i915_gem.c revision 1.1.1.1.2.15 1 /*
2 * Copyright 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric (at) anholt.net>
25 *
26 */
27
28 #ifdef __NetBSD__
29 #if 0 /* XXX uvmhist option? */
30 #include "opt_uvmhist.h"
31 #endif
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35
36 #include <uvm/uvm.h>
37 #include <uvm/uvm_extern.h>
38 #include <uvm/uvm_fault.h>
39 #include <uvm/uvm_page.h>
40 #include <uvm/uvm_pmap.h>
41 #include <uvm/uvm_prot.h>
42 #endif
43
44 #include <drm/drmP.h>
45 #include <drm/i915_drm.h>
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_drv.h"
49 #include <linux/shmem_fs.h>
50 #include <linux/slab.h>
51 #include <linux/swap.h>
52 #include <linux/pci.h>
53 #include <linux/dma-buf.h>
54 #include <linux/errno.h>
55 #include <linux/time.h>
56 #include <linux/err.h>
57 #include <asm/param.h>
58
59 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
60 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
62 unsigned alignment,
63 bool map_and_fenceable,
64 bool nonblocking);
65 static int i915_gem_phys_pwrite(struct drm_device *dev,
66 struct drm_i915_gem_object *obj,
67 struct drm_i915_gem_pwrite *args,
68 struct drm_file *file);
69
70 static void i915_gem_write_fence(struct drm_device *dev, int reg,
71 struct drm_i915_gem_object *obj);
72 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
73 struct drm_i915_fence_reg *fence,
74 bool enable);
75
76 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
77 struct shrink_control *sc);
78 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
79 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
80 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
81
82 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
83 {
84 if (obj->tiling_mode)
85 i915_gem_release_mmap(obj);
86
87 /* As we do not have an associated fence register, we will force
88 * a tiling change if we ever need to acquire one.
89 */
90 obj->fence_dirty = false;
91 obj->fence_reg = I915_FENCE_REG_NONE;
92 }
93
94 /* some bookkeeping */
95 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
96 size_t size)
97 {
98 dev_priv->mm.object_count++;
99 dev_priv->mm.object_memory += size;
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104 {
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 }
108
109 static int
110 i915_gem_wait_for_error(struct drm_device *dev)
111 {
112 struct drm_i915_private *dev_priv = dev->dev_private;
113 struct completion *x = &dev_priv->error_completion;
114 #ifndef __NetBSD__
115 unsigned long flags;
116 #endif
117 int ret;
118
119 if (!atomic_read(&dev_priv->mm.wedged))
120 return 0;
121
122 /*
123 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
124 * userspace. If it takes that long something really bad is going on and
125 * we should simply try to bail out and fail as gracefully as possible.
126 */
127 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134
135 if (atomic_read(&dev_priv->mm.wedged)) {
136 /* GPU is hung, bump the completion count to account for
137 * the token we just consumed so that we never hit zero and
138 * end up waiting upon a subsequent completion event that
139 * will never happen.
140 */
141 #ifdef __NetBSD__
142 /* XXX Hope it's not a problem that we might wake someone. */
143 complete(x);
144 #else
145 spin_lock_irqsave(&x->wait.lock, flags);
146 x->done++;
147 spin_unlock_irqrestore(&x->wait.lock, flags);
148 #endif
149 }
150 return 0;
151 }
152
153 int i915_mutex_lock_interruptible(struct drm_device *dev)
154 {
155 int ret;
156
157 ret = i915_gem_wait_for_error(dev);
158 if (ret)
159 return ret;
160
161 ret = mutex_lock_interruptible(&dev->struct_mutex);
162 if (ret)
163 return ret;
164
165 WARN_ON(i915_verify_lists(dev));
166 return 0;
167 }
168
169 static inline bool
170 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
171 {
172 return obj->gtt_space && !obj->active;
173 }
174
175 int
176 i915_gem_init_ioctl(struct drm_device *dev, void *data,
177 struct drm_file *file)
178 {
179 struct drm_i915_gem_init *args = data;
180
181 if (drm_core_check_feature(dev, DRIVER_MODESET))
182 return -ENODEV;
183
184 if (args->gtt_start >= args->gtt_end ||
185 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
186 return -EINVAL;
187
188 /* GEM with user mode setting was never supported on ilk and later. */
189 if (INTEL_INFO(dev)->gen >= 5)
190 return -ENODEV;
191
192 mutex_lock(&dev->struct_mutex);
193 i915_gem_init_global_gtt(dev, args->gtt_start,
194 args->gtt_end, args->gtt_end);
195 mutex_unlock(&dev->struct_mutex);
196
197 return 0;
198 }
199
200 int
201 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
202 struct drm_file *file)
203 {
204 struct drm_i915_private *dev_priv = dev->dev_private;
205 struct drm_i915_gem_get_aperture *args = data;
206 struct drm_i915_gem_object *obj;
207 size_t pinned;
208
209 pinned = 0;
210 mutex_lock(&dev->struct_mutex);
211 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
212 if (obj->pin_count)
213 pinned += obj->gtt_space->size;
214 mutex_unlock(&dev->struct_mutex);
215
216 args->aper_size = dev_priv->mm.gtt_total;
217 args->aper_available_size = args->aper_size - pinned;
218
219 return 0;
220 }
221
222 static int
223 i915_gem_create(struct drm_file *file,
224 struct drm_device *dev,
225 uint64_t size,
226 uint32_t *handle_p)
227 {
228 struct drm_i915_gem_object *obj;
229 int ret;
230 u32 handle;
231
232 size = roundup(size, PAGE_SIZE);
233 if (size == 0)
234 return -EINVAL;
235
236 /* Allocate the new object */
237 obj = i915_gem_alloc_object(dev, size);
238 if (obj == NULL)
239 return -ENOMEM;
240
241 ret = drm_gem_handle_create(file, &obj->base, &handle);
242 if (ret) {
243 drm_gem_object_release(&obj->base);
244 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
245 kfree(obj);
246 return ret;
247 }
248
249 /* drop reference from allocate - handle holds it now */
250 drm_gem_object_unreference(&obj->base);
251 trace_i915_gem_object_create(obj);
252
253 *handle_p = handle;
254 return 0;
255 }
256
257 int
258 i915_gem_dumb_create(struct drm_file *file,
259 struct drm_device *dev,
260 struct drm_mode_create_dumb *args)
261 {
262 /* have to work out size/pitch and return them */
263 #ifdef __NetBSD__ /* ALIGN already means something. */
264 args->pitch = round_up(args->width * ((args->bpp + 7) / 8), 64);
265 #else
266 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
267 #endif
268 args->size = args->pitch * args->height;
269 return i915_gem_create(file, dev,
270 args->size, &args->handle);
271 }
272
273 int i915_gem_dumb_destroy(struct drm_file *file,
274 struct drm_device *dev,
275 uint32_t handle)
276 {
277 return drm_gem_handle_delete(file, handle);
278 }
279
280 /**
281 * Creates a new mm object and returns a handle to it.
282 */
283 int
284 i915_gem_create_ioctl(struct drm_device *dev, void *data,
285 struct drm_file *file)
286 {
287 struct drm_i915_gem_create *args = data;
288
289 return i915_gem_create(file, dev,
290 args->size, &args->handle);
291 }
292
293 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
294 {
295 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
296
297 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
298 obj->tiling_mode != I915_TILING_NONE;
299 }
300
301 static inline int
302 __copy_to_user_swizzled(char __user *cpu_vaddr,
303 const char *gpu_vaddr, int gpu_offset,
304 int length)
305 {
306 int ret, cpu_offset = 0;
307
308 while (length > 0) {
309 #ifdef __NetBSD__
310 int cacheline_end = round_up(gpu_offset + 1, 64);
311 #else
312 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313 #endif
314 int this_length = min(cacheline_end - gpu_offset, length);
315 int swizzled_gpu_offset = gpu_offset ^ 64;
316
317 ret = __copy_to_user(cpu_vaddr + cpu_offset,
318 gpu_vaddr + swizzled_gpu_offset,
319 this_length);
320 if (ret)
321 return ret + length;
322
323 cpu_offset += this_length;
324 gpu_offset += this_length;
325 length -= this_length;
326 }
327
328 return 0;
329 }
330
331 static inline int
332 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
333 const char __user *cpu_vaddr,
334 int length)
335 {
336 int ret, cpu_offset = 0;
337
338 while (length > 0) {
339 #ifdef __NetBSD__
340 int cacheline_end = round_up(gpu_offset + 1, 64);
341 #else
342 int cacheline_end = ALIGN(gpu_offset + 1, 64);
343 #endif
344 int this_length = min(cacheline_end - gpu_offset, length);
345 int swizzled_gpu_offset = gpu_offset ^ 64;
346
347 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
348 cpu_vaddr + cpu_offset,
349 this_length);
350 if (ret)
351 return ret + length;
352
353 cpu_offset += this_length;
354 gpu_offset += this_length;
355 length -= this_length;
356 }
357
358 return 0;
359 }
360
361 /* Per-page copy function for the shmem pread fastpath.
362 * Flushes invalid cachelines before reading the target if
363 * needs_clflush is set. */
364 static int
365 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
366 char __user *user_data,
367 bool page_do_bit17_swizzling, bool needs_clflush)
368 {
369 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
370 return -EFAULT;
371 #else
372 char *vaddr;
373 int ret;
374
375 if (unlikely(page_do_bit17_swizzling))
376 return -EINVAL;
377
378 vaddr = kmap_atomic(page);
379 if (needs_clflush)
380 drm_clflush_virt_range(vaddr + shmem_page_offset,
381 page_length);
382 ret = __copy_to_user_inatomic(user_data,
383 vaddr + shmem_page_offset,
384 page_length);
385 kunmap_atomic(vaddr);
386
387 return ret ? -EFAULT : 0;
388 #endif
389 }
390
391 static void
392 shmem_clflush_swizzled_range(char *addr, unsigned long length,
393 bool swizzled)
394 {
395 if (unlikely(swizzled)) {
396 unsigned long start = (unsigned long) addr;
397 unsigned long end = (unsigned long) addr + length;
398
399 /* For swizzling simply ensure that we always flush both
400 * channels. Lame, but simple and it works. Swizzled
401 * pwrite/pread is far from a hotpath - current userspace
402 * doesn't use it at all. */
403 start = round_down(start, 128);
404 end = round_up(end, 128);
405
406 drm_clflush_virt_range((void *)start, end - start);
407 } else {
408 drm_clflush_virt_range(addr, length);
409 }
410
411 }
412
413 /* Only difference to the fast-path function is that this can handle bit17
414 * and uses non-atomic copy and kmap functions. */
415 static int
416 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
417 char __user *user_data,
418 bool page_do_bit17_swizzling, bool needs_clflush)
419 {
420 char *vaddr;
421 int ret;
422
423 vaddr = kmap(page);
424 if (needs_clflush)
425 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
426 page_length,
427 page_do_bit17_swizzling);
428
429 if (page_do_bit17_swizzling)
430 ret = __copy_to_user_swizzled(user_data,
431 vaddr, shmem_page_offset,
432 page_length);
433 else
434 ret = __copy_to_user(user_data,
435 vaddr + shmem_page_offset,
436 page_length);
437 kunmap(page);
438
439 return ret ? - EFAULT : 0;
440 }
441
442 static int
443 i915_gem_shmem_pread(struct drm_device *dev,
444 struct drm_i915_gem_object *obj,
445 struct drm_i915_gem_pread *args,
446 struct drm_file *file)
447 {
448 char __user *user_data;
449 ssize_t remain;
450 loff_t offset;
451 int shmem_page_offset, page_length, ret = 0;
452 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
453 int hit_slowpath = 0;
454 #ifndef __NetBSD__ /* XXX */
455 int prefaulted = 0;
456 #endif
457 int needs_clflush = 0;
458 #ifndef __NetBSD__
459 struct scatterlist *sg;
460 int i;
461 #endif
462
463 user_data = (char __user *) (uintptr_t) args->data_ptr;
464 remain = args->size;
465
466 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
467
468 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
469 /* If we're not in the cpu read domain, set ourself into the gtt
470 * read domain and manually flush cachelines (if required). This
471 * optimizes for the case when the gpu will dirty the data
472 * anyway again before the next pread happens. */
473 if (obj->cache_level == I915_CACHE_NONE)
474 needs_clflush = 1;
475 if (obj->gtt_space) {
476 ret = i915_gem_object_set_to_gtt_domain(obj, false);
477 if (ret)
478 return ret;
479 }
480 }
481
482 ret = i915_gem_object_get_pages(obj);
483 if (ret)
484 return ret;
485
486 i915_gem_object_pin_pages(obj);
487
488 offset = args->offset;
489
490 #ifdef __NetBSD__
491 /*
492 * XXX This is a big #ifdef with a lot of duplicated code, but
493 * factoring out the loop head -- which is all that
494 * substantially differs -- is probably more trouble than it's
495 * worth at the moment.
496 */
497 while (0 < remain) {
498 /* Get the next page. */
499 shmem_page_offset = offset_in_page(offset);
500 KASSERT(shmem_page_offset < PAGE_SIZE);
501 page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
502 struct page *const page = i915_gem_object_get_page(obj,
503 (offset & ~(PAGE_SIZE-1)));
504
505 /* Decide whether to swizzle bit 17. */
506 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
507 (page_to_phys(page) & (1 << 17)) != 0;
508
509 /* Try the fast path. */
510 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
511 user_data, page_do_bit17_swizzling, needs_clflush);
512 if (ret == 0)
513 goto next_page;
514
515 /* Fast path failed. Try the slow path. */
516 hit_slowpath = 1;
517 mutex_unlock(&dev->struct_mutex);
518 /* XXX prefault */
519 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
520 user_data, page_do_bit17_swizzling, needs_clflush);
521 mutex_lock(&dev->struct_mutex);
522
523 next_page:
524 /* XXX mark page accessed */
525 if (ret)
526 goto out;
527
528 KASSERT(page_length <= remain);
529 remain -= page_length;
530 user_data += page_length;
531 offset += page_length;
532 }
533 #else
534 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
535 struct page *page;
536
537 if (i < offset >> PAGE_SHIFT)
538 continue;
539
540 if (remain <= 0)
541 break;
542
543 /* Operation in this page
544 *
545 * shmem_page_offset = offset within page in shmem file
546 * page_length = bytes to copy for this page
547 */
548 shmem_page_offset = offset_in_page(offset);
549 page_length = remain;
550 if ((shmem_page_offset + page_length) > PAGE_SIZE)
551 page_length = PAGE_SIZE - shmem_page_offset;
552
553 page = sg_page(sg);
554 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
555 (page_to_phys(page) & (1 << 17)) != 0;
556
557 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
558 user_data, page_do_bit17_swizzling,
559 needs_clflush);
560 if (ret == 0)
561 goto next_page;
562
563 hit_slowpath = 1;
564 mutex_unlock(&dev->struct_mutex);
565
566 if (!prefaulted) {
567 ret = fault_in_multipages_writeable(user_data, remain);
568 /* Userspace is tricking us, but we've already clobbered
569 * its pages with the prefault and promised to write the
570 * data up to the first fault. Hence ignore any errors
571 * and just continue. */
572 (void)ret;
573 prefaulted = 1;
574 }
575
576 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
577 user_data, page_do_bit17_swizzling,
578 needs_clflush);
579
580 mutex_lock(&dev->struct_mutex);
581
582 next_page:
583 mark_page_accessed(page);
584
585 if (ret)
586 goto out;
587
588 remain -= page_length;
589 user_data += page_length;
590 offset += page_length;
591 }
592 #endif
593
594 out:
595 i915_gem_object_unpin_pages(obj);
596
597 if (hit_slowpath) {
598 /* Fixup: Kill any reinstated backing storage pages */
599 if (obj->madv == __I915_MADV_PURGED)
600 i915_gem_object_truncate(obj);
601 }
602
603 return ret;
604 }
605
606 /**
607 * Reads data from the object referenced by handle.
608 *
609 * On error, the contents of *data are undefined.
610 */
611 int
612 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
613 struct drm_file *file)
614 {
615 struct drm_i915_gem_pread *args = data;
616 struct drm_i915_gem_object *obj;
617 int ret = 0;
618
619 if (args->size == 0)
620 return 0;
621
622 if (!access_ok(VERIFY_WRITE,
623 (char __user *)(uintptr_t)args->data_ptr,
624 args->size))
625 return -EFAULT;
626
627 ret = i915_mutex_lock_interruptible(dev);
628 if (ret)
629 return ret;
630
631 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
632 if (&obj->base == NULL) {
633 ret = -ENOENT;
634 goto unlock;
635 }
636
637 /* Bounds check source. */
638 if (args->offset > obj->base.size ||
639 args->size > obj->base.size - args->offset) {
640 ret = -EINVAL;
641 goto out;
642 }
643
644 #ifndef __NetBSD__ /* XXX drm prime */
645 /* prime objects have no backing filp to GEM pread/pwrite
646 * pages from.
647 */
648 if (!obj->base.filp) {
649 ret = -EINVAL;
650 goto out;
651 }
652 #endif
653
654 trace_i915_gem_object_pread(obj, args->offset, args->size);
655
656 ret = i915_gem_shmem_pread(dev, obj, args, file);
657
658 out:
659 drm_gem_object_unreference(&obj->base);
660 unlock:
661 mutex_unlock(&dev->struct_mutex);
662 return ret;
663 }
664
665 /* This is the fast write path which cannot handle
666 * page faults in the source data
667 */
668
669 static inline int
670 fast_user_write(struct io_mapping *mapping,
671 loff_t page_base, int page_offset,
672 char __user *user_data,
673 int length)
674 {
675 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
676 return -EFAULT;
677 #else
678 void __iomem *vaddr_atomic;
679 void *vaddr;
680 unsigned long unwritten;
681
682 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
683 /* We can use the cpu mem copy function because this is X86. */
684 vaddr = (void __force*)vaddr_atomic + page_offset;
685 unwritten = __copy_from_user_inatomic_nocache(vaddr,
686 user_data, length);
687 io_mapping_unmap_atomic(vaddr_atomic);
688 return unwritten;
689 #endif
690 }
691
692 /**
693 * This is the fast pwrite path, where we copy the data directly from the
694 * user into the GTT, uncached.
695 */
696 static int
697 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
698 struct drm_i915_gem_object *obj,
699 struct drm_i915_gem_pwrite *args,
700 struct drm_file *file)
701 {
702 drm_i915_private_t *dev_priv = dev->dev_private;
703 ssize_t remain;
704 loff_t offset, page_base;
705 char __user *user_data;
706 int page_offset, page_length, ret;
707
708 ret = i915_gem_object_pin(obj, 0, true, true);
709 if (ret)
710 goto out;
711
712 ret = i915_gem_object_set_to_gtt_domain(obj, true);
713 if (ret)
714 goto out_unpin;
715
716 ret = i915_gem_object_put_fence(obj);
717 if (ret)
718 goto out_unpin;
719
720 user_data = (char __user *) (uintptr_t) args->data_ptr;
721 remain = args->size;
722
723 offset = obj->gtt_offset + args->offset;
724
725 while (remain > 0) {
726 /* Operation in this page
727 *
728 * page_base = page offset within aperture
729 * page_offset = offset within page
730 * page_length = bytes to copy for this page
731 */
732 page_base = offset & PAGE_MASK;
733 page_offset = offset_in_page(offset);
734 page_length = remain;
735 if ((page_offset + remain) > PAGE_SIZE)
736 page_length = PAGE_SIZE - page_offset;
737
738 /* If we get a fault while copying data, then (presumably) our
739 * source page isn't available. Return the error and we'll
740 * retry in the slow path.
741 */
742 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
743 page_offset, user_data, page_length)) {
744 ret = -EFAULT;
745 goto out_unpin;
746 }
747
748 remain -= page_length;
749 user_data += page_length;
750 offset += page_length;
751 }
752
753 out_unpin:
754 i915_gem_object_unpin(obj);
755 out:
756 return ret;
757 }
758
759 /* Per-page copy function for the shmem pwrite fastpath.
760 * Flushes invalid cachelines before writing to the target if
761 * needs_clflush_before is set and flushes out any written cachelines after
762 * writing if needs_clflush is set. */
763 static int
764 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
765 char __user *user_data,
766 bool page_do_bit17_swizzling,
767 bool needs_clflush_before,
768 bool needs_clflush_after)
769 {
770 #ifdef __NetBSD__
771 return -EFAULT;
772 #else
773 char *vaddr;
774 int ret;
775
776 if (unlikely(page_do_bit17_swizzling))
777 return -EINVAL;
778
779 vaddr = kmap_atomic(page);
780 if (needs_clflush_before)
781 drm_clflush_virt_range(vaddr + shmem_page_offset,
782 page_length);
783 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
784 user_data,
785 page_length);
786 if (needs_clflush_after)
787 drm_clflush_virt_range(vaddr + shmem_page_offset,
788 page_length);
789 kunmap_atomic(vaddr);
790
791 return ret ? -EFAULT : 0;
792 #endif
793 }
794
795 /* Only difference to the fast-path function is that this can handle bit17
796 * and uses non-atomic copy and kmap functions. */
797 static int
798 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
799 char __user *user_data,
800 bool page_do_bit17_swizzling,
801 bool needs_clflush_before,
802 bool needs_clflush_after)
803 {
804 char *vaddr;
805 int ret;
806
807 vaddr = kmap(page);
808 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
809 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
810 page_length,
811 page_do_bit17_swizzling);
812 if (page_do_bit17_swizzling)
813 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
814 user_data,
815 page_length);
816 else
817 ret = __copy_from_user(vaddr + shmem_page_offset,
818 user_data,
819 page_length);
820 if (needs_clflush_after)
821 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
822 page_length,
823 page_do_bit17_swizzling);
824 kunmap(page);
825
826 return ret ? -EFAULT : 0;
827 }
828
829 static int
830 i915_gem_shmem_pwrite(struct drm_device *dev,
831 struct drm_i915_gem_object *obj,
832 struct drm_i915_gem_pwrite *args,
833 struct drm_file *file)
834 {
835 ssize_t remain;
836 loff_t offset;
837 char __user *user_data;
838 int shmem_page_offset, page_length, ret = 0;
839 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
840 int hit_slowpath = 0;
841 int needs_clflush_after = 0;
842 int needs_clflush_before = 0;
843 #ifndef __NetBSD__
844 int i;
845 struct scatterlist *sg;
846 #endif
847
848 user_data = (char __user *) (uintptr_t) args->data_ptr;
849 remain = args->size;
850
851 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
852
853 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
854 /* If we're not in the cpu write domain, set ourself into the gtt
855 * write domain and manually flush cachelines (if required). This
856 * optimizes for the case when the gpu will use the data
857 * right away and we therefore have to clflush anyway. */
858 if (obj->cache_level == I915_CACHE_NONE)
859 needs_clflush_after = 1;
860 if (obj->gtt_space) {
861 ret = i915_gem_object_set_to_gtt_domain(obj, true);
862 if (ret)
863 return ret;
864 }
865 }
866 /* Same trick applies for invalidate partially written cachelines before
867 * writing. */
868 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
869 && obj->cache_level == I915_CACHE_NONE)
870 needs_clflush_before = 1;
871
872 ret = i915_gem_object_get_pages(obj);
873 if (ret)
874 return ret;
875
876 i915_gem_object_pin_pages(obj);
877
878 offset = args->offset;
879 obj->dirty = 1;
880
881 #ifdef __NetBSD__
882 while (0 < remain) {
883 /* Get the next page. */
884 shmem_page_offset = offset_in_page(offset);
885 KASSERT(shmem_page_offset < PAGE_SIZE);
886 page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
887 struct page *const page = i915_gem_object_get_page(obj,
888 (offset & ~(PAGE_SIZE-1)));
889
890 /* Decide whether to flush the cache or swizzle bit 17. */
891 const bool partial_cacheline_write = needs_clflush_before &&
892 ((shmem_page_offset | page_length)
893 & (cpu_info_primary.ci_cflush_lsize - 1));
894 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
895 (page_to_phys(page) & (1 << 17)) != 0;
896
897 /* Try the fast path. */
898 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
899 user_data, page_do_bit17_swizzling,
900 partial_cacheline_write, needs_clflush_after);
901 if (ret == 0)
902 goto next_page;
903
904 /* Fast path failed. Try the slow path. */
905 hit_slowpath = 1;
906 mutex_unlock(&dev->struct_mutex);
907 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
908 user_data, page_do_bit17_swizzling,
909 partial_cacheline_write, needs_clflush_after);
910 mutex_lock(&dev->struct_mutex);
911
912 next_page:
913 page->p_vmp.flags &= ~PG_CLEAN;
914 /* XXX mark page accessed */
915 if (ret)
916 goto out;
917
918 KASSERT(page_length <= remain);
919 remain -= page_length;
920 user_data += page_length;
921 offset += page_length;
922 }
923 #else
924 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
925 struct page *page;
926 int partial_cacheline_write;
927
928 if (i < offset >> PAGE_SHIFT)
929 continue;
930
931 if (remain <= 0)
932 break;
933
934 /* Operation in this page
935 *
936 * shmem_page_offset = offset within page in shmem file
937 * page_length = bytes to copy for this page
938 */
939 shmem_page_offset = offset_in_page(offset);
940
941 page_length = remain;
942 if ((shmem_page_offset + page_length) > PAGE_SIZE)
943 page_length = PAGE_SIZE - shmem_page_offset;
944
945 /* If we don't overwrite a cacheline completely we need to be
946 * careful to have up-to-date data by first clflushing. Don't
947 * overcomplicate things and flush the entire patch. */
948 partial_cacheline_write = needs_clflush_before &&
949 ((shmem_page_offset | page_length)
950 & (boot_cpu_data.x86_clflush_size - 1));
951
952 page = sg_page(sg);
953 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
954 (page_to_phys(page) & (1 << 17)) != 0;
955
956 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
957 user_data, page_do_bit17_swizzling,
958 partial_cacheline_write,
959 needs_clflush_after);
960 if (ret == 0)
961 goto next_page;
962
963 hit_slowpath = 1;
964 mutex_unlock(&dev->struct_mutex);
965 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
966 user_data, page_do_bit17_swizzling,
967 partial_cacheline_write,
968 needs_clflush_after);
969
970 mutex_lock(&dev->struct_mutex);
971
972 next_page:
973 set_page_dirty(page);
974 mark_page_accessed(page);
975
976 if (ret)
977 goto out;
978
979 remain -= page_length;
980 user_data += page_length;
981 offset += page_length;
982 }
983 #endif
984
985 out:
986 i915_gem_object_unpin_pages(obj);
987
988 if (hit_slowpath) {
989 /* Fixup: Kill any reinstated backing storage pages */
990 if (obj->madv == __I915_MADV_PURGED)
991 i915_gem_object_truncate(obj);
992 /* and flush dirty cachelines in case the object isn't in the cpu write
993 * domain anymore. */
994 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
995 i915_gem_clflush_object(obj);
996 i915_gem_chipset_flush(dev);
997 }
998 }
999
1000 if (needs_clflush_after)
1001 i915_gem_chipset_flush(dev);
1002
1003 return ret;
1004 }
1005
1006 /**
1007 * Writes data to the object referenced by handle.
1008 *
1009 * On error, the contents of the buffer that were to be modified are undefined.
1010 */
1011 int
1012 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1013 struct drm_file *file)
1014 {
1015 struct drm_i915_gem_pwrite *args = data;
1016 struct drm_i915_gem_object *obj;
1017 int ret;
1018
1019 if (args->size == 0)
1020 return 0;
1021
1022 if (!access_ok(VERIFY_READ,
1023 (char __user *)(uintptr_t)args->data_ptr,
1024 args->size))
1025 return -EFAULT;
1026
1027 #ifndef __NetBSD__ /* XXX prefault */
1028 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
1029 args->size);
1030 if (ret)
1031 return -EFAULT;
1032 #endif
1033
1034 ret = i915_mutex_lock_interruptible(dev);
1035 if (ret)
1036 return ret;
1037
1038 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1039 if (&obj->base == NULL) {
1040 ret = -ENOENT;
1041 goto unlock;
1042 }
1043
1044 /* Bounds check destination. */
1045 if (args->offset > obj->base.size ||
1046 args->size > obj->base.size - args->offset) {
1047 ret = -EINVAL;
1048 goto out;
1049 }
1050
1051 #ifndef __NetBSD__ /* XXX drm prime */
1052 /* prime objects have no backing filp to GEM pread/pwrite
1053 * pages from.
1054 */
1055 if (!obj->base.filp) {
1056 ret = -EINVAL;
1057 goto out;
1058 }
1059 #endif
1060
1061 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1062
1063 ret = -EFAULT;
1064 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1065 * it would end up going through the fenced access, and we'll get
1066 * different detiling behavior between reading and writing.
1067 * pread/pwrite currently are reading and writing from the CPU
1068 * perspective, requiring manual detiling by the client.
1069 */
1070 if (obj->phys_obj) {
1071 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1072 goto out;
1073 }
1074
1075 if (obj->cache_level == I915_CACHE_NONE &&
1076 obj->tiling_mode == I915_TILING_NONE &&
1077 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1078 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1079 /* Note that the gtt paths might fail with non-page-backed user
1080 * pointers (e.g. gtt mappings when moving data between
1081 * textures). Fallback to the shmem path in that case. */
1082 }
1083
1084 if (ret == -EFAULT || ret == -ENOSPC)
1085 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1086
1087 out:
1088 drm_gem_object_unreference(&obj->base);
1089 unlock:
1090 mutex_unlock(&dev->struct_mutex);
1091 return ret;
1092 }
1093
1094 int
1095 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1096 bool interruptible)
1097 {
1098 if (atomic_read(&dev_priv->mm.wedged)) {
1099 struct completion *x = &dev_priv->error_completion;
1100 bool recovery_complete;
1101 #ifndef __NetBSD__
1102 unsigned long flags;
1103 #endif
1104
1105 #ifdef __NetBSD__
1106 /*
1107 * XXX This is a horrible kludge. Reading internal
1108 * fields is no good, nor is reading them unlocked, and
1109 * neither is locking it and then unlocking it before
1110 * making a decision.
1111 */
1112 recovery_complete = x->c_done > 0;
1113 #else
1114 /* Give the error handler a chance to run. */
1115 spin_lock_irqsave(&x->wait.lock, flags);
1116 recovery_complete = x->done > 0;
1117 spin_unlock_irqrestore(&x->wait.lock, flags);
1118 #endif
1119
1120 /* Non-interruptible callers can't handle -EAGAIN, hence return
1121 * -EIO unconditionally for these. */
1122 if (!interruptible)
1123 return -EIO;
1124
1125 /* Recovery complete, but still wedged means reset failure. */
1126 if (recovery_complete)
1127 return -EIO;
1128
1129 return -EAGAIN;
1130 }
1131
1132 return 0;
1133 }
1134
1135 /*
1136 * Compare seqno against outstanding lazy request. Emit a request if they are
1137 * equal.
1138 */
1139 static int
1140 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1141 {
1142 int ret;
1143
1144 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1145
1146 ret = 0;
1147 if (seqno == ring->outstanding_lazy_request)
1148 ret = i915_add_request(ring, NULL, NULL);
1149
1150 return ret;
1151 }
1152
1153 /**
1154 * __wait_seqno - wait until execution of seqno has finished
1155 * @ring: the ring expected to report seqno
1156 * @seqno: duh!
1157 * @interruptible: do an interruptible wait (normally yes)
1158 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1159 *
1160 * Returns 0 if the seqno was found within the alloted time. Else returns the
1161 * errno with remaining time filled in timeout argument.
1162 */
1163 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1164 bool interruptible, struct timespec *timeout)
1165 {
1166 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1167 struct timespec before, now, wait_time={1,0};
1168 unsigned long timeout_jiffies;
1169 long end;
1170 bool wait_forever = true;
1171 int ret;
1172
1173 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1174 return 0;
1175
1176 trace_i915_gem_request_wait_begin(ring, seqno);
1177
1178 if (timeout != NULL) {
1179 wait_time = *timeout;
1180 wait_forever = false;
1181 }
1182
1183 timeout_jiffies = timespec_to_jiffies(&wait_time);
1184
1185 if (WARN_ON(!ring->irq_get(ring)))
1186 return -ENODEV;
1187
1188 /* Record current time in case interrupted by signal, or wedged * */
1189 getrawmonotonic(&before);
1190
1191 #define EXIT_COND \
1192 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1193 atomic_read(&dev_priv->mm.wedged))
1194 do {
1195 #ifdef __NetBSD__
1196 /*
1197 * XXX This wait is always interruptible; we should
1198 * heed the flag `interruptible'.
1199 */
1200 DRM_TIMED_WAIT_UNTIL(end, &ring->irq_queue,
1201 &ring->dev->struct_mutex,
1202 timeout_jiffies,
1203 EXIT_COND);
1204 #else
1205 if (interruptible)
1206 end = wait_event_interruptible_timeout(ring->irq_queue,
1207 EXIT_COND,
1208 timeout_jiffies);
1209 else
1210 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1211 timeout_jiffies);
1212
1213 #endif
1214 ret = i915_gem_check_wedge(dev_priv, interruptible);
1215 if (ret)
1216 end = ret;
1217 } while (end == 0 && wait_forever);
1218
1219 getrawmonotonic(&now);
1220
1221 ring->irq_put(ring);
1222 trace_i915_gem_request_wait_end(ring, seqno);
1223 #undef EXIT_COND
1224
1225 if (timeout) {
1226 struct timespec sleep_time = timespec_sub(now, before);
1227 *timeout = timespec_sub(*timeout, sleep_time);
1228 }
1229
1230 switch (end) {
1231 case -EIO:
1232 case -EAGAIN: /* Wedged */
1233 case -ERESTARTSYS: /* Signal */
1234 return (int)end;
1235 case 0: /* Timeout */
1236 if (timeout)
1237 set_normalized_timespec(timeout, 0, 0);
1238 return -ETIME;
1239 default: /* Completed */
1240 WARN_ON(end < 0); /* We're not aware of other errors */
1241 return 0;
1242 }
1243 }
1244
1245 /**
1246 * Waits for a sequence number to be signaled, and cleans up the
1247 * request and object lists appropriately for that event.
1248 */
1249 int
1250 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1251 {
1252 struct drm_device *dev = ring->dev;
1253 struct drm_i915_private *dev_priv = dev->dev_private;
1254 bool interruptible = dev_priv->mm.interruptible;
1255 int ret;
1256
1257 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1258 BUG_ON(seqno == 0);
1259
1260 ret = i915_gem_check_wedge(dev_priv, interruptible);
1261 if (ret)
1262 return ret;
1263
1264 ret = i915_gem_check_olr(ring, seqno);
1265 if (ret)
1266 return ret;
1267
1268 return __wait_seqno(ring, seqno, interruptible, NULL);
1269 }
1270
1271 /**
1272 * Ensures that all rendering to the object has completed and the object is
1273 * safe to unbind from the GTT or access from the CPU.
1274 */
1275 static __must_check int
1276 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1277 bool readonly)
1278 {
1279 struct intel_ring_buffer *ring = obj->ring;
1280 u32 seqno;
1281 int ret;
1282
1283 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1284 if (seqno == 0)
1285 return 0;
1286
1287 ret = i915_wait_seqno(ring, seqno);
1288 if (ret)
1289 return ret;
1290
1291 i915_gem_retire_requests_ring(ring);
1292
1293 /* Manually manage the write flush as we may have not yet
1294 * retired the buffer.
1295 */
1296 if (obj->last_write_seqno &&
1297 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1298 obj->last_write_seqno = 0;
1299 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1300 }
1301
1302 return 0;
1303 }
1304
1305 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1306 * as the object state may change during this call.
1307 */
1308 static __must_check int
1309 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1310 bool readonly)
1311 {
1312 struct drm_device *dev = obj->base.dev;
1313 struct drm_i915_private *dev_priv = dev->dev_private;
1314 struct intel_ring_buffer *ring = obj->ring;
1315 u32 seqno;
1316 int ret;
1317
1318 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1319 BUG_ON(!dev_priv->mm.interruptible);
1320
1321 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1322 if (seqno == 0)
1323 return 0;
1324
1325 ret = i915_gem_check_wedge(dev_priv, true);
1326 if (ret)
1327 return ret;
1328
1329 ret = i915_gem_check_olr(ring, seqno);
1330 if (ret)
1331 return ret;
1332
1333 mutex_unlock(&dev->struct_mutex);
1334 ret = __wait_seqno(ring, seqno, true, NULL);
1335 mutex_lock(&dev->struct_mutex);
1336
1337 i915_gem_retire_requests_ring(ring);
1338
1339 /* Manually manage the write flush as we may have not yet
1340 * retired the buffer.
1341 */
1342 if (obj->last_write_seqno &&
1343 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1344 obj->last_write_seqno = 0;
1345 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1346 }
1347
1348 return ret;
1349 }
1350
1351 /**
1352 * Called when user space prepares to use an object with the CPU, either
1353 * through the mmap ioctl's mapping or a GTT mapping.
1354 */
1355 int
1356 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1357 struct drm_file *file)
1358 {
1359 struct drm_i915_gem_set_domain *args = data;
1360 struct drm_i915_gem_object *obj;
1361 uint32_t read_domains = args->read_domains;
1362 uint32_t write_domain = args->write_domain;
1363 int ret;
1364
1365 /* Only handle setting domains to types used by the CPU. */
1366 if (write_domain & I915_GEM_GPU_DOMAINS)
1367 return -EINVAL;
1368
1369 if (read_domains & I915_GEM_GPU_DOMAINS)
1370 return -EINVAL;
1371
1372 /* Having something in the write domain implies it's in the read
1373 * domain, and only that read domain. Enforce that in the request.
1374 */
1375 if (write_domain != 0 && read_domains != write_domain)
1376 return -EINVAL;
1377
1378 ret = i915_mutex_lock_interruptible(dev);
1379 if (ret)
1380 return ret;
1381
1382 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1383 if (&obj->base == NULL) {
1384 ret = -ENOENT;
1385 goto unlock;
1386 }
1387
1388 /* Try to flush the object off the GPU without holding the lock.
1389 * We will repeat the flush holding the lock in the normal manner
1390 * to catch cases where we are gazumped.
1391 */
1392 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1393 if (ret)
1394 goto unref;
1395
1396 if (read_domains & I915_GEM_DOMAIN_GTT) {
1397 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1398
1399 /* Silently promote "you're not bound, there was nothing to do"
1400 * to success, since the client was just asking us to
1401 * make sure everything was done.
1402 */
1403 if (ret == -EINVAL)
1404 ret = 0;
1405 } else {
1406 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1407 }
1408
1409 unref:
1410 drm_gem_object_unreference(&obj->base);
1411 unlock:
1412 mutex_unlock(&dev->struct_mutex);
1413 return ret;
1414 }
1415
1416 /**
1417 * Called when user space has done writes to this buffer
1418 */
1419 int
1420 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1421 struct drm_file *file)
1422 {
1423 struct drm_i915_gem_sw_finish *args = data;
1424 struct drm_i915_gem_object *obj;
1425 int ret = 0;
1426
1427 ret = i915_mutex_lock_interruptible(dev);
1428 if (ret)
1429 return ret;
1430
1431 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1432 if (&obj->base == NULL) {
1433 ret = -ENOENT;
1434 goto unlock;
1435 }
1436
1437 /* Pinned buffers may be scanout, so flush the cache */
1438 if (obj->pin_count)
1439 i915_gem_object_flush_cpu_write_domain(obj);
1440
1441 drm_gem_object_unreference(&obj->base);
1442 unlock:
1443 mutex_unlock(&dev->struct_mutex);
1444 return ret;
1445 }
1446
1447 /**
1448 * Maps the contents of an object, returning the address it is mapped
1449 * into.
1450 *
1451 * While the mapping holds a reference on the contents of the object, it doesn't
1452 * imply a ref on the object itself.
1453 */
1454 int
1455 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1456 struct drm_file *file)
1457 {
1458 struct drm_i915_gem_mmap *args = data;
1459 struct drm_gem_object *obj;
1460 unsigned long addr;
1461 #ifdef __NetBSD__
1462 int ret;
1463 #endif
1464
1465 obj = drm_gem_object_lookup(dev, file, args->handle);
1466 if (obj == NULL)
1467 return -ENOENT;
1468
1469 #ifndef __NetBSD__ /* XXX drm prime */
1470 /* prime objects have no backing filp to GEM mmap
1471 * pages from.
1472 */
1473 if (!obj->filp) {
1474 drm_gem_object_unreference_unlocked(obj);
1475 return -EINVAL;
1476 }
1477 #endif
1478
1479 #ifdef __NetBSD__
1480 addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
1481 (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
1482 /* XXX errno NetBSD->Linux */
1483 ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
1484 obj->gemo_shm_uao, args->offset, 0,
1485 UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
1486 (VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
1487 UVM_FLAG_COPYONW));
1488 if (ret)
1489 return ret;
1490 #else
1491 addr = vm_mmap(obj->filp, 0, args->size,
1492 PROT_READ | PROT_WRITE, MAP_SHARED,
1493 args->offset);
1494 drm_gem_object_unreference_unlocked(obj);
1495 if (IS_ERR((void *)addr))
1496 return addr;
1497 #endif
1498
1499 args->addr_ptr = (uint64_t) addr;
1500
1501 return 0;
1502 }
1503
1504 #ifdef __NetBSD__ /* XXX gem gtt fault */
1505 static int i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
1506 struct vm_page **, int, int, vm_prot_t, int, paddr_t);
1507
1508 int
1509 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1510 int npages, int centeridx, vm_prot_t access_type, int flags)
1511 {
1512 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1513 struct drm_gem_object *gem_obj =
1514 container_of(uobj, struct drm_gem_object, gemo_uvmobj);
1515 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
1516 struct drm_device *dev = obj->base.dev;
1517 struct drm_i915_private *dev_priv = dev->dev_private;
1518 pgoff_t page_offset;
1519 int ret = 0;
1520 bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
1521
1522 page_offset = (ufi->entry->offset + (vaddr - ufi->entry->start)) >>
1523 PAGE_SHIFT;
1524
1525 ret = i915_mutex_lock_interruptible(dev);
1526 if (ret)
1527 goto out;
1528
1529 trace_i915_gem_object_fault(obj, page_offset, true, write);
1530
1531 /* Now bind it into the GTT if needed */
1532 ret = i915_gem_object_pin(obj, 0, true, false);
1533 if (ret)
1534 goto unlock;
1535
1536 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1537 if (ret)
1538 goto unpin;
1539
1540 ret = i915_gem_object_get_fence(obj);
1541 if (ret)
1542 goto unpin;
1543
1544 obj->fault_mappable = true;
1545
1546 /* Finally, remap it using the new GTT offset */
1547 /* XXX errno NetBSD->Linux */
1548 ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
1549 flags, (dev_priv->mm.gtt_base_addr + obj->gtt_offset));
1550 unpin:
1551 i915_gem_object_unpin(obj);
1552 unlock:
1553 mutex_unlock(&dev->struct_mutex);
1554 out:
1555 return ret;
1556 }
1557
1558 /*
1559 * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
1560 *
1561 * XXX pmap_enter_default instead of pmap_enter because of a problem
1562 * with using weak aliases in kernel modules or something.
1563 */
1564 int pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
1565
1566 static int
1567 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1568 int npages, int centeridx, vm_prot_t access_type, int flags,
1569 paddr_t gtt_paddr)
1570 {
1571 struct vm_map_entry *entry = ufi->entry;
1572 struct uvm_object *uobj = entry->object.uvm_obj;
1573 vaddr_t curr_va;
1574 off_t curr_offset;
1575 paddr_t paddr;
1576 u_int mmapflags;
1577 int lcv, retval;
1578 vm_prot_t mapprot;
1579 UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
1580 UVMHIST_LOG(maphist," flags=%d", flags,0,0,0);
1581
1582 /*
1583 * we do not allow device mappings to be mapped copy-on-write
1584 * so we kill any attempt to do so here.
1585 */
1586
1587 if (UVM_ET_ISCOPYONWRITE(entry)) {
1588 UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
1589 entry->etype, 0,0,0);
1590 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
1591 return(EIO);
1592 }
1593
1594 /*
1595 * now we must determine the offset in udv to use and the VA to
1596 * use for pmap_enter. note that we always use orig_map's pmap
1597 * for pmap_enter (even if we have a submap). since virtual
1598 * addresses in a submap must match the main map, this is ok.
1599 */
1600
1601 /* udv offset = (offset from start of entry) + entry's offset */
1602 curr_offset = entry->offset + (vaddr - entry->start);
1603 /* pmap va = vaddr (virtual address of pps[0]) */
1604 curr_va = vaddr;
1605
1606 /*
1607 * loop over the page range entering in as needed
1608 */
1609
1610 retval = 0;
1611 for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
1612 curr_va += PAGE_SIZE) {
1613 if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
1614 continue;
1615
1616 if (pps[lcv] == PGO_DONTCARE)
1617 continue;
1618
1619 paddr = (gtt_paddr + curr_offset);
1620 mmapflags = 0;
1621 mapprot = ufi->entry->protection;
1622 UVMHIST_LOG(maphist,
1623 " MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
1624 ufi->orig_map->pmap, curr_va, paddr, mapprot);
1625 if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
1626 PMAP_CANFAIL | mapprot | mmapflags) != 0) {
1627 /*
1628 * pmap_enter() didn't have the resource to
1629 * enter this mapping. Unlock everything,
1630 * wait for the pagedaemon to free up some
1631 * pages, and then tell uvm_fault() to start
1632 * the fault again.
1633 *
1634 * XXX Needs some rethinking for the PGO_ALLPAGES
1635 * XXX case.
1636 */
1637 pmap_update(ufi->orig_map->pmap); /* sync what we have so far */
1638 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap,
1639 uobj);
1640 uvm_wait("i915flt");
1641 return (ERESTART);
1642 }
1643 }
1644
1645 pmap_update(ufi->orig_map->pmap);
1646 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
1647 return (retval);
1648 }
1649 #else
1650 /**
1651 * i915_gem_fault - fault a page into the GTT
1652 * vma: VMA in question
1653 * vmf: fault info
1654 *
1655 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1656 * from userspace. The fault handler takes care of binding the object to
1657 * the GTT (if needed), allocating and programming a fence register (again,
1658 * only if needed based on whether the old reg is still valid or the object
1659 * is tiled) and inserting a new PTE into the faulting process.
1660 *
1661 * Note that the faulting process may involve evicting existing objects
1662 * from the GTT and/or fence registers to make room. So performance may
1663 * suffer if the GTT working set is large or there are few fence registers
1664 * left.
1665 */
1666 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1667 {
1668 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1669 struct drm_device *dev = obj->base.dev;
1670 drm_i915_private_t *dev_priv = dev->dev_private;
1671 pgoff_t page_offset;
1672 unsigned long pfn;
1673 int ret = 0;
1674 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1675
1676 /* We don't use vmf->pgoff since that has the fake offset */
1677 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1678 PAGE_SHIFT;
1679
1680 ret = i915_mutex_lock_interruptible(dev);
1681 if (ret)
1682 goto out;
1683
1684 trace_i915_gem_object_fault(obj, page_offset, true, write);
1685
1686 /* Now bind it into the GTT if needed */
1687 ret = i915_gem_object_pin(obj, 0, true, false);
1688 if (ret)
1689 goto unlock;
1690
1691 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1692 if (ret)
1693 goto unpin;
1694
1695 ret = i915_gem_object_get_fence(obj);
1696 if (ret)
1697 goto unpin;
1698
1699 obj->fault_mappable = true;
1700
1701 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1702 page_offset;
1703
1704 /* Finally, remap it using the new GTT offset */
1705 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1706 unpin:
1707 i915_gem_object_unpin(obj);
1708 unlock:
1709 mutex_unlock(&dev->struct_mutex);
1710 out:
1711 switch (ret) {
1712 case -EIO:
1713 /* If this -EIO is due to a gpu hang, give the reset code a
1714 * chance to clean up the mess. Otherwise return the proper
1715 * SIGBUS. */
1716 if (!atomic_read(&dev_priv->mm.wedged))
1717 return VM_FAULT_SIGBUS;
1718 case -EAGAIN:
1719 /* Give the error handler a chance to run and move the
1720 * objects off the GPU active list. Next time we service the
1721 * fault, we should be able to transition the page into the
1722 * GTT without touching the GPU (and so avoid further
1723 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1724 * with coherency, just lost writes.
1725 */
1726 set_need_resched();
1727 case 0:
1728 case -ERESTARTSYS:
1729 case -EINTR:
1730 case -EBUSY:
1731 /*
1732 * EBUSY is ok: this just means that another thread
1733 * already did the job.
1734 */
1735 return VM_FAULT_NOPAGE;
1736 case -ENOMEM:
1737 return VM_FAULT_OOM;
1738 case -ENOSPC:
1739 return VM_FAULT_SIGBUS;
1740 default:
1741 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1742 return VM_FAULT_SIGBUS;
1743 }
1744 }
1745 #endif
1746
1747 /**
1748 * i915_gem_release_mmap - remove physical page mappings
1749 * @obj: obj in question
1750 *
1751 * Preserve the reservation of the mmapping with the DRM core code, but
1752 * relinquish ownership of the pages back to the system.
1753 *
1754 * It is vital that we remove the page mapping if we have mapped a tiled
1755 * object through the GTT and then lose the fence register due to
1756 * resource pressure. Similarly if the object has been moved out of the
1757 * aperture, than pages mapped into userspace must be revoked. Removing the
1758 * mapping will then trigger a page fault on the next user access, allowing
1759 * fixup by i915_gem_fault().
1760 */
1761 void
1762 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1763 {
1764 if (!obj->fault_mappable)
1765 return;
1766
1767 #ifdef __NetBSD__ /* XXX gem gtt fault */
1768 {
1769 struct vm_page *page;
1770
1771 KASSERT(obj->pages != NULL);
1772 /* Force a fresh fault for each page. */
1773 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
1774 pmap_page_protect(page, VM_PROT_NONE);
1775 }
1776 #else
1777 if (obj->base.dev->dev_mapping)
1778 unmap_mapping_range(obj->base.dev->dev_mapping,
1779 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1780 obj->base.size, 1);
1781 #endif
1782
1783 obj->fault_mappable = false;
1784 }
1785
1786 static uint32_t
1787 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1788 {
1789 uint32_t gtt_size;
1790
1791 if (INTEL_INFO(dev)->gen >= 4 ||
1792 tiling_mode == I915_TILING_NONE)
1793 return size;
1794
1795 /* Previous chips need a power-of-two fence region when tiling */
1796 if (INTEL_INFO(dev)->gen == 3)
1797 gtt_size = 1024*1024;
1798 else
1799 gtt_size = 512*1024;
1800
1801 while (gtt_size < size)
1802 gtt_size <<= 1;
1803
1804 return gtt_size;
1805 }
1806
1807 /**
1808 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1809 * @obj: object to check
1810 *
1811 * Return the required GTT alignment for an object, taking into account
1812 * potential fence register mapping.
1813 */
1814 static uint32_t
1815 i915_gem_get_gtt_alignment(struct drm_device *dev,
1816 uint32_t size,
1817 int tiling_mode)
1818 {
1819 /*
1820 * Minimum alignment is 4k (GTT page size), but might be greater
1821 * if a fence register is needed for the object.
1822 */
1823 if (INTEL_INFO(dev)->gen >= 4 ||
1824 tiling_mode == I915_TILING_NONE)
1825 return 4096;
1826
1827 /*
1828 * Previous chips need to be aligned to the size of the smallest
1829 * fence register that can contain the object.
1830 */
1831 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1832 }
1833
1834 /**
1835 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1836 * unfenced object
1837 * @dev: the device
1838 * @size: size of the object
1839 * @tiling_mode: tiling mode of the object
1840 *
1841 * Return the required GTT alignment for an object, only taking into account
1842 * unfenced tiled surface requirements.
1843 */
1844 uint32_t
1845 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1846 uint32_t size,
1847 int tiling_mode)
1848 {
1849 /*
1850 * Minimum alignment is 4k (GTT page size) for sane hw.
1851 */
1852 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1853 tiling_mode == I915_TILING_NONE)
1854 return 4096;
1855
1856 /* Previous hardware however needs to be aligned to a power-of-two
1857 * tile height. The simplest method for determining this is to reuse
1858 * the power-of-tile object size.
1859 */
1860 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1861 }
1862
1863 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1864 {
1865 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1866 int ret;
1867
1868 if (obj->base.map_list.map)
1869 return 0;
1870
1871 dev_priv->mm.shrinker_no_lock_stealing = true;
1872
1873 ret = drm_gem_create_mmap_offset(&obj->base);
1874 if (ret != -ENOSPC)
1875 goto out;
1876
1877 /* Badly fragmented mmap space? The only way we can recover
1878 * space is by destroying unwanted objects. We can't randomly release
1879 * mmap_offsets as userspace expects them to be persistent for the
1880 * lifetime of the objects. The closest we can is to release the
1881 * offsets on purgeable objects by truncating it and marking it purged,
1882 * which prevents userspace from ever using that object again.
1883 */
1884 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1885 ret = drm_gem_create_mmap_offset(&obj->base);
1886 if (ret != -ENOSPC)
1887 goto out;
1888
1889 i915_gem_shrink_all(dev_priv);
1890 ret = drm_gem_create_mmap_offset(&obj->base);
1891 out:
1892 dev_priv->mm.shrinker_no_lock_stealing = false;
1893
1894 return ret;
1895 }
1896
1897 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1898 {
1899 if (!obj->base.map_list.map)
1900 return;
1901
1902 drm_gem_free_mmap_offset(&obj->base);
1903 }
1904
1905 int
1906 i915_gem_mmap_gtt(struct drm_file *file,
1907 struct drm_device *dev,
1908 uint32_t handle,
1909 uint64_t *offset)
1910 {
1911 struct drm_i915_private *dev_priv = dev->dev_private;
1912 struct drm_i915_gem_object *obj;
1913 int ret;
1914
1915 ret = i915_mutex_lock_interruptible(dev);
1916 if (ret)
1917 return ret;
1918
1919 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1920 if (&obj->base == NULL) {
1921 ret = -ENOENT;
1922 goto unlock;
1923 }
1924
1925 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1926 ret = -E2BIG;
1927 goto out;
1928 }
1929
1930 if (obj->madv != I915_MADV_WILLNEED) {
1931 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1932 ret = -EINVAL;
1933 goto out;
1934 }
1935
1936 ret = i915_gem_object_create_mmap_offset(obj);
1937 if (ret)
1938 goto out;
1939
1940 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1941
1942 out:
1943 drm_gem_object_unreference(&obj->base);
1944 unlock:
1945 mutex_unlock(&dev->struct_mutex);
1946 return ret;
1947 }
1948
1949 /**
1950 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1951 * @dev: DRM device
1952 * @data: GTT mapping ioctl data
1953 * @file: GEM object info
1954 *
1955 * Simply returns the fake offset to userspace so it can mmap it.
1956 * The mmap call will end up in drm_gem_mmap(), which will set things
1957 * up so we can get faults in the handler above.
1958 *
1959 * The fault handler will take care of binding the object into the GTT
1960 * (since it may have been evicted to make room for something), allocating
1961 * a fence register, and mapping the appropriate aperture address into
1962 * userspace.
1963 */
1964 int
1965 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1966 struct drm_file *file)
1967 {
1968 struct drm_i915_gem_mmap_gtt *args = data;
1969
1970 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1971 }
1972
1973 /* Immediately discard the backing storage */
1974 static void
1975 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1976 {
1977 #ifndef __NetBSD__
1978 struct inode *inode;
1979 #endif
1980
1981 i915_gem_object_free_mmap_offset(obj);
1982
1983 #ifdef __NetBSD__
1984 {
1985 struct uvm_object *const uobj = obj->base.gemo_shm_uao;
1986
1987 if (uobj != NULL)
1988 /* XXX Calling pgo_put like this is bogus. */
1989 (*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
1990 (PGO_ALLPAGES | PGO_FREE));
1991 }
1992 #else
1993 if (obj->base.filp == NULL)
1994 return;
1995
1996 /* Our goal here is to return as much of the memory as
1997 * is possible back to the system as we are called from OOM.
1998 * To do this we must instruct the shmfs to drop all of its
1999 * backing pages, *now*.
2000 */
2001 inode = obj->base.filp->f_path.dentry->d_inode;
2002 shmem_truncate_range(inode, 0, (loff_t)-1);
2003 #endif
2004
2005 obj->madv = __I915_MADV_PURGED;
2006 }
2007
2008 static inline int
2009 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
2010 {
2011 return obj->madv == I915_MADV_DONTNEED;
2012 }
2013
2014 #ifdef __NetBSD__
2015 static void
2016 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2017 {
2018 struct drm_device *const dev = obj->base.dev;
2019 int ret;
2020
2021 /* XXX Cargo-culted from the Linux code. */
2022 BUG_ON(obj->madv == __I915_MADV_PURGED);
2023
2024 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2025 if (ret) {
2026 WARN_ON(ret != -EIO);
2027 i915_gem_clflush_object(obj);
2028 obj->base.read_domains = obj->base.write_domain =
2029 I915_GEM_DOMAIN_CPU;
2030 }
2031
2032 if (i915_gem_object_needs_bit17_swizzle(obj))
2033 i915_gem_object_save_bit_17_swizzle(obj);
2034
2035 /* XXX Maintain dirty flag? */
2036
2037 bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
2038 bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2039 obj->base.size, obj->pages, obj->igo_nsegs);
2040
2041 kfree(obj->pages);
2042 }
2043 #else
2044 static void
2045 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2046 {
2047 int page_count = obj->base.size / PAGE_SIZE;
2048 struct scatterlist *sg;
2049 int ret, i;
2050
2051 BUG_ON(obj->madv == __I915_MADV_PURGED);
2052
2053 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2054 if (ret) {
2055 /* In the event of a disaster, abandon all caches and
2056 * hope for the best.
2057 */
2058 WARN_ON(ret != -EIO);
2059 i915_gem_clflush_object(obj);
2060 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2061 }
2062
2063 if (i915_gem_object_needs_bit17_swizzle(obj))
2064 i915_gem_object_save_bit_17_swizzle(obj);
2065
2066 if (obj->madv == I915_MADV_DONTNEED)
2067 obj->dirty = 0;
2068
2069 for_each_sg(obj->pages->sgl, sg, page_count, i) {
2070 struct page *page = sg_page(sg);
2071
2072 if (obj->dirty)
2073 set_page_dirty(page);
2074
2075 if (obj->madv == I915_MADV_WILLNEED)
2076 mark_page_accessed(page);
2077
2078 page_cache_release(page);
2079 }
2080 obj->dirty = 0;
2081
2082 sg_free_table(obj->pages);
2083 kfree(obj->pages);
2084 }
2085 #endif
2086
2087 static int
2088 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2089 {
2090 const struct drm_i915_gem_object_ops *ops = obj->ops;
2091
2092 if (obj->pages == NULL)
2093 return 0;
2094
2095 BUG_ON(obj->gtt_space);
2096
2097 if (obj->pages_pin_count)
2098 return -EBUSY;
2099
2100 /* ->put_pages might need to allocate memory for the bit17 swizzle
2101 * array, hence protect them from being reaped by removing them from gtt
2102 * lists early. */
2103 list_del(&obj->gtt_list);
2104
2105 ops->put_pages(obj);
2106 obj->pages = NULL;
2107
2108 if (i915_gem_object_is_purgeable(obj))
2109 i915_gem_object_truncate(obj);
2110
2111 return 0;
2112 }
2113
2114 static long
2115 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
2116 bool purgeable_only)
2117 {
2118 struct drm_i915_gem_object *obj, *next;
2119 long count = 0;
2120
2121 list_for_each_entry_safe(obj, next,
2122 &dev_priv->mm.unbound_list,
2123 gtt_list) {
2124 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2125 i915_gem_object_put_pages(obj) == 0) {
2126 count += obj->base.size >> PAGE_SHIFT;
2127 if (count >= target)
2128 return count;
2129 }
2130 }
2131
2132 list_for_each_entry_safe(obj, next,
2133 &dev_priv->mm.inactive_list,
2134 mm_list) {
2135 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2136 i915_gem_object_unbind(obj) == 0 &&
2137 i915_gem_object_put_pages(obj) == 0) {
2138 count += obj->base.size >> PAGE_SHIFT;
2139 if (count >= target)
2140 return count;
2141 }
2142 }
2143
2144 return count;
2145 }
2146
2147 static long
2148 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2149 {
2150 return __i915_gem_shrink(dev_priv, target, true);
2151 }
2152
2153 static void
2154 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2155 {
2156 struct drm_i915_gem_object *obj, *next;
2157
2158 i915_gem_evict_everything(dev_priv->dev);
2159
2160 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
2161 i915_gem_object_put_pages(obj);
2162 }
2163
2164 #ifdef __NetBSD__
2165 static int
2166 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2167 {
2168 struct drm_device *const dev = obj->base.dev;
2169 struct vm_page *page;
2170 int error;
2171
2172 /* XXX Cargo-culted from the Linux code. */
2173 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2174 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2175
2176 KASSERT(obj->pages == NULL);
2177 TAILQ_INIT(&obj->igo_pageq);
2178 obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
2179 sizeof(obj->pages[0]), GFP_KERNEL);
2180 if (obj->pages == NULL) {
2181 error = -ENOMEM;
2182 goto fail0;
2183 }
2184
2185 /* XXX errno NetBSD->Linux */
2186 error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
2187 0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
2188 (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
2189 if (error)
2190 /* XXX Try i915_gem_purge, i915_gem_shrink_all. */
2191 goto fail1;
2192 KASSERT(0 < obj->igo_nsegs);
2193 KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
2194
2195 /*
2196 * Check that the paddrs will fit in 40 bits.
2197 *
2198 * XXX This is wrong; we ought to pass this constraint to
2199 * bus_dmamem_wire_uvm_object instead.
2200 */
2201 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
2202 if (VM_PAGE_TO_PHYS(page) & ~0xffffffffffULL) {
2203 DRM_ERROR("GEM physical address exceeds 40 bits"
2204 ": %"PRIxMAX"\n",
2205 (uintmax_t)VM_PAGE_TO_PHYS(page));
2206 goto fail2;
2207 }
2208 }
2209
2210 /* XXX errno NetBSD->Linux */
2211 error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
2212 PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
2213 if (error)
2214 goto fail2;
2215
2216 /* XXX Cargo-culted from the Linux code. */
2217 if (i915_gem_object_needs_bit17_swizzle(obj))
2218 i915_gem_object_do_bit_17_swizzle(obj);
2219
2220 /* Success! */
2221 return 0;
2222
2223 fail2: bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2224 obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
2225 fail1: kfree(obj->pages);
2226 obj->pages = NULL;
2227 fail0: return error;
2228 }
2229 #else
2230 static int
2231 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2232 {
2233 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2234 int page_count, i;
2235 struct address_space *mapping;
2236 struct sg_table *st;
2237 struct scatterlist *sg;
2238 struct page *page;
2239 gfp_t gfp;
2240
2241 /* Assert that the object is not currently in any GPU domain. As it
2242 * wasn't in the GTT, there shouldn't be any way it could have been in
2243 * a GPU cache
2244 */
2245 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2246 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2247
2248 st = kmalloc(sizeof(*st), GFP_KERNEL);
2249 if (st == NULL)
2250 return -ENOMEM;
2251
2252 page_count = obj->base.size / PAGE_SIZE;
2253 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2254 sg_free_table(st);
2255 kfree(st);
2256 return -ENOMEM;
2257 }
2258
2259 /* Get the list of pages out of our struct file. They'll be pinned
2260 * at this point until we release them.
2261 *
2262 * Fail silently without starting the shrinker
2263 */
2264 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
2265 gfp = mapping_gfp_mask(mapping);
2266 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2267 gfp &= ~(__GFP_IO | __GFP_WAIT);
2268 for_each_sg(st->sgl, sg, page_count, i) {
2269 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2270 if (IS_ERR(page)) {
2271 i915_gem_purge(dev_priv, page_count);
2272 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2273 }
2274 if (IS_ERR(page)) {
2275 /* We've tried hard to allocate the memory by reaping
2276 * our own buffer, now let the real VM do its job and
2277 * go down in flames if truly OOM.
2278 */
2279 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2280 gfp |= __GFP_IO | __GFP_WAIT;
2281
2282 i915_gem_shrink_all(dev_priv);
2283 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284 if (IS_ERR(page))
2285 goto err_pages;
2286
2287 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2288 gfp &= ~(__GFP_IO | __GFP_WAIT);
2289 }
2290
2291 sg_set_page(sg, page, PAGE_SIZE, 0);
2292 }
2293
2294 obj->pages = st;
2295
2296 if (i915_gem_object_needs_bit17_swizzle(obj))
2297 i915_gem_object_do_bit_17_swizzle(obj);
2298
2299 return 0;
2300
2301 err_pages:
2302 for_each_sg(st->sgl, sg, i, page_count)
2303 page_cache_release(sg_page(sg));
2304 sg_free_table(st);
2305 kfree(st);
2306 return PTR_ERR(page);
2307 }
2308 #endif
2309
2310 /* Ensure that the associated pages are gathered from the backing storage
2311 * and pinned into our object. i915_gem_object_get_pages() may be called
2312 * multiple times before they are released by a single call to
2313 * i915_gem_object_put_pages() - once the pages are no longer referenced
2314 * either as a result of memory pressure (reaping pages under the shrinker)
2315 * or as the object is itself released.
2316 */
2317 int
2318 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2319 {
2320 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2321 const struct drm_i915_gem_object_ops *ops = obj->ops;
2322 int ret;
2323
2324 if (obj->pages)
2325 return 0;
2326
2327 BUG_ON(obj->pages_pin_count);
2328
2329 ret = ops->get_pages(obj);
2330 if (ret)
2331 return ret;
2332
2333 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2334 return 0;
2335 }
2336
2337 void
2338 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2339 struct intel_ring_buffer *ring)
2340 {
2341 struct drm_device *dev = obj->base.dev;
2342 struct drm_i915_private *dev_priv = dev->dev_private;
2343 u32 seqno = intel_ring_get_seqno(ring);
2344
2345 BUG_ON(ring == NULL);
2346 obj->ring = ring;
2347
2348 /* Add a reference if we're newly entering the active list. */
2349 if (!obj->active) {
2350 drm_gem_object_reference(&obj->base);
2351 obj->active = 1;
2352 }
2353
2354 /* Move from whatever list we were on to the tail of execution. */
2355 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
2356 list_move_tail(&obj->ring_list, &ring->active_list);
2357
2358 obj->last_read_seqno = seqno;
2359
2360 if (obj->fenced_gpu_access) {
2361 obj->last_fenced_seqno = seqno;
2362
2363 /* Bump MRU to take account of the delayed flush */
2364 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2365 struct drm_i915_fence_reg *reg;
2366
2367 reg = &dev_priv->fence_regs[obj->fence_reg];
2368 list_move_tail(®->lru_list,
2369 &dev_priv->mm.fence_list);
2370 }
2371 }
2372 }
2373
2374 static void
2375 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2376 {
2377 struct drm_device *dev = obj->base.dev;
2378 struct drm_i915_private *dev_priv = dev->dev_private;
2379
2380 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2381 BUG_ON(!obj->active);
2382
2383 if (obj->pin_count) /* are we a framebuffer? */
2384 intel_mark_fb_idle(obj);
2385
2386 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2387
2388 list_del_init(&obj->ring_list);
2389 obj->ring = NULL;
2390
2391 obj->last_read_seqno = 0;
2392 obj->last_write_seqno = 0;
2393 obj->base.write_domain = 0;
2394
2395 obj->last_fenced_seqno = 0;
2396 obj->fenced_gpu_access = false;
2397
2398 obj->active = 0;
2399 drm_gem_object_unreference(&obj->base);
2400
2401 WARN_ON(i915_verify_lists(dev));
2402 }
2403
2404 static int
2405 i915_gem_handle_seqno_wrap(struct drm_device *dev)
2406 {
2407 struct drm_i915_private *dev_priv = dev->dev_private;
2408 struct intel_ring_buffer *ring;
2409 int ret, i, j;
2410
2411 /* The hardware uses various monotonic 32-bit counters, if we
2412 * detect that they will wraparound we need to idle the GPU
2413 * and reset those counters.
2414 */
2415 ret = 0;
2416 for_each_ring(ring, dev_priv, i) {
2417 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2418 ret |= ring->sync_seqno[j] != 0;
2419 }
2420 if (ret == 0)
2421 return ret;
2422
2423 ret = i915_gpu_idle(dev);
2424 if (ret)
2425 return ret;
2426
2427 i915_gem_retire_requests(dev);
2428 for_each_ring(ring, dev_priv, i) {
2429 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2430 ring->sync_seqno[j] = 0;
2431 }
2432
2433 return 0;
2434 }
2435
2436 int
2437 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2438 {
2439 struct drm_i915_private *dev_priv = dev->dev_private;
2440
2441 /* reserve 0 for non-seqno */
2442 if (dev_priv->next_seqno == 0) {
2443 int ret = i915_gem_handle_seqno_wrap(dev);
2444 if (ret)
2445 return ret;
2446
2447 dev_priv->next_seqno = 1;
2448 }
2449
2450 *seqno = dev_priv->next_seqno++;
2451 return 0;
2452 }
2453
2454 int
2455 i915_add_request(struct intel_ring_buffer *ring,
2456 struct drm_file *file,
2457 u32 *out_seqno)
2458 {
2459 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2460 struct drm_i915_gem_request *request;
2461 u32 request_ring_position;
2462 int was_empty;
2463 int ret;
2464
2465 /*
2466 * Emit any outstanding flushes - execbuf can fail to emit the flush
2467 * after having emitted the batchbuffer command. Hence we need to fix
2468 * things up similar to emitting the lazy request. The difference here
2469 * is that the flush _must_ happen before the next request, no matter
2470 * what.
2471 */
2472 ret = intel_ring_flush_all_caches(ring);
2473 if (ret)
2474 return ret;
2475
2476 request = kmalloc(sizeof(*request), GFP_KERNEL);
2477 if (request == NULL)
2478 return -ENOMEM;
2479
2480
2481 /* Record the position of the start of the request so that
2482 * should we detect the updated seqno part-way through the
2483 * GPU processing the request, we never over-estimate the
2484 * position of the head.
2485 */
2486 request_ring_position = intel_ring_get_tail(ring);
2487
2488 ret = ring->add_request(ring);
2489 if (ret) {
2490 kfree(request);
2491 return ret;
2492 }
2493
2494 request->seqno = intel_ring_get_seqno(ring);
2495 request->ring = ring;
2496 request->tail = request_ring_position;
2497 request->emitted_jiffies = jiffies;
2498 was_empty = list_empty(&ring->request_list);
2499 list_add_tail(&request->list, &ring->request_list);
2500 request->file_priv = NULL;
2501
2502 if (file) {
2503 struct drm_i915_file_private *file_priv = file->driver_priv;
2504
2505 spin_lock(&file_priv->mm.lock);
2506 request->file_priv = file_priv;
2507 list_add_tail(&request->client_list,
2508 &file_priv->mm.request_list);
2509 spin_unlock(&file_priv->mm.lock);
2510 }
2511
2512 trace_i915_gem_request_add(ring, request->seqno);
2513 ring->outstanding_lazy_request = 0;
2514
2515 if (!dev_priv->mm.suspended) {
2516 if (i915_enable_hangcheck) {
2517 mod_timer(&dev_priv->hangcheck_timer,
2518 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2519 }
2520 if (was_empty) {
2521 queue_delayed_work(dev_priv->wq,
2522 &dev_priv->mm.retire_work,
2523 round_jiffies_up_relative(HZ));
2524 intel_mark_busy(dev_priv->dev);
2525 }
2526 }
2527
2528 if (out_seqno)
2529 *out_seqno = request->seqno;
2530 return 0;
2531 }
2532
2533 static inline void
2534 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2535 {
2536 struct drm_i915_file_private *file_priv = request->file_priv;
2537
2538 if (!file_priv)
2539 return;
2540
2541 spin_lock(&file_priv->mm.lock);
2542 if (request->file_priv) {
2543 list_del(&request->client_list);
2544 request->file_priv = NULL;
2545 }
2546 spin_unlock(&file_priv->mm.lock);
2547 }
2548
2549 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2550 struct intel_ring_buffer *ring)
2551 {
2552 while (!list_empty(&ring->request_list)) {
2553 struct drm_i915_gem_request *request;
2554
2555 request = list_first_entry(&ring->request_list,
2556 struct drm_i915_gem_request,
2557 list);
2558
2559 list_del(&request->list);
2560 i915_gem_request_remove_from_client(request);
2561 kfree(request);
2562 }
2563
2564 while (!list_empty(&ring->active_list)) {
2565 struct drm_i915_gem_object *obj;
2566
2567 obj = list_first_entry(&ring->active_list,
2568 struct drm_i915_gem_object,
2569 ring_list);
2570
2571 i915_gem_object_move_to_inactive(obj);
2572 }
2573 }
2574
2575 static void i915_gem_reset_fences(struct drm_device *dev)
2576 {
2577 struct drm_i915_private *dev_priv = dev->dev_private;
2578 int i;
2579
2580 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2581 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2582
2583 i915_gem_write_fence(dev, i, NULL);
2584
2585 if (reg->obj)
2586 i915_gem_object_fence_lost(reg->obj);
2587
2588 reg->pin_count = 0;
2589 reg->obj = NULL;
2590 INIT_LIST_HEAD(®->lru_list);
2591 }
2592
2593 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2594 }
2595
2596 void i915_gem_reset(struct drm_device *dev)
2597 {
2598 struct drm_i915_private *dev_priv = dev->dev_private;
2599 struct drm_i915_gem_object *obj;
2600 struct intel_ring_buffer *ring;
2601 int i;
2602
2603 for_each_ring(ring, dev_priv, i)
2604 i915_gem_reset_ring_lists(dev_priv, ring);
2605
2606 /* Move everything out of the GPU domains to ensure we do any
2607 * necessary invalidation upon reuse.
2608 */
2609 list_for_each_entry(obj,
2610 &dev_priv->mm.inactive_list,
2611 mm_list)
2612 {
2613 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2614 }
2615
2616 /* The fence registers are invalidated so clear them out */
2617 i915_gem_reset_fences(dev);
2618 }
2619
2620 /**
2621 * This function clears the request list as sequence numbers are passed.
2622 */
2623 void
2624 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2625 {
2626 uint32_t seqno;
2627
2628 if (list_empty(&ring->request_list))
2629 return;
2630
2631 WARN_ON(i915_verify_lists(ring->dev));
2632
2633 seqno = ring->get_seqno(ring, true);
2634
2635 while (!list_empty(&ring->request_list)) {
2636 struct drm_i915_gem_request *request;
2637
2638 request = list_first_entry(&ring->request_list,
2639 struct drm_i915_gem_request,
2640 list);
2641
2642 if (!i915_seqno_passed(seqno, request->seqno))
2643 break;
2644
2645 trace_i915_gem_request_retire(ring, request->seqno);
2646 /* We know the GPU must have read the request to have
2647 * sent us the seqno + interrupt, so use the position
2648 * of tail of the request to update the last known position
2649 * of the GPU head.
2650 */
2651 ring->last_retired_head = request->tail;
2652
2653 list_del(&request->list);
2654 i915_gem_request_remove_from_client(request);
2655 kfree(request);
2656 }
2657
2658 /* Move any buffers on the active list that are no longer referenced
2659 * by the ringbuffer to the flushing/inactive lists as appropriate.
2660 */
2661 while (!list_empty(&ring->active_list)) {
2662 struct drm_i915_gem_object *obj;
2663
2664 obj = list_first_entry(&ring->active_list,
2665 struct drm_i915_gem_object,
2666 ring_list);
2667
2668 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2669 break;
2670
2671 i915_gem_object_move_to_inactive(obj);
2672 }
2673
2674 if (unlikely(ring->trace_irq_seqno &&
2675 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2676 ring->irq_put(ring);
2677 ring->trace_irq_seqno = 0;
2678 }
2679
2680 WARN_ON(i915_verify_lists(ring->dev));
2681 }
2682
2683 void
2684 i915_gem_retire_requests(struct drm_device *dev)
2685 {
2686 drm_i915_private_t *dev_priv = dev->dev_private;
2687 struct intel_ring_buffer *ring;
2688 int i;
2689
2690 for_each_ring(ring, dev_priv, i)
2691 i915_gem_retire_requests_ring(ring);
2692 }
2693
2694 static void
2695 i915_gem_retire_work_handler(struct work_struct *work)
2696 {
2697 drm_i915_private_t *dev_priv;
2698 struct drm_device *dev;
2699 struct intel_ring_buffer *ring;
2700 bool idle;
2701 int i;
2702
2703 dev_priv = container_of(work, drm_i915_private_t,
2704 mm.retire_work.work);
2705 dev = dev_priv->dev;
2706
2707 /* Come back later if the device is busy... */
2708 if (!mutex_trylock(&dev->struct_mutex)) {
2709 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2710 round_jiffies_up_relative(HZ));
2711 return;
2712 }
2713
2714 i915_gem_retire_requests(dev);
2715
2716 /* Send a periodic flush down the ring so we don't hold onto GEM
2717 * objects indefinitely.
2718 */
2719 idle = true;
2720 for_each_ring(ring, dev_priv, i) {
2721 if (ring->gpu_caches_dirty)
2722 i915_add_request(ring, NULL, NULL);
2723
2724 idle &= list_empty(&ring->request_list);
2725 }
2726
2727 if (!dev_priv->mm.suspended && !idle)
2728 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2729 round_jiffies_up_relative(HZ));
2730 if (idle)
2731 intel_mark_idle(dev);
2732
2733 mutex_unlock(&dev->struct_mutex);
2734 }
2735
2736 /**
2737 * Ensures that an object will eventually get non-busy by flushing any required
2738 * write domains, emitting any outstanding lazy request and retiring and
2739 * completed requests.
2740 */
2741 static int
2742 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2743 {
2744 int ret;
2745
2746 if (obj->active) {
2747 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2748 if (ret)
2749 return ret;
2750
2751 i915_gem_retire_requests_ring(obj->ring);
2752 }
2753
2754 return 0;
2755 }
2756
2757 /**
2758 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2759 * @DRM_IOCTL_ARGS: standard ioctl arguments
2760 *
2761 * Returns 0 if successful, else an error is returned with the remaining time in
2762 * the timeout parameter.
2763 * -ETIME: object is still busy after timeout
2764 * -ERESTARTSYS: signal interrupted the wait
2765 * -ENONENT: object doesn't exist
2766 * Also possible, but rare:
2767 * -EAGAIN: GPU wedged
2768 * -ENOMEM: damn
2769 * -ENODEV: Internal IRQ fail
2770 * -E?: The add request failed
2771 *
2772 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2773 * non-zero timeout parameter the wait ioctl will wait for the given number of
2774 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2775 * without holding struct_mutex the object may become re-busied before this
2776 * function completes. A similar but shorter * race condition exists in the busy
2777 * ioctl
2778 */
2779 int
2780 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2781 {
2782 struct drm_i915_gem_wait *args = data;
2783 struct drm_i915_gem_object *obj;
2784 struct intel_ring_buffer *ring = NULL;
2785 struct timespec timeout_stack, *timeout = NULL;
2786 u32 seqno = 0;
2787 int ret = 0;
2788
2789 if (args->timeout_ns >= 0) {
2790 timeout_stack = ns_to_timespec(args->timeout_ns);
2791 timeout = &timeout_stack;
2792 }
2793
2794 ret = i915_mutex_lock_interruptible(dev);
2795 if (ret)
2796 return ret;
2797
2798 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2799 if (&obj->base == NULL) {
2800 mutex_unlock(&dev->struct_mutex);
2801 return -ENOENT;
2802 }
2803
2804 /* Need to make sure the object gets inactive eventually. */
2805 ret = i915_gem_object_flush_active(obj);
2806 if (ret)
2807 goto out;
2808
2809 if (obj->active) {
2810 seqno = obj->last_read_seqno;
2811 ring = obj->ring;
2812 }
2813
2814 if (seqno == 0)
2815 goto out;
2816
2817 /* Do this after OLR check to make sure we make forward progress polling
2818 * on this IOCTL with a 0 timeout (like busy ioctl)
2819 */
2820 if (!args->timeout_ns) {
2821 ret = -ETIME;
2822 goto out;
2823 }
2824
2825 drm_gem_object_unreference(&obj->base);
2826 mutex_unlock(&dev->struct_mutex);
2827
2828 ret = __wait_seqno(ring, seqno, true, timeout);
2829 if (timeout) {
2830 WARN_ON(!timespec_valid(timeout));
2831 args->timeout_ns = timespec_to_ns(timeout);
2832 }
2833 return ret;
2834
2835 out:
2836 drm_gem_object_unreference(&obj->base);
2837 mutex_unlock(&dev->struct_mutex);
2838 return ret;
2839 }
2840
2841 /**
2842 * i915_gem_object_sync - sync an object to a ring.
2843 *
2844 * @obj: object which may be in use on another ring.
2845 * @to: ring we wish to use the object on. May be NULL.
2846 *
2847 * This code is meant to abstract object synchronization with the GPU.
2848 * Calling with NULL implies synchronizing the object with the CPU
2849 * rather than a particular GPU ring.
2850 *
2851 * Returns 0 if successful, else propagates up the lower layer error.
2852 */
2853 int
2854 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2855 struct intel_ring_buffer *to)
2856 {
2857 struct intel_ring_buffer *from = obj->ring;
2858 u32 seqno;
2859 int ret, idx;
2860
2861 if (from == NULL || to == from)
2862 return 0;
2863
2864 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2865 return i915_gem_object_wait_rendering(obj, false);
2866
2867 idx = intel_ring_sync_index(from, to);
2868
2869 seqno = obj->last_read_seqno;
2870 if (seqno <= from->sync_seqno[idx])
2871 return 0;
2872
2873 ret = i915_gem_check_olr(obj->ring, seqno);
2874 if (ret)
2875 return ret;
2876
2877 ret = to->sync_to(to, from, seqno);
2878 if (!ret)
2879 /* We use last_read_seqno because sync_to()
2880 * might have just caused seqno wrap under
2881 * the radar.
2882 */
2883 from->sync_seqno[idx] = obj->last_read_seqno;
2884
2885 return ret;
2886 }
2887
2888 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2889 {
2890 u32 old_write_domain, old_read_domains;
2891
2892 /* Act a barrier for all accesses through the GTT */
2893 mb();
2894
2895 /* Force a pagefault for domain tracking on next user access */
2896 i915_gem_release_mmap(obj);
2897
2898 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2899 return;
2900
2901 old_read_domains = obj->base.read_domains;
2902 old_write_domain = obj->base.write_domain;
2903
2904 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2905 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2906
2907 trace_i915_gem_object_change_domain(obj,
2908 old_read_domains,
2909 old_write_domain);
2910 }
2911
2912 /**
2913 * Unbinds an object from the GTT aperture.
2914 */
2915 int
2916 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2917 {
2918 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2919 int ret = 0;
2920
2921 if (obj->gtt_space == NULL)
2922 return 0;
2923
2924 if (obj->pin_count)
2925 return -EBUSY;
2926
2927 BUG_ON(obj->pages == NULL);
2928
2929 ret = i915_gem_object_finish_gpu(obj);
2930 if (ret)
2931 return ret;
2932 /* Continue on if we fail due to EIO, the GPU is hung so we
2933 * should be safe and we need to cleanup or else we might
2934 * cause memory corruption through use-after-free.
2935 */
2936
2937 i915_gem_object_finish_gtt(obj);
2938
2939 /* release the fence reg _after_ flushing */
2940 ret = i915_gem_object_put_fence(obj);
2941 if (ret)
2942 return ret;
2943
2944 trace_i915_gem_object_unbind(obj);
2945
2946 if (obj->has_global_gtt_mapping)
2947 i915_gem_gtt_unbind_object(obj);
2948 if (obj->has_aliasing_ppgtt_mapping) {
2949 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2950 obj->has_aliasing_ppgtt_mapping = 0;
2951 }
2952 i915_gem_gtt_finish_object(obj);
2953
2954 list_del(&obj->mm_list);
2955 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2956 /* Avoid an unnecessary call to unbind on rebind. */
2957 obj->map_and_fenceable = true;
2958
2959 drm_mm_put_block(obj->gtt_space);
2960 obj->gtt_space = NULL;
2961 obj->gtt_offset = 0;
2962
2963 return 0;
2964 }
2965
2966 int i915_gpu_idle(struct drm_device *dev)
2967 {
2968 drm_i915_private_t *dev_priv = dev->dev_private;
2969 struct intel_ring_buffer *ring;
2970 int ret, i;
2971
2972 /* Flush everything onto the inactive list. */
2973 for_each_ring(ring, dev_priv, i) {
2974 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2975 if (ret)
2976 return ret;
2977
2978 ret = intel_ring_idle(ring);
2979 if (ret)
2980 return ret;
2981 }
2982
2983 return 0;
2984 }
2985
2986 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2987 struct drm_i915_gem_object *obj)
2988 {
2989 drm_i915_private_t *dev_priv = dev->dev_private;
2990 uint64_t val;
2991
2992 if (obj) {
2993 u32 size = obj->gtt_space->size;
2994
2995 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2996 0xfffff000) << 32;
2997 val |= obj->gtt_offset & 0xfffff000;
2998 val |= (uint64_t)((obj->stride / 128) - 1) <<
2999 SANDYBRIDGE_FENCE_PITCH_SHIFT;
3000
3001 if (obj->tiling_mode == I915_TILING_Y)
3002 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3003 val |= I965_FENCE_REG_VALID;
3004 } else
3005 val = 0;
3006
3007 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
3008 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
3009 }
3010
3011 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3012 struct drm_i915_gem_object *obj)
3013 {
3014 drm_i915_private_t *dev_priv = dev->dev_private;
3015 uint64_t val;
3016
3017 if (obj) {
3018 u32 size = obj->gtt_space->size;
3019
3020 val = (uint64_t)((obj->gtt_offset + size - 4096) &
3021 0xfffff000) << 32;
3022 val |= obj->gtt_offset & 0xfffff000;
3023 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
3024 if (obj->tiling_mode == I915_TILING_Y)
3025 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3026 val |= I965_FENCE_REG_VALID;
3027 } else
3028 val = 0;
3029
3030 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
3031 POSTING_READ(FENCE_REG_965_0 + reg * 8);
3032 }
3033
3034 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3035 struct drm_i915_gem_object *obj)
3036 {
3037 drm_i915_private_t *dev_priv = dev->dev_private;
3038 u32 val;
3039
3040 if (obj) {
3041 u32 size = obj->gtt_space->size;
3042 int pitch_val;
3043 int tile_width;
3044
3045 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
3046 (size & -size) != size ||
3047 (obj->gtt_offset & (size - 1)),
3048 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3049 obj->gtt_offset, obj->map_and_fenceable, size);
3050
3051 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3052 tile_width = 128;
3053 else
3054 tile_width = 512;
3055
3056 /* Note: pitch better be a power of two tile widths */
3057 pitch_val = obj->stride / tile_width;
3058 pitch_val = ffs(pitch_val) - 1;
3059
3060 val = obj->gtt_offset;
3061 if (obj->tiling_mode == I915_TILING_Y)
3062 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3063 val |= I915_FENCE_SIZE_BITS(size);
3064 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3065 val |= I830_FENCE_REG_VALID;
3066 } else
3067 val = 0;
3068
3069 if (reg < 8)
3070 reg = FENCE_REG_830_0 + reg * 4;
3071 else
3072 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3073
3074 I915_WRITE(reg, val);
3075 POSTING_READ(reg);
3076 }
3077
3078 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3079 struct drm_i915_gem_object *obj)
3080 {
3081 drm_i915_private_t *dev_priv = dev->dev_private;
3082 uint32_t val;
3083
3084 if (obj) {
3085 u32 size = obj->gtt_space->size;
3086 uint32_t pitch_val;
3087
3088 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
3089 (size & -size) != size ||
3090 (obj->gtt_offset & (size - 1)),
3091 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
3092 obj->gtt_offset, size);
3093
3094 pitch_val = obj->stride / 128;
3095 pitch_val = ffs(pitch_val) - 1;
3096
3097 val = obj->gtt_offset;
3098 if (obj->tiling_mode == I915_TILING_Y)
3099 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3100 val |= I830_FENCE_SIZE_BITS(size);
3101 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3102 val |= I830_FENCE_REG_VALID;
3103 } else
3104 val = 0;
3105
3106 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3107 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3108 }
3109
3110 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3111 struct drm_i915_gem_object *obj)
3112 {
3113 switch (INTEL_INFO(dev)->gen) {
3114 case 7:
3115 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
3116 case 5:
3117 case 4: i965_write_fence_reg(dev, reg, obj); break;
3118 case 3: i915_write_fence_reg(dev, reg, obj); break;
3119 case 2: i830_write_fence_reg(dev, reg, obj); break;
3120 default: break;
3121 }
3122 }
3123
3124 static inline int fence_number(struct drm_i915_private *dev_priv,
3125 struct drm_i915_fence_reg *fence)
3126 {
3127 return fence - dev_priv->fence_regs;
3128 }
3129
3130 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3131 struct drm_i915_fence_reg *fence,
3132 bool enable)
3133 {
3134 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3135 int reg = fence_number(dev_priv, fence);
3136
3137 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3138
3139 if (enable) {
3140 obj->fence_reg = reg;
3141 fence->obj = obj;
3142 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3143 } else {
3144 obj->fence_reg = I915_FENCE_REG_NONE;
3145 fence->obj = NULL;
3146 list_del_init(&fence->lru_list);
3147 }
3148 }
3149
3150 static int
3151 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
3152 {
3153 if (obj->last_fenced_seqno) {
3154 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3155 if (ret)
3156 return ret;
3157
3158 obj->last_fenced_seqno = 0;
3159 }
3160
3161 /* Ensure that all CPU reads are completed before installing a fence
3162 * and all writes before removing the fence.
3163 */
3164 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
3165 mb();
3166
3167 obj->fenced_gpu_access = false;
3168 return 0;
3169 }
3170
3171 int
3172 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3173 {
3174 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3175 int ret;
3176
3177 ret = i915_gem_object_flush_fence(obj);
3178 if (ret)
3179 return ret;
3180
3181 if (obj->fence_reg == I915_FENCE_REG_NONE)
3182 return 0;
3183
3184 i915_gem_object_update_fence(obj,
3185 &dev_priv->fence_regs[obj->fence_reg],
3186 false);
3187 i915_gem_object_fence_lost(obj);
3188
3189 return 0;
3190 }
3191
3192 static struct drm_i915_fence_reg *
3193 i915_find_fence_reg(struct drm_device *dev)
3194 {
3195 struct drm_i915_private *dev_priv = dev->dev_private;
3196 struct drm_i915_fence_reg *reg, *avail;
3197 int i;
3198
3199 /* First try to find a free reg */
3200 avail = NULL;
3201 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3202 reg = &dev_priv->fence_regs[i];
3203 if (!reg->obj)
3204 return reg;
3205
3206 if (!reg->pin_count)
3207 avail = reg;
3208 }
3209
3210 if (avail == NULL)
3211 return NULL;
3212
3213 /* None available, try to steal one or wait for a user to finish */
3214 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3215 if (reg->pin_count)
3216 continue;
3217
3218 return reg;
3219 }
3220
3221 return NULL;
3222 }
3223
3224 /**
3225 * i915_gem_object_get_fence - set up fencing for an object
3226 * @obj: object to map through a fence reg
3227 *
3228 * When mapping objects through the GTT, userspace wants to be able to write
3229 * to them without having to worry about swizzling if the object is tiled.
3230 * This function walks the fence regs looking for a free one for @obj,
3231 * stealing one if it can't find any.
3232 *
3233 * It then sets up the reg based on the object's properties: address, pitch
3234 * and tiling format.
3235 *
3236 * For an untiled surface, this removes any existing fence.
3237 */
3238 int
3239 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3240 {
3241 struct drm_device *dev = obj->base.dev;
3242 struct drm_i915_private *dev_priv = dev->dev_private;
3243 bool enable = obj->tiling_mode != I915_TILING_NONE;
3244 struct drm_i915_fence_reg *reg;
3245 int ret;
3246
3247 /* Have we updated the tiling parameters upon the object and so
3248 * will need to serialise the write to the associated fence register?
3249 */
3250 if (obj->fence_dirty) {
3251 ret = i915_gem_object_flush_fence(obj);
3252 if (ret)
3253 return ret;
3254 }
3255
3256 /* Just update our place in the LRU if our fence is getting reused. */
3257 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3258 reg = &dev_priv->fence_regs[obj->fence_reg];
3259 if (!obj->fence_dirty) {
3260 list_move_tail(®->lru_list,
3261 &dev_priv->mm.fence_list);
3262 return 0;
3263 }
3264 } else if (enable) {
3265 reg = i915_find_fence_reg(dev);
3266 if (reg == NULL)
3267 return -EDEADLK;
3268
3269 if (reg->obj) {
3270 struct drm_i915_gem_object *old = reg->obj;
3271
3272 ret = i915_gem_object_flush_fence(old);
3273 if (ret)
3274 return ret;
3275
3276 i915_gem_object_fence_lost(old);
3277 }
3278 } else
3279 return 0;
3280
3281 i915_gem_object_update_fence(obj, reg, enable);
3282 obj->fence_dirty = false;
3283
3284 return 0;
3285 }
3286
3287 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3288 struct drm_mm_node *gtt_space,
3289 unsigned long cache_level)
3290 {
3291 struct drm_mm_node *other;
3292
3293 /* On non-LLC machines we have to be careful when putting differing
3294 * types of snoopable memory together to avoid the prefetcher
3295 * crossing memory domains and dieing.
3296 */
3297 if (HAS_LLC(dev))
3298 return true;
3299
3300 if (gtt_space == NULL)
3301 return true;
3302
3303 if (list_empty(>t_space->node_list))
3304 return true;
3305
3306 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3307 if (other->allocated && !other->hole_follows && other->color != cache_level)
3308 return false;
3309
3310 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3311 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3312 return false;
3313
3314 return true;
3315 }
3316
3317 static void i915_gem_verify_gtt(struct drm_device *dev)
3318 {
3319 #if WATCH_GTT
3320 struct drm_i915_private *dev_priv = dev->dev_private;
3321 struct drm_i915_gem_object *obj;
3322 int err = 0;
3323
3324 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
3325 if (obj->gtt_space == NULL) {
3326 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3327 err++;
3328 continue;
3329 }
3330
3331 if (obj->cache_level != obj->gtt_space->color) {
3332 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3333 obj->gtt_space->start,
3334 obj->gtt_space->start + obj->gtt_space->size,
3335 obj->cache_level,
3336 obj->gtt_space->color);
3337 err++;
3338 continue;
3339 }
3340
3341 if (!i915_gem_valid_gtt_space(dev,
3342 obj->gtt_space,
3343 obj->cache_level)) {
3344 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3345 obj->gtt_space->start,
3346 obj->gtt_space->start + obj->gtt_space->size,
3347 obj->cache_level);
3348 err++;
3349 continue;
3350 }
3351 }
3352
3353 WARN_ON(err);
3354 #endif
3355 }
3356
3357 /**
3358 * Finds free space in the GTT aperture and binds the object there.
3359 */
3360 static int
3361 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3362 unsigned alignment,
3363 bool map_and_fenceable,
3364 bool nonblocking)
3365 {
3366 struct drm_device *dev = obj->base.dev;
3367 drm_i915_private_t *dev_priv = dev->dev_private;
3368 struct drm_mm_node *node;
3369 u32 size, fence_size, fence_alignment, unfenced_alignment;
3370 bool mappable, fenceable;
3371 int ret;
3372
3373 if (obj->madv != I915_MADV_WILLNEED) {
3374 DRM_ERROR("Attempting to bind a purgeable object\n");
3375 return -EINVAL;
3376 }
3377
3378 fence_size = i915_gem_get_gtt_size(dev,
3379 obj->base.size,
3380 obj->tiling_mode);
3381 fence_alignment = i915_gem_get_gtt_alignment(dev,
3382 obj->base.size,
3383 obj->tiling_mode);
3384 unfenced_alignment =
3385 i915_gem_get_unfenced_gtt_alignment(dev,
3386 obj->base.size,
3387 obj->tiling_mode);
3388
3389 if (alignment == 0)
3390 alignment = map_and_fenceable ? fence_alignment :
3391 unfenced_alignment;
3392 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3393 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3394 return -EINVAL;
3395 }
3396
3397 size = map_and_fenceable ? fence_size : obj->base.size;
3398
3399 /* If the object is bigger than the entire aperture, reject it early
3400 * before evicting everything in a vain attempt to find space.
3401 */
3402 if (obj->base.size >
3403 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
3404 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
3405 return -E2BIG;
3406 }
3407
3408 ret = i915_gem_object_get_pages(obj);
3409 if (ret)
3410 return ret;
3411
3412 i915_gem_object_pin_pages(obj);
3413
3414 node = kzalloc(sizeof(*node), GFP_KERNEL);
3415 if (node == NULL) {
3416 i915_gem_object_unpin_pages(obj);
3417 return -ENOMEM;
3418 }
3419
3420 search_free:
3421 if (map_and_fenceable)
3422 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3423 size, alignment, obj->cache_level,
3424 0, dev_priv->mm.gtt_mappable_end);
3425 else
3426 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
3427 size, alignment, obj->cache_level);
3428 if (ret) {
3429 ret = i915_gem_evict_something(dev, size, alignment,
3430 obj->cache_level,
3431 map_and_fenceable,
3432 nonblocking);
3433 if (ret == 0)
3434 goto search_free;
3435
3436 i915_gem_object_unpin_pages(obj);
3437 kfree(node);
3438 return ret;
3439 }
3440 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3441 i915_gem_object_unpin_pages(obj);
3442 drm_mm_put_block(node);
3443 return -EINVAL;
3444 }
3445
3446 ret = i915_gem_gtt_prepare_object(obj);
3447 if (ret) {
3448 i915_gem_object_unpin_pages(obj);
3449 drm_mm_put_block(node);
3450 return ret;
3451 }
3452
3453 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3454 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3455
3456 obj->gtt_space = node;
3457 obj->gtt_offset = node->start;
3458
3459 fenceable =
3460 node->size == fence_size &&
3461 (node->start & (fence_alignment - 1)) == 0;
3462
3463 mappable =
3464 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3465
3466 obj->map_and_fenceable = mappable && fenceable;
3467
3468 i915_gem_object_unpin_pages(obj);
3469 trace_i915_gem_object_bind(obj, map_and_fenceable);
3470 i915_gem_verify_gtt(dev);
3471 return 0;
3472 }
3473
3474 void
3475 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3476 {
3477 /* If we don't have a page list set up, then we're not pinned
3478 * to GPU, and we can ignore the cache flush because it'll happen
3479 * again at bind time.
3480 */
3481 if (obj->pages == NULL)
3482 return;
3483
3484 /* If the GPU is snooping the contents of the CPU cache,
3485 * we do not need to manually clear the CPU cache lines. However,
3486 * the caches are only snooped when the render cache is
3487 * flushed/invalidated. As we always have to emit invalidations
3488 * and flushes when moving into and out of the RENDER domain, correct
3489 * snooping behaviour occurs naturally as the result of our domain
3490 * tracking.
3491 */
3492 if (obj->cache_level != I915_CACHE_NONE)
3493 return;
3494
3495 trace_i915_gem_object_clflush(obj);
3496
3497 #ifdef __NetBSD__
3498 drm_clflush_pglist(&obj->igo_pageq);
3499 #else
3500 drm_clflush_sg(obj->pages);
3501 #endif
3502 }
3503
3504 /** Flushes the GTT write domain for the object if it's dirty. */
3505 static void
3506 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3507 {
3508 uint32_t old_write_domain;
3509
3510 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3511 return;
3512
3513 /* No actual flushing is required for the GTT write domain. Writes
3514 * to it immediately go to main memory as far as we know, so there's
3515 * no chipset flush. It also doesn't land in render cache.
3516 *
3517 * However, we do have to enforce the order so that all writes through
3518 * the GTT land before any writes to the device, such as updates to
3519 * the GATT itself.
3520 */
3521 wmb();
3522
3523 old_write_domain = obj->base.write_domain;
3524 obj->base.write_domain = 0;
3525
3526 trace_i915_gem_object_change_domain(obj,
3527 obj->base.read_domains,
3528 old_write_domain);
3529 }
3530
3531 /** Flushes the CPU write domain for the object if it's dirty. */
3532 static void
3533 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3534 {
3535 uint32_t old_write_domain;
3536
3537 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3538 return;
3539
3540 i915_gem_clflush_object(obj);
3541 i915_gem_chipset_flush(obj->base.dev);
3542 old_write_domain = obj->base.write_domain;
3543 obj->base.write_domain = 0;
3544
3545 trace_i915_gem_object_change_domain(obj,
3546 obj->base.read_domains,
3547 old_write_domain);
3548 }
3549
3550 /**
3551 * Moves a single object to the GTT read, and possibly write domain.
3552 *
3553 * This function returns when the move is complete, including waiting on
3554 * flushes to occur.
3555 */
3556 int
3557 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3558 {
3559 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3560 uint32_t old_write_domain, old_read_domains;
3561 int ret;
3562
3563 /* Not valid to be called on unbound objects. */
3564 if (obj->gtt_space == NULL)
3565 return -EINVAL;
3566
3567 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3568 return 0;
3569
3570 ret = i915_gem_object_wait_rendering(obj, !write);
3571 if (ret)
3572 return ret;
3573
3574 i915_gem_object_flush_cpu_write_domain(obj);
3575
3576 old_write_domain = obj->base.write_domain;
3577 old_read_domains = obj->base.read_domains;
3578
3579 /* It should now be out of any other write domains, and we can update
3580 * the domain values for our changes.
3581 */
3582 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3583 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3584 if (write) {
3585 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3586 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3587 obj->dirty = 1;
3588 }
3589
3590 trace_i915_gem_object_change_domain(obj,
3591 old_read_domains,
3592 old_write_domain);
3593
3594 /* And bump the LRU for this access */
3595 if (i915_gem_object_is_inactive(obj))
3596 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3597
3598 return 0;
3599 }
3600
3601 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3602 enum i915_cache_level cache_level)
3603 {
3604 struct drm_device *dev = obj->base.dev;
3605 drm_i915_private_t *dev_priv = dev->dev_private;
3606 int ret;
3607
3608 if (obj->cache_level == cache_level)
3609 return 0;
3610
3611 if (obj->pin_count) {
3612 DRM_DEBUG("can not change the cache level of pinned objects\n");
3613 return -EBUSY;
3614 }
3615
3616 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3617 ret = i915_gem_object_unbind(obj);
3618 if (ret)
3619 return ret;
3620 }
3621
3622 if (obj->gtt_space) {
3623 ret = i915_gem_object_finish_gpu(obj);
3624 if (ret)
3625 return ret;
3626
3627 i915_gem_object_finish_gtt(obj);
3628
3629 /* Before SandyBridge, you could not use tiling or fence
3630 * registers with snooped memory, so relinquish any fences
3631 * currently pointing to our region in the aperture.
3632 */
3633 if (INTEL_INFO(dev)->gen < 6) {
3634 ret = i915_gem_object_put_fence(obj);
3635 if (ret)
3636 return ret;
3637 }
3638
3639 if (obj->has_global_gtt_mapping)
3640 i915_gem_gtt_bind_object(obj, cache_level);
3641 if (obj->has_aliasing_ppgtt_mapping)
3642 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3643 obj, cache_level);
3644
3645 obj->gtt_space->color = cache_level;
3646 }
3647
3648 if (cache_level == I915_CACHE_NONE) {
3649 u32 old_read_domains, old_write_domain;
3650
3651 /* If we're coming from LLC cached, then we haven't
3652 * actually been tracking whether the data is in the
3653 * CPU cache or not, since we only allow one bit set
3654 * in obj->write_domain and have been skipping the clflushes.
3655 * Just set it to the CPU cache for now.
3656 */
3657 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3658 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3659
3660 old_read_domains = obj->base.read_domains;
3661 old_write_domain = obj->base.write_domain;
3662
3663 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3664 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3665
3666 trace_i915_gem_object_change_domain(obj,
3667 old_read_domains,
3668 old_write_domain);
3669 }
3670
3671 obj->cache_level = cache_level;
3672 i915_gem_verify_gtt(dev);
3673 return 0;
3674 }
3675
3676 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3677 struct drm_file *file)
3678 {
3679 struct drm_i915_gem_caching *args = data;
3680 struct drm_i915_gem_object *obj;
3681 int ret;
3682
3683 ret = i915_mutex_lock_interruptible(dev);
3684 if (ret)
3685 return ret;
3686
3687 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3688 if (&obj->base == NULL) {
3689 ret = -ENOENT;
3690 goto unlock;
3691 }
3692
3693 args->caching = obj->cache_level != I915_CACHE_NONE;
3694
3695 drm_gem_object_unreference(&obj->base);
3696 unlock:
3697 mutex_unlock(&dev->struct_mutex);
3698 return ret;
3699 }
3700
3701 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3702 struct drm_file *file)
3703 {
3704 struct drm_i915_gem_caching *args = data;
3705 struct drm_i915_gem_object *obj;
3706 enum i915_cache_level level;
3707 int ret;
3708
3709 switch (args->caching) {
3710 case I915_CACHING_NONE:
3711 level = I915_CACHE_NONE;
3712 break;
3713 case I915_CACHING_CACHED:
3714 level = I915_CACHE_LLC;
3715 break;
3716 default:
3717 return -EINVAL;
3718 }
3719
3720 ret = i915_mutex_lock_interruptible(dev);
3721 if (ret)
3722 return ret;
3723
3724 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3725 if (&obj->base == NULL) {
3726 ret = -ENOENT;
3727 goto unlock;
3728 }
3729
3730 ret = i915_gem_object_set_cache_level(obj, level);
3731
3732 drm_gem_object_unreference(&obj->base);
3733 unlock:
3734 mutex_unlock(&dev->struct_mutex);
3735 return ret;
3736 }
3737
3738 /*
3739 * Prepare buffer for display plane (scanout, cursors, etc).
3740 * Can be called from an uninterruptible phase (modesetting) and allows
3741 * any flushes to be pipelined (for pageflips).
3742 */
3743 int
3744 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3745 u32 alignment,
3746 struct intel_ring_buffer *pipelined)
3747 {
3748 u32 old_read_domains, old_write_domain;
3749 int ret;
3750
3751 if (pipelined != obj->ring) {
3752 ret = i915_gem_object_sync(obj, pipelined);
3753 if (ret)
3754 return ret;
3755 }
3756
3757 /* The display engine is not coherent with the LLC cache on gen6. As
3758 * a result, we make sure that the pinning that is about to occur is
3759 * done with uncached PTEs. This is lowest common denominator for all
3760 * chipsets.
3761 *
3762 * However for gen6+, we could do better by using the GFDT bit instead
3763 * of uncaching, which would allow us to flush all the LLC-cached data
3764 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3765 */
3766 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3767 if (ret)
3768 return ret;
3769
3770 /* As the user may map the buffer once pinned in the display plane
3771 * (e.g. libkms for the bootup splash), we have to ensure that we
3772 * always use map_and_fenceable for all scanout buffers.
3773 */
3774 ret = i915_gem_object_pin(obj, alignment, true, false);
3775 if (ret)
3776 return ret;
3777
3778 i915_gem_object_flush_cpu_write_domain(obj);
3779
3780 old_write_domain = obj->base.write_domain;
3781 old_read_domains = obj->base.read_domains;
3782
3783 /* It should now be out of any other write domains, and we can update
3784 * the domain values for our changes.
3785 */
3786 obj->base.write_domain = 0;
3787 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3788
3789 trace_i915_gem_object_change_domain(obj,
3790 old_read_domains,
3791 old_write_domain);
3792
3793 return 0;
3794 }
3795
3796 int
3797 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3798 {
3799 int ret;
3800
3801 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3802 return 0;
3803
3804 ret = i915_gem_object_wait_rendering(obj, false);
3805 if (ret)
3806 return ret;
3807
3808 /* Ensure that we invalidate the GPU's caches and TLBs. */
3809 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3810 return 0;
3811 }
3812
3813 /**
3814 * Moves a single object to the CPU read, and possibly write domain.
3815 *
3816 * This function returns when the move is complete, including waiting on
3817 * flushes to occur.
3818 */
3819 int
3820 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3821 {
3822 uint32_t old_write_domain, old_read_domains;
3823 int ret;
3824
3825 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3826 return 0;
3827
3828 ret = i915_gem_object_wait_rendering(obj, !write);
3829 if (ret)
3830 return ret;
3831
3832 i915_gem_object_flush_gtt_write_domain(obj);
3833
3834 old_write_domain = obj->base.write_domain;
3835 old_read_domains = obj->base.read_domains;
3836
3837 /* Flush the CPU cache if it's still invalid. */
3838 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3839 i915_gem_clflush_object(obj);
3840
3841 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3842 }
3843
3844 /* It should now be out of any other write domains, and we can update
3845 * the domain values for our changes.
3846 */
3847 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3848
3849 /* If we're writing through the CPU, then the GPU read domains will
3850 * need to be invalidated at next use.
3851 */
3852 if (write) {
3853 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3854 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3855 }
3856
3857 trace_i915_gem_object_change_domain(obj,
3858 old_read_domains,
3859 old_write_domain);
3860
3861 return 0;
3862 }
3863
3864 /* Throttle our rendering by waiting until the ring has completed our requests
3865 * emitted over 20 msec ago.
3866 *
3867 * Note that if we were to use the current jiffies each time around the loop,
3868 * we wouldn't escape the function with any frames outstanding if the time to
3869 * render a frame was over 20ms.
3870 *
3871 * This should get us reasonable parallelism between CPU and GPU but also
3872 * relatively low latency when blocking on a particular request to finish.
3873 */
3874 static int
3875 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3876 {
3877 struct drm_i915_private *dev_priv = dev->dev_private;
3878 struct drm_i915_file_private *file_priv = file->driver_priv;
3879 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3880 struct drm_i915_gem_request *request;
3881 struct intel_ring_buffer *ring = NULL;
3882 u32 seqno = 0;
3883 int ret;
3884
3885 if (atomic_read(&dev_priv->mm.wedged))
3886 return -EIO;
3887
3888 spin_lock(&file_priv->mm.lock);
3889 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3890 if (time_after_eq(request->emitted_jiffies, recent_enough))
3891 break;
3892
3893 ring = request->ring;
3894 seqno = request->seqno;
3895 }
3896 spin_unlock(&file_priv->mm.lock);
3897
3898 if (seqno == 0)
3899 return 0;
3900
3901 ret = __wait_seqno(ring, seqno, true, NULL);
3902 if (ret == 0)
3903 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3904
3905 return ret;
3906 }
3907
3908 int
3909 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3910 uint32_t alignment,
3911 bool map_and_fenceable,
3912 bool nonblocking)
3913 {
3914 int ret;
3915
3916 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3917 return -EBUSY;
3918
3919 if (obj->gtt_space != NULL) {
3920 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3921 (map_and_fenceable && !obj->map_and_fenceable)) {
3922 WARN(obj->pin_count,
3923 "bo is already pinned with incorrect alignment:"
3924 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3925 " obj->map_and_fenceable=%d\n",
3926 obj->gtt_offset, alignment,
3927 map_and_fenceable,
3928 obj->map_and_fenceable);
3929 ret = i915_gem_object_unbind(obj);
3930 if (ret)
3931 return ret;
3932 }
3933 }
3934
3935 if (obj->gtt_space == NULL) {
3936 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3937
3938 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3939 map_and_fenceable,
3940 nonblocking);
3941 if (ret)
3942 return ret;
3943
3944 if (!dev_priv->mm.aliasing_ppgtt)
3945 i915_gem_gtt_bind_object(obj, obj->cache_level);
3946 }
3947
3948 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3949 i915_gem_gtt_bind_object(obj, obj->cache_level);
3950
3951 obj->pin_count++;
3952 obj->pin_mappable |= map_and_fenceable;
3953
3954 return 0;
3955 }
3956
3957 void
3958 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3959 {
3960 BUG_ON(obj->pin_count == 0);
3961 BUG_ON(obj->gtt_space == NULL);
3962
3963 if (--obj->pin_count == 0)
3964 obj->pin_mappable = false;
3965 }
3966
3967 int
3968 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3969 struct drm_file *file)
3970 {
3971 struct drm_i915_gem_pin *args = data;
3972 struct drm_i915_gem_object *obj;
3973 int ret;
3974
3975 ret = i915_mutex_lock_interruptible(dev);
3976 if (ret)
3977 return ret;
3978
3979 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3980 if (&obj->base == NULL) {
3981 ret = -ENOENT;
3982 goto unlock;
3983 }
3984
3985 if (obj->madv != I915_MADV_WILLNEED) {
3986 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3987 ret = -EINVAL;
3988 goto out;
3989 }
3990
3991 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3992 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3993 args->handle);
3994 ret = -EINVAL;
3995 goto out;
3996 }
3997
3998 if (obj->user_pin_count == 0) {
3999 ret = i915_gem_object_pin(obj, args->alignment, true, false);
4000 if (ret)
4001 goto out;
4002 }
4003
4004 obj->user_pin_count++;
4005 obj->pin_filp = file;
4006
4007 /* XXX - flush the CPU caches for pinned objects
4008 * as the X server doesn't manage domains yet
4009 */
4010 i915_gem_object_flush_cpu_write_domain(obj);
4011 args->offset = obj->gtt_offset;
4012 out:
4013 drm_gem_object_unreference(&obj->base);
4014 unlock:
4015 mutex_unlock(&dev->struct_mutex);
4016 return ret;
4017 }
4018
4019 int
4020 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4021 struct drm_file *file)
4022 {
4023 struct drm_i915_gem_pin *args = data;
4024 struct drm_i915_gem_object *obj;
4025 int ret;
4026
4027 ret = i915_mutex_lock_interruptible(dev);
4028 if (ret)
4029 return ret;
4030
4031 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4032 if (&obj->base == NULL) {
4033 ret = -ENOENT;
4034 goto unlock;
4035 }
4036
4037 if (obj->pin_filp != file) {
4038 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4039 args->handle);
4040 ret = -EINVAL;
4041 goto out;
4042 }
4043 obj->user_pin_count--;
4044 if (obj->user_pin_count == 0) {
4045 obj->pin_filp = NULL;
4046 i915_gem_object_unpin(obj);
4047 }
4048
4049 out:
4050 drm_gem_object_unreference(&obj->base);
4051 unlock:
4052 mutex_unlock(&dev->struct_mutex);
4053 return ret;
4054 }
4055
4056 int
4057 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4058 struct drm_file *file)
4059 {
4060 struct drm_i915_gem_busy *args = data;
4061 struct drm_i915_gem_object *obj;
4062 int ret;
4063
4064 ret = i915_mutex_lock_interruptible(dev);
4065 if (ret)
4066 return ret;
4067
4068 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4069 if (&obj->base == NULL) {
4070 ret = -ENOENT;
4071 goto unlock;
4072 }
4073
4074 /* Count all active objects as busy, even if they are currently not used
4075 * by the gpu. Users of this interface expect objects to eventually
4076 * become non-busy without any further actions, therefore emit any
4077 * necessary flushes here.
4078 */
4079 ret = i915_gem_object_flush_active(obj);
4080
4081 args->busy = obj->active;
4082 if (obj->ring) {
4083 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4084 args->busy |= intel_ring_flag(obj->ring) << 16;
4085 }
4086
4087 drm_gem_object_unreference(&obj->base);
4088 unlock:
4089 mutex_unlock(&dev->struct_mutex);
4090 return ret;
4091 }
4092
4093 int
4094 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4095 struct drm_file *file_priv)
4096 {
4097 return i915_gem_ring_throttle(dev, file_priv);
4098 }
4099
4100 int
4101 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4102 struct drm_file *file_priv)
4103 {
4104 struct drm_i915_gem_madvise *args = data;
4105 struct drm_i915_gem_object *obj;
4106 int ret;
4107
4108 switch (args->madv) {
4109 case I915_MADV_DONTNEED:
4110 case I915_MADV_WILLNEED:
4111 break;
4112 default:
4113 return -EINVAL;
4114 }
4115
4116 ret = i915_mutex_lock_interruptible(dev);
4117 if (ret)
4118 return ret;
4119
4120 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4121 if (&obj->base == NULL) {
4122 ret = -ENOENT;
4123 goto unlock;
4124 }
4125
4126 if (obj->pin_count) {
4127 ret = -EINVAL;
4128 goto out;
4129 }
4130
4131 if (obj->madv != __I915_MADV_PURGED)
4132 obj->madv = args->madv;
4133
4134 /* if the object is no longer attached, discard its backing storage */
4135 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4136 i915_gem_object_truncate(obj);
4137
4138 args->retained = obj->madv != __I915_MADV_PURGED;
4139
4140 out:
4141 drm_gem_object_unreference(&obj->base);
4142 unlock:
4143 mutex_unlock(&dev->struct_mutex);
4144 return ret;
4145 }
4146
4147 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4148 const struct drm_i915_gem_object_ops *ops)
4149 {
4150 INIT_LIST_HEAD(&obj->mm_list);
4151 INIT_LIST_HEAD(&obj->gtt_list);
4152 INIT_LIST_HEAD(&obj->ring_list);
4153 INIT_LIST_HEAD(&obj->exec_list);
4154
4155 obj->ops = ops;
4156
4157 obj->fence_reg = I915_FENCE_REG_NONE;
4158 obj->madv = I915_MADV_WILLNEED;
4159 /* Avoid an unnecessary call to unbind on the first bind. */
4160 obj->map_and_fenceable = true;
4161
4162 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4163 }
4164
4165 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4166 .get_pages = i915_gem_object_get_pages_gtt,
4167 .put_pages = i915_gem_object_put_pages_gtt,
4168 };
4169
4170 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4171 size_t size)
4172 {
4173 struct drm_i915_gem_object *obj;
4174 #ifndef __NetBSD__ /* XXX >32bit dma? */
4175 struct address_space *mapping;
4176 u32 mask;
4177 #endif
4178
4179 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4180 if (obj == NULL)
4181 return NULL;
4182
4183 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4184 kfree(obj);
4185 return NULL;
4186 }
4187
4188 #ifndef __NetBSD__ /* XXX >32bit dma? */
4189 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4190 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4191 /* 965gm cannot relocate objects above 4GiB. */
4192 mask &= ~__GFP_HIGHMEM;
4193 mask |= __GFP_DMA32;
4194 }
4195
4196 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4197 mapping_set_gfp_mask(mapping, mask);
4198 #endif
4199
4200 i915_gem_object_init(obj, &i915_gem_object_ops);
4201
4202 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4203 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4204
4205 if (HAS_LLC(dev)) {
4206 /* On some devices, we can have the GPU use the LLC (the CPU
4207 * cache) for about a 10% performance improvement
4208 * compared to uncached. Graphics requests other than
4209 * display scanout are coherent with the CPU in
4210 * accessing this cache. This means in this mode we
4211 * don't need to clflush on the CPU side, and on the
4212 * GPU side we only need to flush internal caches to
4213 * get data visible to the CPU.
4214 *
4215 * However, we maintain the display planes as UC, and so
4216 * need to rebind when first used as such.
4217 */
4218 obj->cache_level = I915_CACHE_LLC;
4219 } else
4220 obj->cache_level = I915_CACHE_NONE;
4221
4222 return obj;
4223 }
4224
4225 int i915_gem_init_object(struct drm_gem_object *obj)
4226 {
4227 BUG();
4228
4229 return 0;
4230 }
4231
4232 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4233 {
4234 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4235 struct drm_device *dev = obj->base.dev;
4236 drm_i915_private_t *dev_priv = dev->dev_private;
4237
4238 trace_i915_gem_object_destroy(obj);
4239
4240 if (obj->phys_obj)
4241 i915_gem_detach_phys_object(dev, obj);
4242
4243 obj->pin_count = 0;
4244 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
4245 bool was_interruptible;
4246
4247 was_interruptible = dev_priv->mm.interruptible;
4248 dev_priv->mm.interruptible = false;
4249
4250 WARN_ON(i915_gem_object_unbind(obj));
4251
4252 dev_priv->mm.interruptible = was_interruptible;
4253 }
4254
4255 obj->pages_pin_count = 0;
4256 i915_gem_object_put_pages(obj);
4257 i915_gem_object_free_mmap_offset(obj);
4258
4259 BUG_ON(obj->pages);
4260
4261 #ifndef __NetBSD__ /* XXX drm prime */
4262 if (obj->base.import_attach)
4263 drm_prime_gem_destroy(&obj->base, NULL);
4264 #endif
4265
4266 drm_gem_object_release(&obj->base);
4267 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4268
4269 kfree(obj->bit_17);
4270 kfree(obj);
4271 }
4272
4273 int
4274 i915_gem_idle(struct drm_device *dev)
4275 {
4276 drm_i915_private_t *dev_priv = dev->dev_private;
4277 int ret;
4278
4279 mutex_lock(&dev->struct_mutex);
4280
4281 if (dev_priv->mm.suspended) {
4282 mutex_unlock(&dev->struct_mutex);
4283 return 0;
4284 }
4285
4286 ret = i915_gpu_idle(dev);
4287 if (ret) {
4288 mutex_unlock(&dev->struct_mutex);
4289 return ret;
4290 }
4291 i915_gem_retire_requests(dev);
4292
4293 /* Under UMS, be paranoid and evict. */
4294 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4295 i915_gem_evict_everything(dev);
4296
4297 i915_gem_reset_fences(dev);
4298
4299 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4300 * We need to replace this with a semaphore, or something.
4301 * And not confound mm.suspended!
4302 */
4303 dev_priv->mm.suspended = 1;
4304 del_timer_sync(&dev_priv->hangcheck_timer);
4305
4306 i915_kernel_lost_context(dev);
4307 i915_gem_cleanup_ringbuffer(dev);
4308
4309 mutex_unlock(&dev->struct_mutex);
4310
4311 /* Cancel the retire work handler, which should be idle now. */
4312 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4313
4314 return 0;
4315 }
4316
4317 void i915_gem_l3_remap(struct drm_device *dev)
4318 {
4319 drm_i915_private_t *dev_priv = dev->dev_private;
4320 u32 misccpctl;
4321 int i;
4322
4323 if (!IS_IVYBRIDGE(dev))
4324 return;
4325
4326 if (!dev_priv->l3_parity.remap_info)
4327 return;
4328
4329 misccpctl = I915_READ(GEN7_MISCCPCTL);
4330 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4331 POSTING_READ(GEN7_MISCCPCTL);
4332
4333 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4334 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4335 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4336 DRM_DEBUG("0x%x was already programmed to %x\n",
4337 GEN7_L3LOG_BASE + i, remap);
4338 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4339 DRM_DEBUG_DRIVER("Clearing remapped register\n");
4340 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4341 }
4342
4343 /* Make sure all the writes land before disabling dop clock gating */
4344 POSTING_READ(GEN7_L3LOG_BASE);
4345
4346 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4347 }
4348
4349 void i915_gem_init_swizzling(struct drm_device *dev)
4350 {
4351 drm_i915_private_t *dev_priv = dev->dev_private;
4352
4353 if (INTEL_INFO(dev)->gen < 5 ||
4354 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4355 return;
4356
4357 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4358 DISP_TILE_SURFACE_SWIZZLING);
4359
4360 if (IS_GEN5(dev))
4361 return;
4362
4363 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4364 if (IS_GEN6(dev))
4365 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4366 else
4367 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4368 }
4369
4370 static bool
4371 intel_enable_blt(struct drm_device *dev)
4372 {
4373 if (!HAS_BLT(dev))
4374 return false;
4375
4376 /* The blitter was dysfunctional on early prototypes */
4377 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4378 DRM_INFO("BLT not supported on this pre-production hardware;"
4379 " graphics performance will be degraded.\n");
4380 return false;
4381 }
4382
4383 return true;
4384 }
4385
4386 int
4387 i915_gem_init_hw(struct drm_device *dev)
4388 {
4389 drm_i915_private_t *dev_priv = dev->dev_private;
4390 int ret;
4391
4392 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4393 return -EIO;
4394
4395 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4396 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4397
4398 i915_gem_l3_remap(dev);
4399
4400 i915_gem_init_swizzling(dev);
4401
4402 ret = intel_init_render_ring_buffer(dev);
4403 if (ret)
4404 return ret;
4405
4406 if (HAS_BSD(dev)) {
4407 ret = intel_init_bsd_ring_buffer(dev);
4408 if (ret)
4409 goto cleanup_render_ring;
4410 }
4411
4412 if (intel_enable_blt(dev)) {
4413 ret = intel_init_blt_ring_buffer(dev);
4414 if (ret)
4415 goto cleanup_bsd_ring;
4416 }
4417
4418 dev_priv->next_seqno = 1;
4419
4420 /*
4421 * XXX: There was some w/a described somewhere suggesting loading
4422 * contexts before PPGTT.
4423 */
4424 i915_gem_context_init(dev);
4425 i915_gem_init_ppgtt(dev);
4426
4427 return 0;
4428
4429 cleanup_bsd_ring:
4430 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4431 cleanup_render_ring:
4432 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4433 return ret;
4434 }
4435
4436 static bool
4437 intel_enable_ppgtt(struct drm_device *dev)
4438 {
4439 #ifdef __NetBSD__ /* XXX ppgtt */
4440 return false;
4441 #else
4442 if (i915_enable_ppgtt >= 0)
4443 return i915_enable_ppgtt;
4444
4445 #ifdef CONFIG_INTEL_IOMMU
4446 /* Disable ppgtt on SNB if VT-d is on. */
4447 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4448 return false;
4449 #endif
4450
4451 return true;
4452 #endif
4453 }
4454
4455 int i915_gem_init(struct drm_device *dev)
4456 {
4457 struct drm_i915_private *dev_priv = dev->dev_private;
4458 unsigned long gtt_size, mappable_size;
4459 int ret;
4460
4461 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4462 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4463
4464 mutex_lock(&dev->struct_mutex);
4465 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4466 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4467 * aperture accordingly when using aliasing ppgtt. */
4468 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4469
4470 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4471
4472 ret = i915_gem_init_aliasing_ppgtt(dev);
4473 if (ret) {
4474 i915_gem_fini_global_gtt(dev);
4475 mutex_unlock(&dev->struct_mutex);
4476 return ret;
4477 }
4478 } else {
4479 /* Let GEM Manage all of the aperture.
4480 *
4481 * However, leave one page at the end still bound to the scratch
4482 * page. There are a number of places where the hardware
4483 * apparently prefetches past the end of the object, and we've
4484 * seen multiple hangs with the GPU head pointer stuck in a
4485 * batchbuffer bound at the last page of the aperture. One page
4486 * should be enough to keep any prefetching inside of the
4487 * aperture.
4488 */
4489 i915_gem_init_global_gtt(dev, 0, mappable_size,
4490 gtt_size);
4491 }
4492
4493 ret = i915_gem_init_hw(dev);
4494 #ifdef __NetBSD__ /* XXX fini global gtt */
4495 if (ret)
4496 i915_gem_fini_global_gtt(dev);
4497 #endif
4498 mutex_unlock(&dev->struct_mutex);
4499 if (ret) {
4500 i915_gem_cleanup_aliasing_ppgtt(dev);
4501 return ret;
4502 }
4503
4504 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4505 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4506 dev_priv->dri1.allow_batchbuffer = 1;
4507 return 0;
4508 }
4509
4510 void
4511 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4512 {
4513 drm_i915_private_t *dev_priv = dev->dev_private;
4514 struct intel_ring_buffer *ring;
4515 int i;
4516
4517 for_each_ring(ring, dev_priv, i)
4518 intel_cleanup_ring_buffer(ring);
4519 }
4520
4521 int
4522 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4523 struct drm_file *file_priv)
4524 {
4525 drm_i915_private_t *dev_priv = dev->dev_private;
4526 int ret;
4527
4528 if (drm_core_check_feature(dev, DRIVER_MODESET))
4529 return 0;
4530
4531 if (atomic_read(&dev_priv->mm.wedged)) {
4532 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4533 atomic_set(&dev_priv->mm.wedged, 0);
4534 }
4535
4536 mutex_lock(&dev->struct_mutex);
4537 dev_priv->mm.suspended = 0;
4538
4539 ret = i915_gem_init_hw(dev);
4540 if (ret != 0) {
4541 mutex_unlock(&dev->struct_mutex);
4542 return ret;
4543 }
4544
4545 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4546 mutex_unlock(&dev->struct_mutex);
4547
4548 ret = drm_irq_install(dev);
4549 if (ret)
4550 goto cleanup_ringbuffer;
4551
4552 return 0;
4553
4554 cleanup_ringbuffer:
4555 mutex_lock(&dev->struct_mutex);
4556 i915_gem_cleanup_ringbuffer(dev);
4557 dev_priv->mm.suspended = 1;
4558 mutex_unlock(&dev->struct_mutex);
4559
4560 return ret;
4561 }
4562
4563 int
4564 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4565 struct drm_file *file_priv)
4566 {
4567 if (drm_core_check_feature(dev, DRIVER_MODESET))
4568 return 0;
4569
4570 drm_irq_uninstall(dev);
4571 return i915_gem_idle(dev);
4572 }
4573
4574 void
4575 i915_gem_lastclose(struct drm_device *dev)
4576 {
4577 int ret;
4578
4579 if (drm_core_check_feature(dev, DRIVER_MODESET))
4580 return;
4581
4582 ret = i915_gem_idle(dev);
4583 if (ret)
4584 DRM_ERROR("failed to idle hardware: %d\n", ret);
4585 }
4586
4587 static void
4588 init_ring_lists(struct intel_ring_buffer *ring)
4589 {
4590 INIT_LIST_HEAD(&ring->active_list);
4591 INIT_LIST_HEAD(&ring->request_list);
4592 }
4593
4594 void
4595 i915_gem_load(struct drm_device *dev)
4596 {
4597 int i;
4598 drm_i915_private_t *dev_priv = dev->dev_private;
4599
4600 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4601 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4602 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4603 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4604 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4605 for (i = 0; i < I915_NUM_RINGS; i++)
4606 init_ring_lists(&dev_priv->ring[i]);
4607 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4608 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4609 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4610 i915_gem_retire_work_handler);
4611 init_completion(&dev_priv->error_completion);
4612
4613 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4614 if (IS_GEN3(dev)) {
4615 I915_WRITE(MI_ARB_STATE,
4616 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4617 }
4618
4619 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4620
4621 /* Old X drivers will take 0-2 for front, back, depth buffers */
4622 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4623 dev_priv->fence_reg_start = 3;
4624
4625 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4626 dev_priv->num_fence_regs = 16;
4627 else
4628 dev_priv->num_fence_regs = 8;
4629
4630 /* Initialize fence registers to zero */
4631 i915_gem_reset_fences(dev);
4632
4633 i915_gem_detect_bit_6_swizzle(dev);
4634 #ifdef __NetBSD__
4635 DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
4636 #else
4637 init_waitqueue_head(&dev_priv->pending_flip_queue);
4638 #endif
4639
4640 dev_priv->mm.interruptible = true;
4641
4642 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4643 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4644 register_shrinker(&dev_priv->mm.inactive_shrinker);
4645 }
4646
4647 /*
4648 * Create a physically contiguous memory object for this object
4649 * e.g. for cursor + overlay regs
4650 */
4651 static int i915_gem_init_phys_object(struct drm_device *dev,
4652 int id, int size, int align)
4653 {
4654 drm_i915_private_t *dev_priv = dev->dev_private;
4655 struct drm_i915_gem_phys_object *phys_obj;
4656 int ret;
4657
4658 if (dev_priv->mm.phys_objs[id - 1] || !size)
4659 return 0;
4660
4661 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4662 if (!phys_obj)
4663 return -ENOMEM;
4664
4665 phys_obj->id = id;
4666
4667 phys_obj->handle = drm_pci_alloc(dev, size, align);
4668 if (!phys_obj->handle) {
4669 ret = -ENOMEM;
4670 goto kfree_obj;
4671 }
4672 #ifndef __NetBSD__ /* XXX x86 wc? */
4673 #ifdef CONFIG_X86
4674 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4675 #endif
4676 #endif
4677
4678 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4679
4680 return 0;
4681 kfree_obj:
4682 kfree(phys_obj);
4683 return ret;
4684 }
4685
4686 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4687 {
4688 drm_i915_private_t *dev_priv = dev->dev_private;
4689 struct drm_i915_gem_phys_object *phys_obj;
4690
4691 if (!dev_priv->mm.phys_objs[id - 1])
4692 return;
4693
4694 phys_obj = dev_priv->mm.phys_objs[id - 1];
4695 if (phys_obj->cur_obj) {
4696 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4697 }
4698
4699 #ifndef __NetBSD__ /* XXX x86 wb? */
4700 #ifdef CONFIG_X86
4701 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4702 #endif
4703 #endif
4704 drm_pci_free(dev, phys_obj->handle);
4705 kfree(phys_obj);
4706 dev_priv->mm.phys_objs[id - 1] = NULL;
4707 }
4708
4709 void i915_gem_free_all_phys_object(struct drm_device *dev)
4710 {
4711 int i;
4712
4713 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4714 i915_gem_free_phys_object(dev, i);
4715 }
4716
4717 void i915_gem_detach_phys_object(struct drm_device *dev,
4718 struct drm_i915_gem_object *obj)
4719 {
4720 #ifndef __NetBSD__
4721 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4722 #endif
4723 char *vaddr;
4724 int i;
4725 int page_count;
4726
4727 if (!obj->phys_obj)
4728 return;
4729 vaddr = obj->phys_obj->handle->vaddr;
4730
4731 page_count = obj->base.size / PAGE_SIZE;
4732 for (i = 0; i < page_count; i++) {
4733 #ifdef __NetBSD__
4734 /* XXX Just use ubc_uiomove? */
4735 struct pglist pages;
4736 int error;
4737
4738 TAILQ_INIT(&pages);
4739 error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4740 (i+1)*PAGE_SIZE, &pages);
4741 if (error) {
4742 printf("unable to map page %d of i915 gem obj: %d\n",
4743 i, error);
4744 continue;
4745 }
4746
4747 KASSERT(!TAILQ_EMPTY(&pages));
4748 struct vm_page *const page = TAILQ_FIRST(&pages);
4749 TAILQ_REMOVE(&pages, page, pageq.queue);
4750 KASSERT(TAILQ_EMPTY(&pages));
4751
4752 char *const dst = kmap_atomic(container_of(page, struct page,
4753 p_vmp));
4754 (void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
4755 kunmap_atomic(dst);
4756
4757 drm_clflush_page(container_of(page, struct page, p_vmp));
4758 page->flags &= ~PG_CLEAN;
4759 /* XXX mark page accessed */
4760 uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4761 (i+1)*PAGE_SIZE);
4762 #else
4763 struct page *page = shmem_read_mapping_page(mapping, i);
4764 if (!IS_ERR(page)) {
4765 char *dst = kmap_atomic(page);
4766 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4767 kunmap_atomic(dst);
4768
4769 drm_clflush_pages(&page, 1);
4770
4771 set_page_dirty(page);
4772 mark_page_accessed(page);
4773 page_cache_release(page);
4774 }
4775 #endif
4776 }
4777 i915_gem_chipset_flush(dev);
4778
4779 obj->phys_obj->cur_obj = NULL;
4780 obj->phys_obj = NULL;
4781 }
4782
4783 int
4784 i915_gem_attach_phys_object(struct drm_device *dev,
4785 struct drm_i915_gem_object *obj,
4786 int id,
4787 int align)
4788 {
4789 #ifndef __NetBSD__
4790 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4791 #endif
4792 drm_i915_private_t *dev_priv = dev->dev_private;
4793 int ret = 0;
4794 int page_count;
4795 int i;
4796
4797 if (id > I915_MAX_PHYS_OBJECT)
4798 return -EINVAL;
4799
4800 if (obj->phys_obj) {
4801 if (obj->phys_obj->id == id)
4802 return 0;
4803 i915_gem_detach_phys_object(dev, obj);
4804 }
4805
4806 /* create a new object */
4807 if (!dev_priv->mm.phys_objs[id - 1]) {
4808 ret = i915_gem_init_phys_object(dev, id,
4809 obj->base.size, align);
4810 if (ret) {
4811 DRM_ERROR("failed to init phys object %d size: %zu\n",
4812 id, obj->base.size);
4813 return ret;
4814 }
4815 }
4816
4817 /* bind to the object */
4818 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4819 obj->phys_obj->cur_obj = obj;
4820
4821 page_count = obj->base.size / PAGE_SIZE;
4822
4823 for (i = 0; i < page_count; i++) {
4824 #ifdef __NetBSD__
4825 char *const vaddr = obj->phys_obj->handle->vaddr;
4826 struct pglist pages;
4827 int error;
4828
4829 TAILQ_INIT(&pages);
4830 error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4831 (i+1)*PAGE_SIZE, &pages);
4832 if (error)
4833 /* XXX errno NetBSD->Linux */
4834 return -error;
4835
4836 KASSERT(!TAILQ_EMPTY(&pages));
4837 struct vm_page *const page = TAILQ_FIRST(&pages);
4838 TAILQ_REMOVE(&pages, page, pageq.queue);
4839 KASSERT(TAILQ_EMPTY(&pages));
4840
4841 char *const src = kmap_atomic(container_of(page, struct page,
4842 p_vmp));
4843 (void)memcpy(vaddr + (i*PAGE_SIZE), src, PAGE_SIZE);
4844 kunmap_atomic(src);
4845
4846 /* XXX mark page accessed */
4847 uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4848 (i+1)*PAGE_SIZE);
4849 #else
4850 struct page *page;
4851 char *dst, *src;
4852
4853 page = shmem_read_mapping_page(mapping, i);
4854 if (IS_ERR(page))
4855 return PTR_ERR(page);
4856
4857 src = kmap_atomic(page);
4858 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4859 memcpy(dst, src, PAGE_SIZE);
4860 kunmap_atomic(src);
4861
4862 mark_page_accessed(page);
4863 page_cache_release(page);
4864 #endif
4865 }
4866
4867 return 0;
4868 }
4869
4870 static int
4871 i915_gem_phys_pwrite(struct drm_device *dev,
4872 struct drm_i915_gem_object *obj,
4873 struct drm_i915_gem_pwrite *args,
4874 struct drm_file *file_priv)
4875 {
4876 void *vaddr = (char *)obj->phys_obj->handle->vaddr + args->offset;
4877 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4878
4879 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4880 unsigned long unwritten;
4881
4882 /* The physical object once assigned is fixed for the lifetime
4883 * of the obj, so we can safely drop the lock and continue
4884 * to access vaddr.
4885 */
4886 mutex_unlock(&dev->struct_mutex);
4887 unwritten = copy_from_user(vaddr, user_data, args->size);
4888 mutex_lock(&dev->struct_mutex);
4889 if (unwritten)
4890 return -EFAULT;
4891 }
4892
4893 i915_gem_chipset_flush(dev);
4894 return 0;
4895 }
4896
4897 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4898 {
4899 struct drm_i915_file_private *file_priv = file->driver_priv;
4900
4901 /* Clean up our request list when the client is going away, so that
4902 * later retire_requests won't dereference our soon-to-be-gone
4903 * file_priv.
4904 */
4905 spin_lock(&file_priv->mm.lock);
4906 while (!list_empty(&file_priv->mm.request_list)) {
4907 struct drm_i915_gem_request *request;
4908
4909 request = list_first_entry(&file_priv->mm.request_list,
4910 struct drm_i915_gem_request,
4911 client_list);
4912 list_del(&request->client_list);
4913 request->file_priv = NULL;
4914 }
4915 spin_unlock(&file_priv->mm.lock);
4916 }
4917
4918 #ifndef __NetBSD__ /* XXX */
4919 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4920 {
4921 if (!mutex_is_locked(mutex))
4922 return false;
4923
4924 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4925 return mutex->owner == task;
4926 #else
4927 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4928 return false;
4929 #endif
4930 }
4931 #endif
4932
4933 static int
4934 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4935 {
4936 #ifdef __NetBSD__ /* XXX shrinkers */
4937 return 0;
4938 #else
4939 struct drm_i915_private *dev_priv =
4940 container_of(shrinker,
4941 struct drm_i915_private,
4942 mm.inactive_shrinker);
4943 struct drm_device *dev = dev_priv->dev;
4944 struct drm_i915_gem_object *obj;
4945 int nr_to_scan = sc->nr_to_scan;
4946 bool unlock = true;
4947 int cnt;
4948
4949 if (!mutex_trylock(&dev->struct_mutex)) {
4950 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4951 return 0;
4952
4953 if (dev_priv->mm.shrinker_no_lock_stealing)
4954 return 0;
4955
4956 unlock = false;
4957 }
4958
4959 if (nr_to_scan) {
4960 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4961 if (nr_to_scan > 0)
4962 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4963 false);
4964 if (nr_to_scan > 0)
4965 i915_gem_shrink_all(dev_priv);
4966 }
4967
4968 cnt = 0;
4969 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4970 if (obj->pages_pin_count == 0)
4971 cnt += obj->base.size >> PAGE_SHIFT;
4972 list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4973 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4974 cnt += obj->base.size >> PAGE_SHIFT;
4975
4976 if (unlock)
4977 mutex_unlock(&dev->struct_mutex);
4978 return cnt;
4979 #endif
4980 }
4981