret;
943
944 return i915_drm_resume(dev);
945 }
946
947 /**
948 * i915_reset - reset chip after a hang
949 * @dev: drm device to reset
950 *
951 * Reset the chip. Useful if a hang is detected. Returns zero on successful
952 * reset or otherwise an error code.
953 *
954 * Procedure is fairly simple:
955 * - reset the chip using the reset reg
956 * - re-init context state
957 * - re-init hardware status page
958 * - re-init ring buffer
959 * - re-init interrupt state
960 * - re-init display
961 */
962 int i915_reset(struct drm_device *dev)
963 {
964 struct drm_i915_private *dev_priv = dev->dev_private;
965 bool simulated;
966 int ret;
967
968 intel_reset_gt_powersave(dev);
969
970 mutex_lock(&dev->struct_mutex);
971
972 i915_gem_reset(dev);
973
974 simulated = dev_priv->gpu_error.stop_rings != 0;
975
976 ret = intel_gpu_reset(dev);
977
978 /* Also reset the gpu hangman. */
979 if (simulated) {
980 DRM_INFO("Simulated gpu hang, resetting stop_rings\n");
981 dev_priv->gpu_error.stop_rings = 0;
982 if (ret == -ENODEV) {
983 DRM_INFO("Reset not implemented, but ignoring "
984 "error for simulated gpu hangs\n");
985 ret = 0;
986 }
987 }
988
989 if (i915_stop_ring_allow_warn(dev_priv))
990 pr_notice("drm/i915: Resetting chip after gpu hang\n");
991
992 if (ret) {
993 DRM_ERROR("Failed to reset chip: %i\n", ret);
994 mutex_unlock(&dev->struct_mutex);
995 return ret;
996 }
997
998 intel_overlay_reset(dev_priv);
999
1000 /* Ok, now get things going again... */
1001
1002 /*
1003 * Everything depends on having the GTT running, so we need to start
1004 * there. Fortunately we don't need to do this unless we reset the
1005 * chip at a PCI level.
1006 *
1007 * Next we need to restore the context, but we don't use those
1008 * yet either...
1009 *
1010 * Ring buffer needs to be re-initialized in the KMS case, or if X
1011 * was running at the time of the reset (i.e. we weren't VT
1012 * switched away).
1013 */
1014
1015 /* Used to prevent gem_check_wedged returning -EAGAIN during gpu reset */
1016 dev_priv->gpu_error.reload_in_reset = true;
1017
1018 ret = i915_gem_init_hw(dev);
1019
1020 dev_priv->gpu_error.reload_in_reset = false;
1021
1022 mutex_unlock(&dev->struct_mutex);
1023 if (ret) {
1024 DRM_ERROR("Failed hw init on reset %d\n", ret);
1025 return ret;
1026 }
1027
1028 /*
1029 * rps/rc6 re-init is necessary to restore state lost after the
1030 * reset and the re-install of gt irqs. Skip for ironlake per
1031 * previous concerns that it doesn't respond well to some forms
1032 * of re-init after reset.
1033 */
1034 if (INTEL_INFO(dev)->gen > 5)
1035 intel_enable_gt_powersave(dev);
1036
1037 return 0;
1038 }
1039
1040 #ifdef __NetBSD__
1041
1042 static const struct uvm_pagerops i915_gem_uvm_ops = {
1043 .pgo_reference = drm_gem_pager_reference,
1044 .pgo_detach = drm_gem_pager_detach,
1045 .pgo_fault = i915_gem_fault,
1046 };
1047
1048 #else
1049
1050 static int i915_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1051 {
1052 struct intel_device_info *intel_info =
1053 (struct intel_device_info *) ent->driver_data;
1054
1055 if (IS_PRELIMINARY_HW(intel_info) && !i915.preliminary_hw_support) {
1056 DRM_INFO("This hardware requires preliminary hardware support.\n"
1057 "See CONFIG_DRM_I915_PRELIMINARY_HW_SUPPORT, and/or modparam preliminary_hw_support\n");
1058 return -ENODEV;
1059 }
1060
1061 /* Only bind to function 0 of the device. Early generations
1062 * used function 1 as a placeholder for multi-head. This causes
1063 * us confusion instead, especially on the systems where both
1064 * functions have the same PCI-ID!
1065 */
1066 if (PCI_FUNC(pdev->devfn))
1067 return -ENODEV;
1068
1069 return drm_get_pci_dev(pdev, ent, &driver);
1070 }
1071
1072 static void
1073 i915_pci_remove(struct pci_dev *pdev)
1074 {
1075 struct drm_device *dev = pci_get_drvdata(pdev);
1076
1077 drm_put_dev(dev);
1078 }
1079 #endif
1080
1081 #ifndef __NetBSD__
1082 static int i915_pm_suspend(struct device *dev)
1083 {
1084 struct pci_dev *pdev = to_pci_dev(dev);
1085 struct drm_device *drm_dev = pci_get_drvdata(pdev);
1086
1087 if (!drm_dev || !drm_dev->dev_private) {
1088 dev_err(dev, "DRM not initialized, aborting suspend.\n");
1089 return -ENODEV;
1090 }
1091
1092 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1093 return 0;
1094
1095 return i915_drm_suspend(drm_dev);
1096 }
1097
1098 static int i915_pm_suspend_late(struct device *dev)
1099 {
1100 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1101
1102 /*
1103 * We have a suspend ordering issue with the snd-hda driver also
1104 * requiring our device to be power up. Due to the lack of a
1105 * parent/child relationship we currently solve this with an late
1106 * suspend hook.
1107 *
1108 * FIXME: This should be solved with a special hdmi sink device or
1109 * similar so that power domains can be employed.
1110 */
1111 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1112 return 0;
1113
1114 return i915_drm_suspend_late(drm_dev, false);
1115 }
1116
1117 static int i915_pm_poweroff_late(struct device *dev)
1118 {
1119 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1120
1121 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1122 return 0;
1123
1124 return i915_drm_suspend_late(drm_dev, true);
1125 }
1126
1127 static int i915_pm_resume_early(struct device *dev)
1128 {
1129 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1130
1131 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1132 return 0;
1133
1134 return i915_drm_resume_early(drm_dev);
1135 }
1136
1137 static int i915_pm_resume(struct device *dev)
1138 {
1139 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1140
1141 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1142 return 0;
1143
1144 return i915_drm_resume(drm_dev);
1145 }
1146 #endif
1147
1148 static int skl_suspend_complete(struct drm_i915_private *dev_priv)
1149 {
1150 /* Enabling DC6 is not a hard requirement to enter runtime D3 */
1151
1152 skl_uninit_cdclk(dev_priv);
1153
1154 return 0;
1155 }
1156
1157 static int hsw_suspend_complete(struct drm_i915_private *dev_priv)
1158 {
1159 hsw_enable_pc8(dev_priv);
1160
1161 return 0;
1162 }
1163
1164 static int bxt_suspend_complete(struct drm_i915_private *dev_priv)
1165 {
1166 struct drm_device *dev = dev_priv->dev;
1167
1168 /* TODO: when DC5 support is added disable DC5 here. */
1169
1170 broxton_ddi_phy_uninit(dev);
1171 broxton_uninit_cdclk(dev);
1172 bxt_enable_dc9(dev_priv);
1173
1174 return 0;
1175 }
1176
1177 static int bxt_resume_prepare(struct drm_i915_private *dev_priv)
1178 {
1179 struct drm_device *dev = dev_priv->dev;
1180
1181 /* TODO: when CSR FW support is added make sure the FW is loaded */
1182
1183 bxt_disable_dc9(dev_priv);
1184
1185 /*
1186 * TODO: when DC5 support is added enable DC5 here if the CSR FW
1187 * is available.
1188 */
1189 broxton_init_cdclk(dev);
1190 broxton_ddi_phy_init(dev);
1191 intel_prepare_ddi(dev);
1192
1193 return 0;
1194 }
1195
1196 static int skl_resume_prepare(struct drm_i915_private *dev_priv)
1197 {
1198 struct drm_device *dev = dev_priv->dev;
1199
1200 skl_init_cdclk(dev_priv);
1201 intel_csr_load_program(dev);
1202
1203 return 0;
1204 }
1205
1206 /*
1207 * Save all Gunit registers that may be lost after a D3 and a subsequent
1208 * S0i[R123] transition. The list of registers needing a save/restore is
1209 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1210 * registers in the following way:
1211 * - Driver: saved/restored by the driver
1212 * - Punit : saved/restored by the Punit firmware
1213 * - No, w/o marking: no need to save/restore, since the register is R/O or
1214 * used internally by the HW in a way that doesn't depend
1215 * keeping the content across a suspend/resume.
1216 * - Debug : used for debugging
1217 *
1218 * We save/restore all registers marked with 'Driver', with the following
1219 * exceptions:
1220 * - Registers out of use, including also registers marked with 'Debug'.
1221 * These have no effect on the driver's operation, so we don't save/restore
1222 * them to reduce the overhead.
1223 * - Registers that are fully setup by an initialization function called from
1224 * the resume path. For example many clock gating and RPS/RC6 registers.
1225 * - Registers that provide the right functionality with their reset defaults.
1226 *
1227 * TODO: Except for registers that based on the above 3 criteria can be safely
1228 * ignored, we save/restore all others, practically treating the HW context as
1229 * a black-box for the driver. Further investigation is needed to reduce the
1230 * saved/restored registers even further, by following the same 3 criteria.
1231 */
1232 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1233 {
1234 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1235 int i;
1236
1237 /* GAM 0x4000-0x4770 */
1238 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
1239 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
1240 s->arb_mode = I915_READ(ARB_MODE);
1241 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
1242 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
1243
1244 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1245 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1246
1247 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1248 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1249
1250 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
1251 s->ecochk = I915_READ(GAM_ECOCHK);
1252 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
1253 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
1254
1255 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
1256
1257 /* MBC 0x9024-0x91D0, 0x8500 */
1258 s->g3dctl = I915_READ(VLV_G3DCTL);
1259 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
1260 s->mbctl = I915_READ(GEN6_MBCTL);
1261
1262 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1263 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
1264 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
1265 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
1266 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
1267 s->rstctl = I915_READ(GEN6_RSTCTL);
1268 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
1269
1270 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1271 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
1272 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
1273 s->rpdeuc = I915_READ(GEN6_RPDEUC);
1274 s->ecobus = I915_READ(ECOBUS);
1275 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
1276 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
1277 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
1278 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
1279 s->rcedata = I915_READ(VLV_RCEDATA);
1280 s->spare2gh = I915_READ(VLV_SPAREG2H);
1281
1282 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1283 s->gt_imr = I915_READ(GTIMR);
1284 s->gt_ier = I915_READ(GTIER);
1285 s->pm_imr = I915_READ(GEN6_PMIMR);
1286 s->pm_ier = I915_READ(GEN6_PMIER);
1287
1288 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1289 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
1290
1291 /* GT SA CZ domain, 0x100000-0x138124 */
1292 s->tilectl = I915_READ(TILECTL);
1293 s->gt_fifoctl = I915_READ(GTFIFOCTL);
1294 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
1295 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1296 s->pmwgicz = I915_READ(VLV_PMWGICZ);
1297
1298 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1299 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
1300 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
1301 s->pcbr = I915_READ(VLV_PCBR);
1302 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
1303
1304 /*
1305 * Not saving any of:
1306 * DFT, 0x9800-0x9EC0
1307 * SARB, 0xB000-0xB1FC
1308 * GAC, 0x5208-0x524C, 0x14000-0x14C000
1309 * PCI CFG
1310 */
1311 }
1312
1313 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1314 {
1315 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1316 u32 val;
1317 int i;
1318
1319 /* GAM 0x4000-0x4770 */
1320 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
1321 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
1322 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
1323 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
1324 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
1325
1326 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1327 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
1328
1329 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
1330 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
1331
1332 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
1333 I915_WRITE(GAM_ECOCHK, s->ecochk);
1334 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
1335 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
1336
1337 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
1338
1339 /* MBC 0x9024-0x91D0, 0x8500 */
1340 I915_WRITE(VLV_G3DCTL, s->g3dctl);
1341 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
1342 I915_WRITE(GEN6_MBCTL, s->mbctl);
1343
1344 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1345 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
1346 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
1347 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
1348 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
1349 I915_WRITE(GEN6_RSTCTL, s->rstctl);
1350 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
1351
1352 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1353 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
1354 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
1355 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
1356 I915_WRITE(ECOBUS, s->ecobus);
1357 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
1358 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
1359 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
1360 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
1361 I915_WRITE(VLV_RCEDATA, s->rcedata);
1362 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
1363
1364 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1365 I915_WRITE(GTIMR, s->gt_imr);
1366 I915_WRITE(GTIER, s->gt_ier);
1367 I915_WRITE(GEN6_PMIMR, s->pm_imr);
1368 I915_WRITE(GEN6_PMIER, s->pm_ier);
1369
1370 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1371 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
1372
1373 /* GT SA CZ domain, 0x100000-0x138124 */
1374 I915_WRITE(TILECTL, s->tilectl);
1375 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
1376 /*
1377 * Preserve the GT allow wake and GFX force clock bit, they are not
1378 * be restored, as they are used to control the s0ix suspend/resume
1379 * sequence by the caller.
1380 */
1381 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1382 val &= VLV_GTLC_ALLOWWAKEREQ;
1383 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
1384 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1385
1386 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1387 val &= VLV_GFX_CLK_FORCE_ON_BIT;
1388 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
1389 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1390
1391 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
1392
1393 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1394 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
1395 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
1396 I915_WRITE(VLV_PCBR, s->pcbr);
1397 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
1398 }
1399
1400 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
1401 {
1402 u32 val;
1403 int err;
1404
1405 #define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT)
1406
1407 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1408 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
1409 if (force_on)
1410 val |= VLV_GFX_CLK_FORCE_ON_BIT;
1411 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1412
1413 if (!force_on)
1414 return 0;
1415
1416 err = wait_for(COND, 20);
1417 if (err)
1418 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
1419 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1420
1421 return err;
1422 #undef COND
1423 }
1424
1425 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
1426 {
1427 u32 val;
1428 int err = 0;
1429
1430 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1431 val &= ~VLV_GTLC_ALLOWWAKEREQ;
1432 if (allow)
1433 val |= VLV_GTLC_ALLOWWAKEREQ;
1434 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1435 POSTING_READ(VLV_GTLC_WAKE_CTRL);
1436
1437 #define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \
1438 allow)
1439 err = wait_for(COND, 1);
1440 if (err)
1441 DRM_ERROR("timeout disabling GT waking\n");
1442 return err;
1443 #undef COND
1444 }
1445
1446 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
1447 bool wait_for_on)
1448 {
1449 u32 mask;
1450 u32 val;
1451 int err;
1452
1453 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
1454 val = wait_for_on ? mask : 0;
1455 #define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
1456 if (COND)
1457 return 0;
1458
1459 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
1460 wait_for_on ? "on" : "off",
1461 I915_READ(VLV_GTLC_PW_STATUS));
1462
1463 /*
1464 * RC6 transitioning can be delayed up to 2 msec (see
1465 * valleyview_enable_rps), use 3 msec for safety.
1466 */
1467 err = wait_for(COND, 3);
1468 if (err)
1469 DRM_ERROR("timeout waiting for GT wells to go %s\n",
1470 wait_for_on ? "on" : "off");
1471
1472 return err;
1473 #undef COND
1474 }
1475
1476 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
1477 {
1478 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
1479 return;
1480
1481 DRM_ERROR("GT register access while GT waking disabled\n");
1482 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
1483 }
1484
1485 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
1486 {
1487 u32 mask;
1488 int err;
1489
1490 /*
1491 * Bspec defines the following GT well on flags as debug only, so
1492 * don't treat them as hard failures.
1493 */
1494 (void)vlv_wait_for_gt_wells(dev_priv, false);
1495
1496 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
1497 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
1498
1499 vlv_check_no_gt_access(dev_priv);
1500
1501 err = vlv_force_gfx_clock(dev_priv, true);
1502 if (err)
1503 goto err1;
1504
1505 err = vlv_allow_gt_wake(dev_priv, false);
1506 if (err)
1507 goto err2;
1508
1509 if (!IS_CHERRYVIEW(dev_priv->dev))
1510 vlv_save_gunit_s0ix_state(dev_priv);
1511
1512 err = vlv_force_gfx_clock(dev_priv, false);
1513 if (err)
1514 goto err2;
1515
1516 return 0;
1517
1518 err2:
1519 /* For safety always re-enable waking and disable gfx clock forcing */
1520 vlv_allow_gt_wake(dev_priv, true);
1521 err1:
1522 vlv_force_gfx_clock(dev_priv, false);
1523
1524 return err;
1525 }
1526
1527 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1528 bool rpm_resume)
1529 {
1530 struct drm_device *dev = dev_priv->dev;
1531 int err;
1532 int ret;
1533
1534 /*
1535 * If any of the steps fail just try to continue, that's the best we
1536 * can do at this point. Return the first error code (which will also
1537 * leave RPM permanently disabled).
1538 */
1539 ret = vlv_force_gfx_clock(dev_priv, true);
1540
1541 if (!IS_CHERRYVIEW(dev_priv->dev))
1542 vlv_restore_gunit_s0ix_state(dev_priv);
1543
1544 err = vlv_allow_gt_wake(dev_priv, true);
1545 if (!ret)
1546 ret = err;
1547
1548 err = vlv_force_gfx_clock(dev_priv, false);
1549 if (!ret)
1550 ret = err;
1551
1552 vlv_check_no_gt_access(dev_priv);
1553
1554 if (rpm_resume) {
1555 intel_init_clock_gating(dev);
1556 i915_gem_restore_fences(dev);
1557 }
1558
1559 return ret;
1560 }
1561
1562 #ifndef __NetBSD__ /* XXX runtime pm */
1563 static int intel_runtime_suspend(struct device *device)
1564 {
1565 struct pci_dev *pdev = to_pci_dev(device);
1566 struct drm_device *dev = pci_get_drvdata(pdev);
1567 struct drm_i915_private *dev_priv = dev->dev_private;
1568 int ret;
1569
1570 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6(dev))))
1571 return -ENODEV;
1572
1573 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1574 return -ENODEV;
1575
1576 DRM_DEBUG_KMS("Suspending device\n");
1577
1578 /*
1579 * We could deadlock here in case another thread holding struct_mutex
1580 * calls RPM suspend concurrently, since the RPM suspend will wait
1581 * first for this RPM suspend to finish. In this case the concurrent
1582 * RPM resume will be followed by its RPM suspend counterpart. Still
1583 * for consistency return -EAGAIN, which will reschedule this suspend.
1584 */
1585 if (!mutex_trylock(&dev->struct_mutex)) {
1586 DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
1587 /*
1588 * Bump the expiration timestamp, otherwise the suspend won't
1589 * be rescheduled.
1590 */
1591 pm_runtime_mark_last_busy(device);
1592
1593 return -EAGAIN;
1594 }
1595 /*
1596 * We are safe here against re-faults, since the fault handler takes
1597 * an RPM reference.
1598 */
1599 i915_gem_release_all_mmaps(dev_priv);
1600 mutex_unlock(&dev->struct_mutex);
1601
1602 intel_guc_suspend(dev);
1603
1604 intel_suspend_gt_powersave(dev);
1605 intel_runtime_pm_disable_interrupts(dev_priv);
1606
1607 ret = intel_suspend_complete(dev_priv);
1608 if (ret) {
1609 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
1610 intel_runtime_pm_enable_interrupts(dev_priv);
1611
1612 return ret;
1613 }
1614
1615 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1616 intel_uncore_forcewake_reset(dev, false);
1617 dev_priv->pm.suspended = true;
1618
1619 /*
1620 * FIXME: We really should find a document that references the arguments
1621 * used below!
1622 */
1623 if (IS_BROADWELL(dev)) {
1624 /*
1625 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
1626 * being detected, and the call we do at intel_runtime_resume()
1627 * won't be able to restore them. Since PCI_D3hot matches the
1628 * actual specification and appears to be working, use it.
1629 */
1630 intel_opregion_notify_adapter(dev, PCI_D3hot);
1631 } else {
1632 /*
1633 * current versions of firmware which depend on this opregion
1634 * notification have repurposed the D1 definition to mean
1635 * "runtime suspended" vs. what you would normally expect (D3)
1636 * to distinguish it from notifications that might be sent via
1637 * the suspend path.
1638 */
1639 intel_opregion_notify_adapter(dev, PCI_D1);
1640 }
1641
1642 assert_forcewakes_inactive(dev_priv);
1643
1644 DRM_DEBUG_KMS("Device suspended\n");
1645 return 0;
1646 }
1647
1648 static int intel_runtime_resume(struct device *device)
1649 {
1650 struct pci_dev *pdev = to_pci_dev(device);
1651 struct drm_device *dev = pci_get_drvdata(pdev);
1652 struct drm_i915_private *dev_priv = dev->dev_private;
1653 int ret = 0;
1654
1655 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1656 return -ENODEV;
1657
1658 DRM_DEBUG_KMS("Resuming device\n");
1659
1660 intel_opregion_notify_adapter(dev, PCI_D0);
1661 dev_priv->pm.suspended = false;
1662
1663 intel_guc_resume(dev);
1664
1665 if (IS_GEN6(dev_priv))
1666 intel_init_pch_refclk(dev);
1667
1668 if (IS_BROXTON(dev))
1669 ret = bxt_resume_prepare(dev_priv);
1670 else if (IS_SKYLAKE(dev))
1671 ret = skl_resume_prepare(dev_priv);
1672 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1673 hsw_disable_pc8(dev_priv);
1674 else if (IS_VALLEYVIEW(dev_priv))
1675 ret = vlv_resume_prepare(dev_priv, true);
1676
1677 /*
1678 * No point of rolling back things in case of an error, as the best
1679 * we can do is to hope that things will still work (and disable RPM).
1680 */
1681 i915_gem_init_swizzling(dev);
1682 gen6_update_ring_freq(dev);
1683
1684 intel_runtime_pm_enable_interrupts(dev_priv);
1685
1686 /*
1687 * On VLV/CHV display interrupts are part of the display
1688 * power well, so hpd is reinitialized from there. For
1689 * everyone else do it here.
1690 */
1691 if (!IS_VALLEYVIEW(dev_priv))
1692 intel_hpd_init(dev_priv);
1693
1694 intel_enable_gt_powersave(dev);
1695
1696 if (ret)
1697 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
1698 else
1699 DRM_DEBUG_KMS("Device resumed\n");
1700
1701 return ret;
1702 }
1703 #endif
1704
1705 /*
1706 * This function implements common functionality of runtime and system
1707 * suspend sequence.
1708 */
1709 static int intel_suspend_complete(struct drm_i915_private *dev_priv)
1710 {
1711 int ret;
1712
1713 if (IS_BROXTON(dev_priv))
1714 ret = bxt_suspend_complete(dev_priv);
1715 else if (IS_SKYLAKE(dev_priv))
1716 ret = skl_suspend_complete(dev_priv);
1717 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1718 ret = hsw_suspend_complete(dev_priv);
1719 else if (IS_VALLEYVIEW(dev_priv))
1720 ret = vlv_suspend_complete(dev_priv);
1721 else
1722 ret = 0;
1723
1724 return ret;
1725 }
1726
1727 #ifndef __NetBSD__
1728
1729 static const struct dev_pm_ops i915_pm_ops = {
1730 /*
1731 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
1732 * PMSG_RESUME]
1733 */
1734 .suspend = i915_pm_suspend,
1735 .suspend_late = i915_pm_suspend_late,
1736 .resume_early = i915_pm_resume_early,
1737 .resume = i915_pm_resume,
1738
1739 /*
1740 * S4 event handlers
1741 * @freeze, @freeze_late : called (1) before creating the
1742 * hibernation image [PMSG_FREEZE] and
1743 * (2) after rebooting, before restoring
1744 * the image [PMSG_QUIESCE]
1745 * @thaw, @thaw_early : called (1) after creating the hibernation
1746 * image, before writing it [PMSG_THAW]
1747 * and (2) after failing to create or
1748 * restore the image [PMSG_RECOVER]
1749 * @poweroff, @poweroff_late: called after writing the hibernation
1750 * image, before rebooting [PMSG_HIBERNATE]
1751 * @restore, @restore_early : called after rebooting and restoring the
1752 * hibernation image [PMSG_RESTORE]
1753 */
1754 .freeze = i915_pm_suspend,
1755 .freeze_late = i915_pm_suspend_late,
1756 .thaw_early = i915_pm_resume_early,
1757 .thaw = i915_pm_resume,
1758 .poweroff = i915_pm_suspend,
1759 .poweroff_late = i915_pm_poweroff_late,
1760 .restore_early = i915_pm_resume_early,
1761 .restore = i915_pm_resume,
1762
1763 /* S0ix (via runtime suspend) event handlers */
1764 .runtime_suspend = intel_runtime_suspend,
1765 .runtime_resume = intel_runtime_resume,
1766 };
1767
1768 static const struct vm_operations_struct i915_gem_vm_ops = {
1769 .fault = i915_gem_fault,
1770 .open = drm_gem_vm_open,
1771 .close = drm_gem_vm_close,
1772 };
1773
1774 static const struct file_operations i915_driver_fops = {
1775 .owner = THIS_MODULE,
1776 .open = drm_open,
1777 .release = drm_release,
1778 .unlocked_ioctl = drm_ioctl,
1779 .mmap = drm_gem_mmap,
1780 .poll = drm_poll,
1781 .read = drm_read,
1782 #ifdef CONFIG_COMPAT
1783 .compat_ioctl = i915_compat_ioctl,
1784 #endif
1785 .llseek = noop_llseek,
1786 };
1787
1788 #endif /* defined(__NetBSD__) */
1789
1790 static struct drm_driver driver = {
1791 /* Don't use MTRRs here; the Xserver or userspace app should
1792 * deal with them for Intel hardware.
1793 */
1794 .driver_features =
1795 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
1796 DRIVER_RENDER | DRIVER_MODESET,
1797 .load = i915_driver_load,
1798 .unload = i915_driver_unload,
1799 .open = i915_driver_open,
1800 .lastclose = i915_driver_lastclose,
1801 .preclose = i915_driver_preclose,
1802 .postclose = i915_driver_postclose,
1803 .set_busid = drm_pci_set_busid,
1804 #ifdef __NetBSD__
1805 .request_irq = drm_pci_request_irq,
1806 .free_irq = drm_pci_free_irq,
1807 #endif
1808
1809 #if defined(CONFIG_DEBUG_FS)
1810 .debugfs_init = i915_debugfs_init,
1811 .debugfs_cleanup = i915_debugfs_cleanup,
1812 #endif
1813 .gem_free_object = i915_gem_free_object,
1814 #ifdef __NetBSD__
1815 /* XXX Not clear the `or legacy' part is important here. */
1816 .mmap_object = &drm_gem_mmap_object,
1817 .gem_uvm_ops = &i915_gem_uvm_ops,
1818 #else
1819 .gem_vm_ops = &i915_gem_vm_ops,
1820 #endif
1821
1822 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
1823 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
1824 .gem_prime_export = i915_gem_prime_export,
1825 .gem_prime_import = i915_gem_prime_import,
1826
1827 .dumb_create = i915_gem_dumb_create,
1828 .dumb_map_offset = i915_gem_mmap_gtt,
1829 .dumb_destroy = drm_gem_dumb_destroy,
1830 .ioctls = i915_ioctls,
1831 #ifdef __NetBSD__
1832 .fops = NULL,
1833 #else
1834 .fops = &i915_driver_fops,
1835 #endif
1836 .name = DRIVER_NAME,
1837 .desc = DRIVER_DESC,
1838 .date = DRIVER_DATE,
1839 .major = DRIVER_MAJOR,
1840 .minor = DRIVER_MINOR,
1841 .patchlevel = DRIVER_PATCHLEVEL,
1842 };
1843
1844 #ifndef __NetBSD__
1845 static struct pci_driver i915_pci_driver = {
1846 .name = DRIVER_NAME,
1847 .id_table = pciidlist,
1848 .probe = i915_pci_probe,
1849 .remove = i915_pci_remove,
1850 .driver.pm = &i915_pm_ops,
1851 };
1852 #endif
1853
1854 #ifndef __NetBSD__
1855 static int __init i915_init(void)
1856 {
1857 driver.num_ioctls = i915_max_ioctl;
1858
1859 /*
1860 * Enable KMS by default, unless explicitly overriden by
1861 * either the i915.modeset prarameter or by the
1862 * vga_text_mode_force boot option.
1863 */
1864
1865 if (i915.modeset == 0)
1866 driver.driver_features &= ~DRIVER_MODESET;
1867
1868 #ifdef CONFIG_VGA_CONSOLE
1869 if (vgacon_text_force() && i915.modeset == -1)
1870 driver.driver_features &= ~DRIVER_MODESET;
1871 #endif
1872
1873 if (!(driver.driver_features & DRIVER_MODESET)) {
1874 /* Silently fail loading to not upset userspace. */
1875 DRM_DEBUG_DRIVER("KMS and UMS disabled.\n");
1876 return 0;
1877 }
1878
1879 if (i915.nuclear_pageflip)
1880 driver.driver_features |= DRIVER_ATOMIC;
1881
1882 return drm_pci_init(&driver, &i915_pci_driver);
1883 }
1884
1885 static void __exit i915_exit(void)
1886 {
1887 if (!(driver.driver_features & DRIVER_MODESET))
1888 return; /* Never loaded a driver. */
1889
1890 drm_pci_exit(&driver, &i915_pci_driver);
1891 }
1892
1893 module_init(i915_init);
1894 module_exit(i915_exit);
1895 #endif
1896
1897 MODULE_AUTHOR("Tungsten Graphics, Inc.");
1898 MODULE_AUTHOR("Intel Corporation");
1899
1900 MODULE_DESCRIPTION(DRIVER_DESC);
1901 MODULE_LICENSE("GPL and additional rights");
1902