i915_gem.c revision 1.1.1.1.2.20 1 /*
2 * Copyright 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric (at) anholt.net>
25 *
26 */
27
28 #ifdef __NetBSD__
29 #if 0 /* XXX uvmhist option? */
30 #include "opt_uvmhist.h"
31 #endif
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35
36 #include <uvm/uvm.h>
37 #include <uvm/uvm_extern.h>
38 #include <uvm/uvm_fault.h>
39 #include <uvm/uvm_page.h>
40 #include <uvm/uvm_pmap.h>
41 #include <uvm/uvm_prot.h>
42 #endif
43
44 #include <drm/drmP.h>
45 #include <drm/i915_drm.h>
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_drv.h"
49 #include <linux/shmem_fs.h>
50 #include <linux/slab.h>
51 #include <linux/swap.h>
52 #include <linux/pci.h>
53 #include <linux/dma-buf.h>
54 #include <linux/errno.h>
55 #include <linux/time.h>
56 #include <linux/err.h>
57 #include <asm/param.h>
58
59 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
60 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
62 unsigned alignment,
63 bool map_and_fenceable,
64 bool nonblocking);
65 static int i915_gem_phys_pwrite(struct drm_device *dev,
66 struct drm_i915_gem_object *obj,
67 struct drm_i915_gem_pwrite *args,
68 struct drm_file *file);
69
70 static void i915_gem_write_fence(struct drm_device *dev, int reg,
71 struct drm_i915_gem_object *obj);
72 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
73 struct drm_i915_fence_reg *fence,
74 bool enable);
75
76 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
77 struct shrink_control *sc);
78 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
79 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
80 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
81
82 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
83 {
84 if (obj->tiling_mode)
85 i915_gem_release_mmap(obj);
86
87 /* As we do not have an associated fence register, we will force
88 * a tiling change if we ever need to acquire one.
89 */
90 obj->fence_dirty = false;
91 obj->fence_reg = I915_FENCE_REG_NONE;
92 }
93
94 /* some bookkeeping */
95 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
96 size_t size)
97 {
98 dev_priv->mm.object_count++;
99 dev_priv->mm.object_memory += size;
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104 {
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 }
108
109 static int
110 i915_gem_wait_for_error(struct drm_device *dev)
111 {
112 struct drm_i915_private *dev_priv = dev->dev_private;
113 struct completion *x = &dev_priv->error_completion;
114 #ifndef __NetBSD__
115 unsigned long flags;
116 #endif
117 int ret;
118
119 if (!atomic_read(&dev_priv->mm.wedged))
120 return 0;
121
122 /*
123 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
124 * userspace. If it takes that long something really bad is going on and
125 * we should simply try to bail out and fail as gracefully as possible.
126 */
127 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134
135 if (atomic_read(&dev_priv->mm.wedged)) {
136 /* GPU is hung, bump the completion count to account for
137 * the token we just consumed so that we never hit zero and
138 * end up waiting upon a subsequent completion event that
139 * will never happen.
140 */
141 #ifdef __NetBSD__
142 /* XXX Hope it's not a problem that we might wake someone. */
143 complete(x);
144 #else
145 spin_lock_irqsave(&x->wait.lock, flags);
146 x->done++;
147 spin_unlock_irqrestore(&x->wait.lock, flags);
148 #endif
149 }
150 return 0;
151 }
152
153 int i915_mutex_lock_interruptible(struct drm_device *dev)
154 {
155 int ret;
156
157 ret = i915_gem_wait_for_error(dev);
158 if (ret)
159 return ret;
160
161 ret = mutex_lock_interruptible(&dev->struct_mutex);
162 if (ret)
163 return ret;
164
165 WARN_ON(i915_verify_lists(dev));
166 return 0;
167 }
168
169 static inline bool
170 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
171 {
172 return obj->gtt_space && !obj->active;
173 }
174
175 int
176 i915_gem_init_ioctl(struct drm_device *dev, void *data,
177 struct drm_file *file)
178 {
179 struct drm_i915_gem_init *args = data;
180
181 if (drm_core_check_feature(dev, DRIVER_MODESET))
182 return -ENODEV;
183
184 if (args->gtt_start >= args->gtt_end ||
185 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
186 return -EINVAL;
187
188 /* GEM with user mode setting was never supported on ilk and later. */
189 if (INTEL_INFO(dev)->gen >= 5)
190 return -ENODEV;
191
192 mutex_lock(&dev->struct_mutex);
193 i915_gem_init_global_gtt(dev, args->gtt_start,
194 args->gtt_end, args->gtt_end);
195 mutex_unlock(&dev->struct_mutex);
196
197 return 0;
198 }
199
200 int
201 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
202 struct drm_file *file)
203 {
204 struct drm_i915_private *dev_priv = dev->dev_private;
205 struct drm_i915_gem_get_aperture *args = data;
206 struct drm_i915_gem_object *obj;
207 size_t pinned;
208
209 pinned = 0;
210 mutex_lock(&dev->struct_mutex);
211 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
212 if (obj->pin_count)
213 pinned += obj->gtt_space->size;
214 mutex_unlock(&dev->struct_mutex);
215
216 args->aper_size = dev_priv->mm.gtt_total;
217 args->aper_available_size = args->aper_size - pinned;
218
219 return 0;
220 }
221
222 static int
223 i915_gem_create(struct drm_file *file,
224 struct drm_device *dev,
225 uint64_t size,
226 uint32_t *handle_p)
227 {
228 struct drm_i915_gem_object *obj;
229 int ret;
230 u32 handle;
231
232 size = roundup(size, PAGE_SIZE);
233 if (size == 0)
234 return -EINVAL;
235
236 /* Allocate the new object */
237 obj = i915_gem_alloc_object(dev, size);
238 if (obj == NULL)
239 return -ENOMEM;
240
241 ret = drm_gem_handle_create(file, &obj->base, &handle);
242 if (ret) {
243 drm_gem_object_release(&obj->base);
244 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
245 kfree(obj);
246 return ret;
247 }
248
249 /* drop reference from allocate - handle holds it now */
250 drm_gem_object_unreference(&obj->base);
251 trace_i915_gem_object_create(obj);
252
253 *handle_p = handle;
254 return 0;
255 }
256
257 int
258 i915_gem_dumb_create(struct drm_file *file,
259 struct drm_device *dev,
260 struct drm_mode_create_dumb *args)
261 {
262 /* have to work out size/pitch and return them */
263 #ifdef __NetBSD__ /* ALIGN already means something. */
264 args->pitch = round_up(args->width * ((args->bpp + 7) / 8), 64);
265 #else
266 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
267 #endif
268 args->size = args->pitch * args->height;
269 return i915_gem_create(file, dev,
270 args->size, &args->handle);
271 }
272
273 int i915_gem_dumb_destroy(struct drm_file *file,
274 struct drm_device *dev,
275 uint32_t handle)
276 {
277 return drm_gem_handle_delete(file, handle);
278 }
279
280 /**
281 * Creates a new mm object and returns a handle to it.
282 */
283 int
284 i915_gem_create_ioctl(struct drm_device *dev, void *data,
285 struct drm_file *file)
286 {
287 struct drm_i915_gem_create *args = data;
288
289 return i915_gem_create(file, dev,
290 args->size, &args->handle);
291 }
292
293 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
294 {
295 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
296
297 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
298 obj->tiling_mode != I915_TILING_NONE;
299 }
300
301 static inline int
302 __copy_to_user_swizzled(char __user *cpu_vaddr,
303 const char *gpu_vaddr, int gpu_offset,
304 int length)
305 {
306 int ret, cpu_offset = 0;
307
308 while (length > 0) {
309 #ifdef __NetBSD__
310 int cacheline_end = round_up(gpu_offset + 1, 64);
311 #else
312 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313 #endif
314 int this_length = min(cacheline_end - gpu_offset, length);
315 int swizzled_gpu_offset = gpu_offset ^ 64;
316
317 ret = __copy_to_user(cpu_vaddr + cpu_offset,
318 gpu_vaddr + swizzled_gpu_offset,
319 this_length);
320 if (ret)
321 return ret + length;
322
323 cpu_offset += this_length;
324 gpu_offset += this_length;
325 length -= this_length;
326 }
327
328 return 0;
329 }
330
331 static inline int
332 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
333 const char __user *cpu_vaddr,
334 int length)
335 {
336 int ret, cpu_offset = 0;
337
338 while (length > 0) {
339 #ifdef __NetBSD__
340 int cacheline_end = round_up(gpu_offset + 1, 64);
341 #else
342 int cacheline_end = ALIGN(gpu_offset + 1, 64);
343 #endif
344 int this_length = min(cacheline_end - gpu_offset, length);
345 int swizzled_gpu_offset = gpu_offset ^ 64;
346
347 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
348 cpu_vaddr + cpu_offset,
349 this_length);
350 if (ret)
351 return ret + length;
352
353 cpu_offset += this_length;
354 gpu_offset += this_length;
355 length -= this_length;
356 }
357
358 return 0;
359 }
360
361 /* Per-page copy function for the shmem pread fastpath.
362 * Flushes invalid cachelines before reading the target if
363 * needs_clflush is set. */
364 static int
365 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
366 char __user *user_data,
367 bool page_do_bit17_swizzling, bool needs_clflush)
368 {
369 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
370 return -EFAULT;
371 #else
372 char *vaddr;
373 int ret;
374
375 if (unlikely(page_do_bit17_swizzling))
376 return -EINVAL;
377
378 vaddr = kmap_atomic(page);
379 if (needs_clflush)
380 drm_clflush_virt_range(vaddr + shmem_page_offset,
381 page_length);
382 ret = __copy_to_user_inatomic(user_data,
383 vaddr + shmem_page_offset,
384 page_length);
385 kunmap_atomic(vaddr);
386
387 return ret ? -EFAULT : 0;
388 #endif
389 }
390
391 static void
392 shmem_clflush_swizzled_range(char *addr, unsigned long length,
393 bool swizzled)
394 {
395 if (unlikely(swizzled)) {
396 unsigned long start = (unsigned long) addr;
397 unsigned long end = (unsigned long) addr + length;
398
399 /* For swizzling simply ensure that we always flush both
400 * channels. Lame, but simple and it works. Swizzled
401 * pwrite/pread is far from a hotpath - current userspace
402 * doesn't use it at all. */
403 start = round_down(start, 128);
404 end = round_up(end, 128);
405
406 drm_clflush_virt_range((void *)start, end - start);
407 } else {
408 drm_clflush_virt_range(addr, length);
409 }
410
411 }
412
413 /* Only difference to the fast-path function is that this can handle bit17
414 * and uses non-atomic copy and kmap functions. */
415 static int
416 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
417 char __user *user_data,
418 bool page_do_bit17_swizzling, bool needs_clflush)
419 {
420 char *vaddr;
421 int ret;
422
423 vaddr = kmap(page);
424 if (needs_clflush)
425 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
426 page_length,
427 page_do_bit17_swizzling);
428
429 if (page_do_bit17_swizzling)
430 ret = __copy_to_user_swizzled(user_data,
431 vaddr, shmem_page_offset,
432 page_length);
433 else
434 ret = __copy_to_user(user_data,
435 vaddr + shmem_page_offset,
436 page_length);
437 kunmap(page);
438
439 return ret ? - EFAULT : 0;
440 }
441
442 static int
443 i915_gem_shmem_pread(struct drm_device *dev,
444 struct drm_i915_gem_object *obj,
445 struct drm_i915_gem_pread *args,
446 struct drm_file *file)
447 {
448 char __user *user_data;
449 ssize_t remain;
450 loff_t offset;
451 int shmem_page_offset, page_length, ret = 0;
452 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
453 int hit_slowpath = 0;
454 #ifndef __NetBSD__ /* XXX */
455 int prefaulted = 0;
456 #endif
457 int needs_clflush = 0;
458 #ifndef __NetBSD__
459 struct scatterlist *sg;
460 int i;
461 #endif
462
463 user_data = (char __user *) (uintptr_t) args->data_ptr;
464 remain = args->size;
465
466 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
467
468 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
469 /* If we're not in the cpu read domain, set ourself into the gtt
470 * read domain and manually flush cachelines (if required). This
471 * optimizes for the case when the gpu will dirty the data
472 * anyway again before the next pread happens. */
473 if (obj->cache_level == I915_CACHE_NONE)
474 needs_clflush = 1;
475 if (obj->gtt_space) {
476 ret = i915_gem_object_set_to_gtt_domain(obj, false);
477 if (ret)
478 return ret;
479 }
480 }
481
482 ret = i915_gem_object_get_pages(obj);
483 if (ret)
484 return ret;
485
486 i915_gem_object_pin_pages(obj);
487
488 offset = args->offset;
489
490 #ifdef __NetBSD__
491 /*
492 * XXX This is a big #ifdef with a lot of duplicated code, but
493 * factoring out the loop head -- which is all that
494 * substantially differs -- is probably more trouble than it's
495 * worth at the moment.
496 */
497 while (0 < remain) {
498 /* Get the next page. */
499 shmem_page_offset = offset_in_page(offset);
500 KASSERT(shmem_page_offset < PAGE_SIZE);
501 page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
502 struct page *const page = i915_gem_object_get_page(obj,
503 atop(offset));
504
505 /* Decide whether to swizzle bit 17. */
506 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
507 (page_to_phys(page) & (1 << 17)) != 0;
508
509 /* Try the fast path. */
510 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
511 user_data, page_do_bit17_swizzling, needs_clflush);
512 if (ret == 0)
513 goto next_page;
514
515 /* Fast path failed. Try the slow path. */
516 hit_slowpath = 1;
517 mutex_unlock(&dev->struct_mutex);
518 /* XXX prefault */
519 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
520 user_data, page_do_bit17_swizzling, needs_clflush);
521 mutex_lock(&dev->struct_mutex);
522
523 next_page:
524 /* XXX mark page accessed */
525 if (ret)
526 goto out;
527
528 KASSERT(page_length <= remain);
529 remain -= page_length;
530 user_data += page_length;
531 offset += page_length;
532 }
533 #else
534 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
535 struct page *page;
536
537 if (i < offset >> PAGE_SHIFT)
538 continue;
539
540 if (remain <= 0)
541 break;
542
543 /* Operation in this page
544 *
545 * shmem_page_offset = offset within page in shmem file
546 * page_length = bytes to copy for this page
547 */
548 shmem_page_offset = offset_in_page(offset);
549 page_length = remain;
550 if ((shmem_page_offset + page_length) > PAGE_SIZE)
551 page_length = PAGE_SIZE - shmem_page_offset;
552
553 page = sg_page(sg);
554 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
555 (page_to_phys(page) & (1 << 17)) != 0;
556
557 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
558 user_data, page_do_bit17_swizzling,
559 needs_clflush);
560 if (ret == 0)
561 goto next_page;
562
563 hit_slowpath = 1;
564 mutex_unlock(&dev->struct_mutex);
565
566 if (!prefaulted) {
567 ret = fault_in_multipages_writeable(user_data, remain);
568 /* Userspace is tricking us, but we've already clobbered
569 * its pages with the prefault and promised to write the
570 * data up to the first fault. Hence ignore any errors
571 * and just continue. */
572 (void)ret;
573 prefaulted = 1;
574 }
575
576 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
577 user_data, page_do_bit17_swizzling,
578 needs_clflush);
579
580 mutex_lock(&dev->struct_mutex);
581
582 next_page:
583 mark_page_accessed(page);
584
585 if (ret)
586 goto out;
587
588 remain -= page_length;
589 user_data += page_length;
590 offset += page_length;
591 }
592 #endif
593
594 out:
595 i915_gem_object_unpin_pages(obj);
596
597 if (hit_slowpath) {
598 /* Fixup: Kill any reinstated backing storage pages */
599 if (obj->madv == __I915_MADV_PURGED)
600 i915_gem_object_truncate(obj);
601 }
602
603 return ret;
604 }
605
606 /**
607 * Reads data from the object referenced by handle.
608 *
609 * On error, the contents of *data are undefined.
610 */
611 int
612 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
613 struct drm_file *file)
614 {
615 struct drm_i915_gem_pread *args = data;
616 struct drm_i915_gem_object *obj;
617 int ret = 0;
618
619 if (args->size == 0)
620 return 0;
621
622 if (!access_ok(VERIFY_WRITE,
623 (char __user *)(uintptr_t)args->data_ptr,
624 args->size))
625 return -EFAULT;
626
627 ret = i915_mutex_lock_interruptible(dev);
628 if (ret)
629 return ret;
630
631 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
632 if (&obj->base == NULL) {
633 ret = -ENOENT;
634 goto unlock;
635 }
636
637 /* Bounds check source. */
638 if (args->offset > obj->base.size ||
639 args->size > obj->base.size - args->offset) {
640 ret = -EINVAL;
641 goto out;
642 }
643
644 #ifndef __NetBSD__ /* XXX drm prime */
645 /* prime objects have no backing filp to GEM pread/pwrite
646 * pages from.
647 */
648 if (!obj->base.filp) {
649 ret = -EINVAL;
650 goto out;
651 }
652 #endif
653
654 trace_i915_gem_object_pread(obj, args->offset, args->size);
655
656 ret = i915_gem_shmem_pread(dev, obj, args, file);
657
658 out:
659 drm_gem_object_unreference(&obj->base);
660 unlock:
661 mutex_unlock(&dev->struct_mutex);
662 return ret;
663 }
664
665 /* This is the fast write path which cannot handle
666 * page faults in the source data
667 */
668
669 static inline int
670 fast_user_write(struct io_mapping *mapping,
671 loff_t page_base, int page_offset,
672 char __user *user_data,
673 int length)
674 {
675 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
676 return -EFAULT;
677 #else
678 void __iomem *vaddr_atomic;
679 void *vaddr;
680 unsigned long unwritten;
681
682 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
683 /* We can use the cpu mem copy function because this is X86. */
684 vaddr = (void __force*)vaddr_atomic + page_offset;
685 unwritten = __copy_from_user_inatomic_nocache(vaddr,
686 user_data, length);
687 io_mapping_unmap_atomic(vaddr_atomic);
688 return unwritten;
689 #endif
690 }
691
692 /**
693 * This is the fast pwrite path, where we copy the data directly from the
694 * user into the GTT, uncached.
695 */
696 static int
697 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
698 struct drm_i915_gem_object *obj,
699 struct drm_i915_gem_pwrite *args,
700 struct drm_file *file)
701 {
702 drm_i915_private_t *dev_priv = dev->dev_private;
703 ssize_t remain;
704 loff_t offset, page_base;
705 char __user *user_data;
706 int page_offset, page_length, ret;
707
708 ret = i915_gem_object_pin(obj, 0, true, true);
709 if (ret)
710 goto out;
711
712 ret = i915_gem_object_set_to_gtt_domain(obj, true);
713 if (ret)
714 goto out_unpin;
715
716 ret = i915_gem_object_put_fence(obj);
717 if (ret)
718 goto out_unpin;
719
720 user_data = (char __user *) (uintptr_t) args->data_ptr;
721 remain = args->size;
722
723 offset = obj->gtt_offset + args->offset;
724
725 while (remain > 0) {
726 /* Operation in this page
727 *
728 * page_base = page offset within aperture
729 * page_offset = offset within page
730 * page_length = bytes to copy for this page
731 */
732 page_base = offset & PAGE_MASK;
733 page_offset = offset_in_page(offset);
734 page_length = remain;
735 if ((page_offset + remain) > PAGE_SIZE)
736 page_length = PAGE_SIZE - page_offset;
737
738 /* If we get a fault while copying data, then (presumably) our
739 * source page isn't available. Return the error and we'll
740 * retry in the slow path.
741 */
742 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
743 page_offset, user_data, page_length)) {
744 ret = -EFAULT;
745 goto out_unpin;
746 }
747
748 remain -= page_length;
749 user_data += page_length;
750 offset += page_length;
751 }
752
753 out_unpin:
754 i915_gem_object_unpin(obj);
755 out:
756 return ret;
757 }
758
759 /* Per-page copy function for the shmem pwrite fastpath.
760 * Flushes invalid cachelines before writing to the target if
761 * needs_clflush_before is set and flushes out any written cachelines after
762 * writing if needs_clflush is set. */
763 static int
764 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
765 char __user *user_data,
766 bool page_do_bit17_swizzling,
767 bool needs_clflush_before,
768 bool needs_clflush_after)
769 {
770 #ifdef __NetBSD__
771 return -EFAULT;
772 #else
773 char *vaddr;
774 int ret;
775
776 if (unlikely(page_do_bit17_swizzling))
777 return -EINVAL;
778
779 vaddr = kmap_atomic(page);
780 if (needs_clflush_before)
781 drm_clflush_virt_range(vaddr + shmem_page_offset,
782 page_length);
783 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
784 user_data,
785 page_length);
786 if (needs_clflush_after)
787 drm_clflush_virt_range(vaddr + shmem_page_offset,
788 page_length);
789 kunmap_atomic(vaddr);
790
791 return ret ? -EFAULT : 0;
792 #endif
793 }
794
795 /* Only difference to the fast-path function is that this can handle bit17
796 * and uses non-atomic copy and kmap functions. */
797 static int
798 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
799 char __user *user_data,
800 bool page_do_bit17_swizzling,
801 bool needs_clflush_before,
802 bool needs_clflush_after)
803 {
804 char *vaddr;
805 int ret;
806
807 vaddr = kmap(page);
808 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
809 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
810 page_length,
811 page_do_bit17_swizzling);
812 if (page_do_bit17_swizzling)
813 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
814 user_data,
815 page_length);
816 else
817 ret = __copy_from_user(vaddr + shmem_page_offset,
818 user_data,
819 page_length);
820 if (needs_clflush_after)
821 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
822 page_length,
823 page_do_bit17_swizzling);
824 kunmap(page);
825
826 return ret ? -EFAULT : 0;
827 }
828
829 static int
830 i915_gem_shmem_pwrite(struct drm_device *dev,
831 struct drm_i915_gem_object *obj,
832 struct drm_i915_gem_pwrite *args,
833 struct drm_file *file)
834 {
835 ssize_t remain;
836 loff_t offset;
837 char __user *user_data;
838 int shmem_page_offset, page_length, ret = 0;
839 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
840 int hit_slowpath = 0;
841 int needs_clflush_after = 0;
842 int needs_clflush_before = 0;
843 #ifndef __NetBSD__
844 int i;
845 struct scatterlist *sg;
846 #endif
847
848 user_data = (char __user *) (uintptr_t) args->data_ptr;
849 remain = args->size;
850
851 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
852
853 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
854 /* If we're not in the cpu write domain, set ourself into the gtt
855 * write domain and manually flush cachelines (if required). This
856 * optimizes for the case when the gpu will use the data
857 * right away and we therefore have to clflush anyway. */
858 if (obj->cache_level == I915_CACHE_NONE)
859 needs_clflush_after = 1;
860 if (obj->gtt_space) {
861 ret = i915_gem_object_set_to_gtt_domain(obj, true);
862 if (ret)
863 return ret;
864 }
865 }
866 /* Same trick applies for invalidate partially written cachelines before
867 * writing. */
868 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
869 && obj->cache_level == I915_CACHE_NONE)
870 needs_clflush_before = 1;
871
872 ret = i915_gem_object_get_pages(obj);
873 if (ret)
874 return ret;
875
876 i915_gem_object_pin_pages(obj);
877
878 offset = args->offset;
879 obj->dirty = 1;
880
881 #ifdef __NetBSD__
882 while (0 < remain) {
883 /* Get the next page. */
884 shmem_page_offset = offset_in_page(offset);
885 KASSERT(shmem_page_offset < PAGE_SIZE);
886 page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
887 struct page *const page = i915_gem_object_get_page(obj,
888 atop(offset));
889
890 /* Decide whether to flush the cache or swizzle bit 17. */
891 const bool partial_cacheline_write = needs_clflush_before &&
892 ((shmem_page_offset | page_length)
893 & (cpu_info_primary.ci_cflush_lsize - 1));
894 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
895 (page_to_phys(page) & (1 << 17)) != 0;
896
897 /* Try the fast path. */
898 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
899 user_data, page_do_bit17_swizzling,
900 partial_cacheline_write, needs_clflush_after);
901 if (ret == 0)
902 goto next_page;
903
904 /* Fast path failed. Try the slow path. */
905 hit_slowpath = 1;
906 mutex_unlock(&dev->struct_mutex);
907 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
908 user_data, page_do_bit17_swizzling,
909 partial_cacheline_write, needs_clflush_after);
910 mutex_lock(&dev->struct_mutex);
911
912 next_page:
913 page->p_vmp.flags &= ~PG_CLEAN;
914 /* XXX mark page accessed */
915 if (ret)
916 goto out;
917
918 KASSERT(page_length <= remain);
919 remain -= page_length;
920 user_data += page_length;
921 offset += page_length;
922 }
923 #else
924 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
925 struct page *page;
926 int partial_cacheline_write;
927
928 if (i < offset >> PAGE_SHIFT)
929 continue;
930
931 if (remain <= 0)
932 break;
933
934 /* Operation in this page
935 *
936 * shmem_page_offset = offset within page in shmem file
937 * page_length = bytes to copy for this page
938 */
939 shmem_page_offset = offset_in_page(offset);
940
941 page_length = remain;
942 if ((shmem_page_offset + page_length) > PAGE_SIZE)
943 page_length = PAGE_SIZE - shmem_page_offset;
944
945 /* If we don't overwrite a cacheline completely we need to be
946 * careful to have up-to-date data by first clflushing. Don't
947 * overcomplicate things and flush the entire patch. */
948 partial_cacheline_write = needs_clflush_before &&
949 ((shmem_page_offset | page_length)
950 & (boot_cpu_data.x86_clflush_size - 1));
951
952 page = sg_page(sg);
953 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
954 (page_to_phys(page) & (1 << 17)) != 0;
955
956 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
957 user_data, page_do_bit17_swizzling,
958 partial_cacheline_write,
959 needs_clflush_after);
960 if (ret == 0)
961 goto next_page;
962
963 hit_slowpath = 1;
964 mutex_unlock(&dev->struct_mutex);
965 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
966 user_data, page_do_bit17_swizzling,
967 partial_cacheline_write,
968 needs_clflush_after);
969
970 mutex_lock(&dev->struct_mutex);
971
972 next_page:
973 set_page_dirty(page);
974 mark_page_accessed(page);
975
976 if (ret)
977 goto out;
978
979 remain -= page_length;
980 user_data += page_length;
981 offset += page_length;
982 }
983 #endif
984
985 out:
986 i915_gem_object_unpin_pages(obj);
987
988 if (hit_slowpath) {
989 /* Fixup: Kill any reinstated backing storage pages */
990 if (obj->madv == __I915_MADV_PURGED)
991 i915_gem_object_truncate(obj);
992 /* and flush dirty cachelines in case the object isn't in the cpu write
993 * domain anymore. */
994 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
995 i915_gem_clflush_object(obj);
996 i915_gem_chipset_flush(dev);
997 }
998 }
999
1000 if (needs_clflush_after)
1001 i915_gem_chipset_flush(dev);
1002
1003 return ret;
1004 }
1005
1006 /**
1007 * Writes data to the object referenced by handle.
1008 *
1009 * On error, the contents of the buffer that were to be modified are undefined.
1010 */
1011 int
1012 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1013 struct drm_file *file)
1014 {
1015 struct drm_i915_gem_pwrite *args = data;
1016 struct drm_i915_gem_object *obj;
1017 int ret;
1018
1019 if (args->size == 0)
1020 return 0;
1021
1022 if (!access_ok(VERIFY_READ,
1023 (char __user *)(uintptr_t)args->data_ptr,
1024 args->size))
1025 return -EFAULT;
1026
1027 #ifndef __NetBSD__ /* XXX prefault */
1028 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
1029 args->size);
1030 if (ret)
1031 return -EFAULT;
1032 #endif
1033
1034 ret = i915_mutex_lock_interruptible(dev);
1035 if (ret)
1036 return ret;
1037
1038 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1039 if (&obj->base == NULL) {
1040 ret = -ENOENT;
1041 goto unlock;
1042 }
1043
1044 /* Bounds check destination. */
1045 if (args->offset > obj->base.size ||
1046 args->size > obj->base.size - args->offset) {
1047 ret = -EINVAL;
1048 goto out;
1049 }
1050
1051 #ifndef __NetBSD__ /* XXX drm prime */
1052 /* prime objects have no backing filp to GEM pread/pwrite
1053 * pages from.
1054 */
1055 if (!obj->base.filp) {
1056 ret = -EINVAL;
1057 goto out;
1058 }
1059 #endif
1060
1061 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1062
1063 ret = -EFAULT;
1064 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1065 * it would end up going through the fenced access, and we'll get
1066 * different detiling behavior between reading and writing.
1067 * pread/pwrite currently are reading and writing from the CPU
1068 * perspective, requiring manual detiling by the client.
1069 */
1070 if (obj->phys_obj) {
1071 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1072 goto out;
1073 }
1074
1075 if (obj->cache_level == I915_CACHE_NONE &&
1076 obj->tiling_mode == I915_TILING_NONE &&
1077 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1078 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1079 /* Note that the gtt paths might fail with non-page-backed user
1080 * pointers (e.g. gtt mappings when moving data between
1081 * textures). Fallback to the shmem path in that case. */
1082 }
1083
1084 if (ret == -EFAULT || ret == -ENOSPC)
1085 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1086
1087 out:
1088 drm_gem_object_unreference(&obj->base);
1089 unlock:
1090 mutex_unlock(&dev->struct_mutex);
1091 return ret;
1092 }
1093
1094 int
1095 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1096 bool interruptible)
1097 {
1098 if (atomic_read(&dev_priv->mm.wedged)) {
1099 struct completion *x = &dev_priv->error_completion;
1100 bool recovery_complete;
1101 #ifndef __NetBSD__
1102 unsigned long flags;
1103 #endif
1104
1105 #ifdef __NetBSD__
1106 /*
1107 * XXX This is a horrible kludge. Reading internal
1108 * fields is no good, nor is reading them unlocked, and
1109 * neither is locking it and then unlocking it before
1110 * making a decision.
1111 */
1112 recovery_complete = x->c_done > 0;
1113 #else
1114 /* Give the error handler a chance to run. */
1115 spin_lock_irqsave(&x->wait.lock, flags);
1116 recovery_complete = x->done > 0;
1117 spin_unlock_irqrestore(&x->wait.lock, flags);
1118 #endif
1119
1120 /* Non-interruptible callers can't handle -EAGAIN, hence return
1121 * -EIO unconditionally for these. */
1122 if (!interruptible)
1123 return -EIO;
1124
1125 /* Recovery complete, but still wedged means reset failure. */
1126 if (recovery_complete)
1127 return -EIO;
1128
1129 return -EAGAIN;
1130 }
1131
1132 return 0;
1133 }
1134
1135 /*
1136 * Compare seqno against outstanding lazy request. Emit a request if they are
1137 * equal.
1138 */
1139 static int
1140 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1141 {
1142 int ret;
1143
1144 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1145
1146 ret = 0;
1147 if (seqno == ring->outstanding_lazy_request)
1148 ret = i915_add_request(ring, NULL, NULL);
1149
1150 return ret;
1151 }
1152
1153 /**
1154 * __wait_seqno - wait until execution of seqno has finished
1155 * @ring: the ring expected to report seqno
1156 * @seqno: duh!
1157 * @interruptible: do an interruptible wait (normally yes)
1158 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1159 *
1160 * Returns 0 if the seqno was found within the alloted time. Else returns the
1161 * errno with remaining time filled in timeout argument.
1162 */
1163 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1164 bool interruptible, struct timespec *timeout)
1165 {
1166 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1167 struct timespec before, now, wait_time={1,0};
1168 unsigned long timeout_jiffies;
1169 long end;
1170 bool wait_forever = true;
1171 int ret;
1172
1173 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1174 return 0;
1175
1176 trace_i915_gem_request_wait_begin(ring, seqno);
1177
1178 if (timeout != NULL) {
1179 wait_time = *timeout;
1180 wait_forever = false;
1181 }
1182
1183 timeout_jiffies = timespec_to_jiffies(&wait_time);
1184
1185 if (WARN_ON(!ring->irq_get(ring)))
1186 return -ENODEV;
1187
1188 /* Record current time in case interrupted by signal, or wedged * */
1189 getrawmonotonic(&before);
1190
1191 #define EXIT_COND \
1192 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1193 atomic_read(&dev_priv->mm.wedged))
1194 do {
1195 #ifdef __NetBSD__
1196 unsigned long flags;
1197 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1198 /*
1199 * XXX This wait is always interruptible; we should
1200 * heed the flag `interruptible'.
1201 */
1202 DRM_SPIN_TIMED_WAIT_UNTIL(end, &ring->irq_queue,
1203 &dev_priv->irq_lock,
1204 timeout_jiffies,
1205 EXIT_COND);
1206 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1207 #else
1208 if (interruptible)
1209 end = wait_event_interruptible_timeout(ring->irq_queue,
1210 EXIT_COND,
1211 timeout_jiffies);
1212 else
1213 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1214 timeout_jiffies);
1215
1216 #endif
1217 ret = i915_gem_check_wedge(dev_priv, interruptible);
1218 if (ret)
1219 end = ret;
1220 } while (end == 0 && wait_forever);
1221
1222 getrawmonotonic(&now);
1223
1224 ring->irq_put(ring);
1225 trace_i915_gem_request_wait_end(ring, seqno);
1226 #undef EXIT_COND
1227
1228 if (timeout) {
1229 struct timespec sleep_time = timespec_sub(now, before);
1230 *timeout = timespec_sub(*timeout, sleep_time);
1231 }
1232
1233 switch (end) {
1234 case -EIO:
1235 case -EAGAIN: /* Wedged */
1236 case -ERESTARTSYS: /* Signal */
1237 case -EINTR:
1238 return (int)end;
1239 case 0: /* Timeout */
1240 if (timeout)
1241 set_normalized_timespec(timeout, 0, 0);
1242 return -ETIME;
1243 default: /* Completed */
1244 WARN_ON(end < 0); /* We're not aware of other errors */
1245 return 0;
1246 }
1247 }
1248
1249 /**
1250 * Waits for a sequence number to be signaled, and cleans up the
1251 * request and object lists appropriately for that event.
1252 */
1253 int
1254 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1255 {
1256 struct drm_device *dev = ring->dev;
1257 struct drm_i915_private *dev_priv = dev->dev_private;
1258 bool interruptible = dev_priv->mm.interruptible;
1259 int ret;
1260
1261 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1262 BUG_ON(seqno == 0);
1263
1264 ret = i915_gem_check_wedge(dev_priv, interruptible);
1265 if (ret)
1266 return ret;
1267
1268 ret = i915_gem_check_olr(ring, seqno);
1269 if (ret)
1270 return ret;
1271
1272 return __wait_seqno(ring, seqno, interruptible, NULL);
1273 }
1274
1275 /**
1276 * Ensures that all rendering to the object has completed and the object is
1277 * safe to unbind from the GTT or access from the CPU.
1278 */
1279 static __must_check int
1280 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1281 bool readonly)
1282 {
1283 struct intel_ring_buffer *ring = obj->ring;
1284 u32 seqno;
1285 int ret;
1286
1287 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1288 if (seqno == 0)
1289 return 0;
1290
1291 ret = i915_wait_seqno(ring, seqno);
1292 if (ret)
1293 return ret;
1294
1295 i915_gem_retire_requests_ring(ring);
1296
1297 /* Manually manage the write flush as we may have not yet
1298 * retired the buffer.
1299 */
1300 if (obj->last_write_seqno &&
1301 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1302 obj->last_write_seqno = 0;
1303 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1304 }
1305
1306 return 0;
1307 }
1308
1309 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1310 * as the object state may change during this call.
1311 */
1312 static __must_check int
1313 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1314 bool readonly)
1315 {
1316 struct drm_device *dev = obj->base.dev;
1317 struct drm_i915_private *dev_priv = dev->dev_private;
1318 struct intel_ring_buffer *ring = obj->ring;
1319 u32 seqno;
1320 int ret;
1321
1322 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1323 BUG_ON(!dev_priv->mm.interruptible);
1324
1325 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1326 if (seqno == 0)
1327 return 0;
1328
1329 ret = i915_gem_check_wedge(dev_priv, true);
1330 if (ret)
1331 return ret;
1332
1333 ret = i915_gem_check_olr(ring, seqno);
1334 if (ret)
1335 return ret;
1336
1337 mutex_unlock(&dev->struct_mutex);
1338 ret = __wait_seqno(ring, seqno, true, NULL);
1339 mutex_lock(&dev->struct_mutex);
1340
1341 i915_gem_retire_requests_ring(ring);
1342
1343 /* Manually manage the write flush as we may have not yet
1344 * retired the buffer.
1345 */
1346 if (obj->last_write_seqno &&
1347 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1348 obj->last_write_seqno = 0;
1349 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1350 }
1351
1352 return ret;
1353 }
1354
1355 /**
1356 * Called when user space prepares to use an object with the CPU, either
1357 * through the mmap ioctl's mapping or a GTT mapping.
1358 */
1359 int
1360 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1361 struct drm_file *file)
1362 {
1363 struct drm_i915_gem_set_domain *args = data;
1364 struct drm_i915_gem_object *obj;
1365 uint32_t read_domains = args->read_domains;
1366 uint32_t write_domain = args->write_domain;
1367 int ret;
1368
1369 /* Only handle setting domains to types used by the CPU. */
1370 if (write_domain & I915_GEM_GPU_DOMAINS)
1371 return -EINVAL;
1372
1373 if (read_domains & I915_GEM_GPU_DOMAINS)
1374 return -EINVAL;
1375
1376 /* Having something in the write domain implies it's in the read
1377 * domain, and only that read domain. Enforce that in the request.
1378 */
1379 if (write_domain != 0 && read_domains != write_domain)
1380 return -EINVAL;
1381
1382 ret = i915_mutex_lock_interruptible(dev);
1383 if (ret)
1384 return ret;
1385
1386 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1387 if (&obj->base == NULL) {
1388 ret = -ENOENT;
1389 goto unlock;
1390 }
1391
1392 /* Try to flush the object off the GPU without holding the lock.
1393 * We will repeat the flush holding the lock in the normal manner
1394 * to catch cases where we are gazumped.
1395 */
1396 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1397 if (ret)
1398 goto unref;
1399
1400 if (read_domains & I915_GEM_DOMAIN_GTT) {
1401 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1402
1403 /* Silently promote "you're not bound, there was nothing to do"
1404 * to success, since the client was just asking us to
1405 * make sure everything was done.
1406 */
1407 if (ret == -EINVAL)
1408 ret = 0;
1409 } else {
1410 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1411 }
1412
1413 unref:
1414 drm_gem_object_unreference(&obj->base);
1415 unlock:
1416 mutex_unlock(&dev->struct_mutex);
1417 return ret;
1418 }
1419
1420 /**
1421 * Called when user space has done writes to this buffer
1422 */
1423 int
1424 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1425 struct drm_file *file)
1426 {
1427 struct drm_i915_gem_sw_finish *args = data;
1428 struct drm_i915_gem_object *obj;
1429 int ret = 0;
1430
1431 ret = i915_mutex_lock_interruptible(dev);
1432 if (ret)
1433 return ret;
1434
1435 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1436 if (&obj->base == NULL) {
1437 ret = -ENOENT;
1438 goto unlock;
1439 }
1440
1441 /* Pinned buffers may be scanout, so flush the cache */
1442 if (obj->pin_count)
1443 i915_gem_object_flush_cpu_write_domain(obj);
1444
1445 drm_gem_object_unreference(&obj->base);
1446 unlock:
1447 mutex_unlock(&dev->struct_mutex);
1448 return ret;
1449 }
1450
1451 /**
1452 * Maps the contents of an object, returning the address it is mapped
1453 * into.
1454 *
1455 * While the mapping holds a reference on the contents of the object, it doesn't
1456 * imply a ref on the object itself.
1457 */
1458 int
1459 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1460 struct drm_file *file)
1461 {
1462 struct drm_i915_gem_mmap *args = data;
1463 struct drm_gem_object *obj;
1464 unsigned long addr;
1465 #ifdef __NetBSD__
1466 int ret;
1467 #endif
1468
1469 obj = drm_gem_object_lookup(dev, file, args->handle);
1470 if (obj == NULL)
1471 return -ENOENT;
1472
1473 #ifndef __NetBSD__ /* XXX drm prime */
1474 /* prime objects have no backing filp to GEM mmap
1475 * pages from.
1476 */
1477 if (!obj->filp) {
1478 drm_gem_object_unreference_unlocked(obj);
1479 return -EINVAL;
1480 }
1481 #endif
1482
1483 #ifdef __NetBSD__
1484 addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
1485 (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
1486 /* XXX errno NetBSD->Linux */
1487 ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
1488 obj->gemo_shm_uao, args->offset, 0,
1489 UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
1490 (VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
1491 UVM_FLAG_COPYONW));
1492 if (ret)
1493 return ret;
1494 #else
1495 addr = vm_mmap(obj->filp, 0, args->size,
1496 PROT_READ | PROT_WRITE, MAP_SHARED,
1497 args->offset);
1498 drm_gem_object_unreference_unlocked(obj);
1499 if (IS_ERR((void *)addr))
1500 return addr;
1501 #endif
1502
1503 args->addr_ptr = (uint64_t) addr;
1504
1505 return 0;
1506 }
1507
1508 #ifdef __NetBSD__ /* XXX gem gtt fault */
1509 static int i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
1510 struct vm_page **, int, int, vm_prot_t, int, paddr_t);
1511
1512 int
1513 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1514 int npages, int centeridx, vm_prot_t access_type, int flags)
1515 {
1516 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1517 struct drm_gem_object *gem_obj =
1518 container_of(uobj, struct drm_gem_object, gemo_uvmobj);
1519 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
1520 struct drm_device *dev = obj->base.dev;
1521 struct drm_i915_private *dev_priv = dev->dev_private;
1522 pgoff_t page_offset;
1523 int ret = 0;
1524 bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
1525
1526 page_offset = (ufi->entry->offset + (vaddr - ufi->entry->start)) >>
1527 PAGE_SHIFT;
1528
1529 ret = i915_mutex_lock_interruptible(dev);
1530 if (ret)
1531 goto out;
1532
1533 trace_i915_gem_object_fault(obj, page_offset, true, write);
1534
1535 /* Now bind it into the GTT if needed */
1536 ret = i915_gem_object_pin(obj, 0, true, false);
1537 if (ret)
1538 goto unlock;
1539
1540 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1541 if (ret)
1542 goto unpin;
1543
1544 ret = i915_gem_object_get_fence(obj);
1545 if (ret)
1546 goto unpin;
1547
1548 obj->fault_mappable = true;
1549
1550 /* Finally, remap it using the new GTT offset */
1551 /* XXX errno NetBSD->Linux */
1552 ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
1553 flags, (dev_priv->mm.gtt_base_addr + obj->gtt_offset));
1554 unpin:
1555 i915_gem_object_unpin(obj);
1556 unlock:
1557 mutex_unlock(&dev->struct_mutex);
1558 out:
1559 return ret;
1560 }
1561
1562 /*
1563 * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
1564 *
1565 * XXX pmap_enter_default instead of pmap_enter because of a problem
1566 * with using weak aliases in kernel modules or something.
1567 */
1568 int pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
1569
1570 static int
1571 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1572 int npages, int centeridx, vm_prot_t access_type, int flags,
1573 paddr_t gtt_paddr)
1574 {
1575 struct vm_map_entry *entry = ufi->entry;
1576 struct uvm_object *uobj = entry->object.uvm_obj;
1577 vaddr_t curr_va;
1578 off_t curr_offset;
1579 paddr_t paddr;
1580 u_int mmapflags;
1581 int lcv, retval;
1582 vm_prot_t mapprot;
1583 UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
1584 UVMHIST_LOG(maphist," flags=%d", flags,0,0,0);
1585
1586 /*
1587 * we do not allow device mappings to be mapped copy-on-write
1588 * so we kill any attempt to do so here.
1589 */
1590
1591 if (UVM_ET_ISCOPYONWRITE(entry)) {
1592 UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
1593 entry->etype, 0,0,0);
1594 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
1595 return(EIO);
1596 }
1597
1598 /*
1599 * now we must determine the offset in udv to use and the VA to
1600 * use for pmap_enter. note that we always use orig_map's pmap
1601 * for pmap_enter (even if we have a submap). since virtual
1602 * addresses in a submap must match the main map, this is ok.
1603 */
1604
1605 /* udv offset = (offset from start of entry) + entry's offset */
1606 curr_offset = entry->offset + (vaddr - entry->start);
1607 /* pmap va = vaddr (virtual address of pps[0]) */
1608 curr_va = vaddr;
1609
1610 /*
1611 * loop over the page range entering in as needed
1612 */
1613
1614 retval = 0;
1615 for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
1616 curr_va += PAGE_SIZE) {
1617 if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
1618 continue;
1619
1620 if (pps[lcv] == PGO_DONTCARE)
1621 continue;
1622
1623 paddr = (gtt_paddr + curr_offset);
1624 mmapflags = 0;
1625 mapprot = ufi->entry->protection;
1626 UVMHIST_LOG(maphist,
1627 " MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
1628 ufi->orig_map->pmap, curr_va, paddr, mapprot);
1629 if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
1630 PMAP_CANFAIL | mapprot | mmapflags) != 0) {
1631 /*
1632 * pmap_enter() didn't have the resource to
1633 * enter this mapping. Unlock everything,
1634 * wait for the pagedaemon to free up some
1635 * pages, and then tell uvm_fault() to start
1636 * the fault again.
1637 *
1638 * XXX Needs some rethinking for the PGO_ALLPAGES
1639 * XXX case.
1640 */
1641 pmap_update(ufi->orig_map->pmap); /* sync what we have so far */
1642 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap,
1643 uobj);
1644 uvm_wait("i915flt");
1645 return (ERESTART);
1646 }
1647 }
1648
1649 pmap_update(ufi->orig_map->pmap);
1650 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
1651 return (retval);
1652 }
1653 #else
1654 /**
1655 * i915_gem_fault - fault a page into the GTT
1656 * vma: VMA in question
1657 * vmf: fault info
1658 *
1659 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1660 * from userspace. The fault handler takes care of binding the object to
1661 * the GTT (if needed), allocating and programming a fence register (again,
1662 * only if needed based on whether the old reg is still valid or the object
1663 * is tiled) and inserting a new PTE into the faulting process.
1664 *
1665 * Note that the faulting process may involve evicting existing objects
1666 * from the GTT and/or fence registers to make room. So performance may
1667 * suffer if the GTT working set is large or there are few fence registers
1668 * left.
1669 */
1670 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1671 {
1672 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1673 struct drm_device *dev = obj->base.dev;
1674 drm_i915_private_t *dev_priv = dev->dev_private;
1675 pgoff_t page_offset;
1676 unsigned long pfn;
1677 int ret = 0;
1678 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1679
1680 /* We don't use vmf->pgoff since that has the fake offset */
1681 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1682 PAGE_SHIFT;
1683
1684 ret = i915_mutex_lock_interruptible(dev);
1685 if (ret)
1686 goto out;
1687
1688 trace_i915_gem_object_fault(obj, page_offset, true, write);
1689
1690 /* Now bind it into the GTT if needed */
1691 ret = i915_gem_object_pin(obj, 0, true, false);
1692 if (ret)
1693 goto unlock;
1694
1695 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1696 if (ret)
1697 goto unpin;
1698
1699 ret = i915_gem_object_get_fence(obj);
1700 if (ret)
1701 goto unpin;
1702
1703 obj->fault_mappable = true;
1704
1705 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1706 page_offset;
1707
1708 /* Finally, remap it using the new GTT offset */
1709 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1710 unpin:
1711 i915_gem_object_unpin(obj);
1712 unlock:
1713 mutex_unlock(&dev->struct_mutex);
1714 out:
1715 switch (ret) {
1716 case -EIO:
1717 /* If this -EIO is due to a gpu hang, give the reset code a
1718 * chance to clean up the mess. Otherwise return the proper
1719 * SIGBUS. */
1720 if (!atomic_read(&dev_priv->mm.wedged))
1721 return VM_FAULT_SIGBUS;
1722 case -EAGAIN:
1723 /* Give the error handler a chance to run and move the
1724 * objects off the GPU active list. Next time we service the
1725 * fault, we should be able to transition the page into the
1726 * GTT without touching the GPU (and so avoid further
1727 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1728 * with coherency, just lost writes.
1729 */
1730 set_need_resched();
1731 case 0:
1732 case -ERESTARTSYS:
1733 case -EINTR:
1734 case -EBUSY:
1735 /*
1736 * EBUSY is ok: this just means that another thread
1737 * already did the job.
1738 */
1739 return VM_FAULT_NOPAGE;
1740 case -ENOMEM:
1741 return VM_FAULT_OOM;
1742 case -ENOSPC:
1743 return VM_FAULT_SIGBUS;
1744 default:
1745 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1746 return VM_FAULT_SIGBUS;
1747 }
1748 }
1749 #endif
1750
1751 /**
1752 * i915_gem_release_mmap - remove physical page mappings
1753 * @obj: obj in question
1754 *
1755 * Preserve the reservation of the mmapping with the DRM core code, but
1756 * relinquish ownership of the pages back to the system.
1757 *
1758 * It is vital that we remove the page mapping if we have mapped a tiled
1759 * object through the GTT and then lose the fence register due to
1760 * resource pressure. Similarly if the object has been moved out of the
1761 * aperture, than pages mapped into userspace must be revoked. Removing the
1762 * mapping will then trigger a page fault on the next user access, allowing
1763 * fixup by i915_gem_fault().
1764 */
1765 void
1766 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1767 {
1768 if (!obj->fault_mappable)
1769 return;
1770
1771 #ifdef __NetBSD__ /* XXX gem gtt fault */
1772 {
1773 struct vm_page *page;
1774
1775 KASSERT(obj->pages != NULL);
1776 /* Force a fresh fault for each page. */
1777 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
1778 pmap_page_protect(page, VM_PROT_NONE);
1779 }
1780 #else
1781 if (obj->base.dev->dev_mapping)
1782 unmap_mapping_range(obj->base.dev->dev_mapping,
1783 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1784 obj->base.size, 1);
1785 #endif
1786
1787 obj->fault_mappable = false;
1788 }
1789
1790 static uint32_t
1791 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1792 {
1793 uint32_t gtt_size;
1794
1795 if (INTEL_INFO(dev)->gen >= 4 ||
1796 tiling_mode == I915_TILING_NONE)
1797 return size;
1798
1799 /* Previous chips need a power-of-two fence region when tiling */
1800 if (INTEL_INFO(dev)->gen == 3)
1801 gtt_size = 1024*1024;
1802 else
1803 gtt_size = 512*1024;
1804
1805 while (gtt_size < size)
1806 gtt_size <<= 1;
1807
1808 return gtt_size;
1809 }
1810
1811 /**
1812 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1813 * @obj: object to check
1814 *
1815 * Return the required GTT alignment for an object, taking into account
1816 * potential fence register mapping.
1817 */
1818 static uint32_t
1819 i915_gem_get_gtt_alignment(struct drm_device *dev,
1820 uint32_t size,
1821 int tiling_mode)
1822 {
1823 /*
1824 * Minimum alignment is 4k (GTT page size), but might be greater
1825 * if a fence register is needed for the object.
1826 */
1827 if (INTEL_INFO(dev)->gen >= 4 ||
1828 tiling_mode == I915_TILING_NONE)
1829 return 4096;
1830
1831 /*
1832 * Previous chips need to be aligned to the size of the smallest
1833 * fence register that can contain the object.
1834 */
1835 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1836 }
1837
1838 /**
1839 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1840 * unfenced object
1841 * @dev: the device
1842 * @size: size of the object
1843 * @tiling_mode: tiling mode of the object
1844 *
1845 * Return the required GTT alignment for an object, only taking into account
1846 * unfenced tiled surface requirements.
1847 */
1848 uint32_t
1849 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1850 uint32_t size,
1851 int tiling_mode)
1852 {
1853 /*
1854 * Minimum alignment is 4k (GTT page size) for sane hw.
1855 */
1856 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1857 tiling_mode == I915_TILING_NONE)
1858 return 4096;
1859
1860 /* Previous hardware however needs to be aligned to a power-of-two
1861 * tile height. The simplest method for determining this is to reuse
1862 * the power-of-tile object size.
1863 */
1864 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1865 }
1866
1867 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1868 {
1869 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1870 int ret;
1871
1872 if (obj->base.map_list.map)
1873 return 0;
1874
1875 dev_priv->mm.shrinker_no_lock_stealing = true;
1876
1877 ret = drm_gem_create_mmap_offset(&obj->base);
1878 if (ret != -ENOSPC)
1879 goto out;
1880
1881 /* Badly fragmented mmap space? The only way we can recover
1882 * space is by destroying unwanted objects. We can't randomly release
1883 * mmap_offsets as userspace expects them to be persistent for the
1884 * lifetime of the objects. The closest we can is to release the
1885 * offsets on purgeable objects by truncating it and marking it purged,
1886 * which prevents userspace from ever using that object again.
1887 */
1888 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1889 ret = drm_gem_create_mmap_offset(&obj->base);
1890 if (ret != -ENOSPC)
1891 goto out;
1892
1893 i915_gem_shrink_all(dev_priv);
1894 ret = drm_gem_create_mmap_offset(&obj->base);
1895 out:
1896 dev_priv->mm.shrinker_no_lock_stealing = false;
1897
1898 return ret;
1899 }
1900
1901 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1902 {
1903 if (!obj->base.map_list.map)
1904 return;
1905
1906 drm_gem_free_mmap_offset(&obj->base);
1907 }
1908
1909 int
1910 i915_gem_mmap_gtt(struct drm_file *file,
1911 struct drm_device *dev,
1912 uint32_t handle,
1913 uint64_t *offset)
1914 {
1915 struct drm_i915_private *dev_priv = dev->dev_private;
1916 struct drm_i915_gem_object *obj;
1917 int ret;
1918
1919 ret = i915_mutex_lock_interruptible(dev);
1920 if (ret)
1921 return ret;
1922
1923 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1924 if (&obj->base == NULL) {
1925 ret = -ENOENT;
1926 goto unlock;
1927 }
1928
1929 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1930 ret = -E2BIG;
1931 goto out;
1932 }
1933
1934 if (obj->madv != I915_MADV_WILLNEED) {
1935 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1936 ret = -EINVAL;
1937 goto out;
1938 }
1939
1940 ret = i915_gem_object_create_mmap_offset(obj);
1941 if (ret)
1942 goto out;
1943
1944 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1945
1946 out:
1947 drm_gem_object_unreference(&obj->base);
1948 unlock:
1949 mutex_unlock(&dev->struct_mutex);
1950 return ret;
1951 }
1952
1953 /**
1954 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1955 * @dev: DRM device
1956 * @data: GTT mapping ioctl data
1957 * @file: GEM object info
1958 *
1959 * Simply returns the fake offset to userspace so it can mmap it.
1960 * The mmap call will end up in drm_gem_mmap(), which will set things
1961 * up so we can get faults in the handler above.
1962 *
1963 * The fault handler will take care of binding the object into the GTT
1964 * (since it may have been evicted to make room for something), allocating
1965 * a fence register, and mapping the appropriate aperture address into
1966 * userspace.
1967 */
1968 int
1969 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1970 struct drm_file *file)
1971 {
1972 struct drm_i915_gem_mmap_gtt *args = data;
1973
1974 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1975 }
1976
1977 /* Immediately discard the backing storage */
1978 static void
1979 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1980 {
1981 #ifndef __NetBSD__
1982 struct inode *inode;
1983 #endif
1984
1985 i915_gem_object_free_mmap_offset(obj);
1986
1987 #ifdef __NetBSD__
1988 {
1989 struct uvm_object *const uobj = obj->base.gemo_shm_uao;
1990
1991 if (uobj != NULL) {
1992 /* XXX Calling pgo_put like this is bogus. */
1993 mutex_enter(uobj->vmobjlock);
1994 (*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
1995 (PGO_ALLPAGES | PGO_FREE));
1996 }
1997 }
1998 #else
1999 if (obj->base.filp == NULL)
2000 return;
2001
2002 /* Our goal here is to return as much of the memory as
2003 * is possible back to the system as we are called from OOM.
2004 * To do this we must instruct the shmfs to drop all of its
2005 * backing pages, *now*.
2006 */
2007 inode = obj->base.filp->f_path.dentry->d_inode;
2008 shmem_truncate_range(inode, 0, (loff_t)-1);
2009 #endif
2010
2011 obj->madv = __I915_MADV_PURGED;
2012 }
2013
2014 static inline int
2015 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
2016 {
2017 return obj->madv == I915_MADV_DONTNEED;
2018 }
2019
2020 #ifdef __NetBSD__
2021 static void
2022 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2023 {
2024 struct drm_device *const dev = obj->base.dev;
2025 int ret;
2026
2027 /* XXX Cargo-culted from the Linux code. */
2028 BUG_ON(obj->madv == __I915_MADV_PURGED);
2029
2030 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2031 if (ret) {
2032 WARN_ON(ret != -EIO);
2033 i915_gem_clflush_object(obj);
2034 obj->base.read_domains = obj->base.write_domain =
2035 I915_GEM_DOMAIN_CPU;
2036 }
2037
2038 if (i915_gem_object_needs_bit17_swizzle(obj))
2039 i915_gem_object_save_bit_17_swizzle(obj);
2040
2041 /* XXX Maintain dirty flag? */
2042
2043 bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
2044 bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2045 obj->base.size, obj->pages, obj->igo_nsegs);
2046
2047 kfree(obj->pages);
2048 }
2049 #else
2050 static void
2051 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2052 {
2053 int page_count = obj->base.size / PAGE_SIZE;
2054 struct scatterlist *sg;
2055 int ret, i;
2056
2057 BUG_ON(obj->madv == __I915_MADV_PURGED);
2058
2059 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2060 if (ret) {
2061 /* In the event of a disaster, abandon all caches and
2062 * hope for the best.
2063 */
2064 WARN_ON(ret != -EIO);
2065 i915_gem_clflush_object(obj);
2066 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2067 }
2068
2069 if (i915_gem_object_needs_bit17_swizzle(obj))
2070 i915_gem_object_save_bit_17_swizzle(obj);
2071
2072 if (obj->madv == I915_MADV_DONTNEED)
2073 obj->dirty = 0;
2074
2075 for_each_sg(obj->pages->sgl, sg, page_count, i) {
2076 struct page *page = sg_page(sg);
2077
2078 if (obj->dirty)
2079 set_page_dirty(page);
2080
2081 if (obj->madv == I915_MADV_WILLNEED)
2082 mark_page_accessed(page);
2083
2084 page_cache_release(page);
2085 }
2086 obj->dirty = 0;
2087
2088 sg_free_table(obj->pages);
2089 kfree(obj->pages);
2090 }
2091 #endif
2092
2093 static int
2094 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2095 {
2096 const struct drm_i915_gem_object_ops *ops = obj->ops;
2097
2098 if (obj->pages == NULL)
2099 return 0;
2100
2101 BUG_ON(obj->gtt_space);
2102
2103 if (obj->pages_pin_count)
2104 return -EBUSY;
2105
2106 /* ->put_pages might need to allocate memory for the bit17 swizzle
2107 * array, hence protect them from being reaped by removing them from gtt
2108 * lists early. */
2109 list_del(&obj->gtt_list);
2110
2111 ops->put_pages(obj);
2112 obj->pages = NULL;
2113
2114 if (i915_gem_object_is_purgeable(obj))
2115 i915_gem_object_truncate(obj);
2116
2117 return 0;
2118 }
2119
2120 static long
2121 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
2122 bool purgeable_only)
2123 {
2124 struct drm_i915_gem_object *obj, *next;
2125 long count = 0;
2126
2127 list_for_each_entry_safe(obj, next,
2128 &dev_priv->mm.unbound_list,
2129 gtt_list) {
2130 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2131 i915_gem_object_put_pages(obj) == 0) {
2132 count += obj->base.size >> PAGE_SHIFT;
2133 if (count >= target)
2134 return count;
2135 }
2136 }
2137
2138 list_for_each_entry_safe(obj, next,
2139 &dev_priv->mm.inactive_list,
2140 mm_list) {
2141 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2142 i915_gem_object_unbind(obj) == 0 &&
2143 i915_gem_object_put_pages(obj) == 0) {
2144 count += obj->base.size >> PAGE_SHIFT;
2145 if (count >= target)
2146 return count;
2147 }
2148 }
2149
2150 return count;
2151 }
2152
2153 static long
2154 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2155 {
2156 return __i915_gem_shrink(dev_priv, target, true);
2157 }
2158
2159 static void
2160 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2161 {
2162 struct drm_i915_gem_object *obj, *next;
2163
2164 i915_gem_evict_everything(dev_priv->dev);
2165
2166 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
2167 i915_gem_object_put_pages(obj);
2168 }
2169
2170 #ifdef __NetBSD__
2171 static int
2172 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2173 {
2174 struct drm_device *const dev = obj->base.dev;
2175 struct vm_page *page;
2176 int error;
2177
2178 /* XXX Cargo-culted from the Linux code. */
2179 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2180 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2181
2182 KASSERT(obj->pages == NULL);
2183 TAILQ_INIT(&obj->igo_pageq);
2184 obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
2185 sizeof(obj->pages[0]), GFP_KERNEL);
2186 if (obj->pages == NULL) {
2187 error = -ENOMEM;
2188 goto fail0;
2189 }
2190
2191 /* XXX errno NetBSD->Linux */
2192 error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
2193 0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
2194 (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
2195 if (error)
2196 /* XXX Try i915_gem_purge, i915_gem_shrink_all. */
2197 goto fail1;
2198 KASSERT(0 < obj->igo_nsegs);
2199 KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
2200
2201 /*
2202 * Check that the paddrs will fit in 40 bits.
2203 *
2204 * XXX This is wrong; we ought to pass this constraint to
2205 * bus_dmamem_wire_uvm_object instead.
2206 */
2207 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
2208 if (VM_PAGE_TO_PHYS(page) & ~0xffffffffffULL) {
2209 DRM_ERROR("GEM physical address exceeds 40 bits"
2210 ": %"PRIxMAX"\n",
2211 (uintmax_t)VM_PAGE_TO_PHYS(page));
2212 goto fail2;
2213 }
2214 }
2215
2216 /* XXX errno NetBSD->Linux */
2217 error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
2218 PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
2219 if (error)
2220 goto fail2;
2221
2222 /* XXX Cargo-culted from the Linux code. */
2223 if (i915_gem_object_needs_bit17_swizzle(obj))
2224 i915_gem_object_do_bit_17_swizzle(obj);
2225
2226 /* Success! */
2227 return 0;
2228
2229 fail2: bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2230 obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
2231 fail1: kfree(obj->pages);
2232 obj->pages = NULL;
2233 fail0: return error;
2234 }
2235 #else
2236 static int
2237 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2238 {
2239 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2240 int page_count, i;
2241 struct address_space *mapping;
2242 struct sg_table *st;
2243 struct scatterlist *sg;
2244 struct page *page;
2245 gfp_t gfp;
2246
2247 /* Assert that the object is not currently in any GPU domain. As it
2248 * wasn't in the GTT, there shouldn't be any way it could have been in
2249 * a GPU cache
2250 */
2251 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2252 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2253
2254 st = kmalloc(sizeof(*st), GFP_KERNEL);
2255 if (st == NULL)
2256 return -ENOMEM;
2257
2258 page_count = obj->base.size / PAGE_SIZE;
2259 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2260 sg_free_table(st);
2261 kfree(st);
2262 return -ENOMEM;
2263 }
2264
2265 /* Get the list of pages out of our struct file. They'll be pinned
2266 * at this point until we release them.
2267 *
2268 * Fail silently without starting the shrinker
2269 */
2270 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
2271 gfp = mapping_gfp_mask(mapping);
2272 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2273 gfp &= ~(__GFP_IO | __GFP_WAIT);
2274 for_each_sg(st->sgl, sg, page_count, i) {
2275 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2276 if (IS_ERR(page)) {
2277 i915_gem_purge(dev_priv, page_count);
2278 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2279 }
2280 if (IS_ERR(page)) {
2281 /* We've tried hard to allocate the memory by reaping
2282 * our own buffer, now let the real VM do its job and
2283 * go down in flames if truly OOM.
2284 */
2285 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2286 gfp |= __GFP_IO | __GFP_WAIT;
2287
2288 i915_gem_shrink_all(dev_priv);
2289 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2290 if (IS_ERR(page))
2291 goto err_pages;
2292
2293 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2294 gfp &= ~(__GFP_IO | __GFP_WAIT);
2295 }
2296
2297 sg_set_page(sg, page, PAGE_SIZE, 0);
2298 }
2299
2300 obj->pages = st;
2301
2302 if (i915_gem_object_needs_bit17_swizzle(obj))
2303 i915_gem_object_do_bit_17_swizzle(obj);
2304
2305 return 0;
2306
2307 err_pages:
2308 for_each_sg(st->sgl, sg, i, page_count)
2309 page_cache_release(sg_page(sg));
2310 sg_free_table(st);
2311 kfree(st);
2312 return PTR_ERR(page);
2313 }
2314 #endif
2315
2316 /* Ensure that the associated pages are gathered from the backing storage
2317 * and pinned into our object. i915_gem_object_get_pages() may be called
2318 * multiple times before they are released by a single call to
2319 * i915_gem_object_put_pages() - once the pages are no longer referenced
2320 * either as a result of memory pressure (reaping pages under the shrinker)
2321 * or as the object is itself released.
2322 */
2323 int
2324 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2325 {
2326 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2327 const struct drm_i915_gem_object_ops *ops = obj->ops;
2328 int ret;
2329
2330 if (obj->pages)
2331 return 0;
2332
2333 BUG_ON(obj->pages_pin_count);
2334
2335 ret = ops->get_pages(obj);
2336 if (ret)
2337 return ret;
2338
2339 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2340 return 0;
2341 }
2342
2343 void
2344 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2345 struct intel_ring_buffer *ring)
2346 {
2347 struct drm_device *dev = obj->base.dev;
2348 struct drm_i915_private *dev_priv = dev->dev_private;
2349 u32 seqno = intel_ring_get_seqno(ring);
2350
2351 BUG_ON(ring == NULL);
2352 obj->ring = ring;
2353
2354 /* Add a reference if we're newly entering the active list. */
2355 if (!obj->active) {
2356 drm_gem_object_reference(&obj->base);
2357 obj->active = 1;
2358 }
2359
2360 /* Move from whatever list we were on to the tail of execution. */
2361 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
2362 list_move_tail(&obj->ring_list, &ring->active_list);
2363
2364 obj->last_read_seqno = seqno;
2365
2366 if (obj->fenced_gpu_access) {
2367 obj->last_fenced_seqno = seqno;
2368
2369 /* Bump MRU to take account of the delayed flush */
2370 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2371 struct drm_i915_fence_reg *reg;
2372
2373 reg = &dev_priv->fence_regs[obj->fence_reg];
2374 list_move_tail(®->lru_list,
2375 &dev_priv->mm.fence_list);
2376 }
2377 }
2378 }
2379
2380 static void
2381 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2382 {
2383 struct drm_device *dev = obj->base.dev;
2384 struct drm_i915_private *dev_priv = dev->dev_private;
2385
2386 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2387 BUG_ON(!obj->active);
2388
2389 if (obj->pin_count) /* are we a framebuffer? */
2390 intel_mark_fb_idle(obj);
2391
2392 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2393
2394 list_del_init(&obj->ring_list);
2395 obj->ring = NULL;
2396
2397 obj->last_read_seqno = 0;
2398 obj->last_write_seqno = 0;
2399 obj->base.write_domain = 0;
2400
2401 obj->last_fenced_seqno = 0;
2402 obj->fenced_gpu_access = false;
2403
2404 obj->active = 0;
2405 drm_gem_object_unreference(&obj->base);
2406
2407 WARN_ON(i915_verify_lists(dev));
2408 }
2409
2410 static int
2411 i915_gem_handle_seqno_wrap(struct drm_device *dev)
2412 {
2413 struct drm_i915_private *dev_priv = dev->dev_private;
2414 struct intel_ring_buffer *ring;
2415 int ret, i, j;
2416
2417 /* The hardware uses various monotonic 32-bit counters, if we
2418 * detect that they will wraparound we need to idle the GPU
2419 * and reset those counters.
2420 */
2421 ret = 0;
2422 for_each_ring(ring, dev_priv, i) {
2423 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2424 ret |= ring->sync_seqno[j] != 0;
2425 }
2426 if (ret == 0)
2427 return ret;
2428
2429 ret = i915_gpu_idle(dev);
2430 if (ret)
2431 return ret;
2432
2433 i915_gem_retire_requests(dev);
2434 for_each_ring(ring, dev_priv, i) {
2435 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2436 ring->sync_seqno[j] = 0;
2437 }
2438
2439 return 0;
2440 }
2441
2442 int
2443 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2444 {
2445 struct drm_i915_private *dev_priv = dev->dev_private;
2446
2447 /* reserve 0 for non-seqno */
2448 if (dev_priv->next_seqno == 0) {
2449 int ret = i915_gem_handle_seqno_wrap(dev);
2450 if (ret)
2451 return ret;
2452
2453 dev_priv->next_seqno = 1;
2454 }
2455
2456 *seqno = dev_priv->next_seqno++;
2457 return 0;
2458 }
2459
2460 int
2461 i915_add_request(struct intel_ring_buffer *ring,
2462 struct drm_file *file,
2463 u32 *out_seqno)
2464 {
2465 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2466 struct drm_i915_gem_request *request;
2467 u32 request_ring_position;
2468 int was_empty;
2469 int ret;
2470
2471 /*
2472 * Emit any outstanding flushes - execbuf can fail to emit the flush
2473 * after having emitted the batchbuffer command. Hence we need to fix
2474 * things up similar to emitting the lazy request. The difference here
2475 * is that the flush _must_ happen before the next request, no matter
2476 * what.
2477 */
2478 ret = intel_ring_flush_all_caches(ring);
2479 if (ret)
2480 return ret;
2481
2482 request = kmalloc(sizeof(*request), GFP_KERNEL);
2483 if (request == NULL)
2484 return -ENOMEM;
2485
2486
2487 /* Record the position of the start of the request so that
2488 * should we detect the updated seqno part-way through the
2489 * GPU processing the request, we never over-estimate the
2490 * position of the head.
2491 */
2492 request_ring_position = intel_ring_get_tail(ring);
2493
2494 ret = ring->add_request(ring);
2495 if (ret) {
2496 kfree(request);
2497 return ret;
2498 }
2499
2500 request->seqno = intel_ring_get_seqno(ring);
2501 request->ring = ring;
2502 request->tail = request_ring_position;
2503 request->emitted_jiffies = jiffies;
2504 was_empty = list_empty(&ring->request_list);
2505 list_add_tail(&request->list, &ring->request_list);
2506 request->file_priv = NULL;
2507
2508 if (file) {
2509 struct drm_i915_file_private *file_priv = file->driver_priv;
2510
2511 spin_lock(&file_priv->mm.lock);
2512 request->file_priv = file_priv;
2513 list_add_tail(&request->client_list,
2514 &file_priv->mm.request_list);
2515 spin_unlock(&file_priv->mm.lock);
2516 }
2517
2518 trace_i915_gem_request_add(ring, request->seqno);
2519 ring->outstanding_lazy_request = 0;
2520
2521 if (!dev_priv->mm.suspended) {
2522 if (i915_enable_hangcheck) {
2523 mod_timer(&dev_priv->hangcheck_timer,
2524 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2525 }
2526 if (was_empty) {
2527 queue_delayed_work(dev_priv->wq,
2528 &dev_priv->mm.retire_work,
2529 round_jiffies_up_relative(HZ));
2530 intel_mark_busy(dev_priv->dev);
2531 }
2532 }
2533
2534 if (out_seqno)
2535 *out_seqno = request->seqno;
2536 return 0;
2537 }
2538
2539 static inline void
2540 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2541 {
2542 struct drm_i915_file_private *file_priv = request->file_priv;
2543
2544 if (!file_priv)
2545 return;
2546
2547 spin_lock(&file_priv->mm.lock);
2548 if (request->file_priv) {
2549 list_del(&request->client_list);
2550 request->file_priv = NULL;
2551 }
2552 spin_unlock(&file_priv->mm.lock);
2553 }
2554
2555 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2556 struct intel_ring_buffer *ring)
2557 {
2558 while (!list_empty(&ring->request_list)) {
2559 struct drm_i915_gem_request *request;
2560
2561 request = list_first_entry(&ring->request_list,
2562 struct drm_i915_gem_request,
2563 list);
2564
2565 list_del(&request->list);
2566 i915_gem_request_remove_from_client(request);
2567 kfree(request);
2568 }
2569
2570 while (!list_empty(&ring->active_list)) {
2571 struct drm_i915_gem_object *obj;
2572
2573 obj = list_first_entry(&ring->active_list,
2574 struct drm_i915_gem_object,
2575 ring_list);
2576
2577 i915_gem_object_move_to_inactive(obj);
2578 }
2579 }
2580
2581 static void i915_gem_reset_fences(struct drm_device *dev)
2582 {
2583 struct drm_i915_private *dev_priv = dev->dev_private;
2584 int i;
2585
2586 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2587 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2588
2589 i915_gem_write_fence(dev, i, NULL);
2590
2591 if (reg->obj)
2592 i915_gem_object_fence_lost(reg->obj);
2593
2594 reg->pin_count = 0;
2595 reg->obj = NULL;
2596 INIT_LIST_HEAD(®->lru_list);
2597 }
2598
2599 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2600 }
2601
2602 void i915_gem_reset(struct drm_device *dev)
2603 {
2604 struct drm_i915_private *dev_priv = dev->dev_private;
2605 struct drm_i915_gem_object *obj;
2606 struct intel_ring_buffer *ring;
2607 int i;
2608
2609 for_each_ring(ring, dev_priv, i)
2610 i915_gem_reset_ring_lists(dev_priv, ring);
2611
2612 /* Move everything out of the GPU domains to ensure we do any
2613 * necessary invalidation upon reuse.
2614 */
2615 list_for_each_entry(obj,
2616 &dev_priv->mm.inactive_list,
2617 mm_list)
2618 {
2619 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2620 }
2621
2622 /* The fence registers are invalidated so clear them out */
2623 i915_gem_reset_fences(dev);
2624 }
2625
2626 /**
2627 * This function clears the request list as sequence numbers are passed.
2628 */
2629 void
2630 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2631 {
2632 uint32_t seqno;
2633
2634 if (list_empty(&ring->request_list))
2635 return;
2636
2637 WARN_ON(i915_verify_lists(ring->dev));
2638
2639 seqno = ring->get_seqno(ring, true);
2640
2641 while (!list_empty(&ring->request_list)) {
2642 struct drm_i915_gem_request *request;
2643
2644 request = list_first_entry(&ring->request_list,
2645 struct drm_i915_gem_request,
2646 list);
2647
2648 if (!i915_seqno_passed(seqno, request->seqno))
2649 break;
2650
2651 trace_i915_gem_request_retire(ring, request->seqno);
2652 /* We know the GPU must have read the request to have
2653 * sent us the seqno + interrupt, so use the position
2654 * of tail of the request to update the last known position
2655 * of the GPU head.
2656 */
2657 ring->last_retired_head = request->tail;
2658
2659 list_del(&request->list);
2660 i915_gem_request_remove_from_client(request);
2661 kfree(request);
2662 }
2663
2664 /* Move any buffers on the active list that are no longer referenced
2665 * by the ringbuffer to the flushing/inactive lists as appropriate.
2666 */
2667 while (!list_empty(&ring->active_list)) {
2668 struct drm_i915_gem_object *obj;
2669
2670 obj = list_first_entry(&ring->active_list,
2671 struct drm_i915_gem_object,
2672 ring_list);
2673
2674 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2675 break;
2676
2677 i915_gem_object_move_to_inactive(obj);
2678 }
2679
2680 if (unlikely(ring->trace_irq_seqno &&
2681 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2682 ring->irq_put(ring);
2683 ring->trace_irq_seqno = 0;
2684 }
2685
2686 WARN_ON(i915_verify_lists(ring->dev));
2687 }
2688
2689 void
2690 i915_gem_retire_requests(struct drm_device *dev)
2691 {
2692 drm_i915_private_t *dev_priv = dev->dev_private;
2693 struct intel_ring_buffer *ring;
2694 int i;
2695
2696 for_each_ring(ring, dev_priv, i)
2697 i915_gem_retire_requests_ring(ring);
2698 }
2699
2700 static void
2701 i915_gem_retire_work_handler(struct work_struct *work)
2702 {
2703 drm_i915_private_t *dev_priv;
2704 struct drm_device *dev;
2705 struct intel_ring_buffer *ring;
2706 bool idle;
2707 int i;
2708
2709 dev_priv = container_of(work, drm_i915_private_t,
2710 mm.retire_work.work);
2711 dev = dev_priv->dev;
2712
2713 /* Come back later if the device is busy... */
2714 if (!mutex_trylock(&dev->struct_mutex)) {
2715 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2716 round_jiffies_up_relative(HZ));
2717 return;
2718 }
2719
2720 i915_gem_retire_requests(dev);
2721
2722 /* Send a periodic flush down the ring so we don't hold onto GEM
2723 * objects indefinitely.
2724 */
2725 idle = true;
2726 for_each_ring(ring, dev_priv, i) {
2727 if (ring->gpu_caches_dirty)
2728 i915_add_request(ring, NULL, NULL);
2729
2730 idle &= list_empty(&ring->request_list);
2731 }
2732
2733 if (!dev_priv->mm.suspended && !idle)
2734 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2735 round_jiffies_up_relative(HZ));
2736 if (idle)
2737 intel_mark_idle(dev);
2738
2739 mutex_unlock(&dev->struct_mutex);
2740 }
2741
2742 /**
2743 * Ensures that an object will eventually get non-busy by flushing any required
2744 * write domains, emitting any outstanding lazy request and retiring and
2745 * completed requests.
2746 */
2747 static int
2748 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2749 {
2750 int ret;
2751
2752 if (obj->active) {
2753 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2754 if (ret)
2755 return ret;
2756
2757 i915_gem_retire_requests_ring(obj->ring);
2758 }
2759
2760 return 0;
2761 }
2762
2763 /**
2764 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2765 * @DRM_IOCTL_ARGS: standard ioctl arguments
2766 *
2767 * Returns 0 if successful, else an error is returned with the remaining time in
2768 * the timeout parameter.
2769 * -ETIME: object is still busy after timeout
2770 * -ERESTARTSYS: signal interrupted the wait
2771 * -ENONENT: object doesn't exist
2772 * Also possible, but rare:
2773 * -EAGAIN: GPU wedged
2774 * -ENOMEM: damn
2775 * -ENODEV: Internal IRQ fail
2776 * -E?: The add request failed
2777 *
2778 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2779 * non-zero timeout parameter the wait ioctl will wait for the given number of
2780 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2781 * without holding struct_mutex the object may become re-busied before this
2782 * function completes. A similar but shorter * race condition exists in the busy
2783 * ioctl
2784 */
2785 int
2786 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2787 {
2788 struct drm_i915_gem_wait *args = data;
2789 struct drm_i915_gem_object *obj;
2790 struct intel_ring_buffer *ring = NULL;
2791 struct timespec timeout_stack, *timeout = NULL;
2792 u32 seqno = 0;
2793 int ret = 0;
2794
2795 if (args->timeout_ns >= 0) {
2796 timeout_stack = ns_to_timespec(args->timeout_ns);
2797 timeout = &timeout_stack;
2798 }
2799
2800 ret = i915_mutex_lock_interruptible(dev);
2801 if (ret)
2802 return ret;
2803
2804 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2805 if (&obj->base == NULL) {
2806 mutex_unlock(&dev->struct_mutex);
2807 return -ENOENT;
2808 }
2809
2810 /* Need to make sure the object gets inactive eventually. */
2811 ret = i915_gem_object_flush_active(obj);
2812 if (ret)
2813 goto out;
2814
2815 if (obj->active) {
2816 seqno = obj->last_read_seqno;
2817 ring = obj->ring;
2818 }
2819
2820 if (seqno == 0)
2821 goto out;
2822
2823 /* Do this after OLR check to make sure we make forward progress polling
2824 * on this IOCTL with a 0 timeout (like busy ioctl)
2825 */
2826 if (!args->timeout_ns) {
2827 ret = -ETIME;
2828 goto out;
2829 }
2830
2831 drm_gem_object_unreference(&obj->base);
2832 mutex_unlock(&dev->struct_mutex);
2833
2834 ret = __wait_seqno(ring, seqno, true, timeout);
2835 if (timeout) {
2836 WARN_ON(!timespec_valid(timeout));
2837 args->timeout_ns = timespec_to_ns(timeout);
2838 }
2839 return ret;
2840
2841 out:
2842 drm_gem_object_unreference(&obj->base);
2843 mutex_unlock(&dev->struct_mutex);
2844 return ret;
2845 }
2846
2847 /**
2848 * i915_gem_object_sync - sync an object to a ring.
2849 *
2850 * @obj: object which may be in use on another ring.
2851 * @to: ring we wish to use the object on. May be NULL.
2852 *
2853 * This code is meant to abstract object synchronization with the GPU.
2854 * Calling with NULL implies synchronizing the object with the CPU
2855 * rather than a particular GPU ring.
2856 *
2857 * Returns 0 if successful, else propagates up the lower layer error.
2858 */
2859 int
2860 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2861 struct intel_ring_buffer *to)
2862 {
2863 struct intel_ring_buffer *from = obj->ring;
2864 u32 seqno;
2865 int ret, idx;
2866
2867 if (from == NULL || to == from)
2868 return 0;
2869
2870 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2871 return i915_gem_object_wait_rendering(obj, false);
2872
2873 idx = intel_ring_sync_index(from, to);
2874
2875 seqno = obj->last_read_seqno;
2876 if (seqno <= from->sync_seqno[idx])
2877 return 0;
2878
2879 ret = i915_gem_check_olr(obj->ring, seqno);
2880 if (ret)
2881 return ret;
2882
2883 ret = to->sync_to(to, from, seqno);
2884 if (!ret)
2885 /* We use last_read_seqno because sync_to()
2886 * might have just caused seqno wrap under
2887 * the radar.
2888 */
2889 from->sync_seqno[idx] = obj->last_read_seqno;
2890
2891 return ret;
2892 }
2893
2894 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2895 {
2896 u32 old_write_domain, old_read_domains;
2897
2898 /* Act a barrier for all accesses through the GTT */
2899 mb();
2900
2901 /* Force a pagefault for domain tracking on next user access */
2902 i915_gem_release_mmap(obj);
2903
2904 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2905 return;
2906
2907 old_read_domains = obj->base.read_domains;
2908 old_write_domain = obj->base.write_domain;
2909
2910 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2911 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2912
2913 trace_i915_gem_object_change_domain(obj,
2914 old_read_domains,
2915 old_write_domain);
2916 }
2917
2918 /**
2919 * Unbinds an object from the GTT aperture.
2920 */
2921 int
2922 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2923 {
2924 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2925 int ret = 0;
2926
2927 if (obj->gtt_space == NULL)
2928 return 0;
2929
2930 if (obj->pin_count)
2931 return -EBUSY;
2932
2933 BUG_ON(obj->pages == NULL);
2934
2935 ret = i915_gem_object_finish_gpu(obj);
2936 if (ret)
2937 return ret;
2938 /* Continue on if we fail due to EIO, the GPU is hung so we
2939 * should be safe and we need to cleanup or else we might
2940 * cause memory corruption through use-after-free.
2941 */
2942
2943 i915_gem_object_finish_gtt(obj);
2944
2945 /* release the fence reg _after_ flushing */
2946 ret = i915_gem_object_put_fence(obj);
2947 if (ret)
2948 return ret;
2949
2950 trace_i915_gem_object_unbind(obj);
2951
2952 if (obj->has_global_gtt_mapping)
2953 i915_gem_gtt_unbind_object(obj);
2954 if (obj->has_aliasing_ppgtt_mapping) {
2955 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2956 obj->has_aliasing_ppgtt_mapping = 0;
2957 }
2958 i915_gem_gtt_finish_object(obj);
2959
2960 list_del(&obj->mm_list);
2961 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2962 /* Avoid an unnecessary call to unbind on rebind. */
2963 obj->map_and_fenceable = true;
2964
2965 drm_mm_put_block(obj->gtt_space);
2966 obj->gtt_space = NULL;
2967 obj->gtt_offset = 0;
2968
2969 return 0;
2970 }
2971
2972 int i915_gpu_idle(struct drm_device *dev)
2973 {
2974 drm_i915_private_t *dev_priv = dev->dev_private;
2975 struct intel_ring_buffer *ring;
2976 int ret, i;
2977
2978 /* Flush everything onto the inactive list. */
2979 for_each_ring(ring, dev_priv, i) {
2980 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2981 if (ret)
2982 return ret;
2983
2984 ret = intel_ring_idle(ring);
2985 if (ret)
2986 return ret;
2987 }
2988
2989 return 0;
2990 }
2991
2992 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2993 struct drm_i915_gem_object *obj)
2994 {
2995 drm_i915_private_t *dev_priv = dev->dev_private;
2996 uint64_t val;
2997
2998 if (obj) {
2999 u32 size = obj->gtt_space->size;
3000
3001 val = (uint64_t)((obj->gtt_offset + size - 4096) &
3002 0xfffff000) << 32;
3003 val |= obj->gtt_offset & 0xfffff000;
3004 val |= (uint64_t)((obj->stride / 128) - 1) <<
3005 SANDYBRIDGE_FENCE_PITCH_SHIFT;
3006
3007 if (obj->tiling_mode == I915_TILING_Y)
3008 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3009 val |= I965_FENCE_REG_VALID;
3010 } else
3011 val = 0;
3012
3013 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
3014 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
3015 }
3016
3017 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3018 struct drm_i915_gem_object *obj)
3019 {
3020 drm_i915_private_t *dev_priv = dev->dev_private;
3021 uint64_t val;
3022
3023 if (obj) {
3024 u32 size = obj->gtt_space->size;
3025
3026 val = (uint64_t)((obj->gtt_offset + size - 4096) &
3027 0xfffff000) << 32;
3028 val |= obj->gtt_offset & 0xfffff000;
3029 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
3030 if (obj->tiling_mode == I915_TILING_Y)
3031 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3032 val |= I965_FENCE_REG_VALID;
3033 } else
3034 val = 0;
3035
3036 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
3037 POSTING_READ(FENCE_REG_965_0 + reg * 8);
3038 }
3039
3040 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3041 struct drm_i915_gem_object *obj)
3042 {
3043 drm_i915_private_t *dev_priv = dev->dev_private;
3044 u32 val;
3045
3046 if (obj) {
3047 u32 size = obj->gtt_space->size;
3048 int pitch_val;
3049 int tile_width;
3050
3051 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
3052 (size & -size) != size ||
3053 (obj->gtt_offset & (size - 1)),
3054 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3055 obj->gtt_offset, obj->map_and_fenceable, size);
3056
3057 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3058 tile_width = 128;
3059 else
3060 tile_width = 512;
3061
3062 /* Note: pitch better be a power of two tile widths */
3063 pitch_val = obj->stride / tile_width;
3064 pitch_val = ffs(pitch_val) - 1;
3065
3066 val = obj->gtt_offset;
3067 if (obj->tiling_mode == I915_TILING_Y)
3068 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3069 val |= I915_FENCE_SIZE_BITS(size);
3070 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3071 val |= I830_FENCE_REG_VALID;
3072 } else
3073 val = 0;
3074
3075 if (reg < 8)
3076 reg = FENCE_REG_830_0 + reg * 4;
3077 else
3078 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3079
3080 I915_WRITE(reg, val);
3081 POSTING_READ(reg);
3082 }
3083
3084 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3085 struct drm_i915_gem_object *obj)
3086 {
3087 drm_i915_private_t *dev_priv = dev->dev_private;
3088 uint32_t val;
3089
3090 if (obj) {
3091 u32 size = obj->gtt_space->size;
3092 uint32_t pitch_val;
3093
3094 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
3095 (size & -size) != size ||
3096 (obj->gtt_offset & (size - 1)),
3097 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
3098 obj->gtt_offset, size);
3099
3100 pitch_val = obj->stride / 128;
3101 pitch_val = ffs(pitch_val) - 1;
3102
3103 val = obj->gtt_offset;
3104 if (obj->tiling_mode == I915_TILING_Y)
3105 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3106 val |= I830_FENCE_SIZE_BITS(size);
3107 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3108 val |= I830_FENCE_REG_VALID;
3109 } else
3110 val = 0;
3111
3112 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3113 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3114 }
3115
3116 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3117 struct drm_i915_gem_object *obj)
3118 {
3119 switch (INTEL_INFO(dev)->gen) {
3120 case 7:
3121 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
3122 case 5:
3123 case 4: i965_write_fence_reg(dev, reg, obj); break;
3124 case 3: i915_write_fence_reg(dev, reg, obj); break;
3125 case 2: i830_write_fence_reg(dev, reg, obj); break;
3126 default: break;
3127 }
3128 }
3129
3130 static inline int fence_number(struct drm_i915_private *dev_priv,
3131 struct drm_i915_fence_reg *fence)
3132 {
3133 return fence - dev_priv->fence_regs;
3134 }
3135
3136 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3137 struct drm_i915_fence_reg *fence,
3138 bool enable)
3139 {
3140 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3141 int reg = fence_number(dev_priv, fence);
3142
3143 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3144
3145 if (enable) {
3146 obj->fence_reg = reg;
3147 fence->obj = obj;
3148 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3149 } else {
3150 obj->fence_reg = I915_FENCE_REG_NONE;
3151 fence->obj = NULL;
3152 list_del_init(&fence->lru_list);
3153 }
3154 }
3155
3156 static int
3157 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
3158 {
3159 if (obj->last_fenced_seqno) {
3160 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3161 if (ret)
3162 return ret;
3163
3164 obj->last_fenced_seqno = 0;
3165 }
3166
3167 /* Ensure that all CPU reads are completed before installing a fence
3168 * and all writes before removing the fence.
3169 */
3170 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
3171 mb();
3172
3173 obj->fenced_gpu_access = false;
3174 return 0;
3175 }
3176
3177 int
3178 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3179 {
3180 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3181 int ret;
3182
3183 ret = i915_gem_object_flush_fence(obj);
3184 if (ret)
3185 return ret;
3186
3187 if (obj->fence_reg == I915_FENCE_REG_NONE)
3188 return 0;
3189
3190 i915_gem_object_update_fence(obj,
3191 &dev_priv->fence_regs[obj->fence_reg],
3192 false);
3193 i915_gem_object_fence_lost(obj);
3194
3195 return 0;
3196 }
3197
3198 static struct drm_i915_fence_reg *
3199 i915_find_fence_reg(struct drm_device *dev)
3200 {
3201 struct drm_i915_private *dev_priv = dev->dev_private;
3202 struct drm_i915_fence_reg *reg, *avail;
3203 int i;
3204
3205 /* First try to find a free reg */
3206 avail = NULL;
3207 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3208 reg = &dev_priv->fence_regs[i];
3209 if (!reg->obj)
3210 return reg;
3211
3212 if (!reg->pin_count)
3213 avail = reg;
3214 }
3215
3216 if (avail == NULL)
3217 return NULL;
3218
3219 /* None available, try to steal one or wait for a user to finish */
3220 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3221 if (reg->pin_count)
3222 continue;
3223
3224 return reg;
3225 }
3226
3227 return NULL;
3228 }
3229
3230 /**
3231 * i915_gem_object_get_fence - set up fencing for an object
3232 * @obj: object to map through a fence reg
3233 *
3234 * When mapping objects through the GTT, userspace wants to be able to write
3235 * to them without having to worry about swizzling if the object is tiled.
3236 * This function walks the fence regs looking for a free one for @obj,
3237 * stealing one if it can't find any.
3238 *
3239 * It then sets up the reg based on the object's properties: address, pitch
3240 * and tiling format.
3241 *
3242 * For an untiled surface, this removes any existing fence.
3243 */
3244 int
3245 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3246 {
3247 struct drm_device *dev = obj->base.dev;
3248 struct drm_i915_private *dev_priv = dev->dev_private;
3249 bool enable = obj->tiling_mode != I915_TILING_NONE;
3250 struct drm_i915_fence_reg *reg;
3251 int ret;
3252
3253 /* Have we updated the tiling parameters upon the object and so
3254 * will need to serialise the write to the associated fence register?
3255 */
3256 if (obj->fence_dirty) {
3257 ret = i915_gem_object_flush_fence(obj);
3258 if (ret)
3259 return ret;
3260 }
3261
3262 /* Just update our place in the LRU if our fence is getting reused. */
3263 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3264 reg = &dev_priv->fence_regs[obj->fence_reg];
3265 if (!obj->fence_dirty) {
3266 list_move_tail(®->lru_list,
3267 &dev_priv->mm.fence_list);
3268 return 0;
3269 }
3270 } else if (enable) {
3271 reg = i915_find_fence_reg(dev);
3272 if (reg == NULL)
3273 return -EDEADLK;
3274
3275 if (reg->obj) {
3276 struct drm_i915_gem_object *old = reg->obj;
3277
3278 ret = i915_gem_object_flush_fence(old);
3279 if (ret)
3280 return ret;
3281
3282 i915_gem_object_fence_lost(old);
3283 }
3284 } else
3285 return 0;
3286
3287 i915_gem_object_update_fence(obj, reg, enable);
3288 obj->fence_dirty = false;
3289
3290 return 0;
3291 }
3292
3293 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3294 struct drm_mm_node *gtt_space,
3295 unsigned long cache_level)
3296 {
3297 struct drm_mm_node *other;
3298
3299 /* On non-LLC machines we have to be careful when putting differing
3300 * types of snoopable memory together to avoid the prefetcher
3301 * crossing memory domains and dieing.
3302 */
3303 if (HAS_LLC(dev))
3304 return true;
3305
3306 if (gtt_space == NULL)
3307 return true;
3308
3309 if (list_empty(>t_space->node_list))
3310 return true;
3311
3312 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3313 if (other->allocated && !other->hole_follows && other->color != cache_level)
3314 return false;
3315
3316 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3317 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3318 return false;
3319
3320 return true;
3321 }
3322
3323 static void i915_gem_verify_gtt(struct drm_device *dev)
3324 {
3325 #if WATCH_GTT
3326 struct drm_i915_private *dev_priv = dev->dev_private;
3327 struct drm_i915_gem_object *obj;
3328 int err = 0;
3329
3330 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
3331 if (obj->gtt_space == NULL) {
3332 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3333 err++;
3334 continue;
3335 }
3336
3337 if (obj->cache_level != obj->gtt_space->color) {
3338 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3339 obj->gtt_space->start,
3340 obj->gtt_space->start + obj->gtt_space->size,
3341 obj->cache_level,
3342 obj->gtt_space->color);
3343 err++;
3344 continue;
3345 }
3346
3347 if (!i915_gem_valid_gtt_space(dev,
3348 obj->gtt_space,
3349 obj->cache_level)) {
3350 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3351 obj->gtt_space->start,
3352 obj->gtt_space->start + obj->gtt_space->size,
3353 obj->cache_level);
3354 err++;
3355 continue;
3356 }
3357 }
3358
3359 WARN_ON(err);
3360 #endif
3361 }
3362
3363 /**
3364 * Finds free space in the GTT aperture and binds the object there.
3365 */
3366 static int
3367 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3368 unsigned alignment,
3369 bool map_and_fenceable,
3370 bool nonblocking)
3371 {
3372 struct drm_device *dev = obj->base.dev;
3373 drm_i915_private_t *dev_priv = dev->dev_private;
3374 struct drm_mm_node *node;
3375 u32 size, fence_size, fence_alignment, unfenced_alignment;
3376 bool mappable, fenceable;
3377 int ret;
3378
3379 if (obj->madv != I915_MADV_WILLNEED) {
3380 DRM_ERROR("Attempting to bind a purgeable object\n");
3381 return -EINVAL;
3382 }
3383
3384 fence_size = i915_gem_get_gtt_size(dev,
3385 obj->base.size,
3386 obj->tiling_mode);
3387 fence_alignment = i915_gem_get_gtt_alignment(dev,
3388 obj->base.size,
3389 obj->tiling_mode);
3390 unfenced_alignment =
3391 i915_gem_get_unfenced_gtt_alignment(dev,
3392 obj->base.size,
3393 obj->tiling_mode);
3394
3395 if (alignment == 0)
3396 alignment = map_and_fenceable ? fence_alignment :
3397 unfenced_alignment;
3398 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3399 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3400 return -EINVAL;
3401 }
3402
3403 size = map_and_fenceable ? fence_size : obj->base.size;
3404
3405 /* If the object is bigger than the entire aperture, reject it early
3406 * before evicting everything in a vain attempt to find space.
3407 */
3408 if (obj->base.size >
3409 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
3410 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
3411 return -E2BIG;
3412 }
3413
3414 ret = i915_gem_object_get_pages(obj);
3415 if (ret)
3416 return ret;
3417
3418 i915_gem_object_pin_pages(obj);
3419
3420 node = kzalloc(sizeof(*node), GFP_KERNEL);
3421 if (node == NULL) {
3422 i915_gem_object_unpin_pages(obj);
3423 return -ENOMEM;
3424 }
3425
3426 search_free:
3427 if (map_and_fenceable)
3428 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3429 size, alignment, obj->cache_level,
3430 0, dev_priv->mm.gtt_mappable_end);
3431 else
3432 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
3433 size, alignment, obj->cache_level);
3434 if (ret) {
3435 ret = i915_gem_evict_something(dev, size, alignment,
3436 obj->cache_level,
3437 map_and_fenceable,
3438 nonblocking);
3439 if (ret == 0)
3440 goto search_free;
3441
3442 i915_gem_object_unpin_pages(obj);
3443 kfree(node);
3444 return ret;
3445 }
3446 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3447 i915_gem_object_unpin_pages(obj);
3448 drm_mm_put_block(node);
3449 return -EINVAL;
3450 }
3451
3452 ret = i915_gem_gtt_prepare_object(obj);
3453 if (ret) {
3454 i915_gem_object_unpin_pages(obj);
3455 drm_mm_put_block(node);
3456 return ret;
3457 }
3458
3459 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3460 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3461
3462 obj->gtt_space = node;
3463 obj->gtt_offset = node->start;
3464
3465 fenceable =
3466 node->size == fence_size &&
3467 (node->start & (fence_alignment - 1)) == 0;
3468
3469 mappable =
3470 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3471
3472 obj->map_and_fenceable = mappable && fenceable;
3473
3474 i915_gem_object_unpin_pages(obj);
3475 trace_i915_gem_object_bind(obj, map_and_fenceable);
3476 i915_gem_verify_gtt(dev);
3477 return 0;
3478 }
3479
3480 void
3481 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3482 {
3483 /* If we don't have a page list set up, then we're not pinned
3484 * to GPU, and we can ignore the cache flush because it'll happen
3485 * again at bind time.
3486 */
3487 if (obj->pages == NULL)
3488 return;
3489
3490 /* If the GPU is snooping the contents of the CPU cache,
3491 * we do not need to manually clear the CPU cache lines. However,
3492 * the caches are only snooped when the render cache is
3493 * flushed/invalidated. As we always have to emit invalidations
3494 * and flushes when moving into and out of the RENDER domain, correct
3495 * snooping behaviour occurs naturally as the result of our domain
3496 * tracking.
3497 */
3498 if (obj->cache_level != I915_CACHE_NONE)
3499 return;
3500
3501 trace_i915_gem_object_clflush(obj);
3502
3503 #ifdef __NetBSD__
3504 drm_clflush_pglist(&obj->igo_pageq);
3505 #else
3506 drm_clflush_sg(obj->pages);
3507 #endif
3508 }
3509
3510 /** Flushes the GTT write domain for the object if it's dirty. */
3511 static void
3512 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3513 {
3514 uint32_t old_write_domain;
3515
3516 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3517 return;
3518
3519 /* No actual flushing is required for the GTT write domain. Writes
3520 * to it immediately go to main memory as far as we know, so there's
3521 * no chipset flush. It also doesn't land in render cache.
3522 *
3523 * However, we do have to enforce the order so that all writes through
3524 * the GTT land before any writes to the device, such as updates to
3525 * the GATT itself.
3526 */
3527 wmb();
3528
3529 old_write_domain = obj->base.write_domain;
3530 obj->base.write_domain = 0;
3531
3532 trace_i915_gem_object_change_domain(obj,
3533 obj->base.read_domains,
3534 old_write_domain);
3535 }
3536
3537 /** Flushes the CPU write domain for the object if it's dirty. */
3538 static void
3539 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3540 {
3541 uint32_t old_write_domain;
3542
3543 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3544 return;
3545
3546 i915_gem_clflush_object(obj);
3547 i915_gem_chipset_flush(obj->base.dev);
3548 old_write_domain = obj->base.write_domain;
3549 obj->base.write_domain = 0;
3550
3551 trace_i915_gem_object_change_domain(obj,
3552 obj->base.read_domains,
3553 old_write_domain);
3554 }
3555
3556 /**
3557 * Moves a single object to the GTT read, and possibly write domain.
3558 *
3559 * This function returns when the move is complete, including waiting on
3560 * flushes to occur.
3561 */
3562 int
3563 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3564 {
3565 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3566 uint32_t old_write_domain, old_read_domains;
3567 int ret;
3568
3569 /* Not valid to be called on unbound objects. */
3570 if (obj->gtt_space == NULL)
3571 return -EINVAL;
3572
3573 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3574 return 0;
3575
3576 ret = i915_gem_object_wait_rendering(obj, !write);
3577 if (ret)
3578 return ret;
3579
3580 i915_gem_object_flush_cpu_write_domain(obj);
3581
3582 old_write_domain = obj->base.write_domain;
3583 old_read_domains = obj->base.read_domains;
3584
3585 /* It should now be out of any other write domains, and we can update
3586 * the domain values for our changes.
3587 */
3588 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3589 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3590 if (write) {
3591 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3592 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3593 obj->dirty = 1;
3594 }
3595
3596 trace_i915_gem_object_change_domain(obj,
3597 old_read_domains,
3598 old_write_domain);
3599
3600 /* And bump the LRU for this access */
3601 if (i915_gem_object_is_inactive(obj))
3602 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3603
3604 return 0;
3605 }
3606
3607 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3608 enum i915_cache_level cache_level)
3609 {
3610 struct drm_device *dev = obj->base.dev;
3611 drm_i915_private_t *dev_priv = dev->dev_private;
3612 int ret;
3613
3614 if (obj->cache_level == cache_level)
3615 return 0;
3616
3617 if (obj->pin_count) {
3618 DRM_DEBUG("can not change the cache level of pinned objects\n");
3619 return -EBUSY;
3620 }
3621
3622 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3623 ret = i915_gem_object_unbind(obj);
3624 if (ret)
3625 return ret;
3626 }
3627
3628 if (obj->gtt_space) {
3629 ret = i915_gem_object_finish_gpu(obj);
3630 if (ret)
3631 return ret;
3632
3633 i915_gem_object_finish_gtt(obj);
3634
3635 /* Before SandyBridge, you could not use tiling or fence
3636 * registers with snooped memory, so relinquish any fences
3637 * currently pointing to our region in the aperture.
3638 */
3639 if (INTEL_INFO(dev)->gen < 6) {
3640 ret = i915_gem_object_put_fence(obj);
3641 if (ret)
3642 return ret;
3643 }
3644
3645 if (obj->has_global_gtt_mapping)
3646 i915_gem_gtt_bind_object(obj, cache_level);
3647 if (obj->has_aliasing_ppgtt_mapping)
3648 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3649 obj, cache_level);
3650
3651 obj->gtt_space->color = cache_level;
3652 }
3653
3654 if (cache_level == I915_CACHE_NONE) {
3655 u32 old_read_domains, old_write_domain;
3656
3657 /* If we're coming from LLC cached, then we haven't
3658 * actually been tracking whether the data is in the
3659 * CPU cache or not, since we only allow one bit set
3660 * in obj->write_domain and have been skipping the clflushes.
3661 * Just set it to the CPU cache for now.
3662 */
3663 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3664 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3665
3666 old_read_domains = obj->base.read_domains;
3667 old_write_domain = obj->base.write_domain;
3668
3669 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3670 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3671
3672 trace_i915_gem_object_change_domain(obj,
3673 old_read_domains,
3674 old_write_domain);
3675 }
3676
3677 obj->cache_level = cache_level;
3678 i915_gem_verify_gtt(dev);
3679 return 0;
3680 }
3681
3682 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3683 struct drm_file *file)
3684 {
3685 struct drm_i915_gem_caching *args = data;
3686 struct drm_i915_gem_object *obj;
3687 int ret;
3688
3689 ret = i915_mutex_lock_interruptible(dev);
3690 if (ret)
3691 return ret;
3692
3693 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3694 if (&obj->base == NULL) {
3695 ret = -ENOENT;
3696 goto unlock;
3697 }
3698
3699 args->caching = obj->cache_level != I915_CACHE_NONE;
3700
3701 drm_gem_object_unreference(&obj->base);
3702 unlock:
3703 mutex_unlock(&dev->struct_mutex);
3704 return ret;
3705 }
3706
3707 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3708 struct drm_file *file)
3709 {
3710 struct drm_i915_gem_caching *args = data;
3711 struct drm_i915_gem_object *obj;
3712 enum i915_cache_level level;
3713 int ret;
3714
3715 switch (args->caching) {
3716 case I915_CACHING_NONE:
3717 level = I915_CACHE_NONE;
3718 break;
3719 case I915_CACHING_CACHED:
3720 level = I915_CACHE_LLC;
3721 break;
3722 default:
3723 return -EINVAL;
3724 }
3725
3726 ret = i915_mutex_lock_interruptible(dev);
3727 if (ret)
3728 return ret;
3729
3730 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3731 if (&obj->base == NULL) {
3732 ret = -ENOENT;
3733 goto unlock;
3734 }
3735
3736 ret = i915_gem_object_set_cache_level(obj, level);
3737
3738 drm_gem_object_unreference(&obj->base);
3739 unlock:
3740 mutex_unlock(&dev->struct_mutex);
3741 return ret;
3742 }
3743
3744 /*
3745 * Prepare buffer for display plane (scanout, cursors, etc).
3746 * Can be called from an uninterruptible phase (modesetting) and allows
3747 * any flushes to be pipelined (for pageflips).
3748 */
3749 int
3750 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3751 u32 alignment,
3752 struct intel_ring_buffer *pipelined)
3753 {
3754 u32 old_read_domains, old_write_domain;
3755 int ret;
3756
3757 if (pipelined != obj->ring) {
3758 ret = i915_gem_object_sync(obj, pipelined);
3759 if (ret)
3760 return ret;
3761 }
3762
3763 /* The display engine is not coherent with the LLC cache on gen6. As
3764 * a result, we make sure that the pinning that is about to occur is
3765 * done with uncached PTEs. This is lowest common denominator for all
3766 * chipsets.
3767 *
3768 * However for gen6+, we could do better by using the GFDT bit instead
3769 * of uncaching, which would allow us to flush all the LLC-cached data
3770 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3771 */
3772 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3773 if (ret)
3774 return ret;
3775
3776 /* As the user may map the buffer once pinned in the display plane
3777 * (e.g. libkms for the bootup splash), we have to ensure that we
3778 * always use map_and_fenceable for all scanout buffers.
3779 */
3780 ret = i915_gem_object_pin(obj, alignment, true, false);
3781 if (ret)
3782 return ret;
3783
3784 i915_gem_object_flush_cpu_write_domain(obj);
3785
3786 old_write_domain = obj->base.write_domain;
3787 old_read_domains = obj->base.read_domains;
3788
3789 /* It should now be out of any other write domains, and we can update
3790 * the domain values for our changes.
3791 */
3792 obj->base.write_domain = 0;
3793 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3794
3795 trace_i915_gem_object_change_domain(obj,
3796 old_read_domains,
3797 old_write_domain);
3798
3799 return 0;
3800 }
3801
3802 int
3803 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3804 {
3805 int ret;
3806
3807 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3808 return 0;
3809
3810 ret = i915_gem_object_wait_rendering(obj, false);
3811 if (ret)
3812 return ret;
3813
3814 /* Ensure that we invalidate the GPU's caches and TLBs. */
3815 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3816 return 0;
3817 }
3818
3819 /**
3820 * Moves a single object to the CPU read, and possibly write domain.
3821 *
3822 * This function returns when the move is complete, including waiting on
3823 * flushes to occur.
3824 */
3825 int
3826 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3827 {
3828 uint32_t old_write_domain, old_read_domains;
3829 int ret;
3830
3831 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3832 return 0;
3833
3834 ret = i915_gem_object_wait_rendering(obj, !write);
3835 if (ret)
3836 return ret;
3837
3838 i915_gem_object_flush_gtt_write_domain(obj);
3839
3840 old_write_domain = obj->base.write_domain;
3841 old_read_domains = obj->base.read_domains;
3842
3843 /* Flush the CPU cache if it's still invalid. */
3844 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3845 i915_gem_clflush_object(obj);
3846
3847 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3848 }
3849
3850 /* It should now be out of any other write domains, and we can update
3851 * the domain values for our changes.
3852 */
3853 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3854
3855 /* If we're writing through the CPU, then the GPU read domains will
3856 * need to be invalidated at next use.
3857 */
3858 if (write) {
3859 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3860 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3861 }
3862
3863 trace_i915_gem_object_change_domain(obj,
3864 old_read_domains,
3865 old_write_domain);
3866
3867 return 0;
3868 }
3869
3870 /* Throttle our rendering by waiting until the ring has completed our requests
3871 * emitted over 20 msec ago.
3872 *
3873 * Note that if we were to use the current jiffies each time around the loop,
3874 * we wouldn't escape the function with any frames outstanding if the time to
3875 * render a frame was over 20ms.
3876 *
3877 * This should get us reasonable parallelism between CPU and GPU but also
3878 * relatively low latency when blocking on a particular request to finish.
3879 */
3880 static int
3881 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3882 {
3883 struct drm_i915_private *dev_priv = dev->dev_private;
3884 struct drm_i915_file_private *file_priv = file->driver_priv;
3885 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3886 struct drm_i915_gem_request *request;
3887 struct intel_ring_buffer *ring = NULL;
3888 u32 seqno = 0;
3889 int ret;
3890
3891 if (atomic_read(&dev_priv->mm.wedged))
3892 return -EIO;
3893
3894 spin_lock(&file_priv->mm.lock);
3895 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3896 if (time_after_eq(request->emitted_jiffies, recent_enough))
3897 break;
3898
3899 ring = request->ring;
3900 seqno = request->seqno;
3901 }
3902 spin_unlock(&file_priv->mm.lock);
3903
3904 if (seqno == 0)
3905 return 0;
3906
3907 ret = __wait_seqno(ring, seqno, true, NULL);
3908 if (ret == 0)
3909 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3910
3911 return ret;
3912 }
3913
3914 int
3915 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3916 uint32_t alignment,
3917 bool map_and_fenceable,
3918 bool nonblocking)
3919 {
3920 int ret;
3921
3922 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3923 return -EBUSY;
3924
3925 if (obj->gtt_space != NULL) {
3926 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3927 (map_and_fenceable && !obj->map_and_fenceable)) {
3928 WARN(obj->pin_count,
3929 "bo is already pinned with incorrect alignment:"
3930 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3931 " obj->map_and_fenceable=%d\n",
3932 obj->gtt_offset, alignment,
3933 map_and_fenceable,
3934 obj->map_and_fenceable);
3935 ret = i915_gem_object_unbind(obj);
3936 if (ret)
3937 return ret;
3938 }
3939 }
3940
3941 if (obj->gtt_space == NULL) {
3942 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3943
3944 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3945 map_and_fenceable,
3946 nonblocking);
3947 if (ret)
3948 return ret;
3949
3950 if (!dev_priv->mm.aliasing_ppgtt)
3951 i915_gem_gtt_bind_object(obj, obj->cache_level);
3952 }
3953
3954 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3955 i915_gem_gtt_bind_object(obj, obj->cache_level);
3956
3957 obj->pin_count++;
3958 obj->pin_mappable |= map_and_fenceable;
3959
3960 return 0;
3961 }
3962
3963 void
3964 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3965 {
3966 BUG_ON(obj->pin_count == 0);
3967 BUG_ON(obj->gtt_space == NULL);
3968
3969 if (--obj->pin_count == 0)
3970 obj->pin_mappable = false;
3971 }
3972
3973 int
3974 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3975 struct drm_file *file)
3976 {
3977 struct drm_i915_gem_pin *args = data;
3978 struct drm_i915_gem_object *obj;
3979 int ret;
3980
3981 ret = i915_mutex_lock_interruptible(dev);
3982 if (ret)
3983 return ret;
3984
3985 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3986 if (&obj->base == NULL) {
3987 ret = -ENOENT;
3988 goto unlock;
3989 }
3990
3991 if (obj->madv != I915_MADV_WILLNEED) {
3992 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3993 ret = -EINVAL;
3994 goto out;
3995 }
3996
3997 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3998 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3999 args->handle);
4000 ret = -EINVAL;
4001 goto out;
4002 }
4003
4004 if (obj->user_pin_count == 0) {
4005 ret = i915_gem_object_pin(obj, args->alignment, true, false);
4006 if (ret)
4007 goto out;
4008 }
4009
4010 obj->user_pin_count++;
4011 obj->pin_filp = file;
4012
4013 /* XXX - flush the CPU caches for pinned objects
4014 * as the X server doesn't manage domains yet
4015 */
4016 i915_gem_object_flush_cpu_write_domain(obj);
4017 args->offset = obj->gtt_offset;
4018 out:
4019 drm_gem_object_unreference(&obj->base);
4020 unlock:
4021 mutex_unlock(&dev->struct_mutex);
4022 return ret;
4023 }
4024
4025 int
4026 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4027 struct drm_file *file)
4028 {
4029 struct drm_i915_gem_pin *args = data;
4030 struct drm_i915_gem_object *obj;
4031 int ret;
4032
4033 ret = i915_mutex_lock_interruptible(dev);
4034 if (ret)
4035 return ret;
4036
4037 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4038 if (&obj->base == NULL) {
4039 ret = -ENOENT;
4040 goto unlock;
4041 }
4042
4043 if (obj->pin_filp != file) {
4044 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4045 args->handle);
4046 ret = -EINVAL;
4047 goto out;
4048 }
4049 obj->user_pin_count--;
4050 if (obj->user_pin_count == 0) {
4051 obj->pin_filp = NULL;
4052 i915_gem_object_unpin(obj);
4053 }
4054
4055 out:
4056 drm_gem_object_unreference(&obj->base);
4057 unlock:
4058 mutex_unlock(&dev->struct_mutex);
4059 return ret;
4060 }
4061
4062 int
4063 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4064 struct drm_file *file)
4065 {
4066 struct drm_i915_gem_busy *args = data;
4067 struct drm_i915_gem_object *obj;
4068 int ret;
4069
4070 ret = i915_mutex_lock_interruptible(dev);
4071 if (ret)
4072 return ret;
4073
4074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4075 if (&obj->base == NULL) {
4076 ret = -ENOENT;
4077 goto unlock;
4078 }
4079
4080 /* Count all active objects as busy, even if they are currently not used
4081 * by the gpu. Users of this interface expect objects to eventually
4082 * become non-busy without any further actions, therefore emit any
4083 * necessary flushes here.
4084 */
4085 ret = i915_gem_object_flush_active(obj);
4086
4087 args->busy = obj->active;
4088 if (obj->ring) {
4089 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4090 args->busy |= intel_ring_flag(obj->ring) << 16;
4091 }
4092
4093 drm_gem_object_unreference(&obj->base);
4094 unlock:
4095 mutex_unlock(&dev->struct_mutex);
4096 return ret;
4097 }
4098
4099 int
4100 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4101 struct drm_file *file_priv)
4102 {
4103 return i915_gem_ring_throttle(dev, file_priv);
4104 }
4105
4106 int
4107 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4108 struct drm_file *file_priv)
4109 {
4110 struct drm_i915_gem_madvise *args = data;
4111 struct drm_i915_gem_object *obj;
4112 int ret;
4113
4114 switch (args->madv) {
4115 case I915_MADV_DONTNEED:
4116 case I915_MADV_WILLNEED:
4117 break;
4118 default:
4119 return -EINVAL;
4120 }
4121
4122 ret = i915_mutex_lock_interruptible(dev);
4123 if (ret)
4124 return ret;
4125
4126 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4127 if (&obj->base == NULL) {
4128 ret = -ENOENT;
4129 goto unlock;
4130 }
4131
4132 if (obj->pin_count) {
4133 ret = -EINVAL;
4134 goto out;
4135 }
4136
4137 if (obj->madv != __I915_MADV_PURGED)
4138 obj->madv = args->madv;
4139
4140 /* if the object is no longer attached, discard its backing storage */
4141 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4142 i915_gem_object_truncate(obj);
4143
4144 args->retained = obj->madv != __I915_MADV_PURGED;
4145
4146 out:
4147 drm_gem_object_unreference(&obj->base);
4148 unlock:
4149 mutex_unlock(&dev->struct_mutex);
4150 return ret;
4151 }
4152
4153 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4154 const struct drm_i915_gem_object_ops *ops)
4155 {
4156 INIT_LIST_HEAD(&obj->mm_list);
4157 INIT_LIST_HEAD(&obj->gtt_list);
4158 INIT_LIST_HEAD(&obj->ring_list);
4159 INIT_LIST_HEAD(&obj->exec_list);
4160
4161 obj->ops = ops;
4162
4163 obj->fence_reg = I915_FENCE_REG_NONE;
4164 obj->madv = I915_MADV_WILLNEED;
4165 /* Avoid an unnecessary call to unbind on the first bind. */
4166 obj->map_and_fenceable = true;
4167
4168 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4169 }
4170
4171 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4172 .get_pages = i915_gem_object_get_pages_gtt,
4173 .put_pages = i915_gem_object_put_pages_gtt,
4174 };
4175
4176 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4177 size_t size)
4178 {
4179 struct drm_i915_gem_object *obj;
4180 #ifndef __NetBSD__ /* XXX >32bit dma? */
4181 struct address_space *mapping;
4182 u32 mask;
4183 #endif
4184
4185 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4186 if (obj == NULL)
4187 return NULL;
4188
4189 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4190 kfree(obj);
4191 return NULL;
4192 }
4193
4194 #ifndef __NetBSD__ /* XXX >32bit dma? */
4195 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4196 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4197 /* 965gm cannot relocate objects above 4GiB. */
4198 mask &= ~__GFP_HIGHMEM;
4199 mask |= __GFP_DMA32;
4200 }
4201
4202 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4203 mapping_set_gfp_mask(mapping, mask);
4204 #endif
4205
4206 i915_gem_object_init(obj, &i915_gem_object_ops);
4207
4208 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4209 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4210
4211 if (HAS_LLC(dev)) {
4212 /* On some devices, we can have the GPU use the LLC (the CPU
4213 * cache) for about a 10% performance improvement
4214 * compared to uncached. Graphics requests other than
4215 * display scanout are coherent with the CPU in
4216 * accessing this cache. This means in this mode we
4217 * don't need to clflush on the CPU side, and on the
4218 * GPU side we only need to flush internal caches to
4219 * get data visible to the CPU.
4220 *
4221 * However, we maintain the display planes as UC, and so
4222 * need to rebind when first used as such.
4223 */
4224 obj->cache_level = I915_CACHE_LLC;
4225 } else
4226 obj->cache_level = I915_CACHE_NONE;
4227
4228 return obj;
4229 }
4230
4231 int i915_gem_init_object(struct drm_gem_object *obj)
4232 {
4233 BUG();
4234
4235 return 0;
4236 }
4237
4238 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4239 {
4240 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4241 struct drm_device *dev = obj->base.dev;
4242 drm_i915_private_t *dev_priv = dev->dev_private;
4243
4244 trace_i915_gem_object_destroy(obj);
4245
4246 if (obj->phys_obj)
4247 i915_gem_detach_phys_object(dev, obj);
4248
4249 obj->pin_count = 0;
4250 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
4251 bool was_interruptible;
4252
4253 was_interruptible = dev_priv->mm.interruptible;
4254 dev_priv->mm.interruptible = false;
4255
4256 WARN_ON(i915_gem_object_unbind(obj));
4257
4258 dev_priv->mm.interruptible = was_interruptible;
4259 }
4260
4261 obj->pages_pin_count = 0;
4262 i915_gem_object_put_pages(obj);
4263 i915_gem_object_free_mmap_offset(obj);
4264
4265 BUG_ON(obj->pages);
4266
4267 #ifndef __NetBSD__ /* XXX drm prime */
4268 if (obj->base.import_attach)
4269 drm_prime_gem_destroy(&obj->base, NULL);
4270 #endif
4271
4272 drm_gem_object_release(&obj->base);
4273 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4274
4275 kfree(obj->bit_17);
4276 kfree(obj);
4277 }
4278
4279 int
4280 i915_gem_idle(struct drm_device *dev)
4281 {
4282 drm_i915_private_t *dev_priv = dev->dev_private;
4283 int ret;
4284
4285 mutex_lock(&dev->struct_mutex);
4286
4287 if (dev_priv->mm.suspended) {
4288 mutex_unlock(&dev->struct_mutex);
4289 return 0;
4290 }
4291
4292 ret = i915_gpu_idle(dev);
4293 if (ret) {
4294 mutex_unlock(&dev->struct_mutex);
4295 return ret;
4296 }
4297 i915_gem_retire_requests(dev);
4298
4299 /* Under UMS, be paranoid and evict. */
4300 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4301 i915_gem_evict_everything(dev);
4302
4303 i915_gem_reset_fences(dev);
4304
4305 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4306 * We need to replace this with a semaphore, or something.
4307 * And not confound mm.suspended!
4308 */
4309 dev_priv->mm.suspended = 1;
4310 del_timer_sync(&dev_priv->hangcheck_timer);
4311
4312 i915_kernel_lost_context(dev);
4313 i915_gem_cleanup_ringbuffer(dev);
4314
4315 mutex_unlock(&dev->struct_mutex);
4316
4317 /* Cancel the retire work handler, which should be idle now. */
4318 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4319
4320 return 0;
4321 }
4322
4323 void i915_gem_l3_remap(struct drm_device *dev)
4324 {
4325 drm_i915_private_t *dev_priv = dev->dev_private;
4326 u32 misccpctl;
4327 int i;
4328
4329 if (!IS_IVYBRIDGE(dev))
4330 return;
4331
4332 if (!dev_priv->l3_parity.remap_info)
4333 return;
4334
4335 misccpctl = I915_READ(GEN7_MISCCPCTL);
4336 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4337 POSTING_READ(GEN7_MISCCPCTL);
4338
4339 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4340 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4341 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4342 DRM_DEBUG("0x%x was already programmed to %x\n",
4343 GEN7_L3LOG_BASE + i, remap);
4344 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4345 DRM_DEBUG_DRIVER("Clearing remapped register\n");
4346 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4347 }
4348
4349 /* Make sure all the writes land before disabling dop clock gating */
4350 POSTING_READ(GEN7_L3LOG_BASE);
4351
4352 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4353 }
4354
4355 void i915_gem_init_swizzling(struct drm_device *dev)
4356 {
4357 drm_i915_private_t *dev_priv = dev->dev_private;
4358
4359 if (INTEL_INFO(dev)->gen < 5 ||
4360 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4361 return;
4362
4363 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4364 DISP_TILE_SURFACE_SWIZZLING);
4365
4366 if (IS_GEN5(dev))
4367 return;
4368
4369 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4370 if (IS_GEN6(dev))
4371 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4372 else
4373 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4374 }
4375
4376 static bool
4377 intel_enable_blt(struct drm_device *dev)
4378 {
4379 if (!HAS_BLT(dev))
4380 return false;
4381
4382 /* The blitter was dysfunctional on early prototypes */
4383 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4384 DRM_INFO("BLT not supported on this pre-production hardware;"
4385 " graphics performance will be degraded.\n");
4386 return false;
4387 }
4388
4389 return true;
4390 }
4391
4392 int
4393 i915_gem_init_hw(struct drm_device *dev)
4394 {
4395 drm_i915_private_t *dev_priv = dev->dev_private;
4396 int ret;
4397
4398 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4399 return -EIO;
4400
4401 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4402 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4403
4404 i915_gem_l3_remap(dev);
4405
4406 i915_gem_init_swizzling(dev);
4407
4408 ret = intel_init_render_ring_buffer(dev);
4409 if (ret)
4410 return ret;
4411
4412 if (HAS_BSD(dev)) {
4413 ret = intel_init_bsd_ring_buffer(dev);
4414 if (ret)
4415 goto cleanup_render_ring;
4416 }
4417
4418 if (intel_enable_blt(dev)) {
4419 ret = intel_init_blt_ring_buffer(dev);
4420 if (ret)
4421 goto cleanup_bsd_ring;
4422 }
4423
4424 dev_priv->next_seqno = 1;
4425
4426 /*
4427 * XXX: There was some w/a described somewhere suggesting loading
4428 * contexts before PPGTT.
4429 */
4430 i915_gem_context_init(dev);
4431 i915_gem_init_ppgtt(dev);
4432
4433 return 0;
4434
4435 cleanup_bsd_ring:
4436 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4437 cleanup_render_ring:
4438 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4439 return ret;
4440 }
4441
4442 static bool
4443 intel_enable_ppgtt(struct drm_device *dev)
4444 {
4445 #ifdef __NetBSD__ /* XXX ppgtt */
4446 return false;
4447 #else
4448 if (i915_enable_ppgtt >= 0)
4449 return i915_enable_ppgtt;
4450
4451 #ifdef CONFIG_INTEL_IOMMU
4452 /* Disable ppgtt on SNB if VT-d is on. */
4453 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4454 return false;
4455 #endif
4456
4457 return true;
4458 #endif
4459 }
4460
4461 int i915_gem_init(struct drm_device *dev)
4462 {
4463 struct drm_i915_private *dev_priv = dev->dev_private;
4464 unsigned long gtt_size, mappable_size;
4465 int ret;
4466
4467 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4468 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4469
4470 mutex_lock(&dev->struct_mutex);
4471 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4472 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4473 * aperture accordingly when using aliasing ppgtt. */
4474 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4475
4476 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4477
4478 ret = i915_gem_init_aliasing_ppgtt(dev);
4479 if (ret) {
4480 i915_gem_fini_global_gtt(dev);
4481 mutex_unlock(&dev->struct_mutex);
4482 return ret;
4483 }
4484 } else {
4485 /* Let GEM Manage all of the aperture.
4486 *
4487 * However, leave one page at the end still bound to the scratch
4488 * page. There are a number of places where the hardware
4489 * apparently prefetches past the end of the object, and we've
4490 * seen multiple hangs with the GPU head pointer stuck in a
4491 * batchbuffer bound at the last page of the aperture. One page
4492 * should be enough to keep any prefetching inside of the
4493 * aperture.
4494 */
4495 i915_gem_init_global_gtt(dev, 0, mappable_size,
4496 gtt_size);
4497 }
4498
4499 ret = i915_gem_init_hw(dev);
4500 #ifdef __NetBSD__ /* XXX fini global gtt */
4501 if (ret)
4502 i915_gem_fini_global_gtt(dev);
4503 #endif
4504 mutex_unlock(&dev->struct_mutex);
4505 if (ret) {
4506 i915_gem_cleanup_aliasing_ppgtt(dev);
4507 return ret;
4508 }
4509
4510 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4511 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4512 dev_priv->dri1.allow_batchbuffer = 1;
4513 return 0;
4514 }
4515
4516 void
4517 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4518 {
4519 drm_i915_private_t *dev_priv = dev->dev_private;
4520 struct intel_ring_buffer *ring;
4521 int i;
4522
4523 for_each_ring(ring, dev_priv, i)
4524 intel_cleanup_ring_buffer(ring);
4525 }
4526
4527 int
4528 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4529 struct drm_file *file_priv)
4530 {
4531 drm_i915_private_t *dev_priv = dev->dev_private;
4532 int ret;
4533
4534 if (drm_core_check_feature(dev, DRIVER_MODESET))
4535 return 0;
4536
4537 if (atomic_read(&dev_priv->mm.wedged)) {
4538 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4539 atomic_set(&dev_priv->mm.wedged, 0);
4540 }
4541
4542 mutex_lock(&dev->struct_mutex);
4543 dev_priv->mm.suspended = 0;
4544
4545 ret = i915_gem_init_hw(dev);
4546 if (ret != 0) {
4547 mutex_unlock(&dev->struct_mutex);
4548 return ret;
4549 }
4550
4551 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4552 mutex_unlock(&dev->struct_mutex);
4553
4554 ret = drm_irq_install(dev);
4555 if (ret)
4556 goto cleanup_ringbuffer;
4557
4558 return 0;
4559
4560 cleanup_ringbuffer:
4561 mutex_lock(&dev->struct_mutex);
4562 i915_gem_cleanup_ringbuffer(dev);
4563 dev_priv->mm.suspended = 1;
4564 mutex_unlock(&dev->struct_mutex);
4565
4566 return ret;
4567 }
4568
4569 int
4570 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4571 struct drm_file *file_priv)
4572 {
4573 if (drm_core_check_feature(dev, DRIVER_MODESET))
4574 return 0;
4575
4576 drm_irq_uninstall(dev);
4577 return i915_gem_idle(dev);
4578 }
4579
4580 void
4581 i915_gem_lastclose(struct drm_device *dev)
4582 {
4583 int ret;
4584
4585 if (drm_core_check_feature(dev, DRIVER_MODESET))
4586 return;
4587
4588 ret = i915_gem_idle(dev);
4589 if (ret)
4590 DRM_ERROR("failed to idle hardware: %d\n", ret);
4591 }
4592
4593 static void
4594 init_ring_lists(struct intel_ring_buffer *ring)
4595 {
4596 INIT_LIST_HEAD(&ring->active_list);
4597 INIT_LIST_HEAD(&ring->request_list);
4598 }
4599
4600 void
4601 i915_gem_load(struct drm_device *dev)
4602 {
4603 int i;
4604 drm_i915_private_t *dev_priv = dev->dev_private;
4605
4606 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4607 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4608 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4609 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4610 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4611 for (i = 0; i < I915_NUM_RINGS; i++)
4612 init_ring_lists(&dev_priv->ring[i]);
4613 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4614 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4615 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4616 i915_gem_retire_work_handler);
4617 init_completion(&dev_priv->error_completion);
4618
4619 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4620 if (IS_GEN3(dev)) {
4621 I915_WRITE(MI_ARB_STATE,
4622 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4623 }
4624
4625 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4626
4627 /* Old X drivers will take 0-2 for front, back, depth buffers */
4628 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4629 dev_priv->fence_reg_start = 3;
4630
4631 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4632 dev_priv->num_fence_regs = 16;
4633 else
4634 dev_priv->num_fence_regs = 8;
4635
4636 /* Initialize fence registers to zero */
4637 i915_gem_reset_fences(dev);
4638
4639 i915_gem_detect_bit_6_swizzle(dev);
4640 #ifdef __NetBSD__
4641 DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
4642 linux_mutex_init(&dev_priv->pending_flip_lock);
4643 #else
4644 init_waitqueue_head(&dev_priv->pending_flip_queue);
4645 #endif
4646
4647 dev_priv->mm.interruptible = true;
4648
4649 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4650 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4651 register_shrinker(&dev_priv->mm.inactive_shrinker);
4652 }
4653
4654 /*
4655 * Create a physically contiguous memory object for this object
4656 * e.g. for cursor + overlay regs
4657 */
4658 static int i915_gem_init_phys_object(struct drm_device *dev,
4659 int id, int size, int align)
4660 {
4661 drm_i915_private_t *dev_priv = dev->dev_private;
4662 struct drm_i915_gem_phys_object *phys_obj;
4663 int ret;
4664
4665 if (dev_priv->mm.phys_objs[id - 1] || !size)
4666 return 0;
4667
4668 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4669 if (!phys_obj)
4670 return -ENOMEM;
4671
4672 phys_obj->id = id;
4673
4674 phys_obj->handle = drm_pci_alloc(dev, size, align);
4675 if (!phys_obj->handle) {
4676 ret = -ENOMEM;
4677 goto kfree_obj;
4678 }
4679 #ifndef __NetBSD__ /* XXX x86 wc? */
4680 #ifdef CONFIG_X86
4681 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4682 #endif
4683 #endif
4684
4685 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4686
4687 return 0;
4688 kfree_obj:
4689 kfree(phys_obj);
4690 return ret;
4691 }
4692
4693 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4694 {
4695 drm_i915_private_t *dev_priv = dev->dev_private;
4696 struct drm_i915_gem_phys_object *phys_obj;
4697
4698 if (!dev_priv->mm.phys_objs[id - 1])
4699 return;
4700
4701 phys_obj = dev_priv->mm.phys_objs[id - 1];
4702 if (phys_obj->cur_obj) {
4703 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4704 }
4705
4706 #ifndef __NetBSD__ /* XXX x86 wb? */
4707 #ifdef CONFIG_X86
4708 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4709 #endif
4710 #endif
4711 drm_pci_free(dev, phys_obj->handle);
4712 kfree(phys_obj);
4713 dev_priv->mm.phys_objs[id - 1] = NULL;
4714 }
4715
4716 void i915_gem_free_all_phys_object(struct drm_device *dev)
4717 {
4718 int i;
4719
4720 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4721 i915_gem_free_phys_object(dev, i);
4722 }
4723
4724 void i915_gem_detach_phys_object(struct drm_device *dev,
4725 struct drm_i915_gem_object *obj)
4726 {
4727 #ifndef __NetBSD__
4728 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4729 #endif
4730 char *vaddr;
4731 int i;
4732 int page_count;
4733
4734 if (!obj->phys_obj)
4735 return;
4736 vaddr = obj->phys_obj->handle->vaddr;
4737
4738 page_count = obj->base.size / PAGE_SIZE;
4739 for (i = 0; i < page_count; i++) {
4740 #ifdef __NetBSD__
4741 /* XXX Just use ubc_uiomove? */
4742 struct pglist pages;
4743 int error;
4744
4745 TAILQ_INIT(&pages);
4746 error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4747 (i+1)*PAGE_SIZE, &pages);
4748 if (error) {
4749 printf("unable to map page %d of i915 gem obj: %d\n",
4750 i, error);
4751 continue;
4752 }
4753
4754 KASSERT(!TAILQ_EMPTY(&pages));
4755 struct vm_page *const page = TAILQ_FIRST(&pages);
4756 TAILQ_REMOVE(&pages, page, pageq.queue);
4757 KASSERT(TAILQ_EMPTY(&pages));
4758
4759 char *const dst = kmap_atomic(container_of(page, struct page,
4760 p_vmp));
4761 (void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
4762 kunmap_atomic(dst);
4763
4764 drm_clflush_page(container_of(page, struct page, p_vmp));
4765 page->flags &= ~PG_CLEAN;
4766 /* XXX mark page accessed */
4767 uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4768 (i+1)*PAGE_SIZE);
4769 #else
4770 struct page *page = shmem_read_mapping_page(mapping, i);
4771 if (!IS_ERR(page)) {
4772 char *dst = kmap_atomic(page);
4773 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4774 kunmap_atomic(dst);
4775
4776 drm_clflush_pages(&page, 1);
4777
4778 set_page_dirty(page);
4779 mark_page_accessed(page);
4780 page_cache_release(page);
4781 }
4782 #endif
4783 }
4784 i915_gem_chipset_flush(dev);
4785
4786 obj->phys_obj->cur_obj = NULL;
4787 obj->phys_obj = NULL;
4788 }
4789
4790 int
4791 i915_gem_attach_phys_object(struct drm_device *dev,
4792 struct drm_i915_gem_object *obj,
4793 int id,
4794 int align)
4795 {
4796 #ifndef __NetBSD__
4797 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4798 #endif
4799 drm_i915_private_t *dev_priv = dev->dev_private;
4800 int ret = 0;
4801 int page_count;
4802 int i;
4803
4804 if (id > I915_MAX_PHYS_OBJECT)
4805 return -EINVAL;
4806
4807 if (obj->phys_obj) {
4808 if (obj->phys_obj->id == id)
4809 return 0;
4810 i915_gem_detach_phys_object(dev, obj);
4811 }
4812
4813 /* create a new object */
4814 if (!dev_priv->mm.phys_objs[id - 1]) {
4815 ret = i915_gem_init_phys_object(dev, id,
4816 obj->base.size, align);
4817 if (ret) {
4818 DRM_ERROR("failed to init phys object %d size: %zu\n",
4819 id, obj->base.size);
4820 return ret;
4821 }
4822 }
4823
4824 /* bind to the object */
4825 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4826 obj->phys_obj->cur_obj = obj;
4827
4828 page_count = obj->base.size / PAGE_SIZE;
4829
4830 for (i = 0; i < page_count; i++) {
4831 #ifdef __NetBSD__
4832 char *const vaddr = obj->phys_obj->handle->vaddr;
4833 struct pglist pages;
4834 int error;
4835
4836 TAILQ_INIT(&pages);
4837 error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4838 (i+1)*PAGE_SIZE, &pages);
4839 if (error)
4840 /* XXX errno NetBSD->Linux */
4841 return -error;
4842
4843 KASSERT(!TAILQ_EMPTY(&pages));
4844 struct vm_page *const page = TAILQ_FIRST(&pages);
4845 TAILQ_REMOVE(&pages, page, pageq.queue);
4846 KASSERT(TAILQ_EMPTY(&pages));
4847
4848 char *const src = kmap_atomic(container_of(page, struct page,
4849 p_vmp));
4850 (void)memcpy(vaddr + (i*PAGE_SIZE), src, PAGE_SIZE);
4851 kunmap_atomic(src);
4852
4853 /* XXX mark page accessed */
4854 uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4855 (i+1)*PAGE_SIZE);
4856 #else
4857 struct page *page;
4858 char *dst, *src;
4859
4860 page = shmem_read_mapping_page(mapping, i);
4861 if (IS_ERR(page))
4862 return PTR_ERR(page);
4863
4864 src = kmap_atomic(page);
4865 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4866 memcpy(dst, src, PAGE_SIZE);
4867 kunmap_atomic(src);
4868
4869 mark_page_accessed(page);
4870 page_cache_release(page);
4871 #endif
4872 }
4873
4874 return 0;
4875 }
4876
4877 static int
4878 i915_gem_phys_pwrite(struct drm_device *dev,
4879 struct drm_i915_gem_object *obj,
4880 struct drm_i915_gem_pwrite *args,
4881 struct drm_file *file_priv)
4882 {
4883 void *vaddr = (char *)obj->phys_obj->handle->vaddr + args->offset;
4884 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4885
4886 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4887 unsigned long unwritten;
4888
4889 /* The physical object once assigned is fixed for the lifetime
4890 * of the obj, so we can safely drop the lock and continue
4891 * to access vaddr.
4892 */
4893 mutex_unlock(&dev->struct_mutex);
4894 unwritten = copy_from_user(vaddr, user_data, args->size);
4895 mutex_lock(&dev->struct_mutex);
4896 if (unwritten)
4897 return -EFAULT;
4898 }
4899
4900 i915_gem_chipset_flush(dev);
4901 return 0;
4902 }
4903
4904 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4905 {
4906 struct drm_i915_file_private *file_priv = file->driver_priv;
4907
4908 /* Clean up our request list when the client is going away, so that
4909 * later retire_requests won't dereference our soon-to-be-gone
4910 * file_priv.
4911 */
4912 spin_lock(&file_priv->mm.lock);
4913 while (!list_empty(&file_priv->mm.request_list)) {
4914 struct drm_i915_gem_request *request;
4915
4916 request = list_first_entry(&file_priv->mm.request_list,
4917 struct drm_i915_gem_request,
4918 client_list);
4919 list_del(&request->client_list);
4920 request->file_priv = NULL;
4921 }
4922 spin_unlock(&file_priv->mm.lock);
4923 }
4924
4925 #ifndef __NetBSD__ /* XXX */
4926 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4927 {
4928 if (!mutex_is_locked(mutex))
4929 return false;
4930
4931 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4932 return mutex->owner == task;
4933 #else
4934 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4935 return false;
4936 #endif
4937 }
4938 #endif
4939
4940 static int
4941 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4942 {
4943 #ifdef __NetBSD__ /* XXX shrinkers */
4944 return 0;
4945 #else
4946 struct drm_i915_private *dev_priv =
4947 container_of(shrinker,
4948 struct drm_i915_private,
4949 mm.inactive_shrinker);
4950 struct drm_device *dev = dev_priv->dev;
4951 struct drm_i915_gem_object *obj;
4952 int nr_to_scan = sc->nr_to_scan;
4953 bool unlock = true;
4954 int cnt;
4955
4956 if (!mutex_trylock(&dev->struct_mutex)) {
4957 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4958 return 0;
4959
4960 if (dev_priv->mm.shrinker_no_lock_stealing)
4961 return 0;
4962
4963 unlock = false;
4964 }
4965
4966 if (nr_to_scan) {
4967 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4968 if (nr_to_scan > 0)
4969 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4970 false);
4971 if (nr_to_scan > 0)
4972 i915_gem_shrink_all(dev_priv);
4973 }
4974
4975 cnt = 0;
4976 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4977 if (obj->pages_pin_count == 0)
4978 cnt += obj->base.size >> PAGE_SHIFT;
4979 list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4980 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4981 cnt += obj->base.size >> PAGE_SHIFT;
4982
4983 if (unlock)
4984 mutex_unlock(&dev->struct_mutex);
4985 return cnt;
4986 #endif
4987 }
4988