i915_drv.c revision 1.27 1 /* $NetBSD: i915_drv.c,v 1.27 2021/12/19 11:09:47 riastradh Exp $ */
2
3 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
4 */
5 /*
6 *
7 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
8 * All Rights Reserved.
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a
11 * copy of this software and associated documentation files (the
12 * "Software"), to deal in the Software without restriction, including
13 * without limitation the rights to use, copy, modify, merge, publish,
14 * distribute, sub license, and/or sell copies of the Software, and to
15 * permit persons to whom the Software is furnished to do so, subject to
16 * the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
23 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
25 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
26 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
27 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
28 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29 *
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: i915_drv.c,v 1.27 2021/12/19 11:09:47 riastradh Exp $");
34
35 #include <linux/acpi.h>
36 #include <linux/device.h>
37 #include <linux/oom.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/pm.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/pnp.h>
43 #include <linux/slab.h>
44 #include <linux/vga_switcheroo.h>
45 #include <linux/vt.h>
46 #include <acpi/video.h>
47
48 #include <drm/drm_atomic_helper.h>
49 #include <drm/drm_ioctl.h>
50 #include <drm/drm_irq.h>
51 #include <drm/drm_probe_helper.h>
52 #include <drm/i915_drm.h>
53
54 #include "display/intel_acpi.h"
55 #include "display/intel_audio.h"
56 #include "display/intel_bw.h"
57 #include "display/intel_cdclk.h"
58 #include "display/intel_display_types.h"
59 #include "display/intel_dp.h"
60 #include "display/intel_fbdev.h"
61 #include "display/intel_hotplug.h"
62 #include "display/intel_overlay.h"
63 #include "display/intel_pipe_crc.h"
64 #include "display/intel_sprite.h"
65 #include "display/intel_vga.h"
66
67 #include "gem/i915_gem_context.h"
68 #include "gem/i915_gem_ioctls.h"
69 #include "gem/i915_gem_mman.h"
70 #include "gt/intel_gt.h"
71 #include "gt/intel_gt_pm.h"
72 #include "gt/intel_rc6.h"
73
74 #include "i915_debugfs.h"
75 #include "i915_drv.h"
76 #include "i915_irq.h"
77 #include "i915_memcpy.h"
78 #include "i915_perf.h"
79 #include "i915_query.h"
80 #include "i915_suspend.h"
81 #include "i915_switcheroo.h"
82 #include "i915_sysfs.h"
83 #include "i915_trace.h"
84 #include "i915_vgpu.h"
85 #include "intel_csr.h"
86 #include "intel_memory_region.h"
87 #include "intel_pm.h"
88
89 #ifdef __NetBSD__
90 #ifdef notyet
91 #if defined(__i386__)
92 #include "pnpbios.h"
93 #endif
94 #if NPNPBIOS > 0
95 #define CONFIG_PNP
96 #endif
97 #endif
98 #endif
99
100 static struct drm_driver driver;
101
102 #ifdef __NetBSD__
103 /* XXX Kludge to expose this to NetBSD driver attachment goop. */
104 struct drm_driver *const i915_drm_driver = &driver;
105 #endif
106 struct vlv_s0ix_state {
107 /* GAM */
108 u32 wr_watermark;
109 u32 gfx_prio_ctrl;
110 u32 arb_mode;
111 u32 gfx_pend_tlb0;
112 u32 gfx_pend_tlb1;
113 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
114 u32 media_max_req_count;
115 u32 gfx_max_req_count;
116 u32 render_hwsp;
117 u32 ecochk;
118 u32 bsd_hwsp;
119 u32 blt_hwsp;
120 u32 tlb_rd_addr;
121
122 /* MBC */
123 u32 g3dctl;
124 u32 gsckgctl;
125 u32 mbctl;
126
127 /* GCP */
128 u32 ucgctl1;
129 u32 ucgctl3;
130 u32 rcgctl1;
131 u32 rcgctl2;
132 u32 rstctl;
133 u32 misccpctl;
134
135 /* GPM */
136 u32 gfxpause;
137 u32 rpdeuhwtc;
138 u32 rpdeuc;
139 u32 ecobus;
140 u32 pwrdwnupctl;
141 u32 rp_down_timeout;
142 u32 rp_deucsw;
143 u32 rcubmabdtmr;
144 u32 rcedata;
145 u32 spare2gh;
146
147 /* Display 1 CZ domain */
148 u32 gt_imr;
149 u32 gt_ier;
150 u32 pm_imr;
151 u32 pm_ier;
152 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
153
154 /* GT SA CZ domain */
155 u32 tilectl;
156 u32 gt_fifoctl;
157 u32 gtlc_wake_ctrl;
158 u32 gtlc_survive;
159 u32 pmwgicz;
160
161 /* Display 2 CZ domain */
162 u32 gu_ctl0;
163 u32 gu_ctl1;
164 u32 pcbr;
165 u32 clock_gate_dis2;
166 };
167
168 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
169 {
170 int domain = pci_domain_nr(dev_priv->drm.pdev->bus);
171
172 dev_priv->bridge_dev =
173 pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0));
174 if (!dev_priv->bridge_dev) {
175 DRM_ERROR("bridge device not found\n");
176 return -1;
177 }
178 return 0;
179 }
180
181 /* Allocate space for the MCH regs if needed, return nonzero on error */
182 static int
183 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
184 {
185 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
186 #ifdef CONFIG_PNP
187 u32 temp_lo, temp_hi = 0;
188 u64 mchbar_addr;
189 #endif
190 int ret;
191
192 #ifdef CONFIG_PNP
193 if (INTEL_GEN(dev_priv) >= 4)
194 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
195 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
196 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
197
198 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
199 if (mchbar_addr &&
200 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
201 return 0;
202 #endif
203
204 /* Get some space for it */
205 dev_priv->mch_res.name = "i915 MCHBAR";
206 dev_priv->mch_res.flags = IORESOURCE_MEM;
207 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
208 &dev_priv->mch_res,
209 MCHBAR_SIZE, MCHBAR_SIZE,
210 PCIBIOS_MIN_MEM,
211 0, pcibios_align_resource,
212 dev_priv->bridge_dev);
213 if (ret) {
214 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
215 dev_priv->mch_res.start = 0;
216 return ret;
217 }
218
219 if (INTEL_GEN(dev_priv) >= 4)
220 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
221 upper_32_bits(dev_priv->mch_res.start));
222
223 pci_write_config_dword(dev_priv->bridge_dev, reg,
224 lower_32_bits(dev_priv->mch_res.start));
225 return 0;
226 }
227
228 /* Setup MCHBAR if possible, return true if we should disable it again */
229 static void
230 intel_setup_mchbar(struct drm_i915_private *dev_priv)
231 {
232 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
233 u32 temp;
234 bool enabled;
235
236 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
237 return;
238
239 dev_priv->mchbar_need_disable = false;
240
241 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
242 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
243 enabled = !!(temp & DEVEN_MCHBAR_EN);
244 } else {
245 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
246 enabled = temp & 1;
247 }
248
249 /* If it's already enabled, don't have to do anything */
250 if (enabled)
251 return;
252
253 if (intel_alloc_mchbar_resource(dev_priv))
254 return;
255
256 dev_priv->mchbar_need_disable = true;
257
258 /* Space is allocated or reserved, so enable it. */
259 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
260 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
261 temp | DEVEN_MCHBAR_EN);
262 } else {
263 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
264 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
265 }
266 }
267
268 static void
269 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
270 {
271 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
272
273 if (dev_priv->mchbar_need_disable) {
274 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
275 u32 deven_val;
276
277 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
278 &deven_val);
279 deven_val &= ~DEVEN_MCHBAR_EN;
280 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
281 deven_val);
282 } else {
283 u32 mchbar_val;
284
285 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
286 &mchbar_val);
287 mchbar_val &= ~1;
288 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
289 mchbar_val);
290 }
291 }
292
293 if (dev_priv->mch_res.start)
294 release_resource(&dev_priv->mch_res);
295 }
296
297 static int i915_driver_modeset_probe(struct drm_i915_private *i915)
298 {
299 int ret;
300
301 if (i915_inject_probe_failure(i915))
302 return -ENODEV;
303
304 if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) {
305 ret = drm_vblank_init(&i915->drm,
306 INTEL_NUM_PIPES(i915));
307 if (ret)
308 goto out;
309 }
310
311 #ifdef __NetBSD__ /* XXX vga */
312 __USE(i915);
313 #else
314 intel_bios_init(i915);
315
316 ret = intel_vga_register(i915);
317 if (ret)
318 goto out;
319 #endif
320
321 #ifdef __NetBSD__
322 intel_register_dsm_handler(i915);
323 #else
324 intel_register_dsm_handler();
325 #endif
326
327 ret = i915_switcheroo_register(i915);
328 if (ret)
329 goto cleanup_vga_client;
330
331 intel_power_domains_init_hw(i915, false);
332
333 intel_csr_ucode_init(i915);
334
335 ret = intel_irq_install(i915);
336 if (ret)
337 goto cleanup_csr;
338
339 /* Important: The output setup functions called by modeset_init need
340 * working irqs for e.g. gmbus and dp aux transfers. */
341 ret = intel_modeset_init(i915);
342 if (ret)
343 goto cleanup_irq;
344
345 ret = i915_gem_init(i915);
346 if (ret)
347 goto cleanup_modeset;
348
349 intel_overlay_setup(i915);
350
351 if (!HAS_DISPLAY(i915) || !INTEL_DISPLAY_ENABLED(i915))
352 return 0;
353
354 ret = intel_fbdev_init(&i915->drm);
355 if (ret)
356 goto cleanup_gem;
357
358 /* Only enable hotplug handling once the fbdev is fully set up. */
359 intel_hpd_init(i915);
360
361 intel_init_ipc(i915);
362
363 return 0;
364
365 cleanup_gem:
366 i915_gem_suspend(i915);
367 i915_gem_driver_remove(i915);
368 i915_gem_driver_release(i915);
369 cleanup_modeset:
370 intel_modeset_driver_remove(i915);
371 cleanup_irq:
372 intel_irq_uninstall(i915);
373 cleanup_csr:
374 intel_csr_ucode_fini(i915);
375 intel_power_domains_driver_remove(i915);
376 i915_switcheroo_unregister(i915);
377 cleanup_vga_client:
378 intel_vga_unregister(i915);
379 out:
380 return ret;
381 }
382
383 static void i915_driver_modeset_remove(struct drm_i915_private *i915)
384 {
385 intel_modeset_driver_remove(i915);
386
387 intel_irq_uninstall(i915);
388
389 intel_bios_driver_remove(i915);
390
391 i915_switcheroo_unregister(i915);
392
393 intel_vga_unregister(i915);
394
395 intel_csr_ucode_fini(i915);
396 }
397
398 static void intel_init_dpio(struct drm_i915_private *dev_priv)
399 {
400 /*
401 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
402 * CHV x1 PHY (DP/HDMI D)
403 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
404 */
405 if (IS_CHERRYVIEW(dev_priv)) {
406 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
407 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
408 } else if (IS_VALLEYVIEW(dev_priv)) {
409 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
410 }
411 }
412
413 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
414 {
415 /*
416 * The i915 workqueue is primarily used for batched retirement of
417 * requests (and thus managing bo) once the task has been completed
418 * by the GPU. i915_retire_requests() is called directly when we
419 * need high-priority retirement, such as waiting for an explicit
420 * bo.
421 *
422 * It is also used for periodic low-priority events, such as
423 * idle-timers and recording error state.
424 *
425 * All tasks on the workqueue are expected to acquire the dev mutex
426 * so there is no point in running more than one instance of the
427 * workqueue at any time. Use an ordered one.
428 */
429 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
430 if (dev_priv->wq == NULL)
431 goto out_err;
432
433 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
434 if (dev_priv->hotplug.dp_wq == NULL)
435 goto out_free_wq;
436
437 return 0;
438
439 out_free_wq:
440 destroy_workqueue(dev_priv->wq);
441 out_err:
442 DRM_ERROR("Failed to allocate workqueues.\n");
443
444 return -ENOMEM;
445 }
446
447 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
448 {
449 destroy_workqueue(dev_priv->hotplug.dp_wq);
450 destroy_workqueue(dev_priv->wq);
451 }
452
453 static const struct intel_device_info intel_kabylake_info = {
454 .is_kabylake = 1,
455 .gen = 9,
456 .num_pipes = 3,
457 .need_gfx_hws = 1, .has_hotplug = 1,
458 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
459 .has_llc = 1,
460 .has_ddi = 1,
461 .has_fpga_dbg = 1,
462 .has_fbc = 1,
463 GEN_DEFAULT_PIPEOFFSETS,
464 IVB_CURSOR_OFFSETS,
465 };
466
467 static const struct intel_device_info intel_kabylake_gt3_info = {
468 .is_kabylake = 1,
469 .gen = 9,
470 .num_pipes = 3,
471 .need_gfx_hws = 1, .has_hotplug = 1,
472 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
473 .has_llc = 1,
474 .has_ddi = 1,
475 .has_fpga_dbg = 1,
476 .has_fbc = 1,
477 GEN_DEFAULT_PIPEOFFSETS,
478 IVB_CURSOR_OFFSETS,
479 };
480
481 /*
482 * We don't keep the workarounds for pre-production hardware, so we expect our
483 * driver to fail on these machines in one way or another. A little warning on
484 * dmesg may help both the user and the bug triagers.
485 *
486 * Our policy for removing pre-production workarounds is to keep the
487 * current gen workarounds as a guide to the bring-up of the next gen
488 * (workarounds have a habit of persisting!). Anything older than that
489 * should be removed along with the complications they introduce.
490 */
491 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
492 {
493 bool pre = false;
494
495 pre |= IS_HSW_EARLY_SDV(dev_priv);
496 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
497 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
498 pre |= IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0);
499
500 if (pre) {
501 DRM_ERROR("This is a pre-production stepping. "
502 "It may not be fully functional.\n");
503 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
504 }
505 }
506
507 static int vlv_alloc_s0ix_state(struct drm_i915_private *i915)
508 {
509 if (!IS_VALLEYVIEW(i915))
510 return 0;
511
512 /* we write all the values in the struct, so no need to zero it out */
513 i915->vlv_s0ix_state = kmalloc(sizeof(*i915->vlv_s0ix_state),
514 GFP_KERNEL);
515 if (!i915->vlv_s0ix_state)
516 return -ENOMEM;
517
518 return 0;
519 }
520
521 static void vlv_free_s0ix_state(struct drm_i915_private *i915)
522 {
523 if (!i915->vlv_s0ix_state)
524 return;
525
526 kfree(i915->vlv_s0ix_state);
527 i915->vlv_s0ix_state = NULL;
528 }
529
530 static void sanitize_gpu(struct drm_i915_private *i915)
531 {
532 if (!INTEL_INFO(i915)->gpu_reset_clobbers_display)
533 __intel_gt_reset(&i915->gt, ALL_ENGINES);
534 }
535
536 /**
537 * i915_driver_early_probe - setup state not requiring device access
538 * @dev_priv: device private
539 *
540 * Initialize everything that is a "SW-only" state, that is state not
541 * requiring accessing the device or exposing the driver via kernel internal
542 * or userspace interfaces. Example steps belonging here: lock initialization,
543 * system memory allocation, setting up device specific attributes and
544 * function hooks not requiring accessing the device.
545 */
546 static int i915_driver_early_probe(struct drm_i915_private *dev_priv)
547 {
548 int ret = 0;
549
550 if (i915_inject_probe_failure(dev_priv))
551 return -ENODEV;
552
553 intel_device_info_subplatform_init(dev_priv);
554
555 intel_uncore_mmio_debug_init_early(&dev_priv->mmio_debug);
556 intel_uncore_init_early(&dev_priv->uncore, dev_priv);
557
558 spin_lock_init(&dev_priv->irq_lock);
559 spin_lock_init(&dev_priv->gpu_error.lock);
560 mutex_init(&dev_priv->backlight_lock);
561
562 mutex_init(&dev_priv->sb_lock);
563 pm_qos_add_request(&dev_priv->sb_qos,
564 PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
565
566 mutex_init(&dev_priv->av_mutex);
567 mutex_init(&dev_priv->wm.wm_mutex);
568 mutex_init(&dev_priv->pps_mutex);
569 mutex_init(&dev_priv->hdcp_comp_mutex);
570
571 i915_memcpy_init_early(dev_priv);
572 intel_runtime_pm_init_early(&dev_priv->runtime_pm);
573
574 ret = i915_workqueues_init(dev_priv);
575 if (ret < 0)
576 return ret;
577
578 ret = vlv_alloc_s0ix_state(dev_priv);
579 if (ret < 0)
580 goto err_workqueues;
581
582 intel_wopcm_init_early(&dev_priv->wopcm);
583
584 intel_gt_init_early(&dev_priv->gt, dev_priv);
585
586 i915_gem_init_early(dev_priv);
587
588 /* This must be called before any calls to HAS_PCH_* */
589 intel_detect_pch(dev_priv);
590
591 intel_pm_setup(dev_priv);
592 intel_init_dpio(dev_priv);
593 ret = intel_power_domains_init(dev_priv);
594 if (ret < 0)
595 goto err_gem;
596 intel_irq_init(dev_priv);
597 intel_init_display_hooks(dev_priv);
598 intel_init_clock_gating_hooks(dev_priv);
599 intel_init_audio_hooks(dev_priv);
600 intel_display_crc_init(dev_priv);
601
602 intel_detect_preproduction_hw(dev_priv);
603
604 return 0;
605
606 err_gem:
607 i915_gem_cleanup_early(dev_priv);
608 intel_gt_driver_late_release(&dev_priv->gt);
609 vlv_free_s0ix_state(dev_priv);
610 err_workqueues:
611 i915_workqueues_cleanup(dev_priv);
612 mutex_destroy(&dev_priv->hdcp_comp_mutex);
613 mutex_destroy(&dev_priv->pps_mutex);
614 mutex_destroy(&dev_priv->wm.wm_mutex);
615 mutex_destroy(&dev_priv->av_mutex);
616 mutex_destroy(&dev_priv->sb_lock);
617 mutex_destroy(&dev_priv->backlight_lock);
618 spin_lock_destroy(&dev_priv->gpu_error.lock);
619 spin_lock_destroy(&dev_priv->irq_lock);
620 return ret;
621 }
622
623 /**
624 * i915_driver_late_release - cleanup the setup done in
625 * i915_driver_early_probe()
626 * @dev_priv: device private
627 */
628 static void i915_driver_late_release(struct drm_i915_private *dev_priv)
629 {
630 intel_irq_fini(dev_priv);
631 intel_power_domains_cleanup(dev_priv);
632 i915_gem_cleanup_early(dev_priv);
633 intel_gt_driver_late_release(&dev_priv->gt);
634 vlv_free_s0ix_state(dev_priv);
635 i915_workqueues_cleanup(dev_priv);
636
637 pm_qos_remove_request(&dev_priv->sb_qos);
638 mutex_destroy(&dev_priv->hdcp_comp_mutex);
639 mutex_destroy(&dev_priv->pps_mutex);
640 mutex_destroy(&dev_priv->wm.wm_mutex);
641 mutex_destroy(&dev_priv->av_mutex);
642 mutex_destroy(&dev_priv->sb_lock);
643 mutex_destroy(&dev_priv->sb_lock);
644 mutex_destroy(&dev_priv->backlight_lock);
645 spin_lock_destroy(&dev_priv->gpu_error.lock);
646 spin_lock_destroy(&dev_priv->irq_lock);
647 }
648
649 /**
650 * i915_driver_mmio_probe - setup device MMIO
651 * @dev_priv: device private
652 *
653 * Setup minimal device state necessary for MMIO accesses later in the
654 * initialization sequence. The setup here should avoid any other device-wide
655 * side effects or exposing the driver via kernel internal or user space
656 * interfaces.
657 */
658 static int i915_driver_mmio_probe(struct drm_i915_private *dev_priv)
659 {
660 int ret;
661
662 if (i915_inject_probe_failure(dev_priv))
663 return -ENODEV;
664
665 if (i915_get_bridge_dev(dev_priv))
666 return -EIO;
667
668 ret = intel_uncore_init_mmio(&dev_priv->uncore);
669 if (ret < 0)
670 goto err_bridge;
671
672 /* Try to make sure MCHBAR is enabled before poking at it */
673 intel_setup_mchbar(dev_priv);
674
675 intel_device_info_init_mmio(dev_priv);
676
677 intel_uncore_prune_mmio_domains(&dev_priv->uncore);
678
679 intel_uc_init_mmio(&dev_priv->gt.uc);
680
681 ret = intel_engines_init_mmio(&dev_priv->gt);
682 if (ret)
683 goto err_uncore;
684
685 /* As early as possible, scrub existing GPU state before clobbering */
686 sanitize_gpu(dev_priv);
687
688 return 0;
689
690 err_uncore:
691 intel_teardown_mchbar(dev_priv);
692 intel_uncore_fini_mmio(&dev_priv->uncore);
693 err_bridge:
694 pci_dev_put(dev_priv->bridge_dev);
695
696 return ret;
697 }
698
699 /**
700 * i915_driver_mmio_release - cleanup the setup done in i915_driver_mmio_probe()
701 * @dev_priv: device private
702 */
703 static void i915_driver_mmio_release(struct drm_i915_private *dev_priv)
704 {
705 intel_teardown_mchbar(dev_priv);
706 intel_uncore_fini_mmio(&dev_priv->uncore);
707 pci_dev_put(dev_priv->bridge_dev);
708 }
709
710 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
711 {
712 intel_gvt_sanitize_options(dev_priv);
713 }
714
715 #define DRAM_TYPE_STR(type) [INTEL_DRAM_ ## type] = #type
716
717 static const char *intel_dram_type_str(enum intel_dram_type type)
718 {
719 static const char * const str[] = {
720 DRAM_TYPE_STR(UNKNOWN),
721 DRAM_TYPE_STR(DDR3),
722 DRAM_TYPE_STR(DDR4),
723 DRAM_TYPE_STR(LPDDR3),
724 DRAM_TYPE_STR(LPDDR4),
725 };
726
727 if (type >= ARRAY_SIZE(str))
728 type = INTEL_DRAM_UNKNOWN;
729
730 return str[type];
731 }
732
733 #undef DRAM_TYPE_STR
734
735 static int intel_dimm_num_devices(const struct dram_dimm_info *dimm)
736 {
737 return dimm->ranks * 64 / (dimm->width ?: 1);
738 }
739
740 /* Returns total GB for the whole DIMM */
741 static int skl_get_dimm_size(u16 val)
742 {
743 return val & SKL_DRAM_SIZE_MASK;
744 }
745
746 static int skl_get_dimm_width(u16 val)
747 {
748 if (skl_get_dimm_size(val) == 0)
749 return 0;
750
751 switch (val & SKL_DRAM_WIDTH_MASK) {
752 case SKL_DRAM_WIDTH_X8:
753 case SKL_DRAM_WIDTH_X16:
754 case SKL_DRAM_WIDTH_X32:
755 val = (val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT;
756 return 8 << val;
757 default:
758 MISSING_CASE(val);
759 return 0;
760 }
761 }
762
763 static int skl_get_dimm_ranks(u16 val)
764 {
765 if (skl_get_dimm_size(val) == 0)
766 return 0;
767
768 val = (val & SKL_DRAM_RANK_MASK) >> SKL_DRAM_RANK_SHIFT;
769
770 return val + 1;
771 }
772
773 /* Returns total GB for the whole DIMM */
774 static int cnl_get_dimm_size(u16 val)
775 {
776 return (val & CNL_DRAM_SIZE_MASK) / 2;
777 }
778
779 static int cnl_get_dimm_width(u16 val)
780 {
781 if (cnl_get_dimm_size(val) == 0)
782 return 0;
783
784 switch (val & CNL_DRAM_WIDTH_MASK) {
785 case CNL_DRAM_WIDTH_X8:
786 case CNL_DRAM_WIDTH_X16:
787 case CNL_DRAM_WIDTH_X32:
788 val = (val & CNL_DRAM_WIDTH_MASK) >> CNL_DRAM_WIDTH_SHIFT;
789 return 8 << val;
790 default:
791 MISSING_CASE(val);
792 return 0;
793 }
794 }
795
796 static int cnl_get_dimm_ranks(u16 val)
797 {
798 if (cnl_get_dimm_size(val) == 0)
799 return 0;
800
801 val = (val & CNL_DRAM_RANK_MASK) >> CNL_DRAM_RANK_SHIFT;
802
803 return val + 1;
804 }
805
806 static bool
807 skl_is_16gb_dimm(const struct dram_dimm_info *dimm)
808 {
809 /* Convert total GB to Gb per DRAM device */
810 return 8 * dimm->size / (intel_dimm_num_devices(dimm) ?: 1) == 16;
811 }
812
813 static void
814 skl_dram_get_dimm_info(struct drm_i915_private *dev_priv,
815 struct dram_dimm_info *dimm,
816 int channel, char dimm_name, u16 val)
817 {
818 if (INTEL_GEN(dev_priv) >= 10) {
819 dimm->size = cnl_get_dimm_size(val);
820 dimm->width = cnl_get_dimm_width(val);
821 dimm->ranks = cnl_get_dimm_ranks(val);
822 } else {
823 dimm->size = skl_get_dimm_size(val);
824 dimm->width = skl_get_dimm_width(val);
825 dimm->ranks = skl_get_dimm_ranks(val);
826 }
827
828 DRM_DEBUG_KMS("CH%u DIMM %c size: %u GB, width: X%u, ranks: %u, 16Gb DIMMs: %s\n",
829 channel, dimm_name, dimm->size, dimm->width, dimm->ranks,
830 yesno(skl_is_16gb_dimm(dimm)));
831 }
832
833 static int
834 skl_dram_get_channel_info(struct drm_i915_private *dev_priv,
835 struct dram_channel_info *ch,
836 int channel, u32 val)
837 {
838 skl_dram_get_dimm_info(dev_priv, &ch->dimm_l,
839 channel, 'L', val & 0xffff);
840 skl_dram_get_dimm_info(dev_priv, &ch->dimm_s,
841 channel, 'S', val >> 16);
842
843 if (ch->dimm_l.size == 0 && ch->dimm_s.size == 0) {
844 DRM_DEBUG_KMS("CH%u not populated\n", channel);
845 return -EINVAL;
846 }
847
848 if (ch->dimm_l.ranks == 2 || ch->dimm_s.ranks == 2)
849 ch->ranks = 2;
850 else if (ch->dimm_l.ranks == 1 && ch->dimm_s.ranks == 1)
851 ch->ranks = 2;
852 else
853 ch->ranks = 1;
854
855 ch->is_16gb_dimm =
856 skl_is_16gb_dimm(&ch->dimm_l) ||
857 skl_is_16gb_dimm(&ch->dimm_s);
858
859 DRM_DEBUG_KMS("CH%u ranks: %u, 16Gb DIMMs: %s\n",
860 channel, ch->ranks, yesno(ch->is_16gb_dimm));
861
862 return 0;
863 }
864
865 static bool
866 intel_is_dram_symmetric(const struct dram_channel_info *ch0,
867 const struct dram_channel_info *ch1)
868 {
869 return !memcmp(ch0, ch1, sizeof(*ch0)) &&
870 (ch0->dimm_s.size == 0 ||
871 !memcmp(&ch0->dimm_l, &ch0->dimm_s, sizeof(ch0->dimm_l)));
872 }
873
874 static int
875 skl_dram_get_channels_info(struct drm_i915_private *dev_priv)
876 {
877 struct dram_info *dram_info = &dev_priv->dram_info;
878 struct dram_channel_info ch0 = {}, ch1 = {};
879 u32 val;
880 int ret;
881
882 val = I915_READ(SKL_MAD_DIMM_CH0_0_0_0_MCHBAR_MCMAIN);
883 ret = skl_dram_get_channel_info(dev_priv, &ch0, 0, val);
884 if (ret == 0)
885 dram_info->num_channels++;
886
887 val = I915_READ(SKL_MAD_DIMM_CH1_0_0_0_MCHBAR_MCMAIN);
888 ret = skl_dram_get_channel_info(dev_priv, &ch1, 1, val);
889 if (ret == 0)
890 dram_info->num_channels++;
891
892 if (dram_info->num_channels == 0) {
893 DRM_INFO("Number of memory channels is zero\n");
894 return -EINVAL;
895 }
896
897 /*
898 * If any of the channel is single rank channel, worst case output
899 * will be same as if single rank memory, so consider single rank
900 * memory.
901 */
902 if (ch0.ranks == 1 || ch1.ranks == 1)
903 dram_info->ranks = 1;
904 else
905 dram_info->ranks = max(ch0.ranks, ch1.ranks);
906
907 if (dram_info->ranks == 0) {
908 DRM_INFO("couldn't get memory rank information\n");
909 return -EINVAL;
910 }
911
912 dram_info->is_16gb_dimm = ch0.is_16gb_dimm || ch1.is_16gb_dimm;
913
914 dram_info->symmetric_memory = intel_is_dram_symmetric(&ch0, &ch1);
915
916 DRM_DEBUG_KMS("Memory configuration is symmetric? %s\n",
917 yesno(dram_info->symmetric_memory));
918 return 0;
919 }
920
921 #ifdef __NetBSD__
922 /* XXX Kludge to expose this to NetBSD driver attachment goop. */
923 const struct pci_device_id *const i915_device_ids = pciidlist;
924 const size_t i915_n_device_ids = __arraycount(pciidlist);
925 #endif
926
927 static enum intel_dram_type
928 skl_get_dram_type(struct drm_i915_private *dev_priv)
929 {
930 u32 val;
931
932 val = I915_READ(SKL_MAD_INTER_CHANNEL_0_0_0_MCHBAR_MCMAIN);
933
934 switch (val & SKL_DRAM_DDR_TYPE_MASK) {
935 case SKL_DRAM_DDR_TYPE_DDR3:
936 return INTEL_DRAM_DDR3;
937 case SKL_DRAM_DDR_TYPE_DDR4:
938 return INTEL_DRAM_DDR4;
939 case SKL_DRAM_DDR_TYPE_LPDDR3:
940 return INTEL_DRAM_LPDDR3;
941 case SKL_DRAM_DDR_TYPE_LPDDR4:
942 return INTEL_DRAM_LPDDR4;
943 default:
944 MISSING_CASE(val);
945 return INTEL_DRAM_UNKNOWN;
946 }
947 }
948
949 static int
950 skl_get_dram_info(struct drm_i915_private *dev_priv)
951 {
952 struct dram_info *dram_info = &dev_priv->dram_info;
953 u32 mem_freq_khz, val;
954 int ret;
955
956 dram_info->type = skl_get_dram_type(dev_priv);
957 DRM_DEBUG_KMS("DRAM type: %s\n", intel_dram_type_str(dram_info->type));
958
959 ret = skl_dram_get_channels_info(dev_priv);
960 if (ret)
961 return ret;
962
963 val = I915_READ(SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
964 mem_freq_khz = DIV_ROUND_UP((val & SKL_REQ_DATA_MASK) *
965 SKL_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
966
967 dram_info->bandwidth_kbps = dram_info->num_channels *
968 mem_freq_khz * 8;
969
970 if (dram_info->bandwidth_kbps == 0) {
971 DRM_INFO("Couldn't get system memory bandwidth\n");
972 return -EINVAL;
973 }
974
975 dram_info->valid = true;
976 return 0;
977 }
978
979 /* Returns Gb per DRAM device */
980 static int bxt_get_dimm_size(u32 val)
981 {
982 switch (val & BXT_DRAM_SIZE_MASK) {
983 case BXT_DRAM_SIZE_4GBIT:
984 return 4;
985 case BXT_DRAM_SIZE_6GBIT:
986 return 6;
987 case BXT_DRAM_SIZE_8GBIT:
988 return 8;
989 case BXT_DRAM_SIZE_12GBIT:
990 return 12;
991 case BXT_DRAM_SIZE_16GBIT:
992 return 16;
993 default:
994 MISSING_CASE(val);
995 return 0;
996 }
997 }
998
999 static int bxt_get_dimm_width(u32 val)
1000 {
1001 if (!bxt_get_dimm_size(val))
1002 return 0;
1003
1004 val = (val & BXT_DRAM_WIDTH_MASK) >> BXT_DRAM_WIDTH_SHIFT;
1005
1006 return 8 << val;
1007 }
1008
1009 static int bxt_get_dimm_ranks(u32 val)
1010 {
1011 if (!bxt_get_dimm_size(val))
1012 return 0;
1013
1014 switch (val & BXT_DRAM_RANK_MASK) {
1015 case BXT_DRAM_RANK_SINGLE:
1016 return 1;
1017 case BXT_DRAM_RANK_DUAL:
1018 return 2;
1019 default:
1020 MISSING_CASE(val);
1021 return 0;
1022 }
1023 }
1024
1025 static enum intel_dram_type bxt_get_dimm_type(u32 val)
1026 {
1027 if (!bxt_get_dimm_size(val))
1028 return INTEL_DRAM_UNKNOWN;
1029
1030 switch (val & BXT_DRAM_TYPE_MASK) {
1031 case BXT_DRAM_TYPE_DDR3:
1032 return INTEL_DRAM_DDR3;
1033 case BXT_DRAM_TYPE_LPDDR3:
1034 return INTEL_DRAM_LPDDR3;
1035 case BXT_DRAM_TYPE_DDR4:
1036 return INTEL_DRAM_DDR4;
1037 case BXT_DRAM_TYPE_LPDDR4:
1038 return INTEL_DRAM_LPDDR4;
1039 default:
1040 MISSING_CASE(val);
1041 return INTEL_DRAM_UNKNOWN;
1042 }
1043 }
1044
1045 static void bxt_get_dimm_info(struct dram_dimm_info *dimm,
1046 u32 val)
1047 {
1048 dimm->width = bxt_get_dimm_width(val);
1049 dimm->ranks = bxt_get_dimm_ranks(val);
1050
1051 /*
1052 * Size in register is Gb per DRAM device. Convert to total
1053 * GB to match the way we report this for non-LP platforms.
1054 */
1055 dimm->size = bxt_get_dimm_size(val) * intel_dimm_num_devices(dimm) / 8;
1056 }
1057
1058 static int
1059 bxt_get_dram_info(struct drm_i915_private *dev_priv)
1060 {
1061 struct dram_info *dram_info = &dev_priv->dram_info;
1062 u32 dram_channels;
1063 u32 mem_freq_khz, val;
1064 u8 num_active_channels;
1065 int i;
1066
1067 val = I915_READ(BXT_P_CR_MC_BIOS_REQ_0_0_0);
1068 mem_freq_khz = DIV_ROUND_UP((val & BXT_REQ_DATA_MASK) *
1069 BXT_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
1070
1071 dram_channels = val & BXT_DRAM_CHANNEL_ACTIVE_MASK;
1072 num_active_channels = hweight32(dram_channels);
1073
1074 /* Each active bit represents 4-byte channel */
1075 dram_info->bandwidth_kbps = (mem_freq_khz * num_active_channels * 4);
1076
1077 if (dram_info->bandwidth_kbps == 0) {
1078 DRM_INFO("Couldn't get system memory bandwidth\n");
1079 return -EINVAL;
1080 }
1081
1082 /*
1083 * Now read each DUNIT8/9/10/11 to check the rank of each dimms.
1084 */
1085 for (i = BXT_D_CR_DRP0_DUNIT_START; i <= BXT_D_CR_DRP0_DUNIT_END; i++) {
1086 struct dram_dimm_info dimm;
1087 enum intel_dram_type type;
1088
1089 val = I915_READ(BXT_D_CR_DRP0_DUNIT(i));
1090 if (val == 0xFFFFFFFF)
1091 continue;
1092
1093 dram_info->num_channels++;
1094
1095 bxt_get_dimm_info(&dimm, val);
1096 type = bxt_get_dimm_type(val);
1097
1098 WARN_ON(type != INTEL_DRAM_UNKNOWN &&
1099 dram_info->type != INTEL_DRAM_UNKNOWN &&
1100 dram_info->type != type);
1101
1102 DRM_DEBUG_KMS("CH%u DIMM size: %u GB, width: X%u, ranks: %u, type: %s\n",
1103 i - BXT_D_CR_DRP0_DUNIT_START,
1104 dimm.size, dimm.width, dimm.ranks,
1105 intel_dram_type_str(type));
1106
1107 /*
1108 * If any of the channel is single rank channel,
1109 * worst case output will be same as if single rank
1110 * memory, so consider single rank memory.
1111 */
1112 if (dram_info->ranks == 0)
1113 dram_info->ranks = dimm.ranks;
1114 else if (dimm.ranks == 1)
1115 dram_info->ranks = 1;
1116
1117 if (type != INTEL_DRAM_UNKNOWN)
1118 dram_info->type = type;
1119 }
1120
1121 if (dram_info->type == INTEL_DRAM_UNKNOWN ||
1122 dram_info->ranks == 0) {
1123 DRM_INFO("couldn't get memory information\n");
1124 return -EINVAL;
1125 }
1126
1127 dram_info->valid = true;
1128 return 0;
1129 }
1130
1131 static void
1132 intel_get_dram_info(struct drm_i915_private *dev_priv)
1133 {
1134 struct dram_info *dram_info = &dev_priv->dram_info;
1135 int ret;
1136
1137 /*
1138 * Assume 16Gb DIMMs are present until proven otherwise.
1139 * This is only used for the level 0 watermark latency
1140 * w/a which does not apply to bxt/glk.
1141 */
1142 dram_info->is_16gb_dimm = !IS_GEN9_LP(dev_priv);
1143
1144 if (INTEL_GEN(dev_priv) < 9 || !HAS_DISPLAY(dev_priv))
1145 return;
1146
1147 if (IS_GEN9_LP(dev_priv))
1148 ret = bxt_get_dram_info(dev_priv);
1149 else
1150 ret = skl_get_dram_info(dev_priv);
1151 if (ret)
1152 return;
1153
1154 DRM_DEBUG_KMS("DRAM bandwidth: %u kBps, channels: %u\n",
1155 dram_info->bandwidth_kbps,
1156 dram_info->num_channels);
1157
1158 DRM_DEBUG_KMS("DRAM ranks: %u, 16Gb DIMMs: %s\n",
1159 dram_info->ranks, yesno(dram_info->is_16gb_dimm));
1160 }
1161
1162 static u32 gen9_edram_size_mb(struct drm_i915_private *dev_priv, u32 cap)
1163 {
1164 static const u8 ways[8] = { 4, 8, 12, 16, 16, 16, 16, 16 };
1165 static const u8 sets[4] = { 1, 1, 2, 2 };
1166
1167 return EDRAM_NUM_BANKS(cap) *
1168 ways[EDRAM_WAYS_IDX(cap)] *
1169 sets[EDRAM_SETS_IDX(cap)];
1170 }
1171
1172 static void edram_detect(struct drm_i915_private *dev_priv)
1173 {
1174 u32 edram_cap = 0;
1175
1176 if (!(IS_HASWELL(dev_priv) ||
1177 IS_BROADWELL(dev_priv) ||
1178 INTEL_GEN(dev_priv) >= 9))
1179 return;
1180
1181 edram_cap = __raw_uncore_read32(&dev_priv->uncore, HSW_EDRAM_CAP);
1182
1183 /* NB: We can't write IDICR yet because we don't have gt funcs set up */
1184
1185 if (!(edram_cap & EDRAM_ENABLED))
1186 return;
1187
1188 /*
1189 * The needed capability bits for size calculation are not there with
1190 * pre gen9 so return 128MB always.
1191 */
1192 if (INTEL_GEN(dev_priv) < 9)
1193 dev_priv->edram_size_mb = 128;
1194 else
1195 dev_priv->edram_size_mb =
1196 gen9_edram_size_mb(dev_priv, edram_cap);
1197
1198 dev_info(dev_priv->drm.dev,
1199 "Found %uMB of eDRAM\n", dev_priv->edram_size_mb);
1200 }
1201
1202 /**
1203 * i915_driver_hw_probe - setup state requiring device access
1204 * @dev_priv: device private
1205 *
1206 * Setup state that requires accessing the device, but doesn't require
1207 * exposing the driver via kernel internal or userspace interfaces.
1208 */
1209 static int i915_driver_hw_probe(struct drm_i915_private *dev_priv)
1210 {
1211 struct pci_dev *pdev = dev_priv->drm.pdev;
1212 int ret;
1213
1214 if (i915_inject_probe_failure(dev_priv))
1215 return -ENODEV;
1216
1217 intel_device_info_runtime_init(dev_priv);
1218
1219 if (HAS_PPGTT(dev_priv)) {
1220 if (intel_vgpu_active(dev_priv) &&
1221 !intel_vgpu_has_full_ppgtt(dev_priv)) {
1222 i915_report_error(dev_priv,
1223 "incompatible vGPU found, support for isolated ppGTT required\n");
1224 return -ENXIO;
1225 }
1226 }
1227
1228 if (HAS_EXECLISTS(dev_priv)) {
1229 /*
1230 * Older GVT emulation depends upon intercepting CSB mmio,
1231 * which we no longer use, preferring to use the HWSP cache
1232 * instead.
1233 */
1234 if (intel_vgpu_active(dev_priv) &&
1235 !intel_vgpu_has_hwsp_emulation(dev_priv)) {
1236 i915_report_error(dev_priv,
1237 "old vGPU host found, support for HWSP emulation required\n");
1238 return -ENXIO;
1239 }
1240 }
1241
1242 intel_sanitize_options(dev_priv);
1243
1244 /* needs to be done before ggtt probe */
1245 edram_detect(dev_priv);
1246
1247 i915_perf_init(dev_priv);
1248
1249 ret = i915_ggtt_probe_hw(dev_priv);
1250 if (ret)
1251 goto err_perf;
1252
1253 ret = drm_fb_helper_remove_conflicting_pci_framebuffers(pdev, "inteldrmfb");
1254 if (ret)
1255 goto err_ggtt;
1256
1257 ret = i915_ggtt_init_hw(dev_priv);
1258 if (ret)
1259 goto err_ggtt;
1260
1261 ret = intel_memory_regions_hw_probe(dev_priv);
1262 if (ret)
1263 goto err_ggtt;
1264
1265 intel_gt_init_hw_early(&dev_priv->gt, &dev_priv->ggtt);
1266
1267 ret = i915_ggtt_enable_hw(dev_priv);
1268 if (ret) {
1269 DRM_ERROR("failed to enable GGTT\n");
1270 goto err_mem_regions;
1271 }
1272
1273 pci_set_master(pdev);
1274
1275 /*
1276 * We don't have a max segment size, so set it to the max so sg's
1277 * debugging layer doesn't complain
1278 */
1279 dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1280
1281 #ifndef __NetBSD__ /* Handled in intel_ggtt.c. */
1282 /* overlay on gen2 is broken and can't address above 1G */
1283 if (IS_GEN(dev_priv, 2)) {
1284 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1285 if (ret) {
1286 DRM_ERROR("failed to set DMA mask\n");
1287
1288 goto err_mem_regions;
1289 }
1290 }
1291
1292 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1293 * using 32bit addressing, overwriting memory if HWS is located
1294 * above 4GB.
1295 *
1296 * The documentation also mentions an issue with undefined
1297 * behaviour if any general state is accessed within a page above 4GB,
1298 * which also needs to be handled carefully.
1299 */
1300 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1301 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1302
1303 if (ret) {
1304 DRM_ERROR("failed to set DMA mask\n");
1305
1306 goto err_mem_regions;
1307 }
1308 }
1309 #endif
1310
1311 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1312 PM_QOS_DEFAULT_VALUE);
1313
1314 intel_gt_init_workarounds(dev_priv);
1315
1316 /* On the 945G/GM, the chipset reports the MSI capability on the
1317 * integrated graphics even though the support isn't actually there
1318 * according to the published specs. It doesn't appear to function
1319 * correctly in testing on 945G.
1320 * This may be a side effect of MSI having been made available for PEG
1321 * and the registers being closely associated.
1322 *
1323 * According to chipset errata, on the 965GM, MSI interrupts may
1324 * be lost or delayed, and was defeatured. MSI interrupts seem to
1325 * get lost on g4x as well, and interrupt delivery seems to stay
1326 * properly dead afterwards. So we'll just disable them for all
1327 * pre-gen5 chipsets.
1328 *
1329 * dp aux and gmbus irq on gen4 seems to be able to generate legacy
1330 * interrupts even when in MSI mode. This results in spurious
1331 * interrupt warnings if the legacy irq no. is shared with another
1332 * device. The kernel then disables that interrupt source and so
1333 * prevents the other device from working properly.
1334 */
1335 if (INTEL_GEN(dev_priv) >= 5) {
1336 if (pci_enable_msi(pdev) < 0)
1337 DRM_DEBUG_DRIVER("can't enable MSI");
1338 }
1339
1340 ret = intel_gvt_init(dev_priv);
1341 if (ret)
1342 goto err_msi;
1343
1344 intel_opregion_setup(dev_priv);
1345 /*
1346 * Fill the dram structure to get the system raw bandwidth and
1347 * dram info. This will be used for memory latency calculation.
1348 */
1349 intel_get_dram_info(dev_priv);
1350
1351 intel_bw_init_hw(dev_priv);
1352
1353 return 0;
1354
1355 err_msi:
1356 if (pdev->msi_enabled)
1357 pci_disable_msi(pdev);
1358 pm_qos_remove_request(&dev_priv->pm_qos);
1359 err_mem_regions:
1360 intel_memory_regions_driver_release(dev_priv);
1361 err_ggtt:
1362 i915_ggtt_driver_release(dev_priv);
1363 err_perf:
1364 i915_perf_fini(dev_priv);
1365 return ret;
1366 }
1367
1368 /**
1369 * i915_driver_hw_remove - cleanup the setup done in i915_driver_hw_probe()
1370 * @dev_priv: device private
1371 */
1372 static void i915_driver_hw_remove(struct drm_i915_private *dev_priv)
1373 {
1374 struct pci_dev *pdev = dev_priv->drm.pdev;
1375
1376 i915_perf_fini(dev_priv);
1377
1378 if (pdev->msi_enabled)
1379 pci_disable_msi(pdev);
1380
1381 pm_qos_remove_request(&dev_priv->pm_qos);
1382 }
1383
1384 /**
1385 * i915_driver_register - register the driver with the rest of the system
1386 * @dev_priv: device private
1387 *
1388 * Perform any steps necessary to make the driver available via kernel
1389 * internal or userspace interfaces.
1390 */
1391 static void i915_driver_register(struct drm_i915_private *dev_priv)
1392 {
1393 struct drm_device *dev = &dev_priv->drm;
1394
1395 i915_gem_driver_register(dev_priv);
1396 i915_pmu_register(dev_priv);
1397
1398 /*
1399 * Notify a valid surface after modesetting,
1400 * when running inside a VM.
1401 */
1402 if (intel_vgpu_active(dev_priv))
1403 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1404
1405 /* Reveal our presence to userspace */
1406 if (drm_dev_register(dev, 0) == 0) {
1407 i915_debugfs_register(dev_priv);
1408 i915_setup_sysfs(dev_priv);
1409
1410 /* Depends on sysfs having been initialized */
1411 i915_perf_register(dev_priv);
1412 } else
1413 DRM_ERROR("Failed to register driver for userspace access!\n");
1414
1415 if (HAS_DISPLAY(dev_priv) && INTEL_DISPLAY_ENABLED(dev_priv)) {
1416 /* Must be done after probing outputs */
1417 intel_opregion_register(dev_priv);
1418 acpi_video_register();
1419 }
1420
1421 intel_gt_driver_register(&dev_priv->gt);
1422
1423 intel_audio_init(dev_priv);
1424
1425 /*
1426 * Some ports require correctly set-up hpd registers for detection to
1427 * work properly (leading to ghost connected connector status), e.g. VGA
1428 * on gm45. Hence we can only set up the initial fbdev config after hpd
1429 * irqs are fully enabled. We do it last so that the async config
1430 * cannot run before the connectors are registered.
1431 */
1432 intel_fbdev_initial_config_async(dev);
1433
1434 /*
1435 * We need to coordinate the hotplugs with the asynchronous fbdev
1436 * configuration, for which we use the fbdev->async_cookie.
1437 */
1438 if (HAS_DISPLAY(dev_priv) && INTEL_DISPLAY_ENABLED(dev_priv))
1439 drm_kms_helper_poll_init(dev);
1440
1441 intel_power_domains_enable(dev_priv);
1442 intel_runtime_pm_enable(&dev_priv->runtime_pm);
1443 }
1444
1445 /**
1446 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1447 * @dev_priv: device private
1448 */
1449 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1450 {
1451 intel_runtime_pm_disable(&dev_priv->runtime_pm);
1452 intel_power_domains_disable(dev_priv);
1453
1454 intel_fbdev_unregister(dev_priv);
1455 intel_audio_deinit(dev_priv);
1456
1457 /*
1458 * After flushing the fbdev (incl. a late async config which will
1459 * have delayed queuing of a hotplug event), then flush the hotplug
1460 * events.
1461 */
1462 drm_kms_helper_poll_fini(&dev_priv->drm);
1463
1464 intel_gt_driver_unregister(&dev_priv->gt);
1465 acpi_video_unregister();
1466 intel_opregion_unregister(dev_priv);
1467
1468 i915_perf_unregister(dev_priv);
1469 i915_pmu_unregister(dev_priv);
1470
1471 i915_teardown_sysfs(dev_priv);
1472 drm_dev_unplug(&dev_priv->drm);
1473
1474 i915_gem_driver_unregister(dev_priv);
1475 }
1476
1477 static void i915_welcome_messages(struct drm_i915_private *dev_priv)
1478 {
1479 if (drm_debug_enabled(DRM_UT_DRIVER)) {
1480 struct drm_printer p = drm_debug_printer("i915 device info:");
1481
1482 drm_printf(&p, "pciid=0x%04x rev=0x%02x platform=%s (subplatform=0x%x) gen=%i\n",
1483 INTEL_DEVID(dev_priv),
1484 INTEL_REVID(dev_priv),
1485 intel_platform_name(INTEL_INFO(dev_priv)->platform),
1486 intel_subplatform(RUNTIME_INFO(dev_priv),
1487 INTEL_INFO(dev_priv)->platform),
1488 INTEL_GEN(dev_priv));
1489
1490 intel_device_info_print_static(INTEL_INFO(dev_priv), &p);
1491 intel_device_info_print_runtime(RUNTIME_INFO(dev_priv), &p);
1492 }
1493
1494 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1495 DRM_INFO("DRM_I915_DEBUG enabled\n");
1496 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1497 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1498 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM))
1499 DRM_INFO("DRM_I915_DEBUG_RUNTIME_PM enabled\n");
1500 }
1501
1502 static struct drm_i915_private *
1503 i915_driver_create(struct pci_dev *pdev, const struct pci_device_id *ent)
1504 {
1505 const struct intel_device_info *match_info =
1506 (struct intel_device_info *)ent->driver_data;
1507 struct intel_device_info *device_info;
1508 struct drm_i915_private *i915;
1509 int err;
1510
1511 i915 = kzalloc(sizeof(*i915), GFP_KERNEL);
1512 if (!i915)
1513 return ERR_PTR(-ENOMEM);
1514
1515 err = drm_dev_init(&i915->drm, &driver, &pdev->dev);
1516 if (err) {
1517 kfree(i915);
1518 return ERR_PTR(err);
1519 }
1520
1521 i915->drm.dev_private = i915;
1522
1523 i915->drm.pdev = pdev;
1524 pci_set_drvdata(pdev, i915);
1525
1526 /* Setup the write-once "constant" device info */
1527 device_info = mkwrite_device_info(i915);
1528 memcpy(device_info, match_info, sizeof(*device_info));
1529 RUNTIME_INFO(i915)->device_id = pdev->device;
1530
1531 BUG_ON(device_info->gen > BITS_PER_TYPE(device_info->gen_mask));
1532
1533 return i915;
1534 }
1535
1536 static void i915_driver_destroy(struct drm_i915_private *i915)
1537 {
1538 struct pci_dev *pdev = i915->drm.pdev;
1539
1540 drm_dev_fini(&i915->drm);
1541 kfree(i915);
1542
1543 /* And make sure we never chase our dangling pointer from pci_dev */
1544 pci_set_drvdata(pdev, NULL);
1545 }
1546
1547 /**
1548 * i915_driver_probe - setup chip and create an initial config
1549 * @pdev: PCI device
1550 * @ent: matching PCI ID entry
1551 *
1552 * The driver probe routine has to do several things:
1553 * - drive output discovery via intel_modeset_init()
1554 * - initialize the memory manager
1555 * - allocate initial config memory
1556 * - setup the DRM framebuffer with the allocated memory
1557 */
1558 int i915_driver_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1559 {
1560 const struct intel_device_info *match_info =
1561 (struct intel_device_info *)ent->driver_data;
1562 struct drm_i915_private *dev_priv;
1563 int ret;
1564
1565 dev_priv = i915_driver_create(pdev, ent);
1566 if (IS_ERR(dev_priv))
1567 return PTR_ERR(dev_priv);
1568
1569 /* Disable nuclear pageflip by default on pre-ILK */
1570 if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1571 dev_priv->drm.driver_features &= ~DRIVER_ATOMIC;
1572
1573 /*
1574 * Check if we support fake LMEM -- for now we only unleash this for
1575 * the live selftests(test-and-exit).
1576 */
1577 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1578 if (IS_ENABLED(CONFIG_DRM_I915_UNSTABLE_FAKE_LMEM)) {
1579 if (INTEL_GEN(dev_priv) >= 9 && i915_selftest.live < 0 &&
1580 i915_modparams.fake_lmem_start) {
1581 mkwrite_device_info(dev_priv)->memory_regions =
1582 REGION_SMEM | REGION_LMEM | REGION_STOLEN;
1583 mkwrite_device_info(dev_priv)->is_dgfx = true;
1584 GEM_BUG_ON(!HAS_LMEM(dev_priv));
1585 GEM_BUG_ON(!IS_DGFX(dev_priv));
1586 }
1587 }
1588 #endif
1589
1590 #ifndef __NetBSD__ /* XXX done for us */
1591 ret = pci_enable_device(pdev);
1592 if (ret)
1593 goto out_fini;
1594 #endif
1595
1596 ret = i915_driver_early_probe(dev_priv);
1597 if (ret < 0)
1598 goto out_pci_disable;
1599
1600 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1601
1602 i915_detect_vgpu(dev_priv);
1603
1604 ret = i915_driver_mmio_probe(dev_priv);
1605 if (ret < 0)
1606 goto out_runtime_pm_put;
1607
1608 ret = i915_driver_hw_probe(dev_priv);
1609 if (ret < 0)
1610 goto out_cleanup_mmio;
1611
1612 ret = i915_driver_modeset_probe(dev_priv);
1613 if (ret < 0)
1614 goto out_cleanup_hw;
1615
1616 i915_driver_register(dev_priv);
1617
1618 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1619
1620 i915_welcome_messages(dev_priv);
1621
1622 return 0;
1623
1624 out_cleanup_hw:
1625 i915_driver_hw_remove(dev_priv);
1626 intel_memory_regions_driver_release(dev_priv);
1627 i915_ggtt_driver_release(dev_priv);
1628 out_cleanup_mmio:
1629 i915_driver_mmio_release(dev_priv);
1630 out_runtime_pm_put:
1631 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1632 i915_driver_late_release(dev_priv);
1633 out_pci_disable:
1634 #ifndef __NetBSD__
1635 pci_disable_device(pdev);
1636 out_fini:
1637 i915_probe_error(dev_priv, "Device initialization failed (%d)\n", ret);
1638 i915_driver_destroy(dev_priv);
1639 #endif
1640 return ret;
1641 }
1642
1643 void i915_driver_remove(struct drm_i915_private *i915)
1644 {
1645 disable_rpm_wakeref_asserts(&i915->runtime_pm);
1646
1647 i915_driver_unregister(i915);
1648
1649 /*
1650 * After unregistering the device to prevent any new users, cancel
1651 * all in-flight requests so that we can quickly unbind the active
1652 * resources.
1653 */
1654 intel_gt_set_wedged(&i915->gt);
1655
1656 /* Flush any external code that still may be under the RCU lock */
1657 synchronize_rcu();
1658
1659 i915_gem_suspend(i915);
1660
1661 drm_atomic_helper_shutdown(&i915->drm);
1662
1663 intel_gvt_driver_remove(i915);
1664
1665 i915_driver_modeset_remove(i915);
1666
1667 i915_reset_error_state(i915);
1668 i915_gem_driver_remove(i915);
1669
1670 intel_power_domains_driver_remove(i915);
1671
1672 i915_driver_hw_remove(i915);
1673
1674 enable_rpm_wakeref_asserts(&i915->runtime_pm);
1675 }
1676
1677 static void i915_driver_release(struct drm_device *dev)
1678 {
1679 struct drm_i915_private *dev_priv = to_i915(dev);
1680 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
1681
1682 disable_rpm_wakeref_asserts(rpm);
1683
1684 i915_gem_driver_release(dev_priv);
1685
1686 intel_memory_regions_driver_release(dev_priv);
1687 i915_ggtt_driver_release(dev_priv);
1688
1689 i915_driver_mmio_release(dev_priv);
1690
1691 enable_rpm_wakeref_asserts(rpm);
1692 intel_runtime_pm_driver_release(rpm);
1693
1694 i915_driver_late_release(dev_priv);
1695 i915_driver_destroy(dev_priv);
1696 }
1697
1698 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1699 {
1700 struct drm_i915_private *i915 = to_i915(dev);
1701 int ret;
1702
1703 ret = i915_gem_open(i915, file);
1704 if (ret)
1705 return ret;
1706
1707 return 0;
1708 }
1709
1710 /**
1711 * i915_driver_lastclose - clean up after all DRM clients have exited
1712 * @dev: DRM device
1713 *
1714 * Take care of cleaning up after all DRM clients have exited. In the
1715 * mode setting case, we want to restore the kernel's initial mode (just
1716 * in case the last client left us in a bad state).
1717 *
1718 * Additionally, in the non-mode setting case, we'll tear down the GTT
1719 * and DMA structures, since the kernel won't be using them, and clea
1720 * up any GEM state.
1721 */
1722 static void i915_driver_lastclose(struct drm_device *dev)
1723 {
1724 intel_fbdev_restore_mode(dev);
1725 vga_switcheroo_process_delayed_switch();
1726 }
1727
1728 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1729 {
1730 struct drm_i915_file_private *file_priv = file->driver_priv;
1731
1732 i915_gem_context_close(file);
1733 i915_gem_release(dev, file);
1734
1735 kfree_rcu(file_priv, rcu);
1736
1737 /* Catch up with all the deferred frees from "this" client */
1738 i915_gem_flush_free_objects(to_i915(dev));
1739 }
1740
1741 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1742 {
1743 struct drm_device *dev = &dev_priv->drm;
1744 struct intel_encoder *encoder;
1745
1746 drm_modeset_lock_all(dev);
1747 for_each_intel_encoder(dev, encoder)
1748 if (encoder->suspend)
1749 encoder->suspend(encoder);
1750 drm_modeset_unlock_all(dev);
1751 }
1752
1753 #ifndef __NetBSD__ /* XXX vlv suspend/resume */
1754 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1755 bool rpm_resume);
1756 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1757 #endif
1758
1759 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1760 {
1761 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1762 if (acpi_target_system_state() < ACPI_STATE_S3)
1763 return true;
1764 #endif
1765 return false;
1766 }
1767
1768 #ifndef __NetBSD__ /* XXX runtime pm */
1769 static int i915_drm_prepare(struct drm_device *dev)
1770 {
1771 struct drm_i915_private *i915 = to_i915(dev);
1772
1773 /*
1774 * NB intel_display_suspend() may issue new requests after we've
1775 * ostensibly marked the GPU as ready-to-sleep here. We need to
1776 * split out that work and pull it forward so that after point,
1777 * the GPU is not woken again.
1778 */
1779 i915_gem_suspend(i915);
1780
1781 return 0;
1782 }
1783 #endif
1784
1785 int i915_drm_suspend(struct drm_device *dev)
1786 {
1787 struct drm_i915_private *dev_priv = to_i915(dev);
1788 struct pci_dev *pdev = dev_priv->drm.pdev;
1789 pci_power_t opregion_target_state;
1790
1791 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1792
1793 /* We do a lot of poking in a lot of registers, make sure they work
1794 * properly. */
1795 intel_power_domains_disable(dev_priv);
1796
1797 drm_kms_helper_poll_disable(dev);
1798
1799 #ifdef __NetBSD__ /* pmf handles this for us. */
1800 __USE(pdev);
1801 #else
1802 pci_save_state(pdev);
1803 #endif
1804
1805 intel_display_suspend(dev);
1806
1807 intel_dp_mst_suspend(dev_priv);
1808
1809 intel_runtime_pm_disable_interrupts(dev_priv);
1810 intel_hpd_cancel_work(dev_priv);
1811
1812 intel_suspend_encoders(dev_priv);
1813
1814 intel_suspend_hw(dev_priv);
1815
1816 i915_gem_suspend_gtt_mappings(dev_priv);
1817
1818 i915_save_state(dev_priv);
1819
1820 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1821 intel_opregion_suspend(dev_priv, opregion_target_state);
1822
1823 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1824
1825 dev_priv->suspend_count++;
1826
1827 intel_csr_ucode_suspend(dev_priv);
1828
1829 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1830
1831 return 0;
1832 }
1833
1834 static enum i915_drm_suspend_mode
1835 get_suspend_mode(struct drm_i915_private *dev_priv, bool hibernate)
1836 {
1837 if (hibernate)
1838 return I915_DRM_SUSPEND_HIBERNATE;
1839
1840 if (suspend_to_idle(dev_priv))
1841 return I915_DRM_SUSPEND_IDLE;
1842
1843 return I915_DRM_SUSPEND_MEM;
1844 }
1845
1846 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1847 {
1848 struct drm_i915_private *dev_priv = to_i915(dev);
1849 struct pci_dev *pdev = dev_priv->drm.pdev;
1850 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
1851 int ret = 0;
1852
1853 disable_rpm_wakeref_asserts(rpm);
1854
1855 i915_gem_suspend_late(dev_priv);
1856
1857 intel_uncore_suspend(&dev_priv->uncore);
1858
1859 intel_power_domains_suspend(dev_priv,
1860 get_suspend_mode(dev_priv, hibernation));
1861
1862 intel_display_power_suspend_late(dev_priv);
1863
1864 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1865 #ifdef __NetBSD__
1866 ret = 0;
1867 #else
1868 ret = vlv_suspend_complete(dev_priv);
1869 #endif
1870
1871 if (ret) {
1872 DRM_ERROR("Suspend complete failed: %d\n", ret);
1873 intel_power_domains_resume(dev_priv);
1874
1875 goto out;
1876 }
1877
1878 #ifdef __NetBSD__ /* pmf handles this for us. */
1879 __USE(pdev);
1880 #else
1881 pci_disable_device(pdev);
1882 /*
1883 * During hibernation on some platforms the BIOS may try to access
1884 * the device even though it's already in D3 and hang the machine. So
1885 * leave the device in D0 on those platforms and hope the BIOS will
1886 * power down the device properly. The issue was seen on multiple old
1887 * GENs with different BIOS vendors, so having an explicit blacklist
1888 * is inpractical; apply the workaround on everything pre GEN6. The
1889 * platforms where the issue was seen:
1890 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1891 * Fujitsu FSC S7110
1892 * Acer Aspire 1830T
1893 */
1894 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1895 pci_set_power_state(pdev, PCI_D3hot);
1896 #endif
1897
1898 out:
1899 enable_rpm_wakeref_asserts(rpm);
1900 if (!dev_priv->uncore.user_forcewake_count)
1901 intel_runtime_pm_driver_release(rpm);
1902
1903 return ret;
1904 }
1905
1906 #ifndef __NetBSD__ /* XXX vga switcheroo */
1907 int i915_suspend_switcheroo(struct drm_i915_private *i915, pm_message_t state)
1908 {
1909 int error;
1910
1911 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1912 state.event != PM_EVENT_FREEZE))
1913 return -EINVAL;
1914
1915 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
1916 return 0;
1917
1918 error = i915_drm_suspend(&i915->drm);
1919 if (error)
1920 return error;
1921
1922 return i915_drm_suspend_late(&i915->drm, false);
1923 }
1924 #endif
1925
1926 int i915_drm_resume(struct drm_device *dev)
1927 {
1928 struct drm_i915_private *dev_priv = to_i915(dev);
1929 int ret;
1930
1931 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1932
1933 sanitize_gpu(dev_priv);
1934
1935 ret = i915_ggtt_enable_hw(dev_priv);
1936 if (ret)
1937 DRM_ERROR("failed to re-enable GGTT\n");
1938
1939 i915_gem_restore_gtt_mappings(dev_priv);
1940 i915_gem_restore_fences(&dev_priv->ggtt);
1941
1942 intel_csr_ucode_resume(dev_priv);
1943
1944 i915_restore_state(dev_priv);
1945 intel_pps_unlock_regs_wa(dev_priv);
1946
1947 intel_init_pch_refclk(dev_priv);
1948
1949 /*
1950 * Interrupts have to be enabled before any batches are run. If not the
1951 * GPU will hang. i915_gem_init_hw() will initiate batches to
1952 * update/restore the context.
1953 *
1954 * drm_mode_config_reset() needs AUX interrupts.
1955 *
1956 * Modeset enabling in intel_modeset_init_hw() also needs working
1957 * interrupts.
1958 */
1959 intel_runtime_pm_enable_interrupts(dev_priv);
1960
1961 drm_mode_config_reset(dev);
1962
1963 i915_gem_resume(dev_priv);
1964
1965 intel_modeset_init_hw(dev_priv);
1966 intel_init_clock_gating(dev_priv);
1967
1968 spin_lock_irq(&dev_priv->irq_lock);
1969 if (dev_priv->display.hpd_irq_setup)
1970 dev_priv->display.hpd_irq_setup(dev_priv);
1971 spin_unlock_irq(&dev_priv->irq_lock);
1972
1973 intel_dp_mst_resume(dev_priv);
1974
1975 intel_display_resume(dev);
1976
1977 drm_kms_helper_poll_enable(dev);
1978
1979 /*
1980 * ... but also need to make sure that hotplug processing
1981 * doesn't cause havoc. Like in the driver load code we don't
1982 * bother with the tiny race here where we might lose hotplug
1983 * notifications.
1984 * */
1985 intel_hpd_init(dev_priv);
1986
1987 intel_opregion_resume(dev_priv);
1988
1989 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1990
1991 intel_power_domains_enable(dev_priv);
1992
1993 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1994
1995 return 0;
1996 }
1997
1998 int i915_drm_resume_early(struct drm_device *dev)
1999 {
2000 struct drm_i915_private *dev_priv = to_i915(dev);
2001 struct pci_dev *pdev = dev_priv->drm.pdev;
2002 int ret;
2003
2004 /*
2005 * We have a resume ordering issue with the snd-hda driver also
2006 * requiring our device to be power up. Due to the lack of a
2007 * parent/child relationship we currently solve this with an early
2008 * resume hook.
2009 *
2010 * FIXME: This should be solved with a special hdmi sink device or
2011 * similar so that power domains can be employed.
2012 */
2013
2014 /*
2015 * Note that we need to set the power state explicitly, since we
2016 * powered off the device during freeze and the PCI core won't power
2017 * it back up for us during thaw. Powering off the device during
2018 * freeze is not a hard requirement though, and during the
2019 * suspend/resume phases the PCI core makes sure we get here with the
2020 * device powered on. So in case we change our freeze logic and keep
2021 * the device powered we can also remove the following set power state
2022 * call.
2023 */
2024 #ifdef __NetBSD__ /* pmf handles this for us. */
2025 if (0)
2026 goto out;
2027 #else
2028 ret = pci_set_power_state(pdev, PCI_D0);
2029 if (ret) {
2030 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
2031 return ret;
2032 }
2033
2034 /*
2035 * Note that pci_enable_device() first enables any parent bridge
2036 * device and only then sets the power state for this device. The
2037 * bridge enabling is a nop though, since bridge devices are resumed
2038 * first. The order of enabling power and enabling the device is
2039 * imposed by the PCI core as described above, so here we preserve the
2040 * same order for the freeze/thaw phases.
2041 *
2042 * TODO: eventually we should remove pci_disable_device() /
2043 * pci_enable_enable_device() from suspend/resume. Due to how they
2044 * depend on the device enable refcount we can't anyway depend on them
2045 * disabling/enabling the device.
2046 */
2047 if (pci_enable_device(pdev))
2048 return -EIO;
2049 #endif
2050
2051 /* XXX pmf probably handles this for us too. */
2052 pci_set_master(dev->pdev);
2053
2054 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2055
2056 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2057 #ifdef __NetBSD__ /* XXX vlv suspend/resume */
2058 ret = 0;
2059 #else
2060 ret = vlv_resume_prepare(dev_priv, false);
2061 #endif
2062 if (ret)
2063 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
2064 ret);
2065
2066 intel_uncore_resume_early(&dev_priv->uncore);
2067
2068 intel_gt_check_and_clear_faults(&dev_priv->gt);
2069
2070 intel_display_power_resume_early(dev_priv);
2071
2072 intel_power_domains_resume(dev_priv);
2073
2074 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2075
2076 i915_rc6_ctx_wa_resume(dev_priv);
2077
2078 return ret;
2079 }
2080
2081 #ifndef __NetBSD__ /* XXX vga switcheroo */
2082 int i915_resume_switcheroo(struct drm_i915_private *i915)
2083 {
2084 int ret;
2085
2086 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2087 return 0;
2088
2089 ret = i915_drm_resume_early(&i915->drm);
2090 if (ret)
2091 return ret;
2092
2093 return i915_drm_resume(&i915->drm);
2094 }
2095
2096 static int i915_pm_prepare(struct device *kdev)
2097 {
2098 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2099
2100 if (!i915) {
2101 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2102 return -ENODEV;
2103 }
2104
2105 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2106 return 0;
2107
2108 return i915_drm_prepare(&i915->drm);
2109 }
2110 #endif
2111
2112 #ifndef __NetBSD__
2113 static int i915_pm_suspend(struct device *kdev)
2114 {
2115 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2116
2117 if (!i915) {
2118 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2119 return -ENODEV;
2120 }
2121
2122 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2123 return 0;
2124
2125 return i915_drm_suspend(&i915->drm);
2126 }
2127
2128 static int i915_pm_suspend_late(struct device *kdev)
2129 {
2130 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2131
2132 /*
2133 * We have a suspend ordering issue with the snd-hda driver also
2134 * requiring our device to be power up. Due to the lack of a
2135 * parent/child relationship we currently solve this with an late
2136 * suspend hook.
2137 *
2138 * FIXME: This should be solved with a special hdmi sink device or
2139 * similar so that power domains can be employed.
2140 */
2141 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2142 return 0;
2143
2144 return i915_drm_suspend_late(&i915->drm, false);
2145 }
2146
2147 static int i915_pm_poweroff_late(struct device *kdev)
2148 {
2149 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2150
2151 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2152 return 0;
2153
2154 return i915_drm_suspend_late(&i915->drm, true);
2155 }
2156
2157 static int i915_pm_resume_early(struct device *kdev)
2158 {
2159 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2160
2161 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2162 return 0;
2163
2164 return i915_drm_resume_early(&i915->drm);
2165 }
2166
2167 static int i915_pm_resume(struct device *kdev)
2168 {
2169 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2170
2171 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2172 return 0;
2173
2174 return i915_drm_resume(&i915->drm);
2175 }
2176 #endif
2177
2178 /* freeze: before creating the hibernation_image */
2179 static int i915_pm_freeze(struct device *kdev)
2180 {
2181 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2182 int ret;
2183
2184 if (i915->drm.switch_power_state != DRM_SWITCH_POWER_OFF) {
2185 ret = i915_drm_suspend(&i915->drm);
2186 if (ret)
2187 return ret;
2188 }
2189
2190 ret = i915_gem_freeze(i915);
2191 if (ret)
2192 return ret;
2193
2194 return 0;
2195 }
2196
2197 static int i915_pm_freeze_late(struct device *kdev)
2198 {
2199 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2200 int ret;
2201
2202 if (i915->drm.switch_power_state != DRM_SWITCH_POWER_OFF) {
2203 ret = i915_drm_suspend_late(&i915->drm, true);
2204 if (ret)
2205 return ret;
2206 }
2207
2208 ret = i915_gem_freeze_late(i915);
2209 if (ret)
2210 return ret;
2211
2212 return 0;
2213 }
2214
2215 /* thaw: called after creating the hibernation image, but before turning off. */
2216 static int i915_pm_thaw_early(struct device *kdev)
2217 {
2218 return i915_pm_resume_early(kdev);
2219 }
2220
2221 static int i915_pm_thaw(struct device *kdev)
2222 {
2223 return i915_pm_resume(kdev);
2224 }
2225
2226 /* restore: called after loading the hibernation image. */
2227 static int i915_pm_restore_early(struct device *kdev)
2228 {
2229 return i915_pm_resume_early(kdev);
2230 }
2231
2232 static int i915_pm_restore(struct device *kdev)
2233 {
2234 return i915_pm_resume(kdev);
2235 }
2236
2237 /*
2238 * Save all Gunit registers that may be lost after a D3 and a subsequent
2239 * S0i[R123] transition. The list of registers needing a save/restore is
2240 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2241 * registers in the following way:
2242 * - Driver: saved/restored by the driver
2243 * - Punit : saved/restored by the Punit firmware
2244 * - No, w/o marking: no need to save/restore, since the register is R/O or
2245 * used internally by the HW in a way that doesn't depend
2246 * keeping the content across a suspend/resume.
2247 * - Debug : used for debugging
2248 *
2249 * We save/restore all registers marked with 'Driver', with the following
2250 * exceptions:
2251 * - Registers out of use, including also registers marked with 'Debug'.
2252 * These have no effect on the driver's operation, so we don't save/restore
2253 * them to reduce the overhead.
2254 * - Registers that are fully setup by an initialization function called from
2255 * the resume path. For example many clock gating and RPS/RC6 registers.
2256 * - Registers that provide the right functionality with their reset defaults.
2257 *
2258 * TODO: Except for registers that based on the above 3 criteria can be safely
2259 * ignored, we save/restore all others, practically treating the HW context as
2260 * a black-box for the driver. Further investigation is needed to reduce the
2261 * saved/restored registers even further, by following the same 3 criteria.
2262 */
2263 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2264 {
2265 struct vlv_s0ix_state *s = dev_priv->vlv_s0ix_state;
2266 int i;
2267
2268 if (!s)
2269 return;
2270
2271 /* GAM 0x4000-0x4770 */
2272 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2273 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2274 s->arb_mode = I915_READ(ARB_MODE);
2275 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2276 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2277
2278 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2279 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2280
2281 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2282 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2283
2284 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2285 s->ecochk = I915_READ(GAM_ECOCHK);
2286 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2287 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2288
2289 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2290
2291 /* MBC 0x9024-0x91D0, 0x8500 */
2292 s->g3dctl = I915_READ(VLV_G3DCTL);
2293 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2294 s->mbctl = I915_READ(GEN6_MBCTL);
2295
2296 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2297 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2298 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2299 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2300 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2301 s->rstctl = I915_READ(GEN6_RSTCTL);
2302 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2303
2304 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2305 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2306 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2307 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2308 s->ecobus = I915_READ(ECOBUS);
2309 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2310 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2311 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2312 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2313 s->rcedata = I915_READ(VLV_RCEDATA);
2314 s->spare2gh = I915_READ(VLV_SPAREG2H);
2315
2316 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2317 s->gt_imr = I915_READ(GTIMR);
2318 s->gt_ier = I915_READ(GTIER);
2319 s->pm_imr = I915_READ(GEN6_PMIMR);
2320 s->pm_ier = I915_READ(GEN6_PMIER);
2321
2322 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2323 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2324
2325 /* GT SA CZ domain, 0x100000-0x138124 */
2326 s->tilectl = I915_READ(TILECTL);
2327 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2328 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2329 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2330 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2331
2332 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2333 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2334 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2335 s->pcbr = I915_READ(VLV_PCBR);
2336 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2337
2338 /*
2339 * Not saving any of:
2340 * DFT, 0x9800-0x9EC0
2341 * SARB, 0xB000-0xB1FC
2342 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2343 * PCI CFG
2344 */
2345 }
2346
2347 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2348 {
2349 struct vlv_s0ix_state *s = dev_priv->vlv_s0ix_state;
2350 u32 val;
2351 int i;
2352
2353 if (!s)
2354 return;
2355
2356 /* GAM 0x4000-0x4770 */
2357 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2358 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2359 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2360 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2361 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2362
2363 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2364 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2365
2366 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2367 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2368
2369 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2370 I915_WRITE(GAM_ECOCHK, s->ecochk);
2371 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2372 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2373
2374 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2375
2376 /* MBC 0x9024-0x91D0, 0x8500 */
2377 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2378 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2379 I915_WRITE(GEN6_MBCTL, s->mbctl);
2380
2381 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2382 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2383 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2384 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2385 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2386 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2387 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2388
2389 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2390 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2391 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2392 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2393 I915_WRITE(ECOBUS, s->ecobus);
2394 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2395 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2396 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2397 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2398 I915_WRITE(VLV_RCEDATA, s->rcedata);
2399 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2400
2401 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2402 I915_WRITE(GTIMR, s->gt_imr);
2403 I915_WRITE(GTIER, s->gt_ier);
2404 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2405 I915_WRITE(GEN6_PMIER, s->pm_ier);
2406
2407 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2408 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2409
2410 /* GT SA CZ domain, 0x100000-0x138124 */
2411 I915_WRITE(TILECTL, s->tilectl);
2412 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2413 /*
2414 * Preserve the GT allow wake and GFX force clock bit, they are not
2415 * be restored, as they are used to control the s0ix suspend/resume
2416 * sequence by the caller.
2417 */
2418 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2419 val &= VLV_GTLC_ALLOWWAKEREQ;
2420 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2421 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2422
2423 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2424 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2425 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2426 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2427
2428 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2429
2430 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2431 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2432 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2433 I915_WRITE(VLV_PCBR, s->pcbr);
2434 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2435 }
2436
2437 static int vlv_wait_for_pw_status(struct drm_i915_private *i915,
2438 u32 mask, u32 val)
2439 {
2440 i915_reg_t reg = VLV_GTLC_PW_STATUS;
2441 u32 reg_value;
2442 int ret;
2443
2444 /* The HW does not like us polling for PW_STATUS frequently, so
2445 * use the sleeping loop rather than risk the busy spin within
2446 * intel_wait_for_register().
2447 *
2448 * Transitioning between RC6 states should be at most 2ms (see
2449 * valleyview_enable_rps) so use a 3ms timeout.
2450 */
2451 ret = wait_for(((reg_value =
2452 intel_uncore_read_notrace(&i915->uncore, reg)) & mask)
2453 == val, 3);
2454
2455 /* just trace the final value */
2456 trace_i915_reg_rw(false, reg, reg_value, sizeof(reg_value), true);
2457
2458 return ret;
2459 }
2460
2461 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2462 {
2463 u32 val;
2464 int err;
2465
2466 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2467 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2468 if (force_on)
2469 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2470 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2471
2472 if (!force_on)
2473 return 0;
2474
2475 err = intel_wait_for_register(&dev_priv->uncore,
2476 VLV_GTLC_SURVIVABILITY_REG,
2477 VLV_GFX_CLK_STATUS_BIT,
2478 VLV_GFX_CLK_STATUS_BIT,
2479 20);
2480 if (err)
2481 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2482 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2483
2484 return err;
2485 }
2486
2487 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2488 {
2489 u32 mask;
2490 u32 val;
2491 int err;
2492
2493 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2494 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2495 if (allow)
2496 val |= VLV_GTLC_ALLOWWAKEREQ;
2497 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2498 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2499
2500 mask = VLV_GTLC_ALLOWWAKEACK;
2501 val = allow ? mask : 0;
2502
2503 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2504 if (err)
2505 DRM_ERROR("timeout disabling GT waking\n");
2506
2507 return err;
2508 }
2509
2510 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2511 bool wait_for_on)
2512 {
2513 u32 mask;
2514 u32 val;
2515
2516 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2517 val = wait_for_on ? mask : 0;
2518
2519 /*
2520 * RC6 transitioning can be delayed up to 2 msec (see
2521 * valleyview_enable_rps), use 3 msec for safety.
2522 *
2523 * This can fail to turn off the rc6 if the GPU is stuck after a failed
2524 * reset and we are trying to force the machine to sleep.
2525 */
2526 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2527 DRM_DEBUG_DRIVER("timeout waiting for GT wells to go %s\n",
2528 onoff(wait_for_on));
2529 }
2530
2531 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2532 {
2533 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2534 return;
2535
2536 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2537 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2538 }
2539
2540 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2541 {
2542 u32 mask;
2543 int err;
2544
2545 /*
2546 * Bspec defines the following GT well on flags as debug only, so
2547 * don't treat them as hard failures.
2548 */
2549 vlv_wait_for_gt_wells(dev_priv, false);
2550
2551 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2552 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2553
2554 vlv_check_no_gt_access(dev_priv);
2555
2556 err = vlv_force_gfx_clock(dev_priv, true);
2557 if (err)
2558 goto err1;
2559
2560 err = vlv_allow_gt_wake(dev_priv, false);
2561 if (err)
2562 goto err2;
2563
2564 vlv_save_gunit_s0ix_state(dev_priv);
2565
2566 err = vlv_force_gfx_clock(dev_priv, false);
2567 if (err)
2568 goto err2;
2569
2570 return 0;
2571
2572 err2:
2573 /* For safety always re-enable waking and disable gfx clock forcing */
2574 vlv_allow_gt_wake(dev_priv, true);
2575 err1:
2576 vlv_force_gfx_clock(dev_priv, false);
2577
2578 return err;
2579 }
2580
2581 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2582 bool rpm_resume)
2583 {
2584 int err;
2585 int ret;
2586
2587 /*
2588 * If any of the steps fail just try to continue, that's the best we
2589 * can do at this point. Return the first error code (which will also
2590 * leave RPM permanently disabled).
2591 */
2592 ret = vlv_force_gfx_clock(dev_priv, true);
2593
2594 vlv_restore_gunit_s0ix_state(dev_priv);
2595
2596 err = vlv_allow_gt_wake(dev_priv, true);
2597 if (!ret)
2598 ret = err;
2599
2600 err = vlv_force_gfx_clock(dev_priv, false);
2601 if (!ret)
2602 ret = err;
2603
2604 vlv_check_no_gt_access(dev_priv);
2605
2606 if (rpm_resume)
2607 intel_init_clock_gating(dev_priv);
2608
2609 return ret;
2610 }
2611
2612 #ifndef __NetBSD__ /* XXX runtime pm */
2613 static int intel_runtime_suspend(struct device *kdev)
2614 {
2615 struct drm_i915_private *dev_priv = kdev_to_i915(kdev);
2616 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
2617 int ret = 0;
2618
2619 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2620 return -ENODEV;
2621
2622 DRM_DEBUG_KMS("Suspending device\n");
2623
2624 disable_rpm_wakeref_asserts(rpm);
2625
2626 /*
2627 * We are safe here against re-faults, since the fault handler takes
2628 * an RPM reference.
2629 */
2630 i915_gem_runtime_suspend(dev_priv);
2631
2632 intel_gt_runtime_suspend(&dev_priv->gt);
2633
2634 intel_runtime_pm_disable_interrupts(dev_priv);
2635
2636 intel_uncore_suspend(&dev_priv->uncore);
2637
2638 intel_display_power_suspend(dev_priv);
2639
2640 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2641 #ifndef __NetBSD__ /* XXX vlv suspend/resume */
2642 ret = vlv_suspend_complete(dev_priv);
2643 #endif
2644
2645 if (ret) {
2646 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2647 intel_uncore_runtime_resume(&dev_priv->uncore);
2648
2649 intel_runtime_pm_enable_interrupts(dev_priv);
2650
2651 intel_gt_runtime_resume(&dev_priv->gt);
2652
2653 i915_gem_restore_fences(&dev_priv->ggtt);
2654
2655 enable_rpm_wakeref_asserts(rpm);
2656
2657 return ret;
2658 }
2659
2660 enable_rpm_wakeref_asserts(rpm);
2661 intel_runtime_pm_driver_release(rpm);
2662
2663 if (intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore))
2664 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2665
2666 rpm->suspended = true;
2667
2668 /*
2669 * FIXME: We really should find a document that references the arguments
2670 * used below!
2671 */
2672 if (IS_BROADWELL(dev_priv)) {
2673 /*
2674 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2675 * being detected, and the call we do at intel_runtime_resume()
2676 * won't be able to restore them. Since PCI_D3hot matches the
2677 * actual specification and appears to be working, use it.
2678 */
2679 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2680 } else {
2681 /*
2682 * current versions of firmware which depend on this opregion
2683 * notification have repurposed the D1 definition to mean
2684 * "runtime suspended" vs. what you would normally expect (D3)
2685 * to distinguish it from notifications that might be sent via
2686 * the suspend path.
2687 */
2688 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2689 }
2690
2691 assert_forcewakes_inactive(&dev_priv->uncore);
2692
2693 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2694 intel_hpd_poll_init(dev_priv);
2695
2696 DRM_DEBUG_KMS("Device suspended\n");
2697 return 0;
2698 }
2699
2700 static int intel_runtime_resume(struct device *kdev)
2701 {
2702 struct drm_i915_private *dev_priv = kdev_to_i915(kdev);
2703 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
2704 int ret = 0;
2705
2706 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2707 return -ENODEV;
2708
2709 DRM_DEBUG_KMS("Resuming device\n");
2710
2711 WARN_ON_ONCE(atomic_read(&rpm->wakeref_count));
2712 disable_rpm_wakeref_asserts(rpm);
2713
2714 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2715 rpm->suspended = false;
2716 if (intel_uncore_unclaimed_mmio(&dev_priv->uncore))
2717 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2718
2719 intel_display_power_resume(dev_priv);
2720
2721 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2722 ret = vlv_resume_prepare(dev_priv, true);
2723
2724 intel_uncore_runtime_resume(&dev_priv->uncore);
2725
2726 intel_runtime_pm_enable_interrupts(dev_priv);
2727
2728 /*
2729 * No point of rolling back things in case of an error, as the best
2730 * we can do is to hope that things will still work (and disable RPM).
2731 */
2732 intel_gt_runtime_resume(&dev_priv->gt);
2733 i915_gem_restore_fences(&dev_priv->ggtt);
2734
2735 /*
2736 * On VLV/CHV display interrupts are part of the display
2737 * power well, so hpd is reinitialized from there. For
2738 * everyone else do it here.
2739 */
2740 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2741 intel_hpd_init(dev_priv);
2742
2743 intel_enable_ipc(dev_priv);
2744
2745 enable_rpm_wakeref_asserts(rpm);
2746
2747 if (ret)
2748 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2749 else
2750 DRM_DEBUG_KMS("Device resumed\n");
2751
2752 return ret;
2753 }
2754 #endif
2755
2756 #ifndef __NetBSD__
2757 const struct dev_pm_ops i915_pm_ops = {
2758 /*
2759 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2760 * PMSG_RESUME]
2761 */
2762 .prepare = i915_pm_prepare,
2763 .suspend = i915_pm_suspend,
2764 .suspend_late = i915_pm_suspend_late,
2765 .resume_early = i915_pm_resume_early,
2766 .resume = i915_pm_resume,
2767
2768 /*
2769 * S4 event handlers
2770 * @freeze, @freeze_late : called (1) before creating the
2771 * hibernation image [PMSG_FREEZE] and
2772 * (2) after rebooting, before restoring
2773 * the image [PMSG_QUIESCE]
2774 * @thaw, @thaw_early : called (1) after creating the hibernation
2775 * image, before writing it [PMSG_THAW]
2776 * and (2) after failing to create or
2777 * restore the image [PMSG_RECOVER]
2778 * @poweroff, @poweroff_late: called after writing the hibernation
2779 * image, before rebooting [PMSG_HIBERNATE]
2780 * @restore, @restore_early : called after rebooting and restoring the
2781 * hibernation image [PMSG_RESTORE]
2782 */
2783 .freeze = i915_pm_freeze,
2784 .freeze_late = i915_pm_freeze_late,
2785 .thaw_early = i915_pm_thaw_early,
2786 .thaw = i915_pm_thaw,
2787 .poweroff = i915_pm_suspend,
2788 .poweroff_late = i915_pm_poweroff_late,
2789 .restore_early = i915_pm_restore_early,
2790 .restore = i915_pm_restore,
2791
2792 /* S0ix (via runtime suspend) event handlers */
2793 .runtime_suspend = intel_runtime_suspend,
2794 .runtime_resume = intel_runtime_resume,
2795 };
2796
2797 static const struct file_operations i915_driver_fops = {
2798 .owner = THIS_MODULE,
2799 .open = drm_open,
2800 .release = drm_release,
2801 .unlocked_ioctl = drm_ioctl,
2802 .mmap = i915_gem_mmap,
2803 .poll = drm_poll,
2804 .read = drm_read,
2805 .compat_ioctl = i915_compat_ioctl,
2806 .llseek = noop_llseek,
2807 };
2808 #endif /* defined(__NetBSD__) */
2809
2810 static int
2811 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2812 struct drm_file *file)
2813 {
2814 return -ENODEV;
2815 }
2816
2817 static const struct drm_ioctl_desc i915_ioctls[] = {
2818 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2819 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2820 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2821 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2822 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2823 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2824 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam_ioctl, DRM_RENDER_ALLOW),
2825 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2826 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2827 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2828 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2829 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2830 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2831 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2832 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2833 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2834 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2835 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2836 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer_ioctl, DRM_AUTH),
2837 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2_ioctl, DRM_RENDER_ALLOW),
2838 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2839 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2840 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_RENDER_ALLOW),
2841 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2842 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2843 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_RENDER_ALLOW),
2844 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2845 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2846 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2847 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2848 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2849 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2850 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_OFFSET, i915_gem_mmap_offset_ioctl, DRM_RENDER_ALLOW),
2851 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2852 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2853 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2854 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2855 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2856 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id_ioctl, 0),
2857 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2858 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER),
2859 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER),
2860 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey_ioctl, DRM_MASTER),
2861 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER),
2862 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_RENDER_ALLOW),
2863 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE_EXT, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2864 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2865 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2866 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2867 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2868 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2869 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2870 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2871 DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_RENDER_ALLOW),
2872 DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_RENDER_ALLOW),
2873 DRM_IOCTL_DEF_DRV(I915_QUERY, i915_query_ioctl, DRM_RENDER_ALLOW),
2874 DRM_IOCTL_DEF_DRV(I915_GEM_VM_CREATE, i915_gem_vm_create_ioctl, DRM_RENDER_ALLOW),
2875 DRM_IOCTL_DEF_DRV(I915_GEM_VM_DESTROY, i915_gem_vm_destroy_ioctl, DRM_RENDER_ALLOW),
2876 };
2877
2878 static struct drm_driver driver = {
2879 /* Don't use MTRRs here; the Xserver or userspace app should
2880 * deal with them for Intel hardware.
2881 */
2882 .driver_features =
2883 DRIVER_GEM |
2884 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2885 .release = i915_driver_release,
2886 .open = i915_driver_open,
2887 .lastclose = i915_driver_lastclose,
2888 .postclose = i915_driver_postclose,
2889
2890 .gem_close_object = i915_gem_close_object,
2891 .gem_free_object_unlocked = i915_gem_free_object,
2892 #ifdef __NetBSD__
2893 .request_irq = drm_pci_request_irq,
2894 .free_irq = drm_pci_free_irq,
2895
2896 /* XXX Not clear the `or legacy' part is important here. */
2897 .mmap_object = &drm_gem_mmap_object,
2898 .gem_uvm_ops = &i915_gem_uvm_ops,
2899 #endif
2900
2901
2902 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2903 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2904 .gem_prime_export = i915_gem_prime_export,
2905 .gem_prime_import = i915_gem_prime_import,
2906
2907 .get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos,
2908 .get_scanout_position = i915_get_crtc_scanoutpos,
2909
2910 .dumb_create = i915_gem_dumb_create,
2911 .dumb_map_offset = i915_gem_dumb_mmap_offset,
2912
2913 .ioctls = i915_ioctls,
2914 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2915 #ifdef __NetBSD__
2916 .fops = NULL,
2917 #else
2918 .fops = &i915_driver_fops,
2919 #endif
2920 .name = DRIVER_NAME,
2921 .desc = DRIVER_DESC,
2922 .date = DRIVER_DATE,
2923 .major = DRIVER_MAJOR,
2924 .minor = DRIVER_MINOR,
2925 .patchlevel = DRIVER_PATCHLEVEL,
2926 };
2927
2928 #ifdef __NetBSD__
2929
2930 static const struct uvm_pagerops i915_gem_uvm_ops = {
2931 .pgo_reference = drm_gem_pager_reference,
2932 .pgo_detach = drm_gem_pager_detach,
2933 .pgo_fault = i915_gem_fault,
2934 };
2935
2936 #endif
2937