i915_drv.c revision 1.6.28.2 1 /* $NetBSD: i915_drv.c,v 1.6.28.2 2018/09/30 01:45:53 pgoyette Exp $ */
2
3 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
4 */
5 /*
6 *
7 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
8 * All Rights Reserved.
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a
11 * copy of this software and associated documentation files (the
12 * "Software"), to deal in the Software without restriction, including
13 * without limitation the rights to use, copy, modify, merge, publish,
14 * distribute, sub license, and/or sell copies of the Software, and to
15 * permit persons to whom the Software is furnished to do so, subject to
16 * the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
23 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
25 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
26 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
27 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
28 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29 *
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: i915_drv.c,v 1.6.28.2 2018/09/30 01:45:53 pgoyette Exp $");
34
35 #include <linux/device.h>
36 #include <linux/acpi.h>
37 #include <linux/moduleparam.h>
38 #include <linux/time.h>
39 #include <drm/drmP.h>
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 #include "i915_trace.h"
43 #include "intel_drv.h"
44
45 #include <linux/console.h>
46 #include <linux/module.h>
47 #include <linux/pm_runtime.h>
48 #include <drm/drm_crtc_helper.h>
49
50 static struct drm_driver driver;
51
52 #ifdef __NetBSD__
53 /* XXX Kludge to expose this to NetBSD driver attachment goop. */
54 struct drm_driver *const i915_drm_driver = &driver;
55 #endif
56
57 #define GEN_DEFAULT_PIPEOFFSETS \
58 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
59 PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \
60 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
61 TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \
62 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET }
63
64 #define GEN_CHV_PIPEOFFSETS \
65 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
66 CHV_PIPE_C_OFFSET }, \
67 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
68 CHV_TRANSCODER_C_OFFSET, }, \
69 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \
70 CHV_PALETTE_C_OFFSET }
71
72 #define CURSOR_OFFSETS \
73 .cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET }
74
75 #define IVB_CURSOR_OFFSETS \
76 .cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET }
77
78 static const struct intel_device_info intel_i830_info = {
79 .gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2,
80 .has_overlay = 1, .overlay_needs_physical = 1,
81 .ring_mask = RENDER_RING,
82 GEN_DEFAULT_PIPEOFFSETS,
83 CURSOR_OFFSETS,
84 };
85
86 static const struct intel_device_info intel_845g_info = {
87 .gen = 2, .num_pipes = 1,
88 .has_overlay = 1, .overlay_needs_physical = 1,
89 .ring_mask = RENDER_RING,
90 GEN_DEFAULT_PIPEOFFSETS,
91 CURSOR_OFFSETS,
92 };
93
94 static const struct intel_device_info intel_i85x_info = {
95 .gen = 2, .is_i85x = 1, .is_mobile = 1, .num_pipes = 2,
96 .cursor_needs_physical = 1,
97 .has_overlay = 1, .overlay_needs_physical = 1,
98 .has_fbc = 1,
99 .ring_mask = RENDER_RING,
100 GEN_DEFAULT_PIPEOFFSETS,
101 CURSOR_OFFSETS,
102 };
103
104 static const struct intel_device_info intel_i865g_info = {
105 .gen = 2, .num_pipes = 1,
106 .has_overlay = 1, .overlay_needs_physical = 1,
107 .ring_mask = RENDER_RING,
108 GEN_DEFAULT_PIPEOFFSETS,
109 CURSOR_OFFSETS,
110 };
111
112 static const struct intel_device_info intel_i915g_info = {
113 .gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2,
114 .has_overlay = 1, .overlay_needs_physical = 1,
115 .ring_mask = RENDER_RING,
116 GEN_DEFAULT_PIPEOFFSETS,
117 CURSOR_OFFSETS,
118 };
119 static const struct intel_device_info intel_i915gm_info = {
120 .gen = 3, .is_mobile = 1, .num_pipes = 2,
121 .cursor_needs_physical = 1,
122 .has_overlay = 1, .overlay_needs_physical = 1,
123 .supports_tv = 1,
124 .has_fbc = 1,
125 .ring_mask = RENDER_RING,
126 GEN_DEFAULT_PIPEOFFSETS,
127 CURSOR_OFFSETS,
128 };
129 static const struct intel_device_info intel_i945g_info = {
130 .gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2,
131 .has_overlay = 1, .overlay_needs_physical = 1,
132 .ring_mask = RENDER_RING,
133 GEN_DEFAULT_PIPEOFFSETS,
134 CURSOR_OFFSETS,
135 };
136 static const struct intel_device_info intel_i945gm_info = {
137 .gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2,
138 .has_hotplug = 1, .cursor_needs_physical = 1,
139 .has_overlay = 1, .overlay_needs_physical = 1,
140 .supports_tv = 1,
141 .has_fbc = 1,
142 .ring_mask = RENDER_RING,
143 GEN_DEFAULT_PIPEOFFSETS,
144 CURSOR_OFFSETS,
145 };
146
147 static const struct intel_device_info intel_i965g_info = {
148 .gen = 4, .is_broadwater = 1, .num_pipes = 2,
149 .has_hotplug = 1,
150 .has_overlay = 1,
151 .ring_mask = RENDER_RING,
152 GEN_DEFAULT_PIPEOFFSETS,
153 CURSOR_OFFSETS,
154 };
155
156 static const struct intel_device_info intel_i965gm_info = {
157 .gen = 4, .is_crestline = 1, .num_pipes = 2,
158 .is_mobile = 1, .has_fbc = 1, .has_hotplug = 1,
159 .has_overlay = 1,
160 .supports_tv = 1,
161 .ring_mask = RENDER_RING,
162 GEN_DEFAULT_PIPEOFFSETS,
163 CURSOR_OFFSETS,
164 };
165
166 static const struct intel_device_info intel_g33_info = {
167 .gen = 3, .is_g33 = 1, .num_pipes = 2,
168 .need_gfx_hws = 1, .has_hotplug = 1,
169 .has_overlay = 1,
170 .ring_mask = RENDER_RING,
171 GEN_DEFAULT_PIPEOFFSETS,
172 CURSOR_OFFSETS,
173 };
174
175 static const struct intel_device_info intel_g45_info = {
176 .gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2,
177 .has_pipe_cxsr = 1, .has_hotplug = 1,
178 .ring_mask = RENDER_RING | BSD_RING,
179 GEN_DEFAULT_PIPEOFFSETS,
180 CURSOR_OFFSETS,
181 };
182
183 static const struct intel_device_info intel_gm45_info = {
184 .gen = 4, .is_g4x = 1, .num_pipes = 2,
185 .is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1,
186 .has_pipe_cxsr = 1, .has_hotplug = 1,
187 .supports_tv = 1,
188 .ring_mask = RENDER_RING | BSD_RING,
189 GEN_DEFAULT_PIPEOFFSETS,
190 CURSOR_OFFSETS,
191 };
192
193 static const struct intel_device_info intel_pineview_info = {
194 .gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2,
195 .need_gfx_hws = 1, .has_hotplug = 1,
196 .has_overlay = 1,
197 GEN_DEFAULT_PIPEOFFSETS,
198 CURSOR_OFFSETS,
199 };
200
201 static const struct intel_device_info intel_ironlake_d_info = {
202 .gen = 5, .num_pipes = 2,
203 .need_gfx_hws = 1, .has_hotplug = 1,
204 .ring_mask = RENDER_RING | BSD_RING,
205 GEN_DEFAULT_PIPEOFFSETS,
206 CURSOR_OFFSETS,
207 };
208
209 static const struct intel_device_info intel_ironlake_m_info = {
210 .gen = 5, .is_mobile = 1, .num_pipes = 2,
211 .need_gfx_hws = 1, .has_hotplug = 1,
212 .has_fbc = 1,
213 .ring_mask = RENDER_RING | BSD_RING,
214 GEN_DEFAULT_PIPEOFFSETS,
215 CURSOR_OFFSETS,
216 };
217
218 static const struct intel_device_info intel_sandybridge_d_info = {
219 .gen = 6, .num_pipes = 2,
220 .need_gfx_hws = 1, .has_hotplug = 1,
221 .has_fbc = 1,
222 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
223 .has_llc = 1,
224 GEN_DEFAULT_PIPEOFFSETS,
225 CURSOR_OFFSETS,
226 };
227
228 static const struct intel_device_info intel_sandybridge_m_info = {
229 .gen = 6, .is_mobile = 1, .num_pipes = 2,
230 .need_gfx_hws = 1, .has_hotplug = 1,
231 .has_fbc = 1,
232 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
233 .has_llc = 1,
234 GEN_DEFAULT_PIPEOFFSETS,
235 CURSOR_OFFSETS,
236 };
237
238 #define GEN7_FEATURES \
239 .gen = 7, .num_pipes = 3, \
240 .need_gfx_hws = 1, .has_hotplug = 1, \
241 .has_fbc = 1, \
242 .ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
243 .has_llc = 1
244
245 static const struct intel_device_info intel_ivybridge_d_info = {
246 GEN7_FEATURES,
247 .is_ivybridge = 1,
248 GEN_DEFAULT_PIPEOFFSETS,
249 IVB_CURSOR_OFFSETS,
250 };
251
252 static const struct intel_device_info intel_ivybridge_m_info = {
253 GEN7_FEATURES,
254 .is_ivybridge = 1,
255 .is_mobile = 1,
256 GEN_DEFAULT_PIPEOFFSETS,
257 IVB_CURSOR_OFFSETS,
258 };
259
260 static const struct intel_device_info intel_ivybridge_q_info = {
261 GEN7_FEATURES,
262 .is_ivybridge = 1,
263 .num_pipes = 0, /* legal, last one wins */
264 GEN_DEFAULT_PIPEOFFSETS,
265 IVB_CURSOR_OFFSETS,
266 };
267
268 static const struct intel_device_info intel_valleyview_m_info = {
269 GEN7_FEATURES,
270 .is_mobile = 1,
271 .num_pipes = 2,
272 .is_valleyview = 1,
273 .display_mmio_offset = VLV_DISPLAY_BASE,
274 .has_fbc = 0, /* legal, last one wins */
275 .has_llc = 0, /* legal, last one wins */
276 GEN_DEFAULT_PIPEOFFSETS,
277 CURSOR_OFFSETS,
278 };
279
280 static const struct intel_device_info intel_valleyview_d_info = {
281 GEN7_FEATURES,
282 .num_pipes = 2,
283 .is_valleyview = 1,
284 .display_mmio_offset = VLV_DISPLAY_BASE,
285 .has_fbc = 0, /* legal, last one wins */
286 .has_llc = 0, /* legal, last one wins */
287 GEN_DEFAULT_PIPEOFFSETS,
288 CURSOR_OFFSETS,
289 };
290
291 static const struct intel_device_info intel_haswell_d_info = {
292 GEN7_FEATURES,
293 .is_haswell = 1,
294 .has_ddi = 1,
295 .has_fpga_dbg = 1,
296 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
297 GEN_DEFAULT_PIPEOFFSETS,
298 IVB_CURSOR_OFFSETS,
299 };
300
301 static const struct intel_device_info intel_haswell_m_info = {
302 GEN7_FEATURES,
303 .is_haswell = 1,
304 .is_mobile = 1,
305 .has_ddi = 1,
306 .has_fpga_dbg = 1,
307 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
308 GEN_DEFAULT_PIPEOFFSETS,
309 IVB_CURSOR_OFFSETS,
310 };
311
312 static const struct intel_device_info intel_broadwell_d_info = {
313 .gen = 8, .num_pipes = 3,
314 .need_gfx_hws = 1, .has_hotplug = 1,
315 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
316 .has_llc = 1,
317 .has_ddi = 1,
318 .has_fpga_dbg = 1,
319 .has_fbc = 1,
320 GEN_DEFAULT_PIPEOFFSETS,
321 IVB_CURSOR_OFFSETS,
322 };
323
324 static const struct intel_device_info intel_broadwell_m_info = {
325 .gen = 8, .is_mobile = 1, .num_pipes = 3,
326 .need_gfx_hws = 1, .has_hotplug = 1,
327 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
328 .has_llc = 1,
329 .has_ddi = 1,
330 .has_fpga_dbg = 1,
331 .has_fbc = 1,
332 GEN_DEFAULT_PIPEOFFSETS,
333 IVB_CURSOR_OFFSETS,
334 };
335
336 static const struct intel_device_info intel_broadwell_gt3d_info = {
337 .gen = 8, .num_pipes = 3,
338 .need_gfx_hws = 1, .has_hotplug = 1,
339 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
340 .has_llc = 1,
341 .has_ddi = 1,
342 .has_fpga_dbg = 1,
343 .has_fbc = 1,
344 GEN_DEFAULT_PIPEOFFSETS,
345 IVB_CURSOR_OFFSETS,
346 };
347
348 static const struct intel_device_info intel_broadwell_gt3m_info = {
349 .gen = 8, .is_mobile = 1, .num_pipes = 3,
350 .need_gfx_hws = 1, .has_hotplug = 1,
351 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
352 .has_llc = 1,
353 .has_ddi = 1,
354 .has_fpga_dbg = 1,
355 .has_fbc = 1,
356 GEN_DEFAULT_PIPEOFFSETS,
357 IVB_CURSOR_OFFSETS,
358 };
359
360 static const struct intel_device_info intel_cherryview_info = {
361 .gen = 8, .num_pipes = 3,
362 .need_gfx_hws = 1, .has_hotplug = 1,
363 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
364 .is_valleyview = 1,
365 .display_mmio_offset = VLV_DISPLAY_BASE,
366 GEN_CHV_PIPEOFFSETS,
367 CURSOR_OFFSETS,
368 };
369
370 static const struct intel_device_info intel_skylake_info = {
371 .is_skylake = 1,
372 .gen = 9, .num_pipes = 3,
373 .need_gfx_hws = 1, .has_hotplug = 1,
374 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
375 .has_llc = 1,
376 .has_ddi = 1,
377 .has_fpga_dbg = 1,
378 .has_fbc = 1,
379 GEN_DEFAULT_PIPEOFFSETS,
380 IVB_CURSOR_OFFSETS,
381 };
382
383 static const struct intel_device_info intel_skylake_gt3_info = {
384 .is_skylake = 1,
385 .gen = 9, .num_pipes = 3,
386 .need_gfx_hws = 1, .has_hotplug = 1,
387 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
388 .has_llc = 1,
389 .has_ddi = 1,
390 .has_fpga_dbg = 1,
391 .has_fbc = 1,
392 GEN_DEFAULT_PIPEOFFSETS,
393 IVB_CURSOR_OFFSETS,
394 };
395
396 static const struct intel_device_info intel_broxton_info = {
397 .is_preliminary = 1,
398 .gen = 9,
399 .need_gfx_hws = 1, .has_hotplug = 1,
400 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
401 .num_pipes = 3,
402 .has_ddi = 1,
403 .has_fpga_dbg = 1,
404 .has_fbc = 1,
405 GEN_DEFAULT_PIPEOFFSETS,
406 IVB_CURSOR_OFFSETS,
407 };
408
409 static const struct intel_device_info intel_kabylake_info = {
410 .is_kabylake = 1,
411 .gen = 9,
412 .num_pipes = 3,
413 .need_gfx_hws = 1, .has_hotplug = 1,
414 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
415 .has_llc = 1,
416 .has_ddi = 1,
417 .has_fpga_dbg = 1,
418 .has_fbc = 1,
419 GEN_DEFAULT_PIPEOFFSETS,
420 IVB_CURSOR_OFFSETS,
421 };
422
423 static const struct intel_device_info intel_kabylake_gt3_info = {
424 .is_kabylake = 1,
425 .gen = 9,
426 .num_pipes = 3,
427 .need_gfx_hws = 1, .has_hotplug = 1,
428 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
429 .has_llc = 1,
430 .has_ddi = 1,
431 .has_fpga_dbg = 1,
432 .has_fbc = 1,
433 GEN_DEFAULT_PIPEOFFSETS,
434 IVB_CURSOR_OFFSETS,
435 };
436
437 /*
438 * Make sure any device matches here are from most specific to most
439 * general. For example, since the Quanta match is based on the subsystem
440 * and subvendor IDs, we need it to come before the more general IVB
441 * PCI ID matches, otherwise we'll use the wrong info struct above.
442 */
443 #define INTEL_PCI_IDS \
444 INTEL_I830_IDS(&intel_i830_info), \
445 INTEL_I845G_IDS(&intel_845g_info), \
446 INTEL_I85X_IDS(&intel_i85x_info), \
447 INTEL_I865G_IDS(&intel_i865g_info), \
448 INTEL_I915G_IDS(&intel_i915g_info), \
449 INTEL_I915GM_IDS(&intel_i915gm_info), \
450 INTEL_I945G_IDS(&intel_i945g_info), \
451 INTEL_I945GM_IDS(&intel_i945gm_info), \
452 INTEL_I965G_IDS(&intel_i965g_info), \
453 INTEL_G33_IDS(&intel_g33_info), \
454 INTEL_I965GM_IDS(&intel_i965gm_info), \
455 INTEL_GM45_IDS(&intel_gm45_info), \
456 INTEL_G45_IDS(&intel_g45_info), \
457 INTEL_PINEVIEW_IDS(&intel_pineview_info), \
458 INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info), \
459 INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info), \
460 INTEL_SNB_D_IDS(&intel_sandybridge_d_info), \
461 INTEL_SNB_M_IDS(&intel_sandybridge_m_info), \
462 INTEL_IVB_Q_IDS(&intel_ivybridge_q_info), /* must be first IVB */ \
463 INTEL_IVB_M_IDS(&intel_ivybridge_m_info), \
464 INTEL_IVB_D_IDS(&intel_ivybridge_d_info), \
465 INTEL_HSW_D_IDS(&intel_haswell_d_info), \
466 INTEL_HSW_M_IDS(&intel_haswell_m_info), \
467 INTEL_VLV_M_IDS(&intel_valleyview_m_info), \
468 INTEL_VLV_D_IDS(&intel_valleyview_d_info), \
469 INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info), \
470 INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info), \
471 INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info), \
472 INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info), \
473 INTEL_CHV_IDS(&intel_cherryview_info), \
474 INTEL_SKL_GT1_IDS(&intel_skylake_info), \
475 INTEL_SKL_GT2_IDS(&intel_skylake_info), \
476 INTEL_SKL_GT3_IDS(&intel_skylake_gt3_info), \
477 INTEL_SKL_GT4_IDS(&intel_skylake_gt3_info), \
478 INTEL_BXT_IDS(&intel_broxton_info), \
479 INTEL_KBL_GT1_IDS(&intel_kabylake_info), \
480 INTEL_KBL_GT2_IDS(&intel_kabylake_info), \
481 INTEL_KBL_GT3_IDS(&intel_kabylake_gt3_info), \
482 INTEL_KBL_GT4_IDS(&intel_kabylake_gt3_info)
483
484
485 static const struct pci_device_id pciidlist[] = { /* aka */
486 INTEL_PCI_IDS,
487 {0, 0, 0, 0, 0, 0, 0}
488 };
489
490 MODULE_DEVICE_TABLE(pci, pciidlist);
491
492 static enum intel_pch intel_virt_detect_pch(struct drm_device *dev)
493 {
494 enum intel_pch ret = PCH_NOP;
495
496 /*
497 * In a virtualized passthrough environment we can be in a
498 * setup where the ISA bridge is not able to be passed through.
499 * In this case, a south bridge can be emulated and we have to
500 * make an educated guess as to which PCH is really there.
501 */
502
503 if (IS_GEN5(dev)) {
504 ret = PCH_IBX;
505 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
506 } else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
507 ret = PCH_CPT;
508 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
509 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
510 ret = PCH_LPT;
511 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
512 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
513 ret = PCH_SPT;
514 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
515 }
516
517 return ret;
518 }
519
520 #ifdef __NetBSD__
521 /* XXX Kludge to expose this to NetBSD driver attachment goop. */
522 const struct pci_device_id *const i915_device_ids = pciidlist;
523 const size_t i915_n_device_ids = __arraycount(pciidlist);
524 #endif
525
526 void intel_detect_pch(struct drm_device *dev)
527 {
528 struct drm_i915_private *dev_priv = dev->dev_private;
529 struct pci_dev *pch = NULL;
530
531 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
532 * (which really amounts to a PCH but no South Display).
533 */
534 if (INTEL_INFO(dev)->num_pipes == 0) {
535 dev_priv->pch_type = PCH_NOP;
536 return;
537 }
538
539 /*
540 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
541 * make graphics device passthrough work easy for VMM, that only
542 * need to expose ISA bridge to let driver know the real hardware
543 * underneath. This is a requirement from virtualization team.
544 *
545 * In some virtualized environments (e.g. XEN), there is irrelevant
546 * ISA bridge in the system. To work reliably, we should scan trhough
547 * all the ISA bridge devices and check for the first match, instead
548 * of only checking the first one.
549 */
550 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
551 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
552 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
553 dev_priv->pch_id = id;
554
555 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
556 dev_priv->pch_type = PCH_IBX;
557 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
558 WARN_ON(!IS_GEN5(dev));
559 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
560 dev_priv->pch_type = PCH_CPT;
561 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
562 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
563 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
564 /* PantherPoint is CPT compatible */
565 dev_priv->pch_type = PCH_CPT;
566 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
567 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
568 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
569 dev_priv->pch_type = PCH_LPT;
570 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
571 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
572 WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
573 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
574 dev_priv->pch_type = PCH_LPT;
575 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
576 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
577 WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
578 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
579 dev_priv->pch_type = PCH_SPT;
580 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
581 WARN_ON(!IS_SKYLAKE(dev) &&
582 !IS_KABYLAKE(dev));
583 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
584 dev_priv->pch_type = PCH_SPT;
585 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
586 WARN_ON(!IS_SKYLAKE(dev) &&
587 !IS_KABYLAKE(dev));
588 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
589 dev_priv->pch_type = PCH_KBP;
590 DRM_DEBUG_KMS("Found KabyPoint PCH\n");
591 WARN_ON(!IS_KABYLAKE(dev_priv));
592 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
593 ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
594 pch->subsystem_vendor == 0x1af4 &&
595 pch->subsystem_device == 0x1100)) {
596 dev_priv->pch_type = intel_virt_detect_pch(dev);
597 } else
598 continue;
599
600 break;
601 }
602 }
603 if (!pch)
604 DRM_DEBUG_KMS("No PCH found.\n");
605
606 pci_dev_put(pch);
607 }
608
609 bool i915_semaphore_is_enabled(struct drm_device *dev)
610 {
611 if (INTEL_INFO(dev)->gen < 6)
612 return false;
613
614 if (i915.semaphores >= 0)
615 return i915.semaphores;
616
617 /* TODO: make semaphores and Execlists play nicely together */
618 if (i915.enable_execlists)
619 return false;
620
621 /* Until we get further testing... */
622 if (IS_GEN8(dev))
623 return false;
624
625 #ifdef CONFIG_INTEL_IOMMU
626 /* Enable semaphores on SNB when IO remapping is off */
627 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
628 return false;
629 #endif
630
631 return true;
632 }
633
634 void i915_firmware_load_error_print(const char *fw_path, int err)
635 {
636 DRM_ERROR("failed to load firmware %s (%d)\n", fw_path, err);
637
638 /*
639 * If the reason is not known assume -ENOENT since that's the most
640 * usual failure mode.
641 */
642 if (!err)
643 err = -ENOENT;
644
645 if (!(IS_BUILTIN(CONFIG_DRM_I915) && err == -ENOENT))
646 return;
647
648 DRM_ERROR(
649 "The driver is built-in, so to load the firmware you need to\n"
650 "include it either in the kernel (see CONFIG_EXTRA_FIRMWARE) or\n"
651 "in your initrd/initramfs image.\n");
652 }
653
654 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
655 {
656 struct drm_device *dev = dev_priv->dev;
657 struct drm_encoder *encoder;
658
659 drm_modeset_lock_all(dev);
660 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
661 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
662
663 if (intel_encoder->suspend)
664 intel_encoder->suspend(intel_encoder);
665 }
666 drm_modeset_unlock_all(dev);
667 }
668
669 static int intel_suspend_complete(struct drm_i915_private *dev_priv);
670 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
671 bool rpm_resume);
672 static int skl_resume_prepare(struct drm_i915_private *dev_priv);
673 static int bxt_resume_prepare(struct drm_i915_private *dev_priv);
674
675
676 int i915_drm_suspend(struct drm_device *dev)
677 {
678 struct drm_i915_private *dev_priv = dev->dev_private;
679 pci_power_t opregion_target_state;
680 int error;
681
682 /* ignore lid events during suspend */
683 mutex_lock(&dev_priv->modeset_restore_lock);
684 dev_priv->modeset_restore = MODESET_SUSPENDED;
685 mutex_unlock(&dev_priv->modeset_restore_lock);
686
687 /* We do a lot of poking in a lot of registers, make sure they work
688 * properly. */
689 intel_display_set_init_power(dev_priv, true);
690
691 drm_kms_helper_poll_disable(dev);
692
693 #ifndef __NetBSD__ /* pmf handles this for us. */
694 pci_save_state(dev->pdev);
695 #endif
696
697 error = i915_gem_suspend(dev);
698 if (error) {
699 #ifdef __NetBSD__
700 dev_err(pci_dev_dev(dev->pdev),
701 "GEM idle failed, resume might fail\n");
702 #else
703 dev_err(&dev->pdev->dev,
704 "GEM idle failed, resume might fail\n");
705 #endif
706 return error;
707 }
708
709 intel_guc_suspend(dev);
710
711 intel_suspend_gt_powersave(dev);
712
713 /*
714 * Disable CRTCs directly since we want to preserve sw state
715 * for _thaw. Also, power gate the CRTC power wells.
716 */
717 drm_modeset_lock_all(dev);
718 intel_display_suspend(dev);
719 drm_modeset_unlock_all(dev);
720
721 intel_dp_mst_suspend(dev);
722
723 intel_runtime_pm_disable_interrupts(dev_priv);
724 intel_hpd_cancel_work(dev_priv);
725
726 intel_suspend_encoders(dev_priv);
727
728 intel_suspend_hw(dev);
729
730 i915_gem_suspend_gtt_mappings(dev);
731
732 i915_save_state(dev);
733
734 opregion_target_state = PCI_D3cold;
735 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
736 if (acpi_target_system_state() < ACPI_STATE_S3)
737 opregion_target_state = PCI_D1;
738 #endif
739 intel_opregion_notify_adapter(dev, opregion_target_state);
740
741 intel_uncore_forcewake_reset(dev, false);
742 intel_opregion_fini(dev);
743
744 #ifndef __NetBSD__ /* XXX fb */
745 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
746 #endif
747
748 dev_priv->suspend_count++;
749
750 intel_display_set_init_power(dev_priv, false);
751
752 return 0;
753 }
754
755 int i915_drm_suspend_late(struct drm_device *drm_dev, bool hibernation)
756 {
757 struct drm_i915_private *dev_priv = drm_dev->dev_private;
758 int ret;
759
760 ret = intel_suspend_complete(dev_priv);
761
762 if (ret) {
763 DRM_ERROR("Suspend complete failed: %d\n", ret);
764
765 return ret;
766 }
767
768 #ifndef __NetBSD__ /* pmf handles this for us. */
769 pci_disable_device(drm_dev->pdev);
770 /*
771 * During hibernation on some platforms the BIOS may try to access
772 * the device even though it's already in D3 and hang the machine. So
773 * leave the device in D0 on those platforms and hope the BIOS will
774 * power down the device properly. The issue was seen on multiple old
775 * GENs with different BIOS vendors, so having an explicit blacklist
776 * is inpractical; apply the workaround on everything pre GEN6. The
777 * platforms where the issue was seen:
778 * Lenovo Thinkpad X301, X61s, X60, T60, X41
779 * Fujitsu FSC S7110
780 * Acer Aspire 1830T
781 */
782 if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
783 pci_set_power_state(drm_dev->pdev, PCI_D3hot);
784 #endif
785
786 return 0;
787 }
788
789 int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
790 {
791 int error;
792
793 if (!dev || !dev->dev_private) {
794 DRM_ERROR("dev: %p\n", dev);
795 DRM_ERROR("DRM not initialized, aborting suspend.\n");
796 return -ENODEV;
797 }
798
799 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
800 state.event != PM_EVENT_FREEZE))
801 return -EINVAL;
802
803 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
804 return 0;
805
806 error = i915_drm_suspend(dev);
807 if (error)
808 return error;
809
810 return i915_drm_suspend_late(dev, false);
811 }
812
813 int i915_drm_resume(struct drm_device *dev)
814 {
815 struct drm_i915_private *dev_priv = dev->dev_private;
816
817 mutex_lock(&dev->struct_mutex);
818 i915_gem_restore_gtt_mappings(dev);
819 mutex_unlock(&dev->struct_mutex);
820
821 i915_restore_state(dev);
822 intel_opregion_setup(dev);
823
824 intel_init_pch_refclk(dev);
825 drm_mode_config_reset(dev);
826
827 /*
828 * Interrupts have to be enabled before any batches are run. If not the
829 * GPU will hang. i915_gem_init_hw() will initiate batches to
830 * update/restore the context.
831 *
832 * Modeset enabling in intel_modeset_init_hw() also needs working
833 * interrupts.
834 */
835 intel_runtime_pm_enable_interrupts(dev_priv);
836
837 mutex_lock(&dev->struct_mutex);
838 if (i915_gem_init_hw(dev)) {
839 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
840 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
841 }
842 mutex_unlock(&dev->struct_mutex);
843
844 intel_guc_resume(dev);
845
846 intel_modeset_init_hw(dev);
847
848 spin_lock_irq(&dev_priv->irq_lock);
849 if (dev_priv->display.hpd_irq_setup)
850 dev_priv->display.hpd_irq_setup(dev);
851 spin_unlock_irq(&dev_priv->irq_lock);
852
853 drm_modeset_lock_all(dev);
854 intel_display_resume(dev);
855 drm_modeset_unlock_all(dev);
856
857 intel_dp_mst_resume(dev);
858
859 /*
860 * ... but also need to make sure that hotplug processing
861 * doesn't cause havoc. Like in the driver load code we don't
862 * bother with the tiny race here where we might loose hotplug
863 * notifications.
864 * */
865 intel_hpd_init(dev_priv);
866 /* Config may have changed between suspend and resume */
867 drm_helper_hpd_irq_event(dev);
868
869 intel_opregion_init(dev);
870
871 #ifndef __NetBSD__ /* XXX fb */
872 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
873 #endif
874
875 mutex_lock(&dev_priv->modeset_restore_lock);
876 dev_priv->modeset_restore = MODESET_DONE;
877 mutex_unlock(&dev_priv->modeset_restore_lock);
878
879 intel_opregion_notify_adapter(dev, PCI_D0);
880
881 drm_kms_helper_poll_enable(dev);
882
883 return 0;
884 }
885
886 int i915_drm_resume_early(struct drm_device *dev)
887 {
888 struct drm_i915_private *dev_priv = dev->dev_private;
889 int ret = 0;
890
891 #ifndef __NetBSD__ /* pmf handles this for us. */
892 /*
893 * We have a resume ordering issue with the snd-hda driver also
894 * requiring our device to be power up. Due to the lack of a
895 * parent/child relationship we currently solve this with an early
896 * resume hook.
897 *
898 * FIXME: This should be solved with a special hdmi sink device or
899 * similar so that power domains can be employed.
900 */
901 if (pci_enable_device(dev->pdev))
902 return -EIO;
903 #endif
904
905 /* XXX pmf probably handles this for us too. */
906 pci_set_master(dev->pdev);
907
908 if (IS_VALLEYVIEW(dev_priv))
909 ret = vlv_resume_prepare(dev_priv, false);
910 if (ret)
911 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
912 ret);
913
914 intel_uncore_early_sanitize(dev, true);
915
916 if (IS_BROXTON(dev))
917 ret = bxt_resume_prepare(dev_priv);
918 else if (IS_SKYLAKE(dev_priv))
919 ret = skl_resume_prepare(dev_priv);
920 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
921 hsw_disable_pc8(dev_priv);
922
923 intel_uncore_sanitize(dev);
924 intel_power_domains_init_hw(dev_priv);
925
926 return ret;
927 }
928
929 int i915_resume_switcheroo(struct drm_device *dev)
930 {
931 int ret;
932
933 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
934 return 0;
935
936 ret = i915_drm_resume_early(dev);
937 if (ret)
938 return ret;
939
940 return i915_drm_resume(dev);
941 }
942
943 /**
944 * i915_reset - reset chip after a hang
945 * @dev: drm device to reset
946 *
947 * Reset the chip. Useful if a hang is detected. Returns zero on successful
948 * reset or otherwise an error code.
949 *
950 * Procedure is fairly simple:
951 * - reset the chip using the reset reg
952 * - re-init context state
953 * - re-init hardware status page
954 * - re-init ring buffer
955 * - re-init interrupt state
956 * - re-init display
957 */
958 int i915_reset(struct drm_device *dev)
959 {
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 bool simulated;
962 int ret;
963
964 intel_reset_gt_powersave(dev);
965
966 mutex_lock(&dev->struct_mutex);
967
968 i915_gem_reset(dev);
969
970 simulated = dev_priv->gpu_error.stop_rings != 0;
971
972 ret = intel_gpu_reset(dev);
973
974 /* Also reset the gpu hangman. */
975 if (simulated) {
976 DRM_INFO("Simulated gpu hang, resetting stop_rings\n");
977 dev_priv->gpu_error.stop_rings = 0;
978 if (ret == -ENODEV) {
979 DRM_INFO("Reset not implemented, but ignoring "
980 "error for simulated gpu hangs\n");
981 ret = 0;
982 }
983 }
984
985 if (i915_stop_ring_allow_warn(dev_priv))
986 pr_notice("drm/i915: Resetting chip after gpu hang\n");
987
988 if (ret) {
989 DRM_ERROR("Failed to reset chip: %i\n", ret);
990 mutex_unlock(&dev->struct_mutex);
991 return ret;
992 }
993
994 intel_overlay_reset(dev_priv);
995
996 /* Ok, now get things going again... */
997
998 /*
999 * Everything depends on having the GTT running, so we need to start
1000 * there. Fortunately we don't need to do this unless we reset the
1001 * chip at a PCI level.
1002 *
1003 * Next we need to restore the context, but we don't use those
1004 * yet either...
1005 *
1006 * Ring buffer needs to be re-initialized in the KMS case, or if X
1007 * was running at the time of the reset (i.e. we weren't VT
1008 * switched away).
1009 */
1010
1011 /* Used to prevent gem_check_wedged returning -EAGAIN during gpu reset */
1012 dev_priv->gpu_error.reload_in_reset = true;
1013
1014 ret = i915_gem_init_hw(dev);
1015
1016 dev_priv->gpu_error.reload_in_reset = false;
1017
1018 mutex_unlock(&dev->struct_mutex);
1019 if (ret) {
1020 DRM_ERROR("Failed hw init on reset %d\n", ret);
1021 return ret;
1022 }
1023
1024 /*
1025 * rps/rc6 re-init is necessary to restore state lost after the
1026 * reset and the re-install of gt irqs. Skip for ironlake per
1027 * previous concerns that it doesn't respond well to some forms
1028 * of re-init after reset.
1029 */
1030 if (INTEL_INFO(dev)->gen > 5)
1031 intel_enable_gt_powersave(dev);
1032
1033 return 0;
1034 }
1035
1036 #ifdef __NetBSD__
1037
1038 static const struct uvm_pagerops i915_gem_uvm_ops = {
1039 .pgo_reference = drm_gem_pager_reference,
1040 .pgo_detach = drm_gem_pager_detach,
1041 .pgo_fault = i915_gem_fault,
1042 };
1043
1044 #else
1045
1046 static int i915_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1047 {
1048 struct intel_device_info *intel_info =
1049 (struct intel_device_info *) ent->driver_data;
1050
1051 if (IS_PRELIMINARY_HW(intel_info) && !i915.preliminary_hw_support) {
1052 DRM_INFO("This hardware requires preliminary hardware support.\n"
1053 "See CONFIG_DRM_I915_PRELIMINARY_HW_SUPPORT, and/or modparam preliminary_hw_support\n");
1054 return -ENODEV;
1055 }
1056
1057 /* Only bind to function 0 of the device. Early generations
1058 * used function 1 as a placeholder for multi-head. This causes
1059 * us confusion instead, especially on the systems where both
1060 * functions have the same PCI-ID!
1061 */
1062 if (PCI_FUNC(pdev->devfn))
1063 return -ENODEV;
1064
1065 return drm_get_pci_dev(pdev, ent, &driver);
1066 }
1067
1068 static void
1069 i915_pci_remove(struct pci_dev *pdev)
1070 {
1071 struct drm_device *dev = pci_get_drvdata(pdev);
1072
1073 drm_put_dev(dev);
1074 }
1075 #endif
1076
1077 #ifndef __NetBSD__
1078 static int i915_pm_suspend(struct device *dev)
1079 {
1080 struct pci_dev *pdev = to_pci_dev(dev);
1081 struct drm_device *drm_dev = pci_get_drvdata(pdev);
1082
1083 if (!drm_dev || !drm_dev->dev_private) {
1084 dev_err(dev, "DRM not initialized, aborting suspend.\n");
1085 return -ENODEV;
1086 }
1087
1088 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1089 return 0;
1090
1091 return i915_drm_suspend(drm_dev);
1092 }
1093
1094 static int i915_pm_suspend_late(struct device *dev)
1095 {
1096 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1097
1098 /*
1099 * We have a suspend ordering issue with the snd-hda driver also
1100 * requiring our device to be power up. Due to the lack of a
1101 * parent/child relationship we currently solve this with an late
1102 * suspend hook.
1103 *
1104 * FIXME: This should be solved with a special hdmi sink device or
1105 * similar so that power domains can be employed.
1106 */
1107 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1108 return 0;
1109
1110 return i915_drm_suspend_late(drm_dev, false);
1111 }
1112
1113 static int i915_pm_poweroff_late(struct device *dev)
1114 {
1115 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1116
1117 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1118 return 0;
1119
1120 return i915_drm_suspend_late(drm_dev, true);
1121 }
1122
1123 static int i915_pm_resume_early(struct device *dev)
1124 {
1125 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1126
1127 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1128 return 0;
1129
1130 return i915_drm_resume_early(drm_dev);
1131 }
1132
1133 static int i915_pm_resume(struct device *dev)
1134 {
1135 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1136
1137 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1138 return 0;
1139
1140 return i915_drm_resume(drm_dev);
1141 }
1142 #endif
1143
1144 static int skl_suspend_complete(struct drm_i915_private *dev_priv)
1145 {
1146 /* Enabling DC6 is not a hard requirement to enter runtime D3 */
1147
1148 skl_uninit_cdclk(dev_priv);
1149
1150 return 0;
1151 }
1152
1153 static int hsw_suspend_complete(struct drm_i915_private *dev_priv)
1154 {
1155 hsw_enable_pc8(dev_priv);
1156
1157 return 0;
1158 }
1159
1160 static int bxt_suspend_complete(struct drm_i915_private *dev_priv)
1161 {
1162 struct drm_device *dev = dev_priv->dev;
1163
1164 /* TODO: when DC5 support is added disable DC5 here. */
1165
1166 broxton_ddi_phy_uninit(dev);
1167 broxton_uninit_cdclk(dev);
1168 bxt_enable_dc9(dev_priv);
1169
1170 return 0;
1171 }
1172
1173 static int bxt_resume_prepare(struct drm_i915_private *dev_priv)
1174 {
1175 struct drm_device *dev = dev_priv->dev;
1176
1177 /* TODO: when CSR FW support is added make sure the FW is loaded */
1178
1179 bxt_disable_dc9(dev_priv);
1180
1181 /*
1182 * TODO: when DC5 support is added enable DC5 here if the CSR FW
1183 * is available.
1184 */
1185 broxton_init_cdclk(dev);
1186 broxton_ddi_phy_init(dev);
1187 intel_prepare_ddi(dev);
1188
1189 return 0;
1190 }
1191
1192 static int skl_resume_prepare(struct drm_i915_private *dev_priv)
1193 {
1194 struct drm_device *dev = dev_priv->dev;
1195
1196 skl_init_cdclk(dev_priv);
1197 intel_csr_load_program(dev);
1198
1199 return 0;
1200 }
1201
1202 /*
1203 * Save all Gunit registers that may be lost after a D3 and a subsequent
1204 * S0i[R123] transition. The list of registers needing a save/restore is
1205 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1206 * registers in the following way:
1207 * - Driver: saved/restored by the driver
1208 * - Punit : saved/restored by the Punit firmware
1209 * - No, w/o marking: no need to save/restore, since the register is R/O or
1210 * used internally by the HW in a way that doesn't depend
1211 * keeping the content across a suspend/resume.
1212 * - Debug : used for debugging
1213 *
1214 * We save/restore all registers marked with 'Driver', with the following
1215 * exceptions:
1216 * - Registers out of use, including also registers marked with 'Debug'.
1217 * These have no effect on the driver's operation, so we don't save/restore
1218 * them to reduce the overhead.
1219 * - Registers that are fully setup by an initialization function called from
1220 * the resume path. For example many clock gating and RPS/RC6 registers.
1221 * - Registers that provide the right functionality with their reset defaults.
1222 *
1223 * TODO: Except for registers that based on the above 3 criteria can be safely
1224 * ignored, we save/restore all others, practically treating the HW context as
1225 * a black-box for the driver. Further investigation is needed to reduce the
1226 * saved/restored registers even further, by following the same 3 criteria.
1227 */
1228 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1229 {
1230 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1231 int i;
1232
1233 /* GAM 0x4000-0x4770 */
1234 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
1235 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
1236 s->arb_mode = I915_READ(ARB_MODE);
1237 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
1238 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
1239
1240 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1241 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1242
1243 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1244 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1245
1246 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
1247 s->ecochk = I915_READ(GAM_ECOCHK);
1248 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
1249 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
1250
1251 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
1252
1253 /* MBC 0x9024-0x91D0, 0x8500 */
1254 s->g3dctl = I915_READ(VLV_G3DCTL);
1255 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
1256 s->mbctl = I915_READ(GEN6_MBCTL);
1257
1258 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1259 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
1260 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
1261 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
1262 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
1263 s->rstctl = I915_READ(GEN6_RSTCTL);
1264 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
1265
1266 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1267 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
1268 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
1269 s->rpdeuc = I915_READ(GEN6_RPDEUC);
1270 s->ecobus = I915_READ(ECOBUS);
1271 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
1272 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
1273 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
1274 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
1275 s->rcedata = I915_READ(VLV_RCEDATA);
1276 s->spare2gh = I915_READ(VLV_SPAREG2H);
1277
1278 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1279 s->gt_imr = I915_READ(GTIMR);
1280 s->gt_ier = I915_READ(GTIER);
1281 s->pm_imr = I915_READ(GEN6_PMIMR);
1282 s->pm_ier = I915_READ(GEN6_PMIER);
1283
1284 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1285 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
1286
1287 /* GT SA CZ domain, 0x100000-0x138124 */
1288 s->tilectl = I915_READ(TILECTL);
1289 s->gt_fifoctl = I915_READ(GTFIFOCTL);
1290 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
1291 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1292 s->pmwgicz = I915_READ(VLV_PMWGICZ);
1293
1294 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1295 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
1296 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
1297 s->pcbr = I915_READ(VLV_PCBR);
1298 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
1299
1300 /*
1301 * Not saving any of:
1302 * DFT, 0x9800-0x9EC0
1303 * SARB, 0xB000-0xB1FC
1304 * GAC, 0x5208-0x524C, 0x14000-0x14C000
1305 * PCI CFG
1306 */
1307 }
1308
1309 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1310 {
1311 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1312 u32 val;
1313 int i;
1314
1315 /* GAM 0x4000-0x4770 */
1316 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
1317 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
1318 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
1319 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
1320 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
1321
1322 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1323 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
1324
1325 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
1326 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
1327
1328 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
1329 I915_WRITE(GAM_ECOCHK, s->ecochk);
1330 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
1331 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
1332
1333 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
1334
1335 /* MBC 0x9024-0x91D0, 0x8500 */
1336 I915_WRITE(VLV_G3DCTL, s->g3dctl);
1337 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
1338 I915_WRITE(GEN6_MBCTL, s->mbctl);
1339
1340 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1341 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
1342 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
1343 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
1344 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
1345 I915_WRITE(GEN6_RSTCTL, s->rstctl);
1346 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
1347
1348 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1349 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
1350 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
1351 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
1352 I915_WRITE(ECOBUS, s->ecobus);
1353 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
1354 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
1355 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
1356 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
1357 I915_WRITE(VLV_RCEDATA, s->rcedata);
1358 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
1359
1360 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1361 I915_WRITE(GTIMR, s->gt_imr);
1362 I915_WRITE(GTIER, s->gt_ier);
1363 I915_WRITE(GEN6_PMIMR, s->pm_imr);
1364 I915_WRITE(GEN6_PMIER, s->pm_ier);
1365
1366 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1367 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
1368
1369 /* GT SA CZ domain, 0x100000-0x138124 */
1370 I915_WRITE(TILECTL, s->tilectl);
1371 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
1372 /*
1373 * Preserve the GT allow wake and GFX force clock bit, they are not
1374 * be restored, as they are used to control the s0ix suspend/resume
1375 * sequence by the caller.
1376 */
1377 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1378 val &= VLV_GTLC_ALLOWWAKEREQ;
1379 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
1380 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1381
1382 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1383 val &= VLV_GFX_CLK_FORCE_ON_BIT;
1384 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
1385 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1386
1387 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
1388
1389 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1390 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
1391 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
1392 I915_WRITE(VLV_PCBR, s->pcbr);
1393 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
1394 }
1395
1396 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
1397 {
1398 u32 val;
1399 int err;
1400
1401 #define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT)
1402
1403 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1404 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
1405 if (force_on)
1406 val |= VLV_GFX_CLK_FORCE_ON_BIT;
1407 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1408
1409 if (!force_on)
1410 return 0;
1411
1412 err = wait_for(COND, 20);
1413 if (err)
1414 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
1415 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1416
1417 return err;
1418 #undef COND
1419 }
1420
1421 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
1422 {
1423 u32 val;
1424 int err = 0;
1425
1426 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1427 val &= ~VLV_GTLC_ALLOWWAKEREQ;
1428 if (allow)
1429 val |= VLV_GTLC_ALLOWWAKEREQ;
1430 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1431 POSTING_READ(VLV_GTLC_WAKE_CTRL);
1432
1433 #define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \
1434 allow)
1435 err = wait_for(COND, 1);
1436 if (err)
1437 DRM_ERROR("timeout disabling GT waking\n");
1438 return err;
1439 #undef COND
1440 }
1441
1442 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
1443 bool wait_for_on)
1444 {
1445 u32 mask;
1446 u32 val;
1447 int err;
1448
1449 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
1450 val = wait_for_on ? mask : 0;
1451 #define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
1452 if (COND)
1453 return 0;
1454
1455 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
1456 wait_for_on ? "on" : "off",
1457 I915_READ(VLV_GTLC_PW_STATUS));
1458
1459 /*
1460 * RC6 transitioning can be delayed up to 2 msec (see
1461 * valleyview_enable_rps), use 3 msec for safety.
1462 */
1463 err = wait_for(COND, 3);
1464 if (err)
1465 DRM_ERROR("timeout waiting for GT wells to go %s\n",
1466 wait_for_on ? "on" : "off");
1467
1468 return err;
1469 #undef COND
1470 }
1471
1472 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
1473 {
1474 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
1475 return;
1476
1477 DRM_ERROR("GT register access while GT waking disabled\n");
1478 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
1479 }
1480
1481 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
1482 {
1483 u32 mask;
1484 int err;
1485
1486 /*
1487 * Bspec defines the following GT well on flags as debug only, so
1488 * don't treat them as hard failures.
1489 */
1490 (void)vlv_wait_for_gt_wells(dev_priv, false);
1491
1492 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
1493 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
1494
1495 vlv_check_no_gt_access(dev_priv);
1496
1497 err = vlv_force_gfx_clock(dev_priv, true);
1498 if (err)
1499 goto err1;
1500
1501 err = vlv_allow_gt_wake(dev_priv, false);
1502 if (err)
1503 goto err2;
1504
1505 if (!IS_CHERRYVIEW(dev_priv->dev))
1506 vlv_save_gunit_s0ix_state(dev_priv);
1507
1508 err = vlv_force_gfx_clock(dev_priv, false);
1509 if (err)
1510 goto err2;
1511
1512 return 0;
1513
1514 err2:
1515 /* For safety always re-enable waking and disable gfx clock forcing */
1516 vlv_allow_gt_wake(dev_priv, true);
1517 err1:
1518 vlv_force_gfx_clock(dev_priv, false);
1519
1520 return err;
1521 }
1522
1523 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1524 bool rpm_resume)
1525 {
1526 struct drm_device *dev = dev_priv->dev;
1527 int err;
1528 int ret;
1529
1530 /*
1531 * If any of the steps fail just try to continue, that's the best we
1532 * can do at this point. Return the first error code (which will also
1533 * leave RPM permanently disabled).
1534 */
1535 ret = vlv_force_gfx_clock(dev_priv, true);
1536
1537 if (!IS_CHERRYVIEW(dev_priv->dev))
1538 vlv_restore_gunit_s0ix_state(dev_priv);
1539
1540 err = vlv_allow_gt_wake(dev_priv, true);
1541 if (!ret)
1542 ret = err;
1543
1544 err = vlv_force_gfx_clock(dev_priv, false);
1545 if (!ret)
1546 ret = err;
1547
1548 vlv_check_no_gt_access(dev_priv);
1549
1550 if (rpm_resume) {
1551 intel_init_clock_gating(dev);
1552 i915_gem_restore_fences(dev);
1553 }
1554
1555 return ret;
1556 }
1557
1558 #ifndef __NetBSD__ /* XXX runtime pm */
1559 static int intel_runtime_suspend(struct device *device)
1560 {
1561 struct pci_dev *pdev = to_pci_dev(device);
1562 struct drm_device *dev = pci_get_drvdata(pdev);
1563 struct drm_i915_private *dev_priv = dev->dev_private;
1564 int ret;
1565
1566 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6(dev))))
1567 return -ENODEV;
1568
1569 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1570 return -ENODEV;
1571
1572 DRM_DEBUG_KMS("Suspending device\n");
1573
1574 /*
1575 * We could deadlock here in case another thread holding struct_mutex
1576 * calls RPM suspend concurrently, since the RPM suspend will wait
1577 * first for this RPM suspend to finish. In this case the concurrent
1578 * RPM resume will be followed by its RPM suspend counterpart. Still
1579 * for consistency return -EAGAIN, which will reschedule this suspend.
1580 */
1581 if (!mutex_trylock(&dev->struct_mutex)) {
1582 DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
1583 /*
1584 * Bump the expiration timestamp, otherwise the suspend won't
1585 * be rescheduled.
1586 */
1587 pm_runtime_mark_last_busy(device);
1588
1589 return -EAGAIN;
1590 }
1591 /*
1592 * We are safe here against re-faults, since the fault handler takes
1593 * an RPM reference.
1594 */
1595 i915_gem_release_all_mmaps(dev_priv);
1596 mutex_unlock(&dev->struct_mutex);
1597
1598 intel_guc_suspend(dev);
1599
1600 intel_suspend_gt_powersave(dev);
1601 intel_runtime_pm_disable_interrupts(dev_priv);
1602
1603 ret = intel_suspend_complete(dev_priv);
1604 if (ret) {
1605 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
1606 intel_runtime_pm_enable_interrupts(dev_priv);
1607
1608 return ret;
1609 }
1610
1611 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1612 intel_uncore_forcewake_reset(dev, false);
1613 dev_priv->pm.suspended = true;
1614
1615 /*
1616 * FIXME: We really should find a document that references the arguments
1617 * used below!
1618 */
1619 if (IS_BROADWELL(dev)) {
1620 /*
1621 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
1622 * being detected, and the call we do at intel_runtime_resume()
1623 * won't be able to restore them. Since PCI_D3hot matches the
1624 * actual specification and appears to be working, use it.
1625 */
1626 intel_opregion_notify_adapter(dev, PCI_D3hot);
1627 } else {
1628 /*
1629 * current versions of firmware which depend on this opregion
1630 * notification have repurposed the D1 definition to mean
1631 * "runtime suspended" vs. what you would normally expect (D3)
1632 * to distinguish it from notifications that might be sent via
1633 * the suspend path.
1634 */
1635 intel_opregion_notify_adapter(dev, PCI_D1);
1636 }
1637
1638 assert_forcewakes_inactive(dev_priv);
1639
1640 DRM_DEBUG_KMS("Device suspended\n");
1641 return 0;
1642 }
1643
1644 static int intel_runtime_resume(struct device *device)
1645 {
1646 struct pci_dev *pdev = to_pci_dev(device);
1647 struct drm_device *dev = pci_get_drvdata(pdev);
1648 struct drm_i915_private *dev_priv = dev->dev_private;
1649 int ret = 0;
1650
1651 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1652 return -ENODEV;
1653
1654 DRM_DEBUG_KMS("Resuming device\n");
1655
1656 intel_opregion_notify_adapter(dev, PCI_D0);
1657 dev_priv->pm.suspended = false;
1658
1659 intel_guc_resume(dev);
1660
1661 if (IS_GEN6(dev_priv))
1662 intel_init_pch_refclk(dev);
1663
1664 if (IS_BROXTON(dev))
1665 ret = bxt_resume_prepare(dev_priv);
1666 else if (IS_SKYLAKE(dev))
1667 ret = skl_resume_prepare(dev_priv);
1668 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1669 hsw_disable_pc8(dev_priv);
1670 else if (IS_VALLEYVIEW(dev_priv))
1671 ret = vlv_resume_prepare(dev_priv, true);
1672
1673 /*
1674 * No point of rolling back things in case of an error, as the best
1675 * we can do is to hope that things will still work (and disable RPM).
1676 */
1677 i915_gem_init_swizzling(dev);
1678 gen6_update_ring_freq(dev);
1679
1680 intel_runtime_pm_enable_interrupts(dev_priv);
1681
1682 /*
1683 * On VLV/CHV display interrupts are part of the display
1684 * power well, so hpd is reinitialized from there. For
1685 * everyone else do it here.
1686 */
1687 if (!IS_VALLEYVIEW(dev_priv))
1688 intel_hpd_init(dev_priv);
1689
1690 intel_enable_gt_powersave(dev);
1691
1692 if (ret)
1693 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
1694 else
1695 DRM_DEBUG_KMS("Device resumed\n");
1696
1697 return ret;
1698 }
1699 #endif
1700
1701 /*
1702 * This function implements common functionality of runtime and system
1703 * suspend sequence.
1704 */
1705 static int intel_suspend_complete(struct drm_i915_private *dev_priv)
1706 {
1707 int ret;
1708
1709 if (IS_BROXTON(dev_priv))
1710 ret = bxt_suspend_complete(dev_priv);
1711 else if (IS_SKYLAKE(dev_priv))
1712 ret = skl_suspend_complete(dev_priv);
1713 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1714 ret = hsw_suspend_complete(dev_priv);
1715 else if (IS_VALLEYVIEW(dev_priv))
1716 ret = vlv_suspend_complete(dev_priv);
1717 else
1718 ret = 0;
1719
1720 return ret;
1721 }
1722
1723 #ifndef __NetBSD__
1724
1725 static const struct dev_pm_ops i915_pm_ops = {
1726 /*
1727 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
1728 * PMSG_RESUME]
1729 */
1730 .suspend = i915_pm_suspend,
1731 .suspend_late = i915_pm_suspend_late,
1732 .resume_early = i915_pm_resume_early,
1733 .resume = i915_pm_resume,
1734
1735 /*
1736 * S4 event handlers
1737 * @freeze, @freeze_late : called (1) before creating the
1738 * hibernation image [PMSG_FREEZE] and
1739 * (2) after rebooting, before restoring
1740 * the image [PMSG_QUIESCE]
1741 * @thaw, @thaw_early : called (1) after creating the hibernation
1742 * image, before writing it [PMSG_THAW]
1743 * and (2) after failing to create or
1744 * restore the image [PMSG_RECOVER]
1745 * @poweroff, @poweroff_late: called after writing the hibernation
1746 * image, before rebooting [PMSG_HIBERNATE]
1747 * @restore, @restore_early : called after rebooting and restoring the
1748 * hibernation image [PMSG_RESTORE]
1749 */
1750 .freeze = i915_pm_suspend,
1751 .freeze_late = i915_pm_suspend_late,
1752 .thaw_early = i915_pm_resume_early,
1753 .thaw = i915_pm_resume,
1754 .poweroff = i915_pm_suspend,
1755 .poweroff_late = i915_pm_poweroff_late,
1756 .restore_early = i915_pm_resume_early,
1757 .restore = i915_pm_resume,
1758
1759 /* S0ix (via runtime suspend) event handlers */
1760 .runtime_suspend = intel_runtime_suspend,
1761 .runtime_resume = intel_runtime_resume,
1762 };
1763
1764 static const struct vm_operations_struct i915_gem_vm_ops = {
1765 .fault = i915_gem_fault,
1766 .open = drm_gem_vm_open,
1767 .close = drm_gem_vm_close,
1768 };
1769
1770 static const struct file_operations i915_driver_fops = {
1771 .owner = THIS_MODULE,
1772 .open = drm_open,
1773 .release = drm_release,
1774 .unlocked_ioctl = drm_ioctl,
1775 .mmap = drm_gem_mmap,
1776 .poll = drm_poll,
1777 .read = drm_read,
1778 #ifdef CONFIG_COMPAT
1779 .compat_ioctl = i915_compat_ioctl,
1780 #endif
1781 .llseek = noop_llseek,
1782 };
1783
1784 #endif /* defined(__NetBSD__) */
1785
1786 static struct drm_driver driver = {
1787 /* Don't use MTRRs here; the Xserver or userspace app should
1788 * deal with them for Intel hardware.
1789 */
1790 .driver_features =
1791 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
1792 DRIVER_RENDER | DRIVER_MODESET,
1793 .load = i915_driver_load,
1794 .unload = i915_driver_unload,
1795 .open = i915_driver_open,
1796 .lastclose = i915_driver_lastclose,
1797 .preclose = i915_driver_preclose,
1798 .postclose = i915_driver_postclose,
1799 .set_busid = drm_pci_set_busid,
1800 #ifdef __NetBSD__
1801 .request_irq = drm_pci_request_irq,
1802 .free_irq = drm_pci_free_irq,
1803 #endif
1804
1805 #if defined(CONFIG_DEBUG_FS)
1806 .debugfs_init = i915_debugfs_init,
1807 .debugfs_cleanup = i915_debugfs_cleanup,
1808 #endif
1809 .gem_free_object = i915_gem_free_object,
1810 #ifdef __NetBSD__
1811 /* XXX Not clear the `or legacy' part is important here. */
1812 .mmap_object = &drm_gem_mmap_object,
1813 .gem_uvm_ops = &i915_gem_uvm_ops,
1814 #else
1815 .gem_vm_ops = &i915_gem_vm_ops,
1816 #endif
1817
1818 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
1819 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
1820 .gem_prime_export = i915_gem_prime_export,
1821 .gem_prime_import = i915_gem_prime_import,
1822
1823 .dumb_create = i915_gem_dumb_create,
1824 .dumb_map_offset = i915_gem_mmap_gtt,
1825 .dumb_destroy = drm_gem_dumb_destroy,
1826 .ioctls = i915_ioctls,
1827 #ifdef __NetBSD__
1828 .fops = NULL,
1829 #else
1830 .fops = &i915_driver_fops,
1831 #endif
1832 .name = DRIVER_NAME,
1833 .desc = DRIVER_DESC,
1834 .date = DRIVER_DATE,
1835 .major = DRIVER_MAJOR,
1836 .minor = DRIVER_MINOR,
1837 .patchlevel = DRIVER_PATCHLEVEL,
1838 };
1839
1840 #ifndef __NetBSD__
1841 static struct pci_driver i915_pci_driver = {
1842 .name = DRIVER_NAME,
1843 .id_table = pciidlist,
1844 .probe = i915_pci_probe,
1845 .remove = i915_pci_remove,
1846 .driver.pm = &i915_pm_ops,
1847 };
1848 #endif
1849
1850 #ifndef __NetBSD__
1851 static int __init i915_init(void)
1852 {
1853 driver.num_ioctls = i915_max_ioctl;
1854
1855 /*
1856 * Enable KMS by default, unless explicitly overriden by
1857 * either the i915.modeset prarameter or by the
1858 * vga_text_mode_force boot option.
1859 */
1860
1861 if (i915.modeset == 0)
1862 driver.driver_features &= ~DRIVER_MODESET;
1863
1864 #ifdef CONFIG_VGA_CONSOLE
1865 if (vgacon_text_force() && i915.modeset == -1)
1866 driver.driver_features &= ~DRIVER_MODESET;
1867 #endif
1868
1869 if (!(driver.driver_features & DRIVER_MODESET)) {
1870 /* Silently fail loading to not upset userspace. */
1871 DRM_DEBUG_DRIVER("KMS and UMS disabled.\n");
1872 return 0;
1873 }
1874
1875 if (i915.nuclear_pageflip)
1876 driver.driver_features |= DRIVER_ATOMIC;
1877
1878 return drm_pci_init(&driver, &i915_pci_driver);
1879 }
1880
1881 static void __exit i915_exit(void)
1882 {
1883 if (!(driver.driver_features & DRIVER_MODESET))
1884 return; /* Never loaded a driver. */
1885
1886 drm_pci_exit(&driver, &i915_pci_driver);
1887 }
1888
1889 module_init(i915_init);
1890 module_exit(i915_exit);
1891 #endif
1892
1893 MODULE_AUTHOR("Tungsten Graphics, Inc.");
1894 MODULE_AUTHOR("Intel Corporation");
1895
1896 MODULE_DESCRIPTION(DRIVER_DESC);
1897 MODULE_LICENSE("GPL and additional rights");
1898