Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.1.1.1.2.19
      1 /*
      2  * Copyright  2008 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eric Anholt <eric (at) anholt.net>
     25  *
     26  */
     27 
     28 #ifdef __NetBSD__
     29 #if 0				/* XXX uvmhist option?  */
     30 #include "opt_uvmhist.h"
     31 #endif
     32 
     33 #include <sys/types.h>
     34 #include <sys/param.h>
     35 
     36 #include <uvm/uvm.h>
     37 #include <uvm/uvm_extern.h>
     38 #include <uvm/uvm_fault.h>
     39 #include <uvm/uvm_page.h>
     40 #include <uvm/uvm_pmap.h>
     41 #include <uvm/uvm_prot.h>
     42 #endif
     43 
     44 #include <drm/drmP.h>
     45 #include <drm/i915_drm.h>
     46 #include "i915_drv.h"
     47 #include "i915_trace.h"
     48 #include "intel_drv.h"
     49 #include <linux/shmem_fs.h>
     50 #include <linux/slab.h>
     51 #include <linux/swap.h>
     52 #include <linux/pci.h>
     53 #include <linux/dma-buf.h>
     54 #include <linux/errno.h>
     55 #include <linux/time.h>
     56 #include <linux/err.h>
     57 #include <asm/param.h>
     58 
     59 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
     60 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
     61 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
     62 						    unsigned alignment,
     63 						    bool map_and_fenceable,
     64 						    bool nonblocking);
     65 static int i915_gem_phys_pwrite(struct drm_device *dev,
     66 				struct drm_i915_gem_object *obj,
     67 				struct drm_i915_gem_pwrite *args,
     68 				struct drm_file *file);
     69 
     70 static void i915_gem_write_fence(struct drm_device *dev, int reg,
     71 				 struct drm_i915_gem_object *obj);
     72 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
     73 					 struct drm_i915_fence_reg *fence,
     74 					 bool enable);
     75 
     76 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
     77 				    struct shrink_control *sc);
     78 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
     79 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
     80 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
     81 
     82 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
     83 {
     84 	if (obj->tiling_mode)
     85 		i915_gem_release_mmap(obj);
     86 
     87 	/* As we do not have an associated fence register, we will force
     88 	 * a tiling change if we ever need to acquire one.
     89 	 */
     90 	obj->fence_dirty = false;
     91 	obj->fence_reg = I915_FENCE_REG_NONE;
     92 }
     93 
     94 /* some bookkeeping */
     95 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
     96 				  size_t size)
     97 {
     98 	dev_priv->mm.object_count++;
     99 	dev_priv->mm.object_memory += size;
    100 }
    101 
    102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
    103 				     size_t size)
    104 {
    105 	dev_priv->mm.object_count--;
    106 	dev_priv->mm.object_memory -= size;
    107 }
    108 
    109 static int
    110 i915_gem_wait_for_error(struct drm_device *dev)
    111 {
    112 	struct drm_i915_private *dev_priv = dev->dev_private;
    113 	struct completion *x = &dev_priv->error_completion;
    114 #ifndef __NetBSD__
    115 	unsigned long flags;
    116 #endif
    117 	int ret;
    118 
    119 	if (!atomic_read(&dev_priv->mm.wedged))
    120 		return 0;
    121 
    122 	/*
    123 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
    124 	 * userspace. If it takes that long something really bad is going on and
    125 	 * we should simply try to bail out and fail as gracefully as possible.
    126 	 */
    127 	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
    128 	if (ret == 0) {
    129 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
    130 		return -EIO;
    131 	} else if (ret < 0) {
    132 		return ret;
    133 	}
    134 
    135 	if (atomic_read(&dev_priv->mm.wedged)) {
    136 		/* GPU is hung, bump the completion count to account for
    137 		 * the token we just consumed so that we never hit zero and
    138 		 * end up waiting upon a subsequent completion event that
    139 		 * will never happen.
    140 		 */
    141 #ifdef __NetBSD__
    142 		/* XXX Hope it's not a problem that we might wake someone.  */
    143 		complete(x);
    144 #else
    145 		spin_lock_irqsave(&x->wait.lock, flags);
    146 		x->done++;
    147 		spin_unlock_irqrestore(&x->wait.lock, flags);
    148 #endif
    149 	}
    150 	return 0;
    151 }
    152 
    153 int i915_mutex_lock_interruptible(struct drm_device *dev)
    154 {
    155 	int ret;
    156 
    157 	ret = i915_gem_wait_for_error(dev);
    158 	if (ret)
    159 		return ret;
    160 
    161 	ret = mutex_lock_interruptible(&dev->struct_mutex);
    162 	if (ret)
    163 		return ret;
    164 
    165 	WARN_ON(i915_verify_lists(dev));
    166 	return 0;
    167 }
    168 
    169 static inline bool
    170 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
    171 {
    172 	return obj->gtt_space && !obj->active;
    173 }
    174 
    175 int
    176 i915_gem_init_ioctl(struct drm_device *dev, void *data,
    177 		    struct drm_file *file)
    178 {
    179 	struct drm_i915_gem_init *args = data;
    180 
    181 	if (drm_core_check_feature(dev, DRIVER_MODESET))
    182 		return -ENODEV;
    183 
    184 	if (args->gtt_start >= args->gtt_end ||
    185 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
    186 		return -EINVAL;
    187 
    188 	/* GEM with user mode setting was never supported on ilk and later. */
    189 	if (INTEL_INFO(dev)->gen >= 5)
    190 		return -ENODEV;
    191 
    192 	mutex_lock(&dev->struct_mutex);
    193 	i915_gem_init_global_gtt(dev, args->gtt_start,
    194 				 args->gtt_end, args->gtt_end);
    195 	mutex_unlock(&dev->struct_mutex);
    196 
    197 	return 0;
    198 }
    199 
    200 int
    201 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    202 			    struct drm_file *file)
    203 {
    204 	struct drm_i915_private *dev_priv = dev->dev_private;
    205 	struct drm_i915_gem_get_aperture *args = data;
    206 	struct drm_i915_gem_object *obj;
    207 	size_t pinned;
    208 
    209 	pinned = 0;
    210 	mutex_lock(&dev->struct_mutex);
    211 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
    212 		if (obj->pin_count)
    213 			pinned += obj->gtt_space->size;
    214 	mutex_unlock(&dev->struct_mutex);
    215 
    216 	args->aper_size = dev_priv->mm.gtt_total;
    217 	args->aper_available_size = args->aper_size - pinned;
    218 
    219 	return 0;
    220 }
    221 
    222 static int
    223 i915_gem_create(struct drm_file *file,
    224 		struct drm_device *dev,
    225 		uint64_t size,
    226 		uint32_t *handle_p)
    227 {
    228 	struct drm_i915_gem_object *obj;
    229 	int ret;
    230 	u32 handle;
    231 
    232 	size = roundup(size, PAGE_SIZE);
    233 	if (size == 0)
    234 		return -EINVAL;
    235 
    236 	/* Allocate the new object */
    237 	obj = i915_gem_alloc_object(dev, size);
    238 	if (obj == NULL)
    239 		return -ENOMEM;
    240 
    241 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    242 	if (ret) {
    243 		drm_gem_object_release(&obj->base);
    244 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
    245 		kfree(obj);
    246 		return ret;
    247 	}
    248 
    249 	/* drop reference from allocate - handle holds it now */
    250 	drm_gem_object_unreference(&obj->base);
    251 	trace_i915_gem_object_create(obj);
    252 
    253 	*handle_p = handle;
    254 	return 0;
    255 }
    256 
    257 int
    258 i915_gem_dumb_create(struct drm_file *file,
    259 		     struct drm_device *dev,
    260 		     struct drm_mode_create_dumb *args)
    261 {
    262 	/* have to work out size/pitch and return them */
    263 #ifdef __NetBSD__		/* ALIGN already means something.  */
    264 	args->pitch = round_up(args->width * ((args->bpp + 7) / 8), 64);
    265 #else
    266 	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
    267 #endif
    268 	args->size = args->pitch * args->height;
    269 	return i915_gem_create(file, dev,
    270 			       args->size, &args->handle);
    271 }
    272 
    273 int i915_gem_dumb_destroy(struct drm_file *file,
    274 			  struct drm_device *dev,
    275 			  uint32_t handle)
    276 {
    277 	return drm_gem_handle_delete(file, handle);
    278 }
    279 
    280 /**
    281  * Creates a new mm object and returns a handle to it.
    282  */
    283 int
    284 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    285 		      struct drm_file *file)
    286 {
    287 	struct drm_i915_gem_create *args = data;
    288 
    289 	return i915_gem_create(file, dev,
    290 			       args->size, &args->handle);
    291 }
    292 
    293 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
    294 {
    295 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
    296 
    297 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
    298 		obj->tiling_mode != I915_TILING_NONE;
    299 }
    300 
    301 static inline int
    302 __copy_to_user_swizzled(char __user *cpu_vaddr,
    303 			const char *gpu_vaddr, int gpu_offset,
    304 			int length)
    305 {
    306 	int ret, cpu_offset = 0;
    307 
    308 	while (length > 0) {
    309 #ifdef __NetBSD__
    310 		int cacheline_end = round_up(gpu_offset + 1, 64);
    311 #else
    312 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    313 #endif
    314 		int this_length = min(cacheline_end - gpu_offset, length);
    315 		int swizzled_gpu_offset = gpu_offset ^ 64;
    316 
    317 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
    318 				     gpu_vaddr + swizzled_gpu_offset,
    319 				     this_length);
    320 		if (ret)
    321 			return ret + length;
    322 
    323 		cpu_offset += this_length;
    324 		gpu_offset += this_length;
    325 		length -= this_length;
    326 	}
    327 
    328 	return 0;
    329 }
    330 
    331 static inline int
    332 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
    333 			  const char __user *cpu_vaddr,
    334 			  int length)
    335 {
    336 	int ret, cpu_offset = 0;
    337 
    338 	while (length > 0) {
    339 #ifdef __NetBSD__
    340 		int cacheline_end = round_up(gpu_offset + 1, 64);
    341 #else
    342 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    343 #endif
    344 		int this_length = min(cacheline_end - gpu_offset, length);
    345 		int swizzled_gpu_offset = gpu_offset ^ 64;
    346 
    347 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
    348 				       cpu_vaddr + cpu_offset,
    349 				       this_length);
    350 		if (ret)
    351 			return ret + length;
    352 
    353 		cpu_offset += this_length;
    354 		gpu_offset += this_length;
    355 		length -= this_length;
    356 	}
    357 
    358 	return 0;
    359 }
    360 
    361 /* Per-page copy function for the shmem pread fastpath.
    362  * Flushes invalid cachelines before reading the target if
    363  * needs_clflush is set. */
    364 static int
    365 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
    366 		 char __user *user_data,
    367 		 bool page_do_bit17_swizzling, bool needs_clflush)
    368 {
    369 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    370 	return -EFAULT;
    371 #else
    372 	char *vaddr;
    373 	int ret;
    374 
    375 	if (unlikely(page_do_bit17_swizzling))
    376 		return -EINVAL;
    377 
    378 	vaddr = kmap_atomic(page);
    379 	if (needs_clflush)
    380 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    381 				       page_length);
    382 	ret = __copy_to_user_inatomic(user_data,
    383 				      vaddr + shmem_page_offset,
    384 				      page_length);
    385 	kunmap_atomic(vaddr);
    386 
    387 	return ret ? -EFAULT : 0;
    388 #endif
    389 }
    390 
    391 static void
    392 shmem_clflush_swizzled_range(char *addr, unsigned long length,
    393 			     bool swizzled)
    394 {
    395 	if (unlikely(swizzled)) {
    396 		unsigned long start = (unsigned long) addr;
    397 		unsigned long end = (unsigned long) addr + length;
    398 
    399 		/* For swizzling simply ensure that we always flush both
    400 		 * channels. Lame, but simple and it works. Swizzled
    401 		 * pwrite/pread is far from a hotpath - current userspace
    402 		 * doesn't use it at all. */
    403 		start = round_down(start, 128);
    404 		end = round_up(end, 128);
    405 
    406 		drm_clflush_virt_range((void *)start, end - start);
    407 	} else {
    408 		drm_clflush_virt_range(addr, length);
    409 	}
    410 
    411 }
    412 
    413 /* Only difference to the fast-path function is that this can handle bit17
    414  * and uses non-atomic copy and kmap functions. */
    415 static int
    416 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
    417 		 char __user *user_data,
    418 		 bool page_do_bit17_swizzling, bool needs_clflush)
    419 {
    420 	char *vaddr;
    421 	int ret;
    422 
    423 	vaddr = kmap(page);
    424 	if (needs_clflush)
    425 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    426 					     page_length,
    427 					     page_do_bit17_swizzling);
    428 
    429 	if (page_do_bit17_swizzling)
    430 		ret = __copy_to_user_swizzled(user_data,
    431 					      vaddr, shmem_page_offset,
    432 					      page_length);
    433 	else
    434 		ret = __copy_to_user(user_data,
    435 				     vaddr + shmem_page_offset,
    436 				     page_length);
    437 	kunmap(page);
    438 
    439 	return ret ? - EFAULT : 0;
    440 }
    441 
    442 static int
    443 i915_gem_shmem_pread(struct drm_device *dev,
    444 		     struct drm_i915_gem_object *obj,
    445 		     struct drm_i915_gem_pread *args,
    446 		     struct drm_file *file)
    447 {
    448 	char __user *user_data;
    449 	ssize_t remain;
    450 	loff_t offset;
    451 	int shmem_page_offset, page_length, ret = 0;
    452 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    453 	int hit_slowpath = 0;
    454 #ifndef __NetBSD__		/* XXX */
    455 	int prefaulted = 0;
    456 #endif
    457 	int needs_clflush = 0;
    458 #ifndef __NetBSD__
    459 	struct scatterlist *sg;
    460 	int i;
    461 #endif
    462 
    463 	user_data = (char __user *) (uintptr_t) args->data_ptr;
    464 	remain = args->size;
    465 
    466 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    467 
    468 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
    469 		/* If we're not in the cpu read domain, set ourself into the gtt
    470 		 * read domain and manually flush cachelines (if required). This
    471 		 * optimizes for the case when the gpu will dirty the data
    472 		 * anyway again before the next pread happens. */
    473 		if (obj->cache_level == I915_CACHE_NONE)
    474 			needs_clflush = 1;
    475 		if (obj->gtt_space) {
    476 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
    477 			if (ret)
    478 				return ret;
    479 		}
    480 	}
    481 
    482 	ret = i915_gem_object_get_pages(obj);
    483 	if (ret)
    484 		return ret;
    485 
    486 	i915_gem_object_pin_pages(obj);
    487 
    488 	offset = args->offset;
    489 
    490 #ifdef __NetBSD__
    491 	/*
    492 	 * XXX This is a big #ifdef with a lot of duplicated code, but
    493 	 * factoring out the loop head -- which is all that
    494 	 * substantially differs -- is probably more trouble than it's
    495 	 * worth at the moment.
    496 	 */
    497 	while (0 < remain) {
    498 		/* Get the next page.  */
    499 		shmem_page_offset = offset_in_page(offset);
    500 		KASSERT(shmem_page_offset < PAGE_SIZE);
    501 		page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
    502 		struct page *const page = i915_gem_object_get_page(obj,
    503 		    atop(offset));
    504 
    505 		/* Decide whether to swizzle bit 17.  */
    506 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    507 		    (page_to_phys(page) & (1 << 17)) != 0;
    508 
    509 		/* Try the fast path.  */
    510 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    511 		    user_data, page_do_bit17_swizzling, needs_clflush);
    512 		if (ret == 0)
    513 			goto next_page;
    514 
    515 		/* Fast path failed.  Try the slow path.  */
    516 		hit_slowpath = 1;
    517 		mutex_unlock(&dev->struct_mutex);
    518 		/* XXX prefault */
    519 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    520 		    user_data, page_do_bit17_swizzling, needs_clflush);
    521 		mutex_lock(&dev->struct_mutex);
    522 
    523 next_page:
    524 		/* XXX mark page accessed */
    525 		if (ret)
    526 			goto out;
    527 
    528 		KASSERT(page_length <= remain);
    529 		remain -= page_length;
    530 		user_data += page_length;
    531 		offset += page_length;
    532 	}
    533 #else
    534 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
    535 		struct page *page;
    536 
    537 		if (i < offset >> PAGE_SHIFT)
    538 			continue;
    539 
    540 		if (remain <= 0)
    541 			break;
    542 
    543 		/* Operation in this page
    544 		 *
    545 		 * shmem_page_offset = offset within page in shmem file
    546 		 * page_length = bytes to copy for this page
    547 		 */
    548 		shmem_page_offset = offset_in_page(offset);
    549 		page_length = remain;
    550 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    551 			page_length = PAGE_SIZE - shmem_page_offset;
    552 
    553 		page = sg_page(sg);
    554 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    555 			(page_to_phys(page) & (1 << 17)) != 0;
    556 
    557 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    558 				       user_data, page_do_bit17_swizzling,
    559 				       needs_clflush);
    560 		if (ret == 0)
    561 			goto next_page;
    562 
    563 		hit_slowpath = 1;
    564 		mutex_unlock(&dev->struct_mutex);
    565 
    566 		if (!prefaulted) {
    567 			ret = fault_in_multipages_writeable(user_data, remain);
    568 			/* Userspace is tricking us, but we've already clobbered
    569 			 * its pages with the prefault and promised to write the
    570 			 * data up to the first fault. Hence ignore any errors
    571 			 * and just continue. */
    572 			(void)ret;
    573 			prefaulted = 1;
    574 		}
    575 
    576 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    577 				       user_data, page_do_bit17_swizzling,
    578 				       needs_clflush);
    579 
    580 		mutex_lock(&dev->struct_mutex);
    581 
    582 next_page:
    583 		mark_page_accessed(page);
    584 
    585 		if (ret)
    586 			goto out;
    587 
    588 		remain -= page_length;
    589 		user_data += page_length;
    590 		offset += page_length;
    591 	}
    592 #endif
    593 
    594 out:
    595 	i915_gem_object_unpin_pages(obj);
    596 
    597 	if (hit_slowpath) {
    598 		/* Fixup: Kill any reinstated backing storage pages */
    599 		if (obj->madv == __I915_MADV_PURGED)
    600 			i915_gem_object_truncate(obj);
    601 	}
    602 
    603 	return ret;
    604 }
    605 
    606 /**
    607  * Reads data from the object referenced by handle.
    608  *
    609  * On error, the contents of *data are undefined.
    610  */
    611 int
    612 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    613 		     struct drm_file *file)
    614 {
    615 	struct drm_i915_gem_pread *args = data;
    616 	struct drm_i915_gem_object *obj;
    617 	int ret = 0;
    618 
    619 	if (args->size == 0)
    620 		return 0;
    621 
    622 	if (!access_ok(VERIFY_WRITE,
    623 		       (char __user *)(uintptr_t)args->data_ptr,
    624 		       args->size))
    625 		return -EFAULT;
    626 
    627 	ret = i915_mutex_lock_interruptible(dev);
    628 	if (ret)
    629 		return ret;
    630 
    631 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
    632 	if (&obj->base == NULL) {
    633 		ret = -ENOENT;
    634 		goto unlock;
    635 	}
    636 
    637 	/* Bounds check source.  */
    638 	if (args->offset > obj->base.size ||
    639 	    args->size > obj->base.size - args->offset) {
    640 		ret = -EINVAL;
    641 		goto out;
    642 	}
    643 
    644 #ifndef __NetBSD__		/* XXX drm prime */
    645 	/* prime objects have no backing filp to GEM pread/pwrite
    646 	 * pages from.
    647 	 */
    648 	if (!obj->base.filp) {
    649 		ret = -EINVAL;
    650 		goto out;
    651 	}
    652 #endif
    653 
    654 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    655 
    656 	ret = i915_gem_shmem_pread(dev, obj, args, file);
    657 
    658 out:
    659 	drm_gem_object_unreference(&obj->base);
    660 unlock:
    661 	mutex_unlock(&dev->struct_mutex);
    662 	return ret;
    663 }
    664 
    665 /* This is the fast write path which cannot handle
    666  * page faults in the source data
    667  */
    668 
    669 static inline int
    670 fast_user_write(struct io_mapping *mapping,
    671 		loff_t page_base, int page_offset,
    672 		char __user *user_data,
    673 		int length)
    674 {
    675 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    676 	return -EFAULT;
    677 #else
    678 	void __iomem *vaddr_atomic;
    679 	void *vaddr;
    680 	unsigned long unwritten;
    681 
    682 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
    683 	/* We can use the cpu mem copy function because this is X86. */
    684 	vaddr = (void __force*)vaddr_atomic + page_offset;
    685 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
    686 						      user_data, length);
    687 	io_mapping_unmap_atomic(vaddr_atomic);
    688 	return unwritten;
    689 #endif
    690 }
    691 
    692 /**
    693  * This is the fast pwrite path, where we copy the data directly from the
    694  * user into the GTT, uncached.
    695  */
    696 static int
    697 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
    698 			 struct drm_i915_gem_object *obj,
    699 			 struct drm_i915_gem_pwrite *args,
    700 			 struct drm_file *file)
    701 {
    702 	drm_i915_private_t *dev_priv = dev->dev_private;
    703 	ssize_t remain;
    704 	loff_t offset, page_base;
    705 	char __user *user_data;
    706 	int page_offset, page_length, ret;
    707 
    708 	ret = i915_gem_object_pin(obj, 0, true, true);
    709 	if (ret)
    710 		goto out;
    711 
    712 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    713 	if (ret)
    714 		goto out_unpin;
    715 
    716 	ret = i915_gem_object_put_fence(obj);
    717 	if (ret)
    718 		goto out_unpin;
    719 
    720 	user_data = (char __user *) (uintptr_t) args->data_ptr;
    721 	remain = args->size;
    722 
    723 	offset = obj->gtt_offset + args->offset;
    724 
    725 	while (remain > 0) {
    726 		/* Operation in this page
    727 		 *
    728 		 * page_base = page offset within aperture
    729 		 * page_offset = offset within page
    730 		 * page_length = bytes to copy for this page
    731 		 */
    732 		page_base = offset & PAGE_MASK;
    733 		page_offset = offset_in_page(offset);
    734 		page_length = remain;
    735 		if ((page_offset + remain) > PAGE_SIZE)
    736 			page_length = PAGE_SIZE - page_offset;
    737 
    738 		/* If we get a fault while copying data, then (presumably) our
    739 		 * source page isn't available.  Return the error and we'll
    740 		 * retry in the slow path.
    741 		 */
    742 		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
    743 				    page_offset, user_data, page_length)) {
    744 			ret = -EFAULT;
    745 			goto out_unpin;
    746 		}
    747 
    748 		remain -= page_length;
    749 		user_data += page_length;
    750 		offset += page_length;
    751 	}
    752 
    753 out_unpin:
    754 	i915_gem_object_unpin(obj);
    755 out:
    756 	return ret;
    757 }
    758 
    759 /* Per-page copy function for the shmem pwrite fastpath.
    760  * Flushes invalid cachelines before writing to the target if
    761  * needs_clflush_before is set and flushes out any written cachelines after
    762  * writing if needs_clflush is set. */
    763 static int
    764 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
    765 		  char __user *user_data,
    766 		  bool page_do_bit17_swizzling,
    767 		  bool needs_clflush_before,
    768 		  bool needs_clflush_after)
    769 {
    770 #ifdef __NetBSD__
    771 	return -EFAULT;
    772 #else
    773 	char *vaddr;
    774 	int ret;
    775 
    776 	if (unlikely(page_do_bit17_swizzling))
    777 		return -EINVAL;
    778 
    779 	vaddr = kmap_atomic(page);
    780 	if (needs_clflush_before)
    781 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    782 				       page_length);
    783 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
    784 						user_data,
    785 						page_length);
    786 	if (needs_clflush_after)
    787 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    788 				       page_length);
    789 	kunmap_atomic(vaddr);
    790 
    791 	return ret ? -EFAULT : 0;
    792 #endif
    793 }
    794 
    795 /* Only difference to the fast-path function is that this can handle bit17
    796  * and uses non-atomic copy and kmap functions. */
    797 static int
    798 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
    799 		  char __user *user_data,
    800 		  bool page_do_bit17_swizzling,
    801 		  bool needs_clflush_before,
    802 		  bool needs_clflush_after)
    803 {
    804 	char *vaddr;
    805 	int ret;
    806 
    807 	vaddr = kmap(page);
    808 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
    809 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    810 					     page_length,
    811 					     page_do_bit17_swizzling);
    812 	if (page_do_bit17_swizzling)
    813 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
    814 						user_data,
    815 						page_length);
    816 	else
    817 		ret = __copy_from_user(vaddr + shmem_page_offset,
    818 				       user_data,
    819 				       page_length);
    820 	if (needs_clflush_after)
    821 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    822 					     page_length,
    823 					     page_do_bit17_swizzling);
    824 	kunmap(page);
    825 
    826 	return ret ? -EFAULT : 0;
    827 }
    828 
    829 static int
    830 i915_gem_shmem_pwrite(struct drm_device *dev,
    831 		      struct drm_i915_gem_object *obj,
    832 		      struct drm_i915_gem_pwrite *args,
    833 		      struct drm_file *file)
    834 {
    835 	ssize_t remain;
    836 	loff_t offset;
    837 	char __user *user_data;
    838 	int shmem_page_offset, page_length, ret = 0;
    839 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    840 	int hit_slowpath = 0;
    841 	int needs_clflush_after = 0;
    842 	int needs_clflush_before = 0;
    843 #ifndef __NetBSD__
    844 	int i;
    845 	struct scatterlist *sg;
    846 #endif
    847 
    848 	user_data = (char __user *) (uintptr_t) args->data_ptr;
    849 	remain = args->size;
    850 
    851 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    852 
    853 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
    854 		/* If we're not in the cpu write domain, set ourself into the gtt
    855 		 * write domain and manually flush cachelines (if required). This
    856 		 * optimizes for the case when the gpu will use the data
    857 		 * right away and we therefore have to clflush anyway. */
    858 		if (obj->cache_level == I915_CACHE_NONE)
    859 			needs_clflush_after = 1;
    860 		if (obj->gtt_space) {
    861 			ret = i915_gem_object_set_to_gtt_domain(obj, true);
    862 			if (ret)
    863 				return ret;
    864 		}
    865 	}
    866 	/* Same trick applies for invalidate partially written cachelines before
    867 	 * writing.  */
    868 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
    869 	    && obj->cache_level == I915_CACHE_NONE)
    870 		needs_clflush_before = 1;
    871 
    872 	ret = i915_gem_object_get_pages(obj);
    873 	if (ret)
    874 		return ret;
    875 
    876 	i915_gem_object_pin_pages(obj);
    877 
    878 	offset = args->offset;
    879 	obj->dirty = 1;
    880 
    881 #ifdef __NetBSD__
    882 	while (0 < remain) {
    883 		/* Get the next page.  */
    884 		shmem_page_offset = offset_in_page(offset);
    885 		KASSERT(shmem_page_offset < PAGE_SIZE);
    886 		page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
    887 		struct page *const page = i915_gem_object_get_page(obj,
    888 		    atop(offset));
    889 
    890 		/* Decide whether to flush the cache or swizzle bit 17.  */
    891 		const bool partial_cacheline_write = needs_clflush_before &&
    892 		    ((shmem_page_offset | page_length)
    893 			& (cpu_info_primary.ci_cflush_lsize - 1));
    894 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    895 		    (page_to_phys(page) & (1 << 17)) != 0;
    896 
    897 		/* Try the fast path.  */
    898 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
    899 		    user_data, page_do_bit17_swizzling,
    900 		    partial_cacheline_write, needs_clflush_after);
    901 		if (ret == 0)
    902 			goto next_page;
    903 
    904 		/* Fast path failed.  Try the slow path.  */
    905 		hit_slowpath = 1;
    906 		mutex_unlock(&dev->struct_mutex);
    907 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
    908 		    user_data, page_do_bit17_swizzling,
    909 		    partial_cacheline_write, needs_clflush_after);
    910 		mutex_lock(&dev->struct_mutex);
    911 
    912 next_page:
    913 		page->p_vmp.flags &= ~PG_CLEAN;
    914 		/* XXX mark page accessed */
    915 		if (ret)
    916 			goto out;
    917 
    918 		KASSERT(page_length <= remain);
    919 		remain -= page_length;
    920 		user_data += page_length;
    921 		offset += page_length;
    922 	}
    923 #else
    924 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
    925 		struct page *page;
    926 		int partial_cacheline_write;
    927 
    928 		if (i < offset >> PAGE_SHIFT)
    929 			continue;
    930 
    931 		if (remain <= 0)
    932 			break;
    933 
    934 		/* Operation in this page
    935 		 *
    936 		 * shmem_page_offset = offset within page in shmem file
    937 		 * page_length = bytes to copy for this page
    938 		 */
    939 		shmem_page_offset = offset_in_page(offset);
    940 
    941 		page_length = remain;
    942 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    943 			page_length = PAGE_SIZE - shmem_page_offset;
    944 
    945 		/* If we don't overwrite a cacheline completely we need to be
    946 		 * careful to have up-to-date data by first clflushing. Don't
    947 		 * overcomplicate things and flush the entire patch. */
    948 		partial_cacheline_write = needs_clflush_before &&
    949 			((shmem_page_offset | page_length)
    950 				& (boot_cpu_data.x86_clflush_size - 1));
    951 
    952 		page = sg_page(sg);
    953 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    954 			(page_to_phys(page) & (1 << 17)) != 0;
    955 
    956 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
    957 					user_data, page_do_bit17_swizzling,
    958 					partial_cacheline_write,
    959 					needs_clflush_after);
    960 		if (ret == 0)
    961 			goto next_page;
    962 
    963 		hit_slowpath = 1;
    964 		mutex_unlock(&dev->struct_mutex);
    965 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
    966 					user_data, page_do_bit17_swizzling,
    967 					partial_cacheline_write,
    968 					needs_clflush_after);
    969 
    970 		mutex_lock(&dev->struct_mutex);
    971 
    972 next_page:
    973 		set_page_dirty(page);
    974 		mark_page_accessed(page);
    975 
    976 		if (ret)
    977 			goto out;
    978 
    979 		remain -= page_length;
    980 		user_data += page_length;
    981 		offset += page_length;
    982 	}
    983 #endif
    984 
    985 out:
    986 	i915_gem_object_unpin_pages(obj);
    987 
    988 	if (hit_slowpath) {
    989 		/* Fixup: Kill any reinstated backing storage pages */
    990 		if (obj->madv == __I915_MADV_PURGED)
    991 			i915_gem_object_truncate(obj);
    992 		/* and flush dirty cachelines in case the object isn't in the cpu write
    993 		 * domain anymore. */
    994 		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
    995 			i915_gem_clflush_object(obj);
    996 			i915_gem_chipset_flush(dev);
    997 		}
    998 	}
    999 
   1000 	if (needs_clflush_after)
   1001 		i915_gem_chipset_flush(dev);
   1002 
   1003 	return ret;
   1004 }
   1005 
   1006 /**
   1007  * Writes data to the object referenced by handle.
   1008  *
   1009  * On error, the contents of the buffer that were to be modified are undefined.
   1010  */
   1011 int
   1012 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
   1013 		      struct drm_file *file)
   1014 {
   1015 	struct drm_i915_gem_pwrite *args = data;
   1016 	struct drm_i915_gem_object *obj;
   1017 	int ret;
   1018 
   1019 	if (args->size == 0)
   1020 		return 0;
   1021 
   1022 	if (!access_ok(VERIFY_READ,
   1023 		       (char __user *)(uintptr_t)args->data_ptr,
   1024 		       args->size))
   1025 		return -EFAULT;
   1026 
   1027 #ifndef __NetBSD__		/* XXX prefault */
   1028 	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
   1029 					   args->size);
   1030 	if (ret)
   1031 		return -EFAULT;
   1032 #endif
   1033 
   1034 	ret = i915_mutex_lock_interruptible(dev);
   1035 	if (ret)
   1036 		return ret;
   1037 
   1038 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   1039 	if (&obj->base == NULL) {
   1040 		ret = -ENOENT;
   1041 		goto unlock;
   1042 	}
   1043 
   1044 	/* Bounds check destination. */
   1045 	if (args->offset > obj->base.size ||
   1046 	    args->size > obj->base.size - args->offset) {
   1047 		ret = -EINVAL;
   1048 		goto out;
   1049 	}
   1050 
   1051 #ifndef __NetBSD__		/* XXX drm prime */
   1052 	/* prime objects have no backing filp to GEM pread/pwrite
   1053 	 * pages from.
   1054 	 */
   1055 	if (!obj->base.filp) {
   1056 		ret = -EINVAL;
   1057 		goto out;
   1058 	}
   1059 #endif
   1060 
   1061 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
   1062 
   1063 	ret = -EFAULT;
   1064 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
   1065 	 * it would end up going through the fenced access, and we'll get
   1066 	 * different detiling behavior between reading and writing.
   1067 	 * pread/pwrite currently are reading and writing from the CPU
   1068 	 * perspective, requiring manual detiling by the client.
   1069 	 */
   1070 	if (obj->phys_obj) {
   1071 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
   1072 		goto out;
   1073 	}
   1074 
   1075 	if (obj->cache_level == I915_CACHE_NONE &&
   1076 	    obj->tiling_mode == I915_TILING_NONE &&
   1077 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1078 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
   1079 		/* Note that the gtt paths might fail with non-page-backed user
   1080 		 * pointers (e.g. gtt mappings when moving data between
   1081 		 * textures). Fallback to the shmem path in that case. */
   1082 	}
   1083 
   1084 	if (ret == -EFAULT || ret == -ENOSPC)
   1085 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
   1086 
   1087 out:
   1088 	drm_gem_object_unreference(&obj->base);
   1089 unlock:
   1090 	mutex_unlock(&dev->struct_mutex);
   1091 	return ret;
   1092 }
   1093 
   1094 int
   1095 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
   1096 		     bool interruptible)
   1097 {
   1098 	if (atomic_read(&dev_priv->mm.wedged)) {
   1099 		struct completion *x = &dev_priv->error_completion;
   1100 		bool recovery_complete;
   1101 #ifndef __NetBSD__
   1102 		unsigned long flags;
   1103 #endif
   1104 
   1105 #ifdef __NetBSD__
   1106 		/*
   1107 		 * XXX This is a horrible kludge.  Reading internal
   1108 		 * fields is no good, nor is reading them unlocked, and
   1109 		 * neither is locking it and then unlocking it before
   1110 		 * making a decision.
   1111 		 */
   1112 		recovery_complete = x->c_done > 0;
   1113 #else
   1114 		/* Give the error handler a chance to run. */
   1115 		spin_lock_irqsave(&x->wait.lock, flags);
   1116 		recovery_complete = x->done > 0;
   1117 		spin_unlock_irqrestore(&x->wait.lock, flags);
   1118 #endif
   1119 
   1120 		/* Non-interruptible callers can't handle -EAGAIN, hence return
   1121 		 * -EIO unconditionally for these. */
   1122 		if (!interruptible)
   1123 			return -EIO;
   1124 
   1125 		/* Recovery complete, but still wedged means reset failure. */
   1126 		if (recovery_complete)
   1127 			return -EIO;
   1128 
   1129 		return -EAGAIN;
   1130 	}
   1131 
   1132 	return 0;
   1133 }
   1134 
   1135 /*
   1136  * Compare seqno against outstanding lazy request. Emit a request if they are
   1137  * equal.
   1138  */
   1139 static int
   1140 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
   1141 {
   1142 	int ret;
   1143 
   1144 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
   1145 
   1146 	ret = 0;
   1147 	if (seqno == ring->outstanding_lazy_request)
   1148 		ret = i915_add_request(ring, NULL, NULL);
   1149 
   1150 	return ret;
   1151 }
   1152 
   1153 /**
   1154  * __wait_seqno - wait until execution of seqno has finished
   1155  * @ring: the ring expected to report seqno
   1156  * @seqno: duh!
   1157  * @interruptible: do an interruptible wait (normally yes)
   1158  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
   1159  *
   1160  * Returns 0 if the seqno was found within the alloted time. Else returns the
   1161  * errno with remaining time filled in timeout argument.
   1162  */
   1163 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
   1164 			bool interruptible, struct timespec *timeout)
   1165 {
   1166 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
   1167 	struct timespec before, now, wait_time={1,0};
   1168 	unsigned long timeout_jiffies;
   1169 	long end;
   1170 	bool wait_forever = true;
   1171 	int ret;
   1172 
   1173 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
   1174 		return 0;
   1175 
   1176 	trace_i915_gem_request_wait_begin(ring, seqno);
   1177 
   1178 	if (timeout != NULL) {
   1179 		wait_time = *timeout;
   1180 		wait_forever = false;
   1181 	}
   1182 
   1183 	timeout_jiffies = timespec_to_jiffies(&wait_time);
   1184 
   1185 	if (WARN_ON(!ring->irq_get(ring)))
   1186 		return -ENODEV;
   1187 
   1188 	/* Record current time in case interrupted by signal, or wedged * */
   1189 	getrawmonotonic(&before);
   1190 
   1191 #define EXIT_COND \
   1192 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
   1193 	atomic_read(&dev_priv->mm.wedged))
   1194 	do {
   1195 #ifdef __NetBSD__
   1196 		unsigned long flags;
   1197 		spin_lock_irqsave(&dev_priv->irq_lock, flags);
   1198 		/*
   1199 		 * XXX This wait is always interruptible; we should
   1200 		 * heed the flag `interruptible'.
   1201 		 */
   1202 		DRM_SPIN_TIMED_WAIT_UNTIL(end, &ring->irq_queue,
   1203 		    &dev_priv->irq_lock,
   1204 		    timeout_jiffies,
   1205 		    EXIT_COND);
   1206 		spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
   1207 #else
   1208 		if (interruptible)
   1209 			end = wait_event_interruptible_timeout(ring->irq_queue,
   1210 							       EXIT_COND,
   1211 							       timeout_jiffies);
   1212 		else
   1213 			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
   1214 						 timeout_jiffies);
   1215 
   1216 #endif
   1217 		ret = i915_gem_check_wedge(dev_priv, interruptible);
   1218 		if (ret)
   1219 			end = ret;
   1220 	} while (end == 0 && wait_forever);
   1221 
   1222 	getrawmonotonic(&now);
   1223 
   1224 	ring->irq_put(ring);
   1225 	trace_i915_gem_request_wait_end(ring, seqno);
   1226 #undef EXIT_COND
   1227 
   1228 	if (timeout) {
   1229 		struct timespec sleep_time = timespec_sub(now, before);
   1230 		*timeout = timespec_sub(*timeout, sleep_time);
   1231 	}
   1232 
   1233 	switch (end) {
   1234 	case -EIO:
   1235 	case -EAGAIN: /* Wedged */
   1236 	case -ERESTARTSYS: /* Signal */
   1237 		return (int)end;
   1238 	case 0: /* Timeout */
   1239 		if (timeout)
   1240 			set_normalized_timespec(timeout, 0, 0);
   1241 		return -ETIME;
   1242 	default: /* Completed */
   1243 		WARN_ON(end < 0); /* We're not aware of other errors */
   1244 		return 0;
   1245 	}
   1246 }
   1247 
   1248 /**
   1249  * Waits for a sequence number to be signaled, and cleans up the
   1250  * request and object lists appropriately for that event.
   1251  */
   1252 int
   1253 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
   1254 {
   1255 	struct drm_device *dev = ring->dev;
   1256 	struct drm_i915_private *dev_priv = dev->dev_private;
   1257 	bool interruptible = dev_priv->mm.interruptible;
   1258 	int ret;
   1259 
   1260 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1261 	BUG_ON(seqno == 0);
   1262 
   1263 	ret = i915_gem_check_wedge(dev_priv, interruptible);
   1264 	if (ret)
   1265 		return ret;
   1266 
   1267 	ret = i915_gem_check_olr(ring, seqno);
   1268 	if (ret)
   1269 		return ret;
   1270 
   1271 	return __wait_seqno(ring, seqno, interruptible, NULL);
   1272 }
   1273 
   1274 /**
   1275  * Ensures that all rendering to the object has completed and the object is
   1276  * safe to unbind from the GTT or access from the CPU.
   1277  */
   1278 static __must_check int
   1279 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
   1280 			       bool readonly)
   1281 {
   1282 	struct intel_ring_buffer *ring = obj->ring;
   1283 	u32 seqno;
   1284 	int ret;
   1285 
   1286 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
   1287 	if (seqno == 0)
   1288 		return 0;
   1289 
   1290 	ret = i915_wait_seqno(ring, seqno);
   1291 	if (ret)
   1292 		return ret;
   1293 
   1294 	i915_gem_retire_requests_ring(ring);
   1295 
   1296 	/* Manually manage the write flush as we may have not yet
   1297 	 * retired the buffer.
   1298 	 */
   1299 	if (obj->last_write_seqno &&
   1300 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
   1301 		obj->last_write_seqno = 0;
   1302 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
   1303 	}
   1304 
   1305 	return 0;
   1306 }
   1307 
   1308 /* A nonblocking variant of the above wait. This is a highly dangerous routine
   1309  * as the object state may change during this call.
   1310  */
   1311 static __must_check int
   1312 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
   1313 					    bool readonly)
   1314 {
   1315 	struct drm_device *dev = obj->base.dev;
   1316 	struct drm_i915_private *dev_priv = dev->dev_private;
   1317 	struct intel_ring_buffer *ring = obj->ring;
   1318 	u32 seqno;
   1319 	int ret;
   1320 
   1321 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1322 	BUG_ON(!dev_priv->mm.interruptible);
   1323 
   1324 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
   1325 	if (seqno == 0)
   1326 		return 0;
   1327 
   1328 	ret = i915_gem_check_wedge(dev_priv, true);
   1329 	if (ret)
   1330 		return ret;
   1331 
   1332 	ret = i915_gem_check_olr(ring, seqno);
   1333 	if (ret)
   1334 		return ret;
   1335 
   1336 	mutex_unlock(&dev->struct_mutex);
   1337 	ret = __wait_seqno(ring, seqno, true, NULL);
   1338 	mutex_lock(&dev->struct_mutex);
   1339 
   1340 	i915_gem_retire_requests_ring(ring);
   1341 
   1342 	/* Manually manage the write flush as we may have not yet
   1343 	 * retired the buffer.
   1344 	 */
   1345 	if (obj->last_write_seqno &&
   1346 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
   1347 		obj->last_write_seqno = 0;
   1348 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
   1349 	}
   1350 
   1351 	return ret;
   1352 }
   1353 
   1354 /**
   1355  * Called when user space prepares to use an object with the CPU, either
   1356  * through the mmap ioctl's mapping or a GTT mapping.
   1357  */
   1358 int
   1359 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
   1360 			  struct drm_file *file)
   1361 {
   1362 	struct drm_i915_gem_set_domain *args = data;
   1363 	struct drm_i915_gem_object *obj;
   1364 	uint32_t read_domains = args->read_domains;
   1365 	uint32_t write_domain = args->write_domain;
   1366 	int ret;
   1367 
   1368 	/* Only handle setting domains to types used by the CPU. */
   1369 	if (write_domain & I915_GEM_GPU_DOMAINS)
   1370 		return -EINVAL;
   1371 
   1372 	if (read_domains & I915_GEM_GPU_DOMAINS)
   1373 		return -EINVAL;
   1374 
   1375 	/* Having something in the write domain implies it's in the read
   1376 	 * domain, and only that read domain.  Enforce that in the request.
   1377 	 */
   1378 	if (write_domain != 0 && read_domains != write_domain)
   1379 		return -EINVAL;
   1380 
   1381 	ret = i915_mutex_lock_interruptible(dev);
   1382 	if (ret)
   1383 		return ret;
   1384 
   1385 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   1386 	if (&obj->base == NULL) {
   1387 		ret = -ENOENT;
   1388 		goto unlock;
   1389 	}
   1390 
   1391 	/* Try to flush the object off the GPU without holding the lock.
   1392 	 * We will repeat the flush holding the lock in the normal manner
   1393 	 * to catch cases where we are gazumped.
   1394 	 */
   1395 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
   1396 	if (ret)
   1397 		goto unref;
   1398 
   1399 	if (read_domains & I915_GEM_DOMAIN_GTT) {
   1400 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
   1401 
   1402 		/* Silently promote "you're not bound, there was nothing to do"
   1403 		 * to success, since the client was just asking us to
   1404 		 * make sure everything was done.
   1405 		 */
   1406 		if (ret == -EINVAL)
   1407 			ret = 0;
   1408 	} else {
   1409 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
   1410 	}
   1411 
   1412 unref:
   1413 	drm_gem_object_unreference(&obj->base);
   1414 unlock:
   1415 	mutex_unlock(&dev->struct_mutex);
   1416 	return ret;
   1417 }
   1418 
   1419 /**
   1420  * Called when user space has done writes to this buffer
   1421  */
   1422 int
   1423 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
   1424 			 struct drm_file *file)
   1425 {
   1426 	struct drm_i915_gem_sw_finish *args = data;
   1427 	struct drm_i915_gem_object *obj;
   1428 	int ret = 0;
   1429 
   1430 	ret = i915_mutex_lock_interruptible(dev);
   1431 	if (ret)
   1432 		return ret;
   1433 
   1434 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   1435 	if (&obj->base == NULL) {
   1436 		ret = -ENOENT;
   1437 		goto unlock;
   1438 	}
   1439 
   1440 	/* Pinned buffers may be scanout, so flush the cache */
   1441 	if (obj->pin_count)
   1442 		i915_gem_object_flush_cpu_write_domain(obj);
   1443 
   1444 	drm_gem_object_unreference(&obj->base);
   1445 unlock:
   1446 	mutex_unlock(&dev->struct_mutex);
   1447 	return ret;
   1448 }
   1449 
   1450 /**
   1451  * Maps the contents of an object, returning the address it is mapped
   1452  * into.
   1453  *
   1454  * While the mapping holds a reference on the contents of the object, it doesn't
   1455  * imply a ref on the object itself.
   1456  */
   1457 int
   1458 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
   1459 		    struct drm_file *file)
   1460 {
   1461 	struct drm_i915_gem_mmap *args = data;
   1462 	struct drm_gem_object *obj;
   1463 	unsigned long addr;
   1464 #ifdef __NetBSD__
   1465 	int ret;
   1466 #endif
   1467 
   1468 	obj = drm_gem_object_lookup(dev, file, args->handle);
   1469 	if (obj == NULL)
   1470 		return -ENOENT;
   1471 
   1472 #ifndef __NetBSD__    /* XXX drm prime */
   1473 	/* prime objects have no backing filp to GEM mmap
   1474 	 * pages from.
   1475 	 */
   1476 	if (!obj->filp) {
   1477 		drm_gem_object_unreference_unlocked(obj);
   1478 		return -EINVAL;
   1479 	}
   1480 #endif
   1481 
   1482 #ifdef __NetBSD__
   1483 	addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
   1484 	    (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
   1485 	/* XXX errno NetBSD->Linux */
   1486 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
   1487 	    obj->gemo_shm_uao, args->offset, 0,
   1488 	    UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
   1489 		(VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
   1490 		UVM_FLAG_COPYONW));
   1491 	if (ret)
   1492 		return ret;
   1493 #else
   1494 	addr = vm_mmap(obj->filp, 0, args->size,
   1495 		       PROT_READ | PROT_WRITE, MAP_SHARED,
   1496 		       args->offset);
   1497 	drm_gem_object_unreference_unlocked(obj);
   1498 	if (IS_ERR((void *)addr))
   1499 		return addr;
   1500 #endif
   1501 
   1502 	args->addr_ptr = (uint64_t) addr;
   1503 
   1504 	return 0;
   1505 }
   1506 
   1507 #ifdef __NetBSD__		/* XXX gem gtt fault */
   1508 static int	i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
   1509 		    struct vm_page **, int, int, vm_prot_t, int, paddr_t);
   1510 
   1511 int
   1512 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   1513     int npages, int centeridx, vm_prot_t access_type, int flags)
   1514 {
   1515 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1516 	struct drm_gem_object *gem_obj =
   1517 	    container_of(uobj, struct drm_gem_object, gemo_uvmobj);
   1518 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   1519 	struct drm_device *dev = obj->base.dev;
   1520 	struct drm_i915_private *dev_priv = dev->dev_private;
   1521 	pgoff_t page_offset;
   1522 	int ret = 0;
   1523 	bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
   1524 
   1525 	page_offset = (ufi->entry->offset + (vaddr - ufi->entry->start)) >>
   1526 	    PAGE_SHIFT;
   1527 
   1528 	ret = i915_mutex_lock_interruptible(dev);
   1529 	if (ret)
   1530 		goto out;
   1531 
   1532 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   1533 
   1534 	/* Now bind it into the GTT if needed */
   1535 	ret = i915_gem_object_pin(obj, 0, true, false);
   1536 	if (ret)
   1537 		goto unlock;
   1538 
   1539 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   1540 	if (ret)
   1541 		goto unpin;
   1542 
   1543 	ret = i915_gem_object_get_fence(obj);
   1544 	if (ret)
   1545 		goto unpin;
   1546 
   1547 	obj->fault_mappable = true;
   1548 
   1549 	/* Finally, remap it using the new GTT offset */
   1550 	/* XXX errno NetBSD->Linux */
   1551 	ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
   1552 	    flags, (dev_priv->mm.gtt_base_addr + obj->gtt_offset));
   1553 unpin:
   1554 	i915_gem_object_unpin(obj);
   1555 unlock:
   1556 	mutex_unlock(&dev->struct_mutex);
   1557 out:
   1558 	return ret;
   1559 }
   1560 
   1561 /*
   1562  * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
   1563  *
   1564  * XXX pmap_enter_default instead of pmap_enter because of a problem
   1565  * with using weak aliases in kernel modules or something.
   1566  */
   1567 int	pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
   1568 
   1569 static int
   1570 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   1571     int npages, int centeridx, vm_prot_t access_type, int flags,
   1572     paddr_t gtt_paddr)
   1573 {
   1574 	struct vm_map_entry *entry = ufi->entry;
   1575 	struct uvm_object *uobj = entry->object.uvm_obj;
   1576 	vaddr_t curr_va;
   1577 	off_t curr_offset;
   1578 	paddr_t paddr;
   1579 	u_int mmapflags;
   1580 	int lcv, retval;
   1581 	vm_prot_t mapprot;
   1582 	UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
   1583 	UVMHIST_LOG(maphist,"  flags=%d", flags,0,0,0);
   1584 
   1585 	/*
   1586 	 * we do not allow device mappings to be mapped copy-on-write
   1587 	 * so we kill any attempt to do so here.
   1588 	 */
   1589 
   1590 	if (UVM_ET_ISCOPYONWRITE(entry)) {
   1591 		UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
   1592 		entry->etype, 0,0,0);
   1593 		uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
   1594 		return(EIO);
   1595 	}
   1596 
   1597 	/*
   1598 	 * now we must determine the offset in udv to use and the VA to
   1599 	 * use for pmap_enter.  note that we always use orig_map's pmap
   1600 	 * for pmap_enter (even if we have a submap).   since virtual
   1601 	 * addresses in a submap must match the main map, this is ok.
   1602 	 */
   1603 
   1604 	/* udv offset = (offset from start of entry) + entry's offset */
   1605 	curr_offset = entry->offset + (vaddr - entry->start);
   1606 	/* pmap va = vaddr (virtual address of pps[0]) */
   1607 	curr_va = vaddr;
   1608 
   1609 	/*
   1610 	 * loop over the page range entering in as needed
   1611 	 */
   1612 
   1613 	retval = 0;
   1614 	for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
   1615 	    curr_va += PAGE_SIZE) {
   1616 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
   1617 			continue;
   1618 
   1619 		if (pps[lcv] == PGO_DONTCARE)
   1620 			continue;
   1621 
   1622 		paddr = (gtt_paddr + curr_offset);
   1623 		mmapflags = 0;
   1624 		mapprot = ufi->entry->protection;
   1625 		UVMHIST_LOG(maphist,
   1626 		    "  MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
   1627 		    ufi->orig_map->pmap, curr_va, paddr, mapprot);
   1628 		if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
   1629 		    PMAP_CANFAIL | mapprot | mmapflags) != 0) {
   1630 			/*
   1631 			 * pmap_enter() didn't have the resource to
   1632 			 * enter this mapping.  Unlock everything,
   1633 			 * wait for the pagedaemon to free up some
   1634 			 * pages, and then tell uvm_fault() to start
   1635 			 * the fault again.
   1636 			 *
   1637 			 * XXX Needs some rethinking for the PGO_ALLPAGES
   1638 			 * XXX case.
   1639 			 */
   1640 			pmap_update(ufi->orig_map->pmap);	/* sync what we have so far */
   1641 			uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap,
   1642 			    uobj);
   1643 			uvm_wait("i915flt");
   1644 			return (ERESTART);
   1645 		}
   1646 	}
   1647 
   1648 	pmap_update(ufi->orig_map->pmap);
   1649 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
   1650 	return (retval);
   1651 }
   1652 #else
   1653 /**
   1654  * i915_gem_fault - fault a page into the GTT
   1655  * vma: VMA in question
   1656  * vmf: fault info
   1657  *
   1658  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
   1659  * from userspace.  The fault handler takes care of binding the object to
   1660  * the GTT (if needed), allocating and programming a fence register (again,
   1661  * only if needed based on whether the old reg is still valid or the object
   1662  * is tiled) and inserting a new PTE into the faulting process.
   1663  *
   1664  * Note that the faulting process may involve evicting existing objects
   1665  * from the GTT and/or fence registers to make room.  So performance may
   1666  * suffer if the GTT working set is large or there are few fence registers
   1667  * left.
   1668  */
   1669 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
   1670 {
   1671 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
   1672 	struct drm_device *dev = obj->base.dev;
   1673 	drm_i915_private_t *dev_priv = dev->dev_private;
   1674 	pgoff_t page_offset;
   1675 	unsigned long pfn;
   1676 	int ret = 0;
   1677 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
   1678 
   1679 	/* We don't use vmf->pgoff since that has the fake offset */
   1680 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
   1681 		PAGE_SHIFT;
   1682 
   1683 	ret = i915_mutex_lock_interruptible(dev);
   1684 	if (ret)
   1685 		goto out;
   1686 
   1687 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   1688 
   1689 	/* Now bind it into the GTT if needed */
   1690 	ret = i915_gem_object_pin(obj, 0, true, false);
   1691 	if (ret)
   1692 		goto unlock;
   1693 
   1694 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   1695 	if (ret)
   1696 		goto unpin;
   1697 
   1698 	ret = i915_gem_object_get_fence(obj);
   1699 	if (ret)
   1700 		goto unpin;
   1701 
   1702 	obj->fault_mappable = true;
   1703 
   1704 	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
   1705 		page_offset;
   1706 
   1707 	/* Finally, remap it using the new GTT offset */
   1708 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
   1709 unpin:
   1710 	i915_gem_object_unpin(obj);
   1711 unlock:
   1712 	mutex_unlock(&dev->struct_mutex);
   1713 out:
   1714 	switch (ret) {
   1715 	case -EIO:
   1716 		/* If this -EIO is due to a gpu hang, give the reset code a
   1717 		 * chance to clean up the mess. Otherwise return the proper
   1718 		 * SIGBUS. */
   1719 		if (!atomic_read(&dev_priv->mm.wedged))
   1720 			return VM_FAULT_SIGBUS;
   1721 	case -EAGAIN:
   1722 		/* Give the error handler a chance to run and move the
   1723 		 * objects off the GPU active list. Next time we service the
   1724 		 * fault, we should be able to transition the page into the
   1725 		 * GTT without touching the GPU (and so avoid further
   1726 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
   1727 		 * with coherency, just lost writes.
   1728 		 */
   1729 		set_need_resched();
   1730 	case 0:
   1731 	case -ERESTARTSYS:
   1732 	case -EINTR:
   1733 	case -EBUSY:
   1734 		/*
   1735 		 * EBUSY is ok: this just means that another thread
   1736 		 * already did the job.
   1737 		 */
   1738 		return VM_FAULT_NOPAGE;
   1739 	case -ENOMEM:
   1740 		return VM_FAULT_OOM;
   1741 	case -ENOSPC:
   1742 		return VM_FAULT_SIGBUS;
   1743 	default:
   1744 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
   1745 		return VM_FAULT_SIGBUS;
   1746 	}
   1747 }
   1748 #endif
   1749 
   1750 /**
   1751  * i915_gem_release_mmap - remove physical page mappings
   1752  * @obj: obj in question
   1753  *
   1754  * Preserve the reservation of the mmapping with the DRM core code, but
   1755  * relinquish ownership of the pages back to the system.
   1756  *
   1757  * It is vital that we remove the page mapping if we have mapped a tiled
   1758  * object through the GTT and then lose the fence register due to
   1759  * resource pressure. Similarly if the object has been moved out of the
   1760  * aperture, than pages mapped into userspace must be revoked. Removing the
   1761  * mapping will then trigger a page fault on the next user access, allowing
   1762  * fixup by i915_gem_fault().
   1763  */
   1764 void
   1765 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
   1766 {
   1767 	if (!obj->fault_mappable)
   1768 		return;
   1769 
   1770 #ifdef __NetBSD__		/* XXX gem gtt fault */
   1771 	{
   1772 		struct vm_page *page;
   1773 
   1774 		KASSERT(obj->pages != NULL);
   1775 		/* Force a fresh fault for each page.  */
   1776 		TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
   1777 			pmap_page_protect(page, VM_PROT_NONE);
   1778 	}
   1779 #else
   1780 	if (obj->base.dev->dev_mapping)
   1781 		unmap_mapping_range(obj->base.dev->dev_mapping,
   1782 				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
   1783 				    obj->base.size, 1);
   1784 #endif
   1785 
   1786 	obj->fault_mappable = false;
   1787 }
   1788 
   1789 static uint32_t
   1790 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
   1791 {
   1792 	uint32_t gtt_size;
   1793 
   1794 	if (INTEL_INFO(dev)->gen >= 4 ||
   1795 	    tiling_mode == I915_TILING_NONE)
   1796 		return size;
   1797 
   1798 	/* Previous chips need a power-of-two fence region when tiling */
   1799 	if (INTEL_INFO(dev)->gen == 3)
   1800 		gtt_size = 1024*1024;
   1801 	else
   1802 		gtt_size = 512*1024;
   1803 
   1804 	while (gtt_size < size)
   1805 		gtt_size <<= 1;
   1806 
   1807 	return gtt_size;
   1808 }
   1809 
   1810 /**
   1811  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
   1812  * @obj: object to check
   1813  *
   1814  * Return the required GTT alignment for an object, taking into account
   1815  * potential fence register mapping.
   1816  */
   1817 static uint32_t
   1818 i915_gem_get_gtt_alignment(struct drm_device *dev,
   1819 			   uint32_t size,
   1820 			   int tiling_mode)
   1821 {
   1822 	/*
   1823 	 * Minimum alignment is 4k (GTT page size), but might be greater
   1824 	 * if a fence register is needed for the object.
   1825 	 */
   1826 	if (INTEL_INFO(dev)->gen >= 4 ||
   1827 	    tiling_mode == I915_TILING_NONE)
   1828 		return 4096;
   1829 
   1830 	/*
   1831 	 * Previous chips need to be aligned to the size of the smallest
   1832 	 * fence register that can contain the object.
   1833 	 */
   1834 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
   1835 }
   1836 
   1837 /**
   1838  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
   1839  *					 unfenced object
   1840  * @dev: the device
   1841  * @size: size of the object
   1842  * @tiling_mode: tiling mode of the object
   1843  *
   1844  * Return the required GTT alignment for an object, only taking into account
   1845  * unfenced tiled surface requirements.
   1846  */
   1847 uint32_t
   1848 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
   1849 				    uint32_t size,
   1850 				    int tiling_mode)
   1851 {
   1852 	/*
   1853 	 * Minimum alignment is 4k (GTT page size) for sane hw.
   1854 	 */
   1855 	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
   1856 	    tiling_mode == I915_TILING_NONE)
   1857 		return 4096;
   1858 
   1859 	/* Previous hardware however needs to be aligned to a power-of-two
   1860 	 * tile height. The simplest method for determining this is to reuse
   1861 	 * the power-of-tile object size.
   1862 	 */
   1863 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
   1864 }
   1865 
   1866 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
   1867 {
   1868 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   1869 	int ret;
   1870 
   1871 	if (obj->base.map_list.map)
   1872 		return 0;
   1873 
   1874 	dev_priv->mm.shrinker_no_lock_stealing = true;
   1875 
   1876 	ret = drm_gem_create_mmap_offset(&obj->base);
   1877 	if (ret != -ENOSPC)
   1878 		goto out;
   1879 
   1880 	/* Badly fragmented mmap space? The only way we can recover
   1881 	 * space is by destroying unwanted objects. We can't randomly release
   1882 	 * mmap_offsets as userspace expects them to be persistent for the
   1883 	 * lifetime of the objects. The closest we can is to release the
   1884 	 * offsets on purgeable objects by truncating it and marking it purged,
   1885 	 * which prevents userspace from ever using that object again.
   1886 	 */
   1887 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
   1888 	ret = drm_gem_create_mmap_offset(&obj->base);
   1889 	if (ret != -ENOSPC)
   1890 		goto out;
   1891 
   1892 	i915_gem_shrink_all(dev_priv);
   1893 	ret = drm_gem_create_mmap_offset(&obj->base);
   1894 out:
   1895 	dev_priv->mm.shrinker_no_lock_stealing = false;
   1896 
   1897 	return ret;
   1898 }
   1899 
   1900 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
   1901 {
   1902 	if (!obj->base.map_list.map)
   1903 		return;
   1904 
   1905 	drm_gem_free_mmap_offset(&obj->base);
   1906 }
   1907 
   1908 int
   1909 i915_gem_mmap_gtt(struct drm_file *file,
   1910 		  struct drm_device *dev,
   1911 		  uint32_t handle,
   1912 		  uint64_t *offset)
   1913 {
   1914 	struct drm_i915_private *dev_priv = dev->dev_private;
   1915 	struct drm_i915_gem_object *obj;
   1916 	int ret;
   1917 
   1918 	ret = i915_mutex_lock_interruptible(dev);
   1919 	if (ret)
   1920 		return ret;
   1921 
   1922 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
   1923 	if (&obj->base == NULL) {
   1924 		ret = -ENOENT;
   1925 		goto unlock;
   1926 	}
   1927 
   1928 	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
   1929 		ret = -E2BIG;
   1930 		goto out;
   1931 	}
   1932 
   1933 	if (obj->madv != I915_MADV_WILLNEED) {
   1934 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
   1935 		ret = -EINVAL;
   1936 		goto out;
   1937 	}
   1938 
   1939 	ret = i915_gem_object_create_mmap_offset(obj);
   1940 	if (ret)
   1941 		goto out;
   1942 
   1943 	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
   1944 
   1945 out:
   1946 	drm_gem_object_unreference(&obj->base);
   1947 unlock:
   1948 	mutex_unlock(&dev->struct_mutex);
   1949 	return ret;
   1950 }
   1951 
   1952 /**
   1953  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
   1954  * @dev: DRM device
   1955  * @data: GTT mapping ioctl data
   1956  * @file: GEM object info
   1957  *
   1958  * Simply returns the fake offset to userspace so it can mmap it.
   1959  * The mmap call will end up in drm_gem_mmap(), which will set things
   1960  * up so we can get faults in the handler above.
   1961  *
   1962  * The fault handler will take care of binding the object into the GTT
   1963  * (since it may have been evicted to make room for something), allocating
   1964  * a fence register, and mapping the appropriate aperture address into
   1965  * userspace.
   1966  */
   1967 int
   1968 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
   1969 			struct drm_file *file)
   1970 {
   1971 	struct drm_i915_gem_mmap_gtt *args = data;
   1972 
   1973 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
   1974 }
   1975 
   1976 /* Immediately discard the backing storage */
   1977 static void
   1978 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
   1979 {
   1980 #ifndef __NetBSD__
   1981 	struct inode *inode;
   1982 #endif
   1983 
   1984 	i915_gem_object_free_mmap_offset(obj);
   1985 
   1986 #ifdef __NetBSD__
   1987 	{
   1988 		struct uvm_object *const uobj = obj->base.gemo_shm_uao;
   1989 
   1990 		if (uobj != NULL) {
   1991 			/* XXX Calling pgo_put like this is bogus.  */
   1992 			mutex_enter(uobj->vmobjlock);
   1993 			(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   1994 			    (PGO_ALLPAGES | PGO_FREE));
   1995 		}
   1996 	}
   1997 #else
   1998 	if (obj->base.filp == NULL)
   1999 		return;
   2000 
   2001 	/* Our goal here is to return as much of the memory as
   2002 	 * is possible back to the system as we are called from OOM.
   2003 	 * To do this we must instruct the shmfs to drop all of its
   2004 	 * backing pages, *now*.
   2005 	 */
   2006 	inode = obj->base.filp->f_path.dentry->d_inode;
   2007 	shmem_truncate_range(inode, 0, (loff_t)-1);
   2008 #endif
   2009 
   2010 	obj->madv = __I915_MADV_PURGED;
   2011 }
   2012 
   2013 static inline int
   2014 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
   2015 {
   2016 	return obj->madv == I915_MADV_DONTNEED;
   2017 }
   2018 
   2019 #ifdef __NetBSD__
   2020 static void
   2021 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2022 {
   2023 	struct drm_device *const dev = obj->base.dev;
   2024 	int ret;
   2025 
   2026 	/* XXX Cargo-culted from the Linux code.  */
   2027 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2028 
   2029 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2030 	if (ret) {
   2031 		WARN_ON(ret != -EIO);
   2032 		i915_gem_clflush_object(obj);
   2033 		obj->base.read_domains = obj->base.write_domain =
   2034 		    I915_GEM_DOMAIN_CPU;
   2035 	}
   2036 
   2037 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2038 		i915_gem_object_save_bit_17_swizzle(obj);
   2039 
   2040 	/* XXX Maintain dirty flag?  */
   2041 
   2042 	bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
   2043 	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
   2044 	    obj->base.size, obj->pages, obj->igo_nsegs);
   2045 
   2046 	kfree(obj->pages);
   2047 }
   2048 #else
   2049 static void
   2050 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2051 {
   2052 	int page_count = obj->base.size / PAGE_SIZE;
   2053 	struct scatterlist *sg;
   2054 	int ret, i;
   2055 
   2056 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2057 
   2058 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2059 	if (ret) {
   2060 		/* In the event of a disaster, abandon all caches and
   2061 		 * hope for the best.
   2062 		 */
   2063 		WARN_ON(ret != -EIO);
   2064 		i915_gem_clflush_object(obj);
   2065 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   2066 	}
   2067 
   2068 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2069 		i915_gem_object_save_bit_17_swizzle(obj);
   2070 
   2071 	if (obj->madv == I915_MADV_DONTNEED)
   2072 		obj->dirty = 0;
   2073 
   2074 	for_each_sg(obj->pages->sgl, sg, page_count, i) {
   2075 		struct page *page = sg_page(sg);
   2076 
   2077 		if (obj->dirty)
   2078 			set_page_dirty(page);
   2079 
   2080 		if (obj->madv == I915_MADV_WILLNEED)
   2081 			mark_page_accessed(page);
   2082 
   2083 		page_cache_release(page);
   2084 	}
   2085 	obj->dirty = 0;
   2086 
   2087 	sg_free_table(obj->pages);
   2088 	kfree(obj->pages);
   2089 }
   2090 #endif
   2091 
   2092 static int
   2093 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
   2094 {
   2095 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2096 
   2097 	if (obj->pages == NULL)
   2098 		return 0;
   2099 
   2100 	BUG_ON(obj->gtt_space);
   2101 
   2102 	if (obj->pages_pin_count)
   2103 		return -EBUSY;
   2104 
   2105 	/* ->put_pages might need to allocate memory for the bit17 swizzle
   2106 	 * array, hence protect them from being reaped by removing them from gtt
   2107 	 * lists early. */
   2108 	list_del(&obj->gtt_list);
   2109 
   2110 	ops->put_pages(obj);
   2111 	obj->pages = NULL;
   2112 
   2113 	if (i915_gem_object_is_purgeable(obj))
   2114 		i915_gem_object_truncate(obj);
   2115 
   2116 	return 0;
   2117 }
   2118 
   2119 static long
   2120 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
   2121 		  bool purgeable_only)
   2122 {
   2123 	struct drm_i915_gem_object *obj, *next;
   2124 	long count = 0;
   2125 
   2126 	list_for_each_entry_safe(obj, next,
   2127 				 &dev_priv->mm.unbound_list,
   2128 				 gtt_list) {
   2129 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
   2130 		    i915_gem_object_put_pages(obj) == 0) {
   2131 			count += obj->base.size >> PAGE_SHIFT;
   2132 			if (count >= target)
   2133 				return count;
   2134 		}
   2135 	}
   2136 
   2137 	list_for_each_entry_safe(obj, next,
   2138 				 &dev_priv->mm.inactive_list,
   2139 				 mm_list) {
   2140 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
   2141 		    i915_gem_object_unbind(obj) == 0 &&
   2142 		    i915_gem_object_put_pages(obj) == 0) {
   2143 			count += obj->base.size >> PAGE_SHIFT;
   2144 			if (count >= target)
   2145 				return count;
   2146 		}
   2147 	}
   2148 
   2149 	return count;
   2150 }
   2151 
   2152 static long
   2153 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
   2154 {
   2155 	return __i915_gem_shrink(dev_priv, target, true);
   2156 }
   2157 
   2158 static void
   2159 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
   2160 {
   2161 	struct drm_i915_gem_object *obj, *next;
   2162 
   2163 	i915_gem_evict_everything(dev_priv->dev);
   2164 
   2165 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
   2166 		i915_gem_object_put_pages(obj);
   2167 }
   2168 
   2169 #ifdef __NetBSD__
   2170 static int
   2171 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2172 {
   2173 	struct drm_device *const dev = obj->base.dev;
   2174 	struct vm_page *page;
   2175 	int error;
   2176 
   2177 	/* XXX Cargo-culted from the Linux code.  */
   2178 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2179 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2180 
   2181 	KASSERT(obj->pages == NULL);
   2182 	TAILQ_INIT(&obj->igo_pageq);
   2183 	obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
   2184 	    sizeof(obj->pages[0]), GFP_KERNEL);
   2185 	if (obj->pages == NULL) {
   2186 		error = -ENOMEM;
   2187 		goto fail0;
   2188 	}
   2189 
   2190 	/* XXX errno NetBSD->Linux */
   2191 	error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
   2192 	    0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
   2193 	    (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
   2194 	if (error)
   2195 		/* XXX Try i915_gem_purge, i915_gem_shrink_all.  */
   2196 		goto fail1;
   2197 	KASSERT(0 < obj->igo_nsegs);
   2198 	KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
   2199 
   2200 	/*
   2201 	 * Check that the paddrs will fit in 40 bits.
   2202 	 *
   2203 	 * XXX This is wrong; we ought to pass this constraint to
   2204 	 * bus_dmamem_wire_uvm_object instead.
   2205 	 */
   2206 	TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
   2207 		if (VM_PAGE_TO_PHYS(page) & ~0xffffffffffULL) {
   2208 			DRM_ERROR("GEM physical address exceeds 40 bits"
   2209 			    ": %"PRIxMAX"\n",
   2210 			    (uintmax_t)VM_PAGE_TO_PHYS(page));
   2211 			goto fail2;
   2212 		}
   2213 	}
   2214 
   2215 	/* XXX errno NetBSD->Linux */
   2216 	error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
   2217 	    PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
   2218 	if (error)
   2219 		goto fail2;
   2220 
   2221 	/* XXX Cargo-culted from the Linux code.  */
   2222 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2223 		i915_gem_object_do_bit_17_swizzle(obj);
   2224 
   2225 	/* Success!  */
   2226 	return 0;
   2227 
   2228 fail2:	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
   2229 	    obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
   2230 fail1:	kfree(obj->pages);
   2231 	obj->pages = NULL;
   2232 fail0:	return error;
   2233 }
   2234 #else
   2235 static int
   2236 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2237 {
   2238 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2239 	int page_count, i;
   2240 	struct address_space *mapping;
   2241 	struct sg_table *st;
   2242 	struct scatterlist *sg;
   2243 	struct page *page;
   2244 	gfp_t gfp;
   2245 
   2246 	/* Assert that the object is not currently in any GPU domain. As it
   2247 	 * wasn't in the GTT, there shouldn't be any way it could have been in
   2248 	 * a GPU cache
   2249 	 */
   2250 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2251 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2252 
   2253 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   2254 	if (st == NULL)
   2255 		return -ENOMEM;
   2256 
   2257 	page_count = obj->base.size / PAGE_SIZE;
   2258 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
   2259 		sg_free_table(st);
   2260 		kfree(st);
   2261 		return -ENOMEM;
   2262 	}
   2263 
   2264 	/* Get the list of pages out of our struct file.  They'll be pinned
   2265 	 * at this point until we release them.
   2266 	 *
   2267 	 * Fail silently without starting the shrinker
   2268 	 */
   2269 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
   2270 	gfp = mapping_gfp_mask(mapping);
   2271 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
   2272 	gfp &= ~(__GFP_IO | __GFP_WAIT);
   2273 	for_each_sg(st->sgl, sg, page_count, i) {
   2274 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2275 		if (IS_ERR(page)) {
   2276 			i915_gem_purge(dev_priv, page_count);
   2277 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2278 		}
   2279 		if (IS_ERR(page)) {
   2280 			/* We've tried hard to allocate the memory by reaping
   2281 			 * our own buffer, now let the real VM do its job and
   2282 			 * go down in flames if truly OOM.
   2283 			 */
   2284 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
   2285 			gfp |= __GFP_IO | __GFP_WAIT;
   2286 
   2287 			i915_gem_shrink_all(dev_priv);
   2288 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2289 			if (IS_ERR(page))
   2290 				goto err_pages;
   2291 
   2292 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
   2293 			gfp &= ~(__GFP_IO | __GFP_WAIT);
   2294 		}
   2295 
   2296 		sg_set_page(sg, page, PAGE_SIZE, 0);
   2297 	}
   2298 
   2299 	obj->pages = st;
   2300 
   2301 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2302 		i915_gem_object_do_bit_17_swizzle(obj);
   2303 
   2304 	return 0;
   2305 
   2306 err_pages:
   2307 	for_each_sg(st->sgl, sg, i, page_count)
   2308 		page_cache_release(sg_page(sg));
   2309 	sg_free_table(st);
   2310 	kfree(st);
   2311 	return PTR_ERR(page);
   2312 }
   2313 #endif
   2314 
   2315 /* Ensure that the associated pages are gathered from the backing storage
   2316  * and pinned into our object. i915_gem_object_get_pages() may be called
   2317  * multiple times before they are released by a single call to
   2318  * i915_gem_object_put_pages() - once the pages are no longer referenced
   2319  * either as a result of memory pressure (reaping pages under the shrinker)
   2320  * or as the object is itself released.
   2321  */
   2322 int
   2323 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
   2324 {
   2325 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2326 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2327 	int ret;
   2328 
   2329 	if (obj->pages)
   2330 		return 0;
   2331 
   2332 	BUG_ON(obj->pages_pin_count);
   2333 
   2334 	ret = ops->get_pages(obj);
   2335 	if (ret)
   2336 		return ret;
   2337 
   2338 	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
   2339 	return 0;
   2340 }
   2341 
   2342 void
   2343 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
   2344 			       struct intel_ring_buffer *ring)
   2345 {
   2346 	struct drm_device *dev = obj->base.dev;
   2347 	struct drm_i915_private *dev_priv = dev->dev_private;
   2348 	u32 seqno = intel_ring_get_seqno(ring);
   2349 
   2350 	BUG_ON(ring == NULL);
   2351 	obj->ring = ring;
   2352 
   2353 	/* Add a reference if we're newly entering the active list. */
   2354 	if (!obj->active) {
   2355 		drm_gem_object_reference(&obj->base);
   2356 		obj->active = 1;
   2357 	}
   2358 
   2359 	/* Move from whatever list we were on to the tail of execution. */
   2360 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
   2361 	list_move_tail(&obj->ring_list, &ring->active_list);
   2362 
   2363 	obj->last_read_seqno = seqno;
   2364 
   2365 	if (obj->fenced_gpu_access) {
   2366 		obj->last_fenced_seqno = seqno;
   2367 
   2368 		/* Bump MRU to take account of the delayed flush */
   2369 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
   2370 			struct drm_i915_fence_reg *reg;
   2371 
   2372 			reg = &dev_priv->fence_regs[obj->fence_reg];
   2373 			list_move_tail(&reg->lru_list,
   2374 				       &dev_priv->mm.fence_list);
   2375 		}
   2376 	}
   2377 }
   2378 
   2379 static void
   2380 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
   2381 {
   2382 	struct drm_device *dev = obj->base.dev;
   2383 	struct drm_i915_private *dev_priv = dev->dev_private;
   2384 
   2385 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
   2386 	BUG_ON(!obj->active);
   2387 
   2388 	if (obj->pin_count) /* are we a framebuffer? */
   2389 		intel_mark_fb_idle(obj);
   2390 
   2391 	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
   2392 
   2393 	list_del_init(&obj->ring_list);
   2394 	obj->ring = NULL;
   2395 
   2396 	obj->last_read_seqno = 0;
   2397 	obj->last_write_seqno = 0;
   2398 	obj->base.write_domain = 0;
   2399 
   2400 	obj->last_fenced_seqno = 0;
   2401 	obj->fenced_gpu_access = false;
   2402 
   2403 	obj->active = 0;
   2404 	drm_gem_object_unreference(&obj->base);
   2405 
   2406 	WARN_ON(i915_verify_lists(dev));
   2407 }
   2408 
   2409 static int
   2410 i915_gem_handle_seqno_wrap(struct drm_device *dev)
   2411 {
   2412 	struct drm_i915_private *dev_priv = dev->dev_private;
   2413 	struct intel_ring_buffer *ring;
   2414 	int ret, i, j;
   2415 
   2416 	/* The hardware uses various monotonic 32-bit counters, if we
   2417 	 * detect that they will wraparound we need to idle the GPU
   2418 	 * and reset those counters.
   2419 	 */
   2420 	ret = 0;
   2421 	for_each_ring(ring, dev_priv, i) {
   2422 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
   2423 			ret |= ring->sync_seqno[j] != 0;
   2424 	}
   2425 	if (ret == 0)
   2426 		return ret;
   2427 
   2428 	ret = i915_gpu_idle(dev);
   2429 	if (ret)
   2430 		return ret;
   2431 
   2432 	i915_gem_retire_requests(dev);
   2433 	for_each_ring(ring, dev_priv, i) {
   2434 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
   2435 			ring->sync_seqno[j] = 0;
   2436 	}
   2437 
   2438 	return 0;
   2439 }
   2440 
   2441 int
   2442 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
   2443 {
   2444 	struct drm_i915_private *dev_priv = dev->dev_private;
   2445 
   2446 	/* reserve 0 for non-seqno */
   2447 	if (dev_priv->next_seqno == 0) {
   2448 		int ret = i915_gem_handle_seqno_wrap(dev);
   2449 		if (ret)
   2450 			return ret;
   2451 
   2452 		dev_priv->next_seqno = 1;
   2453 	}
   2454 
   2455 	*seqno = dev_priv->next_seqno++;
   2456 	return 0;
   2457 }
   2458 
   2459 int
   2460 i915_add_request(struct intel_ring_buffer *ring,
   2461 		 struct drm_file *file,
   2462 		 u32 *out_seqno)
   2463 {
   2464 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
   2465 	struct drm_i915_gem_request *request;
   2466 	u32 request_ring_position;
   2467 	int was_empty;
   2468 	int ret;
   2469 
   2470 	/*
   2471 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
   2472 	 * after having emitted the batchbuffer command. Hence we need to fix
   2473 	 * things up similar to emitting the lazy request. The difference here
   2474 	 * is that the flush _must_ happen before the next request, no matter
   2475 	 * what.
   2476 	 */
   2477 	ret = intel_ring_flush_all_caches(ring);
   2478 	if (ret)
   2479 		return ret;
   2480 
   2481 	request = kmalloc(sizeof(*request), GFP_KERNEL);
   2482 	if (request == NULL)
   2483 		return -ENOMEM;
   2484 
   2485 
   2486 	/* Record the position of the start of the request so that
   2487 	 * should we detect the updated seqno part-way through the
   2488 	 * GPU processing the request, we never over-estimate the
   2489 	 * position of the head.
   2490 	 */
   2491 	request_ring_position = intel_ring_get_tail(ring);
   2492 
   2493 	ret = ring->add_request(ring);
   2494 	if (ret) {
   2495 		kfree(request);
   2496 		return ret;
   2497 	}
   2498 
   2499 	request->seqno = intel_ring_get_seqno(ring);
   2500 	request->ring = ring;
   2501 	request->tail = request_ring_position;
   2502 	request->emitted_jiffies = jiffies;
   2503 	was_empty = list_empty(&ring->request_list);
   2504 	list_add_tail(&request->list, &ring->request_list);
   2505 	request->file_priv = NULL;
   2506 
   2507 	if (file) {
   2508 		struct drm_i915_file_private *file_priv = file->driver_priv;
   2509 
   2510 		spin_lock(&file_priv->mm.lock);
   2511 		request->file_priv = file_priv;
   2512 		list_add_tail(&request->client_list,
   2513 			      &file_priv->mm.request_list);
   2514 		spin_unlock(&file_priv->mm.lock);
   2515 	}
   2516 
   2517 	trace_i915_gem_request_add(ring, request->seqno);
   2518 	ring->outstanding_lazy_request = 0;
   2519 
   2520 	if (!dev_priv->mm.suspended) {
   2521 		if (i915_enable_hangcheck) {
   2522 			mod_timer(&dev_priv->hangcheck_timer,
   2523 				  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
   2524 		}
   2525 		if (was_empty) {
   2526 			queue_delayed_work(dev_priv->wq,
   2527 					   &dev_priv->mm.retire_work,
   2528 					   round_jiffies_up_relative(HZ));
   2529 			intel_mark_busy(dev_priv->dev);
   2530 		}
   2531 	}
   2532 
   2533 	if (out_seqno)
   2534 		*out_seqno = request->seqno;
   2535 	return 0;
   2536 }
   2537 
   2538 static inline void
   2539 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
   2540 {
   2541 	struct drm_i915_file_private *file_priv = request->file_priv;
   2542 
   2543 	if (!file_priv)
   2544 		return;
   2545 
   2546 	spin_lock(&file_priv->mm.lock);
   2547 	if (request->file_priv) {
   2548 		list_del(&request->client_list);
   2549 		request->file_priv = NULL;
   2550 	}
   2551 	spin_unlock(&file_priv->mm.lock);
   2552 }
   2553 
   2554 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
   2555 				      struct intel_ring_buffer *ring)
   2556 {
   2557 	while (!list_empty(&ring->request_list)) {
   2558 		struct drm_i915_gem_request *request;
   2559 
   2560 		request = list_first_entry(&ring->request_list,
   2561 					   struct drm_i915_gem_request,
   2562 					   list);
   2563 
   2564 		list_del(&request->list);
   2565 		i915_gem_request_remove_from_client(request);
   2566 		kfree(request);
   2567 	}
   2568 
   2569 	while (!list_empty(&ring->active_list)) {
   2570 		struct drm_i915_gem_object *obj;
   2571 
   2572 		obj = list_first_entry(&ring->active_list,
   2573 				       struct drm_i915_gem_object,
   2574 				       ring_list);
   2575 
   2576 		i915_gem_object_move_to_inactive(obj);
   2577 	}
   2578 }
   2579 
   2580 static void i915_gem_reset_fences(struct drm_device *dev)
   2581 {
   2582 	struct drm_i915_private *dev_priv = dev->dev_private;
   2583 	int i;
   2584 
   2585 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
   2586 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
   2587 
   2588 		i915_gem_write_fence(dev, i, NULL);
   2589 
   2590 		if (reg->obj)
   2591 			i915_gem_object_fence_lost(reg->obj);
   2592 
   2593 		reg->pin_count = 0;
   2594 		reg->obj = NULL;
   2595 		INIT_LIST_HEAD(&reg->lru_list);
   2596 	}
   2597 
   2598 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   2599 }
   2600 
   2601 void i915_gem_reset(struct drm_device *dev)
   2602 {
   2603 	struct drm_i915_private *dev_priv = dev->dev_private;
   2604 	struct drm_i915_gem_object *obj;
   2605 	struct intel_ring_buffer *ring;
   2606 	int i;
   2607 
   2608 	for_each_ring(ring, dev_priv, i)
   2609 		i915_gem_reset_ring_lists(dev_priv, ring);
   2610 
   2611 	/* Move everything out of the GPU domains to ensure we do any
   2612 	 * necessary invalidation upon reuse.
   2613 	 */
   2614 	list_for_each_entry(obj,
   2615 			    &dev_priv->mm.inactive_list,
   2616 			    mm_list)
   2617 	{
   2618 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
   2619 	}
   2620 
   2621 	/* The fence registers are invalidated so clear them out */
   2622 	i915_gem_reset_fences(dev);
   2623 }
   2624 
   2625 /**
   2626  * This function clears the request list as sequence numbers are passed.
   2627  */
   2628 void
   2629 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
   2630 {
   2631 	uint32_t seqno;
   2632 
   2633 	if (list_empty(&ring->request_list))
   2634 		return;
   2635 
   2636 	WARN_ON(i915_verify_lists(ring->dev));
   2637 
   2638 	seqno = ring->get_seqno(ring, true);
   2639 
   2640 	while (!list_empty(&ring->request_list)) {
   2641 		struct drm_i915_gem_request *request;
   2642 
   2643 		request = list_first_entry(&ring->request_list,
   2644 					   struct drm_i915_gem_request,
   2645 					   list);
   2646 
   2647 		if (!i915_seqno_passed(seqno, request->seqno))
   2648 			break;
   2649 
   2650 		trace_i915_gem_request_retire(ring, request->seqno);
   2651 		/* We know the GPU must have read the request to have
   2652 		 * sent us the seqno + interrupt, so use the position
   2653 		 * of tail of the request to update the last known position
   2654 		 * of the GPU head.
   2655 		 */
   2656 		ring->last_retired_head = request->tail;
   2657 
   2658 		list_del(&request->list);
   2659 		i915_gem_request_remove_from_client(request);
   2660 		kfree(request);
   2661 	}
   2662 
   2663 	/* Move any buffers on the active list that are no longer referenced
   2664 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
   2665 	 */
   2666 	while (!list_empty(&ring->active_list)) {
   2667 		struct drm_i915_gem_object *obj;
   2668 
   2669 		obj = list_first_entry(&ring->active_list,
   2670 				      struct drm_i915_gem_object,
   2671 				      ring_list);
   2672 
   2673 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
   2674 			break;
   2675 
   2676 		i915_gem_object_move_to_inactive(obj);
   2677 	}
   2678 
   2679 	if (unlikely(ring->trace_irq_seqno &&
   2680 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
   2681 		ring->irq_put(ring);
   2682 		ring->trace_irq_seqno = 0;
   2683 	}
   2684 
   2685 	WARN_ON(i915_verify_lists(ring->dev));
   2686 }
   2687 
   2688 void
   2689 i915_gem_retire_requests(struct drm_device *dev)
   2690 {
   2691 	drm_i915_private_t *dev_priv = dev->dev_private;
   2692 	struct intel_ring_buffer *ring;
   2693 	int i;
   2694 
   2695 	for_each_ring(ring, dev_priv, i)
   2696 		i915_gem_retire_requests_ring(ring);
   2697 }
   2698 
   2699 static void
   2700 i915_gem_retire_work_handler(struct work_struct *work)
   2701 {
   2702 	drm_i915_private_t *dev_priv;
   2703 	struct drm_device *dev;
   2704 	struct intel_ring_buffer *ring;
   2705 	bool idle;
   2706 	int i;
   2707 
   2708 	dev_priv = container_of(work, drm_i915_private_t,
   2709 				mm.retire_work.work);
   2710 	dev = dev_priv->dev;
   2711 
   2712 	/* Come back later if the device is busy... */
   2713 	if (!mutex_trylock(&dev->struct_mutex)) {
   2714 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
   2715 				   round_jiffies_up_relative(HZ));
   2716 		return;
   2717 	}
   2718 
   2719 	i915_gem_retire_requests(dev);
   2720 
   2721 	/* Send a periodic flush down the ring so we don't hold onto GEM
   2722 	 * objects indefinitely.
   2723 	 */
   2724 	idle = true;
   2725 	for_each_ring(ring, dev_priv, i) {
   2726 		if (ring->gpu_caches_dirty)
   2727 			i915_add_request(ring, NULL, NULL);
   2728 
   2729 		idle &= list_empty(&ring->request_list);
   2730 	}
   2731 
   2732 	if (!dev_priv->mm.suspended && !idle)
   2733 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
   2734 				   round_jiffies_up_relative(HZ));
   2735 	if (idle)
   2736 		intel_mark_idle(dev);
   2737 
   2738 	mutex_unlock(&dev->struct_mutex);
   2739 }
   2740 
   2741 /**
   2742  * Ensures that an object will eventually get non-busy by flushing any required
   2743  * write domains, emitting any outstanding lazy request and retiring and
   2744  * completed requests.
   2745  */
   2746 static int
   2747 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
   2748 {
   2749 	int ret;
   2750 
   2751 	if (obj->active) {
   2752 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
   2753 		if (ret)
   2754 			return ret;
   2755 
   2756 		i915_gem_retire_requests_ring(obj->ring);
   2757 	}
   2758 
   2759 	return 0;
   2760 }
   2761 
   2762 /**
   2763  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
   2764  * @DRM_IOCTL_ARGS: standard ioctl arguments
   2765  *
   2766  * Returns 0 if successful, else an error is returned with the remaining time in
   2767  * the timeout parameter.
   2768  *  -ETIME: object is still busy after timeout
   2769  *  -ERESTARTSYS: signal interrupted the wait
   2770  *  -ENONENT: object doesn't exist
   2771  * Also possible, but rare:
   2772  *  -EAGAIN: GPU wedged
   2773  *  -ENOMEM: damn
   2774  *  -ENODEV: Internal IRQ fail
   2775  *  -E?: The add request failed
   2776  *
   2777  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
   2778  * non-zero timeout parameter the wait ioctl will wait for the given number of
   2779  * nanoseconds on an object becoming unbusy. Since the wait itself does so
   2780  * without holding struct_mutex the object may become re-busied before this
   2781  * function completes. A similar but shorter * race condition exists in the busy
   2782  * ioctl
   2783  */
   2784 int
   2785 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
   2786 {
   2787 	struct drm_i915_gem_wait *args = data;
   2788 	struct drm_i915_gem_object *obj;
   2789 	struct intel_ring_buffer *ring = NULL;
   2790 	struct timespec timeout_stack, *timeout = NULL;
   2791 	u32 seqno = 0;
   2792 	int ret = 0;
   2793 
   2794 	if (args->timeout_ns >= 0) {
   2795 		timeout_stack = ns_to_timespec(args->timeout_ns);
   2796 		timeout = &timeout_stack;
   2797 	}
   2798 
   2799 	ret = i915_mutex_lock_interruptible(dev);
   2800 	if (ret)
   2801 		return ret;
   2802 
   2803 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
   2804 	if (&obj->base == NULL) {
   2805 		mutex_unlock(&dev->struct_mutex);
   2806 		return -ENOENT;
   2807 	}
   2808 
   2809 	/* Need to make sure the object gets inactive eventually. */
   2810 	ret = i915_gem_object_flush_active(obj);
   2811 	if (ret)
   2812 		goto out;
   2813 
   2814 	if (obj->active) {
   2815 		seqno = obj->last_read_seqno;
   2816 		ring = obj->ring;
   2817 	}
   2818 
   2819 	if (seqno == 0)
   2820 		 goto out;
   2821 
   2822 	/* Do this after OLR check to make sure we make forward progress polling
   2823 	 * on this IOCTL with a 0 timeout (like busy ioctl)
   2824 	 */
   2825 	if (!args->timeout_ns) {
   2826 		ret = -ETIME;
   2827 		goto out;
   2828 	}
   2829 
   2830 	drm_gem_object_unreference(&obj->base);
   2831 	mutex_unlock(&dev->struct_mutex);
   2832 
   2833 	ret = __wait_seqno(ring, seqno, true, timeout);
   2834 	if (timeout) {
   2835 		WARN_ON(!timespec_valid(timeout));
   2836 		args->timeout_ns = timespec_to_ns(timeout);
   2837 	}
   2838 	return ret;
   2839 
   2840 out:
   2841 	drm_gem_object_unreference(&obj->base);
   2842 	mutex_unlock(&dev->struct_mutex);
   2843 	return ret;
   2844 }
   2845 
   2846 /**
   2847  * i915_gem_object_sync - sync an object to a ring.
   2848  *
   2849  * @obj: object which may be in use on another ring.
   2850  * @to: ring we wish to use the object on. May be NULL.
   2851  *
   2852  * This code is meant to abstract object synchronization with the GPU.
   2853  * Calling with NULL implies synchronizing the object with the CPU
   2854  * rather than a particular GPU ring.
   2855  *
   2856  * Returns 0 if successful, else propagates up the lower layer error.
   2857  */
   2858 int
   2859 i915_gem_object_sync(struct drm_i915_gem_object *obj,
   2860 		     struct intel_ring_buffer *to)
   2861 {
   2862 	struct intel_ring_buffer *from = obj->ring;
   2863 	u32 seqno;
   2864 	int ret, idx;
   2865 
   2866 	if (from == NULL || to == from)
   2867 		return 0;
   2868 
   2869 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
   2870 		return i915_gem_object_wait_rendering(obj, false);
   2871 
   2872 	idx = intel_ring_sync_index(from, to);
   2873 
   2874 	seqno = obj->last_read_seqno;
   2875 	if (seqno <= from->sync_seqno[idx])
   2876 		return 0;
   2877 
   2878 	ret = i915_gem_check_olr(obj->ring, seqno);
   2879 	if (ret)
   2880 		return ret;
   2881 
   2882 	ret = to->sync_to(to, from, seqno);
   2883 	if (!ret)
   2884 		/* We use last_read_seqno because sync_to()
   2885 		 * might have just caused seqno wrap under
   2886 		 * the radar.
   2887 		 */
   2888 		from->sync_seqno[idx] = obj->last_read_seqno;
   2889 
   2890 	return ret;
   2891 }
   2892 
   2893 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
   2894 {
   2895 	u32 old_write_domain, old_read_domains;
   2896 
   2897 	/* Act a barrier for all accesses through the GTT */
   2898 	mb();
   2899 
   2900 	/* Force a pagefault for domain tracking on next user access */
   2901 	i915_gem_release_mmap(obj);
   2902 
   2903 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   2904 		return;
   2905 
   2906 	old_read_domains = obj->base.read_domains;
   2907 	old_write_domain = obj->base.write_domain;
   2908 
   2909 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
   2910 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
   2911 
   2912 	trace_i915_gem_object_change_domain(obj,
   2913 					    old_read_domains,
   2914 					    old_write_domain);
   2915 }
   2916 
   2917 /**
   2918  * Unbinds an object from the GTT aperture.
   2919  */
   2920 int
   2921 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
   2922 {
   2923 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
   2924 	int ret = 0;
   2925 
   2926 	if (obj->gtt_space == NULL)
   2927 		return 0;
   2928 
   2929 	if (obj->pin_count)
   2930 		return -EBUSY;
   2931 
   2932 	BUG_ON(obj->pages == NULL);
   2933 
   2934 	ret = i915_gem_object_finish_gpu(obj);
   2935 	if (ret)
   2936 		return ret;
   2937 	/* Continue on if we fail due to EIO, the GPU is hung so we
   2938 	 * should be safe and we need to cleanup or else we might
   2939 	 * cause memory corruption through use-after-free.
   2940 	 */
   2941 
   2942 	i915_gem_object_finish_gtt(obj);
   2943 
   2944 	/* release the fence reg _after_ flushing */
   2945 	ret = i915_gem_object_put_fence(obj);
   2946 	if (ret)
   2947 		return ret;
   2948 
   2949 	trace_i915_gem_object_unbind(obj);
   2950 
   2951 	if (obj->has_global_gtt_mapping)
   2952 		i915_gem_gtt_unbind_object(obj);
   2953 	if (obj->has_aliasing_ppgtt_mapping) {
   2954 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
   2955 		obj->has_aliasing_ppgtt_mapping = 0;
   2956 	}
   2957 	i915_gem_gtt_finish_object(obj);
   2958 
   2959 	list_del(&obj->mm_list);
   2960 	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
   2961 	/* Avoid an unnecessary call to unbind on rebind. */
   2962 	obj->map_and_fenceable = true;
   2963 
   2964 	drm_mm_put_block(obj->gtt_space);
   2965 	obj->gtt_space = NULL;
   2966 	obj->gtt_offset = 0;
   2967 
   2968 	return 0;
   2969 }
   2970 
   2971 int i915_gpu_idle(struct drm_device *dev)
   2972 {
   2973 	drm_i915_private_t *dev_priv = dev->dev_private;
   2974 	struct intel_ring_buffer *ring;
   2975 	int ret, i;
   2976 
   2977 	/* Flush everything onto the inactive list. */
   2978 	for_each_ring(ring, dev_priv, i) {
   2979 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
   2980 		if (ret)
   2981 			return ret;
   2982 
   2983 		ret = intel_ring_idle(ring);
   2984 		if (ret)
   2985 			return ret;
   2986 	}
   2987 
   2988 	return 0;
   2989 }
   2990 
   2991 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
   2992 					struct drm_i915_gem_object *obj)
   2993 {
   2994 	drm_i915_private_t *dev_priv = dev->dev_private;
   2995 	uint64_t val;
   2996 
   2997 	if (obj) {
   2998 		u32 size = obj->gtt_space->size;
   2999 
   3000 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
   3001 				 0xfffff000) << 32;
   3002 		val |= obj->gtt_offset & 0xfffff000;
   3003 		val |= (uint64_t)((obj->stride / 128) - 1) <<
   3004 			SANDYBRIDGE_FENCE_PITCH_SHIFT;
   3005 
   3006 		if (obj->tiling_mode == I915_TILING_Y)
   3007 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
   3008 		val |= I965_FENCE_REG_VALID;
   3009 	} else
   3010 		val = 0;
   3011 
   3012 	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
   3013 	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
   3014 }
   3015 
   3016 static void i965_write_fence_reg(struct drm_device *dev, int reg,
   3017 				 struct drm_i915_gem_object *obj)
   3018 {
   3019 	drm_i915_private_t *dev_priv = dev->dev_private;
   3020 	uint64_t val;
   3021 
   3022 	if (obj) {
   3023 		u32 size = obj->gtt_space->size;
   3024 
   3025 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
   3026 				 0xfffff000) << 32;
   3027 		val |= obj->gtt_offset & 0xfffff000;
   3028 		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
   3029 		if (obj->tiling_mode == I915_TILING_Y)
   3030 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
   3031 		val |= I965_FENCE_REG_VALID;
   3032 	} else
   3033 		val = 0;
   3034 
   3035 	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
   3036 	POSTING_READ(FENCE_REG_965_0 + reg * 8);
   3037 }
   3038 
   3039 static void i915_write_fence_reg(struct drm_device *dev, int reg,
   3040 				 struct drm_i915_gem_object *obj)
   3041 {
   3042 	drm_i915_private_t *dev_priv = dev->dev_private;
   3043 	u32 val;
   3044 
   3045 	if (obj) {
   3046 		u32 size = obj->gtt_space->size;
   3047 		int pitch_val;
   3048 		int tile_width;
   3049 
   3050 		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
   3051 		     (size & -size) != size ||
   3052 		     (obj->gtt_offset & (size - 1)),
   3053 		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
   3054 		     obj->gtt_offset, obj->map_and_fenceable, size);
   3055 
   3056 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
   3057 			tile_width = 128;
   3058 		else
   3059 			tile_width = 512;
   3060 
   3061 		/* Note: pitch better be a power of two tile widths */
   3062 		pitch_val = obj->stride / tile_width;
   3063 		pitch_val = ffs(pitch_val) - 1;
   3064 
   3065 		val = obj->gtt_offset;
   3066 		if (obj->tiling_mode == I915_TILING_Y)
   3067 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
   3068 		val |= I915_FENCE_SIZE_BITS(size);
   3069 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
   3070 		val |= I830_FENCE_REG_VALID;
   3071 	} else
   3072 		val = 0;
   3073 
   3074 	if (reg < 8)
   3075 		reg = FENCE_REG_830_0 + reg * 4;
   3076 	else
   3077 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
   3078 
   3079 	I915_WRITE(reg, val);
   3080 	POSTING_READ(reg);
   3081 }
   3082 
   3083 static void i830_write_fence_reg(struct drm_device *dev, int reg,
   3084 				struct drm_i915_gem_object *obj)
   3085 {
   3086 	drm_i915_private_t *dev_priv = dev->dev_private;
   3087 	uint32_t val;
   3088 
   3089 	if (obj) {
   3090 		u32 size = obj->gtt_space->size;
   3091 		uint32_t pitch_val;
   3092 
   3093 		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
   3094 		     (size & -size) != size ||
   3095 		     (obj->gtt_offset & (size - 1)),
   3096 		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
   3097 		     obj->gtt_offset, size);
   3098 
   3099 		pitch_val = obj->stride / 128;
   3100 		pitch_val = ffs(pitch_val) - 1;
   3101 
   3102 		val = obj->gtt_offset;
   3103 		if (obj->tiling_mode == I915_TILING_Y)
   3104 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
   3105 		val |= I830_FENCE_SIZE_BITS(size);
   3106 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
   3107 		val |= I830_FENCE_REG_VALID;
   3108 	} else
   3109 		val = 0;
   3110 
   3111 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
   3112 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
   3113 }
   3114 
   3115 static void i915_gem_write_fence(struct drm_device *dev, int reg,
   3116 				 struct drm_i915_gem_object *obj)
   3117 {
   3118 	switch (INTEL_INFO(dev)->gen) {
   3119 	case 7:
   3120 	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
   3121 	case 5:
   3122 	case 4: i965_write_fence_reg(dev, reg, obj); break;
   3123 	case 3: i915_write_fence_reg(dev, reg, obj); break;
   3124 	case 2: i830_write_fence_reg(dev, reg, obj); break;
   3125 	default: break;
   3126 	}
   3127 }
   3128 
   3129 static inline int fence_number(struct drm_i915_private *dev_priv,
   3130 			       struct drm_i915_fence_reg *fence)
   3131 {
   3132 	return fence - dev_priv->fence_regs;
   3133 }
   3134 
   3135 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
   3136 					 struct drm_i915_fence_reg *fence,
   3137 					 bool enable)
   3138 {
   3139 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3140 	int reg = fence_number(dev_priv, fence);
   3141 
   3142 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
   3143 
   3144 	if (enable) {
   3145 		obj->fence_reg = reg;
   3146 		fence->obj = obj;
   3147 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
   3148 	} else {
   3149 		obj->fence_reg = I915_FENCE_REG_NONE;
   3150 		fence->obj = NULL;
   3151 		list_del_init(&fence->lru_list);
   3152 	}
   3153 }
   3154 
   3155 static int
   3156 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
   3157 {
   3158 	if (obj->last_fenced_seqno) {
   3159 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
   3160 		if (ret)
   3161 			return ret;
   3162 
   3163 		obj->last_fenced_seqno = 0;
   3164 	}
   3165 
   3166 	/* Ensure that all CPU reads are completed before installing a fence
   3167 	 * and all writes before removing the fence.
   3168 	 */
   3169 	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
   3170 		mb();
   3171 
   3172 	obj->fenced_gpu_access = false;
   3173 	return 0;
   3174 }
   3175 
   3176 int
   3177 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
   3178 {
   3179 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3180 	int ret;
   3181 
   3182 	ret = i915_gem_object_flush_fence(obj);
   3183 	if (ret)
   3184 		return ret;
   3185 
   3186 	if (obj->fence_reg == I915_FENCE_REG_NONE)
   3187 		return 0;
   3188 
   3189 	i915_gem_object_update_fence(obj,
   3190 				     &dev_priv->fence_regs[obj->fence_reg],
   3191 				     false);
   3192 	i915_gem_object_fence_lost(obj);
   3193 
   3194 	return 0;
   3195 }
   3196 
   3197 static struct drm_i915_fence_reg *
   3198 i915_find_fence_reg(struct drm_device *dev)
   3199 {
   3200 	struct drm_i915_private *dev_priv = dev->dev_private;
   3201 	struct drm_i915_fence_reg *reg, *avail;
   3202 	int i;
   3203 
   3204 	/* First try to find a free reg */
   3205 	avail = NULL;
   3206 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
   3207 		reg = &dev_priv->fence_regs[i];
   3208 		if (!reg->obj)
   3209 			return reg;
   3210 
   3211 		if (!reg->pin_count)
   3212 			avail = reg;
   3213 	}
   3214 
   3215 	if (avail == NULL)
   3216 		return NULL;
   3217 
   3218 	/* None available, try to steal one or wait for a user to finish */
   3219 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
   3220 		if (reg->pin_count)
   3221 			continue;
   3222 
   3223 		return reg;
   3224 	}
   3225 
   3226 	return NULL;
   3227 }
   3228 
   3229 /**
   3230  * i915_gem_object_get_fence - set up fencing for an object
   3231  * @obj: object to map through a fence reg
   3232  *
   3233  * When mapping objects through the GTT, userspace wants to be able to write
   3234  * to them without having to worry about swizzling if the object is tiled.
   3235  * This function walks the fence regs looking for a free one for @obj,
   3236  * stealing one if it can't find any.
   3237  *
   3238  * It then sets up the reg based on the object's properties: address, pitch
   3239  * and tiling format.
   3240  *
   3241  * For an untiled surface, this removes any existing fence.
   3242  */
   3243 int
   3244 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
   3245 {
   3246 	struct drm_device *dev = obj->base.dev;
   3247 	struct drm_i915_private *dev_priv = dev->dev_private;
   3248 	bool enable = obj->tiling_mode != I915_TILING_NONE;
   3249 	struct drm_i915_fence_reg *reg;
   3250 	int ret;
   3251 
   3252 	/* Have we updated the tiling parameters upon the object and so
   3253 	 * will need to serialise the write to the associated fence register?
   3254 	 */
   3255 	if (obj->fence_dirty) {
   3256 		ret = i915_gem_object_flush_fence(obj);
   3257 		if (ret)
   3258 			return ret;
   3259 	}
   3260 
   3261 	/* Just update our place in the LRU if our fence is getting reused. */
   3262 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
   3263 		reg = &dev_priv->fence_regs[obj->fence_reg];
   3264 		if (!obj->fence_dirty) {
   3265 			list_move_tail(&reg->lru_list,
   3266 				       &dev_priv->mm.fence_list);
   3267 			return 0;
   3268 		}
   3269 	} else if (enable) {
   3270 		reg = i915_find_fence_reg(dev);
   3271 		if (reg == NULL)
   3272 			return -EDEADLK;
   3273 
   3274 		if (reg->obj) {
   3275 			struct drm_i915_gem_object *old = reg->obj;
   3276 
   3277 			ret = i915_gem_object_flush_fence(old);
   3278 			if (ret)
   3279 				return ret;
   3280 
   3281 			i915_gem_object_fence_lost(old);
   3282 		}
   3283 	} else
   3284 		return 0;
   3285 
   3286 	i915_gem_object_update_fence(obj, reg, enable);
   3287 	obj->fence_dirty = false;
   3288 
   3289 	return 0;
   3290 }
   3291 
   3292 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
   3293 				     struct drm_mm_node *gtt_space,
   3294 				     unsigned long cache_level)
   3295 {
   3296 	struct drm_mm_node *other;
   3297 
   3298 	/* On non-LLC machines we have to be careful when putting differing
   3299 	 * types of snoopable memory together to avoid the prefetcher
   3300 	 * crossing memory domains and dieing.
   3301 	 */
   3302 	if (HAS_LLC(dev))
   3303 		return true;
   3304 
   3305 	if (gtt_space == NULL)
   3306 		return true;
   3307 
   3308 	if (list_empty(&gtt_space->node_list))
   3309 		return true;
   3310 
   3311 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
   3312 	if (other->allocated && !other->hole_follows && other->color != cache_level)
   3313 		return false;
   3314 
   3315 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
   3316 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
   3317 		return false;
   3318 
   3319 	return true;
   3320 }
   3321 
   3322 static void i915_gem_verify_gtt(struct drm_device *dev)
   3323 {
   3324 #if WATCH_GTT
   3325 	struct drm_i915_private *dev_priv = dev->dev_private;
   3326 	struct drm_i915_gem_object *obj;
   3327 	int err = 0;
   3328 
   3329 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
   3330 		if (obj->gtt_space == NULL) {
   3331 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
   3332 			err++;
   3333 			continue;
   3334 		}
   3335 
   3336 		if (obj->cache_level != obj->gtt_space->color) {
   3337 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
   3338 			       obj->gtt_space->start,
   3339 			       obj->gtt_space->start + obj->gtt_space->size,
   3340 			       obj->cache_level,
   3341 			       obj->gtt_space->color);
   3342 			err++;
   3343 			continue;
   3344 		}
   3345 
   3346 		if (!i915_gem_valid_gtt_space(dev,
   3347 					      obj->gtt_space,
   3348 					      obj->cache_level)) {
   3349 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
   3350 			       obj->gtt_space->start,
   3351 			       obj->gtt_space->start + obj->gtt_space->size,
   3352 			       obj->cache_level);
   3353 			err++;
   3354 			continue;
   3355 		}
   3356 	}
   3357 
   3358 	WARN_ON(err);
   3359 #endif
   3360 }
   3361 
   3362 /**
   3363  * Finds free space in the GTT aperture and binds the object there.
   3364  */
   3365 static int
   3366 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
   3367 			    unsigned alignment,
   3368 			    bool map_and_fenceable,
   3369 			    bool nonblocking)
   3370 {
   3371 	struct drm_device *dev = obj->base.dev;
   3372 	drm_i915_private_t *dev_priv = dev->dev_private;
   3373 	struct drm_mm_node *node;
   3374 	u32 size, fence_size, fence_alignment, unfenced_alignment;
   3375 	bool mappable, fenceable;
   3376 	int ret;
   3377 
   3378 	if (obj->madv != I915_MADV_WILLNEED) {
   3379 		DRM_ERROR("Attempting to bind a purgeable object\n");
   3380 		return -EINVAL;
   3381 	}
   3382 
   3383 	fence_size = i915_gem_get_gtt_size(dev,
   3384 					   obj->base.size,
   3385 					   obj->tiling_mode);
   3386 	fence_alignment = i915_gem_get_gtt_alignment(dev,
   3387 						     obj->base.size,
   3388 						     obj->tiling_mode);
   3389 	unfenced_alignment =
   3390 		i915_gem_get_unfenced_gtt_alignment(dev,
   3391 						    obj->base.size,
   3392 						    obj->tiling_mode);
   3393 
   3394 	if (alignment == 0)
   3395 		alignment = map_and_fenceable ? fence_alignment :
   3396 						unfenced_alignment;
   3397 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
   3398 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
   3399 		return -EINVAL;
   3400 	}
   3401 
   3402 	size = map_and_fenceable ? fence_size : obj->base.size;
   3403 
   3404 	/* If the object is bigger than the entire aperture, reject it early
   3405 	 * before evicting everything in a vain attempt to find space.
   3406 	 */
   3407 	if (obj->base.size >
   3408 	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
   3409 		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
   3410 		return -E2BIG;
   3411 	}
   3412 
   3413 	ret = i915_gem_object_get_pages(obj);
   3414 	if (ret)
   3415 		return ret;
   3416 
   3417 	i915_gem_object_pin_pages(obj);
   3418 
   3419 	node = kzalloc(sizeof(*node), GFP_KERNEL);
   3420 	if (node == NULL) {
   3421 		i915_gem_object_unpin_pages(obj);
   3422 		return -ENOMEM;
   3423 	}
   3424 
   3425  search_free:
   3426 	if (map_and_fenceable)
   3427 		ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
   3428 							  size, alignment, obj->cache_level,
   3429 							  0, dev_priv->mm.gtt_mappable_end);
   3430 	else
   3431 		ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
   3432 						 size, alignment, obj->cache_level);
   3433 	if (ret) {
   3434 		ret = i915_gem_evict_something(dev, size, alignment,
   3435 					       obj->cache_level,
   3436 					       map_and_fenceable,
   3437 					       nonblocking);
   3438 		if (ret == 0)
   3439 			goto search_free;
   3440 
   3441 		i915_gem_object_unpin_pages(obj);
   3442 		kfree(node);
   3443 		return ret;
   3444 	}
   3445 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
   3446 		i915_gem_object_unpin_pages(obj);
   3447 		drm_mm_put_block(node);
   3448 		return -EINVAL;
   3449 	}
   3450 
   3451 	ret = i915_gem_gtt_prepare_object(obj);
   3452 	if (ret) {
   3453 		i915_gem_object_unpin_pages(obj);
   3454 		drm_mm_put_block(node);
   3455 		return ret;
   3456 	}
   3457 
   3458 	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
   3459 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
   3460 
   3461 	obj->gtt_space = node;
   3462 	obj->gtt_offset = node->start;
   3463 
   3464 	fenceable =
   3465 		node->size == fence_size &&
   3466 		(node->start & (fence_alignment - 1)) == 0;
   3467 
   3468 	mappable =
   3469 		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
   3470 
   3471 	obj->map_and_fenceable = mappable && fenceable;
   3472 
   3473 	i915_gem_object_unpin_pages(obj);
   3474 	trace_i915_gem_object_bind(obj, map_and_fenceable);
   3475 	i915_gem_verify_gtt(dev);
   3476 	return 0;
   3477 }
   3478 
   3479 void
   3480 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
   3481 {
   3482 	/* If we don't have a page list set up, then we're not pinned
   3483 	 * to GPU, and we can ignore the cache flush because it'll happen
   3484 	 * again at bind time.
   3485 	 */
   3486 	if (obj->pages == NULL)
   3487 		return;
   3488 
   3489 	/* If the GPU is snooping the contents of the CPU cache,
   3490 	 * we do not need to manually clear the CPU cache lines.  However,
   3491 	 * the caches are only snooped when the render cache is
   3492 	 * flushed/invalidated.  As we always have to emit invalidations
   3493 	 * and flushes when moving into and out of the RENDER domain, correct
   3494 	 * snooping behaviour occurs naturally as the result of our domain
   3495 	 * tracking.
   3496 	 */
   3497 	if (obj->cache_level != I915_CACHE_NONE)
   3498 		return;
   3499 
   3500 	trace_i915_gem_object_clflush(obj);
   3501 
   3502 #ifdef __NetBSD__
   3503 	drm_clflush_pglist(&obj->igo_pageq);
   3504 #else
   3505 	drm_clflush_sg(obj->pages);
   3506 #endif
   3507 }
   3508 
   3509 /** Flushes the GTT write domain for the object if it's dirty. */
   3510 static void
   3511 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
   3512 {
   3513 	uint32_t old_write_domain;
   3514 
   3515 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
   3516 		return;
   3517 
   3518 	/* No actual flushing is required for the GTT write domain.  Writes
   3519 	 * to it immediately go to main memory as far as we know, so there's
   3520 	 * no chipset flush.  It also doesn't land in render cache.
   3521 	 *
   3522 	 * However, we do have to enforce the order so that all writes through
   3523 	 * the GTT land before any writes to the device, such as updates to
   3524 	 * the GATT itself.
   3525 	 */
   3526 	wmb();
   3527 
   3528 	old_write_domain = obj->base.write_domain;
   3529 	obj->base.write_domain = 0;
   3530 
   3531 	trace_i915_gem_object_change_domain(obj,
   3532 					    obj->base.read_domains,
   3533 					    old_write_domain);
   3534 }
   3535 
   3536 /** Flushes the CPU write domain for the object if it's dirty. */
   3537 static void
   3538 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
   3539 {
   3540 	uint32_t old_write_domain;
   3541 
   3542 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
   3543 		return;
   3544 
   3545 	i915_gem_clflush_object(obj);
   3546 	i915_gem_chipset_flush(obj->base.dev);
   3547 	old_write_domain = obj->base.write_domain;
   3548 	obj->base.write_domain = 0;
   3549 
   3550 	trace_i915_gem_object_change_domain(obj,
   3551 					    obj->base.read_domains,
   3552 					    old_write_domain);
   3553 }
   3554 
   3555 /**
   3556  * Moves a single object to the GTT read, and possibly write domain.
   3557  *
   3558  * This function returns when the move is complete, including waiting on
   3559  * flushes to occur.
   3560  */
   3561 int
   3562 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
   3563 {
   3564 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
   3565 	uint32_t old_write_domain, old_read_domains;
   3566 	int ret;
   3567 
   3568 	/* Not valid to be called on unbound objects. */
   3569 	if (obj->gtt_space == NULL)
   3570 		return -EINVAL;
   3571 
   3572 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
   3573 		return 0;
   3574 
   3575 	ret = i915_gem_object_wait_rendering(obj, !write);
   3576 	if (ret)
   3577 		return ret;
   3578 
   3579 	i915_gem_object_flush_cpu_write_domain(obj);
   3580 
   3581 	old_write_domain = obj->base.write_domain;
   3582 	old_read_domains = obj->base.read_domains;
   3583 
   3584 	/* It should now be out of any other write domains, and we can update
   3585 	 * the domain values for our changes.
   3586 	 */
   3587 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
   3588 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   3589 	if (write) {
   3590 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
   3591 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
   3592 		obj->dirty = 1;
   3593 	}
   3594 
   3595 	trace_i915_gem_object_change_domain(obj,
   3596 					    old_read_domains,
   3597 					    old_write_domain);
   3598 
   3599 	/* And bump the LRU for this access */
   3600 	if (i915_gem_object_is_inactive(obj))
   3601 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
   3602 
   3603 	return 0;
   3604 }
   3605 
   3606 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
   3607 				    enum i915_cache_level cache_level)
   3608 {
   3609 	struct drm_device *dev = obj->base.dev;
   3610 	drm_i915_private_t *dev_priv = dev->dev_private;
   3611 	int ret;
   3612 
   3613 	if (obj->cache_level == cache_level)
   3614 		return 0;
   3615 
   3616 	if (obj->pin_count) {
   3617 		DRM_DEBUG("can not change the cache level of pinned objects\n");
   3618 		return -EBUSY;
   3619 	}
   3620 
   3621 	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
   3622 		ret = i915_gem_object_unbind(obj);
   3623 		if (ret)
   3624 			return ret;
   3625 	}
   3626 
   3627 	if (obj->gtt_space) {
   3628 		ret = i915_gem_object_finish_gpu(obj);
   3629 		if (ret)
   3630 			return ret;
   3631 
   3632 		i915_gem_object_finish_gtt(obj);
   3633 
   3634 		/* Before SandyBridge, you could not use tiling or fence
   3635 		 * registers with snooped memory, so relinquish any fences
   3636 		 * currently pointing to our region in the aperture.
   3637 		 */
   3638 		if (INTEL_INFO(dev)->gen < 6) {
   3639 			ret = i915_gem_object_put_fence(obj);
   3640 			if (ret)
   3641 				return ret;
   3642 		}
   3643 
   3644 		if (obj->has_global_gtt_mapping)
   3645 			i915_gem_gtt_bind_object(obj, cache_level);
   3646 		if (obj->has_aliasing_ppgtt_mapping)
   3647 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
   3648 					       obj, cache_level);
   3649 
   3650 		obj->gtt_space->color = cache_level;
   3651 	}
   3652 
   3653 	if (cache_level == I915_CACHE_NONE) {
   3654 		u32 old_read_domains, old_write_domain;
   3655 
   3656 		/* If we're coming from LLC cached, then we haven't
   3657 		 * actually been tracking whether the data is in the
   3658 		 * CPU cache or not, since we only allow one bit set
   3659 		 * in obj->write_domain and have been skipping the clflushes.
   3660 		 * Just set it to the CPU cache for now.
   3661 		 */
   3662 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
   3663 		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
   3664 
   3665 		old_read_domains = obj->base.read_domains;
   3666 		old_write_domain = obj->base.write_domain;
   3667 
   3668 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   3669 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   3670 
   3671 		trace_i915_gem_object_change_domain(obj,
   3672 						    old_read_domains,
   3673 						    old_write_domain);
   3674 	}
   3675 
   3676 	obj->cache_level = cache_level;
   3677 	i915_gem_verify_gtt(dev);
   3678 	return 0;
   3679 }
   3680 
   3681 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
   3682 			       struct drm_file *file)
   3683 {
   3684 	struct drm_i915_gem_caching *args = data;
   3685 	struct drm_i915_gem_object *obj;
   3686 	int ret;
   3687 
   3688 	ret = i915_mutex_lock_interruptible(dev);
   3689 	if (ret)
   3690 		return ret;
   3691 
   3692 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   3693 	if (&obj->base == NULL) {
   3694 		ret = -ENOENT;
   3695 		goto unlock;
   3696 	}
   3697 
   3698 	args->caching = obj->cache_level != I915_CACHE_NONE;
   3699 
   3700 	drm_gem_object_unreference(&obj->base);
   3701 unlock:
   3702 	mutex_unlock(&dev->struct_mutex);
   3703 	return ret;
   3704 }
   3705 
   3706 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
   3707 			       struct drm_file *file)
   3708 {
   3709 	struct drm_i915_gem_caching *args = data;
   3710 	struct drm_i915_gem_object *obj;
   3711 	enum i915_cache_level level;
   3712 	int ret;
   3713 
   3714 	switch (args->caching) {
   3715 	case I915_CACHING_NONE:
   3716 		level = I915_CACHE_NONE;
   3717 		break;
   3718 	case I915_CACHING_CACHED:
   3719 		level = I915_CACHE_LLC;
   3720 		break;
   3721 	default:
   3722 		return -EINVAL;
   3723 	}
   3724 
   3725 	ret = i915_mutex_lock_interruptible(dev);
   3726 	if (ret)
   3727 		return ret;
   3728 
   3729 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   3730 	if (&obj->base == NULL) {
   3731 		ret = -ENOENT;
   3732 		goto unlock;
   3733 	}
   3734 
   3735 	ret = i915_gem_object_set_cache_level(obj, level);
   3736 
   3737 	drm_gem_object_unreference(&obj->base);
   3738 unlock:
   3739 	mutex_unlock(&dev->struct_mutex);
   3740 	return ret;
   3741 }
   3742 
   3743 /*
   3744  * Prepare buffer for display plane (scanout, cursors, etc).
   3745  * Can be called from an uninterruptible phase (modesetting) and allows
   3746  * any flushes to be pipelined (for pageflips).
   3747  */
   3748 int
   3749 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
   3750 				     u32 alignment,
   3751 				     struct intel_ring_buffer *pipelined)
   3752 {
   3753 	u32 old_read_domains, old_write_domain;
   3754 	int ret;
   3755 
   3756 	if (pipelined != obj->ring) {
   3757 		ret = i915_gem_object_sync(obj, pipelined);
   3758 		if (ret)
   3759 			return ret;
   3760 	}
   3761 
   3762 	/* The display engine is not coherent with the LLC cache on gen6.  As
   3763 	 * a result, we make sure that the pinning that is about to occur is
   3764 	 * done with uncached PTEs. This is lowest common denominator for all
   3765 	 * chipsets.
   3766 	 *
   3767 	 * However for gen6+, we could do better by using the GFDT bit instead
   3768 	 * of uncaching, which would allow us to flush all the LLC-cached data
   3769 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
   3770 	 */
   3771 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
   3772 	if (ret)
   3773 		return ret;
   3774 
   3775 	/* As the user may map the buffer once pinned in the display plane
   3776 	 * (e.g. libkms for the bootup splash), we have to ensure that we
   3777 	 * always use map_and_fenceable for all scanout buffers.
   3778 	 */
   3779 	ret = i915_gem_object_pin(obj, alignment, true, false);
   3780 	if (ret)
   3781 		return ret;
   3782 
   3783 	i915_gem_object_flush_cpu_write_domain(obj);
   3784 
   3785 	old_write_domain = obj->base.write_domain;
   3786 	old_read_domains = obj->base.read_domains;
   3787 
   3788 	/* It should now be out of any other write domains, and we can update
   3789 	 * the domain values for our changes.
   3790 	 */
   3791 	obj->base.write_domain = 0;
   3792 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   3793 
   3794 	trace_i915_gem_object_change_domain(obj,
   3795 					    old_read_domains,
   3796 					    old_write_domain);
   3797 
   3798 	return 0;
   3799 }
   3800 
   3801 int
   3802 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
   3803 {
   3804 	int ret;
   3805 
   3806 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
   3807 		return 0;
   3808 
   3809 	ret = i915_gem_object_wait_rendering(obj, false);
   3810 	if (ret)
   3811 		return ret;
   3812 
   3813 	/* Ensure that we invalidate the GPU's caches and TLBs. */
   3814 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
   3815 	return 0;
   3816 }
   3817 
   3818 /**
   3819  * Moves a single object to the CPU read, and possibly write domain.
   3820  *
   3821  * This function returns when the move is complete, including waiting on
   3822  * flushes to occur.
   3823  */
   3824 int
   3825 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
   3826 {
   3827 	uint32_t old_write_domain, old_read_domains;
   3828 	int ret;
   3829 
   3830 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
   3831 		return 0;
   3832 
   3833 	ret = i915_gem_object_wait_rendering(obj, !write);
   3834 	if (ret)
   3835 		return ret;
   3836 
   3837 	i915_gem_object_flush_gtt_write_domain(obj);
   3838 
   3839 	old_write_domain = obj->base.write_domain;
   3840 	old_read_domains = obj->base.read_domains;
   3841 
   3842 	/* Flush the CPU cache if it's still invalid. */
   3843 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
   3844 		i915_gem_clflush_object(obj);
   3845 
   3846 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
   3847 	}
   3848 
   3849 	/* It should now be out of any other write domains, and we can update
   3850 	 * the domain values for our changes.
   3851 	 */
   3852 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
   3853 
   3854 	/* If we're writing through the CPU, then the GPU read domains will
   3855 	 * need to be invalidated at next use.
   3856 	 */
   3857 	if (write) {
   3858 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   3859 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   3860 	}
   3861 
   3862 	trace_i915_gem_object_change_domain(obj,
   3863 					    old_read_domains,
   3864 					    old_write_domain);
   3865 
   3866 	return 0;
   3867 }
   3868 
   3869 /* Throttle our rendering by waiting until the ring has completed our requests
   3870  * emitted over 20 msec ago.
   3871  *
   3872  * Note that if we were to use the current jiffies each time around the loop,
   3873  * we wouldn't escape the function with any frames outstanding if the time to
   3874  * render a frame was over 20ms.
   3875  *
   3876  * This should get us reasonable parallelism between CPU and GPU but also
   3877  * relatively low latency when blocking on a particular request to finish.
   3878  */
   3879 static int
   3880 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
   3881 {
   3882 	struct drm_i915_private *dev_priv = dev->dev_private;
   3883 	struct drm_i915_file_private *file_priv = file->driver_priv;
   3884 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
   3885 	struct drm_i915_gem_request *request;
   3886 	struct intel_ring_buffer *ring = NULL;
   3887 	u32 seqno = 0;
   3888 	int ret;
   3889 
   3890 	if (atomic_read(&dev_priv->mm.wedged))
   3891 		return -EIO;
   3892 
   3893 	spin_lock(&file_priv->mm.lock);
   3894 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
   3895 		if (time_after_eq(request->emitted_jiffies, recent_enough))
   3896 			break;
   3897 
   3898 		ring = request->ring;
   3899 		seqno = request->seqno;
   3900 	}
   3901 	spin_unlock(&file_priv->mm.lock);
   3902 
   3903 	if (seqno == 0)
   3904 		return 0;
   3905 
   3906 	ret = __wait_seqno(ring, seqno, true, NULL);
   3907 	if (ret == 0)
   3908 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
   3909 
   3910 	return ret;
   3911 }
   3912 
   3913 int
   3914 i915_gem_object_pin(struct drm_i915_gem_object *obj,
   3915 		    uint32_t alignment,
   3916 		    bool map_and_fenceable,
   3917 		    bool nonblocking)
   3918 {
   3919 	int ret;
   3920 
   3921 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
   3922 		return -EBUSY;
   3923 
   3924 	if (obj->gtt_space != NULL) {
   3925 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
   3926 		    (map_and_fenceable && !obj->map_and_fenceable)) {
   3927 			WARN(obj->pin_count,
   3928 			     "bo is already pinned with incorrect alignment:"
   3929 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
   3930 			     " obj->map_and_fenceable=%d\n",
   3931 			     obj->gtt_offset, alignment,
   3932 			     map_and_fenceable,
   3933 			     obj->map_and_fenceable);
   3934 			ret = i915_gem_object_unbind(obj);
   3935 			if (ret)
   3936 				return ret;
   3937 		}
   3938 	}
   3939 
   3940 	if (obj->gtt_space == NULL) {
   3941 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3942 
   3943 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
   3944 						  map_and_fenceable,
   3945 						  nonblocking);
   3946 		if (ret)
   3947 			return ret;
   3948 
   3949 		if (!dev_priv->mm.aliasing_ppgtt)
   3950 			i915_gem_gtt_bind_object(obj, obj->cache_level);
   3951 	}
   3952 
   3953 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
   3954 		i915_gem_gtt_bind_object(obj, obj->cache_level);
   3955 
   3956 	obj->pin_count++;
   3957 	obj->pin_mappable |= map_and_fenceable;
   3958 
   3959 	return 0;
   3960 }
   3961 
   3962 void
   3963 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
   3964 {
   3965 	BUG_ON(obj->pin_count == 0);
   3966 	BUG_ON(obj->gtt_space == NULL);
   3967 
   3968 	if (--obj->pin_count == 0)
   3969 		obj->pin_mappable = false;
   3970 }
   3971 
   3972 int
   3973 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
   3974 		   struct drm_file *file)
   3975 {
   3976 	struct drm_i915_gem_pin *args = data;
   3977 	struct drm_i915_gem_object *obj;
   3978 	int ret;
   3979 
   3980 	ret = i915_mutex_lock_interruptible(dev);
   3981 	if (ret)
   3982 		return ret;
   3983 
   3984 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   3985 	if (&obj->base == NULL) {
   3986 		ret = -ENOENT;
   3987 		goto unlock;
   3988 	}
   3989 
   3990 	if (obj->madv != I915_MADV_WILLNEED) {
   3991 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
   3992 		ret = -EINVAL;
   3993 		goto out;
   3994 	}
   3995 
   3996 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
   3997 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
   3998 			  args->handle);
   3999 		ret = -EINVAL;
   4000 		goto out;
   4001 	}
   4002 
   4003 	if (obj->user_pin_count == 0) {
   4004 		ret = i915_gem_object_pin(obj, args->alignment, true, false);
   4005 		if (ret)
   4006 			goto out;
   4007 	}
   4008 
   4009 	obj->user_pin_count++;
   4010 	obj->pin_filp = file;
   4011 
   4012 	/* XXX - flush the CPU caches for pinned objects
   4013 	 * as the X server doesn't manage domains yet
   4014 	 */
   4015 	i915_gem_object_flush_cpu_write_domain(obj);
   4016 	args->offset = obj->gtt_offset;
   4017 out:
   4018 	drm_gem_object_unreference(&obj->base);
   4019 unlock:
   4020 	mutex_unlock(&dev->struct_mutex);
   4021 	return ret;
   4022 }
   4023 
   4024 int
   4025 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
   4026 		     struct drm_file *file)
   4027 {
   4028 	struct drm_i915_gem_pin *args = data;
   4029 	struct drm_i915_gem_object *obj;
   4030 	int ret;
   4031 
   4032 	ret = i915_mutex_lock_interruptible(dev);
   4033 	if (ret)
   4034 		return ret;
   4035 
   4036 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   4037 	if (&obj->base == NULL) {
   4038 		ret = -ENOENT;
   4039 		goto unlock;
   4040 	}
   4041 
   4042 	if (obj->pin_filp != file) {
   4043 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
   4044 			  args->handle);
   4045 		ret = -EINVAL;
   4046 		goto out;
   4047 	}
   4048 	obj->user_pin_count--;
   4049 	if (obj->user_pin_count == 0) {
   4050 		obj->pin_filp = NULL;
   4051 		i915_gem_object_unpin(obj);
   4052 	}
   4053 
   4054 out:
   4055 	drm_gem_object_unreference(&obj->base);
   4056 unlock:
   4057 	mutex_unlock(&dev->struct_mutex);
   4058 	return ret;
   4059 }
   4060 
   4061 int
   4062 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
   4063 		    struct drm_file *file)
   4064 {
   4065 	struct drm_i915_gem_busy *args = data;
   4066 	struct drm_i915_gem_object *obj;
   4067 	int ret;
   4068 
   4069 	ret = i915_mutex_lock_interruptible(dev);
   4070 	if (ret)
   4071 		return ret;
   4072 
   4073 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   4074 	if (&obj->base == NULL) {
   4075 		ret = -ENOENT;
   4076 		goto unlock;
   4077 	}
   4078 
   4079 	/* Count all active objects as busy, even if they are currently not used
   4080 	 * by the gpu. Users of this interface expect objects to eventually
   4081 	 * become non-busy without any further actions, therefore emit any
   4082 	 * necessary flushes here.
   4083 	 */
   4084 	ret = i915_gem_object_flush_active(obj);
   4085 
   4086 	args->busy = obj->active;
   4087 	if (obj->ring) {
   4088 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
   4089 		args->busy |= intel_ring_flag(obj->ring) << 16;
   4090 	}
   4091 
   4092 	drm_gem_object_unreference(&obj->base);
   4093 unlock:
   4094 	mutex_unlock(&dev->struct_mutex);
   4095 	return ret;
   4096 }
   4097 
   4098 int
   4099 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
   4100 			struct drm_file *file_priv)
   4101 {
   4102 	return i915_gem_ring_throttle(dev, file_priv);
   4103 }
   4104 
   4105 int
   4106 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   4107 		       struct drm_file *file_priv)
   4108 {
   4109 	struct drm_i915_gem_madvise *args = data;
   4110 	struct drm_i915_gem_object *obj;
   4111 	int ret;
   4112 
   4113 	switch (args->madv) {
   4114 	case I915_MADV_DONTNEED:
   4115 	case I915_MADV_WILLNEED:
   4116 	    break;
   4117 	default:
   4118 	    return -EINVAL;
   4119 	}
   4120 
   4121 	ret = i915_mutex_lock_interruptible(dev);
   4122 	if (ret)
   4123 		return ret;
   4124 
   4125 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
   4126 	if (&obj->base == NULL) {
   4127 		ret = -ENOENT;
   4128 		goto unlock;
   4129 	}
   4130 
   4131 	if (obj->pin_count) {
   4132 		ret = -EINVAL;
   4133 		goto out;
   4134 	}
   4135 
   4136 	if (obj->madv != __I915_MADV_PURGED)
   4137 		obj->madv = args->madv;
   4138 
   4139 	/* if the object is no longer attached, discard its backing storage */
   4140 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
   4141 		i915_gem_object_truncate(obj);
   4142 
   4143 	args->retained = obj->madv != __I915_MADV_PURGED;
   4144 
   4145 out:
   4146 	drm_gem_object_unreference(&obj->base);
   4147 unlock:
   4148 	mutex_unlock(&dev->struct_mutex);
   4149 	return ret;
   4150 }
   4151 
   4152 void i915_gem_object_init(struct drm_i915_gem_object *obj,
   4153 			  const struct drm_i915_gem_object_ops *ops)
   4154 {
   4155 	INIT_LIST_HEAD(&obj->mm_list);
   4156 	INIT_LIST_HEAD(&obj->gtt_list);
   4157 	INIT_LIST_HEAD(&obj->ring_list);
   4158 	INIT_LIST_HEAD(&obj->exec_list);
   4159 
   4160 	obj->ops = ops;
   4161 
   4162 	obj->fence_reg = I915_FENCE_REG_NONE;
   4163 	obj->madv = I915_MADV_WILLNEED;
   4164 	/* Avoid an unnecessary call to unbind on the first bind. */
   4165 	obj->map_and_fenceable = true;
   4166 
   4167 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
   4168 }
   4169 
   4170 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
   4171 	.get_pages = i915_gem_object_get_pages_gtt,
   4172 	.put_pages = i915_gem_object_put_pages_gtt,
   4173 };
   4174 
   4175 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
   4176 						  size_t size)
   4177 {
   4178 	struct drm_i915_gem_object *obj;
   4179 #ifndef __NetBSD__		/* XXX >32bit dma?  */
   4180 	struct address_space *mapping;
   4181 	u32 mask;
   4182 #endif
   4183 
   4184 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
   4185 	if (obj == NULL)
   4186 		return NULL;
   4187 
   4188 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
   4189 		kfree(obj);
   4190 		return NULL;
   4191 	}
   4192 
   4193 #ifndef __NetBSD__		/* XXX >32bit dma?  */
   4194 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
   4195 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
   4196 		/* 965gm cannot relocate objects above 4GiB. */
   4197 		mask &= ~__GFP_HIGHMEM;
   4198 		mask |= __GFP_DMA32;
   4199 	}
   4200 
   4201 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
   4202 	mapping_set_gfp_mask(mapping, mask);
   4203 #endif
   4204 
   4205 	i915_gem_object_init(obj, &i915_gem_object_ops);
   4206 
   4207 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4208 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4209 
   4210 	if (HAS_LLC(dev)) {
   4211 		/* On some devices, we can have the GPU use the LLC (the CPU
   4212 		 * cache) for about a 10% performance improvement
   4213 		 * compared to uncached.  Graphics requests other than
   4214 		 * display scanout are coherent with the CPU in
   4215 		 * accessing this cache.  This means in this mode we
   4216 		 * don't need to clflush on the CPU side, and on the
   4217 		 * GPU side we only need to flush internal caches to
   4218 		 * get data visible to the CPU.
   4219 		 *
   4220 		 * However, we maintain the display planes as UC, and so
   4221 		 * need to rebind when first used as such.
   4222 		 */
   4223 		obj->cache_level = I915_CACHE_LLC;
   4224 	} else
   4225 		obj->cache_level = I915_CACHE_NONE;
   4226 
   4227 	return obj;
   4228 }
   4229 
   4230 int i915_gem_init_object(struct drm_gem_object *obj)
   4231 {
   4232 	BUG();
   4233 
   4234 	return 0;
   4235 }
   4236 
   4237 void i915_gem_free_object(struct drm_gem_object *gem_obj)
   4238 {
   4239 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   4240 	struct drm_device *dev = obj->base.dev;
   4241 	drm_i915_private_t *dev_priv = dev->dev_private;
   4242 
   4243 	trace_i915_gem_object_destroy(obj);
   4244 
   4245 	if (obj->phys_obj)
   4246 		i915_gem_detach_phys_object(dev, obj);
   4247 
   4248 	obj->pin_count = 0;
   4249 	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
   4250 		bool was_interruptible;
   4251 
   4252 		was_interruptible = dev_priv->mm.interruptible;
   4253 		dev_priv->mm.interruptible = false;
   4254 
   4255 		WARN_ON(i915_gem_object_unbind(obj));
   4256 
   4257 		dev_priv->mm.interruptible = was_interruptible;
   4258 	}
   4259 
   4260 	obj->pages_pin_count = 0;
   4261 	i915_gem_object_put_pages(obj);
   4262 	i915_gem_object_free_mmap_offset(obj);
   4263 
   4264 	BUG_ON(obj->pages);
   4265 
   4266 #ifndef __NetBSD__		/* XXX drm prime */
   4267 	if (obj->base.import_attach)
   4268 		drm_prime_gem_destroy(&obj->base, NULL);
   4269 #endif
   4270 
   4271 	drm_gem_object_release(&obj->base);
   4272 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
   4273 
   4274 	kfree(obj->bit_17);
   4275 	kfree(obj);
   4276 }
   4277 
   4278 int
   4279 i915_gem_idle(struct drm_device *dev)
   4280 {
   4281 	drm_i915_private_t *dev_priv = dev->dev_private;
   4282 	int ret;
   4283 
   4284 	mutex_lock(&dev->struct_mutex);
   4285 
   4286 	if (dev_priv->mm.suspended) {
   4287 		mutex_unlock(&dev->struct_mutex);
   4288 		return 0;
   4289 	}
   4290 
   4291 	ret = i915_gpu_idle(dev);
   4292 	if (ret) {
   4293 		mutex_unlock(&dev->struct_mutex);
   4294 		return ret;
   4295 	}
   4296 	i915_gem_retire_requests(dev);
   4297 
   4298 	/* Under UMS, be paranoid and evict. */
   4299 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   4300 		i915_gem_evict_everything(dev);
   4301 
   4302 	i915_gem_reset_fences(dev);
   4303 
   4304 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
   4305 	 * We need to replace this with a semaphore, or something.
   4306 	 * And not confound mm.suspended!
   4307 	 */
   4308 	dev_priv->mm.suspended = 1;
   4309 	del_timer_sync(&dev_priv->hangcheck_timer);
   4310 
   4311 	i915_kernel_lost_context(dev);
   4312 	i915_gem_cleanup_ringbuffer(dev);
   4313 
   4314 	mutex_unlock(&dev->struct_mutex);
   4315 
   4316 	/* Cancel the retire work handler, which should be idle now. */
   4317 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
   4318 
   4319 	return 0;
   4320 }
   4321 
   4322 void i915_gem_l3_remap(struct drm_device *dev)
   4323 {
   4324 	drm_i915_private_t *dev_priv = dev->dev_private;
   4325 	u32 misccpctl;
   4326 	int i;
   4327 
   4328 	if (!IS_IVYBRIDGE(dev))
   4329 		return;
   4330 
   4331 	if (!dev_priv->l3_parity.remap_info)
   4332 		return;
   4333 
   4334 	misccpctl = I915_READ(GEN7_MISCCPCTL);
   4335 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
   4336 	POSTING_READ(GEN7_MISCCPCTL);
   4337 
   4338 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
   4339 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
   4340 		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
   4341 			DRM_DEBUG("0x%x was already programmed to %x\n",
   4342 				  GEN7_L3LOG_BASE + i, remap);
   4343 		if (remap && !dev_priv->l3_parity.remap_info[i/4])
   4344 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
   4345 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
   4346 	}
   4347 
   4348 	/* Make sure all the writes land before disabling dop clock gating */
   4349 	POSTING_READ(GEN7_L3LOG_BASE);
   4350 
   4351 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
   4352 }
   4353 
   4354 void i915_gem_init_swizzling(struct drm_device *dev)
   4355 {
   4356 	drm_i915_private_t *dev_priv = dev->dev_private;
   4357 
   4358 	if (INTEL_INFO(dev)->gen < 5 ||
   4359 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
   4360 		return;
   4361 
   4362 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
   4363 				 DISP_TILE_SURFACE_SWIZZLING);
   4364 
   4365 	if (IS_GEN5(dev))
   4366 		return;
   4367 
   4368 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
   4369 	if (IS_GEN6(dev))
   4370 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
   4371 	else
   4372 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
   4373 }
   4374 
   4375 static bool
   4376 intel_enable_blt(struct drm_device *dev)
   4377 {
   4378 	if (!HAS_BLT(dev))
   4379 		return false;
   4380 
   4381 	/* The blitter was dysfunctional on early prototypes */
   4382 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
   4383 		DRM_INFO("BLT not supported on this pre-production hardware;"
   4384 			 " graphics performance will be degraded.\n");
   4385 		return false;
   4386 	}
   4387 
   4388 	return true;
   4389 }
   4390 
   4391 int
   4392 i915_gem_init_hw(struct drm_device *dev)
   4393 {
   4394 	drm_i915_private_t *dev_priv = dev->dev_private;
   4395 	int ret;
   4396 
   4397 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
   4398 		return -EIO;
   4399 
   4400 	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
   4401 		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
   4402 
   4403 	i915_gem_l3_remap(dev);
   4404 
   4405 	i915_gem_init_swizzling(dev);
   4406 
   4407 	ret = intel_init_render_ring_buffer(dev);
   4408 	if (ret)
   4409 		return ret;
   4410 
   4411 	if (HAS_BSD(dev)) {
   4412 		ret = intel_init_bsd_ring_buffer(dev);
   4413 		if (ret)
   4414 			goto cleanup_render_ring;
   4415 	}
   4416 
   4417 	if (intel_enable_blt(dev)) {
   4418 		ret = intel_init_blt_ring_buffer(dev);
   4419 		if (ret)
   4420 			goto cleanup_bsd_ring;
   4421 	}
   4422 
   4423 	dev_priv->next_seqno = 1;
   4424 
   4425 	/*
   4426 	 * XXX: There was some w/a described somewhere suggesting loading
   4427 	 * contexts before PPGTT.
   4428 	 */
   4429 	i915_gem_context_init(dev);
   4430 	i915_gem_init_ppgtt(dev);
   4431 
   4432 	return 0;
   4433 
   4434 cleanup_bsd_ring:
   4435 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
   4436 cleanup_render_ring:
   4437 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
   4438 	return ret;
   4439 }
   4440 
   4441 static bool
   4442 intel_enable_ppgtt(struct drm_device *dev)
   4443 {
   4444 #ifdef __NetBSD__		/* XXX ppgtt */
   4445 	return false;
   4446 #else
   4447 	if (i915_enable_ppgtt >= 0)
   4448 		return i915_enable_ppgtt;
   4449 
   4450 #ifdef CONFIG_INTEL_IOMMU
   4451 	/* Disable ppgtt on SNB if VT-d is on. */
   4452 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
   4453 		return false;
   4454 #endif
   4455 
   4456 	return true;
   4457 #endif
   4458 }
   4459 
   4460 int i915_gem_init(struct drm_device *dev)
   4461 {
   4462 	struct drm_i915_private *dev_priv = dev->dev_private;
   4463 	unsigned long gtt_size, mappable_size;
   4464 	int ret;
   4465 
   4466 	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
   4467 	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
   4468 
   4469 	mutex_lock(&dev->struct_mutex);
   4470 	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
   4471 		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
   4472 		 * aperture accordingly when using aliasing ppgtt. */
   4473 		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
   4474 
   4475 		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
   4476 
   4477 		ret = i915_gem_init_aliasing_ppgtt(dev);
   4478 		if (ret) {
   4479 			i915_gem_fini_global_gtt(dev);
   4480 			mutex_unlock(&dev->struct_mutex);
   4481 			return ret;
   4482 		}
   4483 	} else {
   4484 		/* Let GEM Manage all of the aperture.
   4485 		 *
   4486 		 * However, leave one page at the end still bound to the scratch
   4487 		 * page.  There are a number of places where the hardware
   4488 		 * apparently prefetches past the end of the object, and we've
   4489 		 * seen multiple hangs with the GPU head pointer stuck in a
   4490 		 * batchbuffer bound at the last page of the aperture.  One page
   4491 		 * should be enough to keep any prefetching inside of the
   4492 		 * aperture.
   4493 		 */
   4494 		i915_gem_init_global_gtt(dev, 0, mappable_size,
   4495 					 gtt_size);
   4496 	}
   4497 
   4498 	ret = i915_gem_init_hw(dev);
   4499 #ifdef __NetBSD__		/* XXX fini global gtt */
   4500 	if (ret)
   4501 		i915_gem_fini_global_gtt(dev);
   4502 #endif
   4503 	mutex_unlock(&dev->struct_mutex);
   4504 	if (ret) {
   4505 		i915_gem_cleanup_aliasing_ppgtt(dev);
   4506 		return ret;
   4507 	}
   4508 
   4509 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
   4510 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   4511 		dev_priv->dri1.allow_batchbuffer = 1;
   4512 	return 0;
   4513 }
   4514 
   4515 void
   4516 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
   4517 {
   4518 	drm_i915_private_t *dev_priv = dev->dev_private;
   4519 	struct intel_ring_buffer *ring;
   4520 	int i;
   4521 
   4522 	for_each_ring(ring, dev_priv, i)
   4523 		intel_cleanup_ring_buffer(ring);
   4524 }
   4525 
   4526 int
   4527 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
   4528 		       struct drm_file *file_priv)
   4529 {
   4530 	drm_i915_private_t *dev_priv = dev->dev_private;
   4531 	int ret;
   4532 
   4533 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   4534 		return 0;
   4535 
   4536 	if (atomic_read(&dev_priv->mm.wedged)) {
   4537 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
   4538 		atomic_set(&dev_priv->mm.wedged, 0);
   4539 	}
   4540 
   4541 	mutex_lock(&dev->struct_mutex);
   4542 	dev_priv->mm.suspended = 0;
   4543 
   4544 	ret = i915_gem_init_hw(dev);
   4545 	if (ret != 0) {
   4546 		mutex_unlock(&dev->struct_mutex);
   4547 		return ret;
   4548 	}
   4549 
   4550 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
   4551 	mutex_unlock(&dev->struct_mutex);
   4552 
   4553 	ret = drm_irq_install(dev);
   4554 	if (ret)
   4555 		goto cleanup_ringbuffer;
   4556 
   4557 	return 0;
   4558 
   4559 cleanup_ringbuffer:
   4560 	mutex_lock(&dev->struct_mutex);
   4561 	i915_gem_cleanup_ringbuffer(dev);
   4562 	dev_priv->mm.suspended = 1;
   4563 	mutex_unlock(&dev->struct_mutex);
   4564 
   4565 	return ret;
   4566 }
   4567 
   4568 int
   4569 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
   4570 		       struct drm_file *file_priv)
   4571 {
   4572 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   4573 		return 0;
   4574 
   4575 	drm_irq_uninstall(dev);
   4576 	return i915_gem_idle(dev);
   4577 }
   4578 
   4579 void
   4580 i915_gem_lastclose(struct drm_device *dev)
   4581 {
   4582 	int ret;
   4583 
   4584 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   4585 		return;
   4586 
   4587 	ret = i915_gem_idle(dev);
   4588 	if (ret)
   4589 		DRM_ERROR("failed to idle hardware: %d\n", ret);
   4590 }
   4591 
   4592 static void
   4593 init_ring_lists(struct intel_ring_buffer *ring)
   4594 {
   4595 	INIT_LIST_HEAD(&ring->active_list);
   4596 	INIT_LIST_HEAD(&ring->request_list);
   4597 }
   4598 
   4599 void
   4600 i915_gem_load(struct drm_device *dev)
   4601 {
   4602 	int i;
   4603 	drm_i915_private_t *dev_priv = dev->dev_private;
   4604 
   4605 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
   4606 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
   4607 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
   4608 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
   4609 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   4610 	for (i = 0; i < I915_NUM_RINGS; i++)
   4611 		init_ring_lists(&dev_priv->ring[i]);
   4612 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
   4613 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
   4614 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
   4615 			  i915_gem_retire_work_handler);
   4616 	init_completion(&dev_priv->error_completion);
   4617 
   4618 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
   4619 	if (IS_GEN3(dev)) {
   4620 		I915_WRITE(MI_ARB_STATE,
   4621 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
   4622 	}
   4623 
   4624 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
   4625 
   4626 	/* Old X drivers will take 0-2 for front, back, depth buffers */
   4627 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   4628 		dev_priv->fence_reg_start = 3;
   4629 
   4630 	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
   4631 		dev_priv->num_fence_regs = 16;
   4632 	else
   4633 		dev_priv->num_fence_regs = 8;
   4634 
   4635 	/* Initialize fence registers to zero */
   4636 	i915_gem_reset_fences(dev);
   4637 
   4638 	i915_gem_detect_bit_6_swizzle(dev);
   4639 #ifdef __NetBSD__
   4640 	DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
   4641 	linux_mutex_init(&dev_priv->pending_flip_lock);
   4642 #else
   4643 	init_waitqueue_head(&dev_priv->pending_flip_queue);
   4644 #endif
   4645 
   4646 	dev_priv->mm.interruptible = true;
   4647 
   4648 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
   4649 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
   4650 	register_shrinker(&dev_priv->mm.inactive_shrinker);
   4651 }
   4652 
   4653 /*
   4654  * Create a physically contiguous memory object for this object
   4655  * e.g. for cursor + overlay regs
   4656  */
   4657 static int i915_gem_init_phys_object(struct drm_device *dev,
   4658 				     int id, int size, int align)
   4659 {
   4660 	drm_i915_private_t *dev_priv = dev->dev_private;
   4661 	struct drm_i915_gem_phys_object *phys_obj;
   4662 	int ret;
   4663 
   4664 	if (dev_priv->mm.phys_objs[id - 1] || !size)
   4665 		return 0;
   4666 
   4667 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
   4668 	if (!phys_obj)
   4669 		return -ENOMEM;
   4670 
   4671 	phys_obj->id = id;
   4672 
   4673 	phys_obj->handle = drm_pci_alloc(dev, size, align);
   4674 	if (!phys_obj->handle) {
   4675 		ret = -ENOMEM;
   4676 		goto kfree_obj;
   4677 	}
   4678 #ifndef __NetBSD__		/* XXX x86 wc?  */
   4679 #ifdef CONFIG_X86
   4680 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
   4681 #endif
   4682 #endif
   4683 
   4684 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
   4685 
   4686 	return 0;
   4687 kfree_obj:
   4688 	kfree(phys_obj);
   4689 	return ret;
   4690 }
   4691 
   4692 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
   4693 {
   4694 	drm_i915_private_t *dev_priv = dev->dev_private;
   4695 	struct drm_i915_gem_phys_object *phys_obj;
   4696 
   4697 	if (!dev_priv->mm.phys_objs[id - 1])
   4698 		return;
   4699 
   4700 	phys_obj = dev_priv->mm.phys_objs[id - 1];
   4701 	if (phys_obj->cur_obj) {
   4702 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
   4703 	}
   4704 
   4705 #ifndef __NetBSD__		/* XXX x86 wb?  */
   4706 #ifdef CONFIG_X86
   4707 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
   4708 #endif
   4709 #endif
   4710 	drm_pci_free(dev, phys_obj->handle);
   4711 	kfree(phys_obj);
   4712 	dev_priv->mm.phys_objs[id - 1] = NULL;
   4713 }
   4714 
   4715 void i915_gem_free_all_phys_object(struct drm_device *dev)
   4716 {
   4717 	int i;
   4718 
   4719 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
   4720 		i915_gem_free_phys_object(dev, i);
   4721 }
   4722 
   4723 void i915_gem_detach_phys_object(struct drm_device *dev,
   4724 				 struct drm_i915_gem_object *obj)
   4725 {
   4726 #ifndef __NetBSD__
   4727 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
   4728 #endif
   4729 	char *vaddr;
   4730 	int i;
   4731 	int page_count;
   4732 
   4733 	if (!obj->phys_obj)
   4734 		return;
   4735 	vaddr = obj->phys_obj->handle->vaddr;
   4736 
   4737 	page_count = obj->base.size / PAGE_SIZE;
   4738 	for (i = 0; i < page_count; i++) {
   4739 #ifdef __NetBSD__
   4740 		/* XXX Just use ubc_uiomove?  */
   4741 		struct pglist pages;
   4742 		int error;
   4743 
   4744 		TAILQ_INIT(&pages);
   4745 		error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
   4746 		    (i+1)*PAGE_SIZE, &pages);
   4747 		if (error) {
   4748 			printf("unable to map page %d of i915 gem obj: %d\n",
   4749 			    i, error);
   4750 			continue;
   4751 		}
   4752 
   4753 		KASSERT(!TAILQ_EMPTY(&pages));
   4754 		struct vm_page *const page = TAILQ_FIRST(&pages);
   4755 		TAILQ_REMOVE(&pages, page, pageq.queue);
   4756 		KASSERT(TAILQ_EMPTY(&pages));
   4757 
   4758 		char *const dst = kmap_atomic(container_of(page, struct page,
   4759 			p_vmp));
   4760 		(void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
   4761 		kunmap_atomic(dst);
   4762 
   4763 		drm_clflush_page(container_of(page, struct page, p_vmp));
   4764 		page->flags &= ~PG_CLEAN;
   4765 		/* XXX mark page accessed */
   4766 		uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
   4767 		    (i+1)*PAGE_SIZE);
   4768 #else
   4769 		struct page *page = shmem_read_mapping_page(mapping, i);
   4770 		if (!IS_ERR(page)) {
   4771 			char *dst = kmap_atomic(page);
   4772 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
   4773 			kunmap_atomic(dst);
   4774 
   4775 			drm_clflush_pages(&page, 1);
   4776 
   4777 			set_page_dirty(page);
   4778 			mark_page_accessed(page);
   4779 			page_cache_release(page);
   4780 		}
   4781 #endif
   4782 	}
   4783 	i915_gem_chipset_flush(dev);
   4784 
   4785 	obj->phys_obj->cur_obj = NULL;
   4786 	obj->phys_obj = NULL;
   4787 }
   4788 
   4789 int
   4790 i915_gem_attach_phys_object(struct drm_device *dev,
   4791 			    struct drm_i915_gem_object *obj,
   4792 			    int id,
   4793 			    int align)
   4794 {
   4795 #ifndef __NetBSD__
   4796 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
   4797 #endif
   4798 	drm_i915_private_t *dev_priv = dev->dev_private;
   4799 	int ret = 0;
   4800 	int page_count;
   4801 	int i;
   4802 
   4803 	if (id > I915_MAX_PHYS_OBJECT)
   4804 		return -EINVAL;
   4805 
   4806 	if (obj->phys_obj) {
   4807 		if (obj->phys_obj->id == id)
   4808 			return 0;
   4809 		i915_gem_detach_phys_object(dev, obj);
   4810 	}
   4811 
   4812 	/* create a new object */
   4813 	if (!dev_priv->mm.phys_objs[id - 1]) {
   4814 		ret = i915_gem_init_phys_object(dev, id,
   4815 						obj->base.size, align);
   4816 		if (ret) {
   4817 			DRM_ERROR("failed to init phys object %d size: %zu\n",
   4818 				  id, obj->base.size);
   4819 			return ret;
   4820 		}
   4821 	}
   4822 
   4823 	/* bind to the object */
   4824 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
   4825 	obj->phys_obj->cur_obj = obj;
   4826 
   4827 	page_count = obj->base.size / PAGE_SIZE;
   4828 
   4829 	for (i = 0; i < page_count; i++) {
   4830 #ifdef __NetBSD__
   4831 		char *const vaddr = obj->phys_obj->handle->vaddr;
   4832 		struct pglist pages;
   4833 		int error;
   4834 
   4835 		TAILQ_INIT(&pages);
   4836 		error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
   4837 		    (i+1)*PAGE_SIZE, &pages);
   4838 		if (error)
   4839 			/* XXX errno NetBSD->Linux */
   4840 			return -error;
   4841 
   4842 		KASSERT(!TAILQ_EMPTY(&pages));
   4843 		struct vm_page *const page = TAILQ_FIRST(&pages);
   4844 		TAILQ_REMOVE(&pages, page, pageq.queue);
   4845 		KASSERT(TAILQ_EMPTY(&pages));
   4846 
   4847 		char *const src = kmap_atomic(container_of(page, struct page,
   4848 			p_vmp));
   4849 		(void)memcpy(vaddr + (i*PAGE_SIZE), src, PAGE_SIZE);
   4850 		kunmap_atomic(src);
   4851 
   4852 		/* XXX mark page accessed */
   4853 		uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
   4854 		    (i+1)*PAGE_SIZE);
   4855 #else
   4856 		struct page *page;
   4857 		char *dst, *src;
   4858 
   4859 		page = shmem_read_mapping_page(mapping, i);
   4860 		if (IS_ERR(page))
   4861 			return PTR_ERR(page);
   4862 
   4863 		src = kmap_atomic(page);
   4864 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
   4865 		memcpy(dst, src, PAGE_SIZE);
   4866 		kunmap_atomic(src);
   4867 
   4868 		mark_page_accessed(page);
   4869 		page_cache_release(page);
   4870 #endif
   4871 	}
   4872 
   4873 	return 0;
   4874 }
   4875 
   4876 static int
   4877 i915_gem_phys_pwrite(struct drm_device *dev,
   4878 		     struct drm_i915_gem_object *obj,
   4879 		     struct drm_i915_gem_pwrite *args,
   4880 		     struct drm_file *file_priv)
   4881 {
   4882 	void *vaddr = (char *)obj->phys_obj->handle->vaddr + args->offset;
   4883 	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
   4884 
   4885 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
   4886 		unsigned long unwritten;
   4887 
   4888 		/* The physical object once assigned is fixed for the lifetime
   4889 		 * of the obj, so we can safely drop the lock and continue
   4890 		 * to access vaddr.
   4891 		 */
   4892 		mutex_unlock(&dev->struct_mutex);
   4893 		unwritten = copy_from_user(vaddr, user_data, args->size);
   4894 		mutex_lock(&dev->struct_mutex);
   4895 		if (unwritten)
   4896 			return -EFAULT;
   4897 	}
   4898 
   4899 	i915_gem_chipset_flush(dev);
   4900 	return 0;
   4901 }
   4902 
   4903 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   4904 {
   4905 	struct drm_i915_file_private *file_priv = file->driver_priv;
   4906 
   4907 	/* Clean up our request list when the client is going away, so that
   4908 	 * later retire_requests won't dereference our soon-to-be-gone
   4909 	 * file_priv.
   4910 	 */
   4911 	spin_lock(&file_priv->mm.lock);
   4912 	while (!list_empty(&file_priv->mm.request_list)) {
   4913 		struct drm_i915_gem_request *request;
   4914 
   4915 		request = list_first_entry(&file_priv->mm.request_list,
   4916 					   struct drm_i915_gem_request,
   4917 					   client_list);
   4918 		list_del(&request->client_list);
   4919 		request->file_priv = NULL;
   4920 	}
   4921 	spin_unlock(&file_priv->mm.lock);
   4922 }
   4923 
   4924 #ifndef __NetBSD__		/* XXX */
   4925 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
   4926 {
   4927 	if (!mutex_is_locked(mutex))
   4928 		return false;
   4929 
   4930 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
   4931 	return mutex->owner == task;
   4932 #else
   4933 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
   4934 	return false;
   4935 #endif
   4936 }
   4937 #endif
   4938 
   4939 static int
   4940 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
   4941 {
   4942 #ifdef __NetBSD__		/* XXX shrinkers */
   4943 	return 0;
   4944 #else
   4945 	struct drm_i915_private *dev_priv =
   4946 		container_of(shrinker,
   4947 			     struct drm_i915_private,
   4948 			     mm.inactive_shrinker);
   4949 	struct drm_device *dev = dev_priv->dev;
   4950 	struct drm_i915_gem_object *obj;
   4951 	int nr_to_scan = sc->nr_to_scan;
   4952 	bool unlock = true;
   4953 	int cnt;
   4954 
   4955 	if (!mutex_trylock(&dev->struct_mutex)) {
   4956 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
   4957 			return 0;
   4958 
   4959 		if (dev_priv->mm.shrinker_no_lock_stealing)
   4960 			return 0;
   4961 
   4962 		unlock = false;
   4963 	}
   4964 
   4965 	if (nr_to_scan) {
   4966 		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
   4967 		if (nr_to_scan > 0)
   4968 			nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
   4969 							false);
   4970 		if (nr_to_scan > 0)
   4971 			i915_gem_shrink_all(dev_priv);
   4972 	}
   4973 
   4974 	cnt = 0;
   4975 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
   4976 		if (obj->pages_pin_count == 0)
   4977 			cnt += obj->base.size >> PAGE_SHIFT;
   4978 	list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
   4979 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
   4980 			cnt += obj->base.size >> PAGE_SHIFT;
   4981 
   4982 	if (unlock)
   4983 		mutex_unlock(&dev->struct_mutex);
   4984 	return cnt;
   4985 #endif
   4986 }
   4987