i915_drv.c revision 1.36 1 /* $NetBSD: i915_drv.c,v 1.36 2021/12/19 11:18:52 riastradh Exp $ */
2
3 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
4 */
5 /*
6 *
7 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
8 * All Rights Reserved.
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a
11 * copy of this software and associated documentation files (the
12 * "Software"), to deal in the Software without restriction, including
13 * without limitation the rights to use, copy, modify, merge, publish,
14 * distribute, sub license, and/or sell copies of the Software, and to
15 * permit persons to whom the Software is furnished to do so, subject to
16 * the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
23 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
25 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
26 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
27 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
28 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29 *
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: i915_drv.c,v 1.36 2021/12/19 11:18:52 riastradh Exp $");
34
35 #include <linux/acpi.h>
36 #include <linux/device.h>
37 #include <linux/oom.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/pm.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/pnp.h>
43 #include <linux/slab.h>
44 #include <linux/vga_switcheroo.h>
45 #include <linux/vt.h>
46 #include <acpi/video.h>
47
48 #include <drm/drm_atomic_helper.h>
49 #include <drm/drm_ioctl.h>
50 #include <drm/drm_irq.h>
51 #include <drm/drm_pci.h>
52 #include <drm/drm_probe_helper.h>
53 #include <drm/i915_drm.h>
54
55 #include "display/intel_acpi.h"
56 #include "display/intel_audio.h"
57 #include "display/intel_bw.h"
58 #include "display/intel_cdclk.h"
59 #include "display/intel_display_types.h"
60 #include "display/intel_dp.h"
61 #include "display/intel_fbdev.h"
62 #include "display/intel_hotplug.h"
63 #include "display/intel_overlay.h"
64 #include "display/intel_pipe_crc.h"
65 #include "display/intel_sprite.h"
66 #include "display/intel_vga.h"
67
68 #include "gem/i915_gem_context.h"
69 #include "gem/i915_gem_ioctls.h"
70 #include "gem/i915_gem_mman.h"
71 #include "gt/intel_gt.h"
72 #include "gt/intel_gt_pm.h"
73 #include "gt/intel_rc6.h"
74
75 #include "i915_debugfs.h"
76 #include "i915_drv.h"
77 #include "i915_irq.h"
78 #include "i915_memcpy.h"
79 #include "i915_perf.h"
80 #include "i915_query.h"
81 #include "i915_suspend.h"
82 #include "i915_switcheroo.h"
83 #include "i915_sysfs.h"
84 #include "i915_trace.h"
85 #include "i915_vgpu.h"
86 #include "intel_csr.h"
87 #include "intel_memory_region.h"
88 #include "intel_pm.h"
89
90 #ifdef __NetBSD__
91 #ifdef notyet
92 #if defined(__i386__)
93 #include "pnpbios.h"
94 #endif
95 #if NPNPBIOS > 0
96 #define CONFIG_PNP
97 #endif
98 #endif
99 #endif
100
101 #include <linux/nbsd-namespace.h>
102
103 static struct drm_driver driver;
104
105 #ifdef __NetBSD__
106 /* XXX Kludge to expose this to NetBSD driver attachment goop. */
107 struct drm_driver *const i915_drm_driver = &driver;
108 #endif
109 struct vlv_s0ix_state {
110 /* GAM */
111 u32 wr_watermark;
112 u32 gfx_prio_ctrl;
113 u32 arb_mode;
114 u32 gfx_pend_tlb0;
115 u32 gfx_pend_tlb1;
116 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
117 u32 media_max_req_count;
118 u32 gfx_max_req_count;
119 u32 render_hwsp;
120 u32 ecochk;
121 u32 bsd_hwsp;
122 u32 blt_hwsp;
123 u32 tlb_rd_addr;
124
125 /* MBC */
126 u32 g3dctl;
127 u32 gsckgctl;
128 u32 mbctl;
129
130 /* GCP */
131 u32 ucgctl1;
132 u32 ucgctl3;
133 u32 rcgctl1;
134 u32 rcgctl2;
135 u32 rstctl;
136 u32 misccpctl;
137
138 /* GPM */
139 u32 gfxpause;
140 u32 rpdeuhwtc;
141 u32 rpdeuc;
142 u32 ecobus;
143 u32 pwrdwnupctl;
144 u32 rp_down_timeout;
145 u32 rp_deucsw;
146 u32 rcubmabdtmr;
147 u32 rcedata;
148 u32 spare2gh;
149
150 /* Display 1 CZ domain */
151 u32 gt_imr;
152 u32 gt_ier;
153 u32 pm_imr;
154 u32 pm_ier;
155 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
156
157 /* GT SA CZ domain */
158 u32 tilectl;
159 u32 gt_fifoctl;
160 u32 gtlc_wake_ctrl;
161 u32 gtlc_survive;
162 u32 pmwgicz;
163
164 /* Display 2 CZ domain */
165 u32 gu_ctl0;
166 u32 gu_ctl1;
167 u32 pcbr;
168 u32 clock_gate_dis2;
169 };
170
171 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
172 {
173 int domain = pci_domain_nr(dev_priv->drm.pdev->bus);
174
175 dev_priv->bridge_dev =
176 pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0));
177 if (!dev_priv->bridge_dev) {
178 DRM_ERROR("bridge device not found\n");
179 return -1;
180 }
181 return 0;
182 }
183
184 /* Allocate space for the MCH regs if needed, return nonzero on error */
185 static int
186 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
187 {
188 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
189 #ifdef CONFIG_PNP
190 u32 temp_lo, temp_hi = 0;
191 u64 mchbar_addr;
192 #endif
193 int ret;
194
195 #ifdef CONFIG_PNP
196 if (INTEL_GEN(dev_priv) >= 4)
197 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
198 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
199 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
200
201 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
202 if (mchbar_addr &&
203 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
204 return 0;
205 #endif
206
207 /* Get some space for it */
208 dev_priv->mch_res.name = "i915 MCHBAR";
209 dev_priv->mch_res.flags = IORESOURCE_MEM;
210 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
211 &dev_priv->mch_res,
212 MCHBAR_SIZE, MCHBAR_SIZE,
213 PCIBIOS_MIN_MEM,
214 0, pcibios_align_resource,
215 dev_priv->bridge_dev);
216 if (ret) {
217 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
218 dev_priv->mch_res.start = 0;
219 return ret;
220 }
221
222 if (INTEL_GEN(dev_priv) >= 4)
223 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
224 upper_32_bits(dev_priv->mch_res.start));
225
226 pci_write_config_dword(dev_priv->bridge_dev, reg,
227 lower_32_bits(dev_priv->mch_res.start));
228 return 0;
229 }
230
231 /* Setup MCHBAR if possible, return true if we should disable it again */
232 static void
233 intel_setup_mchbar(struct drm_i915_private *dev_priv)
234 {
235 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
236 u32 temp;
237 bool enabled;
238
239 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
240 return;
241
242 dev_priv->mchbar_need_disable = false;
243
244 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
245 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
246 enabled = !!(temp & DEVEN_MCHBAR_EN);
247 } else {
248 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
249 enabled = temp & 1;
250 }
251
252 /* If it's already enabled, don't have to do anything */
253 if (enabled)
254 return;
255
256 if (intel_alloc_mchbar_resource(dev_priv))
257 return;
258
259 dev_priv->mchbar_need_disable = true;
260
261 /* Space is allocated or reserved, so enable it. */
262 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
263 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
264 temp | DEVEN_MCHBAR_EN);
265 } else {
266 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
267 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
268 }
269 }
270
271 static void
272 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
273 {
274 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
275
276 if (dev_priv->mchbar_need_disable) {
277 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
278 u32 deven_val;
279
280 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
281 &deven_val);
282 deven_val &= ~DEVEN_MCHBAR_EN;
283 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
284 deven_val);
285 } else {
286 u32 mchbar_val;
287
288 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
289 &mchbar_val);
290 mchbar_val &= ~1;
291 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
292 mchbar_val);
293 }
294 }
295
296 if (dev_priv->mch_res.start)
297 release_resource(&dev_priv->mch_res);
298 }
299
300 static int i915_driver_modeset_probe(struct drm_i915_private *i915)
301 {
302 int ret;
303
304 if (i915_inject_probe_failure(i915))
305 return -ENODEV;
306
307 if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) {
308 ret = drm_vblank_init(&i915->drm,
309 INTEL_NUM_PIPES(i915));
310 if (ret)
311 goto out;
312 }
313
314 #ifdef __NetBSD__ /* XXX vga */
315 __USE(i915);
316 #else
317 intel_bios_init(i915);
318
319 ret = intel_vga_register(i915);
320 if (ret)
321 goto out;
322 #endif
323
324 #ifdef __NetBSD__
325 intel_register_dsm_handler(i915);
326 #else
327 intel_register_dsm_handler();
328 #endif
329
330 ret = i915_switcheroo_register(i915);
331 if (ret)
332 goto cleanup_vga_client;
333
334 intel_power_domains_init_hw(i915, false);
335
336 intel_csr_ucode_init(i915);
337
338 ret = intel_irq_install(i915);
339 if (ret)
340 goto cleanup_csr;
341
342 /* Important: The output setup functions called by modeset_init need
343 * working irqs for e.g. gmbus and dp aux transfers. */
344 ret = intel_modeset_init(i915);
345 if (ret)
346 goto cleanup_irq;
347
348 ret = i915_gem_init(i915);
349 if (ret)
350 goto cleanup_modeset;
351
352 intel_overlay_setup(i915);
353
354 if (!HAS_DISPLAY(i915) || !INTEL_DISPLAY_ENABLED(i915))
355 return 0;
356
357 ret = intel_fbdev_init(&i915->drm);
358 if (ret)
359 goto cleanup_gem;
360
361 /* Only enable hotplug handling once the fbdev is fully set up. */
362 intel_hpd_init(i915);
363
364 intel_init_ipc(i915);
365
366 return 0;
367
368 cleanup_gem:
369 i915_gem_suspend(i915);
370 i915_gem_driver_remove(i915);
371 i915_gem_driver_release(i915);
372 cleanup_modeset:
373 intel_modeset_driver_remove(i915);
374 cleanup_irq:
375 intel_irq_uninstall(i915);
376 cleanup_csr:
377 intel_csr_ucode_fini(i915);
378 intel_power_domains_driver_remove(i915);
379 i915_switcheroo_unregister(i915);
380 cleanup_vga_client:
381 intel_vga_unregister(i915);
382 out:
383 return ret;
384 }
385
386 static void i915_driver_modeset_remove(struct drm_i915_private *i915)
387 {
388 intel_modeset_driver_remove(i915);
389
390 intel_irq_uninstall(i915);
391
392 intel_bios_driver_remove(i915);
393
394 i915_switcheroo_unregister(i915);
395
396 intel_vga_unregister(i915);
397
398 intel_csr_ucode_fini(i915);
399 }
400
401 static void intel_init_dpio(struct drm_i915_private *dev_priv)
402 {
403 /*
404 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
405 * CHV x1 PHY (DP/HDMI D)
406 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
407 */
408 if (IS_CHERRYVIEW(dev_priv)) {
409 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
410 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
411 } else if (IS_VALLEYVIEW(dev_priv)) {
412 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
413 }
414 }
415
416 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
417 {
418 /*
419 * The i915 workqueue is primarily used for batched retirement of
420 * requests (and thus managing bo) once the task has been completed
421 * by the GPU. i915_retire_requests() is called directly when we
422 * need high-priority retirement, such as waiting for an explicit
423 * bo.
424 *
425 * It is also used for periodic low-priority events, such as
426 * idle-timers and recording error state.
427 *
428 * All tasks on the workqueue are expected to acquire the dev mutex
429 * so there is no point in running more than one instance of the
430 * workqueue at any time. Use an ordered one.
431 */
432 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
433 if (dev_priv->wq == NULL)
434 goto out_err;
435
436 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
437 if (dev_priv->hotplug.dp_wq == NULL)
438 goto out_free_wq;
439
440 return 0;
441
442 out_free_wq:
443 destroy_workqueue(dev_priv->wq);
444 out_err:
445 DRM_ERROR("Failed to allocate workqueues.\n");
446
447 return -ENOMEM;
448 }
449
450 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
451 {
452 destroy_workqueue(dev_priv->hotplug.dp_wq);
453 destroy_workqueue(dev_priv->wq);
454 }
455
456 /*
457 * We don't keep the workarounds for pre-production hardware, so we expect our
458 * driver to fail on these machines in one way or another. A little warning on
459 * dmesg may help both the user and the bug triagers.
460 *
461 * Our policy for removing pre-production workarounds is to keep the
462 * current gen workarounds as a guide to the bring-up of the next gen
463 * (workarounds have a habit of persisting!). Anything older than that
464 * should be removed along with the complications they introduce.
465 */
466 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
467 {
468 bool pre = false;
469
470 pre |= IS_HSW_EARLY_SDV(dev_priv);
471 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
472 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
473 pre |= IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0);
474
475 if (pre) {
476 DRM_ERROR("This is a pre-production stepping. "
477 "It may not be fully functional.\n");
478 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
479 }
480 }
481
482 static int vlv_alloc_s0ix_state(struct drm_i915_private *i915)
483 {
484 if (!IS_VALLEYVIEW(i915))
485 return 0;
486
487 /* we write all the values in the struct, so no need to zero it out */
488 i915->vlv_s0ix_state = kmalloc(sizeof(*i915->vlv_s0ix_state),
489 GFP_KERNEL);
490 if (!i915->vlv_s0ix_state)
491 return -ENOMEM;
492
493 return 0;
494 }
495
496 static void vlv_free_s0ix_state(struct drm_i915_private *i915)
497 {
498 if (!i915->vlv_s0ix_state)
499 return;
500
501 kfree(i915->vlv_s0ix_state);
502 i915->vlv_s0ix_state = NULL;
503 }
504
505 static void sanitize_gpu(struct drm_i915_private *i915)
506 {
507 if (!INTEL_INFO(i915)->gpu_reset_clobbers_display)
508 __intel_gt_reset(&i915->gt, ALL_ENGINES);
509 }
510
511 /**
512 * i915_driver_early_probe - setup state not requiring device access
513 * @dev_priv: device private
514 *
515 * Initialize everything that is a "SW-only" state, that is state not
516 * requiring accessing the device or exposing the driver via kernel internal
517 * or userspace interfaces. Example steps belonging here: lock initialization,
518 * system memory allocation, setting up device specific attributes and
519 * function hooks not requiring accessing the device.
520 */
521 static int i915_driver_early_probe(struct drm_i915_private *dev_priv)
522 {
523 int ret = 0;
524
525 if (i915_inject_probe_failure(dev_priv))
526 return -ENODEV;
527
528 intel_device_info_subplatform_init(dev_priv);
529
530 intel_uncore_mmio_debug_init_early(&dev_priv->mmio_debug);
531 intel_uncore_init_early(&dev_priv->uncore, dev_priv);
532
533 spin_lock_init(&dev_priv->irq_lock);
534 spin_lock_init(&dev_priv->gpu_error.lock);
535 mutex_init(&dev_priv->backlight_lock);
536
537 mutex_init(&dev_priv->sb_lock);
538 pm_qos_add_request(&dev_priv->sb_qos,
539 PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
540
541 mutex_init(&dev_priv->av_mutex);
542 mutex_init(&dev_priv->wm.wm_mutex);
543 mutex_init(&dev_priv->pps_mutex);
544 mutex_init(&dev_priv->hdcp_comp_mutex);
545
546 i915_memcpy_init_early(dev_priv);
547 intel_runtime_pm_init_early(&dev_priv->runtime_pm);
548
549 ret = i915_workqueues_init(dev_priv);
550 if (ret < 0)
551 return ret;
552
553 ret = vlv_alloc_s0ix_state(dev_priv);
554 if (ret < 0)
555 goto err_workqueues;
556
557 intel_wopcm_init_early(&dev_priv->wopcm);
558
559 intel_gt_init_early(&dev_priv->gt, dev_priv);
560
561 i915_gem_init_early(dev_priv);
562
563 /* This must be called before any calls to HAS_PCH_* */
564 intel_detect_pch(dev_priv);
565
566 intel_pm_setup(dev_priv);
567 intel_init_dpio(dev_priv);
568 ret = intel_power_domains_init(dev_priv);
569 if (ret < 0)
570 goto err_gem;
571 intel_irq_init(dev_priv);
572 intel_init_display_hooks(dev_priv);
573 intel_init_clock_gating_hooks(dev_priv);
574 intel_init_audio_hooks(dev_priv);
575 intel_display_crc_init(dev_priv);
576
577 intel_detect_preproduction_hw(dev_priv);
578
579 return 0;
580
581 err_gem:
582 i915_gem_cleanup_early(dev_priv);
583 intel_gt_driver_late_release(&dev_priv->gt);
584 vlv_free_s0ix_state(dev_priv);
585 err_workqueues:
586 i915_workqueues_cleanup(dev_priv);
587 mutex_destroy(&dev_priv->hdcp_comp_mutex);
588 mutex_destroy(&dev_priv->pps_mutex);
589 mutex_destroy(&dev_priv->wm.wm_mutex);
590 mutex_destroy(&dev_priv->av_mutex);
591 mutex_destroy(&dev_priv->sb_lock);
592 mutex_destroy(&dev_priv->backlight_lock);
593 spin_lock_destroy(&dev_priv->gpu_error.lock);
594 spin_lock_destroy(&dev_priv->irq_lock);
595 return ret;
596 }
597
598 /**
599 * i915_driver_late_release - cleanup the setup done in
600 * i915_driver_early_probe()
601 * @dev_priv: device private
602 */
603 static void i915_driver_late_release(struct drm_i915_private *dev_priv)
604 {
605 intel_irq_fini(dev_priv);
606 intel_power_domains_cleanup(dev_priv);
607 i915_gem_cleanup_early(dev_priv);
608 intel_gt_driver_late_release(&dev_priv->gt);
609 vlv_free_s0ix_state(dev_priv);
610 i915_workqueues_cleanup(dev_priv);
611
612 pm_qos_remove_request(&dev_priv->sb_qos);
613 mutex_destroy(&dev_priv->hdcp_comp_mutex);
614 mutex_destroy(&dev_priv->pps_mutex);
615 mutex_destroy(&dev_priv->wm.wm_mutex);
616 mutex_destroy(&dev_priv->av_mutex);
617 mutex_destroy(&dev_priv->sb_lock);
618 mutex_destroy(&dev_priv->sb_lock);
619 mutex_destroy(&dev_priv->backlight_lock);
620 spin_lock_destroy(&dev_priv->gpu_error.lock);
621 spin_lock_destroy(&dev_priv->irq_lock);
622 }
623
624 /**
625 * i915_driver_mmio_probe - setup device MMIO
626 * @dev_priv: device private
627 *
628 * Setup minimal device state necessary for MMIO accesses later in the
629 * initialization sequence. The setup here should avoid any other device-wide
630 * side effects or exposing the driver via kernel internal or user space
631 * interfaces.
632 */
633 static int i915_driver_mmio_probe(struct drm_i915_private *dev_priv)
634 {
635 int ret;
636
637 if (i915_inject_probe_failure(dev_priv))
638 return -ENODEV;
639
640 if (i915_get_bridge_dev(dev_priv))
641 return -EIO;
642
643 ret = intel_uncore_init_mmio(&dev_priv->uncore);
644 if (ret < 0)
645 goto err_bridge;
646
647 /* Try to make sure MCHBAR is enabled before poking at it */
648 intel_setup_mchbar(dev_priv);
649
650 intel_device_info_init_mmio(dev_priv);
651
652 intel_uncore_prune_mmio_domains(&dev_priv->uncore);
653
654 intel_uc_init_mmio(&dev_priv->gt.uc);
655
656 ret = intel_engines_init_mmio(&dev_priv->gt);
657 if (ret)
658 goto err_uncore;
659
660 /* As early as possible, scrub existing GPU state before clobbering */
661 sanitize_gpu(dev_priv);
662
663 return 0;
664
665 err_uncore:
666 intel_teardown_mchbar(dev_priv);
667 intel_uncore_fini_mmio(&dev_priv->uncore);
668 err_bridge:
669 pci_dev_put(dev_priv->bridge_dev);
670
671 return ret;
672 }
673
674 /**
675 * i915_driver_mmio_release - cleanup the setup done in i915_driver_mmio_probe()
676 * @dev_priv: device private
677 */
678 static void i915_driver_mmio_release(struct drm_i915_private *dev_priv)
679 {
680 intel_teardown_mchbar(dev_priv);
681 intel_uncore_fini_mmio(&dev_priv->uncore);
682 pci_dev_put(dev_priv->bridge_dev);
683 }
684
685 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
686 {
687 intel_gvt_sanitize_options(dev_priv);
688 }
689
690 #define DRAM_TYPE_STR(type) [INTEL_DRAM_ ## type] = #type
691
692 static const char *intel_dram_type_str(enum intel_dram_type type)
693 {
694 static const char * const str[] = {
695 DRAM_TYPE_STR(UNKNOWN),
696 DRAM_TYPE_STR(DDR3),
697 DRAM_TYPE_STR(DDR4),
698 DRAM_TYPE_STR(LPDDR3),
699 DRAM_TYPE_STR(LPDDR4),
700 };
701
702 if (type >= ARRAY_SIZE(str))
703 type = INTEL_DRAM_UNKNOWN;
704
705 return str[type];
706 }
707
708 #undef DRAM_TYPE_STR
709
710 static int intel_dimm_num_devices(const struct dram_dimm_info *dimm)
711 {
712 return dimm->ranks * 64 / (dimm->width ?: 1);
713 }
714
715 /* Returns total GB for the whole DIMM */
716 static int skl_get_dimm_size(u16 val)
717 {
718 return val & SKL_DRAM_SIZE_MASK;
719 }
720
721 static int skl_get_dimm_width(u16 val)
722 {
723 if (skl_get_dimm_size(val) == 0)
724 return 0;
725
726 switch (val & SKL_DRAM_WIDTH_MASK) {
727 case SKL_DRAM_WIDTH_X8:
728 case SKL_DRAM_WIDTH_X16:
729 case SKL_DRAM_WIDTH_X32:
730 val = (val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT;
731 return 8 << val;
732 default:
733 MISSING_CASE(val);
734 return 0;
735 }
736 }
737
738 static int skl_get_dimm_ranks(u16 val)
739 {
740 if (skl_get_dimm_size(val) == 0)
741 return 0;
742
743 val = (val & SKL_DRAM_RANK_MASK) >> SKL_DRAM_RANK_SHIFT;
744
745 return val + 1;
746 }
747
748 /* Returns total GB for the whole DIMM */
749 static int cnl_get_dimm_size(u16 val)
750 {
751 return (val & CNL_DRAM_SIZE_MASK) / 2;
752 }
753
754 static int cnl_get_dimm_width(u16 val)
755 {
756 if (cnl_get_dimm_size(val) == 0)
757 return 0;
758
759 switch (val & CNL_DRAM_WIDTH_MASK) {
760 case CNL_DRAM_WIDTH_X8:
761 case CNL_DRAM_WIDTH_X16:
762 case CNL_DRAM_WIDTH_X32:
763 val = (val & CNL_DRAM_WIDTH_MASK) >> CNL_DRAM_WIDTH_SHIFT;
764 return 8 << val;
765 default:
766 MISSING_CASE(val);
767 return 0;
768 }
769 }
770
771 static int cnl_get_dimm_ranks(u16 val)
772 {
773 if (cnl_get_dimm_size(val) == 0)
774 return 0;
775
776 val = (val & CNL_DRAM_RANK_MASK) >> CNL_DRAM_RANK_SHIFT;
777
778 return val + 1;
779 }
780
781 static bool
782 skl_is_16gb_dimm(const struct dram_dimm_info *dimm)
783 {
784 /* Convert total GB to Gb per DRAM device */
785 return 8 * dimm->size / (intel_dimm_num_devices(dimm) ?: 1) == 16;
786 }
787
788 static void
789 skl_dram_get_dimm_info(struct drm_i915_private *dev_priv,
790 struct dram_dimm_info *dimm,
791 int channel, char dimm_name, u16 val)
792 {
793 if (INTEL_GEN(dev_priv) >= 10) {
794 dimm->size = cnl_get_dimm_size(val);
795 dimm->width = cnl_get_dimm_width(val);
796 dimm->ranks = cnl_get_dimm_ranks(val);
797 } else {
798 dimm->size = skl_get_dimm_size(val);
799 dimm->width = skl_get_dimm_width(val);
800 dimm->ranks = skl_get_dimm_ranks(val);
801 }
802
803 DRM_DEBUG_KMS("CH%u DIMM %c size: %u GB, width: X%u, ranks: %u, 16Gb DIMMs: %s\n",
804 channel, dimm_name, dimm->size, dimm->width, dimm->ranks,
805 yesno(skl_is_16gb_dimm(dimm)));
806 }
807
808 static int
809 skl_dram_get_channel_info(struct drm_i915_private *dev_priv,
810 struct dram_channel_info *ch,
811 int channel, u32 val)
812 {
813 skl_dram_get_dimm_info(dev_priv, &ch->dimm_l,
814 channel, 'L', val & 0xffff);
815 skl_dram_get_dimm_info(dev_priv, &ch->dimm_s,
816 channel, 'S', val >> 16);
817
818 if (ch->dimm_l.size == 0 && ch->dimm_s.size == 0) {
819 DRM_DEBUG_KMS("CH%u not populated\n", channel);
820 return -EINVAL;
821 }
822
823 if (ch->dimm_l.ranks == 2 || ch->dimm_s.ranks == 2)
824 ch->ranks = 2;
825 else if (ch->dimm_l.ranks == 1 && ch->dimm_s.ranks == 1)
826 ch->ranks = 2;
827 else
828 ch->ranks = 1;
829
830 ch->is_16gb_dimm =
831 skl_is_16gb_dimm(&ch->dimm_l) ||
832 skl_is_16gb_dimm(&ch->dimm_s);
833
834 DRM_DEBUG_KMS("CH%u ranks: %u, 16Gb DIMMs: %s\n",
835 channel, ch->ranks, yesno(ch->is_16gb_dimm));
836
837 return 0;
838 }
839
840 static bool
841 intel_is_dram_symmetric(const struct dram_channel_info *ch0,
842 const struct dram_channel_info *ch1)
843 {
844 return !memcmp(ch0, ch1, sizeof(*ch0)) &&
845 (ch0->dimm_s.size == 0 ||
846 !memcmp(&ch0->dimm_l, &ch0->dimm_s, sizeof(ch0->dimm_l)));
847 }
848
849 static int
850 skl_dram_get_channels_info(struct drm_i915_private *dev_priv)
851 {
852 struct dram_info *dram_info = &dev_priv->dram_info;
853 struct dram_channel_info ch0 = {}, ch1 = {};
854 u32 val;
855 int ret;
856
857 val = I915_READ(SKL_MAD_DIMM_CH0_0_0_0_MCHBAR_MCMAIN);
858 ret = skl_dram_get_channel_info(dev_priv, &ch0, 0, val);
859 if (ret == 0)
860 dram_info->num_channels++;
861
862 val = I915_READ(SKL_MAD_DIMM_CH1_0_0_0_MCHBAR_MCMAIN);
863 ret = skl_dram_get_channel_info(dev_priv, &ch1, 1, val);
864 if (ret == 0)
865 dram_info->num_channels++;
866
867 if (dram_info->num_channels == 0) {
868 DRM_INFO("Number of memory channels is zero\n");
869 return -EINVAL;
870 }
871
872 /*
873 * If any of the channel is single rank channel, worst case output
874 * will be same as if single rank memory, so consider single rank
875 * memory.
876 */
877 if (ch0.ranks == 1 || ch1.ranks == 1)
878 dram_info->ranks = 1;
879 else
880 dram_info->ranks = max(ch0.ranks, ch1.ranks);
881
882 if (dram_info->ranks == 0) {
883 DRM_INFO("couldn't get memory rank information\n");
884 return -EINVAL;
885 }
886
887 dram_info->is_16gb_dimm = ch0.is_16gb_dimm || ch1.is_16gb_dimm;
888
889 dram_info->symmetric_memory = intel_is_dram_symmetric(&ch0, &ch1);
890
891 DRM_DEBUG_KMS("Memory configuration is symmetric? %s\n",
892 yesno(dram_info->symmetric_memory));
893 return 0;
894 }
895
896 static enum intel_dram_type
897 skl_get_dram_type(struct drm_i915_private *dev_priv)
898 {
899 u32 val;
900
901 val = I915_READ(SKL_MAD_INTER_CHANNEL_0_0_0_MCHBAR_MCMAIN);
902
903 switch (val & SKL_DRAM_DDR_TYPE_MASK) {
904 case SKL_DRAM_DDR_TYPE_DDR3:
905 return INTEL_DRAM_DDR3;
906 case SKL_DRAM_DDR_TYPE_DDR4:
907 return INTEL_DRAM_DDR4;
908 case SKL_DRAM_DDR_TYPE_LPDDR3:
909 return INTEL_DRAM_LPDDR3;
910 case SKL_DRAM_DDR_TYPE_LPDDR4:
911 return INTEL_DRAM_LPDDR4;
912 default:
913 MISSING_CASE(val);
914 return INTEL_DRAM_UNKNOWN;
915 }
916 }
917
918 static int
919 skl_get_dram_info(struct drm_i915_private *dev_priv)
920 {
921 struct dram_info *dram_info = &dev_priv->dram_info;
922 u32 mem_freq_khz, val;
923 int ret;
924
925 dram_info->type = skl_get_dram_type(dev_priv);
926 DRM_DEBUG_KMS("DRAM type: %s\n", intel_dram_type_str(dram_info->type));
927
928 ret = skl_dram_get_channels_info(dev_priv);
929 if (ret)
930 return ret;
931
932 val = I915_READ(SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
933 mem_freq_khz = DIV_ROUND_UP((val & SKL_REQ_DATA_MASK) *
934 SKL_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
935
936 dram_info->bandwidth_kbps = dram_info->num_channels *
937 mem_freq_khz * 8;
938
939 if (dram_info->bandwidth_kbps == 0) {
940 DRM_INFO("Couldn't get system memory bandwidth\n");
941 return -EINVAL;
942 }
943
944 dram_info->valid = true;
945 return 0;
946 }
947
948 /* Returns Gb per DRAM device */
949 static int bxt_get_dimm_size(u32 val)
950 {
951 switch (val & BXT_DRAM_SIZE_MASK) {
952 case BXT_DRAM_SIZE_4GBIT:
953 return 4;
954 case BXT_DRAM_SIZE_6GBIT:
955 return 6;
956 case BXT_DRAM_SIZE_8GBIT:
957 return 8;
958 case BXT_DRAM_SIZE_12GBIT:
959 return 12;
960 case BXT_DRAM_SIZE_16GBIT:
961 return 16;
962 default:
963 MISSING_CASE(val);
964 return 0;
965 }
966 }
967
968 static int bxt_get_dimm_width(u32 val)
969 {
970 if (!bxt_get_dimm_size(val))
971 return 0;
972
973 val = (val & BXT_DRAM_WIDTH_MASK) >> BXT_DRAM_WIDTH_SHIFT;
974
975 return 8 << val;
976 }
977
978 static int bxt_get_dimm_ranks(u32 val)
979 {
980 if (!bxt_get_dimm_size(val))
981 return 0;
982
983 switch (val & BXT_DRAM_RANK_MASK) {
984 case BXT_DRAM_RANK_SINGLE:
985 return 1;
986 case BXT_DRAM_RANK_DUAL:
987 return 2;
988 default:
989 MISSING_CASE(val);
990 return 0;
991 }
992 }
993
994 static enum intel_dram_type bxt_get_dimm_type(u32 val)
995 {
996 if (!bxt_get_dimm_size(val))
997 return INTEL_DRAM_UNKNOWN;
998
999 switch (val & BXT_DRAM_TYPE_MASK) {
1000 case BXT_DRAM_TYPE_DDR3:
1001 return INTEL_DRAM_DDR3;
1002 case BXT_DRAM_TYPE_LPDDR3:
1003 return INTEL_DRAM_LPDDR3;
1004 case BXT_DRAM_TYPE_DDR4:
1005 return INTEL_DRAM_DDR4;
1006 case BXT_DRAM_TYPE_LPDDR4:
1007 return INTEL_DRAM_LPDDR4;
1008 default:
1009 MISSING_CASE(val);
1010 return INTEL_DRAM_UNKNOWN;
1011 }
1012 }
1013
1014 static void bxt_get_dimm_info(struct dram_dimm_info *dimm,
1015 u32 val)
1016 {
1017 dimm->width = bxt_get_dimm_width(val);
1018 dimm->ranks = bxt_get_dimm_ranks(val);
1019
1020 /*
1021 * Size in register is Gb per DRAM device. Convert to total
1022 * GB to match the way we report this for non-LP platforms.
1023 */
1024 dimm->size = bxt_get_dimm_size(val) * intel_dimm_num_devices(dimm) / 8;
1025 }
1026
1027 static int
1028 bxt_get_dram_info(struct drm_i915_private *dev_priv)
1029 {
1030 struct dram_info *dram_info = &dev_priv->dram_info;
1031 u32 dram_channels;
1032 u32 mem_freq_khz, val;
1033 u8 num_active_channels;
1034 int i;
1035
1036 val = I915_READ(BXT_P_CR_MC_BIOS_REQ_0_0_0);
1037 mem_freq_khz = DIV_ROUND_UP((val & BXT_REQ_DATA_MASK) *
1038 BXT_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
1039
1040 dram_channels = val & BXT_DRAM_CHANNEL_ACTIVE_MASK;
1041 num_active_channels = hweight32(dram_channels);
1042
1043 /* Each active bit represents 4-byte channel */
1044 dram_info->bandwidth_kbps = (mem_freq_khz * num_active_channels * 4);
1045
1046 if (dram_info->bandwidth_kbps == 0) {
1047 DRM_INFO("Couldn't get system memory bandwidth\n");
1048 return -EINVAL;
1049 }
1050
1051 /*
1052 * Now read each DUNIT8/9/10/11 to check the rank of each dimms.
1053 */
1054 for (i = BXT_D_CR_DRP0_DUNIT_START; i <= BXT_D_CR_DRP0_DUNIT_END; i++) {
1055 struct dram_dimm_info dimm;
1056 enum intel_dram_type type;
1057
1058 val = I915_READ(BXT_D_CR_DRP0_DUNIT(i));
1059 if (val == 0xFFFFFFFF)
1060 continue;
1061
1062 dram_info->num_channels++;
1063
1064 bxt_get_dimm_info(&dimm, val);
1065 type = bxt_get_dimm_type(val);
1066
1067 WARN_ON(type != INTEL_DRAM_UNKNOWN &&
1068 dram_info->type != INTEL_DRAM_UNKNOWN &&
1069 dram_info->type != type);
1070
1071 DRM_DEBUG_KMS("CH%u DIMM size: %u GB, width: X%u, ranks: %u, type: %s\n",
1072 i - BXT_D_CR_DRP0_DUNIT_START,
1073 dimm.size, dimm.width, dimm.ranks,
1074 intel_dram_type_str(type));
1075
1076 /*
1077 * If any of the channel is single rank channel,
1078 * worst case output will be same as if single rank
1079 * memory, so consider single rank memory.
1080 */
1081 if (dram_info->ranks == 0)
1082 dram_info->ranks = dimm.ranks;
1083 else if (dimm.ranks == 1)
1084 dram_info->ranks = 1;
1085
1086 if (type != INTEL_DRAM_UNKNOWN)
1087 dram_info->type = type;
1088 }
1089
1090 if (dram_info->type == INTEL_DRAM_UNKNOWN ||
1091 dram_info->ranks == 0) {
1092 DRM_INFO("couldn't get memory information\n");
1093 return -EINVAL;
1094 }
1095
1096 dram_info->valid = true;
1097 return 0;
1098 }
1099
1100 static void
1101 intel_get_dram_info(struct drm_i915_private *dev_priv)
1102 {
1103 struct dram_info *dram_info = &dev_priv->dram_info;
1104 int ret;
1105
1106 /*
1107 * Assume 16Gb DIMMs are present until proven otherwise.
1108 * This is only used for the level 0 watermark latency
1109 * w/a which does not apply to bxt/glk.
1110 */
1111 dram_info->is_16gb_dimm = !IS_GEN9_LP(dev_priv);
1112
1113 if (INTEL_GEN(dev_priv) < 9 || !HAS_DISPLAY(dev_priv))
1114 return;
1115
1116 if (IS_GEN9_LP(dev_priv))
1117 ret = bxt_get_dram_info(dev_priv);
1118 else
1119 ret = skl_get_dram_info(dev_priv);
1120 if (ret)
1121 return;
1122
1123 DRM_DEBUG_KMS("DRAM bandwidth: %u kBps, channels: %u\n",
1124 dram_info->bandwidth_kbps,
1125 dram_info->num_channels);
1126
1127 DRM_DEBUG_KMS("DRAM ranks: %u, 16Gb DIMMs: %s\n",
1128 dram_info->ranks, yesno(dram_info->is_16gb_dimm));
1129 }
1130
1131 static u32 gen9_edram_size_mb(struct drm_i915_private *dev_priv, u32 cap)
1132 {
1133 static const u8 ways[8] = { 4, 8, 12, 16, 16, 16, 16, 16 };
1134 static const u8 sets[4] = { 1, 1, 2, 2 };
1135
1136 return EDRAM_NUM_BANKS(cap) *
1137 ways[EDRAM_WAYS_IDX(cap)] *
1138 sets[EDRAM_SETS_IDX(cap)];
1139 }
1140
1141 static void edram_detect(struct drm_i915_private *dev_priv)
1142 {
1143 u32 edram_cap = 0;
1144
1145 if (!(IS_HASWELL(dev_priv) ||
1146 IS_BROADWELL(dev_priv) ||
1147 INTEL_GEN(dev_priv) >= 9))
1148 return;
1149
1150 edram_cap = __raw_uncore_read32(&dev_priv->uncore, HSW_EDRAM_CAP);
1151
1152 /* NB: We can't write IDICR yet because we don't have gt funcs set up */
1153
1154 if (!(edram_cap & EDRAM_ENABLED))
1155 return;
1156
1157 /*
1158 * The needed capability bits for size calculation are not there with
1159 * pre gen9 so return 128MB always.
1160 */
1161 if (INTEL_GEN(dev_priv) < 9)
1162 dev_priv->edram_size_mb = 128;
1163 else
1164 dev_priv->edram_size_mb =
1165 gen9_edram_size_mb(dev_priv, edram_cap);
1166
1167 dev_info(dev_priv->drm.dev,
1168 "Found %uMB of eDRAM\n", dev_priv->edram_size_mb);
1169 }
1170
1171 /**
1172 * i915_driver_hw_probe - setup state requiring device access
1173 * @dev_priv: device private
1174 *
1175 * Setup state that requires accessing the device, but doesn't require
1176 * exposing the driver via kernel internal or userspace interfaces.
1177 */
1178 static int i915_driver_hw_probe(struct drm_i915_private *dev_priv)
1179 {
1180 struct pci_dev *pdev = dev_priv->drm.pdev;
1181 int ret;
1182
1183 if (i915_inject_probe_failure(dev_priv))
1184 return -ENODEV;
1185
1186 intel_device_info_runtime_init(dev_priv);
1187
1188 if (HAS_PPGTT(dev_priv)) {
1189 if (intel_vgpu_active(dev_priv) &&
1190 !intel_vgpu_has_full_ppgtt(dev_priv)) {
1191 i915_report_error(dev_priv,
1192 "incompatible vGPU found, support for isolated ppGTT required\n");
1193 return -ENXIO;
1194 }
1195 }
1196
1197 if (HAS_EXECLISTS(dev_priv)) {
1198 /*
1199 * Older GVT emulation depends upon intercepting CSB mmio,
1200 * which we no longer use, preferring to use the HWSP cache
1201 * instead.
1202 */
1203 if (intel_vgpu_active(dev_priv) &&
1204 !intel_vgpu_has_hwsp_emulation(dev_priv)) {
1205 i915_report_error(dev_priv,
1206 "old vGPU host found, support for HWSP emulation required\n");
1207 return -ENXIO;
1208 }
1209 }
1210
1211 intel_sanitize_options(dev_priv);
1212
1213 /* needs to be done before ggtt probe */
1214 edram_detect(dev_priv);
1215
1216 i915_perf_init(dev_priv);
1217
1218 ret = i915_ggtt_probe_hw(dev_priv);
1219 if (ret)
1220 goto err_perf;
1221
1222 ret = drm_fb_helper_remove_conflicting_pci_framebuffers(pdev, "inteldrmfb");
1223 if (ret)
1224 goto err_ggtt;
1225
1226 ret = i915_ggtt_init_hw(dev_priv);
1227 if (ret)
1228 goto err_ggtt;
1229
1230 ret = intel_memory_regions_hw_probe(dev_priv);
1231 if (ret)
1232 goto err_ggtt;
1233
1234 intel_gt_init_hw_early(&dev_priv->gt, &dev_priv->ggtt);
1235
1236 ret = i915_ggtt_enable_hw(dev_priv);
1237 if (ret) {
1238 DRM_ERROR("failed to enable GGTT\n");
1239 goto err_mem_regions;
1240 }
1241
1242 pci_set_master(pdev);
1243
1244 #ifdef __linux__
1245 /*
1246 * We don't have a max segment size, so set it to the max so sg's
1247 * debugging layer doesn't complain
1248 */
1249 dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1250 #endif
1251
1252 #ifndef __NetBSD__ /* Handled in intel_ggtt.c. */
1253 /* overlay on gen2 is broken and can't address above 1G */
1254 if (IS_GEN(dev_priv, 2)) {
1255 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1256 if (ret) {
1257 DRM_ERROR("failed to set DMA mask\n");
1258
1259 goto err_mem_regions;
1260 }
1261 }
1262
1263 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1264 * using 32bit addressing, overwriting memory if HWS is located
1265 * above 4GB.
1266 *
1267 * The documentation also mentions an issue with undefined
1268 * behaviour if any general state is accessed within a page above 4GB,
1269 * which also needs to be handled carefully.
1270 */
1271 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1272 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1273
1274 if (ret) {
1275 DRM_ERROR("failed to set DMA mask\n");
1276
1277 goto err_mem_regions;
1278 }
1279 }
1280 #endif
1281
1282 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1283 PM_QOS_DEFAULT_VALUE);
1284
1285 intel_gt_init_workarounds(dev_priv);
1286
1287 /* On the 945G/GM, the chipset reports the MSI capability on the
1288 * integrated graphics even though the support isn't actually there
1289 * according to the published specs. It doesn't appear to function
1290 * correctly in testing on 945G.
1291 * This may be a side effect of MSI having been made available for PEG
1292 * and the registers being closely associated.
1293 *
1294 * According to chipset errata, on the 965GM, MSI interrupts may
1295 * be lost or delayed, and was defeatured. MSI interrupts seem to
1296 * get lost on g4x as well, and interrupt delivery seems to stay
1297 * properly dead afterwards. So we'll just disable them for all
1298 * pre-gen5 chipsets.
1299 *
1300 * dp aux and gmbus irq on gen4 seems to be able to generate legacy
1301 * interrupts even when in MSI mode. This results in spurious
1302 * interrupt warnings if the legacy irq no. is shared with another
1303 * device. The kernel then disables that interrupt source and so
1304 * prevents the other device from working properly.
1305 */
1306 if (INTEL_GEN(dev_priv) >= 5) {
1307 if (pci_enable_msi(pdev) < 0)
1308 DRM_DEBUG_DRIVER("can't enable MSI");
1309 }
1310
1311 ret = intel_gvt_init(dev_priv);
1312 if (ret)
1313 goto err_msi;
1314
1315 intel_opregion_setup(dev_priv);
1316 /*
1317 * Fill the dram structure to get the system raw bandwidth and
1318 * dram info. This will be used for memory latency calculation.
1319 */
1320 intel_get_dram_info(dev_priv);
1321
1322 intel_bw_init_hw(dev_priv);
1323
1324 return 0;
1325
1326 err_msi:
1327 if (pdev->msi_enabled)
1328 pci_disable_msi(pdev);
1329 pm_qos_remove_request(&dev_priv->pm_qos);
1330 err_mem_regions:
1331 intel_memory_regions_driver_release(dev_priv);
1332 err_ggtt:
1333 i915_ggtt_driver_release(dev_priv);
1334 err_perf:
1335 i915_perf_fini(dev_priv);
1336 return ret;
1337 }
1338
1339 /**
1340 * i915_driver_hw_remove - cleanup the setup done in i915_driver_hw_probe()
1341 * @dev_priv: device private
1342 */
1343 static void i915_driver_hw_remove(struct drm_i915_private *dev_priv)
1344 {
1345 struct pci_dev *pdev = dev_priv->drm.pdev;
1346
1347 i915_perf_fini(dev_priv);
1348
1349 if (pdev->msi_enabled)
1350 pci_disable_msi(pdev);
1351
1352 pm_qos_remove_request(&dev_priv->pm_qos);
1353 }
1354
1355 /**
1356 * i915_driver_register - register the driver with the rest of the system
1357 * @dev_priv: device private
1358 *
1359 * Perform any steps necessary to make the driver available via kernel
1360 * internal or userspace interfaces.
1361 */
1362 static void i915_driver_register(struct drm_i915_private *dev_priv)
1363 {
1364 struct drm_device *dev = &dev_priv->drm;
1365
1366 i915_gem_driver_register(dev_priv);
1367 i915_pmu_register(dev_priv);
1368
1369 /*
1370 * Notify a valid surface after modesetting,
1371 * when running inside a VM.
1372 */
1373 if (intel_vgpu_active(dev_priv))
1374 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1375
1376 /* Reveal our presence to userspace */
1377 if (drm_dev_register(dev, 0) == 0) {
1378 i915_debugfs_register(dev_priv);
1379 i915_setup_sysfs(dev_priv);
1380
1381 /* Depends on sysfs having been initialized */
1382 i915_perf_register(dev_priv);
1383 } else
1384 DRM_ERROR("Failed to register driver for userspace access!\n");
1385
1386 if (HAS_DISPLAY(dev_priv) && INTEL_DISPLAY_ENABLED(dev_priv)) {
1387 /* Must be done after probing outputs */
1388 intel_opregion_register(dev_priv);
1389 acpi_video_register();
1390 }
1391
1392 intel_gt_driver_register(&dev_priv->gt);
1393
1394 intel_audio_init(dev_priv);
1395
1396 /*
1397 * Some ports require correctly set-up hpd registers for detection to
1398 * work properly (leading to ghost connected connector status), e.g. VGA
1399 * on gm45. Hence we can only set up the initial fbdev config after hpd
1400 * irqs are fully enabled. We do it last so that the async config
1401 * cannot run before the connectors are registered.
1402 */
1403 intel_fbdev_initial_config_async(dev);
1404
1405 /*
1406 * We need to coordinate the hotplugs with the asynchronous fbdev
1407 * configuration, for which we use the fbdev->async_cookie.
1408 */
1409 if (HAS_DISPLAY(dev_priv) && INTEL_DISPLAY_ENABLED(dev_priv))
1410 drm_kms_helper_poll_init(dev);
1411
1412 intel_power_domains_enable(dev_priv);
1413 intel_runtime_pm_enable(&dev_priv->runtime_pm);
1414 }
1415
1416 /**
1417 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1418 * @dev_priv: device private
1419 */
1420 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1421 {
1422 intel_runtime_pm_disable(&dev_priv->runtime_pm);
1423 intel_power_domains_disable(dev_priv);
1424
1425 intel_fbdev_unregister(dev_priv);
1426 intel_audio_deinit(dev_priv);
1427
1428 /*
1429 * After flushing the fbdev (incl. a late async config which will
1430 * have delayed queuing of a hotplug event), then flush the hotplug
1431 * events.
1432 */
1433 drm_kms_helper_poll_fini(&dev_priv->drm);
1434
1435 intel_gt_driver_unregister(&dev_priv->gt);
1436 acpi_video_unregister();
1437 intel_opregion_unregister(dev_priv);
1438
1439 i915_perf_unregister(dev_priv);
1440 i915_pmu_unregister(dev_priv);
1441
1442 i915_teardown_sysfs(dev_priv);
1443 drm_dev_unplug(&dev_priv->drm);
1444
1445 i915_gem_driver_unregister(dev_priv);
1446 }
1447
1448 static void i915_welcome_messages(struct drm_i915_private *dev_priv)
1449 {
1450 if (drm_debug_enabled(DRM_UT_DRIVER)) {
1451 struct drm_printer p = drm_debug_printer("i915 device info:");
1452
1453 drm_printf(&p, "pciid=0x%04x rev=0x%02x platform=%s (subplatform=0x%x) gen=%i\n",
1454 INTEL_DEVID(dev_priv),
1455 INTEL_REVID(dev_priv),
1456 intel_platform_name(INTEL_INFO(dev_priv)->platform),
1457 intel_subplatform(RUNTIME_INFO(dev_priv),
1458 INTEL_INFO(dev_priv)->platform),
1459 INTEL_GEN(dev_priv));
1460
1461 intel_device_info_print_static(INTEL_INFO(dev_priv), &p);
1462 intel_device_info_print_runtime(RUNTIME_INFO(dev_priv), &p);
1463 }
1464
1465 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1466 DRM_INFO("DRM_I915_DEBUG enabled\n");
1467 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1468 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1469 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM))
1470 DRM_INFO("DRM_I915_DEBUG_RUNTIME_PM enabled\n");
1471 }
1472
1473 static struct drm_i915_private *
1474 i915_driver_create(struct pci_dev *pdev, const struct pci_device_id *ent)
1475 {
1476 const struct intel_device_info *match_info =
1477 (struct intel_device_info *)ent->driver_data;
1478 struct intel_device_info *device_info;
1479 struct drm_i915_private *i915;
1480 int err;
1481
1482 i915 = kzalloc(sizeof(*i915), GFP_KERNEL);
1483 if (!i915)
1484 return ERR_PTR(-ENOMEM);
1485
1486 err = drm_dev_init(&i915->drm, &driver, device_parent(pdev->pd_dev));
1487 if (err) {
1488 kfree(i915);
1489 return ERR_PTR(err);
1490 }
1491
1492 i915->drm.dev_private = i915;
1493
1494 i915->drm.pdev = pdev;
1495 pci_set_drvdata(pdev, i915);
1496
1497 /* Setup the write-once "constant" device info */
1498 device_info = mkwrite_device_info(i915);
1499 memcpy(device_info, match_info, sizeof(*device_info));
1500 RUNTIME_INFO(i915)->device_id = pdev->device;
1501
1502 BUG_ON(device_info->gen > BITS_PER_TYPE(device_info->gen_mask));
1503
1504 return i915;
1505 }
1506
1507 static void i915_driver_destroy(struct drm_i915_private *i915)
1508 {
1509 struct pci_dev *pdev = i915->drm.pdev;
1510
1511 drm_dev_fini(&i915->drm);
1512 kfree(i915);
1513
1514 /* And make sure we never chase our dangling pointer from pci_dev */
1515 pci_set_drvdata(pdev, NULL);
1516 }
1517
1518 /**
1519 * i915_driver_probe - setup chip and create an initial config
1520 * @pdev: PCI device
1521 * @ent: matching PCI ID entry
1522 *
1523 * The driver probe routine has to do several things:
1524 * - drive output discovery via intel_modeset_init()
1525 * - initialize the memory manager
1526 * - allocate initial config memory
1527 * - setup the DRM framebuffer with the allocated memory
1528 */
1529 int i915_driver_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1530 {
1531 const struct intel_device_info *match_info =
1532 (struct intel_device_info *)ent->driver_data;
1533 struct drm_i915_private *dev_priv;
1534 int ret;
1535
1536 dev_priv = i915_driver_create(pdev, ent);
1537 if (IS_ERR(dev_priv))
1538 return PTR_ERR(dev_priv);
1539
1540 /* Disable nuclear pageflip by default on pre-ILK */
1541 if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1542 dev_priv->drm.driver_features &= ~DRIVER_ATOMIC;
1543
1544 /*
1545 * Check if we support fake LMEM -- for now we only unleash this for
1546 * the live selftests(test-and-exit).
1547 */
1548 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1549 if (IS_ENABLED(CONFIG_DRM_I915_UNSTABLE_FAKE_LMEM)) {
1550 if (INTEL_GEN(dev_priv) >= 9 && i915_selftest.live < 0 &&
1551 i915_modparams.fake_lmem_start) {
1552 mkwrite_device_info(dev_priv)->memory_regions =
1553 REGION_SMEM | REGION_LMEM | REGION_STOLEN;
1554 mkwrite_device_info(dev_priv)->is_dgfx = true;
1555 GEM_BUG_ON(!HAS_LMEM(dev_priv));
1556 GEM_BUG_ON(!IS_DGFX(dev_priv));
1557 }
1558 }
1559 #endif
1560
1561 #ifndef __NetBSD__ /* XXX done for us */
1562 ret = pci_enable_device(pdev);
1563 if (ret)
1564 goto out_fini;
1565 #endif
1566
1567 ret = i915_driver_early_probe(dev_priv);
1568 if (ret < 0)
1569 goto out_pci_disable;
1570
1571 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1572
1573 i915_detect_vgpu(dev_priv);
1574
1575 ret = i915_driver_mmio_probe(dev_priv);
1576 if (ret < 0)
1577 goto out_runtime_pm_put;
1578
1579 ret = i915_driver_hw_probe(dev_priv);
1580 if (ret < 0)
1581 goto out_cleanup_mmio;
1582
1583 ret = i915_driver_modeset_probe(dev_priv);
1584 if (ret < 0)
1585 goto out_cleanup_hw;
1586
1587 i915_driver_register(dev_priv);
1588
1589 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1590
1591 i915_welcome_messages(dev_priv);
1592
1593 return 0;
1594
1595 out_cleanup_hw:
1596 i915_driver_hw_remove(dev_priv);
1597 intel_memory_regions_driver_release(dev_priv);
1598 i915_ggtt_driver_release(dev_priv);
1599 out_cleanup_mmio:
1600 i915_driver_mmio_release(dev_priv);
1601 out_runtime_pm_put:
1602 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1603 i915_driver_late_release(dev_priv);
1604 out_pci_disable:
1605 #ifndef __NetBSD__
1606 pci_disable_device(pdev);
1607 out_fini:
1608 i915_probe_error(dev_priv, "Device initialization failed (%d)\n", ret);
1609 i915_driver_destroy(dev_priv);
1610 #endif
1611 return ret;
1612 }
1613
1614 void i915_driver_remove(struct drm_i915_private *i915)
1615 {
1616 disable_rpm_wakeref_asserts(&i915->runtime_pm);
1617
1618 i915_driver_unregister(i915);
1619
1620 /*
1621 * After unregistering the device to prevent any new users, cancel
1622 * all in-flight requests so that we can quickly unbind the active
1623 * resources.
1624 */
1625 intel_gt_set_wedged(&i915->gt);
1626
1627 /* Flush any external code that still may be under the RCU lock */
1628 synchronize_rcu();
1629
1630 i915_gem_suspend(i915);
1631
1632 drm_atomic_helper_shutdown(&i915->drm);
1633
1634 intel_gvt_driver_remove(i915);
1635
1636 i915_driver_modeset_remove(i915);
1637
1638 i915_reset_error_state(i915);
1639 i915_gem_driver_remove(i915);
1640
1641 intel_power_domains_driver_remove(i915);
1642
1643 i915_driver_hw_remove(i915);
1644
1645 enable_rpm_wakeref_asserts(&i915->runtime_pm);
1646 }
1647
1648 static void i915_driver_release(struct drm_device *dev)
1649 {
1650 struct drm_i915_private *dev_priv = to_i915(dev);
1651 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
1652
1653 disable_rpm_wakeref_asserts(rpm);
1654
1655 i915_gem_driver_release(dev_priv);
1656
1657 intel_memory_regions_driver_release(dev_priv);
1658 i915_ggtt_driver_release(dev_priv);
1659
1660 i915_driver_mmio_release(dev_priv);
1661
1662 enable_rpm_wakeref_asserts(rpm);
1663 intel_runtime_pm_driver_release(rpm);
1664
1665 i915_driver_late_release(dev_priv);
1666 i915_driver_destroy(dev_priv);
1667 }
1668
1669 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1670 {
1671 struct drm_i915_private *i915 = to_i915(dev);
1672 int ret;
1673
1674 ret = i915_gem_open(i915, file);
1675 if (ret)
1676 return ret;
1677
1678 return 0;
1679 }
1680
1681 /**
1682 * i915_driver_lastclose - clean up after all DRM clients have exited
1683 * @dev: DRM device
1684 *
1685 * Take care of cleaning up after all DRM clients have exited. In the
1686 * mode setting case, we want to restore the kernel's initial mode (just
1687 * in case the last client left us in a bad state).
1688 *
1689 * Additionally, in the non-mode setting case, we'll tear down the GTT
1690 * and DMA structures, since the kernel won't be using them, and clea
1691 * up any GEM state.
1692 */
1693 static void i915_driver_lastclose(struct drm_device *dev)
1694 {
1695 intel_fbdev_restore_mode(dev);
1696 #ifndef __NetBSD__ /* XXX vga */
1697 vga_switcheroo_process_delayed_switch();
1698 #endif
1699 }
1700
1701 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1702 {
1703 struct drm_i915_file_private *file_priv = file->driver_priv;
1704
1705 i915_gem_context_close(file);
1706 i915_gem_release(dev, file);
1707
1708 kfree_rcu(file_priv, rcu);
1709
1710 /* Catch up with all the deferred frees from "this" client */
1711 i915_gem_flush_free_objects(to_i915(dev));
1712 }
1713
1714 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1715 {
1716 struct drm_device *dev = &dev_priv->drm;
1717 struct intel_encoder *encoder;
1718
1719 drm_modeset_lock_all(dev);
1720 for_each_intel_encoder(dev, encoder)
1721 if (encoder->suspend)
1722 encoder->suspend(encoder);
1723 drm_modeset_unlock_all(dev);
1724 }
1725
1726 #ifndef __NetBSD__ /* XXX vlv suspend/resume */
1727 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1728 bool rpm_resume);
1729 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1730 #endif
1731
1732 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1733 {
1734 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1735 if (acpi_target_system_state() < ACPI_STATE_S3)
1736 return true;
1737 #endif
1738 return false;
1739 }
1740
1741 #ifndef __NetBSD__ /* XXX runtime pm */
1742 static int i915_drm_prepare(struct drm_device *dev)
1743 {
1744 struct drm_i915_private *i915 = to_i915(dev);
1745
1746 /*
1747 * NB intel_display_suspend() may issue new requests after we've
1748 * ostensibly marked the GPU as ready-to-sleep here. We need to
1749 * split out that work and pull it forward so that after point,
1750 * the GPU is not woken again.
1751 */
1752 i915_gem_suspend(i915);
1753
1754 return 0;
1755 }
1756 #endif
1757
1758 int i915_drm_suspend(struct drm_device *dev)
1759 {
1760 struct drm_i915_private *dev_priv = to_i915(dev);
1761 struct pci_dev *pdev = dev_priv->drm.pdev;
1762 pci_power_t opregion_target_state;
1763
1764 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1765
1766 /* We do a lot of poking in a lot of registers, make sure they work
1767 * properly. */
1768 intel_power_domains_disable(dev_priv);
1769
1770 drm_kms_helper_poll_disable(dev);
1771
1772 #ifdef __NetBSD__ /* pmf handles this for us. */
1773 __USE(pdev);
1774 #else
1775 pci_save_state(pdev);
1776 #endif
1777
1778 intel_display_suspend(dev);
1779
1780 intel_dp_mst_suspend(dev_priv);
1781
1782 intel_runtime_pm_disable_interrupts(dev_priv);
1783 intel_hpd_cancel_work(dev_priv);
1784
1785 intel_suspend_encoders(dev_priv);
1786
1787 intel_suspend_hw(dev_priv);
1788
1789 i915_gem_suspend_gtt_mappings(dev_priv);
1790
1791 i915_save_state(dev_priv);
1792
1793 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1794 intel_opregion_suspend(dev_priv, opregion_target_state);
1795
1796 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1797
1798 dev_priv->suspend_count++;
1799
1800 intel_csr_ucode_suspend(dev_priv);
1801
1802 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1803
1804 return 0;
1805 }
1806
1807 static enum i915_drm_suspend_mode
1808 get_suspend_mode(struct drm_i915_private *dev_priv, bool hibernate)
1809 {
1810 if (hibernate)
1811 return I915_DRM_SUSPEND_HIBERNATE;
1812
1813 if (suspend_to_idle(dev_priv))
1814 return I915_DRM_SUSPEND_IDLE;
1815
1816 return I915_DRM_SUSPEND_MEM;
1817 }
1818
1819 int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1820 {
1821 struct drm_i915_private *dev_priv = to_i915(dev);
1822 struct pci_dev *pdev = dev_priv->drm.pdev;
1823 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
1824 int ret = 0;
1825
1826 disable_rpm_wakeref_asserts(rpm);
1827
1828 i915_gem_suspend_late(dev_priv);
1829
1830 intel_uncore_suspend(&dev_priv->uncore);
1831
1832 intel_power_domains_suspend(dev_priv,
1833 get_suspend_mode(dev_priv, hibernation));
1834
1835 intel_display_power_suspend_late(dev_priv);
1836
1837 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1838 #ifdef __NetBSD__
1839 ret = 0;
1840 #else
1841 ret = vlv_suspend_complete(dev_priv);
1842 #endif
1843
1844 if (ret) {
1845 DRM_ERROR("Suspend complete failed: %d\n", ret);
1846 intel_power_domains_resume(dev_priv);
1847
1848 goto out;
1849 }
1850
1851 #ifdef __NetBSD__ /* pmf handles this for us. */
1852 __USE(pdev);
1853 #else
1854 pci_disable_device(pdev);
1855 /*
1856 * During hibernation on some platforms the BIOS may try to access
1857 * the device even though it's already in D3 and hang the machine. So
1858 * leave the device in D0 on those platforms and hope the BIOS will
1859 * power down the device properly. The issue was seen on multiple old
1860 * GENs with different BIOS vendors, so having an explicit blacklist
1861 * is inpractical; apply the workaround on everything pre GEN6. The
1862 * platforms where the issue was seen:
1863 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1864 * Fujitsu FSC S7110
1865 * Acer Aspire 1830T
1866 */
1867 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1868 pci_set_power_state(pdev, PCI_D3hot);
1869 #endif
1870
1871 out:
1872 enable_rpm_wakeref_asserts(rpm);
1873 if (!dev_priv->uncore.user_forcewake_count)
1874 intel_runtime_pm_driver_release(rpm);
1875
1876 return ret;
1877 }
1878
1879 #ifndef __NetBSD__ /* XXX vga switcheroo */
1880 int i915_suspend_switcheroo(struct drm_i915_private *i915, pm_message_t state)
1881 {
1882 int error;
1883
1884 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1885 state.event != PM_EVENT_FREEZE))
1886 return -EINVAL;
1887
1888 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
1889 return 0;
1890
1891 error = i915_drm_suspend(&i915->drm);
1892 if (error)
1893 return error;
1894
1895 return i915_drm_suspend_late(&i915->drm, false);
1896 }
1897 #endif
1898
1899 int i915_drm_resume(struct drm_device *dev)
1900 {
1901 struct drm_i915_private *dev_priv = to_i915(dev);
1902 int ret;
1903
1904 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1905
1906 sanitize_gpu(dev_priv);
1907
1908 ret = i915_ggtt_enable_hw(dev_priv);
1909 if (ret)
1910 DRM_ERROR("failed to re-enable GGTT\n");
1911
1912 i915_gem_restore_gtt_mappings(dev_priv);
1913 i915_gem_restore_fences(&dev_priv->ggtt);
1914
1915 intel_csr_ucode_resume(dev_priv);
1916
1917 i915_restore_state(dev_priv);
1918 intel_pps_unlock_regs_wa(dev_priv);
1919
1920 intel_init_pch_refclk(dev_priv);
1921
1922 /*
1923 * Interrupts have to be enabled before any batches are run. If not the
1924 * GPU will hang. i915_gem_init_hw() will initiate batches to
1925 * update/restore the context.
1926 *
1927 * drm_mode_config_reset() needs AUX interrupts.
1928 *
1929 * Modeset enabling in intel_modeset_init_hw() also needs working
1930 * interrupts.
1931 */
1932 intel_runtime_pm_enable_interrupts(dev_priv);
1933
1934 drm_mode_config_reset(dev);
1935
1936 i915_gem_resume(dev_priv);
1937
1938 intel_modeset_init_hw(dev_priv);
1939 intel_init_clock_gating(dev_priv);
1940
1941 spin_lock_irq(&dev_priv->irq_lock);
1942 if (dev_priv->display.hpd_irq_setup)
1943 dev_priv->display.hpd_irq_setup(dev_priv);
1944 spin_unlock_irq(&dev_priv->irq_lock);
1945
1946 intel_dp_mst_resume(dev_priv);
1947
1948 intel_display_resume(dev);
1949
1950 drm_kms_helper_poll_enable(dev);
1951
1952 /*
1953 * ... but also need to make sure that hotplug processing
1954 * doesn't cause havoc. Like in the driver load code we don't
1955 * bother with the tiny race here where we might lose hotplug
1956 * notifications.
1957 * */
1958 intel_hpd_init(dev_priv);
1959
1960 intel_opregion_resume(dev_priv);
1961
1962 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1963
1964 intel_power_domains_enable(dev_priv);
1965
1966 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1967
1968 return 0;
1969 }
1970
1971 int i915_drm_resume_early(struct drm_device *dev)
1972 {
1973 struct drm_i915_private *dev_priv = to_i915(dev);
1974 struct pci_dev *pdev = dev_priv->drm.pdev;
1975 int ret;
1976
1977 /*
1978 * We have a resume ordering issue with the snd-hda driver also
1979 * requiring our device to be power up. Due to the lack of a
1980 * parent/child relationship we currently solve this with an early
1981 * resume hook.
1982 *
1983 * FIXME: This should be solved with a special hdmi sink device or
1984 * similar so that power domains can be employed.
1985 */
1986
1987 /*
1988 * Note that we need to set the power state explicitly, since we
1989 * powered off the device during freeze and the PCI core won't power
1990 * it back up for us during thaw. Powering off the device during
1991 * freeze is not a hard requirement though, and during the
1992 * suspend/resume phases the PCI core makes sure we get here with the
1993 * device powered on. So in case we change our freeze logic and keep
1994 * the device powered we can also remove the following set power state
1995 * call.
1996 */
1997 #ifndef __NetBSD__ /* pmf handles this for us. */
1998 ret = pci_set_power_state(pdev, PCI_D0);
1999 if (ret) {
2000 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
2001 return ret;
2002 }
2003
2004 /*
2005 * Note that pci_enable_device() first enables any parent bridge
2006 * device and only then sets the power state for this device. The
2007 * bridge enabling is a nop though, since bridge devices are resumed
2008 * first. The order of enabling power and enabling the device is
2009 * imposed by the PCI core as described above, so here we preserve the
2010 * same order for the freeze/thaw phases.
2011 *
2012 * TODO: eventually we should remove pci_disable_device() /
2013 * pci_enable_enable_device() from suspend/resume. Due to how they
2014 * depend on the device enable refcount we can't anyway depend on them
2015 * disabling/enabling the device.
2016 */
2017 if (pci_enable_device(pdev))
2018 return -EIO;
2019 #endif
2020
2021 /* XXX pmf probably handles this for us too. */
2022 pci_set_master(dev->pdev);
2023
2024 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2025
2026 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2027 #ifdef __NetBSD__ /* XXX vlv suspend/resume */
2028 ret = 0;
2029 #else
2030 ret = vlv_resume_prepare(dev_priv, false);
2031 #endif
2032 if (ret)
2033 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
2034 ret);
2035
2036 intel_uncore_resume_early(&dev_priv->uncore);
2037
2038 intel_gt_check_and_clear_faults(&dev_priv->gt);
2039
2040 intel_display_power_resume_early(dev_priv);
2041
2042 intel_power_domains_resume(dev_priv);
2043
2044 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2045
2046 return ret;
2047 }
2048
2049 #ifndef __NetBSD__ /* XXX vga switcheroo */
2050 int i915_resume_switcheroo(struct drm_i915_private *i915)
2051 {
2052 int ret;
2053
2054 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2055 return 0;
2056
2057 ret = i915_drm_resume_early(&i915->drm);
2058 if (ret)
2059 return ret;
2060
2061 return i915_drm_resume(&i915->drm);
2062 }
2063
2064 static int i915_pm_prepare(struct device *kdev)
2065 {
2066 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2067
2068 if (!i915) {
2069 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2070 return -ENODEV;
2071 }
2072
2073 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2074 return 0;
2075
2076 return i915_drm_prepare(&i915->drm);
2077 }
2078 #endif
2079
2080 #ifndef __NetBSD__
2081 static int i915_pm_suspend(struct device *kdev)
2082 {
2083 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2084
2085 if (!i915) {
2086 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2087 return -ENODEV;
2088 }
2089
2090 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2091 return 0;
2092
2093 return i915_drm_suspend(&i915->drm);
2094 }
2095
2096 static int i915_pm_suspend_late(struct device *kdev)
2097 {
2098 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2099
2100 /*
2101 * We have a suspend ordering issue with the snd-hda driver also
2102 * requiring our device to be power up. Due to the lack of a
2103 * parent/child relationship we currently solve this with an late
2104 * suspend hook.
2105 *
2106 * FIXME: This should be solved with a special hdmi sink device or
2107 * similar so that power domains can be employed.
2108 */
2109 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2110 return 0;
2111
2112 return i915_drm_suspend_late(&i915->drm, false);
2113 }
2114
2115 static int i915_pm_poweroff_late(struct device *kdev)
2116 {
2117 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2118
2119 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2120 return 0;
2121
2122 return i915_drm_suspend_late(&i915->drm, true);
2123 }
2124
2125 static int i915_pm_resume_early(struct device *kdev)
2126 {
2127 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2128
2129 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2130 return 0;
2131
2132 return i915_drm_resume_early(&i915->drm);
2133 }
2134
2135 static int i915_pm_resume(struct device *kdev)
2136 {
2137 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2138
2139 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2140 return 0;
2141
2142 return i915_drm_resume(&i915->drm);
2143 }
2144
2145 /* freeze: before creating the hibernation_image */
2146 static int i915_pm_freeze(struct device *kdev)
2147 {
2148 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2149 int ret;
2150
2151 if (i915->drm.switch_power_state != DRM_SWITCH_POWER_OFF) {
2152 ret = i915_drm_suspend(&i915->drm);
2153 if (ret)
2154 return ret;
2155 }
2156
2157 ret = i915_gem_freeze(i915);
2158 if (ret)
2159 return ret;
2160
2161 return 0;
2162 }
2163
2164 static int i915_pm_freeze_late(struct device *kdev)
2165 {
2166 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2167 int ret;
2168
2169 if (i915->drm.switch_power_state != DRM_SWITCH_POWER_OFF) {
2170 ret = i915_drm_suspend_late(&i915->drm, true);
2171 if (ret)
2172 return ret;
2173 }
2174
2175 ret = i915_gem_freeze_late(i915);
2176 if (ret)
2177 return ret;
2178
2179 return 0;
2180 }
2181
2182 /* thaw: called after creating the hibernation image, but before turning off. */
2183 static int i915_pm_thaw_early(struct device *kdev)
2184 {
2185 return i915_pm_resume_early(kdev);
2186 }
2187
2188 static int i915_pm_thaw(struct device *kdev)
2189 {
2190 return i915_pm_resume(kdev);
2191 }
2192
2193 /* restore: called after loading the hibernation image. */
2194 static int i915_pm_restore_early(struct device *kdev)
2195 {
2196 return i915_pm_resume_early(kdev);
2197 }
2198
2199 static int i915_pm_restore(struct device *kdev)
2200 {
2201 return i915_pm_resume(kdev);
2202 }
2203
2204 /*
2205 * Save all Gunit registers that may be lost after a D3 and a subsequent
2206 * S0i[R123] transition. The list of registers needing a save/restore is
2207 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2208 * registers in the following way:
2209 * - Driver: saved/restored by the driver
2210 * - Punit : saved/restored by the Punit firmware
2211 * - No, w/o marking: no need to save/restore, since the register is R/O or
2212 * used internally by the HW in a way that doesn't depend
2213 * keeping the content across a suspend/resume.
2214 * - Debug : used for debugging
2215 *
2216 * We save/restore all registers marked with 'Driver', with the following
2217 * exceptions:
2218 * - Registers out of use, including also registers marked with 'Debug'.
2219 * These have no effect on the driver's operation, so we don't save/restore
2220 * them to reduce the overhead.
2221 * - Registers that are fully setup by an initialization function called from
2222 * the resume path. For example many clock gating and RPS/RC6 registers.
2223 * - Registers that provide the right functionality with their reset defaults.
2224 *
2225 * TODO: Except for registers that based on the above 3 criteria can be safely
2226 * ignored, we save/restore all others, practically treating the HW context as
2227 * a black-box for the driver. Further investigation is needed to reduce the
2228 * saved/restored registers even further, by following the same 3 criteria.
2229 */
2230 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2231 {
2232 struct vlv_s0ix_state *s = dev_priv->vlv_s0ix_state;
2233 int i;
2234
2235 if (!s)
2236 return;
2237
2238 /* GAM 0x4000-0x4770 */
2239 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2240 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2241 s->arb_mode = I915_READ(ARB_MODE);
2242 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2243 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2244
2245 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2246 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2247
2248 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2249 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2250
2251 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2252 s->ecochk = I915_READ(GAM_ECOCHK);
2253 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2254 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2255
2256 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2257
2258 /* MBC 0x9024-0x91D0, 0x8500 */
2259 s->g3dctl = I915_READ(VLV_G3DCTL);
2260 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2261 s->mbctl = I915_READ(GEN6_MBCTL);
2262
2263 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2264 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2265 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2266 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2267 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2268 s->rstctl = I915_READ(GEN6_RSTCTL);
2269 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2270
2271 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2272 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2273 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2274 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2275 s->ecobus = I915_READ(ECOBUS);
2276 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2277 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2278 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2279 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2280 s->rcedata = I915_READ(VLV_RCEDATA);
2281 s->spare2gh = I915_READ(VLV_SPAREG2H);
2282
2283 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2284 s->gt_imr = I915_READ(GTIMR);
2285 s->gt_ier = I915_READ(GTIER);
2286 s->pm_imr = I915_READ(GEN6_PMIMR);
2287 s->pm_ier = I915_READ(GEN6_PMIER);
2288
2289 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2290 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2291
2292 /* GT SA CZ domain, 0x100000-0x138124 */
2293 s->tilectl = I915_READ(TILECTL);
2294 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2295 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2296 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2297 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2298
2299 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2300 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2301 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2302 s->pcbr = I915_READ(VLV_PCBR);
2303 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2304
2305 /*
2306 * Not saving any of:
2307 * DFT, 0x9800-0x9EC0
2308 * SARB, 0xB000-0xB1FC
2309 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2310 * PCI CFG
2311 */
2312 }
2313
2314 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2315 {
2316 struct vlv_s0ix_state *s = dev_priv->vlv_s0ix_state;
2317 u32 val;
2318 int i;
2319
2320 if (!s)
2321 return;
2322
2323 /* GAM 0x4000-0x4770 */
2324 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2325 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2326 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2327 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2328 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2329
2330 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2331 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2332
2333 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2334 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2335
2336 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2337 I915_WRITE(GAM_ECOCHK, s->ecochk);
2338 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2339 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2340
2341 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2342
2343 /* MBC 0x9024-0x91D0, 0x8500 */
2344 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2345 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2346 I915_WRITE(GEN6_MBCTL, s->mbctl);
2347
2348 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2349 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2350 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2351 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2352 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2353 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2354 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2355
2356 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2357 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2358 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2359 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2360 I915_WRITE(ECOBUS, s->ecobus);
2361 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2362 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2363 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2364 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2365 I915_WRITE(VLV_RCEDATA, s->rcedata);
2366 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2367
2368 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2369 I915_WRITE(GTIMR, s->gt_imr);
2370 I915_WRITE(GTIER, s->gt_ier);
2371 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2372 I915_WRITE(GEN6_PMIER, s->pm_ier);
2373
2374 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2375 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2376
2377 /* GT SA CZ domain, 0x100000-0x138124 */
2378 I915_WRITE(TILECTL, s->tilectl);
2379 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2380 /*
2381 * Preserve the GT allow wake and GFX force clock bit, they are not
2382 * be restored, as they are used to control the s0ix suspend/resume
2383 * sequence by the caller.
2384 */
2385 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2386 val &= VLV_GTLC_ALLOWWAKEREQ;
2387 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2388 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2389
2390 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2391 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2392 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2393 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2394
2395 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2396
2397 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2398 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2399 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2400 I915_WRITE(VLV_PCBR, s->pcbr);
2401 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2402 }
2403
2404 static int vlv_wait_for_pw_status(struct drm_i915_private *i915,
2405 u32 mask, u32 val)
2406 {
2407 i915_reg_t reg = VLV_GTLC_PW_STATUS;
2408 u32 reg_value;
2409 int ret;
2410
2411 /* The HW does not like us polling for PW_STATUS frequently, so
2412 * use the sleeping loop rather than risk the busy spin within
2413 * intel_wait_for_register().
2414 *
2415 * Transitioning between RC6 states should be at most 2ms (see
2416 * valleyview_enable_rps) so use a 3ms timeout.
2417 */
2418 ret = wait_for(((reg_value =
2419 intel_uncore_read_notrace(&i915->uncore, reg)) & mask)
2420 == val, 3);
2421
2422 /* just trace the final value */
2423 trace_i915_reg_rw(false, reg, reg_value, sizeof(reg_value), true);
2424
2425 return ret;
2426 }
2427 #endif
2428
2429 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2430 {
2431 u32 val;
2432 int err;
2433
2434 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2435 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2436 if (force_on)
2437 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2438 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2439
2440 if (!force_on)
2441 return 0;
2442
2443 err = intel_wait_for_register(&dev_priv->uncore,
2444 VLV_GTLC_SURVIVABILITY_REG,
2445 VLV_GFX_CLK_STATUS_BIT,
2446 VLV_GFX_CLK_STATUS_BIT,
2447 20);
2448 if (err)
2449 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2450 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2451
2452 return err;
2453 }
2454
2455 #ifndef __NetBSD__ /* XXX vlv suspend/resume */
2456 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2457 {
2458 u32 mask;
2459 u32 val;
2460 int err;
2461
2462 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2463 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2464 if (allow)
2465 val |= VLV_GTLC_ALLOWWAKEREQ;
2466 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2467 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2468
2469 mask = VLV_GTLC_ALLOWWAKEACK;
2470 val = allow ? mask : 0;
2471
2472 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2473 if (err)
2474 DRM_ERROR("timeout disabling GT waking\n");
2475
2476 return err;
2477 }
2478
2479 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2480 bool wait_for_on)
2481 {
2482 u32 mask;
2483 u32 val;
2484
2485 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2486 val = wait_for_on ? mask : 0;
2487
2488 /*
2489 * RC6 transitioning can be delayed up to 2 msec (see
2490 * valleyview_enable_rps), use 3 msec for safety.
2491 *
2492 * This can fail to turn off the rc6 if the GPU is stuck after a failed
2493 * reset and we are trying to force the machine to sleep.
2494 */
2495 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2496 DRM_DEBUG_DRIVER("timeout waiting for GT wells to go %s\n",
2497 onoff(wait_for_on));
2498 }
2499
2500 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2501 {
2502 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2503 return;
2504
2505 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2506 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2507 }
2508
2509 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2510 {
2511 u32 mask;
2512 int err;
2513
2514 /*
2515 * Bspec defines the following GT well on flags as debug only, so
2516 * don't treat them as hard failures.
2517 */
2518 vlv_wait_for_gt_wells(dev_priv, false);
2519
2520 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2521 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2522
2523 vlv_check_no_gt_access(dev_priv);
2524
2525 err = vlv_force_gfx_clock(dev_priv, true);
2526 if (err)
2527 goto err1;
2528
2529 err = vlv_allow_gt_wake(dev_priv, false);
2530 if (err)
2531 goto err2;
2532
2533 vlv_save_gunit_s0ix_state(dev_priv);
2534
2535 err = vlv_force_gfx_clock(dev_priv, false);
2536 if (err)
2537 goto err2;
2538
2539 return 0;
2540
2541 err2:
2542 /* For safety always re-enable waking and disable gfx clock forcing */
2543 vlv_allow_gt_wake(dev_priv, true);
2544 err1:
2545 vlv_force_gfx_clock(dev_priv, false);
2546
2547 return err;
2548 }
2549
2550 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2551 bool rpm_resume)
2552 {
2553 int err;
2554 int ret;
2555
2556 /*
2557 * If any of the steps fail just try to continue, that's the best we
2558 * can do at this point. Return the first error code (which will also
2559 * leave RPM permanently disabled).
2560 */
2561 ret = vlv_force_gfx_clock(dev_priv, true);
2562
2563 vlv_restore_gunit_s0ix_state(dev_priv);
2564
2565 err = vlv_allow_gt_wake(dev_priv, true);
2566 if (!ret)
2567 ret = err;
2568
2569 err = vlv_force_gfx_clock(dev_priv, false);
2570 if (!ret)
2571 ret = err;
2572
2573 vlv_check_no_gt_access(dev_priv);
2574
2575 if (rpm_resume)
2576 intel_init_clock_gating(dev_priv);
2577
2578 return ret;
2579 }
2580 #endif
2581
2582 #ifndef __NetBSD__ /* XXX runtime pm */
2583 static int intel_runtime_suspend(struct device *kdev)
2584 {
2585 struct drm_i915_private *dev_priv = kdev_to_i915(kdev);
2586 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
2587 int ret = 0;
2588
2589 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2590 return -ENODEV;
2591
2592 DRM_DEBUG_KMS("Suspending device\n");
2593
2594 disable_rpm_wakeref_asserts(rpm);
2595
2596 /*
2597 * We are safe here against re-faults, since the fault handler takes
2598 * an RPM reference.
2599 */
2600 i915_gem_runtime_suspend(dev_priv);
2601
2602 intel_gt_runtime_suspend(&dev_priv->gt);
2603
2604 intel_runtime_pm_disable_interrupts(dev_priv);
2605
2606 intel_uncore_suspend(&dev_priv->uncore);
2607
2608 intel_display_power_suspend(dev_priv);
2609
2610 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2611 #ifndef __NetBSD__ /* XXX vlv suspend/resume */
2612 ret = vlv_suspend_complete(dev_priv);
2613 #endif
2614
2615 if (ret) {
2616 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2617 intel_uncore_runtime_resume(&dev_priv->uncore);
2618
2619 intel_runtime_pm_enable_interrupts(dev_priv);
2620
2621 intel_gt_runtime_resume(&dev_priv->gt);
2622
2623 i915_gem_restore_fences(&dev_priv->ggtt);
2624
2625 enable_rpm_wakeref_asserts(rpm);
2626
2627 return ret;
2628 }
2629
2630 enable_rpm_wakeref_asserts(rpm);
2631 intel_runtime_pm_driver_release(rpm);
2632
2633 if (intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore))
2634 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2635
2636 rpm->suspended = true;
2637
2638 /*
2639 * FIXME: We really should find a document that references the arguments
2640 * used below!
2641 */
2642 if (IS_BROADWELL(dev_priv)) {
2643 /*
2644 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2645 * being detected, and the call we do at intel_runtime_resume()
2646 * won't be able to restore them. Since PCI_D3hot matches the
2647 * actual specification and appears to be working, use it.
2648 */
2649 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2650 } else {
2651 /*
2652 * current versions of firmware which depend on this opregion
2653 * notification have repurposed the D1 definition to mean
2654 * "runtime suspended" vs. what you would normally expect (D3)
2655 * to distinguish it from notifications that might be sent via
2656 * the suspend path.
2657 */
2658 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2659 }
2660
2661 assert_forcewakes_inactive(&dev_priv->uncore);
2662
2663 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2664 intel_hpd_poll_init(dev_priv);
2665
2666 DRM_DEBUG_KMS("Device suspended\n");
2667 return 0;
2668 }
2669
2670 static int intel_runtime_resume(struct device *kdev)
2671 {
2672 struct drm_i915_private *dev_priv = kdev_to_i915(kdev);
2673 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
2674 int ret = 0;
2675
2676 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2677 return -ENODEV;
2678
2679 DRM_DEBUG_KMS("Resuming device\n");
2680
2681 WARN_ON_ONCE(atomic_read(&rpm->wakeref_count));
2682 disable_rpm_wakeref_asserts(rpm);
2683
2684 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2685 rpm->suspended = false;
2686 if (intel_uncore_unclaimed_mmio(&dev_priv->uncore))
2687 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2688
2689 intel_display_power_resume(dev_priv);
2690
2691 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2692 ret = vlv_resume_prepare(dev_priv, true);
2693
2694 intel_uncore_runtime_resume(&dev_priv->uncore);
2695
2696 intel_runtime_pm_enable_interrupts(dev_priv);
2697
2698 /*
2699 * No point of rolling back things in case of an error, as the best
2700 * we can do is to hope that things will still work (and disable RPM).
2701 */
2702 intel_gt_runtime_resume(&dev_priv->gt);
2703 i915_gem_restore_fences(&dev_priv->ggtt);
2704
2705 /*
2706 * On VLV/CHV display interrupts are part of the display
2707 * power well, so hpd is reinitialized from there. For
2708 * everyone else do it here.
2709 */
2710 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2711 intel_hpd_init(dev_priv);
2712
2713 intel_enable_ipc(dev_priv);
2714
2715 enable_rpm_wakeref_asserts(rpm);
2716
2717 if (ret)
2718 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2719 else
2720 DRM_DEBUG_KMS("Device resumed\n");
2721
2722 return ret;
2723 }
2724 #endif
2725
2726 #ifndef __NetBSD__
2727 const struct dev_pm_ops i915_pm_ops = {
2728 /*
2729 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2730 * PMSG_RESUME]
2731 */
2732 .prepare = i915_pm_prepare,
2733 .suspend = i915_pm_suspend,
2734 .suspend_late = i915_pm_suspend_late,
2735 .resume_early = i915_pm_resume_early,
2736 .resume = i915_pm_resume,
2737
2738 /*
2739 * S4 event handlers
2740 * @freeze, @freeze_late : called (1) before creating the
2741 * hibernation image [PMSG_FREEZE] and
2742 * (2) after rebooting, before restoring
2743 * the image [PMSG_QUIESCE]
2744 * @thaw, @thaw_early : called (1) after creating the hibernation
2745 * image, before writing it [PMSG_THAW]
2746 * and (2) after failing to create or
2747 * restore the image [PMSG_RECOVER]
2748 * @poweroff, @poweroff_late: called after writing the hibernation
2749 * image, before rebooting [PMSG_HIBERNATE]
2750 * @restore, @restore_early : called after rebooting and restoring the
2751 * hibernation image [PMSG_RESTORE]
2752 */
2753 .freeze = i915_pm_freeze,
2754 .freeze_late = i915_pm_freeze_late,
2755 .thaw_early = i915_pm_thaw_early,
2756 .thaw = i915_pm_thaw,
2757 .poweroff = i915_pm_suspend,
2758 .poweroff_late = i915_pm_poweroff_late,
2759 .restore_early = i915_pm_restore_early,
2760 .restore = i915_pm_restore,
2761
2762 /* S0ix (via runtime suspend) event handlers */
2763 .runtime_suspend = intel_runtime_suspend,
2764 .runtime_resume = intel_runtime_resume,
2765 };
2766
2767 static const struct file_operations i915_driver_fops = {
2768 .owner = THIS_MODULE,
2769 .open = drm_open,
2770 .release = drm_release,
2771 .unlocked_ioctl = drm_ioctl,
2772 .mmap = i915_gem_mmap,
2773 .poll = drm_poll,
2774 .read = drm_read,
2775 .compat_ioctl = i915_compat_ioctl,
2776 .llseek = noop_llseek,
2777 };
2778 #endif /* defined(__NetBSD__) */
2779
2780 static int
2781 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2782 struct drm_file *file)
2783 {
2784 return -ENODEV;
2785 }
2786
2787 static const struct drm_ioctl_desc i915_ioctls[] = {
2788 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2789 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2790 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2791 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2792 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2793 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2794 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam_ioctl, DRM_RENDER_ALLOW),
2795 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2796 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2797 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2798 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2799 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2800 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2801 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2802 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2803 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2804 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2805 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2806 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer_ioctl, DRM_AUTH),
2807 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2_ioctl, DRM_RENDER_ALLOW),
2808 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2809 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2810 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_RENDER_ALLOW),
2811 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2812 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2813 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_RENDER_ALLOW),
2814 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2815 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2816 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2817 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2818 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2819 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2820 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_OFFSET, i915_gem_mmap_offset_ioctl, DRM_RENDER_ALLOW),
2821 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2822 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2823 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2824 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2825 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2826 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id_ioctl, 0),
2827 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2828 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER),
2829 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER),
2830 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey_ioctl, DRM_MASTER),
2831 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER),
2832 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_RENDER_ALLOW),
2833 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE_EXT, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2834 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2835 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2836 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2837 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2838 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2839 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2840 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2841 DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_RENDER_ALLOW),
2842 DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_RENDER_ALLOW),
2843 DRM_IOCTL_DEF_DRV(I915_QUERY, i915_query_ioctl, DRM_RENDER_ALLOW),
2844 DRM_IOCTL_DEF_DRV(I915_GEM_VM_CREATE, i915_gem_vm_create_ioctl, DRM_RENDER_ALLOW),
2845 DRM_IOCTL_DEF_DRV(I915_GEM_VM_DESTROY, i915_gem_vm_destroy_ioctl, DRM_RENDER_ALLOW),
2846 };
2847
2848 static struct drm_driver driver = {
2849 /* Don't use MTRRs here; the Xserver or userspace app should
2850 * deal with them for Intel hardware.
2851 */
2852 .driver_features =
2853 DRIVER_GEM |
2854 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2855 .release = i915_driver_release,
2856 .open = i915_driver_open,
2857 .lastclose = i915_driver_lastclose,
2858 .postclose = i915_driver_postclose,
2859
2860 .gem_close_object = i915_gem_close_object,
2861 .gem_free_object_unlocked = i915_gem_free_object,
2862 #ifdef __NetBSD__
2863 .request_irq = drm_pci_request_irq,
2864 .free_irq = drm_pci_free_irq,
2865
2866 /* XXX Not clear the `or legacy' part is important here. */
2867 .mmap_object = &drm_gem_mmap_object,
2868 .gem_uvm_ops = &i915_gem_uvm_ops,
2869 #endif
2870
2871
2872 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2873 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2874 .gem_prime_export = i915_gem_prime_export,
2875 .gem_prime_import = i915_gem_prime_import,
2876
2877 .get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos,
2878 .get_scanout_position = i915_get_crtc_scanoutpos,
2879
2880 .dumb_create = i915_gem_dumb_create,
2881 .dumb_map_offset = i915_gem_dumb_mmap_offset,
2882
2883 .ioctls = i915_ioctls,
2884 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2885 #ifdef __NetBSD__
2886 .fops = NULL,
2887 #else
2888 .fops = &i915_driver_fops,
2889 #endif
2890 .name = DRIVER_NAME,
2891 .desc = DRIVER_DESC,
2892 .date = DRIVER_DATE,
2893 .major = DRIVER_MAJOR,
2894 .minor = DRIVER_MINOR,
2895 .patchlevel = DRIVER_PATCHLEVEL,
2896 };
2897
2898 #ifdef __NetBSD__
2899
2900 static const struct uvm_pagerops i915_gem_uvm_ops = {
2901 .pgo_reference = drm_gem_pager_reference,
2902 .pgo_detach = drm_gem_pager_detach,
2903 .pgo_fault = i915_gem_fault,
2904 };
2905
2906 #endif
2907