i915_gem.c revision 1.1.1.1.2.22 1 /*
2 * Copyright 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric (at) anholt.net>
25 *
26 */
27
28 #ifdef __NetBSD__
29 #if 0 /* XXX uvmhist option? */
30 #include "opt_uvmhist.h"
31 #endif
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35
36 #include <uvm/uvm.h>
37 #include <uvm/uvm_extern.h>
38 #include <uvm/uvm_fault.h>
39 #include <uvm/uvm_page.h>
40 #include <uvm/uvm_pmap.h>
41 #include <uvm/uvm_prot.h>
42 #endif
43
44 #include <drm/drmP.h>
45 #include <drm/i915_drm.h>
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_drv.h"
49 #include <linux/shmem_fs.h>
50 #include <linux/slab.h>
51 #include <linux/swap.h>
52 #include <linux/pci.h>
53 #include <linux/dma-buf.h>
54 #include <linux/errno.h>
55 #include <linux/time.h>
56 #include <linux/err.h>
57 #include <asm/param.h>
58
59 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
60 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
62 unsigned alignment,
63 bool map_and_fenceable,
64 bool nonblocking);
65 static int i915_gem_phys_pwrite(struct drm_device *dev,
66 struct drm_i915_gem_object *obj,
67 struct drm_i915_gem_pwrite *args,
68 struct drm_file *file);
69
70 static void i915_gem_write_fence(struct drm_device *dev, int reg,
71 struct drm_i915_gem_object *obj);
72 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
73 struct drm_i915_fence_reg *fence,
74 bool enable);
75
76 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
77 struct shrink_control *sc);
78 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
79 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
80 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
81
82 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
83 {
84 if (obj->tiling_mode)
85 i915_gem_release_mmap(obj);
86
87 /* As we do not have an associated fence register, we will force
88 * a tiling change if we ever need to acquire one.
89 */
90 obj->fence_dirty = false;
91 obj->fence_reg = I915_FENCE_REG_NONE;
92 }
93
94 /* some bookkeeping */
95 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
96 size_t size)
97 {
98 dev_priv->mm.object_count++;
99 dev_priv->mm.object_memory += size;
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104 {
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 }
108
109 static int
110 i915_gem_wait_for_error(struct drm_device *dev)
111 {
112 struct drm_i915_private *dev_priv = dev->dev_private;
113 struct completion *x = &dev_priv->error_completion;
114 #ifndef __NetBSD__
115 unsigned long flags;
116 #endif
117 int ret;
118
119 if (!atomic_read(&dev_priv->mm.wedged))
120 return 0;
121
122 /*
123 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
124 * userspace. If it takes that long something really bad is going on and
125 * we should simply try to bail out and fail as gracefully as possible.
126 */
127 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134
135 if (atomic_read(&dev_priv->mm.wedged)) {
136 /* GPU is hung, bump the completion count to account for
137 * the token we just consumed so that we never hit zero and
138 * end up waiting upon a subsequent completion event that
139 * will never happen.
140 */
141 #ifdef __NetBSD__
142 /* XXX Hope it's not a problem that we might wake someone. */
143 complete(x);
144 #else
145 spin_lock_irqsave(&x->wait.lock, flags);
146 x->done++;
147 spin_unlock_irqrestore(&x->wait.lock, flags);
148 #endif
149 }
150 return 0;
151 }
152
153 int i915_mutex_lock_interruptible(struct drm_device *dev)
154 {
155 int ret;
156
157 ret = i915_gem_wait_for_error(dev);
158 if (ret)
159 return ret;
160
161 ret = mutex_lock_interruptible(&dev->struct_mutex);
162 if (ret)
163 return ret;
164
165 WARN_ON(i915_verify_lists(dev));
166 return 0;
167 }
168
169 static inline bool
170 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
171 {
172 return obj->gtt_space && !obj->active;
173 }
174
175 int
176 i915_gem_init_ioctl(struct drm_device *dev, void *data,
177 struct drm_file *file)
178 {
179 struct drm_i915_gem_init *args = data;
180
181 if (drm_core_check_feature(dev, DRIVER_MODESET))
182 return -ENODEV;
183
184 if (args->gtt_start >= args->gtt_end ||
185 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
186 return -EINVAL;
187
188 /* GEM with user mode setting was never supported on ilk and later. */
189 if (INTEL_INFO(dev)->gen >= 5)
190 return -ENODEV;
191
192 mutex_lock(&dev->struct_mutex);
193 i915_gem_init_global_gtt(dev, args->gtt_start,
194 args->gtt_end, args->gtt_end);
195 mutex_unlock(&dev->struct_mutex);
196
197 return 0;
198 }
199
200 int
201 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
202 struct drm_file *file)
203 {
204 struct drm_i915_private *dev_priv = dev->dev_private;
205 struct drm_i915_gem_get_aperture *args = data;
206 struct drm_i915_gem_object *obj;
207 size_t pinned;
208
209 pinned = 0;
210 mutex_lock(&dev->struct_mutex);
211 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
212 if (obj->pin_count)
213 pinned += obj->gtt_space->size;
214 mutex_unlock(&dev->struct_mutex);
215
216 args->aper_size = dev_priv->mm.gtt_total;
217 args->aper_available_size = args->aper_size - pinned;
218
219 return 0;
220 }
221
222 static int
223 i915_gem_create(struct drm_file *file,
224 struct drm_device *dev,
225 uint64_t size,
226 uint32_t *handle_p)
227 {
228 struct drm_i915_gem_object *obj;
229 int ret;
230 u32 handle;
231
232 size = roundup(size, PAGE_SIZE);
233 if (size == 0)
234 return -EINVAL;
235
236 /* Allocate the new object */
237 obj = i915_gem_alloc_object(dev, size);
238 if (obj == NULL)
239 return -ENOMEM;
240
241 ret = drm_gem_handle_create(file, &obj->base, &handle);
242 if (ret) {
243 drm_gem_object_release(&obj->base);
244 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
245 kfree(obj);
246 return ret;
247 }
248
249 /* drop reference from allocate - handle holds it now */
250 drm_gem_object_unreference(&obj->base);
251 trace_i915_gem_object_create(obj);
252
253 *handle_p = handle;
254 return 0;
255 }
256
257 int
258 i915_gem_dumb_create(struct drm_file *file,
259 struct drm_device *dev,
260 struct drm_mode_create_dumb *args)
261 {
262 /* have to work out size/pitch and return them */
263 #ifdef __NetBSD__ /* ALIGN already means something. */
264 args->pitch = round_up(args->width * ((args->bpp + 7) / 8), 64);
265 #else
266 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
267 #endif
268 args->size = args->pitch * args->height;
269 return i915_gem_create(file, dev,
270 args->size, &args->handle);
271 }
272
273 int i915_gem_dumb_destroy(struct drm_file *file,
274 struct drm_device *dev,
275 uint32_t handle)
276 {
277 return drm_gem_handle_delete(file, handle);
278 }
279
280 /**
281 * Creates a new mm object and returns a handle to it.
282 */
283 int
284 i915_gem_create_ioctl(struct drm_device *dev, void *data,
285 struct drm_file *file)
286 {
287 struct drm_i915_gem_create *args = data;
288
289 return i915_gem_create(file, dev,
290 args->size, &args->handle);
291 }
292
293 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
294 {
295 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
296
297 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
298 obj->tiling_mode != I915_TILING_NONE;
299 }
300
301 static inline int
302 __copy_to_user_swizzled(char __user *cpu_vaddr,
303 const char *gpu_vaddr, int gpu_offset,
304 int length)
305 {
306 int ret, cpu_offset = 0;
307
308 while (length > 0) {
309 #ifdef __NetBSD__
310 int cacheline_end = round_up(gpu_offset + 1, 64);
311 #else
312 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313 #endif
314 int this_length = min(cacheline_end - gpu_offset, length);
315 int swizzled_gpu_offset = gpu_offset ^ 64;
316
317 ret = __copy_to_user(cpu_vaddr + cpu_offset,
318 gpu_vaddr + swizzled_gpu_offset,
319 this_length);
320 if (ret)
321 return ret + length;
322
323 cpu_offset += this_length;
324 gpu_offset += this_length;
325 length -= this_length;
326 }
327
328 return 0;
329 }
330
331 static inline int
332 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
333 const char __user *cpu_vaddr,
334 int length)
335 {
336 int ret, cpu_offset = 0;
337
338 while (length > 0) {
339 #ifdef __NetBSD__
340 int cacheline_end = round_up(gpu_offset + 1, 64);
341 #else
342 int cacheline_end = ALIGN(gpu_offset + 1, 64);
343 #endif
344 int this_length = min(cacheline_end - gpu_offset, length);
345 int swizzled_gpu_offset = gpu_offset ^ 64;
346
347 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
348 cpu_vaddr + cpu_offset,
349 this_length);
350 if (ret)
351 return ret + length;
352
353 cpu_offset += this_length;
354 gpu_offset += this_length;
355 length -= this_length;
356 }
357
358 return 0;
359 }
360
361 /* Per-page copy function for the shmem pread fastpath.
362 * Flushes invalid cachelines before reading the target if
363 * needs_clflush is set. */
364 static int
365 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
366 char __user *user_data,
367 bool page_do_bit17_swizzling, bool needs_clflush)
368 {
369 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
370 return -EFAULT;
371 #else
372 char *vaddr;
373 int ret;
374
375 if (unlikely(page_do_bit17_swizzling))
376 return -EINVAL;
377
378 vaddr = kmap_atomic(page);
379 if (needs_clflush)
380 drm_clflush_virt_range(vaddr + shmem_page_offset,
381 page_length);
382 ret = __copy_to_user_inatomic(user_data,
383 vaddr + shmem_page_offset,
384 page_length);
385 kunmap_atomic(vaddr);
386
387 return ret ? -EFAULT : 0;
388 #endif
389 }
390
391 static void
392 shmem_clflush_swizzled_range(char *addr, unsigned long length,
393 bool swizzled)
394 {
395 if (unlikely(swizzled)) {
396 unsigned long start = (unsigned long) addr;
397 unsigned long end = (unsigned long) addr + length;
398
399 /* For swizzling simply ensure that we always flush both
400 * channels. Lame, but simple and it works. Swizzled
401 * pwrite/pread is far from a hotpath - current userspace
402 * doesn't use it at all. */
403 start = round_down(start, 128);
404 end = round_up(end, 128);
405
406 drm_clflush_virt_range((void *)start, end - start);
407 } else {
408 drm_clflush_virt_range(addr, length);
409 }
410
411 }
412
413 /* Only difference to the fast-path function is that this can handle bit17
414 * and uses non-atomic copy and kmap functions. */
415 static int
416 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
417 char __user *user_data,
418 bool page_do_bit17_swizzling, bool needs_clflush)
419 {
420 char *vaddr;
421 int ret;
422
423 vaddr = kmap(page);
424 if (needs_clflush)
425 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
426 page_length,
427 page_do_bit17_swizzling);
428
429 if (page_do_bit17_swizzling)
430 ret = __copy_to_user_swizzled(user_data,
431 vaddr, shmem_page_offset,
432 page_length);
433 else
434 ret = __copy_to_user(user_data,
435 vaddr + shmem_page_offset,
436 page_length);
437 kunmap(page);
438
439 return ret ? - EFAULT : 0;
440 }
441
442 static int
443 i915_gem_shmem_pread(struct drm_device *dev,
444 struct drm_i915_gem_object *obj,
445 struct drm_i915_gem_pread *args,
446 struct drm_file *file)
447 {
448 char __user *user_data;
449 ssize_t remain;
450 loff_t offset;
451 int shmem_page_offset, page_length, ret = 0;
452 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
453 int hit_slowpath = 0;
454 #ifndef __NetBSD__ /* XXX */
455 int prefaulted = 0;
456 #endif
457 int needs_clflush = 0;
458 #ifndef __NetBSD__
459 struct scatterlist *sg;
460 int i;
461 #endif
462
463 user_data = (char __user *) (uintptr_t) args->data_ptr;
464 remain = args->size;
465
466 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
467
468 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
469 /* If we're not in the cpu read domain, set ourself into the gtt
470 * read domain and manually flush cachelines (if required). This
471 * optimizes for the case when the gpu will dirty the data
472 * anyway again before the next pread happens. */
473 if (obj->cache_level == I915_CACHE_NONE)
474 needs_clflush = 1;
475 if (obj->gtt_space) {
476 ret = i915_gem_object_set_to_gtt_domain(obj, false);
477 if (ret)
478 return ret;
479 }
480 }
481
482 ret = i915_gem_object_get_pages(obj);
483 if (ret)
484 return ret;
485
486 i915_gem_object_pin_pages(obj);
487
488 offset = args->offset;
489
490 #ifdef __NetBSD__
491 /*
492 * XXX This is a big #ifdef with a lot of duplicated code, but
493 * factoring out the loop head -- which is all that
494 * substantially differs -- is probably more trouble than it's
495 * worth at the moment.
496 */
497 while (0 < remain) {
498 /* Get the next page. */
499 shmem_page_offset = offset_in_page(offset);
500 KASSERT(shmem_page_offset < PAGE_SIZE);
501 page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
502 struct page *const page = i915_gem_object_get_page(obj,
503 atop(offset));
504
505 /* Decide whether to swizzle bit 17. */
506 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
507 (page_to_phys(page) & (1 << 17)) != 0;
508
509 /* Try the fast path. */
510 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
511 user_data, page_do_bit17_swizzling, needs_clflush);
512 if (ret == 0)
513 goto next_page;
514
515 /* Fast path failed. Try the slow path. */
516 hit_slowpath = 1;
517 mutex_unlock(&dev->struct_mutex);
518 /* XXX prefault */
519 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
520 user_data, page_do_bit17_swizzling, needs_clflush);
521 mutex_lock(&dev->struct_mutex);
522
523 next_page:
524 /* XXX mark page accessed */
525 if (ret)
526 goto out;
527
528 KASSERT(page_length <= remain);
529 remain -= page_length;
530 user_data += page_length;
531 offset += page_length;
532 }
533 #else
534 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
535 struct page *page;
536
537 if (i < offset >> PAGE_SHIFT)
538 continue;
539
540 if (remain <= 0)
541 break;
542
543 /* Operation in this page
544 *
545 * shmem_page_offset = offset within page in shmem file
546 * page_length = bytes to copy for this page
547 */
548 shmem_page_offset = offset_in_page(offset);
549 page_length = remain;
550 if ((shmem_page_offset + page_length) > PAGE_SIZE)
551 page_length = PAGE_SIZE - shmem_page_offset;
552
553 page = sg_page(sg);
554 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
555 (page_to_phys(page) & (1 << 17)) != 0;
556
557 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
558 user_data, page_do_bit17_swizzling,
559 needs_clflush);
560 if (ret == 0)
561 goto next_page;
562
563 hit_slowpath = 1;
564 mutex_unlock(&dev->struct_mutex);
565
566 if (!prefaulted) {
567 ret = fault_in_multipages_writeable(user_data, remain);
568 /* Userspace is tricking us, but we've already clobbered
569 * its pages with the prefault and promised to write the
570 * data up to the first fault. Hence ignore any errors
571 * and just continue. */
572 (void)ret;
573 prefaulted = 1;
574 }
575
576 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
577 user_data, page_do_bit17_swizzling,
578 needs_clflush);
579
580 mutex_lock(&dev->struct_mutex);
581
582 next_page:
583 mark_page_accessed(page);
584
585 if (ret)
586 goto out;
587
588 remain -= page_length;
589 user_data += page_length;
590 offset += page_length;
591 }
592 #endif
593
594 out:
595 i915_gem_object_unpin_pages(obj);
596
597 if (hit_slowpath) {
598 /* Fixup: Kill any reinstated backing storage pages */
599 if (obj->madv == __I915_MADV_PURGED)
600 i915_gem_object_truncate(obj);
601 }
602
603 return ret;
604 }
605
606 /**
607 * Reads data from the object referenced by handle.
608 *
609 * On error, the contents of *data are undefined.
610 */
611 int
612 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
613 struct drm_file *file)
614 {
615 struct drm_i915_gem_pread *args = data;
616 struct drm_i915_gem_object *obj;
617 int ret = 0;
618
619 if (args->size == 0)
620 return 0;
621
622 if (!access_ok(VERIFY_WRITE,
623 (char __user *)(uintptr_t)args->data_ptr,
624 args->size))
625 return -EFAULT;
626
627 ret = i915_mutex_lock_interruptible(dev);
628 if (ret)
629 return ret;
630
631 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
632 if (&obj->base == NULL) {
633 ret = -ENOENT;
634 goto unlock;
635 }
636
637 /* Bounds check source. */
638 if (args->offset > obj->base.size ||
639 args->size > obj->base.size - args->offset) {
640 ret = -EINVAL;
641 goto out;
642 }
643
644 #ifndef __NetBSD__ /* XXX drm prime */
645 /* prime objects have no backing filp to GEM pread/pwrite
646 * pages from.
647 */
648 if (!obj->base.filp) {
649 ret = -EINVAL;
650 goto out;
651 }
652 #endif
653
654 trace_i915_gem_object_pread(obj, args->offset, args->size);
655
656 ret = i915_gem_shmem_pread(dev, obj, args, file);
657
658 out:
659 drm_gem_object_unreference(&obj->base);
660 unlock:
661 mutex_unlock(&dev->struct_mutex);
662 return ret;
663 }
664
665 /* This is the fast write path which cannot handle
666 * page faults in the source data
667 */
668
669 static inline int
670 fast_user_write(struct io_mapping *mapping,
671 loff_t page_base, int page_offset,
672 char __user *user_data,
673 int length)
674 {
675 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
676 return -EFAULT;
677 #else
678 void __iomem *vaddr_atomic;
679 void *vaddr;
680 unsigned long unwritten;
681
682 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
683 /* We can use the cpu mem copy function because this is X86. */
684 vaddr = (void __force*)vaddr_atomic + page_offset;
685 unwritten = __copy_from_user_inatomic_nocache(vaddr,
686 user_data, length);
687 io_mapping_unmap_atomic(vaddr_atomic);
688 return unwritten;
689 #endif
690 }
691
692 /**
693 * This is the fast pwrite path, where we copy the data directly from the
694 * user into the GTT, uncached.
695 */
696 static int
697 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
698 struct drm_i915_gem_object *obj,
699 struct drm_i915_gem_pwrite *args,
700 struct drm_file *file)
701 {
702 drm_i915_private_t *dev_priv = dev->dev_private;
703 ssize_t remain;
704 loff_t offset, page_base;
705 char __user *user_data;
706 int page_offset, page_length, ret;
707
708 ret = i915_gem_object_pin(obj, 0, true, true);
709 if (ret)
710 goto out;
711
712 ret = i915_gem_object_set_to_gtt_domain(obj, true);
713 if (ret)
714 goto out_unpin;
715
716 ret = i915_gem_object_put_fence(obj);
717 if (ret)
718 goto out_unpin;
719
720 user_data = (char __user *) (uintptr_t) args->data_ptr;
721 remain = args->size;
722
723 offset = obj->gtt_offset + args->offset;
724
725 while (remain > 0) {
726 /* Operation in this page
727 *
728 * page_base = page offset within aperture
729 * page_offset = offset within page
730 * page_length = bytes to copy for this page
731 */
732 page_base = offset & PAGE_MASK;
733 page_offset = offset_in_page(offset);
734 page_length = remain;
735 if ((page_offset + remain) > PAGE_SIZE)
736 page_length = PAGE_SIZE - page_offset;
737
738 /* If we get a fault while copying data, then (presumably) our
739 * source page isn't available. Return the error and we'll
740 * retry in the slow path.
741 */
742 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
743 page_offset, user_data, page_length)) {
744 ret = -EFAULT;
745 goto out_unpin;
746 }
747
748 remain -= page_length;
749 user_data += page_length;
750 offset += page_length;
751 }
752
753 out_unpin:
754 i915_gem_object_unpin(obj);
755 out:
756 return ret;
757 }
758
759 /* Per-page copy function for the shmem pwrite fastpath.
760 * Flushes invalid cachelines before writing to the target if
761 * needs_clflush_before is set and flushes out any written cachelines after
762 * writing if needs_clflush is set. */
763 static int
764 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
765 char __user *user_data,
766 bool page_do_bit17_swizzling,
767 bool needs_clflush_before,
768 bool needs_clflush_after)
769 {
770 #ifdef __NetBSD__
771 return -EFAULT;
772 #else
773 char *vaddr;
774 int ret;
775
776 if (unlikely(page_do_bit17_swizzling))
777 return -EINVAL;
778
779 vaddr = kmap_atomic(page);
780 if (needs_clflush_before)
781 drm_clflush_virt_range(vaddr + shmem_page_offset,
782 page_length);
783 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
784 user_data,
785 page_length);
786 if (needs_clflush_after)
787 drm_clflush_virt_range(vaddr + shmem_page_offset,
788 page_length);
789 kunmap_atomic(vaddr);
790
791 return ret ? -EFAULT : 0;
792 #endif
793 }
794
795 /* Only difference to the fast-path function is that this can handle bit17
796 * and uses non-atomic copy and kmap functions. */
797 static int
798 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
799 char __user *user_data,
800 bool page_do_bit17_swizzling,
801 bool needs_clflush_before,
802 bool needs_clflush_after)
803 {
804 char *vaddr;
805 int ret;
806
807 vaddr = kmap(page);
808 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
809 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
810 page_length,
811 page_do_bit17_swizzling);
812 if (page_do_bit17_swizzling)
813 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
814 user_data,
815 page_length);
816 else
817 ret = __copy_from_user(vaddr + shmem_page_offset,
818 user_data,
819 page_length);
820 if (needs_clflush_after)
821 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
822 page_length,
823 page_do_bit17_swizzling);
824 kunmap(page);
825
826 return ret ? -EFAULT : 0;
827 }
828
829 static int
830 i915_gem_shmem_pwrite(struct drm_device *dev,
831 struct drm_i915_gem_object *obj,
832 struct drm_i915_gem_pwrite *args,
833 struct drm_file *file)
834 {
835 ssize_t remain;
836 loff_t offset;
837 char __user *user_data;
838 int shmem_page_offset, page_length, ret = 0;
839 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
840 int hit_slowpath = 0;
841 int needs_clflush_after = 0;
842 int needs_clflush_before = 0;
843 #ifndef __NetBSD__
844 int i;
845 struct scatterlist *sg;
846 #endif
847
848 user_data = (char __user *) (uintptr_t) args->data_ptr;
849 remain = args->size;
850
851 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
852
853 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
854 /* If we're not in the cpu write domain, set ourself into the gtt
855 * write domain and manually flush cachelines (if required). This
856 * optimizes for the case when the gpu will use the data
857 * right away and we therefore have to clflush anyway. */
858 if (obj->cache_level == I915_CACHE_NONE)
859 needs_clflush_after = 1;
860 if (obj->gtt_space) {
861 ret = i915_gem_object_set_to_gtt_domain(obj, true);
862 if (ret)
863 return ret;
864 }
865 }
866 /* Same trick applies for invalidate partially written cachelines before
867 * writing. */
868 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
869 && obj->cache_level == I915_CACHE_NONE)
870 needs_clflush_before = 1;
871
872 ret = i915_gem_object_get_pages(obj);
873 if (ret)
874 return ret;
875
876 i915_gem_object_pin_pages(obj);
877
878 offset = args->offset;
879 obj->dirty = 1;
880
881 #ifdef __NetBSD__
882 while (0 < remain) {
883 /* Get the next page. */
884 shmem_page_offset = offset_in_page(offset);
885 KASSERT(shmem_page_offset < PAGE_SIZE);
886 page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
887 struct page *const page = i915_gem_object_get_page(obj,
888 atop(offset));
889
890 /* Decide whether to flush the cache or swizzle bit 17. */
891 const bool partial_cacheline_write = needs_clflush_before &&
892 ((shmem_page_offset | page_length)
893 & (cpu_info_primary.ci_cflush_lsize - 1));
894 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
895 (page_to_phys(page) & (1 << 17)) != 0;
896
897 /* Try the fast path. */
898 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
899 user_data, page_do_bit17_swizzling,
900 partial_cacheline_write, needs_clflush_after);
901 if (ret == 0)
902 goto next_page;
903
904 /* Fast path failed. Try the slow path. */
905 hit_slowpath = 1;
906 mutex_unlock(&dev->struct_mutex);
907 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
908 user_data, page_do_bit17_swizzling,
909 partial_cacheline_write, needs_clflush_after);
910 mutex_lock(&dev->struct_mutex);
911
912 next_page:
913 page->p_vmp.flags &= ~PG_CLEAN;
914 /* XXX mark page accessed */
915 if (ret)
916 goto out;
917
918 KASSERT(page_length <= remain);
919 remain -= page_length;
920 user_data += page_length;
921 offset += page_length;
922 }
923 #else
924 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
925 struct page *page;
926 int partial_cacheline_write;
927
928 if (i < offset >> PAGE_SHIFT)
929 continue;
930
931 if (remain <= 0)
932 break;
933
934 /* Operation in this page
935 *
936 * shmem_page_offset = offset within page in shmem file
937 * page_length = bytes to copy for this page
938 */
939 shmem_page_offset = offset_in_page(offset);
940
941 page_length = remain;
942 if ((shmem_page_offset + page_length) > PAGE_SIZE)
943 page_length = PAGE_SIZE - shmem_page_offset;
944
945 /* If we don't overwrite a cacheline completely we need to be
946 * careful to have up-to-date data by first clflushing. Don't
947 * overcomplicate things and flush the entire patch. */
948 partial_cacheline_write = needs_clflush_before &&
949 ((shmem_page_offset | page_length)
950 & (boot_cpu_data.x86_clflush_size - 1));
951
952 page = sg_page(sg);
953 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
954 (page_to_phys(page) & (1 << 17)) != 0;
955
956 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
957 user_data, page_do_bit17_swizzling,
958 partial_cacheline_write,
959 needs_clflush_after);
960 if (ret == 0)
961 goto next_page;
962
963 hit_slowpath = 1;
964 mutex_unlock(&dev->struct_mutex);
965 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
966 user_data, page_do_bit17_swizzling,
967 partial_cacheline_write,
968 needs_clflush_after);
969
970 mutex_lock(&dev->struct_mutex);
971
972 next_page:
973 set_page_dirty(page);
974 mark_page_accessed(page);
975
976 if (ret)
977 goto out;
978
979 remain -= page_length;
980 user_data += page_length;
981 offset += page_length;
982 }
983 #endif
984
985 out:
986 i915_gem_object_unpin_pages(obj);
987
988 if (hit_slowpath) {
989 /* Fixup: Kill any reinstated backing storage pages */
990 if (obj->madv == __I915_MADV_PURGED)
991 i915_gem_object_truncate(obj);
992 /* and flush dirty cachelines in case the object isn't in the cpu write
993 * domain anymore. */
994 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
995 i915_gem_clflush_object(obj);
996 i915_gem_chipset_flush(dev);
997 }
998 }
999
1000 if (needs_clflush_after)
1001 i915_gem_chipset_flush(dev);
1002
1003 return ret;
1004 }
1005
1006 /**
1007 * Writes data to the object referenced by handle.
1008 *
1009 * On error, the contents of the buffer that were to be modified are undefined.
1010 */
1011 int
1012 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1013 struct drm_file *file)
1014 {
1015 struct drm_i915_gem_pwrite *args = data;
1016 struct drm_i915_gem_object *obj;
1017 int ret;
1018
1019 if (args->size == 0)
1020 return 0;
1021
1022 if (!access_ok(VERIFY_READ,
1023 (char __user *)(uintptr_t)args->data_ptr,
1024 args->size))
1025 return -EFAULT;
1026
1027 #ifndef __NetBSD__ /* XXX prefault */
1028 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
1029 args->size);
1030 if (ret)
1031 return -EFAULT;
1032 #endif
1033
1034 ret = i915_mutex_lock_interruptible(dev);
1035 if (ret)
1036 return ret;
1037
1038 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1039 if (&obj->base == NULL) {
1040 ret = -ENOENT;
1041 goto unlock;
1042 }
1043
1044 /* Bounds check destination. */
1045 if (args->offset > obj->base.size ||
1046 args->size > obj->base.size - args->offset) {
1047 ret = -EINVAL;
1048 goto out;
1049 }
1050
1051 #ifndef __NetBSD__ /* XXX drm prime */
1052 /* prime objects have no backing filp to GEM pread/pwrite
1053 * pages from.
1054 */
1055 if (!obj->base.filp) {
1056 ret = -EINVAL;
1057 goto out;
1058 }
1059 #endif
1060
1061 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1062
1063 ret = -EFAULT;
1064 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1065 * it would end up going through the fenced access, and we'll get
1066 * different detiling behavior between reading and writing.
1067 * pread/pwrite currently are reading and writing from the CPU
1068 * perspective, requiring manual detiling by the client.
1069 */
1070 if (obj->phys_obj) {
1071 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1072 goto out;
1073 }
1074
1075 if (obj->cache_level == I915_CACHE_NONE &&
1076 obj->tiling_mode == I915_TILING_NONE &&
1077 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1078 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1079 /* Note that the gtt paths might fail with non-page-backed user
1080 * pointers (e.g. gtt mappings when moving data between
1081 * textures). Fallback to the shmem path in that case. */
1082 }
1083
1084 if (ret == -EFAULT || ret == -ENOSPC)
1085 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1086
1087 out:
1088 drm_gem_object_unreference(&obj->base);
1089 unlock:
1090 mutex_unlock(&dev->struct_mutex);
1091 return ret;
1092 }
1093
1094 int
1095 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1096 bool interruptible)
1097 {
1098 if (atomic_read(&dev_priv->mm.wedged)) {
1099 struct completion *x = &dev_priv->error_completion;
1100 bool recovery_complete;
1101 #ifndef __NetBSD__
1102 unsigned long flags;
1103 #endif
1104
1105 #ifdef __NetBSD__
1106 /*
1107 * XXX This is a horrible kludge. Reading internal
1108 * fields is no good, nor is reading them unlocked, and
1109 * neither is locking it and then unlocking it before
1110 * making a decision.
1111 */
1112 recovery_complete = x->c_done > 0;
1113 #else
1114 /* Give the error handler a chance to run. */
1115 spin_lock_irqsave(&x->wait.lock, flags);
1116 recovery_complete = x->done > 0;
1117 spin_unlock_irqrestore(&x->wait.lock, flags);
1118 #endif
1119
1120 /* Non-interruptible callers can't handle -EAGAIN, hence return
1121 * -EIO unconditionally for these. */
1122 if (!interruptible)
1123 return -EIO;
1124
1125 /* Recovery complete, but still wedged means reset failure. */
1126 if (recovery_complete)
1127 return -EIO;
1128
1129 return -EAGAIN;
1130 }
1131
1132 return 0;
1133 }
1134
1135 /*
1136 * Compare seqno against outstanding lazy request. Emit a request if they are
1137 * equal.
1138 */
1139 static int
1140 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1141 {
1142 int ret;
1143
1144 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1145
1146 ret = 0;
1147 if (seqno == ring->outstanding_lazy_request)
1148 ret = i915_add_request(ring, NULL, NULL);
1149
1150 return ret;
1151 }
1152
1153 /**
1154 * __wait_seqno - wait until execution of seqno has finished
1155 * @ring: the ring expected to report seqno
1156 * @seqno: duh!
1157 * @interruptible: do an interruptible wait (normally yes)
1158 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1159 *
1160 * Returns 0 if the seqno was found within the alloted time. Else returns the
1161 * errno with remaining time filled in timeout argument.
1162 */
1163 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1164 bool interruptible, struct timespec *timeout)
1165 {
1166 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1167 struct timespec before, now, wait_time={1,0};
1168 unsigned long timeout_jiffies;
1169 long end;
1170 bool wait_forever = true;
1171 int ret;
1172
1173 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1174 return 0;
1175
1176 trace_i915_gem_request_wait_begin(ring, seqno);
1177
1178 if (timeout != NULL) {
1179 wait_time = *timeout;
1180 wait_forever = false;
1181 }
1182
1183 timeout_jiffies = timespec_to_jiffies(&wait_time);
1184
1185 if (WARN_ON(!ring->irq_get(ring)))
1186 return -ENODEV;
1187
1188 /* Record current time in case interrupted by signal, or wedged * */
1189 getrawmonotonic(&before);
1190
1191 #define EXIT_COND \
1192 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1193 atomic_read(&dev_priv->mm.wedged))
1194 do {
1195 #ifdef __NetBSD__
1196 unsigned long flags;
1197 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1198 if (interruptible)
1199 DRM_SPIN_TIMED_WAIT_UNTIL(end, &ring->irq_queue,
1200 &dev_priv->irq_lock,
1201 timeout_jiffies,
1202 EXIT_COND);
1203 else
1204 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(end, &ring->irq_queue,
1205 &dev_priv->irq_lock,
1206 timeout_jiffies,
1207 EXIT_COND);
1208 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1209 #else
1210 if (interruptible)
1211 end = wait_event_interruptible_timeout(ring->irq_queue,
1212 EXIT_COND,
1213 timeout_jiffies);
1214 else
1215 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1216 timeout_jiffies);
1217
1218 #endif
1219 ret = i915_gem_check_wedge(dev_priv, interruptible);
1220 if (ret)
1221 end = ret;
1222 } while (end == 0 && wait_forever);
1223
1224 getrawmonotonic(&now);
1225
1226 ring->irq_put(ring);
1227 trace_i915_gem_request_wait_end(ring, seqno);
1228 #undef EXIT_COND
1229
1230 if (timeout) {
1231 struct timespec sleep_time = timespec_sub(now, before);
1232 *timeout = timespec_sub(*timeout, sleep_time);
1233 }
1234
1235 switch (end) {
1236 case -EIO:
1237 case -EAGAIN: /* Wedged */
1238 case -ERESTARTSYS: /* Signal */
1239 case -EINTR:
1240 return (int)end;
1241 case 0: /* Timeout */
1242 if (timeout)
1243 set_normalized_timespec(timeout, 0, 0);
1244 return -ETIME;
1245 default: /* Completed */
1246 WARN_ON(end < 0); /* We're not aware of other errors */
1247 return 0;
1248 }
1249 }
1250
1251 /**
1252 * Waits for a sequence number to be signaled, and cleans up the
1253 * request and object lists appropriately for that event.
1254 */
1255 int
1256 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1257 {
1258 struct drm_device *dev = ring->dev;
1259 struct drm_i915_private *dev_priv = dev->dev_private;
1260 bool interruptible = dev_priv->mm.interruptible;
1261 int ret;
1262
1263 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1264 BUG_ON(seqno == 0);
1265
1266 ret = i915_gem_check_wedge(dev_priv, interruptible);
1267 if (ret)
1268 return ret;
1269
1270 ret = i915_gem_check_olr(ring, seqno);
1271 if (ret)
1272 return ret;
1273
1274 return __wait_seqno(ring, seqno, interruptible, NULL);
1275 }
1276
1277 /**
1278 * Ensures that all rendering to the object has completed and the object is
1279 * safe to unbind from the GTT or access from the CPU.
1280 */
1281 static __must_check int
1282 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1283 bool readonly)
1284 {
1285 struct intel_ring_buffer *ring = obj->ring;
1286 u32 seqno;
1287 int ret;
1288
1289 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1290 if (seqno == 0)
1291 return 0;
1292
1293 ret = i915_wait_seqno(ring, seqno);
1294 if (ret)
1295 return ret;
1296
1297 i915_gem_retire_requests_ring(ring);
1298
1299 /* Manually manage the write flush as we may have not yet
1300 * retired the buffer.
1301 */
1302 if (obj->last_write_seqno &&
1303 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1304 obj->last_write_seqno = 0;
1305 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1306 }
1307
1308 return 0;
1309 }
1310
1311 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1312 * as the object state may change during this call.
1313 */
1314 static __must_check int
1315 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1316 bool readonly)
1317 {
1318 struct drm_device *dev = obj->base.dev;
1319 struct drm_i915_private *dev_priv = dev->dev_private;
1320 struct intel_ring_buffer *ring = obj->ring;
1321 u32 seqno;
1322 int ret;
1323
1324 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1325 BUG_ON(!dev_priv->mm.interruptible);
1326
1327 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1328 if (seqno == 0)
1329 return 0;
1330
1331 ret = i915_gem_check_wedge(dev_priv, true);
1332 if (ret)
1333 return ret;
1334
1335 ret = i915_gem_check_olr(ring, seqno);
1336 if (ret)
1337 return ret;
1338
1339 mutex_unlock(&dev->struct_mutex);
1340 ret = __wait_seqno(ring, seqno, true, NULL);
1341 mutex_lock(&dev->struct_mutex);
1342
1343 i915_gem_retire_requests_ring(ring);
1344
1345 /* Manually manage the write flush as we may have not yet
1346 * retired the buffer.
1347 */
1348 if (obj->last_write_seqno &&
1349 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1350 obj->last_write_seqno = 0;
1351 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1352 }
1353
1354 return ret;
1355 }
1356
1357 /**
1358 * Called when user space prepares to use an object with the CPU, either
1359 * through the mmap ioctl's mapping or a GTT mapping.
1360 */
1361 int
1362 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1363 struct drm_file *file)
1364 {
1365 struct drm_i915_gem_set_domain *args = data;
1366 struct drm_i915_gem_object *obj;
1367 uint32_t read_domains = args->read_domains;
1368 uint32_t write_domain = args->write_domain;
1369 int ret;
1370
1371 /* Only handle setting domains to types used by the CPU. */
1372 if (write_domain & I915_GEM_GPU_DOMAINS)
1373 return -EINVAL;
1374
1375 if (read_domains & I915_GEM_GPU_DOMAINS)
1376 return -EINVAL;
1377
1378 /* Having something in the write domain implies it's in the read
1379 * domain, and only that read domain. Enforce that in the request.
1380 */
1381 if (write_domain != 0 && read_domains != write_domain)
1382 return -EINVAL;
1383
1384 ret = i915_mutex_lock_interruptible(dev);
1385 if (ret)
1386 return ret;
1387
1388 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1389 if (&obj->base == NULL) {
1390 ret = -ENOENT;
1391 goto unlock;
1392 }
1393
1394 /* Try to flush the object off the GPU without holding the lock.
1395 * We will repeat the flush holding the lock in the normal manner
1396 * to catch cases where we are gazumped.
1397 */
1398 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1399 if (ret)
1400 goto unref;
1401
1402 if (read_domains & I915_GEM_DOMAIN_GTT) {
1403 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1404
1405 /* Silently promote "you're not bound, there was nothing to do"
1406 * to success, since the client was just asking us to
1407 * make sure everything was done.
1408 */
1409 if (ret == -EINVAL)
1410 ret = 0;
1411 } else {
1412 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1413 }
1414
1415 unref:
1416 drm_gem_object_unreference(&obj->base);
1417 unlock:
1418 mutex_unlock(&dev->struct_mutex);
1419 return ret;
1420 }
1421
1422 /**
1423 * Called when user space has done writes to this buffer
1424 */
1425 int
1426 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1427 struct drm_file *file)
1428 {
1429 struct drm_i915_gem_sw_finish *args = data;
1430 struct drm_i915_gem_object *obj;
1431 int ret = 0;
1432
1433 ret = i915_mutex_lock_interruptible(dev);
1434 if (ret)
1435 return ret;
1436
1437 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1438 if (&obj->base == NULL) {
1439 ret = -ENOENT;
1440 goto unlock;
1441 }
1442
1443 /* Pinned buffers may be scanout, so flush the cache */
1444 if (obj->pin_count)
1445 i915_gem_object_flush_cpu_write_domain(obj);
1446
1447 drm_gem_object_unreference(&obj->base);
1448 unlock:
1449 mutex_unlock(&dev->struct_mutex);
1450 return ret;
1451 }
1452
1453 /**
1454 * Maps the contents of an object, returning the address it is mapped
1455 * into.
1456 *
1457 * While the mapping holds a reference on the contents of the object, it doesn't
1458 * imply a ref on the object itself.
1459 */
1460 int
1461 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1462 struct drm_file *file)
1463 {
1464 struct drm_i915_gem_mmap *args = data;
1465 struct drm_gem_object *obj;
1466 unsigned long addr;
1467 #ifdef __NetBSD__
1468 int ret;
1469 #endif
1470
1471 obj = drm_gem_object_lookup(dev, file, args->handle);
1472 if (obj == NULL)
1473 return -ENOENT;
1474
1475 #ifndef __NetBSD__ /* XXX drm prime */
1476 /* prime objects have no backing filp to GEM mmap
1477 * pages from.
1478 */
1479 if (!obj->filp) {
1480 drm_gem_object_unreference_unlocked(obj);
1481 return -EINVAL;
1482 }
1483 #endif
1484
1485 #ifdef __NetBSD__
1486 addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
1487 (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
1488 /* XXX errno NetBSD->Linux */
1489 ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
1490 obj->gemo_shm_uao, args->offset, 0,
1491 UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
1492 (VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
1493 UVM_FLAG_COPYONW));
1494 if (ret)
1495 return ret;
1496 #else
1497 addr = vm_mmap(obj->filp, 0, args->size,
1498 PROT_READ | PROT_WRITE, MAP_SHARED,
1499 args->offset);
1500 drm_gem_object_unreference_unlocked(obj);
1501 if (IS_ERR((void *)addr))
1502 return addr;
1503 #endif
1504
1505 args->addr_ptr = (uint64_t) addr;
1506
1507 return 0;
1508 }
1509
1510 #ifdef __NetBSD__ /* XXX gem gtt fault */
1511 static int i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
1512 struct vm_page **, int, int, vm_prot_t, int, paddr_t);
1513
1514 int
1515 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1516 int npages, int centeridx, vm_prot_t access_type, int flags)
1517 {
1518 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1519 struct drm_gem_object *gem_obj =
1520 container_of(uobj, struct drm_gem_object, gemo_uvmobj);
1521 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
1522 struct drm_device *dev = obj->base.dev;
1523 struct drm_i915_private *dev_priv = dev->dev_private;
1524 pgoff_t page_offset;
1525 int ret = 0;
1526 bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
1527
1528 page_offset = (ufi->entry->offset + (vaddr - ufi->entry->start)) >>
1529 PAGE_SHIFT;
1530
1531 ret = i915_mutex_lock_interruptible(dev);
1532 if (ret)
1533 goto out;
1534
1535 trace_i915_gem_object_fault(obj, page_offset, true, write);
1536
1537 /* Now bind it into the GTT if needed */
1538 ret = i915_gem_object_pin(obj, 0, true, false);
1539 if (ret)
1540 goto unlock;
1541
1542 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1543 if (ret)
1544 goto unpin;
1545
1546 ret = i915_gem_object_get_fence(obj);
1547 if (ret)
1548 goto unpin;
1549
1550 obj->fault_mappable = true;
1551
1552 /* Finally, remap it using the new GTT offset */
1553 /* XXX errno NetBSD->Linux */
1554 ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
1555 flags, (dev_priv->mm.gtt_base_addr + obj->gtt_offset));
1556 unpin:
1557 i915_gem_object_unpin(obj);
1558 unlock:
1559 mutex_unlock(&dev->struct_mutex);
1560 out:
1561 return ret;
1562 }
1563
1564 /*
1565 * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
1566 *
1567 * XXX pmap_enter_default instead of pmap_enter because of a problem
1568 * with using weak aliases in kernel modules or something.
1569 */
1570 int pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
1571
1572 static int
1573 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1574 int npages, int centeridx, vm_prot_t access_type, int flags,
1575 paddr_t gtt_paddr)
1576 {
1577 struct vm_map_entry *entry = ufi->entry;
1578 struct uvm_object *uobj = entry->object.uvm_obj;
1579 vaddr_t curr_va;
1580 off_t curr_offset;
1581 paddr_t paddr;
1582 u_int mmapflags;
1583 int lcv, retval;
1584 vm_prot_t mapprot;
1585 UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
1586 UVMHIST_LOG(maphist," flags=%d", flags,0,0,0);
1587
1588 /*
1589 * we do not allow device mappings to be mapped copy-on-write
1590 * so we kill any attempt to do so here.
1591 */
1592
1593 if (UVM_ET_ISCOPYONWRITE(entry)) {
1594 UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
1595 entry->etype, 0,0,0);
1596 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
1597 return(EIO);
1598 }
1599
1600 /*
1601 * now we must determine the offset in udv to use and the VA to
1602 * use for pmap_enter. note that we always use orig_map's pmap
1603 * for pmap_enter (even if we have a submap). since virtual
1604 * addresses in a submap must match the main map, this is ok.
1605 */
1606
1607 /* udv offset = (offset from start of entry) + entry's offset */
1608 curr_offset = entry->offset + (vaddr - entry->start);
1609 /* pmap va = vaddr (virtual address of pps[0]) */
1610 curr_va = vaddr;
1611
1612 /*
1613 * loop over the page range entering in as needed
1614 */
1615
1616 retval = 0;
1617 for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
1618 curr_va += PAGE_SIZE) {
1619 if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
1620 continue;
1621
1622 if (pps[lcv] == PGO_DONTCARE)
1623 continue;
1624
1625 paddr = (gtt_paddr + curr_offset);
1626 mmapflags = 0;
1627 mapprot = ufi->entry->protection;
1628 UVMHIST_LOG(maphist,
1629 " MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
1630 ufi->orig_map->pmap, curr_va, paddr, mapprot);
1631 if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
1632 PMAP_CANFAIL | mapprot | mmapflags) != 0) {
1633 /*
1634 * pmap_enter() didn't have the resource to
1635 * enter this mapping. Unlock everything,
1636 * wait for the pagedaemon to free up some
1637 * pages, and then tell uvm_fault() to start
1638 * the fault again.
1639 *
1640 * XXX Needs some rethinking for the PGO_ALLPAGES
1641 * XXX case.
1642 */
1643 pmap_update(ufi->orig_map->pmap); /* sync what we have so far */
1644 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap,
1645 uobj);
1646 uvm_wait("i915flt");
1647 return (ERESTART);
1648 }
1649 }
1650
1651 pmap_update(ufi->orig_map->pmap);
1652 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
1653 return (retval);
1654 }
1655 #else
1656 /**
1657 * i915_gem_fault - fault a page into the GTT
1658 * vma: VMA in question
1659 * vmf: fault info
1660 *
1661 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1662 * from userspace. The fault handler takes care of binding the object to
1663 * the GTT (if needed), allocating and programming a fence register (again,
1664 * only if needed based on whether the old reg is still valid or the object
1665 * is tiled) and inserting a new PTE into the faulting process.
1666 *
1667 * Note that the faulting process may involve evicting existing objects
1668 * from the GTT and/or fence registers to make room. So performance may
1669 * suffer if the GTT working set is large or there are few fence registers
1670 * left.
1671 */
1672 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1673 {
1674 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1675 struct drm_device *dev = obj->base.dev;
1676 drm_i915_private_t *dev_priv = dev->dev_private;
1677 pgoff_t page_offset;
1678 unsigned long pfn;
1679 int ret = 0;
1680 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1681
1682 /* We don't use vmf->pgoff since that has the fake offset */
1683 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1684 PAGE_SHIFT;
1685
1686 ret = i915_mutex_lock_interruptible(dev);
1687 if (ret)
1688 goto out;
1689
1690 trace_i915_gem_object_fault(obj, page_offset, true, write);
1691
1692 /* Now bind it into the GTT if needed */
1693 ret = i915_gem_object_pin(obj, 0, true, false);
1694 if (ret)
1695 goto unlock;
1696
1697 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1698 if (ret)
1699 goto unpin;
1700
1701 ret = i915_gem_object_get_fence(obj);
1702 if (ret)
1703 goto unpin;
1704
1705 obj->fault_mappable = true;
1706
1707 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1708 page_offset;
1709
1710 /* Finally, remap it using the new GTT offset */
1711 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1712 unpin:
1713 i915_gem_object_unpin(obj);
1714 unlock:
1715 mutex_unlock(&dev->struct_mutex);
1716 out:
1717 switch (ret) {
1718 case -EIO:
1719 /* If this -EIO is due to a gpu hang, give the reset code a
1720 * chance to clean up the mess. Otherwise return the proper
1721 * SIGBUS. */
1722 if (!atomic_read(&dev_priv->mm.wedged))
1723 return VM_FAULT_SIGBUS;
1724 case -EAGAIN:
1725 /* Give the error handler a chance to run and move the
1726 * objects off the GPU active list. Next time we service the
1727 * fault, we should be able to transition the page into the
1728 * GTT without touching the GPU (and so avoid further
1729 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1730 * with coherency, just lost writes.
1731 */
1732 set_need_resched();
1733 case 0:
1734 case -ERESTARTSYS:
1735 case -EINTR:
1736 case -EBUSY:
1737 /*
1738 * EBUSY is ok: this just means that another thread
1739 * already did the job.
1740 */
1741 return VM_FAULT_NOPAGE;
1742 case -ENOMEM:
1743 return VM_FAULT_OOM;
1744 case -ENOSPC:
1745 return VM_FAULT_SIGBUS;
1746 default:
1747 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1748 return VM_FAULT_SIGBUS;
1749 }
1750 }
1751 #endif
1752
1753 /**
1754 * i915_gem_release_mmap - remove physical page mappings
1755 * @obj: obj in question
1756 *
1757 * Preserve the reservation of the mmapping with the DRM core code, but
1758 * relinquish ownership of the pages back to the system.
1759 *
1760 * It is vital that we remove the page mapping if we have mapped a tiled
1761 * object through the GTT and then lose the fence register due to
1762 * resource pressure. Similarly if the object has been moved out of the
1763 * aperture, than pages mapped into userspace must be revoked. Removing the
1764 * mapping will then trigger a page fault on the next user access, allowing
1765 * fixup by i915_gem_fault().
1766 */
1767 void
1768 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1769 {
1770 if (!obj->fault_mappable)
1771 return;
1772
1773 #ifdef __NetBSD__ /* XXX gem gtt fault */
1774 {
1775 struct vm_page *page;
1776
1777 mutex_enter(obj->base.gemo_shm_uao->vmobjlock);
1778 KASSERT(obj->pages != NULL);
1779 /* Force a fresh fault for each page. */
1780 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
1781 pmap_page_protect(page, VM_PROT_NONE);
1782 mutex_exit(obj->base.gemo_shm_uao->vmobjlock);
1783 }
1784 #else
1785 if (obj->base.dev->dev_mapping)
1786 unmap_mapping_range(obj->base.dev->dev_mapping,
1787 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1788 obj->base.size, 1);
1789 #endif
1790
1791 obj->fault_mappable = false;
1792 }
1793
1794 static uint32_t
1795 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1796 {
1797 uint32_t gtt_size;
1798
1799 if (INTEL_INFO(dev)->gen >= 4 ||
1800 tiling_mode == I915_TILING_NONE)
1801 return size;
1802
1803 /* Previous chips need a power-of-two fence region when tiling */
1804 if (INTEL_INFO(dev)->gen == 3)
1805 gtt_size = 1024*1024;
1806 else
1807 gtt_size = 512*1024;
1808
1809 while (gtt_size < size)
1810 gtt_size <<= 1;
1811
1812 return gtt_size;
1813 }
1814
1815 /**
1816 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1817 * @obj: object to check
1818 *
1819 * Return the required GTT alignment for an object, taking into account
1820 * potential fence register mapping.
1821 */
1822 static uint32_t
1823 i915_gem_get_gtt_alignment(struct drm_device *dev,
1824 uint32_t size,
1825 int tiling_mode)
1826 {
1827 /*
1828 * Minimum alignment is 4k (GTT page size), but might be greater
1829 * if a fence register is needed for the object.
1830 */
1831 if (INTEL_INFO(dev)->gen >= 4 ||
1832 tiling_mode == I915_TILING_NONE)
1833 return 4096;
1834
1835 /*
1836 * Previous chips need to be aligned to the size of the smallest
1837 * fence register that can contain the object.
1838 */
1839 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1840 }
1841
1842 /**
1843 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1844 * unfenced object
1845 * @dev: the device
1846 * @size: size of the object
1847 * @tiling_mode: tiling mode of the object
1848 *
1849 * Return the required GTT alignment for an object, only taking into account
1850 * unfenced tiled surface requirements.
1851 */
1852 uint32_t
1853 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1854 uint32_t size,
1855 int tiling_mode)
1856 {
1857 /*
1858 * Minimum alignment is 4k (GTT page size) for sane hw.
1859 */
1860 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1861 tiling_mode == I915_TILING_NONE)
1862 return 4096;
1863
1864 /* Previous hardware however needs to be aligned to a power-of-two
1865 * tile height. The simplest method for determining this is to reuse
1866 * the power-of-tile object size.
1867 */
1868 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1869 }
1870
1871 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1872 {
1873 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1874 int ret;
1875
1876 if (obj->base.map_list.map)
1877 return 0;
1878
1879 dev_priv->mm.shrinker_no_lock_stealing = true;
1880
1881 ret = drm_gem_create_mmap_offset(&obj->base);
1882 if (ret != -ENOSPC)
1883 goto out;
1884
1885 /* Badly fragmented mmap space? The only way we can recover
1886 * space is by destroying unwanted objects. We can't randomly release
1887 * mmap_offsets as userspace expects them to be persistent for the
1888 * lifetime of the objects. The closest we can is to release the
1889 * offsets on purgeable objects by truncating it and marking it purged,
1890 * which prevents userspace from ever using that object again.
1891 */
1892 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1893 ret = drm_gem_create_mmap_offset(&obj->base);
1894 if (ret != -ENOSPC)
1895 goto out;
1896
1897 i915_gem_shrink_all(dev_priv);
1898 ret = drm_gem_create_mmap_offset(&obj->base);
1899 out:
1900 dev_priv->mm.shrinker_no_lock_stealing = false;
1901
1902 return ret;
1903 }
1904
1905 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1906 {
1907 if (!obj->base.map_list.map)
1908 return;
1909
1910 drm_gem_free_mmap_offset(&obj->base);
1911 }
1912
1913 int
1914 i915_gem_mmap_gtt(struct drm_file *file,
1915 struct drm_device *dev,
1916 uint32_t handle,
1917 uint64_t *offset)
1918 {
1919 struct drm_i915_private *dev_priv = dev->dev_private;
1920 struct drm_i915_gem_object *obj;
1921 int ret;
1922
1923 ret = i915_mutex_lock_interruptible(dev);
1924 if (ret)
1925 return ret;
1926
1927 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1928 if (&obj->base == NULL) {
1929 ret = -ENOENT;
1930 goto unlock;
1931 }
1932
1933 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1934 ret = -E2BIG;
1935 goto out;
1936 }
1937
1938 if (obj->madv != I915_MADV_WILLNEED) {
1939 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1940 ret = -EINVAL;
1941 goto out;
1942 }
1943
1944 ret = i915_gem_object_create_mmap_offset(obj);
1945 if (ret)
1946 goto out;
1947
1948 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1949
1950 out:
1951 drm_gem_object_unreference(&obj->base);
1952 unlock:
1953 mutex_unlock(&dev->struct_mutex);
1954 return ret;
1955 }
1956
1957 /**
1958 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1959 * @dev: DRM device
1960 * @data: GTT mapping ioctl data
1961 * @file: GEM object info
1962 *
1963 * Simply returns the fake offset to userspace so it can mmap it.
1964 * The mmap call will end up in drm_gem_mmap(), which will set things
1965 * up so we can get faults in the handler above.
1966 *
1967 * The fault handler will take care of binding the object into the GTT
1968 * (since it may have been evicted to make room for something), allocating
1969 * a fence register, and mapping the appropriate aperture address into
1970 * userspace.
1971 */
1972 int
1973 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1974 struct drm_file *file)
1975 {
1976 struct drm_i915_gem_mmap_gtt *args = data;
1977
1978 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1979 }
1980
1981 /* Immediately discard the backing storage */
1982 static void
1983 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1984 {
1985 #ifndef __NetBSD__
1986 struct inode *inode;
1987 #endif
1988
1989 i915_gem_object_free_mmap_offset(obj);
1990
1991 #ifdef __NetBSD__
1992 {
1993 struct uvm_object *const uobj = obj->base.gemo_shm_uao;
1994
1995 if (uobj != NULL) {
1996 /* XXX Calling pgo_put like this is bogus. */
1997 mutex_enter(uobj->vmobjlock);
1998 (*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
1999 (PGO_ALLPAGES | PGO_FREE));
2000 }
2001 }
2002 #else
2003 if (obj->base.filp == NULL)
2004 return;
2005
2006 /* Our goal here is to return as much of the memory as
2007 * is possible back to the system as we are called from OOM.
2008 * To do this we must instruct the shmfs to drop all of its
2009 * backing pages, *now*.
2010 */
2011 inode = obj->base.filp->f_path.dentry->d_inode;
2012 shmem_truncate_range(inode, 0, (loff_t)-1);
2013 #endif
2014
2015 obj->madv = __I915_MADV_PURGED;
2016 }
2017
2018 static inline int
2019 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
2020 {
2021 return obj->madv == I915_MADV_DONTNEED;
2022 }
2023
2024 #ifdef __NetBSD__
2025 static void
2026 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2027 {
2028 struct drm_device *const dev = obj->base.dev;
2029 int ret;
2030
2031 /* XXX Cargo-culted from the Linux code. */
2032 BUG_ON(obj->madv == __I915_MADV_PURGED);
2033
2034 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2035 if (ret) {
2036 WARN_ON(ret != -EIO);
2037 i915_gem_clflush_object(obj);
2038 obj->base.read_domains = obj->base.write_domain =
2039 I915_GEM_DOMAIN_CPU;
2040 }
2041
2042 if (i915_gem_object_needs_bit17_swizzle(obj))
2043 i915_gem_object_save_bit_17_swizzle(obj);
2044
2045 /* XXX Maintain dirty flag? */
2046
2047 bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
2048 bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2049 obj->base.size, obj->pages, obj->igo_nsegs);
2050
2051 kfree(obj->pages);
2052 }
2053 #else
2054 static void
2055 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2056 {
2057 int page_count = obj->base.size / PAGE_SIZE;
2058 struct scatterlist *sg;
2059 int ret, i;
2060
2061 BUG_ON(obj->madv == __I915_MADV_PURGED);
2062
2063 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2064 if (ret) {
2065 /* In the event of a disaster, abandon all caches and
2066 * hope for the best.
2067 */
2068 WARN_ON(ret != -EIO);
2069 i915_gem_clflush_object(obj);
2070 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2071 }
2072
2073 if (i915_gem_object_needs_bit17_swizzle(obj))
2074 i915_gem_object_save_bit_17_swizzle(obj);
2075
2076 if (obj->madv == I915_MADV_DONTNEED)
2077 obj->dirty = 0;
2078
2079 for_each_sg(obj->pages->sgl, sg, page_count, i) {
2080 struct page *page = sg_page(sg);
2081
2082 if (obj->dirty)
2083 set_page_dirty(page);
2084
2085 if (obj->madv == I915_MADV_WILLNEED)
2086 mark_page_accessed(page);
2087
2088 page_cache_release(page);
2089 }
2090 obj->dirty = 0;
2091
2092 sg_free_table(obj->pages);
2093 kfree(obj->pages);
2094 }
2095 #endif
2096
2097 static int
2098 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2099 {
2100 const struct drm_i915_gem_object_ops *ops = obj->ops;
2101
2102 if (obj->pages == NULL)
2103 return 0;
2104
2105 BUG_ON(obj->gtt_space);
2106
2107 if (obj->pages_pin_count)
2108 return -EBUSY;
2109
2110 /* ->put_pages might need to allocate memory for the bit17 swizzle
2111 * array, hence protect them from being reaped by removing them from gtt
2112 * lists early. */
2113 list_del(&obj->gtt_list);
2114
2115 ops->put_pages(obj);
2116 obj->pages = NULL;
2117
2118 if (i915_gem_object_is_purgeable(obj))
2119 i915_gem_object_truncate(obj);
2120
2121 return 0;
2122 }
2123
2124 static long
2125 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
2126 bool purgeable_only)
2127 {
2128 struct drm_i915_gem_object *obj, *next;
2129 long count = 0;
2130
2131 list_for_each_entry_safe(obj, next,
2132 &dev_priv->mm.unbound_list,
2133 gtt_list) {
2134 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2135 i915_gem_object_put_pages(obj) == 0) {
2136 count += obj->base.size >> PAGE_SHIFT;
2137 if (count >= target)
2138 return count;
2139 }
2140 }
2141
2142 list_for_each_entry_safe(obj, next,
2143 &dev_priv->mm.inactive_list,
2144 mm_list) {
2145 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2146 i915_gem_object_unbind(obj) == 0 &&
2147 i915_gem_object_put_pages(obj) == 0) {
2148 count += obj->base.size >> PAGE_SHIFT;
2149 if (count >= target)
2150 return count;
2151 }
2152 }
2153
2154 return count;
2155 }
2156
2157 static long
2158 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2159 {
2160 return __i915_gem_shrink(dev_priv, target, true);
2161 }
2162
2163 static void
2164 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2165 {
2166 struct drm_i915_gem_object *obj, *next;
2167
2168 i915_gem_evict_everything(dev_priv->dev);
2169
2170 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
2171 i915_gem_object_put_pages(obj);
2172 }
2173
2174 #ifdef __NetBSD__
2175 static int
2176 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2177 {
2178 struct drm_device *const dev = obj->base.dev;
2179 struct vm_page *page;
2180 int error;
2181
2182 /* XXX Cargo-culted from the Linux code. */
2183 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2184 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2185
2186 KASSERT(obj->pages == NULL);
2187 TAILQ_INIT(&obj->igo_pageq);
2188 obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
2189 sizeof(obj->pages[0]), GFP_KERNEL);
2190 if (obj->pages == NULL) {
2191 error = -ENOMEM;
2192 goto fail0;
2193 }
2194
2195 /* XXX errno NetBSD->Linux */
2196 error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
2197 0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
2198 (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
2199 if (error)
2200 /* XXX Try i915_gem_purge, i915_gem_shrink_all. */
2201 goto fail1;
2202 KASSERT(0 < obj->igo_nsegs);
2203 KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
2204
2205 /*
2206 * Check that the paddrs will fit in 40 bits.
2207 *
2208 * XXX This is wrong; we ought to pass this constraint to
2209 * bus_dmamem_wire_uvm_object instead.
2210 */
2211 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
2212 if (VM_PAGE_TO_PHYS(page) & ~0xffffffffffULL) {
2213 DRM_ERROR("GEM physical address exceeds 40 bits"
2214 ": %"PRIxMAX"\n",
2215 (uintmax_t)VM_PAGE_TO_PHYS(page));
2216 goto fail2;
2217 }
2218 }
2219
2220 /* XXX errno NetBSD->Linux */
2221 error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
2222 PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
2223 if (error)
2224 goto fail2;
2225
2226 /* XXX Cargo-culted from the Linux code. */
2227 if (i915_gem_object_needs_bit17_swizzle(obj))
2228 i915_gem_object_do_bit_17_swizzle(obj);
2229
2230 /* Success! */
2231 return 0;
2232
2233 fail2: bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2234 obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
2235 fail1: kfree(obj->pages);
2236 obj->pages = NULL;
2237 fail0: return error;
2238 }
2239 #else
2240 static int
2241 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2242 {
2243 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2244 int page_count, i;
2245 struct address_space *mapping;
2246 struct sg_table *st;
2247 struct scatterlist *sg;
2248 struct page *page;
2249 gfp_t gfp;
2250
2251 /* Assert that the object is not currently in any GPU domain. As it
2252 * wasn't in the GTT, there shouldn't be any way it could have been in
2253 * a GPU cache
2254 */
2255 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2256 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2257
2258 st = kmalloc(sizeof(*st), GFP_KERNEL);
2259 if (st == NULL)
2260 return -ENOMEM;
2261
2262 page_count = obj->base.size / PAGE_SIZE;
2263 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2264 sg_free_table(st);
2265 kfree(st);
2266 return -ENOMEM;
2267 }
2268
2269 /* Get the list of pages out of our struct file. They'll be pinned
2270 * at this point until we release them.
2271 *
2272 * Fail silently without starting the shrinker
2273 */
2274 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
2275 gfp = mapping_gfp_mask(mapping);
2276 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2277 gfp &= ~(__GFP_IO | __GFP_WAIT);
2278 for_each_sg(st->sgl, sg, page_count, i) {
2279 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2280 if (IS_ERR(page)) {
2281 i915_gem_purge(dev_priv, page_count);
2282 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2283 }
2284 if (IS_ERR(page)) {
2285 /* We've tried hard to allocate the memory by reaping
2286 * our own buffer, now let the real VM do its job and
2287 * go down in flames if truly OOM.
2288 */
2289 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2290 gfp |= __GFP_IO | __GFP_WAIT;
2291
2292 i915_gem_shrink_all(dev_priv);
2293 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2294 if (IS_ERR(page))
2295 goto err_pages;
2296
2297 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2298 gfp &= ~(__GFP_IO | __GFP_WAIT);
2299 }
2300
2301 sg_set_page(sg, page, PAGE_SIZE, 0);
2302 }
2303
2304 obj->pages = st;
2305
2306 if (i915_gem_object_needs_bit17_swizzle(obj))
2307 i915_gem_object_do_bit_17_swizzle(obj);
2308
2309 return 0;
2310
2311 err_pages:
2312 for_each_sg(st->sgl, sg, i, page_count)
2313 page_cache_release(sg_page(sg));
2314 sg_free_table(st);
2315 kfree(st);
2316 return PTR_ERR(page);
2317 }
2318 #endif
2319
2320 /* Ensure that the associated pages are gathered from the backing storage
2321 * and pinned into our object. i915_gem_object_get_pages() may be called
2322 * multiple times before they are released by a single call to
2323 * i915_gem_object_put_pages() - once the pages are no longer referenced
2324 * either as a result of memory pressure (reaping pages under the shrinker)
2325 * or as the object is itself released.
2326 */
2327 int
2328 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2329 {
2330 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2331 const struct drm_i915_gem_object_ops *ops = obj->ops;
2332 int ret;
2333
2334 if (obj->pages)
2335 return 0;
2336
2337 BUG_ON(obj->pages_pin_count);
2338
2339 ret = ops->get_pages(obj);
2340 if (ret)
2341 return ret;
2342
2343 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2344 return 0;
2345 }
2346
2347 void
2348 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2349 struct intel_ring_buffer *ring)
2350 {
2351 struct drm_device *dev = obj->base.dev;
2352 struct drm_i915_private *dev_priv = dev->dev_private;
2353 u32 seqno = intel_ring_get_seqno(ring);
2354
2355 BUG_ON(ring == NULL);
2356 obj->ring = ring;
2357
2358 /* Add a reference if we're newly entering the active list. */
2359 if (!obj->active) {
2360 drm_gem_object_reference(&obj->base);
2361 obj->active = 1;
2362 }
2363
2364 /* Move from whatever list we were on to the tail of execution. */
2365 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
2366 list_move_tail(&obj->ring_list, &ring->active_list);
2367
2368 obj->last_read_seqno = seqno;
2369
2370 if (obj->fenced_gpu_access) {
2371 obj->last_fenced_seqno = seqno;
2372
2373 /* Bump MRU to take account of the delayed flush */
2374 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2375 struct drm_i915_fence_reg *reg;
2376
2377 reg = &dev_priv->fence_regs[obj->fence_reg];
2378 list_move_tail(®->lru_list,
2379 &dev_priv->mm.fence_list);
2380 }
2381 }
2382 }
2383
2384 static void
2385 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2386 {
2387 struct drm_device *dev = obj->base.dev;
2388 struct drm_i915_private *dev_priv = dev->dev_private;
2389
2390 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2391 BUG_ON(!obj->active);
2392
2393 if (obj->pin_count) /* are we a framebuffer? */
2394 intel_mark_fb_idle(obj);
2395
2396 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2397
2398 list_del_init(&obj->ring_list);
2399 obj->ring = NULL;
2400
2401 obj->last_read_seqno = 0;
2402 obj->last_write_seqno = 0;
2403 obj->base.write_domain = 0;
2404
2405 obj->last_fenced_seqno = 0;
2406 obj->fenced_gpu_access = false;
2407
2408 obj->active = 0;
2409 drm_gem_object_unreference(&obj->base);
2410
2411 WARN_ON(i915_verify_lists(dev));
2412 }
2413
2414 static int
2415 i915_gem_handle_seqno_wrap(struct drm_device *dev)
2416 {
2417 struct drm_i915_private *dev_priv = dev->dev_private;
2418 struct intel_ring_buffer *ring;
2419 int ret, i, j;
2420
2421 /* The hardware uses various monotonic 32-bit counters, if we
2422 * detect that they will wraparound we need to idle the GPU
2423 * and reset those counters.
2424 */
2425 ret = 0;
2426 for_each_ring(ring, dev_priv, i) {
2427 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2428 ret |= ring->sync_seqno[j] != 0;
2429 }
2430 if (ret == 0)
2431 return ret;
2432
2433 ret = i915_gpu_idle(dev);
2434 if (ret)
2435 return ret;
2436
2437 i915_gem_retire_requests(dev);
2438 for_each_ring(ring, dev_priv, i) {
2439 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2440 ring->sync_seqno[j] = 0;
2441 }
2442
2443 return 0;
2444 }
2445
2446 int
2447 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2448 {
2449 struct drm_i915_private *dev_priv = dev->dev_private;
2450
2451 /* reserve 0 for non-seqno */
2452 if (dev_priv->next_seqno == 0) {
2453 int ret = i915_gem_handle_seqno_wrap(dev);
2454 if (ret)
2455 return ret;
2456
2457 dev_priv->next_seqno = 1;
2458 }
2459
2460 *seqno = dev_priv->next_seqno++;
2461 return 0;
2462 }
2463
2464 int
2465 i915_add_request(struct intel_ring_buffer *ring,
2466 struct drm_file *file,
2467 u32 *out_seqno)
2468 {
2469 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2470 struct drm_i915_gem_request *request;
2471 u32 request_ring_position;
2472 int was_empty;
2473 int ret;
2474
2475 /*
2476 * Emit any outstanding flushes - execbuf can fail to emit the flush
2477 * after having emitted the batchbuffer command. Hence we need to fix
2478 * things up similar to emitting the lazy request. The difference here
2479 * is that the flush _must_ happen before the next request, no matter
2480 * what.
2481 */
2482 ret = intel_ring_flush_all_caches(ring);
2483 if (ret)
2484 return ret;
2485
2486 request = kmalloc(sizeof(*request), GFP_KERNEL);
2487 if (request == NULL)
2488 return -ENOMEM;
2489
2490
2491 /* Record the position of the start of the request so that
2492 * should we detect the updated seqno part-way through the
2493 * GPU processing the request, we never over-estimate the
2494 * position of the head.
2495 */
2496 request_ring_position = intel_ring_get_tail(ring);
2497
2498 ret = ring->add_request(ring);
2499 if (ret) {
2500 kfree(request);
2501 return ret;
2502 }
2503
2504 request->seqno = intel_ring_get_seqno(ring);
2505 request->ring = ring;
2506 request->tail = request_ring_position;
2507 request->emitted_jiffies = jiffies;
2508 was_empty = list_empty(&ring->request_list);
2509 list_add_tail(&request->list, &ring->request_list);
2510 request->file_priv = NULL;
2511
2512 if (file) {
2513 struct drm_i915_file_private *file_priv = file->driver_priv;
2514
2515 spin_lock(&file_priv->mm.lock);
2516 request->file_priv = file_priv;
2517 list_add_tail(&request->client_list,
2518 &file_priv->mm.request_list);
2519 spin_unlock(&file_priv->mm.lock);
2520 }
2521
2522 trace_i915_gem_request_add(ring, request->seqno);
2523 ring->outstanding_lazy_request = 0;
2524
2525 if (!dev_priv->mm.suspended) {
2526 if (i915_enable_hangcheck) {
2527 mod_timer(&dev_priv->hangcheck_timer,
2528 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2529 }
2530 if (was_empty) {
2531 queue_delayed_work(dev_priv->wq,
2532 &dev_priv->mm.retire_work,
2533 round_jiffies_up_relative(HZ));
2534 intel_mark_busy(dev_priv->dev);
2535 }
2536 }
2537
2538 if (out_seqno)
2539 *out_seqno = request->seqno;
2540 return 0;
2541 }
2542
2543 static inline void
2544 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2545 {
2546 struct drm_i915_file_private *file_priv = request->file_priv;
2547
2548 if (!file_priv)
2549 return;
2550
2551 spin_lock(&file_priv->mm.lock);
2552 if (request->file_priv) {
2553 list_del(&request->client_list);
2554 request->file_priv = NULL;
2555 }
2556 spin_unlock(&file_priv->mm.lock);
2557 }
2558
2559 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2560 struct intel_ring_buffer *ring)
2561 {
2562 while (!list_empty(&ring->request_list)) {
2563 struct drm_i915_gem_request *request;
2564
2565 request = list_first_entry(&ring->request_list,
2566 struct drm_i915_gem_request,
2567 list);
2568
2569 list_del(&request->list);
2570 i915_gem_request_remove_from_client(request);
2571 kfree(request);
2572 }
2573
2574 while (!list_empty(&ring->active_list)) {
2575 struct drm_i915_gem_object *obj;
2576
2577 obj = list_first_entry(&ring->active_list,
2578 struct drm_i915_gem_object,
2579 ring_list);
2580
2581 i915_gem_object_move_to_inactive(obj);
2582 }
2583 }
2584
2585 static void i915_gem_reset_fences(struct drm_device *dev)
2586 {
2587 struct drm_i915_private *dev_priv = dev->dev_private;
2588 int i;
2589
2590 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2591 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2592
2593 i915_gem_write_fence(dev, i, NULL);
2594
2595 if (reg->obj)
2596 i915_gem_object_fence_lost(reg->obj);
2597
2598 reg->pin_count = 0;
2599 reg->obj = NULL;
2600 INIT_LIST_HEAD(®->lru_list);
2601 }
2602
2603 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2604 }
2605
2606 void i915_gem_reset(struct drm_device *dev)
2607 {
2608 struct drm_i915_private *dev_priv = dev->dev_private;
2609 struct drm_i915_gem_object *obj;
2610 struct intel_ring_buffer *ring;
2611 int i;
2612
2613 for_each_ring(ring, dev_priv, i)
2614 i915_gem_reset_ring_lists(dev_priv, ring);
2615
2616 /* Move everything out of the GPU domains to ensure we do any
2617 * necessary invalidation upon reuse.
2618 */
2619 list_for_each_entry(obj,
2620 &dev_priv->mm.inactive_list,
2621 mm_list)
2622 {
2623 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2624 }
2625
2626 /* The fence registers are invalidated so clear them out */
2627 i915_gem_reset_fences(dev);
2628 }
2629
2630 /**
2631 * This function clears the request list as sequence numbers are passed.
2632 */
2633 void
2634 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2635 {
2636 uint32_t seqno;
2637
2638 if (list_empty(&ring->request_list))
2639 return;
2640
2641 WARN_ON(i915_verify_lists(ring->dev));
2642
2643 seqno = ring->get_seqno(ring, true);
2644
2645 while (!list_empty(&ring->request_list)) {
2646 struct drm_i915_gem_request *request;
2647
2648 request = list_first_entry(&ring->request_list,
2649 struct drm_i915_gem_request,
2650 list);
2651
2652 if (!i915_seqno_passed(seqno, request->seqno))
2653 break;
2654
2655 trace_i915_gem_request_retire(ring, request->seqno);
2656 /* We know the GPU must have read the request to have
2657 * sent us the seqno + interrupt, so use the position
2658 * of tail of the request to update the last known position
2659 * of the GPU head.
2660 */
2661 ring->last_retired_head = request->tail;
2662
2663 list_del(&request->list);
2664 i915_gem_request_remove_from_client(request);
2665 kfree(request);
2666 }
2667
2668 /* Move any buffers on the active list that are no longer referenced
2669 * by the ringbuffer to the flushing/inactive lists as appropriate.
2670 */
2671 while (!list_empty(&ring->active_list)) {
2672 struct drm_i915_gem_object *obj;
2673
2674 obj = list_first_entry(&ring->active_list,
2675 struct drm_i915_gem_object,
2676 ring_list);
2677
2678 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2679 break;
2680
2681 i915_gem_object_move_to_inactive(obj);
2682 }
2683
2684 if (unlikely(ring->trace_irq_seqno &&
2685 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2686 ring->irq_put(ring);
2687 ring->trace_irq_seqno = 0;
2688 }
2689
2690 WARN_ON(i915_verify_lists(ring->dev));
2691 }
2692
2693 void
2694 i915_gem_retire_requests(struct drm_device *dev)
2695 {
2696 drm_i915_private_t *dev_priv = dev->dev_private;
2697 struct intel_ring_buffer *ring;
2698 int i;
2699
2700 for_each_ring(ring, dev_priv, i)
2701 i915_gem_retire_requests_ring(ring);
2702 }
2703
2704 static void
2705 i915_gem_retire_work_handler(struct work_struct *work)
2706 {
2707 drm_i915_private_t *dev_priv;
2708 struct drm_device *dev;
2709 struct intel_ring_buffer *ring;
2710 bool idle;
2711 int i;
2712
2713 dev_priv = container_of(work, drm_i915_private_t,
2714 mm.retire_work.work);
2715 dev = dev_priv->dev;
2716
2717 /* Come back later if the device is busy... */
2718 if (!mutex_trylock(&dev->struct_mutex)) {
2719 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2720 round_jiffies_up_relative(HZ));
2721 return;
2722 }
2723
2724 i915_gem_retire_requests(dev);
2725
2726 /* Send a periodic flush down the ring so we don't hold onto GEM
2727 * objects indefinitely.
2728 */
2729 idle = true;
2730 for_each_ring(ring, dev_priv, i) {
2731 if (ring->gpu_caches_dirty)
2732 i915_add_request(ring, NULL, NULL);
2733
2734 idle &= list_empty(&ring->request_list);
2735 }
2736
2737 if (!dev_priv->mm.suspended && !idle)
2738 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2739 round_jiffies_up_relative(HZ));
2740 if (idle)
2741 intel_mark_idle(dev);
2742
2743 mutex_unlock(&dev->struct_mutex);
2744 }
2745
2746 /**
2747 * Ensures that an object will eventually get non-busy by flushing any required
2748 * write domains, emitting any outstanding lazy request and retiring and
2749 * completed requests.
2750 */
2751 static int
2752 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2753 {
2754 int ret;
2755
2756 if (obj->active) {
2757 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2758 if (ret)
2759 return ret;
2760
2761 i915_gem_retire_requests_ring(obj->ring);
2762 }
2763
2764 return 0;
2765 }
2766
2767 /**
2768 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2769 * @DRM_IOCTL_ARGS: standard ioctl arguments
2770 *
2771 * Returns 0 if successful, else an error is returned with the remaining time in
2772 * the timeout parameter.
2773 * -ETIME: object is still busy after timeout
2774 * -ERESTARTSYS: signal interrupted the wait
2775 * -ENONENT: object doesn't exist
2776 * Also possible, but rare:
2777 * -EAGAIN: GPU wedged
2778 * -ENOMEM: damn
2779 * -ENODEV: Internal IRQ fail
2780 * -E?: The add request failed
2781 *
2782 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2783 * non-zero timeout parameter the wait ioctl will wait for the given number of
2784 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2785 * without holding struct_mutex the object may become re-busied before this
2786 * function completes. A similar but shorter * race condition exists in the busy
2787 * ioctl
2788 */
2789 int
2790 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2791 {
2792 struct drm_i915_gem_wait *args = data;
2793 struct drm_i915_gem_object *obj;
2794 struct intel_ring_buffer *ring = NULL;
2795 struct timespec timeout_stack, *timeout = NULL;
2796 u32 seqno = 0;
2797 int ret = 0;
2798
2799 if (args->timeout_ns >= 0) {
2800 timeout_stack = ns_to_timespec(args->timeout_ns);
2801 timeout = &timeout_stack;
2802 }
2803
2804 ret = i915_mutex_lock_interruptible(dev);
2805 if (ret)
2806 return ret;
2807
2808 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2809 if (&obj->base == NULL) {
2810 mutex_unlock(&dev->struct_mutex);
2811 return -ENOENT;
2812 }
2813
2814 /* Need to make sure the object gets inactive eventually. */
2815 ret = i915_gem_object_flush_active(obj);
2816 if (ret)
2817 goto out;
2818
2819 if (obj->active) {
2820 seqno = obj->last_read_seqno;
2821 ring = obj->ring;
2822 }
2823
2824 if (seqno == 0)
2825 goto out;
2826
2827 /* Do this after OLR check to make sure we make forward progress polling
2828 * on this IOCTL with a 0 timeout (like busy ioctl)
2829 */
2830 if (!args->timeout_ns) {
2831 ret = -ETIME;
2832 goto out;
2833 }
2834
2835 drm_gem_object_unreference(&obj->base);
2836 mutex_unlock(&dev->struct_mutex);
2837
2838 ret = __wait_seqno(ring, seqno, true, timeout);
2839 if (timeout) {
2840 WARN_ON(!timespec_valid(timeout));
2841 args->timeout_ns = timespec_to_ns(timeout);
2842 }
2843 return ret;
2844
2845 out:
2846 drm_gem_object_unreference(&obj->base);
2847 mutex_unlock(&dev->struct_mutex);
2848 return ret;
2849 }
2850
2851 /**
2852 * i915_gem_object_sync - sync an object to a ring.
2853 *
2854 * @obj: object which may be in use on another ring.
2855 * @to: ring we wish to use the object on. May be NULL.
2856 *
2857 * This code is meant to abstract object synchronization with the GPU.
2858 * Calling with NULL implies synchronizing the object with the CPU
2859 * rather than a particular GPU ring.
2860 *
2861 * Returns 0 if successful, else propagates up the lower layer error.
2862 */
2863 int
2864 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2865 struct intel_ring_buffer *to)
2866 {
2867 struct intel_ring_buffer *from = obj->ring;
2868 u32 seqno;
2869 int ret, idx;
2870
2871 if (from == NULL || to == from)
2872 return 0;
2873
2874 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2875 return i915_gem_object_wait_rendering(obj, false);
2876
2877 idx = intel_ring_sync_index(from, to);
2878
2879 seqno = obj->last_read_seqno;
2880 if (seqno <= from->sync_seqno[idx])
2881 return 0;
2882
2883 ret = i915_gem_check_olr(obj->ring, seqno);
2884 if (ret)
2885 return ret;
2886
2887 ret = to->sync_to(to, from, seqno);
2888 if (!ret)
2889 /* We use last_read_seqno because sync_to()
2890 * might have just caused seqno wrap under
2891 * the radar.
2892 */
2893 from->sync_seqno[idx] = obj->last_read_seqno;
2894
2895 return ret;
2896 }
2897
2898 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2899 {
2900 u32 old_write_domain, old_read_domains;
2901
2902 /* Act a barrier for all accesses through the GTT */
2903 mb();
2904
2905 /* Force a pagefault for domain tracking on next user access */
2906 i915_gem_release_mmap(obj);
2907
2908 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2909 return;
2910
2911 old_read_domains = obj->base.read_domains;
2912 old_write_domain = obj->base.write_domain;
2913
2914 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2915 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2916
2917 trace_i915_gem_object_change_domain(obj,
2918 old_read_domains,
2919 old_write_domain);
2920 }
2921
2922 /**
2923 * Unbinds an object from the GTT aperture.
2924 */
2925 int
2926 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2927 {
2928 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2929 int ret = 0;
2930
2931 if (obj->gtt_space == NULL)
2932 return 0;
2933
2934 if (obj->pin_count)
2935 return -EBUSY;
2936
2937 BUG_ON(obj->pages == NULL);
2938
2939 ret = i915_gem_object_finish_gpu(obj);
2940 if (ret)
2941 return ret;
2942 /* Continue on if we fail due to EIO, the GPU is hung so we
2943 * should be safe and we need to cleanup or else we might
2944 * cause memory corruption through use-after-free.
2945 */
2946
2947 i915_gem_object_finish_gtt(obj);
2948
2949 /* release the fence reg _after_ flushing */
2950 ret = i915_gem_object_put_fence(obj);
2951 if (ret)
2952 return ret;
2953
2954 trace_i915_gem_object_unbind(obj);
2955
2956 if (obj->has_global_gtt_mapping)
2957 i915_gem_gtt_unbind_object(obj);
2958 if (obj->has_aliasing_ppgtt_mapping) {
2959 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2960 obj->has_aliasing_ppgtt_mapping = 0;
2961 }
2962 i915_gem_gtt_finish_object(obj);
2963
2964 list_del(&obj->mm_list);
2965 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2966 /* Avoid an unnecessary call to unbind on rebind. */
2967 obj->map_and_fenceable = true;
2968
2969 drm_mm_put_block(obj->gtt_space);
2970 obj->gtt_space = NULL;
2971 obj->gtt_offset = 0;
2972
2973 return 0;
2974 }
2975
2976 int i915_gpu_idle(struct drm_device *dev)
2977 {
2978 drm_i915_private_t *dev_priv = dev->dev_private;
2979 struct intel_ring_buffer *ring;
2980 int ret, i;
2981
2982 /* Flush everything onto the inactive list. */
2983 for_each_ring(ring, dev_priv, i) {
2984 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2985 if (ret)
2986 return ret;
2987
2988 ret = intel_ring_idle(ring);
2989 if (ret)
2990 return ret;
2991 }
2992
2993 return 0;
2994 }
2995
2996 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2997 struct drm_i915_gem_object *obj)
2998 {
2999 drm_i915_private_t *dev_priv = dev->dev_private;
3000 uint64_t val;
3001
3002 if (obj) {
3003 u32 size = obj->gtt_space->size;
3004
3005 val = (uint64_t)((obj->gtt_offset + size - 4096) &
3006 0xfffff000) << 32;
3007 val |= obj->gtt_offset & 0xfffff000;
3008 val |= (uint64_t)((obj->stride / 128) - 1) <<
3009 SANDYBRIDGE_FENCE_PITCH_SHIFT;
3010
3011 if (obj->tiling_mode == I915_TILING_Y)
3012 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3013 val |= I965_FENCE_REG_VALID;
3014 } else
3015 val = 0;
3016
3017 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
3018 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
3019 }
3020
3021 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3022 struct drm_i915_gem_object *obj)
3023 {
3024 drm_i915_private_t *dev_priv = dev->dev_private;
3025 uint64_t val;
3026
3027 if (obj) {
3028 u32 size = obj->gtt_space->size;
3029
3030 val = (uint64_t)((obj->gtt_offset + size - 4096) &
3031 0xfffff000) << 32;
3032 val |= obj->gtt_offset & 0xfffff000;
3033 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
3034 if (obj->tiling_mode == I915_TILING_Y)
3035 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3036 val |= I965_FENCE_REG_VALID;
3037 } else
3038 val = 0;
3039
3040 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
3041 POSTING_READ(FENCE_REG_965_0 + reg * 8);
3042 }
3043
3044 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3045 struct drm_i915_gem_object *obj)
3046 {
3047 drm_i915_private_t *dev_priv = dev->dev_private;
3048 u32 val;
3049
3050 if (obj) {
3051 u32 size = obj->gtt_space->size;
3052 int pitch_val;
3053 int tile_width;
3054
3055 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
3056 (size & -size) != size ||
3057 (obj->gtt_offset & (size - 1)),
3058 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3059 obj->gtt_offset, obj->map_and_fenceable, size);
3060
3061 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3062 tile_width = 128;
3063 else
3064 tile_width = 512;
3065
3066 /* Note: pitch better be a power of two tile widths */
3067 pitch_val = obj->stride / tile_width;
3068 pitch_val = ffs(pitch_val) - 1;
3069
3070 val = obj->gtt_offset;
3071 if (obj->tiling_mode == I915_TILING_Y)
3072 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3073 val |= I915_FENCE_SIZE_BITS(size);
3074 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3075 val |= I830_FENCE_REG_VALID;
3076 } else
3077 val = 0;
3078
3079 if (reg < 8)
3080 reg = FENCE_REG_830_0 + reg * 4;
3081 else
3082 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3083
3084 I915_WRITE(reg, val);
3085 POSTING_READ(reg);
3086 }
3087
3088 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3089 struct drm_i915_gem_object *obj)
3090 {
3091 drm_i915_private_t *dev_priv = dev->dev_private;
3092 uint32_t val;
3093
3094 if (obj) {
3095 u32 size = obj->gtt_space->size;
3096 uint32_t pitch_val;
3097
3098 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
3099 (size & -size) != size ||
3100 (obj->gtt_offset & (size - 1)),
3101 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
3102 obj->gtt_offset, size);
3103
3104 pitch_val = obj->stride / 128;
3105 pitch_val = ffs(pitch_val) - 1;
3106
3107 val = obj->gtt_offset;
3108 if (obj->tiling_mode == I915_TILING_Y)
3109 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3110 val |= I830_FENCE_SIZE_BITS(size);
3111 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3112 val |= I830_FENCE_REG_VALID;
3113 } else
3114 val = 0;
3115
3116 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3117 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3118 }
3119
3120 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3121 struct drm_i915_gem_object *obj)
3122 {
3123 switch (INTEL_INFO(dev)->gen) {
3124 case 7:
3125 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
3126 case 5:
3127 case 4: i965_write_fence_reg(dev, reg, obj); break;
3128 case 3: i915_write_fence_reg(dev, reg, obj); break;
3129 case 2: i830_write_fence_reg(dev, reg, obj); break;
3130 default: break;
3131 }
3132 }
3133
3134 static inline int fence_number(struct drm_i915_private *dev_priv,
3135 struct drm_i915_fence_reg *fence)
3136 {
3137 return fence - dev_priv->fence_regs;
3138 }
3139
3140 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3141 struct drm_i915_fence_reg *fence,
3142 bool enable)
3143 {
3144 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3145 int reg = fence_number(dev_priv, fence);
3146
3147 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3148
3149 if (enable) {
3150 obj->fence_reg = reg;
3151 fence->obj = obj;
3152 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3153 } else {
3154 obj->fence_reg = I915_FENCE_REG_NONE;
3155 fence->obj = NULL;
3156 list_del_init(&fence->lru_list);
3157 }
3158 }
3159
3160 static int
3161 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
3162 {
3163 if (obj->last_fenced_seqno) {
3164 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3165 if (ret)
3166 return ret;
3167
3168 obj->last_fenced_seqno = 0;
3169 }
3170
3171 /* Ensure that all CPU reads are completed before installing a fence
3172 * and all writes before removing the fence.
3173 */
3174 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
3175 mb();
3176
3177 obj->fenced_gpu_access = false;
3178 return 0;
3179 }
3180
3181 int
3182 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3183 {
3184 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3185 int ret;
3186
3187 ret = i915_gem_object_flush_fence(obj);
3188 if (ret)
3189 return ret;
3190
3191 if (obj->fence_reg == I915_FENCE_REG_NONE)
3192 return 0;
3193
3194 i915_gem_object_update_fence(obj,
3195 &dev_priv->fence_regs[obj->fence_reg],
3196 false);
3197 i915_gem_object_fence_lost(obj);
3198
3199 return 0;
3200 }
3201
3202 static struct drm_i915_fence_reg *
3203 i915_find_fence_reg(struct drm_device *dev)
3204 {
3205 struct drm_i915_private *dev_priv = dev->dev_private;
3206 struct drm_i915_fence_reg *reg, *avail;
3207 int i;
3208
3209 /* First try to find a free reg */
3210 avail = NULL;
3211 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3212 reg = &dev_priv->fence_regs[i];
3213 if (!reg->obj)
3214 return reg;
3215
3216 if (!reg->pin_count)
3217 avail = reg;
3218 }
3219
3220 if (avail == NULL)
3221 return NULL;
3222
3223 /* None available, try to steal one or wait for a user to finish */
3224 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3225 if (reg->pin_count)
3226 continue;
3227
3228 return reg;
3229 }
3230
3231 return NULL;
3232 }
3233
3234 /**
3235 * i915_gem_object_get_fence - set up fencing for an object
3236 * @obj: object to map through a fence reg
3237 *
3238 * When mapping objects through the GTT, userspace wants to be able to write
3239 * to them without having to worry about swizzling if the object is tiled.
3240 * This function walks the fence regs looking for a free one for @obj,
3241 * stealing one if it can't find any.
3242 *
3243 * It then sets up the reg based on the object's properties: address, pitch
3244 * and tiling format.
3245 *
3246 * For an untiled surface, this removes any existing fence.
3247 */
3248 int
3249 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3250 {
3251 struct drm_device *dev = obj->base.dev;
3252 struct drm_i915_private *dev_priv = dev->dev_private;
3253 bool enable = obj->tiling_mode != I915_TILING_NONE;
3254 struct drm_i915_fence_reg *reg;
3255 int ret;
3256
3257 /* Have we updated the tiling parameters upon the object and so
3258 * will need to serialise the write to the associated fence register?
3259 */
3260 if (obj->fence_dirty) {
3261 ret = i915_gem_object_flush_fence(obj);
3262 if (ret)
3263 return ret;
3264 }
3265
3266 /* Just update our place in the LRU if our fence is getting reused. */
3267 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3268 reg = &dev_priv->fence_regs[obj->fence_reg];
3269 if (!obj->fence_dirty) {
3270 list_move_tail(®->lru_list,
3271 &dev_priv->mm.fence_list);
3272 return 0;
3273 }
3274 } else if (enable) {
3275 reg = i915_find_fence_reg(dev);
3276 if (reg == NULL)
3277 return -EDEADLK;
3278
3279 if (reg->obj) {
3280 struct drm_i915_gem_object *old = reg->obj;
3281
3282 ret = i915_gem_object_flush_fence(old);
3283 if (ret)
3284 return ret;
3285
3286 i915_gem_object_fence_lost(old);
3287 }
3288 } else
3289 return 0;
3290
3291 i915_gem_object_update_fence(obj, reg, enable);
3292 obj->fence_dirty = false;
3293
3294 return 0;
3295 }
3296
3297 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3298 struct drm_mm_node *gtt_space,
3299 unsigned long cache_level)
3300 {
3301 struct drm_mm_node *other;
3302
3303 /* On non-LLC machines we have to be careful when putting differing
3304 * types of snoopable memory together to avoid the prefetcher
3305 * crossing memory domains and dieing.
3306 */
3307 if (HAS_LLC(dev))
3308 return true;
3309
3310 if (gtt_space == NULL)
3311 return true;
3312
3313 if (list_empty(>t_space->node_list))
3314 return true;
3315
3316 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3317 if (other->allocated && !other->hole_follows && other->color != cache_level)
3318 return false;
3319
3320 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3321 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3322 return false;
3323
3324 return true;
3325 }
3326
3327 static void i915_gem_verify_gtt(struct drm_device *dev)
3328 {
3329 #if WATCH_GTT
3330 struct drm_i915_private *dev_priv = dev->dev_private;
3331 struct drm_i915_gem_object *obj;
3332 int err = 0;
3333
3334 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
3335 if (obj->gtt_space == NULL) {
3336 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3337 err++;
3338 continue;
3339 }
3340
3341 if (obj->cache_level != obj->gtt_space->color) {
3342 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3343 obj->gtt_space->start,
3344 obj->gtt_space->start + obj->gtt_space->size,
3345 obj->cache_level,
3346 obj->gtt_space->color);
3347 err++;
3348 continue;
3349 }
3350
3351 if (!i915_gem_valid_gtt_space(dev,
3352 obj->gtt_space,
3353 obj->cache_level)) {
3354 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3355 obj->gtt_space->start,
3356 obj->gtt_space->start + obj->gtt_space->size,
3357 obj->cache_level);
3358 err++;
3359 continue;
3360 }
3361 }
3362
3363 WARN_ON(err);
3364 #endif
3365 }
3366
3367 /**
3368 * Finds free space in the GTT aperture and binds the object there.
3369 */
3370 static int
3371 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3372 unsigned alignment,
3373 bool map_and_fenceable,
3374 bool nonblocking)
3375 {
3376 struct drm_device *dev = obj->base.dev;
3377 drm_i915_private_t *dev_priv = dev->dev_private;
3378 struct drm_mm_node *node;
3379 u32 size, fence_size, fence_alignment, unfenced_alignment;
3380 bool mappable, fenceable;
3381 int ret;
3382
3383 if (obj->madv != I915_MADV_WILLNEED) {
3384 DRM_ERROR("Attempting to bind a purgeable object\n");
3385 return -EINVAL;
3386 }
3387
3388 fence_size = i915_gem_get_gtt_size(dev,
3389 obj->base.size,
3390 obj->tiling_mode);
3391 fence_alignment = i915_gem_get_gtt_alignment(dev,
3392 obj->base.size,
3393 obj->tiling_mode);
3394 unfenced_alignment =
3395 i915_gem_get_unfenced_gtt_alignment(dev,
3396 obj->base.size,
3397 obj->tiling_mode);
3398
3399 if (alignment == 0)
3400 alignment = map_and_fenceable ? fence_alignment :
3401 unfenced_alignment;
3402 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3403 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3404 return -EINVAL;
3405 }
3406
3407 size = map_and_fenceable ? fence_size : obj->base.size;
3408
3409 /* If the object is bigger than the entire aperture, reject it early
3410 * before evicting everything in a vain attempt to find space.
3411 */
3412 if (obj->base.size >
3413 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
3414 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
3415 return -E2BIG;
3416 }
3417
3418 ret = i915_gem_object_get_pages(obj);
3419 if (ret)
3420 return ret;
3421
3422 i915_gem_object_pin_pages(obj);
3423
3424 node = kzalloc(sizeof(*node), GFP_KERNEL);
3425 if (node == NULL) {
3426 i915_gem_object_unpin_pages(obj);
3427 return -ENOMEM;
3428 }
3429
3430 search_free:
3431 if (map_and_fenceable)
3432 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3433 size, alignment, obj->cache_level,
3434 0, dev_priv->mm.gtt_mappable_end);
3435 else
3436 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
3437 size, alignment, obj->cache_level);
3438 if (ret) {
3439 ret = i915_gem_evict_something(dev, size, alignment,
3440 obj->cache_level,
3441 map_and_fenceable,
3442 nonblocking);
3443 if (ret == 0)
3444 goto search_free;
3445
3446 i915_gem_object_unpin_pages(obj);
3447 kfree(node);
3448 return ret;
3449 }
3450 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3451 i915_gem_object_unpin_pages(obj);
3452 drm_mm_put_block(node);
3453 return -EINVAL;
3454 }
3455
3456 ret = i915_gem_gtt_prepare_object(obj);
3457 if (ret) {
3458 i915_gem_object_unpin_pages(obj);
3459 drm_mm_put_block(node);
3460 return ret;
3461 }
3462
3463 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3464 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3465
3466 obj->gtt_space = node;
3467 obj->gtt_offset = node->start;
3468
3469 fenceable =
3470 node->size == fence_size &&
3471 (node->start & (fence_alignment - 1)) == 0;
3472
3473 mappable =
3474 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3475
3476 obj->map_and_fenceable = mappable && fenceable;
3477
3478 i915_gem_object_unpin_pages(obj);
3479 trace_i915_gem_object_bind(obj, map_and_fenceable);
3480 i915_gem_verify_gtt(dev);
3481 return 0;
3482 }
3483
3484 void
3485 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3486 {
3487 /* If we don't have a page list set up, then we're not pinned
3488 * to GPU, and we can ignore the cache flush because it'll happen
3489 * again at bind time.
3490 */
3491 if (obj->pages == NULL)
3492 return;
3493
3494 /* If the GPU is snooping the contents of the CPU cache,
3495 * we do not need to manually clear the CPU cache lines. However,
3496 * the caches are only snooped when the render cache is
3497 * flushed/invalidated. As we always have to emit invalidations
3498 * and flushes when moving into and out of the RENDER domain, correct
3499 * snooping behaviour occurs naturally as the result of our domain
3500 * tracking.
3501 */
3502 if (obj->cache_level != I915_CACHE_NONE)
3503 return;
3504
3505 trace_i915_gem_object_clflush(obj);
3506
3507 #ifdef __NetBSD__
3508 drm_clflush_pglist(&obj->igo_pageq);
3509 #else
3510 drm_clflush_sg(obj->pages);
3511 #endif
3512 }
3513
3514 /** Flushes the GTT write domain for the object if it's dirty. */
3515 static void
3516 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3517 {
3518 uint32_t old_write_domain;
3519
3520 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3521 return;
3522
3523 /* No actual flushing is required for the GTT write domain. Writes
3524 * to it immediately go to main memory as far as we know, so there's
3525 * no chipset flush. It also doesn't land in render cache.
3526 *
3527 * However, we do have to enforce the order so that all writes through
3528 * the GTT land before any writes to the device, such as updates to
3529 * the GATT itself.
3530 */
3531 wmb();
3532
3533 old_write_domain = obj->base.write_domain;
3534 obj->base.write_domain = 0;
3535
3536 trace_i915_gem_object_change_domain(obj,
3537 obj->base.read_domains,
3538 old_write_domain);
3539 }
3540
3541 /** Flushes the CPU write domain for the object if it's dirty. */
3542 static void
3543 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3544 {
3545 uint32_t old_write_domain;
3546
3547 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3548 return;
3549
3550 i915_gem_clflush_object(obj);
3551 i915_gem_chipset_flush(obj->base.dev);
3552 old_write_domain = obj->base.write_domain;
3553 obj->base.write_domain = 0;
3554
3555 trace_i915_gem_object_change_domain(obj,
3556 obj->base.read_domains,
3557 old_write_domain);
3558 }
3559
3560 /**
3561 * Moves a single object to the GTT read, and possibly write domain.
3562 *
3563 * This function returns when the move is complete, including waiting on
3564 * flushes to occur.
3565 */
3566 int
3567 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3568 {
3569 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3570 uint32_t old_write_domain, old_read_domains;
3571 int ret;
3572
3573 /* Not valid to be called on unbound objects. */
3574 if (obj->gtt_space == NULL)
3575 return -EINVAL;
3576
3577 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3578 return 0;
3579
3580 ret = i915_gem_object_wait_rendering(obj, !write);
3581 if (ret)
3582 return ret;
3583
3584 i915_gem_object_flush_cpu_write_domain(obj);
3585
3586 old_write_domain = obj->base.write_domain;
3587 old_read_domains = obj->base.read_domains;
3588
3589 /* It should now be out of any other write domains, and we can update
3590 * the domain values for our changes.
3591 */
3592 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3593 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3594 if (write) {
3595 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3596 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3597 obj->dirty = 1;
3598 }
3599
3600 trace_i915_gem_object_change_domain(obj,
3601 old_read_domains,
3602 old_write_domain);
3603
3604 /* And bump the LRU for this access */
3605 if (i915_gem_object_is_inactive(obj))
3606 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3607
3608 return 0;
3609 }
3610
3611 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3612 enum i915_cache_level cache_level)
3613 {
3614 struct drm_device *dev = obj->base.dev;
3615 drm_i915_private_t *dev_priv = dev->dev_private;
3616 int ret;
3617
3618 if (obj->cache_level == cache_level)
3619 return 0;
3620
3621 if (obj->pin_count) {
3622 DRM_DEBUG("can not change the cache level of pinned objects\n");
3623 return -EBUSY;
3624 }
3625
3626 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3627 ret = i915_gem_object_unbind(obj);
3628 if (ret)
3629 return ret;
3630 }
3631
3632 if (obj->gtt_space) {
3633 ret = i915_gem_object_finish_gpu(obj);
3634 if (ret)
3635 return ret;
3636
3637 i915_gem_object_finish_gtt(obj);
3638
3639 /* Before SandyBridge, you could not use tiling or fence
3640 * registers with snooped memory, so relinquish any fences
3641 * currently pointing to our region in the aperture.
3642 */
3643 if (INTEL_INFO(dev)->gen < 6) {
3644 ret = i915_gem_object_put_fence(obj);
3645 if (ret)
3646 return ret;
3647 }
3648
3649 if (obj->has_global_gtt_mapping)
3650 i915_gem_gtt_bind_object(obj, cache_level);
3651 if (obj->has_aliasing_ppgtt_mapping)
3652 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3653 obj, cache_level);
3654
3655 obj->gtt_space->color = cache_level;
3656 }
3657
3658 if (cache_level == I915_CACHE_NONE) {
3659 u32 old_read_domains, old_write_domain;
3660
3661 /* If we're coming from LLC cached, then we haven't
3662 * actually been tracking whether the data is in the
3663 * CPU cache or not, since we only allow one bit set
3664 * in obj->write_domain and have been skipping the clflushes.
3665 * Just set it to the CPU cache for now.
3666 */
3667 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3668 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3669
3670 old_read_domains = obj->base.read_domains;
3671 old_write_domain = obj->base.write_domain;
3672
3673 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3674 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3675
3676 trace_i915_gem_object_change_domain(obj,
3677 old_read_domains,
3678 old_write_domain);
3679 }
3680
3681 obj->cache_level = cache_level;
3682 i915_gem_verify_gtt(dev);
3683 return 0;
3684 }
3685
3686 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3687 struct drm_file *file)
3688 {
3689 struct drm_i915_gem_caching *args = data;
3690 struct drm_i915_gem_object *obj;
3691 int ret;
3692
3693 ret = i915_mutex_lock_interruptible(dev);
3694 if (ret)
3695 return ret;
3696
3697 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3698 if (&obj->base == NULL) {
3699 ret = -ENOENT;
3700 goto unlock;
3701 }
3702
3703 args->caching = obj->cache_level != I915_CACHE_NONE;
3704
3705 drm_gem_object_unreference(&obj->base);
3706 unlock:
3707 mutex_unlock(&dev->struct_mutex);
3708 return ret;
3709 }
3710
3711 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3712 struct drm_file *file)
3713 {
3714 struct drm_i915_gem_caching *args = data;
3715 struct drm_i915_gem_object *obj;
3716 enum i915_cache_level level;
3717 int ret;
3718
3719 switch (args->caching) {
3720 case I915_CACHING_NONE:
3721 level = I915_CACHE_NONE;
3722 break;
3723 case I915_CACHING_CACHED:
3724 level = I915_CACHE_LLC;
3725 break;
3726 default:
3727 return -EINVAL;
3728 }
3729
3730 ret = i915_mutex_lock_interruptible(dev);
3731 if (ret)
3732 return ret;
3733
3734 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3735 if (&obj->base == NULL) {
3736 ret = -ENOENT;
3737 goto unlock;
3738 }
3739
3740 ret = i915_gem_object_set_cache_level(obj, level);
3741
3742 drm_gem_object_unreference(&obj->base);
3743 unlock:
3744 mutex_unlock(&dev->struct_mutex);
3745 return ret;
3746 }
3747
3748 /*
3749 * Prepare buffer for display plane (scanout, cursors, etc).
3750 * Can be called from an uninterruptible phase (modesetting) and allows
3751 * any flushes to be pipelined (for pageflips).
3752 */
3753 int
3754 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3755 u32 alignment,
3756 struct intel_ring_buffer *pipelined)
3757 {
3758 u32 old_read_domains, old_write_domain;
3759 int ret;
3760
3761 if (pipelined != obj->ring) {
3762 ret = i915_gem_object_sync(obj, pipelined);
3763 if (ret)
3764 return ret;
3765 }
3766
3767 /* The display engine is not coherent with the LLC cache on gen6. As
3768 * a result, we make sure that the pinning that is about to occur is
3769 * done with uncached PTEs. This is lowest common denominator for all
3770 * chipsets.
3771 *
3772 * However for gen6+, we could do better by using the GFDT bit instead
3773 * of uncaching, which would allow us to flush all the LLC-cached data
3774 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3775 */
3776 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3777 if (ret)
3778 return ret;
3779
3780 /* As the user may map the buffer once pinned in the display plane
3781 * (e.g. libkms for the bootup splash), we have to ensure that we
3782 * always use map_and_fenceable for all scanout buffers.
3783 */
3784 ret = i915_gem_object_pin(obj, alignment, true, false);
3785 if (ret)
3786 return ret;
3787
3788 i915_gem_object_flush_cpu_write_domain(obj);
3789
3790 old_write_domain = obj->base.write_domain;
3791 old_read_domains = obj->base.read_domains;
3792
3793 /* It should now be out of any other write domains, and we can update
3794 * the domain values for our changes.
3795 */
3796 obj->base.write_domain = 0;
3797 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3798
3799 trace_i915_gem_object_change_domain(obj,
3800 old_read_domains,
3801 old_write_domain);
3802
3803 return 0;
3804 }
3805
3806 int
3807 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3808 {
3809 int ret;
3810
3811 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3812 return 0;
3813
3814 ret = i915_gem_object_wait_rendering(obj, false);
3815 if (ret)
3816 return ret;
3817
3818 /* Ensure that we invalidate the GPU's caches and TLBs. */
3819 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3820 return 0;
3821 }
3822
3823 /**
3824 * Moves a single object to the CPU read, and possibly write domain.
3825 *
3826 * This function returns when the move is complete, including waiting on
3827 * flushes to occur.
3828 */
3829 int
3830 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3831 {
3832 uint32_t old_write_domain, old_read_domains;
3833 int ret;
3834
3835 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3836 return 0;
3837
3838 ret = i915_gem_object_wait_rendering(obj, !write);
3839 if (ret)
3840 return ret;
3841
3842 i915_gem_object_flush_gtt_write_domain(obj);
3843
3844 old_write_domain = obj->base.write_domain;
3845 old_read_domains = obj->base.read_domains;
3846
3847 /* Flush the CPU cache if it's still invalid. */
3848 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3849 i915_gem_clflush_object(obj);
3850
3851 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3852 }
3853
3854 /* It should now be out of any other write domains, and we can update
3855 * the domain values for our changes.
3856 */
3857 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3858
3859 /* If we're writing through the CPU, then the GPU read domains will
3860 * need to be invalidated at next use.
3861 */
3862 if (write) {
3863 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3864 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3865 }
3866
3867 trace_i915_gem_object_change_domain(obj,
3868 old_read_domains,
3869 old_write_domain);
3870
3871 return 0;
3872 }
3873
3874 /* Throttle our rendering by waiting until the ring has completed our requests
3875 * emitted over 20 msec ago.
3876 *
3877 * Note that if we were to use the current jiffies each time around the loop,
3878 * we wouldn't escape the function with any frames outstanding if the time to
3879 * render a frame was over 20ms.
3880 *
3881 * This should get us reasonable parallelism between CPU and GPU but also
3882 * relatively low latency when blocking on a particular request to finish.
3883 */
3884 static int
3885 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3886 {
3887 struct drm_i915_private *dev_priv = dev->dev_private;
3888 struct drm_i915_file_private *file_priv = file->driver_priv;
3889 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3890 struct drm_i915_gem_request *request;
3891 struct intel_ring_buffer *ring = NULL;
3892 u32 seqno = 0;
3893 int ret;
3894
3895 if (atomic_read(&dev_priv->mm.wedged))
3896 return -EIO;
3897
3898 spin_lock(&file_priv->mm.lock);
3899 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3900 if (time_after_eq(request->emitted_jiffies, recent_enough))
3901 break;
3902
3903 ring = request->ring;
3904 seqno = request->seqno;
3905 }
3906 spin_unlock(&file_priv->mm.lock);
3907
3908 if (seqno == 0)
3909 return 0;
3910
3911 ret = __wait_seqno(ring, seqno, true, NULL);
3912 if (ret == 0)
3913 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3914
3915 return ret;
3916 }
3917
3918 int
3919 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3920 uint32_t alignment,
3921 bool map_and_fenceable,
3922 bool nonblocking)
3923 {
3924 int ret;
3925
3926 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3927 return -EBUSY;
3928
3929 if (obj->gtt_space != NULL) {
3930 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3931 (map_and_fenceable && !obj->map_and_fenceable)) {
3932 WARN(obj->pin_count,
3933 "bo is already pinned with incorrect alignment:"
3934 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3935 " obj->map_and_fenceable=%d\n",
3936 obj->gtt_offset, alignment,
3937 map_and_fenceable,
3938 obj->map_and_fenceable);
3939 ret = i915_gem_object_unbind(obj);
3940 if (ret)
3941 return ret;
3942 }
3943 }
3944
3945 if (obj->gtt_space == NULL) {
3946 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3947
3948 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3949 map_and_fenceable,
3950 nonblocking);
3951 if (ret)
3952 return ret;
3953
3954 if (!dev_priv->mm.aliasing_ppgtt)
3955 i915_gem_gtt_bind_object(obj, obj->cache_level);
3956 }
3957
3958 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3959 i915_gem_gtt_bind_object(obj, obj->cache_level);
3960
3961 obj->pin_count++;
3962 obj->pin_mappable |= map_and_fenceable;
3963
3964 return 0;
3965 }
3966
3967 void
3968 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3969 {
3970 BUG_ON(obj->pin_count == 0);
3971 BUG_ON(obj->gtt_space == NULL);
3972
3973 if (--obj->pin_count == 0)
3974 obj->pin_mappable = false;
3975 }
3976
3977 int
3978 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3979 struct drm_file *file)
3980 {
3981 struct drm_i915_gem_pin *args = data;
3982 struct drm_i915_gem_object *obj;
3983 int ret;
3984
3985 ret = i915_mutex_lock_interruptible(dev);
3986 if (ret)
3987 return ret;
3988
3989 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3990 if (&obj->base == NULL) {
3991 ret = -ENOENT;
3992 goto unlock;
3993 }
3994
3995 if (obj->madv != I915_MADV_WILLNEED) {
3996 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3997 ret = -EINVAL;
3998 goto out;
3999 }
4000
4001 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4002 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4003 args->handle);
4004 ret = -EINVAL;
4005 goto out;
4006 }
4007
4008 if (obj->user_pin_count == 0) {
4009 ret = i915_gem_object_pin(obj, args->alignment, true, false);
4010 if (ret)
4011 goto out;
4012 }
4013
4014 obj->user_pin_count++;
4015 obj->pin_filp = file;
4016
4017 /* XXX - flush the CPU caches for pinned objects
4018 * as the X server doesn't manage domains yet
4019 */
4020 i915_gem_object_flush_cpu_write_domain(obj);
4021 args->offset = obj->gtt_offset;
4022 out:
4023 drm_gem_object_unreference(&obj->base);
4024 unlock:
4025 mutex_unlock(&dev->struct_mutex);
4026 return ret;
4027 }
4028
4029 int
4030 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4031 struct drm_file *file)
4032 {
4033 struct drm_i915_gem_pin *args = data;
4034 struct drm_i915_gem_object *obj;
4035 int ret;
4036
4037 ret = i915_mutex_lock_interruptible(dev);
4038 if (ret)
4039 return ret;
4040
4041 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4042 if (&obj->base == NULL) {
4043 ret = -ENOENT;
4044 goto unlock;
4045 }
4046
4047 if (obj->pin_filp != file) {
4048 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4049 args->handle);
4050 ret = -EINVAL;
4051 goto out;
4052 }
4053 obj->user_pin_count--;
4054 if (obj->user_pin_count == 0) {
4055 obj->pin_filp = NULL;
4056 i915_gem_object_unpin(obj);
4057 }
4058
4059 out:
4060 drm_gem_object_unreference(&obj->base);
4061 unlock:
4062 mutex_unlock(&dev->struct_mutex);
4063 return ret;
4064 }
4065
4066 int
4067 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4068 struct drm_file *file)
4069 {
4070 struct drm_i915_gem_busy *args = data;
4071 struct drm_i915_gem_object *obj;
4072 int ret;
4073
4074 ret = i915_mutex_lock_interruptible(dev);
4075 if (ret)
4076 return ret;
4077
4078 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4079 if (&obj->base == NULL) {
4080 ret = -ENOENT;
4081 goto unlock;
4082 }
4083
4084 /* Count all active objects as busy, even if they are currently not used
4085 * by the gpu. Users of this interface expect objects to eventually
4086 * become non-busy without any further actions, therefore emit any
4087 * necessary flushes here.
4088 */
4089 ret = i915_gem_object_flush_active(obj);
4090
4091 args->busy = obj->active;
4092 if (obj->ring) {
4093 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4094 args->busy |= intel_ring_flag(obj->ring) << 16;
4095 }
4096
4097 drm_gem_object_unreference(&obj->base);
4098 unlock:
4099 mutex_unlock(&dev->struct_mutex);
4100 return ret;
4101 }
4102
4103 int
4104 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4105 struct drm_file *file_priv)
4106 {
4107 return i915_gem_ring_throttle(dev, file_priv);
4108 }
4109
4110 int
4111 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4112 struct drm_file *file_priv)
4113 {
4114 struct drm_i915_gem_madvise *args = data;
4115 struct drm_i915_gem_object *obj;
4116 int ret;
4117
4118 switch (args->madv) {
4119 case I915_MADV_DONTNEED:
4120 case I915_MADV_WILLNEED:
4121 break;
4122 default:
4123 return -EINVAL;
4124 }
4125
4126 ret = i915_mutex_lock_interruptible(dev);
4127 if (ret)
4128 return ret;
4129
4130 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4131 if (&obj->base == NULL) {
4132 ret = -ENOENT;
4133 goto unlock;
4134 }
4135
4136 if (obj->pin_count) {
4137 ret = -EINVAL;
4138 goto out;
4139 }
4140
4141 if (obj->madv != __I915_MADV_PURGED)
4142 obj->madv = args->madv;
4143
4144 /* if the object is no longer attached, discard its backing storage */
4145 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4146 i915_gem_object_truncate(obj);
4147
4148 args->retained = obj->madv != __I915_MADV_PURGED;
4149
4150 out:
4151 drm_gem_object_unreference(&obj->base);
4152 unlock:
4153 mutex_unlock(&dev->struct_mutex);
4154 return ret;
4155 }
4156
4157 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4158 const struct drm_i915_gem_object_ops *ops)
4159 {
4160 INIT_LIST_HEAD(&obj->mm_list);
4161 INIT_LIST_HEAD(&obj->gtt_list);
4162 INIT_LIST_HEAD(&obj->ring_list);
4163 INIT_LIST_HEAD(&obj->exec_list);
4164
4165 obj->ops = ops;
4166
4167 obj->fence_reg = I915_FENCE_REG_NONE;
4168 obj->madv = I915_MADV_WILLNEED;
4169 /* Avoid an unnecessary call to unbind on the first bind. */
4170 obj->map_and_fenceable = true;
4171
4172 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4173 }
4174
4175 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4176 .get_pages = i915_gem_object_get_pages_gtt,
4177 .put_pages = i915_gem_object_put_pages_gtt,
4178 };
4179
4180 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4181 size_t size)
4182 {
4183 struct drm_i915_gem_object *obj;
4184 #ifndef __NetBSD__ /* XXX >32bit dma? */
4185 struct address_space *mapping;
4186 u32 mask;
4187 #endif
4188
4189 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4190 if (obj == NULL)
4191 return NULL;
4192
4193 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4194 kfree(obj);
4195 return NULL;
4196 }
4197
4198 #ifndef __NetBSD__ /* XXX >32bit dma? */
4199 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4200 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4201 /* 965gm cannot relocate objects above 4GiB. */
4202 mask &= ~__GFP_HIGHMEM;
4203 mask |= __GFP_DMA32;
4204 }
4205
4206 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4207 mapping_set_gfp_mask(mapping, mask);
4208 #endif
4209
4210 i915_gem_object_init(obj, &i915_gem_object_ops);
4211
4212 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4213 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4214
4215 if (HAS_LLC(dev)) {
4216 /* On some devices, we can have the GPU use the LLC (the CPU
4217 * cache) for about a 10% performance improvement
4218 * compared to uncached. Graphics requests other than
4219 * display scanout are coherent with the CPU in
4220 * accessing this cache. This means in this mode we
4221 * don't need to clflush on the CPU side, and on the
4222 * GPU side we only need to flush internal caches to
4223 * get data visible to the CPU.
4224 *
4225 * However, we maintain the display planes as UC, and so
4226 * need to rebind when first used as such.
4227 */
4228 obj->cache_level = I915_CACHE_LLC;
4229 } else
4230 obj->cache_level = I915_CACHE_NONE;
4231
4232 return obj;
4233 }
4234
4235 int i915_gem_init_object(struct drm_gem_object *obj)
4236 {
4237 BUG();
4238
4239 return 0;
4240 }
4241
4242 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4243 {
4244 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4245 struct drm_device *dev = obj->base.dev;
4246 drm_i915_private_t *dev_priv = dev->dev_private;
4247
4248 trace_i915_gem_object_destroy(obj);
4249
4250 if (obj->phys_obj)
4251 i915_gem_detach_phys_object(dev, obj);
4252
4253 obj->pin_count = 0;
4254 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
4255 bool was_interruptible;
4256
4257 was_interruptible = dev_priv->mm.interruptible;
4258 dev_priv->mm.interruptible = false;
4259
4260 WARN_ON(i915_gem_object_unbind(obj));
4261
4262 dev_priv->mm.interruptible = was_interruptible;
4263 }
4264
4265 obj->pages_pin_count = 0;
4266 i915_gem_object_put_pages(obj);
4267 i915_gem_object_free_mmap_offset(obj);
4268
4269 BUG_ON(obj->pages);
4270
4271 #ifndef __NetBSD__ /* XXX drm prime */
4272 if (obj->base.import_attach)
4273 drm_prime_gem_destroy(&obj->base, NULL);
4274 #endif
4275
4276 drm_gem_object_release(&obj->base);
4277 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4278
4279 kfree(obj->bit_17);
4280 kfree(obj);
4281 }
4282
4283 int
4284 i915_gem_idle(struct drm_device *dev)
4285 {
4286 drm_i915_private_t *dev_priv = dev->dev_private;
4287 int ret;
4288
4289 mutex_lock(&dev->struct_mutex);
4290
4291 if (dev_priv->mm.suspended) {
4292 mutex_unlock(&dev->struct_mutex);
4293 return 0;
4294 }
4295
4296 ret = i915_gpu_idle(dev);
4297 if (ret) {
4298 mutex_unlock(&dev->struct_mutex);
4299 return ret;
4300 }
4301 i915_gem_retire_requests(dev);
4302
4303 /* Under UMS, be paranoid and evict. */
4304 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4305 i915_gem_evict_everything(dev);
4306
4307 i915_gem_reset_fences(dev);
4308
4309 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4310 * We need to replace this with a semaphore, or something.
4311 * And not confound mm.suspended!
4312 */
4313 dev_priv->mm.suspended = 1;
4314 del_timer_sync(&dev_priv->hangcheck_timer);
4315
4316 i915_kernel_lost_context(dev);
4317 i915_gem_cleanup_ringbuffer(dev);
4318
4319 mutex_unlock(&dev->struct_mutex);
4320
4321 /* Cancel the retire work handler, which should be idle now. */
4322 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4323
4324 return 0;
4325 }
4326
4327 void i915_gem_l3_remap(struct drm_device *dev)
4328 {
4329 drm_i915_private_t *dev_priv = dev->dev_private;
4330 u32 misccpctl;
4331 int i;
4332
4333 if (!IS_IVYBRIDGE(dev))
4334 return;
4335
4336 if (!dev_priv->l3_parity.remap_info)
4337 return;
4338
4339 misccpctl = I915_READ(GEN7_MISCCPCTL);
4340 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4341 POSTING_READ(GEN7_MISCCPCTL);
4342
4343 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4344 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4345 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4346 DRM_DEBUG("0x%x was already programmed to %x\n",
4347 GEN7_L3LOG_BASE + i, remap);
4348 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4349 DRM_DEBUG_DRIVER("Clearing remapped register\n");
4350 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4351 }
4352
4353 /* Make sure all the writes land before disabling dop clock gating */
4354 POSTING_READ(GEN7_L3LOG_BASE);
4355
4356 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4357 }
4358
4359 void i915_gem_init_swizzling(struct drm_device *dev)
4360 {
4361 drm_i915_private_t *dev_priv = dev->dev_private;
4362
4363 if (INTEL_INFO(dev)->gen < 5 ||
4364 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4365 return;
4366
4367 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4368 DISP_TILE_SURFACE_SWIZZLING);
4369
4370 if (IS_GEN5(dev))
4371 return;
4372
4373 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4374 if (IS_GEN6(dev))
4375 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4376 else
4377 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4378 }
4379
4380 static bool
4381 intel_enable_blt(struct drm_device *dev)
4382 {
4383 if (!HAS_BLT(dev))
4384 return false;
4385
4386 /* The blitter was dysfunctional on early prototypes */
4387 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4388 DRM_INFO("BLT not supported on this pre-production hardware;"
4389 " graphics performance will be degraded.\n");
4390 return false;
4391 }
4392
4393 return true;
4394 }
4395
4396 int
4397 i915_gem_init_hw(struct drm_device *dev)
4398 {
4399 drm_i915_private_t *dev_priv = dev->dev_private;
4400 int ret;
4401
4402 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4403 return -EIO;
4404
4405 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4406 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4407
4408 i915_gem_l3_remap(dev);
4409
4410 i915_gem_init_swizzling(dev);
4411
4412 ret = intel_init_render_ring_buffer(dev);
4413 if (ret)
4414 return ret;
4415
4416 if (HAS_BSD(dev)) {
4417 ret = intel_init_bsd_ring_buffer(dev);
4418 if (ret)
4419 goto cleanup_render_ring;
4420 }
4421
4422 if (intel_enable_blt(dev)) {
4423 ret = intel_init_blt_ring_buffer(dev);
4424 if (ret)
4425 goto cleanup_bsd_ring;
4426 }
4427
4428 dev_priv->next_seqno = 1;
4429
4430 /*
4431 * XXX: There was some w/a described somewhere suggesting loading
4432 * contexts before PPGTT.
4433 */
4434 i915_gem_context_init(dev);
4435 i915_gem_init_ppgtt(dev);
4436
4437 return 0;
4438
4439 cleanup_bsd_ring:
4440 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4441 cleanup_render_ring:
4442 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4443 return ret;
4444 }
4445
4446 static bool
4447 intel_enable_ppgtt(struct drm_device *dev)
4448 {
4449 #ifdef __NetBSD__ /* XXX ppgtt */
4450 return false;
4451 #else
4452 if (i915_enable_ppgtt >= 0)
4453 return i915_enable_ppgtt;
4454
4455 #ifdef CONFIG_INTEL_IOMMU
4456 /* Disable ppgtt on SNB if VT-d is on. */
4457 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4458 return false;
4459 #endif
4460
4461 return true;
4462 #endif
4463 }
4464
4465 int i915_gem_init(struct drm_device *dev)
4466 {
4467 struct drm_i915_private *dev_priv = dev->dev_private;
4468 unsigned long gtt_size, mappable_size;
4469 int ret;
4470
4471 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4472 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4473
4474 mutex_lock(&dev->struct_mutex);
4475 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4476 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4477 * aperture accordingly when using aliasing ppgtt. */
4478 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4479
4480 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4481
4482 ret = i915_gem_init_aliasing_ppgtt(dev);
4483 if (ret) {
4484 i915_gem_fini_global_gtt(dev);
4485 mutex_unlock(&dev->struct_mutex);
4486 return ret;
4487 }
4488 } else {
4489 /* Let GEM Manage all of the aperture.
4490 *
4491 * However, leave one page at the end still bound to the scratch
4492 * page. There are a number of places where the hardware
4493 * apparently prefetches past the end of the object, and we've
4494 * seen multiple hangs with the GPU head pointer stuck in a
4495 * batchbuffer bound at the last page of the aperture. One page
4496 * should be enough to keep any prefetching inside of the
4497 * aperture.
4498 */
4499 i915_gem_init_global_gtt(dev, 0, mappable_size,
4500 gtt_size);
4501 }
4502
4503 ret = i915_gem_init_hw(dev);
4504 #ifdef __NetBSD__ /* XXX fini global gtt */
4505 if (ret)
4506 i915_gem_fini_global_gtt(dev);
4507 #endif
4508 mutex_unlock(&dev->struct_mutex);
4509 if (ret) {
4510 i915_gem_cleanup_aliasing_ppgtt(dev);
4511 return ret;
4512 }
4513
4514 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4515 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4516 dev_priv->dri1.allow_batchbuffer = 1;
4517 return 0;
4518 }
4519
4520 void
4521 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4522 {
4523 drm_i915_private_t *dev_priv = dev->dev_private;
4524 struct intel_ring_buffer *ring;
4525 int i;
4526
4527 for_each_ring(ring, dev_priv, i)
4528 intel_cleanup_ring_buffer(ring);
4529 }
4530
4531 int
4532 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4533 struct drm_file *file_priv)
4534 {
4535 drm_i915_private_t *dev_priv = dev->dev_private;
4536 int ret;
4537
4538 if (drm_core_check_feature(dev, DRIVER_MODESET))
4539 return 0;
4540
4541 if (atomic_read(&dev_priv->mm.wedged)) {
4542 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4543 atomic_set(&dev_priv->mm.wedged, 0);
4544 }
4545
4546 mutex_lock(&dev->struct_mutex);
4547 dev_priv->mm.suspended = 0;
4548
4549 ret = i915_gem_init_hw(dev);
4550 if (ret != 0) {
4551 mutex_unlock(&dev->struct_mutex);
4552 return ret;
4553 }
4554
4555 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4556 mutex_unlock(&dev->struct_mutex);
4557
4558 ret = drm_irq_install(dev);
4559 if (ret)
4560 goto cleanup_ringbuffer;
4561
4562 return 0;
4563
4564 cleanup_ringbuffer:
4565 mutex_lock(&dev->struct_mutex);
4566 i915_gem_cleanup_ringbuffer(dev);
4567 dev_priv->mm.suspended = 1;
4568 mutex_unlock(&dev->struct_mutex);
4569
4570 return ret;
4571 }
4572
4573 int
4574 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4575 struct drm_file *file_priv)
4576 {
4577 if (drm_core_check_feature(dev, DRIVER_MODESET))
4578 return 0;
4579
4580 drm_irq_uninstall(dev);
4581 return i915_gem_idle(dev);
4582 }
4583
4584 void
4585 i915_gem_lastclose(struct drm_device *dev)
4586 {
4587 int ret;
4588
4589 if (drm_core_check_feature(dev, DRIVER_MODESET))
4590 return;
4591
4592 ret = i915_gem_idle(dev);
4593 if (ret)
4594 DRM_ERROR("failed to idle hardware: %d\n", ret);
4595 }
4596
4597 static void
4598 init_ring_lists(struct intel_ring_buffer *ring)
4599 {
4600 INIT_LIST_HEAD(&ring->active_list);
4601 INIT_LIST_HEAD(&ring->request_list);
4602 }
4603
4604 void
4605 i915_gem_load(struct drm_device *dev)
4606 {
4607 int i;
4608 drm_i915_private_t *dev_priv = dev->dev_private;
4609
4610 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4611 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4612 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4613 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4614 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4615 for (i = 0; i < I915_NUM_RINGS; i++)
4616 init_ring_lists(&dev_priv->ring[i]);
4617 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4618 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4619 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4620 i915_gem_retire_work_handler);
4621 init_completion(&dev_priv->error_completion);
4622
4623 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4624 if (IS_GEN3(dev)) {
4625 I915_WRITE(MI_ARB_STATE,
4626 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4627 }
4628
4629 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4630
4631 /* Old X drivers will take 0-2 for front, back, depth buffers */
4632 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4633 dev_priv->fence_reg_start = 3;
4634
4635 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4636 dev_priv->num_fence_regs = 16;
4637 else
4638 dev_priv->num_fence_regs = 8;
4639
4640 /* Initialize fence registers to zero */
4641 i915_gem_reset_fences(dev);
4642
4643 i915_gem_detect_bit_6_swizzle(dev);
4644 #ifdef __NetBSD__
4645 DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
4646 linux_mutex_init(&dev_priv->pending_flip_lock);
4647 #else
4648 init_waitqueue_head(&dev_priv->pending_flip_queue);
4649 #endif
4650
4651 dev_priv->mm.interruptible = true;
4652
4653 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4654 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4655 register_shrinker(&dev_priv->mm.inactive_shrinker);
4656 }
4657
4658 /*
4659 * Create a physically contiguous memory object for this object
4660 * e.g. for cursor + overlay regs
4661 */
4662 static int i915_gem_init_phys_object(struct drm_device *dev,
4663 int id, int size, int align)
4664 {
4665 drm_i915_private_t *dev_priv = dev->dev_private;
4666 struct drm_i915_gem_phys_object *phys_obj;
4667 int ret;
4668
4669 if (dev_priv->mm.phys_objs[id - 1] || !size)
4670 return 0;
4671
4672 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4673 if (!phys_obj)
4674 return -ENOMEM;
4675
4676 phys_obj->id = id;
4677
4678 phys_obj->handle = drm_pci_alloc(dev, size, align);
4679 if (!phys_obj->handle) {
4680 ret = -ENOMEM;
4681 goto kfree_obj;
4682 }
4683 #ifndef __NetBSD__ /* XXX x86 wc? */
4684 #ifdef CONFIG_X86
4685 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4686 #endif
4687 #endif
4688
4689 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4690
4691 return 0;
4692 kfree_obj:
4693 kfree(phys_obj);
4694 return ret;
4695 }
4696
4697 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4698 {
4699 drm_i915_private_t *dev_priv = dev->dev_private;
4700 struct drm_i915_gem_phys_object *phys_obj;
4701
4702 if (!dev_priv->mm.phys_objs[id - 1])
4703 return;
4704
4705 phys_obj = dev_priv->mm.phys_objs[id - 1];
4706 if (phys_obj->cur_obj) {
4707 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4708 }
4709
4710 #ifndef __NetBSD__ /* XXX x86 wb? */
4711 #ifdef CONFIG_X86
4712 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4713 #endif
4714 #endif
4715 drm_pci_free(dev, phys_obj->handle);
4716 kfree(phys_obj);
4717 dev_priv->mm.phys_objs[id - 1] = NULL;
4718 }
4719
4720 void i915_gem_free_all_phys_object(struct drm_device *dev)
4721 {
4722 int i;
4723
4724 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4725 i915_gem_free_phys_object(dev, i);
4726 }
4727
4728 void i915_gem_detach_phys_object(struct drm_device *dev,
4729 struct drm_i915_gem_object *obj)
4730 {
4731 #ifndef __NetBSD__
4732 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4733 #endif
4734 char *vaddr;
4735 int i;
4736 int page_count;
4737
4738 if (!obj->phys_obj)
4739 return;
4740 vaddr = obj->phys_obj->handle->vaddr;
4741
4742 page_count = obj->base.size / PAGE_SIZE;
4743 for (i = 0; i < page_count; i++) {
4744 #ifdef __NetBSD__
4745 /* XXX Just use ubc_uiomove? */
4746 struct pglist pages;
4747 int error;
4748
4749 TAILQ_INIT(&pages);
4750 error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4751 (i+1)*PAGE_SIZE, &pages);
4752 if (error) {
4753 printf("unable to map page %d of i915 gem obj: %d\n",
4754 i, error);
4755 continue;
4756 }
4757
4758 KASSERT(!TAILQ_EMPTY(&pages));
4759 struct vm_page *const page = TAILQ_FIRST(&pages);
4760 TAILQ_REMOVE(&pages, page, pageq.queue);
4761 KASSERT(TAILQ_EMPTY(&pages));
4762
4763 char *const dst = kmap_atomic(container_of(page, struct page,
4764 p_vmp));
4765 (void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
4766 kunmap_atomic(dst);
4767
4768 drm_clflush_page(container_of(page, struct page, p_vmp));
4769 page->flags &= ~PG_CLEAN;
4770 /* XXX mark page accessed */
4771 uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4772 (i+1)*PAGE_SIZE);
4773 #else
4774 struct page *page = shmem_read_mapping_page(mapping, i);
4775 if (!IS_ERR(page)) {
4776 char *dst = kmap_atomic(page);
4777 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4778 kunmap_atomic(dst);
4779
4780 drm_clflush_pages(&page, 1);
4781
4782 set_page_dirty(page);
4783 mark_page_accessed(page);
4784 page_cache_release(page);
4785 }
4786 #endif
4787 }
4788 i915_gem_chipset_flush(dev);
4789
4790 obj->phys_obj->cur_obj = NULL;
4791 obj->phys_obj = NULL;
4792 }
4793
4794 int
4795 i915_gem_attach_phys_object(struct drm_device *dev,
4796 struct drm_i915_gem_object *obj,
4797 int id,
4798 int align)
4799 {
4800 #ifndef __NetBSD__
4801 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4802 #endif
4803 drm_i915_private_t *dev_priv = dev->dev_private;
4804 int ret = 0;
4805 int page_count;
4806 int i;
4807
4808 if (id > I915_MAX_PHYS_OBJECT)
4809 return -EINVAL;
4810
4811 if (obj->phys_obj) {
4812 if (obj->phys_obj->id == id)
4813 return 0;
4814 i915_gem_detach_phys_object(dev, obj);
4815 }
4816
4817 /* create a new object */
4818 if (!dev_priv->mm.phys_objs[id - 1]) {
4819 ret = i915_gem_init_phys_object(dev, id,
4820 obj->base.size, align);
4821 if (ret) {
4822 DRM_ERROR("failed to init phys object %d size: %zu\n",
4823 id, obj->base.size);
4824 return ret;
4825 }
4826 }
4827
4828 /* bind to the object */
4829 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4830 obj->phys_obj->cur_obj = obj;
4831
4832 page_count = obj->base.size / PAGE_SIZE;
4833
4834 for (i = 0; i < page_count; i++) {
4835 #ifdef __NetBSD__
4836 char *const vaddr = obj->phys_obj->handle->vaddr;
4837 struct pglist pages;
4838 int error;
4839
4840 TAILQ_INIT(&pages);
4841 error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4842 (i+1)*PAGE_SIZE, &pages);
4843 if (error)
4844 /* XXX errno NetBSD->Linux */
4845 return -error;
4846
4847 KASSERT(!TAILQ_EMPTY(&pages));
4848 struct vm_page *const page = TAILQ_FIRST(&pages);
4849 TAILQ_REMOVE(&pages, page, pageq.queue);
4850 KASSERT(TAILQ_EMPTY(&pages));
4851
4852 char *const src = kmap_atomic(container_of(page, struct page,
4853 p_vmp));
4854 (void)memcpy(vaddr + (i*PAGE_SIZE), src, PAGE_SIZE);
4855 kunmap_atomic(src);
4856
4857 /* XXX mark page accessed */
4858 uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4859 (i+1)*PAGE_SIZE);
4860 #else
4861 struct page *page;
4862 char *dst, *src;
4863
4864 page = shmem_read_mapping_page(mapping, i);
4865 if (IS_ERR(page))
4866 return PTR_ERR(page);
4867
4868 src = kmap_atomic(page);
4869 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4870 memcpy(dst, src, PAGE_SIZE);
4871 kunmap_atomic(src);
4872
4873 mark_page_accessed(page);
4874 page_cache_release(page);
4875 #endif
4876 }
4877
4878 return 0;
4879 }
4880
4881 static int
4882 i915_gem_phys_pwrite(struct drm_device *dev,
4883 struct drm_i915_gem_object *obj,
4884 struct drm_i915_gem_pwrite *args,
4885 struct drm_file *file_priv)
4886 {
4887 void *vaddr = (char *)obj->phys_obj->handle->vaddr + args->offset;
4888 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4889
4890 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4891 unsigned long unwritten;
4892
4893 /* The physical object once assigned is fixed for the lifetime
4894 * of the obj, so we can safely drop the lock and continue
4895 * to access vaddr.
4896 */
4897 mutex_unlock(&dev->struct_mutex);
4898 unwritten = copy_from_user(vaddr, user_data, args->size);
4899 mutex_lock(&dev->struct_mutex);
4900 if (unwritten)
4901 return -EFAULT;
4902 }
4903
4904 i915_gem_chipset_flush(dev);
4905 return 0;
4906 }
4907
4908 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4909 {
4910 struct drm_i915_file_private *file_priv = file->driver_priv;
4911
4912 /* Clean up our request list when the client is going away, so that
4913 * later retire_requests won't dereference our soon-to-be-gone
4914 * file_priv.
4915 */
4916 spin_lock(&file_priv->mm.lock);
4917 while (!list_empty(&file_priv->mm.request_list)) {
4918 struct drm_i915_gem_request *request;
4919
4920 request = list_first_entry(&file_priv->mm.request_list,
4921 struct drm_i915_gem_request,
4922 client_list);
4923 list_del(&request->client_list);
4924 request->file_priv = NULL;
4925 }
4926 spin_unlock(&file_priv->mm.lock);
4927 }
4928
4929 #ifndef __NetBSD__ /* XXX */
4930 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4931 {
4932 if (!mutex_is_locked(mutex))
4933 return false;
4934
4935 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4936 return mutex->owner == task;
4937 #else
4938 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4939 return false;
4940 #endif
4941 }
4942 #endif
4943
4944 static int
4945 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4946 {
4947 #ifdef __NetBSD__ /* XXX shrinkers */
4948 return 0;
4949 #else
4950 struct drm_i915_private *dev_priv =
4951 container_of(shrinker,
4952 struct drm_i915_private,
4953 mm.inactive_shrinker);
4954 struct drm_device *dev = dev_priv->dev;
4955 struct drm_i915_gem_object *obj;
4956 int nr_to_scan = sc->nr_to_scan;
4957 bool unlock = true;
4958 int cnt;
4959
4960 if (!mutex_trylock(&dev->struct_mutex)) {
4961 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4962 return 0;
4963
4964 if (dev_priv->mm.shrinker_no_lock_stealing)
4965 return 0;
4966
4967 unlock = false;
4968 }
4969
4970 if (nr_to_scan) {
4971 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4972 if (nr_to_scan > 0)
4973 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4974 false);
4975 if (nr_to_scan > 0)
4976 i915_gem_shrink_all(dev_priv);
4977 }
4978
4979 cnt = 0;
4980 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4981 if (obj->pages_pin_count == 0)
4982 cnt += obj->base.size >> PAGE_SHIFT;
4983 list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4984 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4985 cnt += obj->base.size >> PAGE_SHIFT;
4986
4987 if (unlock)
4988 mutex_unlock(&dev->struct_mutex);
4989 return cnt;
4990 #endif
4991 }
4992