i915_drv.c revision 1.25 1 /* $NetBSD: i915_drv.c,v 1.25 2021/12/19 10:28:31 riastradh Exp $ */
2
3 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
4 */
5 /*
6 *
7 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
8 * All Rights Reserved.
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a
11 * copy of this software and associated documentation files (the
12 * "Software"), to deal in the Software without restriction, including
13 * without limitation the rights to use, copy, modify, merge, publish,
14 * distribute, sub license, and/or sell copies of the Software, and to
15 * permit persons to whom the Software is furnished to do so, subject to
16 * the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
23 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
25 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
26 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
27 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
28 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29 *
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: i915_drv.c,v 1.25 2021/12/19 10:28:31 riastradh Exp $");
34
35 #include <linux/acpi.h>
36 #include <linux/device.h>
37 #include <linux/oom.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/pm.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/pnp.h>
43 #include <linux/slab.h>
44 #include <linux/vga_switcheroo.h>
45 #include <linux/vt.h>
46 #include <acpi/video.h>
47
48 #include <drm/drm_atomic_helper.h>
49 #include <drm/drm_ioctl.h>
50 #include <drm/drm_irq.h>
51 #include <drm/drm_probe_helper.h>
52 #include <drm/i915_drm.h>
53 #include "../drm_internal.h" /* drm_pci_set_busid */
54
55 #include "display/intel_acpi.h"
56 #include "display/intel_audio.h"
57 #include "display/intel_bw.h"
58 #include "display/intel_cdclk.h"
59 #include "display/intel_display_types.h"
60 #include "display/intel_dp.h"
61 #include "display/intel_fbdev.h"
62 #include "display/intel_hotplug.h"
63 #include "display/intel_overlay.h"
64 #include "display/intel_pipe_crc.h"
65 #include "display/intel_sprite.h"
66 #include "display/intel_vga.h"
67
68 #include "gem/i915_gem_context.h"
69 #include "gem/i915_gem_ioctls.h"
70 #include "gem/i915_gem_mman.h"
71 #include "gt/intel_gt.h"
72 #include "gt/intel_gt_pm.h"
73 #include "gt/intel_rc6.h"
74
75 #include "i915_debugfs.h"
76 #include "i915_drv.h"
77 #include "i915_irq.h"
78 #include "i915_memcpy.h"
79 #include "i915_perf.h"
80 #include "i915_query.h"
81 #include "i915_suspend.h"
82 #include "i915_switcheroo.h"
83 #include "i915_sysfs.h"
84 #include "i915_trace.h"
85 #include "i915_vgpu.h"
86 #include "intel_csr.h"
87 #include "intel_memory_region.h"
88 #include "intel_pm.h"
89
90 static struct drm_driver driver;
91
92 #ifdef __NetBSD__
93 /* XXX Kludge to expose this to NetBSD driver attachment goop. */
94 struct drm_driver *const i915_drm_driver = &driver;
95 #endif
96 struct vlv_s0ix_state {
97 /* GAM */
98 u32 wr_watermark;
99 u32 gfx_prio_ctrl;
100 u32 arb_mode;
101 u32 gfx_pend_tlb0;
102 u32 gfx_pend_tlb1;
103 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
104 u32 media_max_req_count;
105 u32 gfx_max_req_count;
106 u32 render_hwsp;
107 u32 ecochk;
108 u32 bsd_hwsp;
109 u32 blt_hwsp;
110 u32 tlb_rd_addr;
111
112 /* MBC */
113 u32 g3dctl;
114 u32 gsckgctl;
115 u32 mbctl;
116
117 /* GCP */
118 u32 ucgctl1;
119 u32 ucgctl3;
120 u32 rcgctl1;
121 u32 rcgctl2;
122 u32 rstctl;
123 u32 misccpctl;
124
125 /* GPM */
126 u32 gfxpause;
127 u32 rpdeuhwtc;
128 u32 rpdeuc;
129 u32 ecobus;
130 u32 pwrdwnupctl;
131 u32 rp_down_timeout;
132 u32 rp_deucsw;
133 u32 rcubmabdtmr;
134 u32 rcedata;
135 u32 spare2gh;
136
137 /* Display 1 CZ domain */
138 u32 gt_imr;
139 u32 gt_ier;
140 u32 pm_imr;
141 u32 pm_ier;
142 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
143
144 /* GT SA CZ domain */
145 u32 tilectl;
146 u32 gt_fifoctl;
147 u32 gtlc_wake_ctrl;
148 u32 gtlc_survive;
149 u32 pmwgicz;
150
151 /* Display 2 CZ domain */
152 u32 gu_ctl0;
153 u32 gu_ctl1;
154 u32 pcbr;
155 u32 clock_gate_dis2;
156 };
157
158 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
159 {
160 int domain = pci_domain_nr(dev_priv->drm.pdev->bus);
161
162 dev_priv->bridge_dev =
163 pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0));
164 if (!dev_priv->bridge_dev) {
165 DRM_ERROR("bridge device not found\n");
166 return -1;
167 }
168 return 0;
169 }
170
171 /* Allocate space for the MCH regs if needed, return nonzero on error */
172 static int
173 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
174 {
175 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
176 #ifdef CONFIG_PNP
177 u32 temp_lo, temp_hi = 0;
178 u64 mchbar_addr;
179 #endif
180 int ret;
181
182 #ifdef CONFIG_PNP
183 if (INTEL_GEN(dev_priv) >= 4)
184 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
185 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
186 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
187
188 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
189 if (mchbar_addr &&
190 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
191 return 0;
192 #endif
193
194 /* Get some space for it */
195 dev_priv->mch_res.name = "i915 MCHBAR";
196 dev_priv->mch_res.flags = IORESOURCE_MEM;
197 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
198 &dev_priv->mch_res,
199 MCHBAR_SIZE, MCHBAR_SIZE,
200 PCIBIOS_MIN_MEM,
201 0, pcibios_align_resource,
202 dev_priv->bridge_dev);
203 if (ret) {
204 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
205 dev_priv->mch_res.start = 0;
206 return ret;
207 }
208
209 if (INTEL_GEN(dev_priv) >= 4)
210 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
211 upper_32_bits(dev_priv->mch_res.start));
212
213 pci_write_config_dword(dev_priv->bridge_dev, reg,
214 lower_32_bits(dev_priv->mch_res.start));
215 return 0;
216 }
217
218 /* Setup MCHBAR if possible, return true if we should disable it again */
219 static void
220 intel_setup_mchbar(struct drm_i915_private *dev_priv)
221 {
222 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
223 u32 temp;
224 bool enabled;
225
226 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
227 return;
228
229 dev_priv->mchbar_need_disable = false;
230
231 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
232 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
233 enabled = !!(temp & DEVEN_MCHBAR_EN);
234 } else {
235 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
236 enabled = temp & 1;
237 }
238
239 /* If it's already enabled, don't have to do anything */
240 if (enabled)
241 return;
242
243 if (intel_alloc_mchbar_resource(dev_priv))
244 return;
245
246 dev_priv->mchbar_need_disable = true;
247
248 /* Space is allocated or reserved, so enable it. */
249 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
250 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
251 temp | DEVEN_MCHBAR_EN);
252 } else {
253 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
254 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
255 }
256 }
257
258 static void
259 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
260 {
261 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
262
263 if (dev_priv->mchbar_need_disable) {
264 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
265 u32 deven_val;
266
267 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
268 &deven_val);
269 deven_val &= ~DEVEN_MCHBAR_EN;
270 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
271 deven_val);
272 } else {
273 u32 mchbar_val;
274
275 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
276 &mchbar_val);
277 mchbar_val &= ~1;
278 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
279 mchbar_val);
280 }
281 }
282
283 if (dev_priv->mch_res.start)
284 release_resource(&dev_priv->mch_res);
285 }
286
287 static int i915_driver_modeset_probe(struct drm_i915_private *i915)
288 {
289 int ret;
290
291 if (i915_inject_probe_failure(i915))
292 return -ENODEV;
293
294 if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) {
295 ret = drm_vblank_init(&i915->drm,
296 INTEL_NUM_PIPES(i915));
297 if (ret)
298 goto out;
299 }
300
301 #ifdef __NetBSD__ /* XXX vga */
302 __USE(i915);
303 #else
304 intel_bios_init(i915);
305
306 ret = intel_vga_register(i915);
307 if (ret)
308 goto out;
309 #endif
310
311 #ifdef __NetBSD__
312 intel_register_dsm_handler(i915);
313 #else
314 intel_register_dsm_handler();
315 #endif
316
317 ret = i915_switcheroo_register(i915);
318 if (ret)
319 goto cleanup_vga_client;
320
321 intel_power_domains_init_hw(i915, false);
322
323 intel_csr_ucode_init(i915);
324
325 ret = intel_irq_install(i915);
326 if (ret)
327 goto cleanup_csr;
328
329 /* Important: The output setup functions called by modeset_init need
330 * working irqs for e.g. gmbus and dp aux transfers. */
331 ret = intel_modeset_init(i915);
332 if (ret)
333 goto cleanup_irq;
334
335 ret = i915_gem_init(i915);
336 if (ret)
337 goto cleanup_modeset;
338
339 intel_overlay_setup(i915);
340
341 if (!HAS_DISPLAY(i915) || !INTEL_DISPLAY_ENABLED(i915))
342 return 0;
343
344 ret = intel_fbdev_init(&i915->drm);
345 if (ret)
346 goto cleanup_gem;
347
348 /* Only enable hotplug handling once the fbdev is fully set up. */
349 intel_hpd_init(i915);
350
351 intel_init_ipc(i915);
352
353 return 0;
354
355 cleanup_gem:
356 i915_gem_suspend(i915);
357 i915_gem_driver_remove(i915);
358 i915_gem_driver_release(i915);
359 cleanup_modeset:
360 intel_modeset_driver_remove(i915);
361 cleanup_irq:
362 intel_irq_uninstall(i915);
363 cleanup_csr:
364 intel_csr_ucode_fini(i915);
365 intel_power_domains_driver_remove(i915);
366 i915_switcheroo_unregister(i915);
367 cleanup_vga_client:
368 intel_vga_unregister(i915);
369 out:
370 return ret;
371 }
372
373 static void i915_driver_modeset_remove(struct drm_i915_private *i915)
374 {
375 intel_modeset_driver_remove(i915);
376
377 intel_irq_uninstall(i915);
378
379 intel_bios_driver_remove(i915);
380
381 i915_switcheroo_unregister(i915);
382
383 intel_vga_unregister(i915);
384
385 intel_csr_ucode_fini(i915);
386 }
387
388 static void intel_init_dpio(struct drm_i915_private *dev_priv)
389 {
390 /*
391 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
392 * CHV x1 PHY (DP/HDMI D)
393 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
394 */
395 if (IS_CHERRYVIEW(dev_priv)) {
396 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
397 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
398 } else if (IS_VALLEYVIEW(dev_priv)) {
399 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
400 }
401 }
402
403 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
404 {
405 /*
406 * The i915 workqueue is primarily used for batched retirement of
407 * requests (and thus managing bo) once the task has been completed
408 * by the GPU. i915_retire_requests() is called directly when we
409 * need high-priority retirement, such as waiting for an explicit
410 * bo.
411 *
412 * It is also used for periodic low-priority events, such as
413 * idle-timers and recording error state.
414 *
415 * All tasks on the workqueue are expected to acquire the dev mutex
416 * so there is no point in running more than one instance of the
417 * workqueue at any time. Use an ordered one.
418 */
419 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
420 if (dev_priv->wq == NULL)
421 goto out_err;
422
423 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
424 if (dev_priv->hotplug.dp_wq == NULL)
425 goto out_free_wq;
426
427 return 0;
428
429 out_free_wq:
430 destroy_workqueue(dev_priv->wq);
431 out_err:
432 DRM_ERROR("Failed to allocate workqueues.\n");
433
434 return -ENOMEM;
435 }
436
437 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
438 {
439 destroy_workqueue(dev_priv->hotplug.dp_wq);
440 destroy_workqueue(dev_priv->wq);
441 }
442
443 static const struct intel_device_info intel_kabylake_info = {
444 .is_kabylake = 1,
445 .gen = 9,
446 .num_pipes = 3,
447 .need_gfx_hws = 1, .has_hotplug = 1,
448 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
449 .has_llc = 1,
450 .has_ddi = 1,
451 .has_fpga_dbg = 1,
452 .has_fbc = 1,
453 GEN_DEFAULT_PIPEOFFSETS,
454 IVB_CURSOR_OFFSETS,
455 };
456
457 static const struct intel_device_info intel_kabylake_gt3_info = {
458 .is_kabylake = 1,
459 .gen = 9,
460 .num_pipes = 3,
461 .need_gfx_hws = 1, .has_hotplug = 1,
462 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
463 .has_llc = 1,
464 .has_ddi = 1,
465 .has_fpga_dbg = 1,
466 .has_fbc = 1,
467 GEN_DEFAULT_PIPEOFFSETS,
468 IVB_CURSOR_OFFSETS,
469 };
470
471 /*
472 * We don't keep the workarounds for pre-production hardware, so we expect our
473 * driver to fail on these machines in one way or another. A little warning on
474 * dmesg may help both the user and the bug triagers.
475 *
476 * Our policy for removing pre-production workarounds is to keep the
477 * current gen workarounds as a guide to the bring-up of the next gen
478 * (workarounds have a habit of persisting!). Anything older than that
479 * should be removed along with the complications they introduce.
480 */
481 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
482 {
483 bool pre = false;
484
485 pre |= IS_HSW_EARLY_SDV(dev_priv);
486 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
487 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
488 pre |= IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0);
489
490 if (pre) {
491 DRM_ERROR("This is a pre-production stepping. "
492 "It may not be fully functional.\n");
493 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
494 }
495 }
496
497 static int vlv_alloc_s0ix_state(struct drm_i915_private *i915)
498 {
499 if (!IS_VALLEYVIEW(i915))
500 return 0;
501
502 /* we write all the values in the struct, so no need to zero it out */
503 i915->vlv_s0ix_state = kmalloc(sizeof(*i915->vlv_s0ix_state),
504 GFP_KERNEL);
505 if (!i915->vlv_s0ix_state)
506 return -ENOMEM;
507
508 return 0;
509 }
510
511 static void vlv_free_s0ix_state(struct drm_i915_private *i915)
512 {
513 if (!i915->vlv_s0ix_state)
514 return;
515
516 kfree(i915->vlv_s0ix_state);
517 i915->vlv_s0ix_state = NULL;
518 }
519
520 static void sanitize_gpu(struct drm_i915_private *i915)
521 {
522 if (!INTEL_INFO(i915)->gpu_reset_clobbers_display)
523 __intel_gt_reset(&i915->gt, ALL_ENGINES);
524 }
525
526 /**
527 * i915_driver_early_probe - setup state not requiring device access
528 * @dev_priv: device private
529 *
530 * Initialize everything that is a "SW-only" state, that is state not
531 * requiring accessing the device or exposing the driver via kernel internal
532 * or userspace interfaces. Example steps belonging here: lock initialization,
533 * system memory allocation, setting up device specific attributes and
534 * function hooks not requiring accessing the device.
535 */
536 static int i915_driver_early_probe(struct drm_i915_private *dev_priv)
537 {
538 int ret = 0;
539
540 if (i915_inject_probe_failure(dev_priv))
541 return -ENODEV;
542
543 intel_device_info_subplatform_init(dev_priv);
544
545 intel_uncore_mmio_debug_init_early(&dev_priv->mmio_debug);
546 intel_uncore_init_early(&dev_priv->uncore, dev_priv);
547
548 spin_lock_init(&dev_priv->irq_lock);
549 spin_lock_init(&dev_priv->gpu_error.lock);
550 mutex_init(&dev_priv->backlight_lock);
551
552 mutex_init(&dev_priv->sb_lock);
553 pm_qos_add_request(&dev_priv->sb_qos,
554 PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
555
556 mutex_init(&dev_priv->av_mutex);
557 mutex_init(&dev_priv->wm.wm_mutex);
558 mutex_init(&dev_priv->pps_mutex);
559 mutex_init(&dev_priv->hdcp_comp_mutex);
560
561 i915_memcpy_init_early(dev_priv);
562 intel_runtime_pm_init_early(&dev_priv->runtime_pm);
563
564 ret = i915_workqueues_init(dev_priv);
565 if (ret < 0)
566 return ret;
567
568 ret = vlv_alloc_s0ix_state(dev_priv);
569 if (ret < 0)
570 goto err_workqueues;
571
572 intel_wopcm_init_early(&dev_priv->wopcm);
573
574 intel_gt_init_early(&dev_priv->gt, dev_priv);
575
576 i915_gem_init_early(dev_priv);
577
578 /* This must be called before any calls to HAS_PCH_* */
579 intel_detect_pch(dev_priv);
580
581 intel_pm_setup(dev_priv);
582 intel_init_dpio(dev_priv);
583 ret = intel_power_domains_init(dev_priv);
584 if (ret < 0)
585 goto err_gem;
586 intel_irq_init(dev_priv);
587 intel_init_display_hooks(dev_priv);
588 intel_init_clock_gating_hooks(dev_priv);
589 intel_init_audio_hooks(dev_priv);
590 intel_display_crc_init(dev_priv);
591
592 intel_detect_preproduction_hw(dev_priv);
593
594 return 0;
595
596 err_gem:
597 i915_gem_cleanup_early(dev_priv);
598 intel_gt_driver_late_release(&dev_priv->gt);
599 vlv_free_s0ix_state(dev_priv);
600 err_workqueues:
601 i915_workqueues_cleanup(dev_priv);
602 mutex_destroy(&dev_priv->hdcp_comp_mutex);
603 mutex_destroy(&dev_priv->pps_mutex);
604 mutex_destroy(&dev_priv->wm.wm_mutex);
605 mutex_destroy(&dev_priv->av_mutex);
606 mutex_destroy(&dev_priv->sb_lock);
607 mutex_destroy(&dev_priv->backlight_lock);
608 spin_lock_destroy(&dev_priv->gpu_error.lock);
609 spin_lock_destroy(&dev_priv->irq_lock);
610 return ret;
611 }
612
613 /**
614 * i915_driver_late_release - cleanup the setup done in
615 * i915_driver_early_probe()
616 * @dev_priv: device private
617 */
618 static void i915_driver_late_release(struct drm_i915_private *dev_priv)
619 {
620 intel_irq_fini(dev_priv);
621 intel_power_domains_cleanup(dev_priv);
622 i915_gem_cleanup_early(dev_priv);
623 intel_gt_driver_late_release(&dev_priv->gt);
624 vlv_free_s0ix_state(dev_priv);
625 i915_workqueues_cleanup(dev_priv);
626
627 pm_qos_remove_request(&dev_priv->sb_qos);
628 mutex_destroy(&dev_priv->hdcp_comp_mutex);
629 mutex_destroy(&dev_priv->pps_mutex);
630 mutex_destroy(&dev_priv->wm.wm_mutex);
631 mutex_destroy(&dev_priv->av_mutex);
632 mutex_destroy(&dev_priv->sb_lock);
633 mutex_destroy(&dev_priv->sb_lock);
634 mutex_destroy(&dev_priv->backlight_lock);
635 spin_lock_destroy(&dev_priv->gpu_error.lock);
636 spin_lock_destroy(&dev_priv->irq_lock);
637 }
638
639 /**
640 * i915_driver_mmio_probe - setup device MMIO
641 * @dev_priv: device private
642 *
643 * Setup minimal device state necessary for MMIO accesses later in the
644 * initialization sequence. The setup here should avoid any other device-wide
645 * side effects or exposing the driver via kernel internal or user space
646 * interfaces.
647 */
648 static int i915_driver_mmio_probe(struct drm_i915_private *dev_priv)
649 {
650 int ret;
651
652 if (i915_inject_probe_failure(dev_priv))
653 return -ENODEV;
654
655 if (i915_get_bridge_dev(dev_priv))
656 return -EIO;
657
658 ret = intel_uncore_init_mmio(&dev_priv->uncore);
659 if (ret < 0)
660 goto err_bridge;
661
662 /* Try to make sure MCHBAR is enabled before poking at it */
663 intel_setup_mchbar(dev_priv);
664
665 intel_device_info_init_mmio(dev_priv);
666
667 intel_uncore_prune_mmio_domains(&dev_priv->uncore);
668
669 intel_uc_init_mmio(&dev_priv->gt.uc);
670
671 ret = intel_engines_init_mmio(&dev_priv->gt);
672 if (ret)
673 goto err_uncore;
674
675 /* As early as possible, scrub existing GPU state before clobbering */
676 sanitize_gpu(dev_priv);
677
678 return 0;
679
680 err_uncore:
681 intel_teardown_mchbar(dev_priv);
682 intel_uncore_fini_mmio(&dev_priv->uncore);
683 err_bridge:
684 pci_dev_put(dev_priv->bridge_dev);
685
686 return ret;
687 }
688
689 /**
690 * i915_driver_mmio_release - cleanup the setup done in i915_driver_mmio_probe()
691 * @dev_priv: device private
692 */
693 static void i915_driver_mmio_release(struct drm_i915_private *dev_priv)
694 {
695 intel_teardown_mchbar(dev_priv);
696 intel_uncore_fini_mmio(&dev_priv->uncore);
697 pci_dev_put(dev_priv->bridge_dev);
698 }
699
700 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
701 {
702 intel_gvt_sanitize_options(dev_priv);
703 }
704
705 #define DRAM_TYPE_STR(type) [INTEL_DRAM_ ## type] = #type
706
707 static const char *intel_dram_type_str(enum intel_dram_type type)
708 {
709 static const char * const str[] = {
710 DRAM_TYPE_STR(UNKNOWN),
711 DRAM_TYPE_STR(DDR3),
712 DRAM_TYPE_STR(DDR4),
713 DRAM_TYPE_STR(LPDDR3),
714 DRAM_TYPE_STR(LPDDR4),
715 };
716
717 if (type >= ARRAY_SIZE(str))
718 type = INTEL_DRAM_UNKNOWN;
719
720 return str[type];
721 }
722
723 #undef DRAM_TYPE_STR
724
725 static int intel_dimm_num_devices(const struct dram_dimm_info *dimm)
726 {
727 return dimm->ranks * 64 / (dimm->width ?: 1);
728 }
729
730 /* Returns total GB for the whole DIMM */
731 static int skl_get_dimm_size(u16 val)
732 {
733 return val & SKL_DRAM_SIZE_MASK;
734 }
735
736 static int skl_get_dimm_width(u16 val)
737 {
738 if (skl_get_dimm_size(val) == 0)
739 return 0;
740
741 switch (val & SKL_DRAM_WIDTH_MASK) {
742 case SKL_DRAM_WIDTH_X8:
743 case SKL_DRAM_WIDTH_X16:
744 case SKL_DRAM_WIDTH_X32:
745 val = (val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT;
746 return 8 << val;
747 default:
748 MISSING_CASE(val);
749 return 0;
750 }
751 }
752
753 static int skl_get_dimm_ranks(u16 val)
754 {
755 if (skl_get_dimm_size(val) == 0)
756 return 0;
757
758 val = (val & SKL_DRAM_RANK_MASK) >> SKL_DRAM_RANK_SHIFT;
759
760 return val + 1;
761 }
762
763 /* Returns total GB for the whole DIMM */
764 static int cnl_get_dimm_size(u16 val)
765 {
766 return (val & CNL_DRAM_SIZE_MASK) / 2;
767 }
768
769 static int cnl_get_dimm_width(u16 val)
770 {
771 if (cnl_get_dimm_size(val) == 0)
772 return 0;
773
774 switch (val & CNL_DRAM_WIDTH_MASK) {
775 case CNL_DRAM_WIDTH_X8:
776 case CNL_DRAM_WIDTH_X16:
777 case CNL_DRAM_WIDTH_X32:
778 val = (val & CNL_DRAM_WIDTH_MASK) >> CNL_DRAM_WIDTH_SHIFT;
779 return 8 << val;
780 default:
781 MISSING_CASE(val);
782 return 0;
783 }
784 }
785
786 static int cnl_get_dimm_ranks(u16 val)
787 {
788 if (cnl_get_dimm_size(val) == 0)
789 return 0;
790
791 val = (val & CNL_DRAM_RANK_MASK) >> CNL_DRAM_RANK_SHIFT;
792
793 return val + 1;
794 }
795
796 static bool
797 skl_is_16gb_dimm(const struct dram_dimm_info *dimm)
798 {
799 /* Convert total GB to Gb per DRAM device */
800 return 8 * dimm->size / (intel_dimm_num_devices(dimm) ?: 1) == 16;
801 }
802
803 static void
804 skl_dram_get_dimm_info(struct drm_i915_private *dev_priv,
805 struct dram_dimm_info *dimm,
806 int channel, char dimm_name, u16 val)
807 {
808 if (INTEL_GEN(dev_priv) >= 10) {
809 dimm->size = cnl_get_dimm_size(val);
810 dimm->width = cnl_get_dimm_width(val);
811 dimm->ranks = cnl_get_dimm_ranks(val);
812 } else {
813 dimm->size = skl_get_dimm_size(val);
814 dimm->width = skl_get_dimm_width(val);
815 dimm->ranks = skl_get_dimm_ranks(val);
816 }
817
818 DRM_DEBUG_KMS("CH%u DIMM %c size: %u GB, width: X%u, ranks: %u, 16Gb DIMMs: %s\n",
819 channel, dimm_name, dimm->size, dimm->width, dimm->ranks,
820 yesno(skl_is_16gb_dimm(dimm)));
821 }
822
823 static int
824 skl_dram_get_channel_info(struct drm_i915_private *dev_priv,
825 struct dram_channel_info *ch,
826 int channel, u32 val)
827 {
828 skl_dram_get_dimm_info(dev_priv, &ch->dimm_l,
829 channel, 'L', val & 0xffff);
830 skl_dram_get_dimm_info(dev_priv, &ch->dimm_s,
831 channel, 'S', val >> 16);
832
833 if (ch->dimm_l.size == 0 && ch->dimm_s.size == 0) {
834 DRM_DEBUG_KMS("CH%u not populated\n", channel);
835 return -EINVAL;
836 }
837
838 if (ch->dimm_l.ranks == 2 || ch->dimm_s.ranks == 2)
839 ch->ranks = 2;
840 else if (ch->dimm_l.ranks == 1 && ch->dimm_s.ranks == 1)
841 ch->ranks = 2;
842 else
843 ch->ranks = 1;
844
845 ch->is_16gb_dimm =
846 skl_is_16gb_dimm(&ch->dimm_l) ||
847 skl_is_16gb_dimm(&ch->dimm_s);
848
849 DRM_DEBUG_KMS("CH%u ranks: %u, 16Gb DIMMs: %s\n",
850 channel, ch->ranks, yesno(ch->is_16gb_dimm));
851
852 return 0;
853 }
854
855 static bool
856 intel_is_dram_symmetric(const struct dram_channel_info *ch0,
857 const struct dram_channel_info *ch1)
858 {
859 return !memcmp(ch0, ch1, sizeof(*ch0)) &&
860 (ch0->dimm_s.size == 0 ||
861 !memcmp(&ch0->dimm_l, &ch0->dimm_s, sizeof(ch0->dimm_l)));
862 }
863
864 static int
865 skl_dram_get_channels_info(struct drm_i915_private *dev_priv)
866 {
867 struct dram_info *dram_info = &dev_priv->dram_info;
868 struct dram_channel_info ch0 = {}, ch1 = {};
869 u32 val;
870 int ret;
871
872 val = I915_READ(SKL_MAD_DIMM_CH0_0_0_0_MCHBAR_MCMAIN);
873 ret = skl_dram_get_channel_info(dev_priv, &ch0, 0, val);
874 if (ret == 0)
875 dram_info->num_channels++;
876
877 val = I915_READ(SKL_MAD_DIMM_CH1_0_0_0_MCHBAR_MCMAIN);
878 ret = skl_dram_get_channel_info(dev_priv, &ch1, 1, val);
879 if (ret == 0)
880 dram_info->num_channels++;
881
882 if (dram_info->num_channels == 0) {
883 DRM_INFO("Number of memory channels is zero\n");
884 return -EINVAL;
885 }
886
887 /*
888 * If any of the channel is single rank channel, worst case output
889 * will be same as if single rank memory, so consider single rank
890 * memory.
891 */
892 if (ch0.ranks == 1 || ch1.ranks == 1)
893 dram_info->ranks = 1;
894 else
895 dram_info->ranks = max(ch0.ranks, ch1.ranks);
896
897 if (dram_info->ranks == 0) {
898 DRM_INFO("couldn't get memory rank information\n");
899 return -EINVAL;
900 }
901
902 dram_info->is_16gb_dimm = ch0.is_16gb_dimm || ch1.is_16gb_dimm;
903
904 dram_info->symmetric_memory = intel_is_dram_symmetric(&ch0, &ch1);
905
906 DRM_DEBUG_KMS("Memory configuration is symmetric? %s\n",
907 yesno(dram_info->symmetric_memory));
908 return 0;
909 }
910
911 #ifdef __NetBSD__
912 /* XXX Kludge to expose this to NetBSD driver attachment goop. */
913 const struct pci_device_id *const i915_device_ids = pciidlist;
914 const size_t i915_n_device_ids = __arraycount(pciidlist);
915 #endif
916
917 static enum intel_dram_type
918 skl_get_dram_type(struct drm_i915_private *dev_priv)
919 {
920 u32 val;
921
922 val = I915_READ(SKL_MAD_INTER_CHANNEL_0_0_0_MCHBAR_MCMAIN);
923
924 switch (val & SKL_DRAM_DDR_TYPE_MASK) {
925 case SKL_DRAM_DDR_TYPE_DDR3:
926 return INTEL_DRAM_DDR3;
927 case SKL_DRAM_DDR_TYPE_DDR4:
928 return INTEL_DRAM_DDR4;
929 case SKL_DRAM_DDR_TYPE_LPDDR3:
930 return INTEL_DRAM_LPDDR3;
931 case SKL_DRAM_DDR_TYPE_LPDDR4:
932 return INTEL_DRAM_LPDDR4;
933 default:
934 MISSING_CASE(val);
935 return INTEL_DRAM_UNKNOWN;
936 }
937 }
938
939 static int
940 skl_get_dram_info(struct drm_i915_private *dev_priv)
941 {
942 struct dram_info *dram_info = &dev_priv->dram_info;
943 u32 mem_freq_khz, val;
944 int ret;
945
946 dram_info->type = skl_get_dram_type(dev_priv);
947 DRM_DEBUG_KMS("DRAM type: %s\n", intel_dram_type_str(dram_info->type));
948
949 ret = skl_dram_get_channels_info(dev_priv);
950 if (ret)
951 return ret;
952
953 val = I915_READ(SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
954 mem_freq_khz = DIV_ROUND_UP((val & SKL_REQ_DATA_MASK) *
955 SKL_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
956
957 dram_info->bandwidth_kbps = dram_info->num_channels *
958 mem_freq_khz * 8;
959
960 if (dram_info->bandwidth_kbps == 0) {
961 DRM_INFO("Couldn't get system memory bandwidth\n");
962 return -EINVAL;
963 }
964
965 dram_info->valid = true;
966 return 0;
967 }
968
969 /* Returns Gb per DRAM device */
970 static int bxt_get_dimm_size(u32 val)
971 {
972 switch (val & BXT_DRAM_SIZE_MASK) {
973 case BXT_DRAM_SIZE_4GBIT:
974 return 4;
975 case BXT_DRAM_SIZE_6GBIT:
976 return 6;
977 case BXT_DRAM_SIZE_8GBIT:
978 return 8;
979 case BXT_DRAM_SIZE_12GBIT:
980 return 12;
981 case BXT_DRAM_SIZE_16GBIT:
982 return 16;
983 default:
984 MISSING_CASE(val);
985 return 0;
986 }
987 }
988
989 static int bxt_get_dimm_width(u32 val)
990 {
991 if (!bxt_get_dimm_size(val))
992 return 0;
993
994 val = (val & BXT_DRAM_WIDTH_MASK) >> BXT_DRAM_WIDTH_SHIFT;
995
996 return 8 << val;
997 }
998
999 static int bxt_get_dimm_ranks(u32 val)
1000 {
1001 if (!bxt_get_dimm_size(val))
1002 return 0;
1003
1004 switch (val & BXT_DRAM_RANK_MASK) {
1005 case BXT_DRAM_RANK_SINGLE:
1006 return 1;
1007 case BXT_DRAM_RANK_DUAL:
1008 return 2;
1009 default:
1010 MISSING_CASE(val);
1011 return 0;
1012 }
1013 }
1014
1015 static enum intel_dram_type bxt_get_dimm_type(u32 val)
1016 {
1017 if (!bxt_get_dimm_size(val))
1018 return INTEL_DRAM_UNKNOWN;
1019
1020 switch (val & BXT_DRAM_TYPE_MASK) {
1021 case BXT_DRAM_TYPE_DDR3:
1022 return INTEL_DRAM_DDR3;
1023 case BXT_DRAM_TYPE_LPDDR3:
1024 return INTEL_DRAM_LPDDR3;
1025 case BXT_DRAM_TYPE_DDR4:
1026 return INTEL_DRAM_DDR4;
1027 case BXT_DRAM_TYPE_LPDDR4:
1028 return INTEL_DRAM_LPDDR4;
1029 default:
1030 MISSING_CASE(val);
1031 return INTEL_DRAM_UNKNOWN;
1032 }
1033 }
1034
1035 static void bxt_get_dimm_info(struct dram_dimm_info *dimm,
1036 u32 val)
1037 {
1038 dimm->width = bxt_get_dimm_width(val);
1039 dimm->ranks = bxt_get_dimm_ranks(val);
1040
1041 /*
1042 * Size in register is Gb per DRAM device. Convert to total
1043 * GB to match the way we report this for non-LP platforms.
1044 */
1045 dimm->size = bxt_get_dimm_size(val) * intel_dimm_num_devices(dimm) / 8;
1046 }
1047
1048 static int
1049 bxt_get_dram_info(struct drm_i915_private *dev_priv)
1050 {
1051 struct dram_info *dram_info = &dev_priv->dram_info;
1052 u32 dram_channels;
1053 u32 mem_freq_khz, val;
1054 u8 num_active_channels;
1055 int i;
1056
1057 val = I915_READ(BXT_P_CR_MC_BIOS_REQ_0_0_0);
1058 mem_freq_khz = DIV_ROUND_UP((val & BXT_REQ_DATA_MASK) *
1059 BXT_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
1060
1061 dram_channels = val & BXT_DRAM_CHANNEL_ACTIVE_MASK;
1062 num_active_channels = hweight32(dram_channels);
1063
1064 /* Each active bit represents 4-byte channel */
1065 dram_info->bandwidth_kbps = (mem_freq_khz * num_active_channels * 4);
1066
1067 if (dram_info->bandwidth_kbps == 0) {
1068 DRM_INFO("Couldn't get system memory bandwidth\n");
1069 return -EINVAL;
1070 }
1071
1072 /*
1073 * Now read each DUNIT8/9/10/11 to check the rank of each dimms.
1074 */
1075 for (i = BXT_D_CR_DRP0_DUNIT_START; i <= BXT_D_CR_DRP0_DUNIT_END; i++) {
1076 struct dram_dimm_info dimm;
1077 enum intel_dram_type type;
1078
1079 val = I915_READ(BXT_D_CR_DRP0_DUNIT(i));
1080 if (val == 0xFFFFFFFF)
1081 continue;
1082
1083 dram_info->num_channels++;
1084
1085 bxt_get_dimm_info(&dimm, val);
1086 type = bxt_get_dimm_type(val);
1087
1088 WARN_ON(type != INTEL_DRAM_UNKNOWN &&
1089 dram_info->type != INTEL_DRAM_UNKNOWN &&
1090 dram_info->type != type);
1091
1092 DRM_DEBUG_KMS("CH%u DIMM size: %u GB, width: X%u, ranks: %u, type: %s\n",
1093 i - BXT_D_CR_DRP0_DUNIT_START,
1094 dimm.size, dimm.width, dimm.ranks,
1095 intel_dram_type_str(type));
1096
1097 /*
1098 * If any of the channel is single rank channel,
1099 * worst case output will be same as if single rank
1100 * memory, so consider single rank memory.
1101 */
1102 if (dram_info->ranks == 0)
1103 dram_info->ranks = dimm.ranks;
1104 else if (dimm.ranks == 1)
1105 dram_info->ranks = 1;
1106
1107 if (type != INTEL_DRAM_UNKNOWN)
1108 dram_info->type = type;
1109 }
1110
1111 if (dram_info->type == INTEL_DRAM_UNKNOWN ||
1112 dram_info->ranks == 0) {
1113 DRM_INFO("couldn't get memory information\n");
1114 return -EINVAL;
1115 }
1116
1117 dram_info->valid = true;
1118 return 0;
1119 }
1120
1121 static void
1122 intel_get_dram_info(struct drm_i915_private *dev_priv)
1123 {
1124 struct dram_info *dram_info = &dev_priv->dram_info;
1125 int ret;
1126
1127 /*
1128 * Assume 16Gb DIMMs are present until proven otherwise.
1129 * This is only used for the level 0 watermark latency
1130 * w/a which does not apply to bxt/glk.
1131 */
1132 dram_info->is_16gb_dimm = !IS_GEN9_LP(dev_priv);
1133
1134 if (INTEL_GEN(dev_priv) < 9 || !HAS_DISPLAY(dev_priv))
1135 return;
1136
1137 if (IS_GEN9_LP(dev_priv))
1138 ret = bxt_get_dram_info(dev_priv);
1139 else
1140 ret = skl_get_dram_info(dev_priv);
1141 if (ret)
1142 return;
1143
1144 DRM_DEBUG_KMS("DRAM bandwidth: %u kBps, channels: %u\n",
1145 dram_info->bandwidth_kbps,
1146 dram_info->num_channels);
1147
1148 DRM_DEBUG_KMS("DRAM ranks: %u, 16Gb DIMMs: %s\n",
1149 dram_info->ranks, yesno(dram_info->is_16gb_dimm));
1150 }
1151
1152 static u32 gen9_edram_size_mb(struct drm_i915_private *dev_priv, u32 cap)
1153 {
1154 static const u8 ways[8] = { 4, 8, 12, 16, 16, 16, 16, 16 };
1155 static const u8 sets[4] = { 1, 1, 2, 2 };
1156
1157 return EDRAM_NUM_BANKS(cap) *
1158 ways[EDRAM_WAYS_IDX(cap)] *
1159 sets[EDRAM_SETS_IDX(cap)];
1160 }
1161
1162 static void edram_detect(struct drm_i915_private *dev_priv)
1163 {
1164 u32 edram_cap = 0;
1165
1166 if (!(IS_HASWELL(dev_priv) ||
1167 IS_BROADWELL(dev_priv) ||
1168 INTEL_GEN(dev_priv) >= 9))
1169 return;
1170
1171 edram_cap = __raw_uncore_read32(&dev_priv->uncore, HSW_EDRAM_CAP);
1172
1173 /* NB: We can't write IDICR yet because we don't have gt funcs set up */
1174
1175 if (!(edram_cap & EDRAM_ENABLED))
1176 return;
1177
1178 /*
1179 * The needed capability bits for size calculation are not there with
1180 * pre gen9 so return 128MB always.
1181 */
1182 if (INTEL_GEN(dev_priv) < 9)
1183 dev_priv->edram_size_mb = 128;
1184 else
1185 dev_priv->edram_size_mb =
1186 gen9_edram_size_mb(dev_priv, edram_cap);
1187
1188 dev_info(dev_priv->drm.dev,
1189 "Found %uMB of eDRAM\n", dev_priv->edram_size_mb);
1190 }
1191
1192 /**
1193 * i915_driver_hw_probe - setup state requiring device access
1194 * @dev_priv: device private
1195 *
1196 * Setup state that requires accessing the device, but doesn't require
1197 * exposing the driver via kernel internal or userspace interfaces.
1198 */
1199 static int i915_driver_hw_probe(struct drm_i915_private *dev_priv)
1200 {
1201 struct pci_dev *pdev = dev_priv->drm.pdev;
1202 int ret;
1203
1204 if (i915_inject_probe_failure(dev_priv))
1205 return -ENODEV;
1206
1207 intel_device_info_runtime_init(dev_priv);
1208
1209 if (HAS_PPGTT(dev_priv)) {
1210 if (intel_vgpu_active(dev_priv) &&
1211 !intel_vgpu_has_full_ppgtt(dev_priv)) {
1212 i915_report_error(dev_priv,
1213 "incompatible vGPU found, support for isolated ppGTT required\n");
1214 return -ENXIO;
1215 }
1216 }
1217
1218 if (HAS_EXECLISTS(dev_priv)) {
1219 /*
1220 * Older GVT emulation depends upon intercepting CSB mmio,
1221 * which we no longer use, preferring to use the HWSP cache
1222 * instead.
1223 */
1224 if (intel_vgpu_active(dev_priv) &&
1225 !intel_vgpu_has_hwsp_emulation(dev_priv)) {
1226 i915_report_error(dev_priv,
1227 "old vGPU host found, support for HWSP emulation required\n");
1228 return -ENXIO;
1229 }
1230 }
1231
1232 intel_sanitize_options(dev_priv);
1233
1234 /* needs to be done before ggtt probe */
1235 edram_detect(dev_priv);
1236
1237 i915_perf_init(dev_priv);
1238
1239 ret = i915_ggtt_probe_hw(dev_priv);
1240 if (ret)
1241 goto err_perf;
1242
1243 ret = drm_fb_helper_remove_conflicting_pci_framebuffers(pdev, "inteldrmfb");
1244 if (ret)
1245 goto err_ggtt;
1246
1247 ret = i915_ggtt_init_hw(dev_priv);
1248 if (ret)
1249 goto err_ggtt;
1250
1251 ret = intel_memory_regions_hw_probe(dev_priv);
1252 if (ret)
1253 goto err_ggtt;
1254
1255 intel_gt_init_hw_early(&dev_priv->gt, &dev_priv->ggtt);
1256
1257 ret = i915_ggtt_enable_hw(dev_priv);
1258 if (ret) {
1259 DRM_ERROR("failed to enable GGTT\n");
1260 goto err_mem_regions;
1261 }
1262
1263 pci_set_master(pdev);
1264
1265 /*
1266 * We don't have a max segment size, so set it to the max so sg's
1267 * debugging layer doesn't complain
1268 */
1269 dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1270
1271 #ifndef __NetBSD__ /* Handled in intel_ggtt.c. */
1272 /* overlay on gen2 is broken and can't address above 1G */
1273 if (IS_GEN(dev_priv, 2)) {
1274 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1275 if (ret) {
1276 DRM_ERROR("failed to set DMA mask\n");
1277
1278 goto err_mem_regions;
1279 }
1280 }
1281
1282 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1283 * using 32bit addressing, overwriting memory if HWS is located
1284 * above 4GB.
1285 *
1286 * The documentation also mentions an issue with undefined
1287 * behaviour if any general state is accessed within a page above 4GB,
1288 * which also needs to be handled carefully.
1289 */
1290 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1291 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1292
1293 if (ret) {
1294 DRM_ERROR("failed to set DMA mask\n");
1295
1296 goto err_mem_regions;
1297 }
1298 }
1299 #endif
1300
1301 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1302 PM_QOS_DEFAULT_VALUE);
1303
1304 intel_gt_init_workarounds(dev_priv);
1305
1306 /* On the 945G/GM, the chipset reports the MSI capability on the
1307 * integrated graphics even though the support isn't actually there
1308 * according to the published specs. It doesn't appear to function
1309 * correctly in testing on 945G.
1310 * This may be a side effect of MSI having been made available for PEG
1311 * and the registers being closely associated.
1312 *
1313 * According to chipset errata, on the 965GM, MSI interrupts may
1314 * be lost or delayed, and was defeatured. MSI interrupts seem to
1315 * get lost on g4x as well, and interrupt delivery seems to stay
1316 * properly dead afterwards. So we'll just disable them for all
1317 * pre-gen5 chipsets.
1318 *
1319 * dp aux and gmbus irq on gen4 seems to be able to generate legacy
1320 * interrupts even when in MSI mode. This results in spurious
1321 * interrupt warnings if the legacy irq no. is shared with another
1322 * device. The kernel then disables that interrupt source and so
1323 * prevents the other device from working properly.
1324 */
1325 if (INTEL_GEN(dev_priv) >= 5) {
1326 if (pci_enable_msi(pdev) < 0)
1327 DRM_DEBUG_DRIVER("can't enable MSI");
1328 }
1329
1330 ret = intel_gvt_init(dev_priv);
1331 if (ret)
1332 goto err_msi;
1333
1334 intel_opregion_setup(dev_priv);
1335 /*
1336 * Fill the dram structure to get the system raw bandwidth and
1337 * dram info. This will be used for memory latency calculation.
1338 */
1339 intel_get_dram_info(dev_priv);
1340
1341 intel_bw_init_hw(dev_priv);
1342
1343 return 0;
1344
1345 err_msi:
1346 if (pdev->msi_enabled)
1347 pci_disable_msi(pdev);
1348 pm_qos_remove_request(&dev_priv->pm_qos);
1349 err_mem_regions:
1350 intel_memory_regions_driver_release(dev_priv);
1351 err_ggtt:
1352 i915_ggtt_driver_release(dev_priv);
1353 err_perf:
1354 i915_perf_fini(dev_priv);
1355 return ret;
1356 }
1357
1358 /**
1359 * i915_driver_hw_remove - cleanup the setup done in i915_driver_hw_probe()
1360 * @dev_priv: device private
1361 */
1362 static void i915_driver_hw_remove(struct drm_i915_private *dev_priv)
1363 {
1364 struct pci_dev *pdev = dev_priv->drm.pdev;
1365
1366 i915_perf_fini(dev_priv);
1367
1368 if (pdev->msi_enabled)
1369 pci_disable_msi(pdev);
1370
1371 pm_qos_remove_request(&dev_priv->pm_qos);
1372 }
1373
1374 /**
1375 * i915_driver_register - register the driver with the rest of the system
1376 * @dev_priv: device private
1377 *
1378 * Perform any steps necessary to make the driver available via kernel
1379 * internal or userspace interfaces.
1380 */
1381 static void i915_driver_register(struct drm_i915_private *dev_priv)
1382 {
1383 struct drm_device *dev = &dev_priv->drm;
1384
1385 i915_gem_driver_register(dev_priv);
1386 i915_pmu_register(dev_priv);
1387
1388 /*
1389 * Notify a valid surface after modesetting,
1390 * when running inside a VM.
1391 */
1392 if (intel_vgpu_active(dev_priv))
1393 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1394
1395 /* Reveal our presence to userspace */
1396 if (drm_dev_register(dev, 0) == 0) {
1397 i915_debugfs_register(dev_priv);
1398 i915_setup_sysfs(dev_priv);
1399
1400 /* Depends on sysfs having been initialized */
1401 i915_perf_register(dev_priv);
1402 } else
1403 DRM_ERROR("Failed to register driver for userspace access!\n");
1404
1405 if (HAS_DISPLAY(dev_priv) && INTEL_DISPLAY_ENABLED(dev_priv)) {
1406 /* Must be done after probing outputs */
1407 intel_opregion_register(dev_priv);
1408 acpi_video_register();
1409 }
1410
1411 intel_gt_driver_register(&dev_priv->gt);
1412
1413 intel_audio_init(dev_priv);
1414
1415 /*
1416 * Some ports require correctly set-up hpd registers for detection to
1417 * work properly (leading to ghost connected connector status), e.g. VGA
1418 * on gm45. Hence we can only set up the initial fbdev config after hpd
1419 * irqs are fully enabled. We do it last so that the async config
1420 * cannot run before the connectors are registered.
1421 */
1422 intel_fbdev_initial_config_async(dev);
1423
1424 /*
1425 * We need to coordinate the hotplugs with the asynchronous fbdev
1426 * configuration, for which we use the fbdev->async_cookie.
1427 */
1428 if (HAS_DISPLAY(dev_priv) && INTEL_DISPLAY_ENABLED(dev_priv))
1429 drm_kms_helper_poll_init(dev);
1430
1431 intel_power_domains_enable(dev_priv);
1432 intel_runtime_pm_enable(&dev_priv->runtime_pm);
1433 }
1434
1435 /**
1436 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1437 * @dev_priv: device private
1438 */
1439 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1440 {
1441 intel_runtime_pm_disable(&dev_priv->runtime_pm);
1442 intel_power_domains_disable(dev_priv);
1443
1444 intel_fbdev_unregister(dev_priv);
1445 intel_audio_deinit(dev_priv);
1446
1447 /*
1448 * After flushing the fbdev (incl. a late async config which will
1449 * have delayed queuing of a hotplug event), then flush the hotplug
1450 * events.
1451 */
1452 drm_kms_helper_poll_fini(&dev_priv->drm);
1453
1454 intel_gt_driver_unregister(&dev_priv->gt);
1455 acpi_video_unregister();
1456 intel_opregion_unregister(dev_priv);
1457
1458 i915_perf_unregister(dev_priv);
1459 i915_pmu_unregister(dev_priv);
1460
1461 i915_teardown_sysfs(dev_priv);
1462 drm_dev_unplug(&dev_priv->drm);
1463
1464 i915_gem_driver_unregister(dev_priv);
1465 }
1466
1467 static void i915_welcome_messages(struct drm_i915_private *dev_priv)
1468 {
1469 if (drm_debug_enabled(DRM_UT_DRIVER)) {
1470 struct drm_printer p = drm_debug_printer("i915 device info:");
1471
1472 drm_printf(&p, "pciid=0x%04x rev=0x%02x platform=%s (subplatform=0x%x) gen=%i\n",
1473 INTEL_DEVID(dev_priv),
1474 INTEL_REVID(dev_priv),
1475 intel_platform_name(INTEL_INFO(dev_priv)->platform),
1476 intel_subplatform(RUNTIME_INFO(dev_priv),
1477 INTEL_INFO(dev_priv)->platform),
1478 INTEL_GEN(dev_priv));
1479
1480 intel_device_info_print_static(INTEL_INFO(dev_priv), &p);
1481 intel_device_info_print_runtime(RUNTIME_INFO(dev_priv), &p);
1482 }
1483
1484 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1485 DRM_INFO("DRM_I915_DEBUG enabled\n");
1486 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1487 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1488 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM))
1489 DRM_INFO("DRM_I915_DEBUG_RUNTIME_PM enabled\n");
1490 }
1491
1492 static struct drm_i915_private *
1493 i915_driver_create(struct pci_dev *pdev, const struct pci_device_id *ent)
1494 {
1495 const struct intel_device_info *match_info =
1496 (struct intel_device_info *)ent->driver_data;
1497 struct intel_device_info *device_info;
1498 struct drm_i915_private *i915;
1499 int err;
1500
1501 i915 = kzalloc(sizeof(*i915), GFP_KERNEL);
1502 if (!i915)
1503 return ERR_PTR(-ENOMEM);
1504
1505 err = drm_dev_init(&i915->drm, &driver, &pdev->dev);
1506 if (err) {
1507 kfree(i915);
1508 return ERR_PTR(err);
1509 }
1510
1511 i915->drm.dev_private = i915;
1512
1513 i915->drm.pdev = pdev;
1514 pci_set_drvdata(pdev, i915);
1515
1516 /* Setup the write-once "constant" device info */
1517 device_info = mkwrite_device_info(i915);
1518 memcpy(device_info, match_info, sizeof(*device_info));
1519 RUNTIME_INFO(i915)->device_id = pdev->device;
1520
1521 BUG_ON(device_info->gen > BITS_PER_TYPE(device_info->gen_mask));
1522
1523 return i915;
1524 }
1525
1526 static void i915_driver_destroy(struct drm_i915_private *i915)
1527 {
1528 struct pci_dev *pdev = i915->drm.pdev;
1529
1530 drm_dev_fini(&i915->drm);
1531 kfree(i915);
1532
1533 /* And make sure we never chase our dangling pointer from pci_dev */
1534 pci_set_drvdata(pdev, NULL);
1535 }
1536
1537 /**
1538 * i915_driver_probe - setup chip and create an initial config
1539 * @pdev: PCI device
1540 * @ent: matching PCI ID entry
1541 *
1542 * The driver probe routine has to do several things:
1543 * - drive output discovery via intel_modeset_init()
1544 * - initialize the memory manager
1545 * - allocate initial config memory
1546 * - setup the DRM framebuffer with the allocated memory
1547 */
1548 int i915_driver_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1549 {
1550 const struct intel_device_info *match_info =
1551 (struct intel_device_info *)ent->driver_data;
1552 struct drm_i915_private *dev_priv;
1553 int ret;
1554
1555 dev_priv = i915_driver_create(pdev, ent);
1556 if (IS_ERR(dev_priv))
1557 return PTR_ERR(dev_priv);
1558
1559 /* Disable nuclear pageflip by default on pre-ILK */
1560 if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1561 dev_priv->drm.driver_features &= ~DRIVER_ATOMIC;
1562
1563 /*
1564 * Check if we support fake LMEM -- for now we only unleash this for
1565 * the live selftests(test-and-exit).
1566 */
1567 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1568 if (IS_ENABLED(CONFIG_DRM_I915_UNSTABLE_FAKE_LMEM)) {
1569 if (INTEL_GEN(dev_priv) >= 9 && i915_selftest.live < 0 &&
1570 i915_modparams.fake_lmem_start) {
1571 mkwrite_device_info(dev_priv)->memory_regions =
1572 REGION_SMEM | REGION_LMEM | REGION_STOLEN;
1573 mkwrite_device_info(dev_priv)->is_dgfx = true;
1574 GEM_BUG_ON(!HAS_LMEM(dev_priv));
1575 GEM_BUG_ON(!IS_DGFX(dev_priv));
1576 }
1577 }
1578 #endif
1579
1580 #ifndef __NetBSD__ /* XXX done for us */
1581 ret = pci_enable_device(pdev);
1582 if (ret)
1583 goto out_fini;
1584 #endif
1585
1586 ret = i915_driver_early_probe(dev_priv);
1587 if (ret < 0)
1588 goto out_pci_disable;
1589
1590 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1591
1592 i915_detect_vgpu(dev_priv);
1593
1594 ret = i915_driver_mmio_probe(dev_priv);
1595 if (ret < 0)
1596 goto out_runtime_pm_put;
1597
1598 ret = i915_driver_hw_probe(dev_priv);
1599 if (ret < 0)
1600 goto out_cleanup_mmio;
1601
1602 ret = i915_driver_modeset_probe(dev_priv);
1603 if (ret < 0)
1604 goto out_cleanup_hw;
1605
1606 i915_driver_register(dev_priv);
1607
1608 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1609
1610 i915_welcome_messages(dev_priv);
1611
1612 return 0;
1613
1614 out_cleanup_hw:
1615 i915_driver_hw_remove(dev_priv);
1616 intel_memory_regions_driver_release(dev_priv);
1617 i915_ggtt_driver_release(dev_priv);
1618 out_cleanup_mmio:
1619 i915_driver_mmio_release(dev_priv);
1620 out_runtime_pm_put:
1621 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1622 i915_driver_late_release(dev_priv);
1623 out_pci_disable:
1624 #ifndef __NetBSD__
1625 pci_disable_device(pdev);
1626 out_fini:
1627 i915_probe_error(dev_priv, "Device initialization failed (%d)\n", ret);
1628 i915_driver_destroy(dev_priv);
1629 #endif
1630 return ret;
1631 }
1632
1633 void i915_driver_remove(struct drm_i915_private *i915)
1634 {
1635 disable_rpm_wakeref_asserts(&i915->runtime_pm);
1636
1637 i915_driver_unregister(i915);
1638
1639 /*
1640 * After unregistering the device to prevent any new users, cancel
1641 * all in-flight requests so that we can quickly unbind the active
1642 * resources.
1643 */
1644 intel_gt_set_wedged(&i915->gt);
1645
1646 /* Flush any external code that still may be under the RCU lock */
1647 synchronize_rcu();
1648
1649 i915_gem_suspend(i915);
1650
1651 drm_atomic_helper_shutdown(&i915->drm);
1652
1653 intel_gvt_driver_remove(i915);
1654
1655 i915_driver_modeset_remove(i915);
1656
1657 i915_reset_error_state(i915);
1658 i915_gem_driver_remove(i915);
1659
1660 intel_power_domains_driver_remove(i915);
1661
1662 i915_driver_hw_remove(i915);
1663
1664 enable_rpm_wakeref_asserts(&i915->runtime_pm);
1665 }
1666
1667 static void i915_driver_release(struct drm_device *dev)
1668 {
1669 struct drm_i915_private *dev_priv = to_i915(dev);
1670 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
1671
1672 disable_rpm_wakeref_asserts(rpm);
1673
1674 i915_gem_driver_release(dev_priv);
1675
1676 intel_memory_regions_driver_release(dev_priv);
1677 i915_ggtt_driver_release(dev_priv);
1678
1679 i915_driver_mmio_release(dev_priv);
1680
1681 enable_rpm_wakeref_asserts(rpm);
1682 intel_runtime_pm_driver_release(rpm);
1683
1684 i915_driver_late_release(dev_priv);
1685 i915_driver_destroy(dev_priv);
1686 }
1687
1688 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1689 {
1690 struct drm_i915_private *i915 = to_i915(dev);
1691 int ret;
1692
1693 ret = i915_gem_open(i915, file);
1694 if (ret)
1695 return ret;
1696
1697 return 0;
1698 }
1699
1700 /**
1701 * i915_driver_lastclose - clean up after all DRM clients have exited
1702 * @dev: DRM device
1703 *
1704 * Take care of cleaning up after all DRM clients have exited. In the
1705 * mode setting case, we want to restore the kernel's initial mode (just
1706 * in case the last client left us in a bad state).
1707 *
1708 * Additionally, in the non-mode setting case, we'll tear down the GTT
1709 * and DMA structures, since the kernel won't be using them, and clea
1710 * up any GEM state.
1711 */
1712 static void i915_driver_lastclose(struct drm_device *dev)
1713 {
1714 intel_fbdev_restore_mode(dev);
1715 vga_switcheroo_process_delayed_switch();
1716 }
1717
1718 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1719 {
1720 struct drm_i915_file_private *file_priv = file->driver_priv;
1721
1722 i915_gem_context_close(file);
1723 i915_gem_release(dev, file);
1724
1725 kfree_rcu(file_priv, rcu);
1726
1727 /* Catch up with all the deferred frees from "this" client */
1728 i915_gem_flush_free_objects(to_i915(dev));
1729 }
1730
1731 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1732 {
1733 struct drm_device *dev = &dev_priv->drm;
1734 struct intel_encoder *encoder;
1735
1736 drm_modeset_lock_all(dev);
1737 for_each_intel_encoder(dev, encoder)
1738 if (encoder->suspend)
1739 encoder->suspend(encoder);
1740 drm_modeset_unlock_all(dev);
1741 }
1742
1743 #ifndef __NetBSD__ /* XXX vlv suspend/resume */
1744 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1745 bool rpm_resume);
1746 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1747 #endif
1748
1749 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1750 {
1751 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1752 if (acpi_target_system_state() < ACPI_STATE_S3)
1753 return true;
1754 #endif
1755 return false;
1756 }
1757
1758 #ifndef __NetBSD__ /* XXX runtime pm */
1759 static int i915_drm_prepare(struct drm_device *dev)
1760 {
1761 struct drm_i915_private *i915 = to_i915(dev);
1762
1763 /*
1764 * NB intel_display_suspend() may issue new requests after we've
1765 * ostensibly marked the GPU as ready-to-sleep here. We need to
1766 * split out that work and pull it forward so that after point,
1767 * the GPU is not woken again.
1768 */
1769 i915_gem_suspend(i915);
1770
1771 return 0;
1772 }
1773 #endif
1774
1775 int i915_drm_suspend(struct drm_device *dev)
1776 {
1777 struct drm_i915_private *dev_priv = to_i915(dev);
1778 struct pci_dev *pdev = dev_priv->drm.pdev;
1779 pci_power_t opregion_target_state;
1780
1781 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1782
1783 /* We do a lot of poking in a lot of registers, make sure they work
1784 * properly. */
1785 intel_power_domains_disable(dev_priv);
1786
1787 drm_kms_helper_poll_disable(dev);
1788
1789 #ifdef __NetBSD__ /* pmf handles this for us. */
1790 __USE(pdev);
1791 #else
1792 pci_save_state(pdev);
1793 #endif
1794
1795 intel_display_suspend(dev);
1796
1797 intel_dp_mst_suspend(dev_priv);
1798
1799 intel_runtime_pm_disable_interrupts(dev_priv);
1800 intel_hpd_cancel_work(dev_priv);
1801
1802 intel_suspend_encoders(dev_priv);
1803
1804 intel_suspend_hw(dev_priv);
1805
1806 i915_gem_suspend_gtt_mappings(dev_priv);
1807
1808 i915_save_state(dev_priv);
1809
1810 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1811 intel_opregion_suspend(dev_priv, opregion_target_state);
1812
1813 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1814
1815 dev_priv->suspend_count++;
1816
1817 intel_csr_ucode_suspend(dev_priv);
1818
1819 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1820
1821 return 0;
1822 }
1823
1824 static enum i915_drm_suspend_mode
1825 get_suspend_mode(struct drm_i915_private *dev_priv, bool hibernate)
1826 {
1827 if (hibernate)
1828 return I915_DRM_SUSPEND_HIBERNATE;
1829
1830 if (suspend_to_idle(dev_priv))
1831 return I915_DRM_SUSPEND_IDLE;
1832
1833 return I915_DRM_SUSPEND_MEM;
1834 }
1835
1836 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1837 {
1838 struct drm_i915_private *dev_priv = to_i915(dev);
1839 struct pci_dev *pdev = dev_priv->drm.pdev;
1840 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
1841 int ret = 0;
1842
1843 disable_rpm_wakeref_asserts(rpm);
1844
1845 i915_gem_suspend_late(dev_priv);
1846
1847 intel_uncore_suspend(&dev_priv->uncore);
1848
1849 intel_power_domains_suspend(dev_priv,
1850 get_suspend_mode(dev_priv, hibernation));
1851
1852 intel_display_power_suspend_late(dev_priv);
1853
1854 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1855 #ifdef __NetBSD__
1856 ret = 0;
1857 #else
1858 ret = vlv_suspend_complete(dev_priv);
1859 #endif
1860
1861 if (ret) {
1862 DRM_ERROR("Suspend complete failed: %d\n", ret);
1863 intel_power_domains_resume(dev_priv);
1864
1865 goto out;
1866 }
1867
1868 #ifdef __NetBSD__ /* pmf handles this for us. */
1869 __USE(pdev);
1870 #else
1871 pci_disable_device(pdev);
1872 /*
1873 * During hibernation on some platforms the BIOS may try to access
1874 * the device even though it's already in D3 and hang the machine. So
1875 * leave the device in D0 on those platforms and hope the BIOS will
1876 * power down the device properly. The issue was seen on multiple old
1877 * GENs with different BIOS vendors, so having an explicit blacklist
1878 * is inpractical; apply the workaround on everything pre GEN6. The
1879 * platforms where the issue was seen:
1880 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1881 * Fujitsu FSC S7110
1882 * Acer Aspire 1830T
1883 */
1884 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1885 pci_set_power_state(pdev, PCI_D3hot);
1886 #endif
1887
1888 out:
1889 enable_rpm_wakeref_asserts(rpm);
1890 if (!dev_priv->uncore.user_forcewake_count)
1891 intel_runtime_pm_driver_release(rpm);
1892
1893 return ret;
1894 }
1895
1896 #ifndef __NetBSD__ /* XXX vga switcheroo */
1897 int i915_suspend_switcheroo(struct drm_i915_private *i915, pm_message_t state)
1898 {
1899 int error;
1900
1901 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1902 state.event != PM_EVENT_FREEZE))
1903 return -EINVAL;
1904
1905 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
1906 return 0;
1907
1908 error = i915_drm_suspend(&i915->drm);
1909 if (error)
1910 return error;
1911
1912 return i915_drm_suspend_late(&i915->drm, false);
1913 }
1914 #endif
1915
1916 int i915_drm_resume(struct drm_device *dev)
1917 {
1918 struct drm_i915_private *dev_priv = to_i915(dev);
1919 int ret;
1920
1921 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1922
1923 sanitize_gpu(dev_priv);
1924
1925 ret = i915_ggtt_enable_hw(dev_priv);
1926 if (ret)
1927 DRM_ERROR("failed to re-enable GGTT\n");
1928
1929 i915_gem_restore_gtt_mappings(dev_priv);
1930 i915_gem_restore_fences(&dev_priv->ggtt);
1931
1932 intel_csr_ucode_resume(dev_priv);
1933
1934 i915_restore_state(dev_priv);
1935 intel_pps_unlock_regs_wa(dev_priv);
1936
1937 intel_init_pch_refclk(dev_priv);
1938
1939 /*
1940 * Interrupts have to be enabled before any batches are run. If not the
1941 * GPU will hang. i915_gem_init_hw() will initiate batches to
1942 * update/restore the context.
1943 *
1944 * drm_mode_config_reset() needs AUX interrupts.
1945 *
1946 * Modeset enabling in intel_modeset_init_hw() also needs working
1947 * interrupts.
1948 */
1949 intel_runtime_pm_enable_interrupts(dev_priv);
1950
1951 drm_mode_config_reset(dev);
1952
1953 i915_gem_resume(dev_priv);
1954
1955 intel_modeset_init_hw(dev_priv);
1956 intel_init_clock_gating(dev_priv);
1957
1958 spin_lock_irq(&dev_priv->irq_lock);
1959 if (dev_priv->display.hpd_irq_setup)
1960 dev_priv->display.hpd_irq_setup(dev_priv);
1961 spin_unlock_irq(&dev_priv->irq_lock);
1962
1963 intel_dp_mst_resume(dev_priv);
1964
1965 intel_display_resume(dev);
1966
1967 drm_kms_helper_poll_enable(dev);
1968
1969 /*
1970 * ... but also need to make sure that hotplug processing
1971 * doesn't cause havoc. Like in the driver load code we don't
1972 * bother with the tiny race here where we might lose hotplug
1973 * notifications.
1974 * */
1975 intel_hpd_init(dev_priv);
1976
1977 intel_opregion_resume(dev_priv);
1978
1979 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1980
1981 intel_power_domains_enable(dev_priv);
1982
1983 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1984
1985 return 0;
1986 }
1987
1988 int i915_drm_resume_early(struct drm_device *dev)
1989 {
1990 struct drm_i915_private *dev_priv = to_i915(dev);
1991 struct pci_dev *pdev = dev_priv->drm.pdev;
1992 int ret;
1993
1994 /*
1995 * We have a resume ordering issue with the snd-hda driver also
1996 * requiring our device to be power up. Due to the lack of a
1997 * parent/child relationship we currently solve this with an early
1998 * resume hook.
1999 *
2000 * FIXME: This should be solved with a special hdmi sink device or
2001 * similar so that power domains can be employed.
2002 */
2003
2004 /*
2005 * Note that we need to set the power state explicitly, since we
2006 * powered off the device during freeze and the PCI core won't power
2007 * it back up for us during thaw. Powering off the device during
2008 * freeze is not a hard requirement though, and during the
2009 * suspend/resume phases the PCI core makes sure we get here with the
2010 * device powered on. So in case we change our freeze logic and keep
2011 * the device powered we can also remove the following set power state
2012 * call.
2013 */
2014 #ifdef __NetBSD__ /* pmf handles this for us. */
2015 if (0)
2016 goto out;
2017 #else
2018 ret = pci_set_power_state(pdev, PCI_D0);
2019 if (ret) {
2020 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
2021 return ret;
2022 }
2023
2024 /*
2025 * Note that pci_enable_device() first enables any parent bridge
2026 * device and only then sets the power state for this device. The
2027 * bridge enabling is a nop though, since bridge devices are resumed
2028 * first. The order of enabling power and enabling the device is
2029 * imposed by the PCI core as described above, so here we preserve the
2030 * same order for the freeze/thaw phases.
2031 *
2032 * TODO: eventually we should remove pci_disable_device() /
2033 * pci_enable_enable_device() from suspend/resume. Due to how they
2034 * depend on the device enable refcount we can't anyway depend on them
2035 * disabling/enabling the device.
2036 */
2037 if (pci_enable_device(pdev))
2038 return -EIO;
2039 #endif
2040
2041 /* XXX pmf probably handles this for us too. */
2042 pci_set_master(dev->pdev);
2043
2044 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2045
2046 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2047 #ifdef __NetBSD__ /* XXX vlv suspend/resume */
2048 ret = 0;
2049 #else
2050 ret = vlv_resume_prepare(dev_priv, false);
2051 #endif
2052 if (ret)
2053 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
2054 ret);
2055
2056 intel_uncore_resume_early(&dev_priv->uncore);
2057
2058 intel_gt_check_and_clear_faults(&dev_priv->gt);
2059
2060 intel_display_power_resume_early(dev_priv);
2061
2062 intel_power_domains_resume(dev_priv);
2063
2064 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2065
2066 i915_rc6_ctx_wa_resume(dev_priv);
2067
2068 return ret;
2069 }
2070
2071 #ifndef __NetBSD__ /* XXX vga switcheroo */
2072 int i915_resume_switcheroo(struct drm_i915_private *i915)
2073 {
2074 int ret;
2075
2076 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2077 return 0;
2078
2079 ret = i915_drm_resume_early(&i915->drm);
2080 if (ret)
2081 return ret;
2082
2083 return i915_drm_resume(&i915->drm);
2084 }
2085
2086 static int i915_pm_prepare(struct device *kdev)
2087 {
2088 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2089
2090 if (!i915) {
2091 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2092 return -ENODEV;
2093 }
2094
2095 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2096 return 0;
2097
2098 return i915_drm_prepare(&i915->drm);
2099 }
2100 #endif
2101
2102 #ifndef __NetBSD__
2103 static int i915_pm_suspend(struct device *kdev)
2104 {
2105 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2106
2107 if (!i915) {
2108 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2109 return -ENODEV;
2110 }
2111
2112 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2113 return 0;
2114
2115 return i915_drm_suspend(&i915->drm);
2116 }
2117
2118 static int i915_pm_suspend_late(struct device *kdev)
2119 {
2120 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2121
2122 /*
2123 * We have a suspend ordering issue with the snd-hda driver also
2124 * requiring our device to be power up. Due to the lack of a
2125 * parent/child relationship we currently solve this with an late
2126 * suspend hook.
2127 *
2128 * FIXME: This should be solved with a special hdmi sink device or
2129 * similar so that power domains can be employed.
2130 */
2131 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2132 return 0;
2133
2134 return i915_drm_suspend_late(&i915->drm, false);
2135 }
2136
2137 static int i915_pm_poweroff_late(struct device *kdev)
2138 {
2139 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2140
2141 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2142 return 0;
2143
2144 return i915_drm_suspend_late(&i915->drm, true);
2145 }
2146
2147 static int i915_pm_resume_early(struct device *kdev)
2148 {
2149 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2150
2151 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2152 return 0;
2153
2154 return i915_drm_resume_early(&i915->drm);
2155 }
2156
2157 static int i915_pm_resume(struct device *kdev)
2158 {
2159 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2160
2161 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2162 return 0;
2163
2164 return i915_drm_resume(&i915->drm);
2165 }
2166 #endif
2167
2168 /* freeze: before creating the hibernation_image */
2169 static int i915_pm_freeze(struct device *kdev)
2170 {
2171 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2172 int ret;
2173
2174 if (i915->drm.switch_power_state != DRM_SWITCH_POWER_OFF) {
2175 ret = i915_drm_suspend(&i915->drm);
2176 if (ret)
2177 return ret;
2178 }
2179
2180 ret = i915_gem_freeze(i915);
2181 if (ret)
2182 return ret;
2183
2184 return 0;
2185 }
2186
2187 static int i915_pm_freeze_late(struct device *kdev)
2188 {
2189 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2190 int ret;
2191
2192 if (i915->drm.switch_power_state != DRM_SWITCH_POWER_OFF) {
2193 ret = i915_drm_suspend_late(&i915->drm, true);
2194 if (ret)
2195 return ret;
2196 }
2197
2198 ret = i915_gem_freeze_late(i915);
2199 if (ret)
2200 return ret;
2201
2202 return 0;
2203 }
2204
2205 /* thaw: called after creating the hibernation image, but before turning off. */
2206 static int i915_pm_thaw_early(struct device *kdev)
2207 {
2208 return i915_pm_resume_early(kdev);
2209 }
2210
2211 static int i915_pm_thaw(struct device *kdev)
2212 {
2213 return i915_pm_resume(kdev);
2214 }
2215
2216 /* restore: called after loading the hibernation image. */
2217 static int i915_pm_restore_early(struct device *kdev)
2218 {
2219 return i915_pm_resume_early(kdev);
2220 }
2221
2222 static int i915_pm_restore(struct device *kdev)
2223 {
2224 return i915_pm_resume(kdev);
2225 }
2226
2227 /*
2228 * Save all Gunit registers that may be lost after a D3 and a subsequent
2229 * S0i[R123] transition. The list of registers needing a save/restore is
2230 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2231 * registers in the following way:
2232 * - Driver: saved/restored by the driver
2233 * - Punit : saved/restored by the Punit firmware
2234 * - No, w/o marking: no need to save/restore, since the register is R/O or
2235 * used internally by the HW in a way that doesn't depend
2236 * keeping the content across a suspend/resume.
2237 * - Debug : used for debugging
2238 *
2239 * We save/restore all registers marked with 'Driver', with the following
2240 * exceptions:
2241 * - Registers out of use, including also registers marked with 'Debug'.
2242 * These have no effect on the driver's operation, so we don't save/restore
2243 * them to reduce the overhead.
2244 * - Registers that are fully setup by an initialization function called from
2245 * the resume path. For example many clock gating and RPS/RC6 registers.
2246 * - Registers that provide the right functionality with their reset defaults.
2247 *
2248 * TODO: Except for registers that based on the above 3 criteria can be safely
2249 * ignored, we save/restore all others, practically treating the HW context as
2250 * a black-box for the driver. Further investigation is needed to reduce the
2251 * saved/restored registers even further, by following the same 3 criteria.
2252 */
2253 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2254 {
2255 struct vlv_s0ix_state *s = dev_priv->vlv_s0ix_state;
2256 int i;
2257
2258 if (!s)
2259 return;
2260
2261 /* GAM 0x4000-0x4770 */
2262 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2263 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2264 s->arb_mode = I915_READ(ARB_MODE);
2265 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2266 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2267
2268 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2269 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2270
2271 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2272 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2273
2274 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2275 s->ecochk = I915_READ(GAM_ECOCHK);
2276 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2277 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2278
2279 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2280
2281 /* MBC 0x9024-0x91D0, 0x8500 */
2282 s->g3dctl = I915_READ(VLV_G3DCTL);
2283 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2284 s->mbctl = I915_READ(GEN6_MBCTL);
2285
2286 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2287 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2288 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2289 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2290 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2291 s->rstctl = I915_READ(GEN6_RSTCTL);
2292 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2293
2294 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2295 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2296 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2297 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2298 s->ecobus = I915_READ(ECOBUS);
2299 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2300 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2301 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2302 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2303 s->rcedata = I915_READ(VLV_RCEDATA);
2304 s->spare2gh = I915_READ(VLV_SPAREG2H);
2305
2306 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2307 s->gt_imr = I915_READ(GTIMR);
2308 s->gt_ier = I915_READ(GTIER);
2309 s->pm_imr = I915_READ(GEN6_PMIMR);
2310 s->pm_ier = I915_READ(GEN6_PMIER);
2311
2312 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2313 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2314
2315 /* GT SA CZ domain, 0x100000-0x138124 */
2316 s->tilectl = I915_READ(TILECTL);
2317 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2318 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2319 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2320 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2321
2322 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2323 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2324 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2325 s->pcbr = I915_READ(VLV_PCBR);
2326 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2327
2328 /*
2329 * Not saving any of:
2330 * DFT, 0x9800-0x9EC0
2331 * SARB, 0xB000-0xB1FC
2332 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2333 * PCI CFG
2334 */
2335 }
2336
2337 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2338 {
2339 struct vlv_s0ix_state *s = dev_priv->vlv_s0ix_state;
2340 u32 val;
2341 int i;
2342
2343 if (!s)
2344 return;
2345
2346 /* GAM 0x4000-0x4770 */
2347 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2348 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2349 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2350 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2351 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2352
2353 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2354 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2355
2356 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2357 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2358
2359 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2360 I915_WRITE(GAM_ECOCHK, s->ecochk);
2361 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2362 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2363
2364 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2365
2366 /* MBC 0x9024-0x91D0, 0x8500 */
2367 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2368 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2369 I915_WRITE(GEN6_MBCTL, s->mbctl);
2370
2371 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2372 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2373 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2374 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2375 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2376 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2377 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2378
2379 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2380 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2381 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2382 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2383 I915_WRITE(ECOBUS, s->ecobus);
2384 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2385 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2386 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2387 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2388 I915_WRITE(VLV_RCEDATA, s->rcedata);
2389 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2390
2391 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2392 I915_WRITE(GTIMR, s->gt_imr);
2393 I915_WRITE(GTIER, s->gt_ier);
2394 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2395 I915_WRITE(GEN6_PMIER, s->pm_ier);
2396
2397 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2398 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2399
2400 /* GT SA CZ domain, 0x100000-0x138124 */
2401 I915_WRITE(TILECTL, s->tilectl);
2402 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2403 /*
2404 * Preserve the GT allow wake and GFX force clock bit, they are not
2405 * be restored, as they are used to control the s0ix suspend/resume
2406 * sequence by the caller.
2407 */
2408 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2409 val &= VLV_GTLC_ALLOWWAKEREQ;
2410 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2411 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2412
2413 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2414 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2415 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2416 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2417
2418 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2419
2420 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2421 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2422 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2423 I915_WRITE(VLV_PCBR, s->pcbr);
2424 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2425 }
2426
2427 static int vlv_wait_for_pw_status(struct drm_i915_private *i915,
2428 u32 mask, u32 val)
2429 {
2430 i915_reg_t reg = VLV_GTLC_PW_STATUS;
2431 u32 reg_value;
2432 int ret;
2433
2434 /* The HW does not like us polling for PW_STATUS frequently, so
2435 * use the sleeping loop rather than risk the busy spin within
2436 * intel_wait_for_register().
2437 *
2438 * Transitioning between RC6 states should be at most 2ms (see
2439 * valleyview_enable_rps) so use a 3ms timeout.
2440 */
2441 ret = wait_for(((reg_value =
2442 intel_uncore_read_notrace(&i915->uncore, reg)) & mask)
2443 == val, 3);
2444
2445 /* just trace the final value */
2446 trace_i915_reg_rw(false, reg, reg_value, sizeof(reg_value), true);
2447
2448 return ret;
2449 }
2450
2451 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2452 {
2453 u32 val;
2454 int err;
2455
2456 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2457 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2458 if (force_on)
2459 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2460 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2461
2462 if (!force_on)
2463 return 0;
2464
2465 err = intel_wait_for_register(&dev_priv->uncore,
2466 VLV_GTLC_SURVIVABILITY_REG,
2467 VLV_GFX_CLK_STATUS_BIT,
2468 VLV_GFX_CLK_STATUS_BIT,
2469 20);
2470 if (err)
2471 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2472 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2473
2474 return err;
2475 }
2476
2477 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2478 {
2479 u32 mask;
2480 u32 val;
2481 int err;
2482
2483 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2484 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2485 if (allow)
2486 val |= VLV_GTLC_ALLOWWAKEREQ;
2487 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2488 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2489
2490 mask = VLV_GTLC_ALLOWWAKEACK;
2491 val = allow ? mask : 0;
2492
2493 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2494 if (err)
2495 DRM_ERROR("timeout disabling GT waking\n");
2496
2497 return err;
2498 }
2499
2500 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2501 bool wait_for_on)
2502 {
2503 u32 mask;
2504 u32 val;
2505
2506 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2507 val = wait_for_on ? mask : 0;
2508
2509 /*
2510 * RC6 transitioning can be delayed up to 2 msec (see
2511 * valleyview_enable_rps), use 3 msec for safety.
2512 *
2513 * This can fail to turn off the rc6 if the GPU is stuck after a failed
2514 * reset and we are trying to force the machine to sleep.
2515 */
2516 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2517 DRM_DEBUG_DRIVER("timeout waiting for GT wells to go %s\n",
2518 onoff(wait_for_on));
2519 }
2520
2521 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2522 {
2523 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2524 return;
2525
2526 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2527 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2528 }
2529
2530 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2531 {
2532 u32 mask;
2533 int err;
2534
2535 /*
2536 * Bspec defines the following GT well on flags as debug only, so
2537 * don't treat them as hard failures.
2538 */
2539 vlv_wait_for_gt_wells(dev_priv, false);
2540
2541 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2542 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2543
2544 vlv_check_no_gt_access(dev_priv);
2545
2546 err = vlv_force_gfx_clock(dev_priv, true);
2547 if (err)
2548 goto err1;
2549
2550 err = vlv_allow_gt_wake(dev_priv, false);
2551 if (err)
2552 goto err2;
2553
2554 vlv_save_gunit_s0ix_state(dev_priv);
2555
2556 err = vlv_force_gfx_clock(dev_priv, false);
2557 if (err)
2558 goto err2;
2559
2560 return 0;
2561
2562 err2:
2563 /* For safety always re-enable waking and disable gfx clock forcing */
2564 vlv_allow_gt_wake(dev_priv, true);
2565 err1:
2566 vlv_force_gfx_clock(dev_priv, false);
2567
2568 return err;
2569 }
2570
2571 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2572 bool rpm_resume)
2573 {
2574 int err;
2575 int ret;
2576
2577 /*
2578 * If any of the steps fail just try to continue, that's the best we
2579 * can do at this point. Return the first error code (which will also
2580 * leave RPM permanently disabled).
2581 */
2582 ret = vlv_force_gfx_clock(dev_priv, true);
2583
2584 vlv_restore_gunit_s0ix_state(dev_priv);
2585
2586 err = vlv_allow_gt_wake(dev_priv, true);
2587 if (!ret)
2588 ret = err;
2589
2590 err = vlv_force_gfx_clock(dev_priv, false);
2591 if (!ret)
2592 ret = err;
2593
2594 vlv_check_no_gt_access(dev_priv);
2595
2596 if (rpm_resume)
2597 intel_init_clock_gating(dev_priv);
2598
2599 return ret;
2600 }
2601
2602 #ifndef __NetBSD__ /* XXX runtime pm */
2603 static int intel_runtime_suspend(struct device *kdev)
2604 {
2605 struct drm_i915_private *dev_priv = kdev_to_i915(kdev);
2606 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
2607 int ret = 0;
2608
2609 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2610 return -ENODEV;
2611
2612 DRM_DEBUG_KMS("Suspending device\n");
2613
2614 disable_rpm_wakeref_asserts(rpm);
2615
2616 /*
2617 * We are safe here against re-faults, since the fault handler takes
2618 * an RPM reference.
2619 */
2620 i915_gem_runtime_suspend(dev_priv);
2621
2622 intel_gt_runtime_suspend(&dev_priv->gt);
2623
2624 intel_runtime_pm_disable_interrupts(dev_priv);
2625
2626 intel_uncore_suspend(&dev_priv->uncore);
2627
2628 intel_display_power_suspend(dev_priv);
2629
2630 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2631 #ifndef __NetBSD__ /* XXX vlv suspend/resume */
2632 ret = vlv_suspend_complete(dev_priv);
2633 #endif
2634
2635 if (ret) {
2636 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2637 intel_uncore_runtime_resume(&dev_priv->uncore);
2638
2639 intel_runtime_pm_enable_interrupts(dev_priv);
2640
2641 intel_gt_runtime_resume(&dev_priv->gt);
2642
2643 i915_gem_restore_fences(&dev_priv->ggtt);
2644
2645 enable_rpm_wakeref_asserts(rpm);
2646
2647 return ret;
2648 }
2649
2650 enable_rpm_wakeref_asserts(rpm);
2651 intel_runtime_pm_driver_release(rpm);
2652
2653 if (intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore))
2654 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2655
2656 rpm->suspended = true;
2657
2658 /*
2659 * FIXME: We really should find a document that references the arguments
2660 * used below!
2661 */
2662 if (IS_BROADWELL(dev_priv)) {
2663 /*
2664 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2665 * being detected, and the call we do at intel_runtime_resume()
2666 * won't be able to restore them. Since PCI_D3hot matches the
2667 * actual specification and appears to be working, use it.
2668 */
2669 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2670 } else {
2671 /*
2672 * current versions of firmware which depend on this opregion
2673 * notification have repurposed the D1 definition to mean
2674 * "runtime suspended" vs. what you would normally expect (D3)
2675 * to distinguish it from notifications that might be sent via
2676 * the suspend path.
2677 */
2678 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2679 }
2680
2681 assert_forcewakes_inactive(&dev_priv->uncore);
2682
2683 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2684 intel_hpd_poll_init(dev_priv);
2685
2686 DRM_DEBUG_KMS("Device suspended\n");
2687 return 0;
2688 }
2689
2690 static int intel_runtime_resume(struct device *kdev)
2691 {
2692 struct drm_i915_private *dev_priv = kdev_to_i915(kdev);
2693 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
2694 int ret = 0;
2695
2696 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2697 return -ENODEV;
2698
2699 DRM_DEBUG_KMS("Resuming device\n");
2700
2701 WARN_ON_ONCE(atomic_read(&rpm->wakeref_count));
2702 disable_rpm_wakeref_asserts(rpm);
2703
2704 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2705 rpm->suspended = false;
2706 if (intel_uncore_unclaimed_mmio(&dev_priv->uncore))
2707 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2708
2709 intel_display_power_resume(dev_priv);
2710
2711 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2712 ret = vlv_resume_prepare(dev_priv, true);
2713
2714 intel_uncore_runtime_resume(&dev_priv->uncore);
2715
2716 intel_runtime_pm_enable_interrupts(dev_priv);
2717
2718 /*
2719 * No point of rolling back things in case of an error, as the best
2720 * we can do is to hope that things will still work (and disable RPM).
2721 */
2722 intel_gt_runtime_resume(&dev_priv->gt);
2723 i915_gem_restore_fences(&dev_priv->ggtt);
2724
2725 /*
2726 * On VLV/CHV display interrupts are part of the display
2727 * power well, so hpd is reinitialized from there. For
2728 * everyone else do it here.
2729 */
2730 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2731 intel_hpd_init(dev_priv);
2732
2733 intel_enable_ipc(dev_priv);
2734
2735 enable_rpm_wakeref_asserts(rpm);
2736
2737 if (ret)
2738 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2739 else
2740 DRM_DEBUG_KMS("Device resumed\n");
2741
2742 return ret;
2743 }
2744 #endif
2745
2746 #ifndef __NetBSD__
2747 const struct dev_pm_ops i915_pm_ops = {
2748 /*
2749 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2750 * PMSG_RESUME]
2751 */
2752 .prepare = i915_pm_prepare,
2753 .suspend = i915_pm_suspend,
2754 .suspend_late = i915_pm_suspend_late,
2755 .resume_early = i915_pm_resume_early,
2756 .resume = i915_pm_resume,
2757
2758 /*
2759 * S4 event handlers
2760 * @freeze, @freeze_late : called (1) before creating the
2761 * hibernation image [PMSG_FREEZE] and
2762 * (2) after rebooting, before restoring
2763 * the image [PMSG_QUIESCE]
2764 * @thaw, @thaw_early : called (1) after creating the hibernation
2765 * image, before writing it [PMSG_THAW]
2766 * and (2) after failing to create or
2767 * restore the image [PMSG_RECOVER]
2768 * @poweroff, @poweroff_late: called after writing the hibernation
2769 * image, before rebooting [PMSG_HIBERNATE]
2770 * @restore, @restore_early : called after rebooting and restoring the
2771 * hibernation image [PMSG_RESTORE]
2772 */
2773 .freeze = i915_pm_freeze,
2774 .freeze_late = i915_pm_freeze_late,
2775 .thaw_early = i915_pm_thaw_early,
2776 .thaw = i915_pm_thaw,
2777 .poweroff = i915_pm_suspend,
2778 .poweroff_late = i915_pm_poweroff_late,
2779 .restore_early = i915_pm_restore_early,
2780 .restore = i915_pm_restore,
2781
2782 /* S0ix (via runtime suspend) event handlers */
2783 .runtime_suspend = intel_runtime_suspend,
2784 .runtime_resume = intel_runtime_resume,
2785 };
2786
2787 static const struct file_operations i915_driver_fops = {
2788 .owner = THIS_MODULE,
2789 .open = drm_open,
2790 .release = drm_release,
2791 .unlocked_ioctl = drm_ioctl,
2792 .mmap = i915_gem_mmap,
2793 .poll = drm_poll,
2794 .read = drm_read,
2795 .compat_ioctl = i915_compat_ioctl,
2796 .llseek = noop_llseek,
2797 };
2798 #endif /* defined(__NetBSD__) */
2799
2800 static int
2801 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2802 struct drm_file *file)
2803 {
2804 return -ENODEV;
2805 }
2806
2807 static const struct drm_ioctl_desc i915_ioctls[] = {
2808 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2809 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2810 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2811 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2812 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2813 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2814 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam_ioctl, DRM_RENDER_ALLOW),
2815 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2816 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2817 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2818 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2819 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2820 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2821 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2822 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2823 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2824 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2825 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2826 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer_ioctl, DRM_AUTH),
2827 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2_ioctl, DRM_RENDER_ALLOW),
2828 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2829 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2830 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_RENDER_ALLOW),
2831 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2832 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2833 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_RENDER_ALLOW),
2834 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2835 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2836 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2837 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2838 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2839 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2840 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_OFFSET, i915_gem_mmap_offset_ioctl, DRM_RENDER_ALLOW),
2841 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2842 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2843 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2844 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2845 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2846 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id_ioctl, 0),
2847 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2848 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER),
2849 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER),
2850 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey_ioctl, DRM_MASTER),
2851 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER),
2852 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_RENDER_ALLOW),
2853 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE_EXT, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2854 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2855 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2856 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2857 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2858 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2859 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2860 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2861 DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_RENDER_ALLOW),
2862 DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_RENDER_ALLOW),
2863 DRM_IOCTL_DEF_DRV(I915_QUERY, i915_query_ioctl, DRM_RENDER_ALLOW),
2864 DRM_IOCTL_DEF_DRV(I915_GEM_VM_CREATE, i915_gem_vm_create_ioctl, DRM_RENDER_ALLOW),
2865 DRM_IOCTL_DEF_DRV(I915_GEM_VM_DESTROY, i915_gem_vm_destroy_ioctl, DRM_RENDER_ALLOW),
2866 };
2867
2868 static struct drm_driver driver = {
2869 /* Don't use MTRRs here; the Xserver or userspace app should
2870 * deal with them for Intel hardware.
2871 */
2872 .driver_features =
2873 DRIVER_GEM |
2874 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2875 .release = i915_driver_release,
2876 .open = i915_driver_open,
2877 .lastclose = i915_driver_lastclose,
2878 .postclose = i915_driver_postclose,
2879
2880 .gem_close_object = i915_gem_close_object,
2881 .gem_free_object_unlocked = i915_gem_free_object,
2882 #ifdef __NetBSD__
2883 .request_irq = drm_pci_request_irq,
2884 .free_irq = drm_pci_free_irq,
2885
2886 /* XXX Not clear the `or legacy' part is important here. */
2887 .mmap_object = &drm_gem_mmap_object,
2888 .gem_uvm_ops = &i915_gem_uvm_ops,
2889 #endif
2890
2891
2892 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2893 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2894 .gem_prime_export = i915_gem_prime_export,
2895 .gem_prime_import = i915_gem_prime_import,
2896
2897 .get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos,
2898 .get_scanout_position = i915_get_crtc_scanoutpos,
2899
2900 .dumb_create = i915_gem_dumb_create,
2901 .dumb_map_offset = i915_gem_dumb_mmap_offset,
2902
2903 .ioctls = i915_ioctls,
2904 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2905 #ifdef __NetBSD__
2906 .fops = NULL,
2907 #else
2908 .fops = &i915_driver_fops,
2909 #endif
2910 .name = DRIVER_NAME,
2911 .desc = DRIVER_DESC,
2912 .date = DRIVER_DATE,
2913 .major = DRIVER_MAJOR,
2914 .minor = DRIVER_MINOR,
2915 .patchlevel = DRIVER_PATCHLEVEL,
2916 };
2917
2918 #ifdef __NetBSD__
2919
2920 static const struct uvm_pagerops i915_gem_uvm_ops = {
2921 .pgo_reference = drm_gem_pager_reference,
2922 .pgo_detach = drm_gem_pager_detach,
2923 .pgo_fault = i915_gem_fault,
2924 };
2925
2926 #endif
2927