i915_drv.c revision 1.29 1 /* $NetBSD: i915_drv.c,v 1.29 2021/12/19 11:17:44 riastradh Exp $ */
2
3 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
4 */
5 /*
6 *
7 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
8 * All Rights Reserved.
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a
11 * copy of this software and associated documentation files (the
12 * "Software"), to deal in the Software without restriction, including
13 * without limitation the rights to use, copy, modify, merge, publish,
14 * distribute, sub license, and/or sell copies of the Software, and to
15 * permit persons to whom the Software is furnished to do so, subject to
16 * the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
23 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
25 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
26 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
27 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
28 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29 *
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: i915_drv.c,v 1.29 2021/12/19 11:17:44 riastradh Exp $");
34
35 #include <linux/acpi.h>
36 #include <linux/device.h>
37 #include <linux/oom.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/pm.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/pnp.h>
43 #include <linux/slab.h>
44 #include <linux/vga_switcheroo.h>
45 #include <linux/vt.h>
46 #include <acpi/video.h>
47
48 #include <drm/drm_atomic_helper.h>
49 #include <drm/drm_ioctl.h>
50 #include <drm/drm_irq.h>
51 #include <drm/drm_probe_helper.h>
52 #include <drm/i915_drm.h>
53
54 #include "display/intel_acpi.h"
55 #include "display/intel_audio.h"
56 #include "display/intel_bw.h"
57 #include "display/intel_cdclk.h"
58 #include "display/intel_display_types.h"
59 #include "display/intel_dp.h"
60 #include "display/intel_fbdev.h"
61 #include "display/intel_hotplug.h"
62 #include "display/intel_overlay.h"
63 #include "display/intel_pipe_crc.h"
64 #include "display/intel_sprite.h"
65 #include "display/intel_vga.h"
66
67 #include "gem/i915_gem_context.h"
68 #include "gem/i915_gem_ioctls.h"
69 #include "gem/i915_gem_mman.h"
70 #include "gt/intel_gt.h"
71 #include "gt/intel_gt_pm.h"
72 #include "gt/intel_rc6.h"
73
74 #include "i915_debugfs.h"
75 #include "i915_drv.h"
76 #include "i915_irq.h"
77 #include "i915_memcpy.h"
78 #include "i915_perf.h"
79 #include "i915_query.h"
80 #include "i915_suspend.h"
81 #include "i915_switcheroo.h"
82 #include "i915_sysfs.h"
83 #include "i915_trace.h"
84 #include "i915_vgpu.h"
85 #include "intel_csr.h"
86 #include "intel_memory_region.h"
87 #include "intel_pm.h"
88
89 #ifdef __NetBSD__
90 #ifdef notyet
91 #if defined(__i386__)
92 #include "pnpbios.h"
93 #endif
94 #if NPNPBIOS > 0
95 #define CONFIG_PNP
96 #endif
97 #endif
98 #endif
99
100 #include <linux/nbsd-namespace.h>
101
102 static struct drm_driver driver;
103
104 #ifdef __NetBSD__
105 /* XXX Kludge to expose this to NetBSD driver attachment goop. */
106 struct drm_driver *const i915_drm_driver = &driver;
107 #endif
108 struct vlv_s0ix_state {
109 /* GAM */
110 u32 wr_watermark;
111 u32 gfx_prio_ctrl;
112 u32 arb_mode;
113 u32 gfx_pend_tlb0;
114 u32 gfx_pend_tlb1;
115 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
116 u32 media_max_req_count;
117 u32 gfx_max_req_count;
118 u32 render_hwsp;
119 u32 ecochk;
120 u32 bsd_hwsp;
121 u32 blt_hwsp;
122 u32 tlb_rd_addr;
123
124 /* MBC */
125 u32 g3dctl;
126 u32 gsckgctl;
127 u32 mbctl;
128
129 /* GCP */
130 u32 ucgctl1;
131 u32 ucgctl3;
132 u32 rcgctl1;
133 u32 rcgctl2;
134 u32 rstctl;
135 u32 misccpctl;
136
137 /* GPM */
138 u32 gfxpause;
139 u32 rpdeuhwtc;
140 u32 rpdeuc;
141 u32 ecobus;
142 u32 pwrdwnupctl;
143 u32 rp_down_timeout;
144 u32 rp_deucsw;
145 u32 rcubmabdtmr;
146 u32 rcedata;
147 u32 spare2gh;
148
149 /* Display 1 CZ domain */
150 u32 gt_imr;
151 u32 gt_ier;
152 u32 pm_imr;
153 u32 pm_ier;
154 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
155
156 /* GT SA CZ domain */
157 u32 tilectl;
158 u32 gt_fifoctl;
159 u32 gtlc_wake_ctrl;
160 u32 gtlc_survive;
161 u32 pmwgicz;
162
163 /* Display 2 CZ domain */
164 u32 gu_ctl0;
165 u32 gu_ctl1;
166 u32 pcbr;
167 u32 clock_gate_dis2;
168 };
169
170 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
171 {
172 int domain = pci_domain_nr(dev_priv->drm.pdev->bus);
173
174 dev_priv->bridge_dev =
175 pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0));
176 if (!dev_priv->bridge_dev) {
177 DRM_ERROR("bridge device not found\n");
178 return -1;
179 }
180 return 0;
181 }
182
183 /* Allocate space for the MCH regs if needed, return nonzero on error */
184 static int
185 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
186 {
187 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
188 #ifdef CONFIG_PNP
189 u32 temp_lo, temp_hi = 0;
190 u64 mchbar_addr;
191 #endif
192 int ret;
193
194 #ifdef CONFIG_PNP
195 if (INTEL_GEN(dev_priv) >= 4)
196 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
197 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
198 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
199
200 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
201 if (mchbar_addr &&
202 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
203 return 0;
204 #endif
205
206 /* Get some space for it */
207 dev_priv->mch_res.name = "i915 MCHBAR";
208 dev_priv->mch_res.flags = IORESOURCE_MEM;
209 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
210 &dev_priv->mch_res,
211 MCHBAR_SIZE, MCHBAR_SIZE,
212 PCIBIOS_MIN_MEM,
213 0, pcibios_align_resource,
214 dev_priv->bridge_dev);
215 if (ret) {
216 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
217 dev_priv->mch_res.start = 0;
218 return ret;
219 }
220
221 if (INTEL_GEN(dev_priv) >= 4)
222 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
223 upper_32_bits(dev_priv->mch_res.start));
224
225 pci_write_config_dword(dev_priv->bridge_dev, reg,
226 lower_32_bits(dev_priv->mch_res.start));
227 return 0;
228 }
229
230 /* Setup MCHBAR if possible, return true if we should disable it again */
231 static void
232 intel_setup_mchbar(struct drm_i915_private *dev_priv)
233 {
234 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
235 u32 temp;
236 bool enabled;
237
238 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
239 return;
240
241 dev_priv->mchbar_need_disable = false;
242
243 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
244 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
245 enabled = !!(temp & DEVEN_MCHBAR_EN);
246 } else {
247 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
248 enabled = temp & 1;
249 }
250
251 /* If it's already enabled, don't have to do anything */
252 if (enabled)
253 return;
254
255 if (intel_alloc_mchbar_resource(dev_priv))
256 return;
257
258 dev_priv->mchbar_need_disable = true;
259
260 /* Space is allocated or reserved, so enable it. */
261 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
262 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
263 temp | DEVEN_MCHBAR_EN);
264 } else {
265 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
266 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
267 }
268 }
269
270 static void
271 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
272 {
273 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
274
275 if (dev_priv->mchbar_need_disable) {
276 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
277 u32 deven_val;
278
279 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
280 &deven_val);
281 deven_val &= ~DEVEN_MCHBAR_EN;
282 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
283 deven_val);
284 } else {
285 u32 mchbar_val;
286
287 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
288 &mchbar_val);
289 mchbar_val &= ~1;
290 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
291 mchbar_val);
292 }
293 }
294
295 if (dev_priv->mch_res.start)
296 release_resource(&dev_priv->mch_res);
297 }
298
299 static int i915_driver_modeset_probe(struct drm_i915_private *i915)
300 {
301 int ret;
302
303 if (i915_inject_probe_failure(i915))
304 return -ENODEV;
305
306 if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) {
307 ret = drm_vblank_init(&i915->drm,
308 INTEL_NUM_PIPES(i915));
309 if (ret)
310 goto out;
311 }
312
313 #ifdef __NetBSD__ /* XXX vga */
314 __USE(i915);
315 #else
316 intel_bios_init(i915);
317
318 ret = intel_vga_register(i915);
319 if (ret)
320 goto out;
321 #endif
322
323 #ifdef __NetBSD__
324 intel_register_dsm_handler(i915);
325 #else
326 intel_register_dsm_handler();
327 #endif
328
329 ret = i915_switcheroo_register(i915);
330 if (ret)
331 goto cleanup_vga_client;
332
333 intel_power_domains_init_hw(i915, false);
334
335 intel_csr_ucode_init(i915);
336
337 ret = intel_irq_install(i915);
338 if (ret)
339 goto cleanup_csr;
340
341 /* Important: The output setup functions called by modeset_init need
342 * working irqs for e.g. gmbus and dp aux transfers. */
343 ret = intel_modeset_init(i915);
344 if (ret)
345 goto cleanup_irq;
346
347 ret = i915_gem_init(i915);
348 if (ret)
349 goto cleanup_modeset;
350
351 intel_overlay_setup(i915);
352
353 if (!HAS_DISPLAY(i915) || !INTEL_DISPLAY_ENABLED(i915))
354 return 0;
355
356 ret = intel_fbdev_init(&i915->drm);
357 if (ret)
358 goto cleanup_gem;
359
360 /* Only enable hotplug handling once the fbdev is fully set up. */
361 intel_hpd_init(i915);
362
363 intel_init_ipc(i915);
364
365 return 0;
366
367 cleanup_gem:
368 i915_gem_suspend(i915);
369 i915_gem_driver_remove(i915);
370 i915_gem_driver_release(i915);
371 cleanup_modeset:
372 intel_modeset_driver_remove(i915);
373 cleanup_irq:
374 intel_irq_uninstall(i915);
375 cleanup_csr:
376 intel_csr_ucode_fini(i915);
377 intel_power_domains_driver_remove(i915);
378 i915_switcheroo_unregister(i915);
379 cleanup_vga_client:
380 intel_vga_unregister(i915);
381 out:
382 return ret;
383 }
384
385 static void i915_driver_modeset_remove(struct drm_i915_private *i915)
386 {
387 intel_modeset_driver_remove(i915);
388
389 intel_irq_uninstall(i915);
390
391 intel_bios_driver_remove(i915);
392
393 i915_switcheroo_unregister(i915);
394
395 intel_vga_unregister(i915);
396
397 intel_csr_ucode_fini(i915);
398 }
399
400 static void intel_init_dpio(struct drm_i915_private *dev_priv)
401 {
402 /*
403 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
404 * CHV x1 PHY (DP/HDMI D)
405 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
406 */
407 if (IS_CHERRYVIEW(dev_priv)) {
408 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
409 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
410 } else if (IS_VALLEYVIEW(dev_priv)) {
411 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
412 }
413 }
414
415 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
416 {
417 /*
418 * The i915 workqueue is primarily used for batched retirement of
419 * requests (and thus managing bo) once the task has been completed
420 * by the GPU. i915_retire_requests() is called directly when we
421 * need high-priority retirement, such as waiting for an explicit
422 * bo.
423 *
424 * It is also used for periodic low-priority events, such as
425 * idle-timers and recording error state.
426 *
427 * All tasks on the workqueue are expected to acquire the dev mutex
428 * so there is no point in running more than one instance of the
429 * workqueue at any time. Use an ordered one.
430 */
431 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
432 if (dev_priv->wq == NULL)
433 goto out_err;
434
435 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
436 if (dev_priv->hotplug.dp_wq == NULL)
437 goto out_free_wq;
438
439 return 0;
440
441 out_free_wq:
442 destroy_workqueue(dev_priv->wq);
443 out_err:
444 DRM_ERROR("Failed to allocate workqueues.\n");
445
446 return -ENOMEM;
447 }
448
449 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
450 {
451 destroy_workqueue(dev_priv->hotplug.dp_wq);
452 destroy_workqueue(dev_priv->wq);
453 }
454
455 /*
456 * We don't keep the workarounds for pre-production hardware, so we expect our
457 * driver to fail on these machines in one way or another. A little warning on
458 * dmesg may help both the user and the bug triagers.
459 *
460 * Our policy for removing pre-production workarounds is to keep the
461 * current gen workarounds as a guide to the bring-up of the next gen
462 * (workarounds have a habit of persisting!). Anything older than that
463 * should be removed along with the complications they introduce.
464 */
465 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
466 {
467 bool pre = false;
468
469 pre |= IS_HSW_EARLY_SDV(dev_priv);
470 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
471 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
472 pre |= IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0);
473
474 if (pre) {
475 DRM_ERROR("This is a pre-production stepping. "
476 "It may not be fully functional.\n");
477 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
478 }
479 }
480
481 static int vlv_alloc_s0ix_state(struct drm_i915_private *i915)
482 {
483 if (!IS_VALLEYVIEW(i915))
484 return 0;
485
486 /* we write all the values in the struct, so no need to zero it out */
487 i915->vlv_s0ix_state = kmalloc(sizeof(*i915->vlv_s0ix_state),
488 GFP_KERNEL);
489 if (!i915->vlv_s0ix_state)
490 return -ENOMEM;
491
492 return 0;
493 }
494
495 static void vlv_free_s0ix_state(struct drm_i915_private *i915)
496 {
497 if (!i915->vlv_s0ix_state)
498 return;
499
500 kfree(i915->vlv_s0ix_state);
501 i915->vlv_s0ix_state = NULL;
502 }
503
504 static void sanitize_gpu(struct drm_i915_private *i915)
505 {
506 if (!INTEL_INFO(i915)->gpu_reset_clobbers_display)
507 __intel_gt_reset(&i915->gt, ALL_ENGINES);
508 }
509
510 /**
511 * i915_driver_early_probe - setup state not requiring device access
512 * @dev_priv: device private
513 *
514 * Initialize everything that is a "SW-only" state, that is state not
515 * requiring accessing the device or exposing the driver via kernel internal
516 * or userspace interfaces. Example steps belonging here: lock initialization,
517 * system memory allocation, setting up device specific attributes and
518 * function hooks not requiring accessing the device.
519 */
520 static int i915_driver_early_probe(struct drm_i915_private *dev_priv)
521 {
522 int ret = 0;
523
524 if (i915_inject_probe_failure(dev_priv))
525 return -ENODEV;
526
527 intel_device_info_subplatform_init(dev_priv);
528
529 intel_uncore_mmio_debug_init_early(&dev_priv->mmio_debug);
530 intel_uncore_init_early(&dev_priv->uncore, dev_priv);
531
532 spin_lock_init(&dev_priv->irq_lock);
533 spin_lock_init(&dev_priv->gpu_error.lock);
534 mutex_init(&dev_priv->backlight_lock);
535
536 mutex_init(&dev_priv->sb_lock);
537 pm_qos_add_request(&dev_priv->sb_qos,
538 PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
539
540 mutex_init(&dev_priv->av_mutex);
541 mutex_init(&dev_priv->wm.wm_mutex);
542 mutex_init(&dev_priv->pps_mutex);
543 mutex_init(&dev_priv->hdcp_comp_mutex);
544
545 i915_memcpy_init_early(dev_priv);
546 intel_runtime_pm_init_early(&dev_priv->runtime_pm);
547
548 ret = i915_workqueues_init(dev_priv);
549 if (ret < 0)
550 return ret;
551
552 ret = vlv_alloc_s0ix_state(dev_priv);
553 if (ret < 0)
554 goto err_workqueues;
555
556 intel_wopcm_init_early(&dev_priv->wopcm);
557
558 intel_gt_init_early(&dev_priv->gt, dev_priv);
559
560 i915_gem_init_early(dev_priv);
561
562 /* This must be called before any calls to HAS_PCH_* */
563 intel_detect_pch(dev_priv);
564
565 intel_pm_setup(dev_priv);
566 intel_init_dpio(dev_priv);
567 ret = intel_power_domains_init(dev_priv);
568 if (ret < 0)
569 goto err_gem;
570 intel_irq_init(dev_priv);
571 intel_init_display_hooks(dev_priv);
572 intel_init_clock_gating_hooks(dev_priv);
573 intel_init_audio_hooks(dev_priv);
574 intel_display_crc_init(dev_priv);
575
576 intel_detect_preproduction_hw(dev_priv);
577
578 return 0;
579
580 err_gem:
581 i915_gem_cleanup_early(dev_priv);
582 intel_gt_driver_late_release(&dev_priv->gt);
583 vlv_free_s0ix_state(dev_priv);
584 err_workqueues:
585 i915_workqueues_cleanup(dev_priv);
586 mutex_destroy(&dev_priv->hdcp_comp_mutex);
587 mutex_destroy(&dev_priv->pps_mutex);
588 mutex_destroy(&dev_priv->wm.wm_mutex);
589 mutex_destroy(&dev_priv->av_mutex);
590 mutex_destroy(&dev_priv->sb_lock);
591 mutex_destroy(&dev_priv->backlight_lock);
592 spin_lock_destroy(&dev_priv->gpu_error.lock);
593 spin_lock_destroy(&dev_priv->irq_lock);
594 return ret;
595 }
596
597 /**
598 * i915_driver_late_release - cleanup the setup done in
599 * i915_driver_early_probe()
600 * @dev_priv: device private
601 */
602 static void i915_driver_late_release(struct drm_i915_private *dev_priv)
603 {
604 intel_irq_fini(dev_priv);
605 intel_power_domains_cleanup(dev_priv);
606 i915_gem_cleanup_early(dev_priv);
607 intel_gt_driver_late_release(&dev_priv->gt);
608 vlv_free_s0ix_state(dev_priv);
609 i915_workqueues_cleanup(dev_priv);
610
611 pm_qos_remove_request(&dev_priv->sb_qos);
612 mutex_destroy(&dev_priv->hdcp_comp_mutex);
613 mutex_destroy(&dev_priv->pps_mutex);
614 mutex_destroy(&dev_priv->wm.wm_mutex);
615 mutex_destroy(&dev_priv->av_mutex);
616 mutex_destroy(&dev_priv->sb_lock);
617 mutex_destroy(&dev_priv->sb_lock);
618 mutex_destroy(&dev_priv->backlight_lock);
619 spin_lock_destroy(&dev_priv->gpu_error.lock);
620 spin_lock_destroy(&dev_priv->irq_lock);
621 }
622
623 /**
624 * i915_driver_mmio_probe - setup device MMIO
625 * @dev_priv: device private
626 *
627 * Setup minimal device state necessary for MMIO accesses later in the
628 * initialization sequence. The setup here should avoid any other device-wide
629 * side effects or exposing the driver via kernel internal or user space
630 * interfaces.
631 */
632 static int i915_driver_mmio_probe(struct drm_i915_private *dev_priv)
633 {
634 int ret;
635
636 if (i915_inject_probe_failure(dev_priv))
637 return -ENODEV;
638
639 if (i915_get_bridge_dev(dev_priv))
640 return -EIO;
641
642 ret = intel_uncore_init_mmio(&dev_priv->uncore);
643 if (ret < 0)
644 goto err_bridge;
645
646 /* Try to make sure MCHBAR is enabled before poking at it */
647 intel_setup_mchbar(dev_priv);
648
649 intel_device_info_init_mmio(dev_priv);
650
651 intel_uncore_prune_mmio_domains(&dev_priv->uncore);
652
653 intel_uc_init_mmio(&dev_priv->gt.uc);
654
655 ret = intel_engines_init_mmio(&dev_priv->gt);
656 if (ret)
657 goto err_uncore;
658
659 /* As early as possible, scrub existing GPU state before clobbering */
660 sanitize_gpu(dev_priv);
661
662 return 0;
663
664 err_uncore:
665 intel_teardown_mchbar(dev_priv);
666 intel_uncore_fini_mmio(&dev_priv->uncore);
667 err_bridge:
668 pci_dev_put(dev_priv->bridge_dev);
669
670 return ret;
671 }
672
673 /**
674 * i915_driver_mmio_release - cleanup the setup done in i915_driver_mmio_probe()
675 * @dev_priv: device private
676 */
677 static void i915_driver_mmio_release(struct drm_i915_private *dev_priv)
678 {
679 intel_teardown_mchbar(dev_priv);
680 intel_uncore_fini_mmio(&dev_priv->uncore);
681 pci_dev_put(dev_priv->bridge_dev);
682 }
683
684 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
685 {
686 intel_gvt_sanitize_options(dev_priv);
687 }
688
689 #define DRAM_TYPE_STR(type) [INTEL_DRAM_ ## type] = #type
690
691 static const char *intel_dram_type_str(enum intel_dram_type type)
692 {
693 static const char * const str[] = {
694 DRAM_TYPE_STR(UNKNOWN),
695 DRAM_TYPE_STR(DDR3),
696 DRAM_TYPE_STR(DDR4),
697 DRAM_TYPE_STR(LPDDR3),
698 DRAM_TYPE_STR(LPDDR4),
699 };
700
701 if (type >= ARRAY_SIZE(str))
702 type = INTEL_DRAM_UNKNOWN;
703
704 return str[type];
705 }
706
707 #undef DRAM_TYPE_STR
708
709 static int intel_dimm_num_devices(const struct dram_dimm_info *dimm)
710 {
711 return dimm->ranks * 64 / (dimm->width ?: 1);
712 }
713
714 /* Returns total GB for the whole DIMM */
715 static int skl_get_dimm_size(u16 val)
716 {
717 return val & SKL_DRAM_SIZE_MASK;
718 }
719
720 static int skl_get_dimm_width(u16 val)
721 {
722 if (skl_get_dimm_size(val) == 0)
723 return 0;
724
725 switch (val & SKL_DRAM_WIDTH_MASK) {
726 case SKL_DRAM_WIDTH_X8:
727 case SKL_DRAM_WIDTH_X16:
728 case SKL_DRAM_WIDTH_X32:
729 val = (val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT;
730 return 8 << val;
731 default:
732 MISSING_CASE(val);
733 return 0;
734 }
735 }
736
737 static int skl_get_dimm_ranks(u16 val)
738 {
739 if (skl_get_dimm_size(val) == 0)
740 return 0;
741
742 val = (val & SKL_DRAM_RANK_MASK) >> SKL_DRAM_RANK_SHIFT;
743
744 return val + 1;
745 }
746
747 /* Returns total GB for the whole DIMM */
748 static int cnl_get_dimm_size(u16 val)
749 {
750 return (val & CNL_DRAM_SIZE_MASK) / 2;
751 }
752
753 static int cnl_get_dimm_width(u16 val)
754 {
755 if (cnl_get_dimm_size(val) == 0)
756 return 0;
757
758 switch (val & CNL_DRAM_WIDTH_MASK) {
759 case CNL_DRAM_WIDTH_X8:
760 case CNL_DRAM_WIDTH_X16:
761 case CNL_DRAM_WIDTH_X32:
762 val = (val & CNL_DRAM_WIDTH_MASK) >> CNL_DRAM_WIDTH_SHIFT;
763 return 8 << val;
764 default:
765 MISSING_CASE(val);
766 return 0;
767 }
768 }
769
770 static int cnl_get_dimm_ranks(u16 val)
771 {
772 if (cnl_get_dimm_size(val) == 0)
773 return 0;
774
775 val = (val & CNL_DRAM_RANK_MASK) >> CNL_DRAM_RANK_SHIFT;
776
777 return val + 1;
778 }
779
780 static bool
781 skl_is_16gb_dimm(const struct dram_dimm_info *dimm)
782 {
783 /* Convert total GB to Gb per DRAM device */
784 return 8 * dimm->size / (intel_dimm_num_devices(dimm) ?: 1) == 16;
785 }
786
787 static void
788 skl_dram_get_dimm_info(struct drm_i915_private *dev_priv,
789 struct dram_dimm_info *dimm,
790 int channel, char dimm_name, u16 val)
791 {
792 if (INTEL_GEN(dev_priv) >= 10) {
793 dimm->size = cnl_get_dimm_size(val);
794 dimm->width = cnl_get_dimm_width(val);
795 dimm->ranks = cnl_get_dimm_ranks(val);
796 } else {
797 dimm->size = skl_get_dimm_size(val);
798 dimm->width = skl_get_dimm_width(val);
799 dimm->ranks = skl_get_dimm_ranks(val);
800 }
801
802 DRM_DEBUG_KMS("CH%u DIMM %c size: %u GB, width: X%u, ranks: %u, 16Gb DIMMs: %s\n",
803 channel, dimm_name, dimm->size, dimm->width, dimm->ranks,
804 yesno(skl_is_16gb_dimm(dimm)));
805 }
806
807 static int
808 skl_dram_get_channel_info(struct drm_i915_private *dev_priv,
809 struct dram_channel_info *ch,
810 int channel, u32 val)
811 {
812 skl_dram_get_dimm_info(dev_priv, &ch->dimm_l,
813 channel, 'L', val & 0xffff);
814 skl_dram_get_dimm_info(dev_priv, &ch->dimm_s,
815 channel, 'S', val >> 16);
816
817 if (ch->dimm_l.size == 0 && ch->dimm_s.size == 0) {
818 DRM_DEBUG_KMS("CH%u not populated\n", channel);
819 return -EINVAL;
820 }
821
822 if (ch->dimm_l.ranks == 2 || ch->dimm_s.ranks == 2)
823 ch->ranks = 2;
824 else if (ch->dimm_l.ranks == 1 && ch->dimm_s.ranks == 1)
825 ch->ranks = 2;
826 else
827 ch->ranks = 1;
828
829 ch->is_16gb_dimm =
830 skl_is_16gb_dimm(&ch->dimm_l) ||
831 skl_is_16gb_dimm(&ch->dimm_s);
832
833 DRM_DEBUG_KMS("CH%u ranks: %u, 16Gb DIMMs: %s\n",
834 channel, ch->ranks, yesno(ch->is_16gb_dimm));
835
836 return 0;
837 }
838
839 static bool
840 intel_is_dram_symmetric(const struct dram_channel_info *ch0,
841 const struct dram_channel_info *ch1)
842 {
843 return !memcmp(ch0, ch1, sizeof(*ch0)) &&
844 (ch0->dimm_s.size == 0 ||
845 !memcmp(&ch0->dimm_l, &ch0->dimm_s, sizeof(ch0->dimm_l)));
846 }
847
848 static int
849 skl_dram_get_channels_info(struct drm_i915_private *dev_priv)
850 {
851 struct dram_info *dram_info = &dev_priv->dram_info;
852 struct dram_channel_info ch0 = {}, ch1 = {};
853 u32 val;
854 int ret;
855
856 val = I915_READ(SKL_MAD_DIMM_CH0_0_0_0_MCHBAR_MCMAIN);
857 ret = skl_dram_get_channel_info(dev_priv, &ch0, 0, val);
858 if (ret == 0)
859 dram_info->num_channels++;
860
861 val = I915_READ(SKL_MAD_DIMM_CH1_0_0_0_MCHBAR_MCMAIN);
862 ret = skl_dram_get_channel_info(dev_priv, &ch1, 1, val);
863 if (ret == 0)
864 dram_info->num_channels++;
865
866 if (dram_info->num_channels == 0) {
867 DRM_INFO("Number of memory channels is zero\n");
868 return -EINVAL;
869 }
870
871 /*
872 * If any of the channel is single rank channel, worst case output
873 * will be same as if single rank memory, so consider single rank
874 * memory.
875 */
876 if (ch0.ranks == 1 || ch1.ranks == 1)
877 dram_info->ranks = 1;
878 else
879 dram_info->ranks = max(ch0.ranks, ch1.ranks);
880
881 if (dram_info->ranks == 0) {
882 DRM_INFO("couldn't get memory rank information\n");
883 return -EINVAL;
884 }
885
886 dram_info->is_16gb_dimm = ch0.is_16gb_dimm || ch1.is_16gb_dimm;
887
888 dram_info->symmetric_memory = intel_is_dram_symmetric(&ch0, &ch1);
889
890 DRM_DEBUG_KMS("Memory configuration is symmetric? %s\n",
891 yesno(dram_info->symmetric_memory));
892 return 0;
893 }
894
895 #ifdef __NetBSD__
896 /* XXX Kludge to expose this to NetBSD driver attachment goop. */
897 const struct pci_device_id *const i915_device_ids = pciidlist;
898 const size_t i915_n_device_ids = __arraycount(pciidlist);
899 #endif
900
901 static enum intel_dram_type
902 skl_get_dram_type(struct drm_i915_private *dev_priv)
903 {
904 u32 val;
905
906 val = I915_READ(SKL_MAD_INTER_CHANNEL_0_0_0_MCHBAR_MCMAIN);
907
908 switch (val & SKL_DRAM_DDR_TYPE_MASK) {
909 case SKL_DRAM_DDR_TYPE_DDR3:
910 return INTEL_DRAM_DDR3;
911 case SKL_DRAM_DDR_TYPE_DDR4:
912 return INTEL_DRAM_DDR4;
913 case SKL_DRAM_DDR_TYPE_LPDDR3:
914 return INTEL_DRAM_LPDDR3;
915 case SKL_DRAM_DDR_TYPE_LPDDR4:
916 return INTEL_DRAM_LPDDR4;
917 default:
918 MISSING_CASE(val);
919 return INTEL_DRAM_UNKNOWN;
920 }
921 }
922
923 static int
924 skl_get_dram_info(struct drm_i915_private *dev_priv)
925 {
926 struct dram_info *dram_info = &dev_priv->dram_info;
927 u32 mem_freq_khz, val;
928 int ret;
929
930 dram_info->type = skl_get_dram_type(dev_priv);
931 DRM_DEBUG_KMS("DRAM type: %s\n", intel_dram_type_str(dram_info->type));
932
933 ret = skl_dram_get_channels_info(dev_priv);
934 if (ret)
935 return ret;
936
937 val = I915_READ(SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
938 mem_freq_khz = DIV_ROUND_UP((val & SKL_REQ_DATA_MASK) *
939 SKL_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
940
941 dram_info->bandwidth_kbps = dram_info->num_channels *
942 mem_freq_khz * 8;
943
944 if (dram_info->bandwidth_kbps == 0) {
945 DRM_INFO("Couldn't get system memory bandwidth\n");
946 return -EINVAL;
947 }
948
949 dram_info->valid = true;
950 return 0;
951 }
952
953 /* Returns Gb per DRAM device */
954 static int bxt_get_dimm_size(u32 val)
955 {
956 switch (val & BXT_DRAM_SIZE_MASK) {
957 case BXT_DRAM_SIZE_4GBIT:
958 return 4;
959 case BXT_DRAM_SIZE_6GBIT:
960 return 6;
961 case BXT_DRAM_SIZE_8GBIT:
962 return 8;
963 case BXT_DRAM_SIZE_12GBIT:
964 return 12;
965 case BXT_DRAM_SIZE_16GBIT:
966 return 16;
967 default:
968 MISSING_CASE(val);
969 return 0;
970 }
971 }
972
973 static int bxt_get_dimm_width(u32 val)
974 {
975 if (!bxt_get_dimm_size(val))
976 return 0;
977
978 val = (val & BXT_DRAM_WIDTH_MASK) >> BXT_DRAM_WIDTH_SHIFT;
979
980 return 8 << val;
981 }
982
983 static int bxt_get_dimm_ranks(u32 val)
984 {
985 if (!bxt_get_dimm_size(val))
986 return 0;
987
988 switch (val & BXT_DRAM_RANK_MASK) {
989 case BXT_DRAM_RANK_SINGLE:
990 return 1;
991 case BXT_DRAM_RANK_DUAL:
992 return 2;
993 default:
994 MISSING_CASE(val);
995 return 0;
996 }
997 }
998
999 static enum intel_dram_type bxt_get_dimm_type(u32 val)
1000 {
1001 if (!bxt_get_dimm_size(val))
1002 return INTEL_DRAM_UNKNOWN;
1003
1004 switch (val & BXT_DRAM_TYPE_MASK) {
1005 case BXT_DRAM_TYPE_DDR3:
1006 return INTEL_DRAM_DDR3;
1007 case BXT_DRAM_TYPE_LPDDR3:
1008 return INTEL_DRAM_LPDDR3;
1009 case BXT_DRAM_TYPE_DDR4:
1010 return INTEL_DRAM_DDR4;
1011 case BXT_DRAM_TYPE_LPDDR4:
1012 return INTEL_DRAM_LPDDR4;
1013 default:
1014 MISSING_CASE(val);
1015 return INTEL_DRAM_UNKNOWN;
1016 }
1017 }
1018
1019 static void bxt_get_dimm_info(struct dram_dimm_info *dimm,
1020 u32 val)
1021 {
1022 dimm->width = bxt_get_dimm_width(val);
1023 dimm->ranks = bxt_get_dimm_ranks(val);
1024
1025 /*
1026 * Size in register is Gb per DRAM device. Convert to total
1027 * GB to match the way we report this for non-LP platforms.
1028 */
1029 dimm->size = bxt_get_dimm_size(val) * intel_dimm_num_devices(dimm) / 8;
1030 }
1031
1032 static int
1033 bxt_get_dram_info(struct drm_i915_private *dev_priv)
1034 {
1035 struct dram_info *dram_info = &dev_priv->dram_info;
1036 u32 dram_channels;
1037 u32 mem_freq_khz, val;
1038 u8 num_active_channels;
1039 int i;
1040
1041 val = I915_READ(BXT_P_CR_MC_BIOS_REQ_0_0_0);
1042 mem_freq_khz = DIV_ROUND_UP((val & BXT_REQ_DATA_MASK) *
1043 BXT_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
1044
1045 dram_channels = val & BXT_DRAM_CHANNEL_ACTIVE_MASK;
1046 num_active_channels = hweight32(dram_channels);
1047
1048 /* Each active bit represents 4-byte channel */
1049 dram_info->bandwidth_kbps = (mem_freq_khz * num_active_channels * 4);
1050
1051 if (dram_info->bandwidth_kbps == 0) {
1052 DRM_INFO("Couldn't get system memory bandwidth\n");
1053 return -EINVAL;
1054 }
1055
1056 /*
1057 * Now read each DUNIT8/9/10/11 to check the rank of each dimms.
1058 */
1059 for (i = BXT_D_CR_DRP0_DUNIT_START; i <= BXT_D_CR_DRP0_DUNIT_END; i++) {
1060 struct dram_dimm_info dimm;
1061 enum intel_dram_type type;
1062
1063 val = I915_READ(BXT_D_CR_DRP0_DUNIT(i));
1064 if (val == 0xFFFFFFFF)
1065 continue;
1066
1067 dram_info->num_channels++;
1068
1069 bxt_get_dimm_info(&dimm, val);
1070 type = bxt_get_dimm_type(val);
1071
1072 WARN_ON(type != INTEL_DRAM_UNKNOWN &&
1073 dram_info->type != INTEL_DRAM_UNKNOWN &&
1074 dram_info->type != type);
1075
1076 DRM_DEBUG_KMS("CH%u DIMM size: %u GB, width: X%u, ranks: %u, type: %s\n",
1077 i - BXT_D_CR_DRP0_DUNIT_START,
1078 dimm.size, dimm.width, dimm.ranks,
1079 intel_dram_type_str(type));
1080
1081 /*
1082 * If any of the channel is single rank channel,
1083 * worst case output will be same as if single rank
1084 * memory, so consider single rank memory.
1085 */
1086 if (dram_info->ranks == 0)
1087 dram_info->ranks = dimm.ranks;
1088 else if (dimm.ranks == 1)
1089 dram_info->ranks = 1;
1090
1091 if (type != INTEL_DRAM_UNKNOWN)
1092 dram_info->type = type;
1093 }
1094
1095 if (dram_info->type == INTEL_DRAM_UNKNOWN ||
1096 dram_info->ranks == 0) {
1097 DRM_INFO("couldn't get memory information\n");
1098 return -EINVAL;
1099 }
1100
1101 dram_info->valid = true;
1102 return 0;
1103 }
1104
1105 static void
1106 intel_get_dram_info(struct drm_i915_private *dev_priv)
1107 {
1108 struct dram_info *dram_info = &dev_priv->dram_info;
1109 int ret;
1110
1111 /*
1112 * Assume 16Gb DIMMs are present until proven otherwise.
1113 * This is only used for the level 0 watermark latency
1114 * w/a which does not apply to bxt/glk.
1115 */
1116 dram_info->is_16gb_dimm = !IS_GEN9_LP(dev_priv);
1117
1118 if (INTEL_GEN(dev_priv) < 9 || !HAS_DISPLAY(dev_priv))
1119 return;
1120
1121 if (IS_GEN9_LP(dev_priv))
1122 ret = bxt_get_dram_info(dev_priv);
1123 else
1124 ret = skl_get_dram_info(dev_priv);
1125 if (ret)
1126 return;
1127
1128 DRM_DEBUG_KMS("DRAM bandwidth: %u kBps, channels: %u\n",
1129 dram_info->bandwidth_kbps,
1130 dram_info->num_channels);
1131
1132 DRM_DEBUG_KMS("DRAM ranks: %u, 16Gb DIMMs: %s\n",
1133 dram_info->ranks, yesno(dram_info->is_16gb_dimm));
1134 }
1135
1136 static u32 gen9_edram_size_mb(struct drm_i915_private *dev_priv, u32 cap)
1137 {
1138 static const u8 ways[8] = { 4, 8, 12, 16, 16, 16, 16, 16 };
1139 static const u8 sets[4] = { 1, 1, 2, 2 };
1140
1141 return EDRAM_NUM_BANKS(cap) *
1142 ways[EDRAM_WAYS_IDX(cap)] *
1143 sets[EDRAM_SETS_IDX(cap)];
1144 }
1145
1146 static void edram_detect(struct drm_i915_private *dev_priv)
1147 {
1148 u32 edram_cap = 0;
1149
1150 if (!(IS_HASWELL(dev_priv) ||
1151 IS_BROADWELL(dev_priv) ||
1152 INTEL_GEN(dev_priv) >= 9))
1153 return;
1154
1155 edram_cap = __raw_uncore_read32(&dev_priv->uncore, HSW_EDRAM_CAP);
1156
1157 /* NB: We can't write IDICR yet because we don't have gt funcs set up */
1158
1159 if (!(edram_cap & EDRAM_ENABLED))
1160 return;
1161
1162 /*
1163 * The needed capability bits for size calculation are not there with
1164 * pre gen9 so return 128MB always.
1165 */
1166 if (INTEL_GEN(dev_priv) < 9)
1167 dev_priv->edram_size_mb = 128;
1168 else
1169 dev_priv->edram_size_mb =
1170 gen9_edram_size_mb(dev_priv, edram_cap);
1171
1172 dev_info(dev_priv->drm.dev,
1173 "Found %uMB of eDRAM\n", dev_priv->edram_size_mb);
1174 }
1175
1176 /**
1177 * i915_driver_hw_probe - setup state requiring device access
1178 * @dev_priv: device private
1179 *
1180 * Setup state that requires accessing the device, but doesn't require
1181 * exposing the driver via kernel internal or userspace interfaces.
1182 */
1183 static int i915_driver_hw_probe(struct drm_i915_private *dev_priv)
1184 {
1185 struct pci_dev *pdev = dev_priv->drm.pdev;
1186 int ret;
1187
1188 if (i915_inject_probe_failure(dev_priv))
1189 return -ENODEV;
1190
1191 intel_device_info_runtime_init(dev_priv);
1192
1193 if (HAS_PPGTT(dev_priv)) {
1194 if (intel_vgpu_active(dev_priv) &&
1195 !intel_vgpu_has_full_ppgtt(dev_priv)) {
1196 i915_report_error(dev_priv,
1197 "incompatible vGPU found, support for isolated ppGTT required\n");
1198 return -ENXIO;
1199 }
1200 }
1201
1202 if (HAS_EXECLISTS(dev_priv)) {
1203 /*
1204 * Older GVT emulation depends upon intercepting CSB mmio,
1205 * which we no longer use, preferring to use the HWSP cache
1206 * instead.
1207 */
1208 if (intel_vgpu_active(dev_priv) &&
1209 !intel_vgpu_has_hwsp_emulation(dev_priv)) {
1210 i915_report_error(dev_priv,
1211 "old vGPU host found, support for HWSP emulation required\n");
1212 return -ENXIO;
1213 }
1214 }
1215
1216 intel_sanitize_options(dev_priv);
1217
1218 /* needs to be done before ggtt probe */
1219 edram_detect(dev_priv);
1220
1221 i915_perf_init(dev_priv);
1222
1223 ret = i915_ggtt_probe_hw(dev_priv);
1224 if (ret)
1225 goto err_perf;
1226
1227 ret = drm_fb_helper_remove_conflicting_pci_framebuffers(pdev, "inteldrmfb");
1228 if (ret)
1229 goto err_ggtt;
1230
1231 ret = i915_ggtt_init_hw(dev_priv);
1232 if (ret)
1233 goto err_ggtt;
1234
1235 ret = intel_memory_regions_hw_probe(dev_priv);
1236 if (ret)
1237 goto err_ggtt;
1238
1239 intel_gt_init_hw_early(&dev_priv->gt, &dev_priv->ggtt);
1240
1241 ret = i915_ggtt_enable_hw(dev_priv);
1242 if (ret) {
1243 DRM_ERROR("failed to enable GGTT\n");
1244 goto err_mem_regions;
1245 }
1246
1247 pci_set_master(pdev);
1248
1249 /*
1250 * We don't have a max segment size, so set it to the max so sg's
1251 * debugging layer doesn't complain
1252 */
1253 dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1254
1255 #ifndef __NetBSD__ /* Handled in intel_ggtt.c. */
1256 /* overlay on gen2 is broken and can't address above 1G */
1257 if (IS_GEN(dev_priv, 2)) {
1258 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1259 if (ret) {
1260 DRM_ERROR("failed to set DMA mask\n");
1261
1262 goto err_mem_regions;
1263 }
1264 }
1265
1266 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1267 * using 32bit addressing, overwriting memory if HWS is located
1268 * above 4GB.
1269 *
1270 * The documentation also mentions an issue with undefined
1271 * behaviour if any general state is accessed within a page above 4GB,
1272 * which also needs to be handled carefully.
1273 */
1274 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1275 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1276
1277 if (ret) {
1278 DRM_ERROR("failed to set DMA mask\n");
1279
1280 goto err_mem_regions;
1281 }
1282 }
1283 #endif
1284
1285 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1286 PM_QOS_DEFAULT_VALUE);
1287
1288 intel_gt_init_workarounds(dev_priv);
1289
1290 /* On the 945G/GM, the chipset reports the MSI capability on the
1291 * integrated graphics even though the support isn't actually there
1292 * according to the published specs. It doesn't appear to function
1293 * correctly in testing on 945G.
1294 * This may be a side effect of MSI having been made available for PEG
1295 * and the registers being closely associated.
1296 *
1297 * According to chipset errata, on the 965GM, MSI interrupts may
1298 * be lost or delayed, and was defeatured. MSI interrupts seem to
1299 * get lost on g4x as well, and interrupt delivery seems to stay
1300 * properly dead afterwards. So we'll just disable them for all
1301 * pre-gen5 chipsets.
1302 *
1303 * dp aux and gmbus irq on gen4 seems to be able to generate legacy
1304 * interrupts even when in MSI mode. This results in spurious
1305 * interrupt warnings if the legacy irq no. is shared with another
1306 * device. The kernel then disables that interrupt source and so
1307 * prevents the other device from working properly.
1308 */
1309 if (INTEL_GEN(dev_priv) >= 5) {
1310 if (pci_enable_msi(pdev) < 0)
1311 DRM_DEBUG_DRIVER("can't enable MSI");
1312 }
1313
1314 ret = intel_gvt_init(dev_priv);
1315 if (ret)
1316 goto err_msi;
1317
1318 intel_opregion_setup(dev_priv);
1319 /*
1320 * Fill the dram structure to get the system raw bandwidth and
1321 * dram info. This will be used for memory latency calculation.
1322 */
1323 intel_get_dram_info(dev_priv);
1324
1325 intel_bw_init_hw(dev_priv);
1326
1327 return 0;
1328
1329 err_msi:
1330 if (pdev->msi_enabled)
1331 pci_disable_msi(pdev);
1332 pm_qos_remove_request(&dev_priv->pm_qos);
1333 err_mem_regions:
1334 intel_memory_regions_driver_release(dev_priv);
1335 err_ggtt:
1336 i915_ggtt_driver_release(dev_priv);
1337 err_perf:
1338 i915_perf_fini(dev_priv);
1339 return ret;
1340 }
1341
1342 /**
1343 * i915_driver_hw_remove - cleanup the setup done in i915_driver_hw_probe()
1344 * @dev_priv: device private
1345 */
1346 static void i915_driver_hw_remove(struct drm_i915_private *dev_priv)
1347 {
1348 struct pci_dev *pdev = dev_priv->drm.pdev;
1349
1350 i915_perf_fini(dev_priv);
1351
1352 if (pdev->msi_enabled)
1353 pci_disable_msi(pdev);
1354
1355 pm_qos_remove_request(&dev_priv->pm_qos);
1356 }
1357
1358 /**
1359 * i915_driver_register - register the driver with the rest of the system
1360 * @dev_priv: device private
1361 *
1362 * Perform any steps necessary to make the driver available via kernel
1363 * internal or userspace interfaces.
1364 */
1365 static void i915_driver_register(struct drm_i915_private *dev_priv)
1366 {
1367 struct drm_device *dev = &dev_priv->drm;
1368
1369 i915_gem_driver_register(dev_priv);
1370 i915_pmu_register(dev_priv);
1371
1372 /*
1373 * Notify a valid surface after modesetting,
1374 * when running inside a VM.
1375 */
1376 if (intel_vgpu_active(dev_priv))
1377 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1378
1379 /* Reveal our presence to userspace */
1380 if (drm_dev_register(dev, 0) == 0) {
1381 i915_debugfs_register(dev_priv);
1382 i915_setup_sysfs(dev_priv);
1383
1384 /* Depends on sysfs having been initialized */
1385 i915_perf_register(dev_priv);
1386 } else
1387 DRM_ERROR("Failed to register driver for userspace access!\n");
1388
1389 if (HAS_DISPLAY(dev_priv) && INTEL_DISPLAY_ENABLED(dev_priv)) {
1390 /* Must be done after probing outputs */
1391 intel_opregion_register(dev_priv);
1392 acpi_video_register();
1393 }
1394
1395 intel_gt_driver_register(&dev_priv->gt);
1396
1397 intel_audio_init(dev_priv);
1398
1399 /*
1400 * Some ports require correctly set-up hpd registers for detection to
1401 * work properly (leading to ghost connected connector status), e.g. VGA
1402 * on gm45. Hence we can only set up the initial fbdev config after hpd
1403 * irqs are fully enabled. We do it last so that the async config
1404 * cannot run before the connectors are registered.
1405 */
1406 intel_fbdev_initial_config_async(dev);
1407
1408 /*
1409 * We need to coordinate the hotplugs with the asynchronous fbdev
1410 * configuration, for which we use the fbdev->async_cookie.
1411 */
1412 if (HAS_DISPLAY(dev_priv) && INTEL_DISPLAY_ENABLED(dev_priv))
1413 drm_kms_helper_poll_init(dev);
1414
1415 intel_power_domains_enable(dev_priv);
1416 intel_runtime_pm_enable(&dev_priv->runtime_pm);
1417 }
1418
1419 /**
1420 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1421 * @dev_priv: device private
1422 */
1423 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1424 {
1425 intel_runtime_pm_disable(&dev_priv->runtime_pm);
1426 intel_power_domains_disable(dev_priv);
1427
1428 intel_fbdev_unregister(dev_priv);
1429 intel_audio_deinit(dev_priv);
1430
1431 /*
1432 * After flushing the fbdev (incl. a late async config which will
1433 * have delayed queuing of a hotplug event), then flush the hotplug
1434 * events.
1435 */
1436 drm_kms_helper_poll_fini(&dev_priv->drm);
1437
1438 intel_gt_driver_unregister(&dev_priv->gt);
1439 acpi_video_unregister();
1440 intel_opregion_unregister(dev_priv);
1441
1442 i915_perf_unregister(dev_priv);
1443 i915_pmu_unregister(dev_priv);
1444
1445 i915_teardown_sysfs(dev_priv);
1446 drm_dev_unplug(&dev_priv->drm);
1447
1448 i915_gem_driver_unregister(dev_priv);
1449 }
1450
1451 static void i915_welcome_messages(struct drm_i915_private *dev_priv)
1452 {
1453 if (drm_debug_enabled(DRM_UT_DRIVER)) {
1454 struct drm_printer p = drm_debug_printer("i915 device info:");
1455
1456 drm_printf(&p, "pciid=0x%04x rev=0x%02x platform=%s (subplatform=0x%x) gen=%i\n",
1457 INTEL_DEVID(dev_priv),
1458 INTEL_REVID(dev_priv),
1459 intel_platform_name(INTEL_INFO(dev_priv)->platform),
1460 intel_subplatform(RUNTIME_INFO(dev_priv),
1461 INTEL_INFO(dev_priv)->platform),
1462 INTEL_GEN(dev_priv));
1463
1464 intel_device_info_print_static(INTEL_INFO(dev_priv), &p);
1465 intel_device_info_print_runtime(RUNTIME_INFO(dev_priv), &p);
1466 }
1467
1468 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1469 DRM_INFO("DRM_I915_DEBUG enabled\n");
1470 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1471 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1472 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM))
1473 DRM_INFO("DRM_I915_DEBUG_RUNTIME_PM enabled\n");
1474 }
1475
1476 static struct drm_i915_private *
1477 i915_driver_create(struct pci_dev *pdev, const struct pci_device_id *ent)
1478 {
1479 const struct intel_device_info *match_info =
1480 (struct intel_device_info *)ent->driver_data;
1481 struct intel_device_info *device_info;
1482 struct drm_i915_private *i915;
1483 int err;
1484
1485 i915 = kzalloc(sizeof(*i915), GFP_KERNEL);
1486 if (!i915)
1487 return ERR_PTR(-ENOMEM);
1488
1489 err = drm_dev_init(&i915->drm, &driver, &pdev->dev);
1490 if (err) {
1491 kfree(i915);
1492 return ERR_PTR(err);
1493 }
1494
1495 i915->drm.dev_private = i915;
1496
1497 i915->drm.pdev = pdev;
1498 pci_set_drvdata(pdev, i915);
1499
1500 /* Setup the write-once "constant" device info */
1501 device_info = mkwrite_device_info(i915);
1502 memcpy(device_info, match_info, sizeof(*device_info));
1503 RUNTIME_INFO(i915)->device_id = pdev->device;
1504
1505 BUG_ON(device_info->gen > BITS_PER_TYPE(device_info->gen_mask));
1506
1507 return i915;
1508 }
1509
1510 static void i915_driver_destroy(struct drm_i915_private *i915)
1511 {
1512 struct pci_dev *pdev = i915->drm.pdev;
1513
1514 drm_dev_fini(&i915->drm);
1515 kfree(i915);
1516
1517 /* And make sure we never chase our dangling pointer from pci_dev */
1518 pci_set_drvdata(pdev, NULL);
1519 }
1520
1521 /**
1522 * i915_driver_probe - setup chip and create an initial config
1523 * @pdev: PCI device
1524 * @ent: matching PCI ID entry
1525 *
1526 * The driver probe routine has to do several things:
1527 * - drive output discovery via intel_modeset_init()
1528 * - initialize the memory manager
1529 * - allocate initial config memory
1530 * - setup the DRM framebuffer with the allocated memory
1531 */
1532 int i915_driver_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1533 {
1534 const struct intel_device_info *match_info =
1535 (struct intel_device_info *)ent->driver_data;
1536 struct drm_i915_private *dev_priv;
1537 int ret;
1538
1539 dev_priv = i915_driver_create(pdev, ent);
1540 if (IS_ERR(dev_priv))
1541 return PTR_ERR(dev_priv);
1542
1543 /* Disable nuclear pageflip by default on pre-ILK */
1544 if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1545 dev_priv->drm.driver_features &= ~DRIVER_ATOMIC;
1546
1547 /*
1548 * Check if we support fake LMEM -- for now we only unleash this for
1549 * the live selftests(test-and-exit).
1550 */
1551 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1552 if (IS_ENABLED(CONFIG_DRM_I915_UNSTABLE_FAKE_LMEM)) {
1553 if (INTEL_GEN(dev_priv) >= 9 && i915_selftest.live < 0 &&
1554 i915_modparams.fake_lmem_start) {
1555 mkwrite_device_info(dev_priv)->memory_regions =
1556 REGION_SMEM | REGION_LMEM | REGION_STOLEN;
1557 mkwrite_device_info(dev_priv)->is_dgfx = true;
1558 GEM_BUG_ON(!HAS_LMEM(dev_priv));
1559 GEM_BUG_ON(!IS_DGFX(dev_priv));
1560 }
1561 }
1562 #endif
1563
1564 #ifndef __NetBSD__ /* XXX done for us */
1565 ret = pci_enable_device(pdev);
1566 if (ret)
1567 goto out_fini;
1568 #endif
1569
1570 ret = i915_driver_early_probe(dev_priv);
1571 if (ret < 0)
1572 goto out_pci_disable;
1573
1574 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1575
1576 i915_detect_vgpu(dev_priv);
1577
1578 ret = i915_driver_mmio_probe(dev_priv);
1579 if (ret < 0)
1580 goto out_runtime_pm_put;
1581
1582 ret = i915_driver_hw_probe(dev_priv);
1583 if (ret < 0)
1584 goto out_cleanup_mmio;
1585
1586 ret = i915_driver_modeset_probe(dev_priv);
1587 if (ret < 0)
1588 goto out_cleanup_hw;
1589
1590 i915_driver_register(dev_priv);
1591
1592 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1593
1594 i915_welcome_messages(dev_priv);
1595
1596 return 0;
1597
1598 out_cleanup_hw:
1599 i915_driver_hw_remove(dev_priv);
1600 intel_memory_regions_driver_release(dev_priv);
1601 i915_ggtt_driver_release(dev_priv);
1602 out_cleanup_mmio:
1603 i915_driver_mmio_release(dev_priv);
1604 out_runtime_pm_put:
1605 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1606 i915_driver_late_release(dev_priv);
1607 out_pci_disable:
1608 #ifndef __NetBSD__
1609 pci_disable_device(pdev);
1610 out_fini:
1611 i915_probe_error(dev_priv, "Device initialization failed (%d)\n", ret);
1612 i915_driver_destroy(dev_priv);
1613 #endif
1614 return ret;
1615 }
1616
1617 void i915_driver_remove(struct drm_i915_private *i915)
1618 {
1619 disable_rpm_wakeref_asserts(&i915->runtime_pm);
1620
1621 i915_driver_unregister(i915);
1622
1623 /*
1624 * After unregistering the device to prevent any new users, cancel
1625 * all in-flight requests so that we can quickly unbind the active
1626 * resources.
1627 */
1628 intel_gt_set_wedged(&i915->gt);
1629
1630 /* Flush any external code that still may be under the RCU lock */
1631 synchronize_rcu();
1632
1633 i915_gem_suspend(i915);
1634
1635 drm_atomic_helper_shutdown(&i915->drm);
1636
1637 intel_gvt_driver_remove(i915);
1638
1639 i915_driver_modeset_remove(i915);
1640
1641 i915_reset_error_state(i915);
1642 i915_gem_driver_remove(i915);
1643
1644 intel_power_domains_driver_remove(i915);
1645
1646 i915_driver_hw_remove(i915);
1647
1648 enable_rpm_wakeref_asserts(&i915->runtime_pm);
1649 }
1650
1651 static void i915_driver_release(struct drm_device *dev)
1652 {
1653 struct drm_i915_private *dev_priv = to_i915(dev);
1654 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
1655
1656 disable_rpm_wakeref_asserts(rpm);
1657
1658 i915_gem_driver_release(dev_priv);
1659
1660 intel_memory_regions_driver_release(dev_priv);
1661 i915_ggtt_driver_release(dev_priv);
1662
1663 i915_driver_mmio_release(dev_priv);
1664
1665 enable_rpm_wakeref_asserts(rpm);
1666 intel_runtime_pm_driver_release(rpm);
1667
1668 i915_driver_late_release(dev_priv);
1669 i915_driver_destroy(dev_priv);
1670 }
1671
1672 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1673 {
1674 struct drm_i915_private *i915 = to_i915(dev);
1675 int ret;
1676
1677 ret = i915_gem_open(i915, file);
1678 if (ret)
1679 return ret;
1680
1681 return 0;
1682 }
1683
1684 /**
1685 * i915_driver_lastclose - clean up after all DRM clients have exited
1686 * @dev: DRM device
1687 *
1688 * Take care of cleaning up after all DRM clients have exited. In the
1689 * mode setting case, we want to restore the kernel's initial mode (just
1690 * in case the last client left us in a bad state).
1691 *
1692 * Additionally, in the non-mode setting case, we'll tear down the GTT
1693 * and DMA structures, since the kernel won't be using them, and clea
1694 * up any GEM state.
1695 */
1696 static void i915_driver_lastclose(struct drm_device *dev)
1697 {
1698 intel_fbdev_restore_mode(dev);
1699 vga_switcheroo_process_delayed_switch();
1700 }
1701
1702 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1703 {
1704 struct drm_i915_file_private *file_priv = file->driver_priv;
1705
1706 i915_gem_context_close(file);
1707 i915_gem_release(dev, file);
1708
1709 kfree_rcu(file_priv, rcu);
1710
1711 /* Catch up with all the deferred frees from "this" client */
1712 i915_gem_flush_free_objects(to_i915(dev));
1713 }
1714
1715 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1716 {
1717 struct drm_device *dev = &dev_priv->drm;
1718 struct intel_encoder *encoder;
1719
1720 drm_modeset_lock_all(dev);
1721 for_each_intel_encoder(dev, encoder)
1722 if (encoder->suspend)
1723 encoder->suspend(encoder);
1724 drm_modeset_unlock_all(dev);
1725 }
1726
1727 #ifndef __NetBSD__ /* XXX vlv suspend/resume */
1728 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1729 bool rpm_resume);
1730 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1731 #endif
1732
1733 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1734 {
1735 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1736 if (acpi_target_system_state() < ACPI_STATE_S3)
1737 return true;
1738 #endif
1739 return false;
1740 }
1741
1742 #ifndef __NetBSD__ /* XXX runtime pm */
1743 static int i915_drm_prepare(struct drm_device *dev)
1744 {
1745 struct drm_i915_private *i915 = to_i915(dev);
1746
1747 /*
1748 * NB intel_display_suspend() may issue new requests after we've
1749 * ostensibly marked the GPU as ready-to-sleep here. We need to
1750 * split out that work and pull it forward so that after point,
1751 * the GPU is not woken again.
1752 */
1753 i915_gem_suspend(i915);
1754
1755 return 0;
1756 }
1757 #endif
1758
1759 int i915_drm_suspend(struct drm_device *dev)
1760 {
1761 struct drm_i915_private *dev_priv = to_i915(dev);
1762 struct pci_dev *pdev = dev_priv->drm.pdev;
1763 pci_power_t opregion_target_state;
1764
1765 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1766
1767 /* We do a lot of poking in a lot of registers, make sure they work
1768 * properly. */
1769 intel_power_domains_disable(dev_priv);
1770
1771 drm_kms_helper_poll_disable(dev);
1772
1773 #ifdef __NetBSD__ /* pmf handles this for us. */
1774 __USE(pdev);
1775 #else
1776 pci_save_state(pdev);
1777 #endif
1778
1779 intel_display_suspend(dev);
1780
1781 intel_dp_mst_suspend(dev_priv);
1782
1783 intel_runtime_pm_disable_interrupts(dev_priv);
1784 intel_hpd_cancel_work(dev_priv);
1785
1786 intel_suspend_encoders(dev_priv);
1787
1788 intel_suspend_hw(dev_priv);
1789
1790 i915_gem_suspend_gtt_mappings(dev_priv);
1791
1792 i915_save_state(dev_priv);
1793
1794 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1795 intel_opregion_suspend(dev_priv, opregion_target_state);
1796
1797 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1798
1799 dev_priv->suspend_count++;
1800
1801 intel_csr_ucode_suspend(dev_priv);
1802
1803 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1804
1805 return 0;
1806 }
1807
1808 static enum i915_drm_suspend_mode
1809 get_suspend_mode(struct drm_i915_private *dev_priv, bool hibernate)
1810 {
1811 if (hibernate)
1812 return I915_DRM_SUSPEND_HIBERNATE;
1813
1814 if (suspend_to_idle(dev_priv))
1815 return I915_DRM_SUSPEND_IDLE;
1816
1817 return I915_DRM_SUSPEND_MEM;
1818 }
1819
1820 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1821 {
1822 struct drm_i915_private *dev_priv = to_i915(dev);
1823 struct pci_dev *pdev = dev_priv->drm.pdev;
1824 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
1825 int ret = 0;
1826
1827 disable_rpm_wakeref_asserts(rpm);
1828
1829 i915_gem_suspend_late(dev_priv);
1830
1831 intel_uncore_suspend(&dev_priv->uncore);
1832
1833 intel_power_domains_suspend(dev_priv,
1834 get_suspend_mode(dev_priv, hibernation));
1835
1836 intel_display_power_suspend_late(dev_priv);
1837
1838 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1839 #ifdef __NetBSD__
1840 ret = 0;
1841 #else
1842 ret = vlv_suspend_complete(dev_priv);
1843 #endif
1844
1845 if (ret) {
1846 DRM_ERROR("Suspend complete failed: %d\n", ret);
1847 intel_power_domains_resume(dev_priv);
1848
1849 goto out;
1850 }
1851
1852 #ifdef __NetBSD__ /* pmf handles this for us. */
1853 __USE(pdev);
1854 #else
1855 pci_disable_device(pdev);
1856 /*
1857 * During hibernation on some platforms the BIOS may try to access
1858 * the device even though it's already in D3 and hang the machine. So
1859 * leave the device in D0 on those platforms and hope the BIOS will
1860 * power down the device properly. The issue was seen on multiple old
1861 * GENs with different BIOS vendors, so having an explicit blacklist
1862 * is inpractical; apply the workaround on everything pre GEN6. The
1863 * platforms where the issue was seen:
1864 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1865 * Fujitsu FSC S7110
1866 * Acer Aspire 1830T
1867 */
1868 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1869 pci_set_power_state(pdev, PCI_D3hot);
1870 #endif
1871
1872 out:
1873 enable_rpm_wakeref_asserts(rpm);
1874 if (!dev_priv->uncore.user_forcewake_count)
1875 intel_runtime_pm_driver_release(rpm);
1876
1877 return ret;
1878 }
1879
1880 #ifndef __NetBSD__ /* XXX vga switcheroo */
1881 int i915_suspend_switcheroo(struct drm_i915_private *i915, pm_message_t state)
1882 {
1883 int error;
1884
1885 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1886 state.event != PM_EVENT_FREEZE))
1887 return -EINVAL;
1888
1889 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
1890 return 0;
1891
1892 error = i915_drm_suspend(&i915->drm);
1893 if (error)
1894 return error;
1895
1896 return i915_drm_suspend_late(&i915->drm, false);
1897 }
1898 #endif
1899
1900 int i915_drm_resume(struct drm_device *dev)
1901 {
1902 struct drm_i915_private *dev_priv = to_i915(dev);
1903 int ret;
1904
1905 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1906
1907 sanitize_gpu(dev_priv);
1908
1909 ret = i915_ggtt_enable_hw(dev_priv);
1910 if (ret)
1911 DRM_ERROR("failed to re-enable GGTT\n");
1912
1913 i915_gem_restore_gtt_mappings(dev_priv);
1914 i915_gem_restore_fences(&dev_priv->ggtt);
1915
1916 intel_csr_ucode_resume(dev_priv);
1917
1918 i915_restore_state(dev_priv);
1919 intel_pps_unlock_regs_wa(dev_priv);
1920
1921 intel_init_pch_refclk(dev_priv);
1922
1923 /*
1924 * Interrupts have to be enabled before any batches are run. If not the
1925 * GPU will hang. i915_gem_init_hw() will initiate batches to
1926 * update/restore the context.
1927 *
1928 * drm_mode_config_reset() needs AUX interrupts.
1929 *
1930 * Modeset enabling in intel_modeset_init_hw() also needs working
1931 * interrupts.
1932 */
1933 intel_runtime_pm_enable_interrupts(dev_priv);
1934
1935 drm_mode_config_reset(dev);
1936
1937 i915_gem_resume(dev_priv);
1938
1939 intel_modeset_init_hw(dev_priv);
1940 intel_init_clock_gating(dev_priv);
1941
1942 spin_lock_irq(&dev_priv->irq_lock);
1943 if (dev_priv->display.hpd_irq_setup)
1944 dev_priv->display.hpd_irq_setup(dev_priv);
1945 spin_unlock_irq(&dev_priv->irq_lock);
1946
1947 intel_dp_mst_resume(dev_priv);
1948
1949 intel_display_resume(dev);
1950
1951 drm_kms_helper_poll_enable(dev);
1952
1953 /*
1954 * ... but also need to make sure that hotplug processing
1955 * doesn't cause havoc. Like in the driver load code we don't
1956 * bother with the tiny race here where we might lose hotplug
1957 * notifications.
1958 * */
1959 intel_hpd_init(dev_priv);
1960
1961 intel_opregion_resume(dev_priv);
1962
1963 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1964
1965 intel_power_domains_enable(dev_priv);
1966
1967 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1968
1969 return 0;
1970 }
1971
1972 int i915_drm_resume_early(struct drm_device *dev)
1973 {
1974 struct drm_i915_private *dev_priv = to_i915(dev);
1975 struct pci_dev *pdev = dev_priv->drm.pdev;
1976 int ret;
1977
1978 /*
1979 * We have a resume ordering issue with the snd-hda driver also
1980 * requiring our device to be power up. Due to the lack of a
1981 * parent/child relationship we currently solve this with an early
1982 * resume hook.
1983 *
1984 * FIXME: This should be solved with a special hdmi sink device or
1985 * similar so that power domains can be employed.
1986 */
1987
1988 /*
1989 * Note that we need to set the power state explicitly, since we
1990 * powered off the device during freeze and the PCI core won't power
1991 * it back up for us during thaw. Powering off the device during
1992 * freeze is not a hard requirement though, and during the
1993 * suspend/resume phases the PCI core makes sure we get here with the
1994 * device powered on. So in case we change our freeze logic and keep
1995 * the device powered we can also remove the following set power state
1996 * call.
1997 */
1998 #ifdef __NetBSD__ /* pmf handles this for us. */
1999 if (0)
2000 goto out;
2001 #else
2002 ret = pci_set_power_state(pdev, PCI_D0);
2003 if (ret) {
2004 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
2005 return ret;
2006 }
2007
2008 /*
2009 * Note that pci_enable_device() first enables any parent bridge
2010 * device and only then sets the power state for this device. The
2011 * bridge enabling is a nop though, since bridge devices are resumed
2012 * first. The order of enabling power and enabling the device is
2013 * imposed by the PCI core as described above, so here we preserve the
2014 * same order for the freeze/thaw phases.
2015 *
2016 * TODO: eventually we should remove pci_disable_device() /
2017 * pci_enable_enable_device() from suspend/resume. Due to how they
2018 * depend on the device enable refcount we can't anyway depend on them
2019 * disabling/enabling the device.
2020 */
2021 if (pci_enable_device(pdev))
2022 return -EIO;
2023 #endif
2024
2025 /* XXX pmf probably handles this for us too. */
2026 pci_set_master(dev->pdev);
2027
2028 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2029
2030 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2031 #ifdef __NetBSD__ /* XXX vlv suspend/resume */
2032 ret = 0;
2033 #else
2034 ret = vlv_resume_prepare(dev_priv, false);
2035 #endif
2036 if (ret)
2037 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
2038 ret);
2039
2040 intel_uncore_resume_early(&dev_priv->uncore);
2041
2042 intel_gt_check_and_clear_faults(&dev_priv->gt);
2043
2044 intel_display_power_resume_early(dev_priv);
2045
2046 intel_power_domains_resume(dev_priv);
2047
2048 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2049
2050 i915_rc6_ctx_wa_resume(dev_priv);
2051
2052 return ret;
2053 }
2054
2055 #ifndef __NetBSD__ /* XXX vga switcheroo */
2056 int i915_resume_switcheroo(struct drm_i915_private *i915)
2057 {
2058 int ret;
2059
2060 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2061 return 0;
2062
2063 ret = i915_drm_resume_early(&i915->drm);
2064 if (ret)
2065 return ret;
2066
2067 return i915_drm_resume(&i915->drm);
2068 }
2069
2070 static int i915_pm_prepare(struct device *kdev)
2071 {
2072 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2073
2074 if (!i915) {
2075 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2076 return -ENODEV;
2077 }
2078
2079 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2080 return 0;
2081
2082 return i915_drm_prepare(&i915->drm);
2083 }
2084 #endif
2085
2086 #ifndef __NetBSD__
2087 static int i915_pm_suspend(struct device *kdev)
2088 {
2089 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2090
2091 if (!i915) {
2092 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2093 return -ENODEV;
2094 }
2095
2096 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2097 return 0;
2098
2099 return i915_drm_suspend(&i915->drm);
2100 }
2101
2102 static int i915_pm_suspend_late(struct device *kdev)
2103 {
2104 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2105
2106 /*
2107 * We have a suspend ordering issue with the snd-hda driver also
2108 * requiring our device to be power up. Due to the lack of a
2109 * parent/child relationship we currently solve this with an late
2110 * suspend hook.
2111 *
2112 * FIXME: This should be solved with a special hdmi sink device or
2113 * similar so that power domains can be employed.
2114 */
2115 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2116 return 0;
2117
2118 return i915_drm_suspend_late(&i915->drm, false);
2119 }
2120
2121 static int i915_pm_poweroff_late(struct device *kdev)
2122 {
2123 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2124
2125 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2126 return 0;
2127
2128 return i915_drm_suspend_late(&i915->drm, true);
2129 }
2130
2131 static int i915_pm_resume_early(struct device *kdev)
2132 {
2133 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2134
2135 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2136 return 0;
2137
2138 return i915_drm_resume_early(&i915->drm);
2139 }
2140
2141 static int i915_pm_resume(struct device *kdev)
2142 {
2143 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2144
2145 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2146 return 0;
2147
2148 return i915_drm_resume(&i915->drm);
2149 }
2150 #endif
2151
2152 /* freeze: before creating the hibernation_image */
2153 static int i915_pm_freeze(struct device *kdev)
2154 {
2155 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2156 int ret;
2157
2158 if (i915->drm.switch_power_state != DRM_SWITCH_POWER_OFF) {
2159 ret = i915_drm_suspend(&i915->drm);
2160 if (ret)
2161 return ret;
2162 }
2163
2164 ret = i915_gem_freeze(i915);
2165 if (ret)
2166 return ret;
2167
2168 return 0;
2169 }
2170
2171 static int i915_pm_freeze_late(struct device *kdev)
2172 {
2173 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2174 int ret;
2175
2176 if (i915->drm.switch_power_state != DRM_SWITCH_POWER_OFF) {
2177 ret = i915_drm_suspend_late(&i915->drm, true);
2178 if (ret)
2179 return ret;
2180 }
2181
2182 ret = i915_gem_freeze_late(i915);
2183 if (ret)
2184 return ret;
2185
2186 return 0;
2187 }
2188
2189 /* thaw: called after creating the hibernation image, but before turning off. */
2190 static int i915_pm_thaw_early(struct device *kdev)
2191 {
2192 return i915_pm_resume_early(kdev);
2193 }
2194
2195 static int i915_pm_thaw(struct device *kdev)
2196 {
2197 return i915_pm_resume(kdev);
2198 }
2199
2200 /* restore: called after loading the hibernation image. */
2201 static int i915_pm_restore_early(struct device *kdev)
2202 {
2203 return i915_pm_resume_early(kdev);
2204 }
2205
2206 static int i915_pm_restore(struct device *kdev)
2207 {
2208 return i915_pm_resume(kdev);
2209 }
2210
2211 /*
2212 * Save all Gunit registers that may be lost after a D3 and a subsequent
2213 * S0i[R123] transition. The list of registers needing a save/restore is
2214 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2215 * registers in the following way:
2216 * - Driver: saved/restored by the driver
2217 * - Punit : saved/restored by the Punit firmware
2218 * - No, w/o marking: no need to save/restore, since the register is R/O or
2219 * used internally by the HW in a way that doesn't depend
2220 * keeping the content across a suspend/resume.
2221 * - Debug : used for debugging
2222 *
2223 * We save/restore all registers marked with 'Driver', with the following
2224 * exceptions:
2225 * - Registers out of use, including also registers marked with 'Debug'.
2226 * These have no effect on the driver's operation, so we don't save/restore
2227 * them to reduce the overhead.
2228 * - Registers that are fully setup by an initialization function called from
2229 * the resume path. For example many clock gating and RPS/RC6 registers.
2230 * - Registers that provide the right functionality with their reset defaults.
2231 *
2232 * TODO: Except for registers that based on the above 3 criteria can be safely
2233 * ignored, we save/restore all others, practically treating the HW context as
2234 * a black-box for the driver. Further investigation is needed to reduce the
2235 * saved/restored registers even further, by following the same 3 criteria.
2236 */
2237 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2238 {
2239 struct vlv_s0ix_state *s = dev_priv->vlv_s0ix_state;
2240 int i;
2241
2242 if (!s)
2243 return;
2244
2245 /* GAM 0x4000-0x4770 */
2246 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2247 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2248 s->arb_mode = I915_READ(ARB_MODE);
2249 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2250 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2251
2252 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2253 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2254
2255 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2256 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2257
2258 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2259 s->ecochk = I915_READ(GAM_ECOCHK);
2260 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2261 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2262
2263 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2264
2265 /* MBC 0x9024-0x91D0, 0x8500 */
2266 s->g3dctl = I915_READ(VLV_G3DCTL);
2267 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2268 s->mbctl = I915_READ(GEN6_MBCTL);
2269
2270 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2271 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2272 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2273 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2274 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2275 s->rstctl = I915_READ(GEN6_RSTCTL);
2276 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2277
2278 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2279 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2280 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2281 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2282 s->ecobus = I915_READ(ECOBUS);
2283 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2284 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2285 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2286 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2287 s->rcedata = I915_READ(VLV_RCEDATA);
2288 s->spare2gh = I915_READ(VLV_SPAREG2H);
2289
2290 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2291 s->gt_imr = I915_READ(GTIMR);
2292 s->gt_ier = I915_READ(GTIER);
2293 s->pm_imr = I915_READ(GEN6_PMIMR);
2294 s->pm_ier = I915_READ(GEN6_PMIER);
2295
2296 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2297 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2298
2299 /* GT SA CZ domain, 0x100000-0x138124 */
2300 s->tilectl = I915_READ(TILECTL);
2301 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2302 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2303 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2304 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2305
2306 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2307 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2308 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2309 s->pcbr = I915_READ(VLV_PCBR);
2310 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2311
2312 /*
2313 * Not saving any of:
2314 * DFT, 0x9800-0x9EC0
2315 * SARB, 0xB000-0xB1FC
2316 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2317 * PCI CFG
2318 */
2319 }
2320
2321 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2322 {
2323 struct vlv_s0ix_state *s = dev_priv->vlv_s0ix_state;
2324 u32 val;
2325 int i;
2326
2327 if (!s)
2328 return;
2329
2330 /* GAM 0x4000-0x4770 */
2331 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2332 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2333 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2334 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2335 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2336
2337 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2338 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2339
2340 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2341 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2342
2343 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2344 I915_WRITE(GAM_ECOCHK, s->ecochk);
2345 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2346 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2347
2348 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2349
2350 /* MBC 0x9024-0x91D0, 0x8500 */
2351 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2352 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2353 I915_WRITE(GEN6_MBCTL, s->mbctl);
2354
2355 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2356 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2357 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2358 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2359 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2360 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2361 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2362
2363 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2364 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2365 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2366 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2367 I915_WRITE(ECOBUS, s->ecobus);
2368 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2369 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2370 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2371 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2372 I915_WRITE(VLV_RCEDATA, s->rcedata);
2373 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2374
2375 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2376 I915_WRITE(GTIMR, s->gt_imr);
2377 I915_WRITE(GTIER, s->gt_ier);
2378 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2379 I915_WRITE(GEN6_PMIER, s->pm_ier);
2380
2381 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2382 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2383
2384 /* GT SA CZ domain, 0x100000-0x138124 */
2385 I915_WRITE(TILECTL, s->tilectl);
2386 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2387 /*
2388 * Preserve the GT allow wake and GFX force clock bit, they are not
2389 * be restored, as they are used to control the s0ix suspend/resume
2390 * sequence by the caller.
2391 */
2392 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2393 val &= VLV_GTLC_ALLOWWAKEREQ;
2394 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2395 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2396
2397 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2398 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2399 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2400 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2401
2402 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2403
2404 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2405 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2406 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2407 I915_WRITE(VLV_PCBR, s->pcbr);
2408 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2409 }
2410
2411 static int vlv_wait_for_pw_status(struct drm_i915_private *i915,
2412 u32 mask, u32 val)
2413 {
2414 i915_reg_t reg = VLV_GTLC_PW_STATUS;
2415 u32 reg_value;
2416 int ret;
2417
2418 /* The HW does not like us polling for PW_STATUS frequently, so
2419 * use the sleeping loop rather than risk the busy spin within
2420 * intel_wait_for_register().
2421 *
2422 * Transitioning between RC6 states should be at most 2ms (see
2423 * valleyview_enable_rps) so use a 3ms timeout.
2424 */
2425 ret = wait_for(((reg_value =
2426 intel_uncore_read_notrace(&i915->uncore, reg)) & mask)
2427 == val, 3);
2428
2429 /* just trace the final value */
2430 trace_i915_reg_rw(false, reg, reg_value, sizeof(reg_value), true);
2431
2432 return ret;
2433 }
2434
2435 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2436 {
2437 u32 val;
2438 int err;
2439
2440 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2441 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2442 if (force_on)
2443 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2444 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2445
2446 if (!force_on)
2447 return 0;
2448
2449 err = intel_wait_for_register(&dev_priv->uncore,
2450 VLV_GTLC_SURVIVABILITY_REG,
2451 VLV_GFX_CLK_STATUS_BIT,
2452 VLV_GFX_CLK_STATUS_BIT,
2453 20);
2454 if (err)
2455 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2456 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2457
2458 return err;
2459 }
2460
2461 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2462 {
2463 u32 mask;
2464 u32 val;
2465 int err;
2466
2467 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2468 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2469 if (allow)
2470 val |= VLV_GTLC_ALLOWWAKEREQ;
2471 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2472 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2473
2474 mask = VLV_GTLC_ALLOWWAKEACK;
2475 val = allow ? mask : 0;
2476
2477 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2478 if (err)
2479 DRM_ERROR("timeout disabling GT waking\n");
2480
2481 return err;
2482 }
2483
2484 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2485 bool wait_for_on)
2486 {
2487 u32 mask;
2488 u32 val;
2489
2490 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2491 val = wait_for_on ? mask : 0;
2492
2493 /*
2494 * RC6 transitioning can be delayed up to 2 msec (see
2495 * valleyview_enable_rps), use 3 msec for safety.
2496 *
2497 * This can fail to turn off the rc6 if the GPU is stuck after a failed
2498 * reset and we are trying to force the machine to sleep.
2499 */
2500 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2501 DRM_DEBUG_DRIVER("timeout waiting for GT wells to go %s\n",
2502 onoff(wait_for_on));
2503 }
2504
2505 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2506 {
2507 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2508 return;
2509
2510 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2511 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2512 }
2513
2514 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2515 {
2516 u32 mask;
2517 int err;
2518
2519 /*
2520 * Bspec defines the following GT well on flags as debug only, so
2521 * don't treat them as hard failures.
2522 */
2523 vlv_wait_for_gt_wells(dev_priv, false);
2524
2525 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2526 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2527
2528 vlv_check_no_gt_access(dev_priv);
2529
2530 err = vlv_force_gfx_clock(dev_priv, true);
2531 if (err)
2532 goto err1;
2533
2534 err = vlv_allow_gt_wake(dev_priv, false);
2535 if (err)
2536 goto err2;
2537
2538 vlv_save_gunit_s0ix_state(dev_priv);
2539
2540 err = vlv_force_gfx_clock(dev_priv, false);
2541 if (err)
2542 goto err2;
2543
2544 return 0;
2545
2546 err2:
2547 /* For safety always re-enable waking and disable gfx clock forcing */
2548 vlv_allow_gt_wake(dev_priv, true);
2549 err1:
2550 vlv_force_gfx_clock(dev_priv, false);
2551
2552 return err;
2553 }
2554
2555 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2556 bool rpm_resume)
2557 {
2558 int err;
2559 int ret;
2560
2561 /*
2562 * If any of the steps fail just try to continue, that's the best we
2563 * can do at this point. Return the first error code (which will also
2564 * leave RPM permanently disabled).
2565 */
2566 ret = vlv_force_gfx_clock(dev_priv, true);
2567
2568 vlv_restore_gunit_s0ix_state(dev_priv);
2569
2570 err = vlv_allow_gt_wake(dev_priv, true);
2571 if (!ret)
2572 ret = err;
2573
2574 err = vlv_force_gfx_clock(dev_priv, false);
2575 if (!ret)
2576 ret = err;
2577
2578 vlv_check_no_gt_access(dev_priv);
2579
2580 if (rpm_resume)
2581 intel_init_clock_gating(dev_priv);
2582
2583 return ret;
2584 }
2585
2586 #ifndef __NetBSD__ /* XXX runtime pm */
2587 static int intel_runtime_suspend(struct device *kdev)
2588 {
2589 struct drm_i915_private *dev_priv = kdev_to_i915(kdev);
2590 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
2591 int ret = 0;
2592
2593 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2594 return -ENODEV;
2595
2596 DRM_DEBUG_KMS("Suspending device\n");
2597
2598 disable_rpm_wakeref_asserts(rpm);
2599
2600 /*
2601 * We are safe here against re-faults, since the fault handler takes
2602 * an RPM reference.
2603 */
2604 i915_gem_runtime_suspend(dev_priv);
2605
2606 intel_gt_runtime_suspend(&dev_priv->gt);
2607
2608 intel_runtime_pm_disable_interrupts(dev_priv);
2609
2610 intel_uncore_suspend(&dev_priv->uncore);
2611
2612 intel_display_power_suspend(dev_priv);
2613
2614 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2615 #ifndef __NetBSD__ /* XXX vlv suspend/resume */
2616 ret = vlv_suspend_complete(dev_priv);
2617 #endif
2618
2619 if (ret) {
2620 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2621 intel_uncore_runtime_resume(&dev_priv->uncore);
2622
2623 intel_runtime_pm_enable_interrupts(dev_priv);
2624
2625 intel_gt_runtime_resume(&dev_priv->gt);
2626
2627 i915_gem_restore_fences(&dev_priv->ggtt);
2628
2629 enable_rpm_wakeref_asserts(rpm);
2630
2631 return ret;
2632 }
2633
2634 enable_rpm_wakeref_asserts(rpm);
2635 intel_runtime_pm_driver_release(rpm);
2636
2637 if (intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore))
2638 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2639
2640 rpm->suspended = true;
2641
2642 /*
2643 * FIXME: We really should find a document that references the arguments
2644 * used below!
2645 */
2646 if (IS_BROADWELL(dev_priv)) {
2647 /*
2648 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2649 * being detected, and the call we do at intel_runtime_resume()
2650 * won't be able to restore them. Since PCI_D3hot matches the
2651 * actual specification and appears to be working, use it.
2652 */
2653 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2654 } else {
2655 /*
2656 * current versions of firmware which depend on this opregion
2657 * notification have repurposed the D1 definition to mean
2658 * "runtime suspended" vs. what you would normally expect (D3)
2659 * to distinguish it from notifications that might be sent via
2660 * the suspend path.
2661 */
2662 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2663 }
2664
2665 assert_forcewakes_inactive(&dev_priv->uncore);
2666
2667 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2668 intel_hpd_poll_init(dev_priv);
2669
2670 DRM_DEBUG_KMS("Device suspended\n");
2671 return 0;
2672 }
2673
2674 static int intel_runtime_resume(struct device *kdev)
2675 {
2676 struct drm_i915_private *dev_priv = kdev_to_i915(kdev);
2677 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
2678 int ret = 0;
2679
2680 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2681 return -ENODEV;
2682
2683 DRM_DEBUG_KMS("Resuming device\n");
2684
2685 WARN_ON_ONCE(atomic_read(&rpm->wakeref_count));
2686 disable_rpm_wakeref_asserts(rpm);
2687
2688 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2689 rpm->suspended = false;
2690 if (intel_uncore_unclaimed_mmio(&dev_priv->uncore))
2691 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2692
2693 intel_display_power_resume(dev_priv);
2694
2695 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2696 ret = vlv_resume_prepare(dev_priv, true);
2697
2698 intel_uncore_runtime_resume(&dev_priv->uncore);
2699
2700 intel_runtime_pm_enable_interrupts(dev_priv);
2701
2702 /*
2703 * No point of rolling back things in case of an error, as the best
2704 * we can do is to hope that things will still work (and disable RPM).
2705 */
2706 intel_gt_runtime_resume(&dev_priv->gt);
2707 i915_gem_restore_fences(&dev_priv->ggtt);
2708
2709 /*
2710 * On VLV/CHV display interrupts are part of the display
2711 * power well, so hpd is reinitialized from there. For
2712 * everyone else do it here.
2713 */
2714 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2715 intel_hpd_init(dev_priv);
2716
2717 intel_enable_ipc(dev_priv);
2718
2719 enable_rpm_wakeref_asserts(rpm);
2720
2721 if (ret)
2722 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2723 else
2724 DRM_DEBUG_KMS("Device resumed\n");
2725
2726 return ret;
2727 }
2728 #endif
2729
2730 #ifndef __NetBSD__
2731 const struct dev_pm_ops i915_pm_ops = {
2732 /*
2733 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2734 * PMSG_RESUME]
2735 */
2736 .prepare = i915_pm_prepare,
2737 .suspend = i915_pm_suspend,
2738 .suspend_late = i915_pm_suspend_late,
2739 .resume_early = i915_pm_resume_early,
2740 .resume = i915_pm_resume,
2741
2742 /*
2743 * S4 event handlers
2744 * @freeze, @freeze_late : called (1) before creating the
2745 * hibernation image [PMSG_FREEZE] and
2746 * (2) after rebooting, before restoring
2747 * the image [PMSG_QUIESCE]
2748 * @thaw, @thaw_early : called (1) after creating the hibernation
2749 * image, before writing it [PMSG_THAW]
2750 * and (2) after failing to create or
2751 * restore the image [PMSG_RECOVER]
2752 * @poweroff, @poweroff_late: called after writing the hibernation
2753 * image, before rebooting [PMSG_HIBERNATE]
2754 * @restore, @restore_early : called after rebooting and restoring the
2755 * hibernation image [PMSG_RESTORE]
2756 */
2757 .freeze = i915_pm_freeze,
2758 .freeze_late = i915_pm_freeze_late,
2759 .thaw_early = i915_pm_thaw_early,
2760 .thaw = i915_pm_thaw,
2761 .poweroff = i915_pm_suspend,
2762 .poweroff_late = i915_pm_poweroff_late,
2763 .restore_early = i915_pm_restore_early,
2764 .restore = i915_pm_restore,
2765
2766 /* S0ix (via runtime suspend) event handlers */
2767 .runtime_suspend = intel_runtime_suspend,
2768 .runtime_resume = intel_runtime_resume,
2769 };
2770
2771 static const struct file_operations i915_driver_fops = {
2772 .owner = THIS_MODULE,
2773 .open = drm_open,
2774 .release = drm_release,
2775 .unlocked_ioctl = drm_ioctl,
2776 .mmap = i915_gem_mmap,
2777 .poll = drm_poll,
2778 .read = drm_read,
2779 .compat_ioctl = i915_compat_ioctl,
2780 .llseek = noop_llseek,
2781 };
2782 #endif /* defined(__NetBSD__) */
2783
2784 static int
2785 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2786 struct drm_file *file)
2787 {
2788 return -ENODEV;
2789 }
2790
2791 static const struct drm_ioctl_desc i915_ioctls[] = {
2792 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2793 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2794 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2795 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2796 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2797 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2798 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam_ioctl, DRM_RENDER_ALLOW),
2799 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2800 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2801 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2802 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2803 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2804 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2805 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2806 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2807 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2808 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2809 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2810 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer_ioctl, DRM_AUTH),
2811 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2_ioctl, DRM_RENDER_ALLOW),
2812 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2813 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2814 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_RENDER_ALLOW),
2815 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2816 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2817 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_RENDER_ALLOW),
2818 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2819 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2820 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2821 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2822 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2823 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2824 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_OFFSET, i915_gem_mmap_offset_ioctl, DRM_RENDER_ALLOW),
2825 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2826 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2827 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2828 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2829 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2830 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id_ioctl, 0),
2831 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2832 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER),
2833 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER),
2834 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey_ioctl, DRM_MASTER),
2835 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER),
2836 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_RENDER_ALLOW),
2837 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE_EXT, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2838 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2839 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2840 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2841 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2842 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2843 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2844 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2845 DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_RENDER_ALLOW),
2846 DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_RENDER_ALLOW),
2847 DRM_IOCTL_DEF_DRV(I915_QUERY, i915_query_ioctl, DRM_RENDER_ALLOW),
2848 DRM_IOCTL_DEF_DRV(I915_GEM_VM_CREATE, i915_gem_vm_create_ioctl, DRM_RENDER_ALLOW),
2849 DRM_IOCTL_DEF_DRV(I915_GEM_VM_DESTROY, i915_gem_vm_destroy_ioctl, DRM_RENDER_ALLOW),
2850 };
2851
2852 static struct drm_driver driver = {
2853 /* Don't use MTRRs here; the Xserver or userspace app should
2854 * deal with them for Intel hardware.
2855 */
2856 .driver_features =
2857 DRIVER_GEM |
2858 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2859 .release = i915_driver_release,
2860 .open = i915_driver_open,
2861 .lastclose = i915_driver_lastclose,
2862 .postclose = i915_driver_postclose,
2863
2864 .gem_close_object = i915_gem_close_object,
2865 .gem_free_object_unlocked = i915_gem_free_object,
2866 #ifdef __NetBSD__
2867 .request_irq = drm_pci_request_irq,
2868 .free_irq = drm_pci_free_irq,
2869
2870 /* XXX Not clear the `or legacy' part is important here. */
2871 .mmap_object = &drm_gem_mmap_object,
2872 .gem_uvm_ops = &i915_gem_uvm_ops,
2873 #endif
2874
2875
2876 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2877 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2878 .gem_prime_export = i915_gem_prime_export,
2879 .gem_prime_import = i915_gem_prime_import,
2880
2881 .get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos,
2882 .get_scanout_position = i915_get_crtc_scanoutpos,
2883
2884 .dumb_create = i915_gem_dumb_create,
2885 .dumb_map_offset = i915_gem_dumb_mmap_offset,
2886
2887 .ioctls = i915_ioctls,
2888 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2889 #ifdef __NetBSD__
2890 .fops = NULL,
2891 #else
2892 .fops = &i915_driver_fops,
2893 #endif
2894 .name = DRIVER_NAME,
2895 .desc = DRIVER_DESC,
2896 .date = DRIVER_DATE,
2897 .major = DRIVER_MAJOR,
2898 .minor = DRIVER_MINOR,
2899 .patchlevel = DRIVER_PATCHLEVEL,
2900 };
2901
2902 #ifdef __NetBSD__
2903
2904 static const struct uvm_pagerops i915_gem_uvm_ops = {
2905 .pgo_reference = drm_gem_pager_reference,
2906 .pgo_detach = drm_gem_pager_detach,
2907 .pgo_fault = i915_gem_fault,
2908 };
2909
2910 #endif
2911