i915_gem.c revision 1.1.1.1.2.5 1 /*
2 * Copyright 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric (at) anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 #include <asm/param.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable,
45 bool nonblocking);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
48 struct drm_i915_gem_pwrite *args,
49 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
57 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58 struct shrink_control *sc);
59 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
60 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
61 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62
63 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
64 {
65 if (obj->tiling_mode)
66 i915_gem_release_mmap(obj);
67
68 /* As we do not have an associated fence register, we will force
69 * a tiling change if we ever need to acquire one.
70 */
71 obj->fence_dirty = false;
72 obj->fence_reg = I915_FENCE_REG_NONE;
73 }
74
75 /* some bookkeeping */
76 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77 size_t size)
78 {
79 dev_priv->mm.object_count++;
80 dev_priv->mm.object_memory += size;
81 }
82
83 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84 size_t size)
85 {
86 dev_priv->mm.object_count--;
87 dev_priv->mm.object_memory -= size;
88 }
89
90 static int
91 i915_gem_wait_for_error(struct drm_device *dev)
92 {
93 struct drm_i915_private *dev_priv = dev->dev_private;
94 struct completion *x = &dev_priv->error_completion;
95 #ifndef __NetBSD__
96 unsigned long flags;
97 #endif
98 int ret;
99
100 if (!atomic_read(&dev_priv->mm.wedged))
101 return 0;
102
103 /*
104 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
105 * userspace. If it takes that long something really bad is going on and
106 * we should simply try to bail out and fail as gracefully as possible.
107 */
108 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
109 if (ret == 0) {
110 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
111 return -EIO;
112 } else if (ret < 0) {
113 return ret;
114 }
115
116 if (atomic_read(&dev_priv->mm.wedged)) {
117 /* GPU is hung, bump the completion count to account for
118 * the token we just consumed so that we never hit zero and
119 * end up waiting upon a subsequent completion event that
120 * will never happen.
121 */
122 #ifdef __NetBSD__
123 /* XXX Hope it's not a problem that we might wake someone. */
124 complete(x);
125 #else
126 spin_lock_irqsave(&x->wait.lock, flags);
127 x->done++;
128 spin_unlock_irqrestore(&x->wait.lock, flags);
129 #endif
130 }
131 return 0;
132 }
133
134 int i915_mutex_lock_interruptible(struct drm_device *dev)
135 {
136 int ret;
137
138 ret = i915_gem_wait_for_error(dev);
139 if (ret)
140 return ret;
141
142 ret = mutex_lock_interruptible(&dev->struct_mutex);
143 if (ret)
144 return ret;
145
146 WARN_ON(i915_verify_lists(dev));
147 return 0;
148 }
149
150 static inline bool
151 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
152 {
153 return obj->gtt_space && !obj->active;
154 }
155
156 int
157 i915_gem_init_ioctl(struct drm_device *dev, void *data,
158 struct drm_file *file)
159 {
160 struct drm_i915_gem_init *args = data;
161
162 if (drm_core_check_feature(dev, DRIVER_MODESET))
163 return -ENODEV;
164
165 if (args->gtt_start >= args->gtt_end ||
166 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
167 return -EINVAL;
168
169 /* GEM with user mode setting was never supported on ilk and later. */
170 if (INTEL_INFO(dev)->gen >= 5)
171 return -ENODEV;
172
173 mutex_lock(&dev->struct_mutex);
174 i915_gem_init_global_gtt(dev, args->gtt_start,
175 args->gtt_end, args->gtt_end);
176 mutex_unlock(&dev->struct_mutex);
177
178 return 0;
179 }
180
181 int
182 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
183 struct drm_file *file)
184 {
185 struct drm_i915_private *dev_priv = dev->dev_private;
186 struct drm_i915_gem_get_aperture *args = data;
187 struct drm_i915_gem_object *obj;
188 size_t pinned;
189
190 pinned = 0;
191 mutex_lock(&dev->struct_mutex);
192 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
193 if (obj->pin_count)
194 pinned += obj->gtt_space->size;
195 mutex_unlock(&dev->struct_mutex);
196
197 args->aper_size = dev_priv->mm.gtt_total;
198 args->aper_available_size = args->aper_size - pinned;
199
200 return 0;
201 }
202
203 static int
204 i915_gem_create(struct drm_file *file,
205 struct drm_device *dev,
206 uint64_t size,
207 uint32_t *handle_p)
208 {
209 struct drm_i915_gem_object *obj;
210 int ret;
211 u32 handle;
212
213 size = roundup(size, PAGE_SIZE);
214 if (size == 0)
215 return -EINVAL;
216
217 /* Allocate the new object */
218 obj = i915_gem_alloc_object(dev, size);
219 if (obj == NULL)
220 return -ENOMEM;
221
222 ret = drm_gem_handle_create(file, &obj->base, &handle);
223 if (ret) {
224 drm_gem_object_release(&obj->base);
225 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
226 kfree(obj);
227 return ret;
228 }
229
230 /* drop reference from allocate - handle holds it now */
231 drm_gem_object_unreference(&obj->base);
232 trace_i915_gem_object_create(obj);
233
234 *handle_p = handle;
235 return 0;
236 }
237
238 int
239 i915_gem_dumb_create(struct drm_file *file,
240 struct drm_device *dev,
241 struct drm_mode_create_dumb *args)
242 {
243 /* have to work out size/pitch and return them */
244 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
245 args->size = args->pitch * args->height;
246 return i915_gem_create(file, dev,
247 args->size, &args->handle);
248 }
249
250 int i915_gem_dumb_destroy(struct drm_file *file,
251 struct drm_device *dev,
252 uint32_t handle)
253 {
254 return drm_gem_handle_delete(file, handle);
255 }
256
257 /**
258 * Creates a new mm object and returns a handle to it.
259 */
260 int
261 i915_gem_create_ioctl(struct drm_device *dev, void *data,
262 struct drm_file *file)
263 {
264 struct drm_i915_gem_create *args = data;
265
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268 }
269
270 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
271 {
272 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
273
274 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
275 obj->tiling_mode != I915_TILING_NONE;
276 }
277
278 static inline int
279 __copy_to_user_swizzled(char __user *cpu_vaddr,
280 const char *gpu_vaddr, int gpu_offset,
281 int length)
282 {
283 int ret, cpu_offset = 0;
284
285 while (length > 0) {
286 int cacheline_end = ALIGN(gpu_offset + 1, 64);
287 int this_length = min(cacheline_end - gpu_offset, length);
288 int swizzled_gpu_offset = gpu_offset ^ 64;
289
290 ret = __copy_to_user(cpu_vaddr + cpu_offset,
291 gpu_vaddr + swizzled_gpu_offset,
292 this_length);
293 if (ret)
294 return ret + length;
295
296 cpu_offset += this_length;
297 gpu_offset += this_length;
298 length -= this_length;
299 }
300
301 return 0;
302 }
303
304 static inline int
305 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
306 const char __user *cpu_vaddr,
307 int length)
308 {
309 int ret, cpu_offset = 0;
310
311 while (length > 0) {
312 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313 int this_length = min(cacheline_end - gpu_offset, length);
314 int swizzled_gpu_offset = gpu_offset ^ 64;
315
316 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
317 cpu_vaddr + cpu_offset,
318 this_length);
319 if (ret)
320 return ret + length;
321
322 cpu_offset += this_length;
323 gpu_offset += this_length;
324 length -= this_length;
325 }
326
327 return 0;
328 }
329
330 /* Per-page copy function for the shmem pread fastpath.
331 * Flushes invalid cachelines before reading the target if
332 * needs_clflush is set. */
333 static int
334 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
335 char __user *user_data,
336 bool page_do_bit17_swizzling, bool needs_clflush)
337 {
338 char *vaddr;
339 int ret;
340
341 if (unlikely(page_do_bit17_swizzling))
342 return -EINVAL;
343
344 vaddr = kmap_atomic(page);
345 if (needs_clflush)
346 drm_clflush_virt_range(vaddr + shmem_page_offset,
347 page_length);
348 ret = __copy_to_user_inatomic(user_data,
349 vaddr + shmem_page_offset,
350 page_length);
351 kunmap_atomic(vaddr);
352
353 return ret ? -EFAULT : 0;
354 }
355
356 static void
357 shmem_clflush_swizzled_range(char *addr, unsigned long length,
358 bool swizzled)
359 {
360 if (unlikely(swizzled)) {
361 unsigned long start = (unsigned long) addr;
362 unsigned long end = (unsigned long) addr + length;
363
364 /* For swizzling simply ensure that we always flush both
365 * channels. Lame, but simple and it works. Swizzled
366 * pwrite/pread is far from a hotpath - current userspace
367 * doesn't use it at all. */
368 start = round_down(start, 128);
369 end = round_up(end, 128);
370
371 drm_clflush_virt_range((void *)start, end - start);
372 } else {
373 drm_clflush_virt_range(addr, length);
374 }
375
376 }
377
378 /* Only difference to the fast-path function is that this can handle bit17
379 * and uses non-atomic copy and kmap functions. */
380 static int
381 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
382 char __user *user_data,
383 bool page_do_bit17_swizzling, bool needs_clflush)
384 {
385 char *vaddr;
386 int ret;
387
388 vaddr = kmap(page);
389 if (needs_clflush)
390 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
391 page_length,
392 page_do_bit17_swizzling);
393
394 if (page_do_bit17_swizzling)
395 ret = __copy_to_user_swizzled(user_data,
396 vaddr, shmem_page_offset,
397 page_length);
398 else
399 ret = __copy_to_user(user_data,
400 vaddr + shmem_page_offset,
401 page_length);
402 kunmap(page);
403
404 return ret ? - EFAULT : 0;
405 }
406
407 static int
408 i915_gem_shmem_pread(struct drm_device *dev,
409 struct drm_i915_gem_object *obj,
410 struct drm_i915_gem_pread *args,
411 struct drm_file *file)
412 {
413 char __user *user_data;
414 ssize_t remain;
415 loff_t offset;
416 int shmem_page_offset, page_length, ret = 0;
417 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
418 int hit_slowpath = 0;
419 int prefaulted = 0;
420 int needs_clflush = 0;
421 struct scatterlist *sg;
422 int i;
423
424 user_data = (char __user *) (uintptr_t) args->data_ptr;
425 remain = args->size;
426
427 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
428
429 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
430 /* If we're not in the cpu read domain, set ourself into the gtt
431 * read domain and manually flush cachelines (if required). This
432 * optimizes for the case when the gpu will dirty the data
433 * anyway again before the next pread happens. */
434 if (obj->cache_level == I915_CACHE_NONE)
435 needs_clflush = 1;
436 if (obj->gtt_space) {
437 ret = i915_gem_object_set_to_gtt_domain(obj, false);
438 if (ret)
439 return ret;
440 }
441 }
442
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
449 offset = args->offset;
450
451 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
452 struct page *page;
453
454 if (i < offset >> PAGE_SHIFT)
455 continue;
456
457 if (remain <= 0)
458 break;
459
460 /* Operation in this page
461 *
462 * shmem_page_offset = offset within page in shmem file
463 * page_length = bytes to copy for this page
464 */
465 shmem_page_offset = offset_in_page(offset);
466 page_length = remain;
467 if ((shmem_page_offset + page_length) > PAGE_SIZE)
468 page_length = PAGE_SIZE - shmem_page_offset;
469
470 page = sg_page(sg);
471 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
472 (page_to_phys(page) & (1 << 17)) != 0;
473
474 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
475 user_data, page_do_bit17_swizzling,
476 needs_clflush);
477 if (ret == 0)
478 goto next_page;
479
480 hit_slowpath = 1;
481 mutex_unlock(&dev->struct_mutex);
482
483 if (!prefaulted) {
484 ret = fault_in_multipages_writeable(user_data, remain);
485 /* Userspace is tricking us, but we've already clobbered
486 * its pages with the prefault and promised to write the
487 * data up to the first fault. Hence ignore any errors
488 * and just continue. */
489 (void)ret;
490 prefaulted = 1;
491 }
492
493 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
494 user_data, page_do_bit17_swizzling,
495 needs_clflush);
496
497 mutex_lock(&dev->struct_mutex);
498
499 next_page:
500 mark_page_accessed(page);
501
502 if (ret)
503 goto out;
504
505 remain -= page_length;
506 user_data += page_length;
507 offset += page_length;
508 }
509
510 out:
511 i915_gem_object_unpin_pages(obj);
512
513 if (hit_slowpath) {
514 /* Fixup: Kill any reinstated backing storage pages */
515 if (obj->madv == __I915_MADV_PURGED)
516 i915_gem_object_truncate(obj);
517 }
518
519 return ret;
520 }
521
522 /**
523 * Reads data from the object referenced by handle.
524 *
525 * On error, the contents of *data are undefined.
526 */
527 int
528 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
529 struct drm_file *file)
530 {
531 struct drm_i915_gem_pread *args = data;
532 struct drm_i915_gem_object *obj;
533 int ret = 0;
534
535 if (args->size == 0)
536 return 0;
537
538 if (!access_ok(VERIFY_WRITE,
539 (char __user *)(uintptr_t)args->data_ptr,
540 args->size))
541 return -EFAULT;
542
543 ret = i915_mutex_lock_interruptible(dev);
544 if (ret)
545 return ret;
546
547 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
548 if (&obj->base == NULL) {
549 ret = -ENOENT;
550 goto unlock;
551 }
552
553 /* Bounds check source. */
554 if (args->offset > obj->base.size ||
555 args->size > obj->base.size - args->offset) {
556 ret = -EINVAL;
557 goto out;
558 }
559
560 /* prime objects have no backing filp to GEM pread/pwrite
561 * pages from.
562 */
563 if (!obj->base.filp) {
564 ret = -EINVAL;
565 goto out;
566 }
567
568 trace_i915_gem_object_pread(obj, args->offset, args->size);
569
570 ret = i915_gem_shmem_pread(dev, obj, args, file);
571
572 out:
573 drm_gem_object_unreference(&obj->base);
574 unlock:
575 mutex_unlock(&dev->struct_mutex);
576 return ret;
577 }
578
579 /* This is the fast write path which cannot handle
580 * page faults in the source data
581 */
582
583 static inline int
584 fast_user_write(struct io_mapping *mapping,
585 loff_t page_base, int page_offset,
586 char __user *user_data,
587 int length)
588 {
589 void __iomem *vaddr_atomic;
590 void *vaddr;
591 unsigned long unwritten;
592
593 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
594 /* We can use the cpu mem copy function because this is X86. */
595 vaddr = (void __force*)vaddr_atomic + page_offset;
596 unwritten = __copy_from_user_inatomic_nocache(vaddr,
597 user_data, length);
598 io_mapping_unmap_atomic(vaddr_atomic);
599 return unwritten;
600 }
601
602 /**
603 * This is the fast pwrite path, where we copy the data directly from the
604 * user into the GTT, uncached.
605 */
606 static int
607 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
608 struct drm_i915_gem_object *obj,
609 struct drm_i915_gem_pwrite *args,
610 struct drm_file *file)
611 {
612 drm_i915_private_t *dev_priv = dev->dev_private;
613 ssize_t remain;
614 loff_t offset, page_base;
615 char __user *user_data;
616 int page_offset, page_length, ret;
617
618 ret = i915_gem_object_pin(obj, 0, true, true);
619 if (ret)
620 goto out;
621
622 ret = i915_gem_object_set_to_gtt_domain(obj, true);
623 if (ret)
624 goto out_unpin;
625
626 ret = i915_gem_object_put_fence(obj);
627 if (ret)
628 goto out_unpin;
629
630 user_data = (char __user *) (uintptr_t) args->data_ptr;
631 remain = args->size;
632
633 offset = obj->gtt_offset + args->offset;
634
635 while (remain > 0) {
636 /* Operation in this page
637 *
638 * page_base = page offset within aperture
639 * page_offset = offset within page
640 * page_length = bytes to copy for this page
641 */
642 page_base = offset & PAGE_MASK;
643 page_offset = offset_in_page(offset);
644 page_length = remain;
645 if ((page_offset + remain) > PAGE_SIZE)
646 page_length = PAGE_SIZE - page_offset;
647
648 /* If we get a fault while copying data, then (presumably) our
649 * source page isn't available. Return the error and we'll
650 * retry in the slow path.
651 */
652 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
653 page_offset, user_data, page_length)) {
654 ret = -EFAULT;
655 goto out_unpin;
656 }
657
658 remain -= page_length;
659 user_data += page_length;
660 offset += page_length;
661 }
662
663 out_unpin:
664 i915_gem_object_unpin(obj);
665 out:
666 return ret;
667 }
668
669 /* Per-page copy function for the shmem pwrite fastpath.
670 * Flushes invalid cachelines before writing to the target if
671 * needs_clflush_before is set and flushes out any written cachelines after
672 * writing if needs_clflush is set. */
673 static int
674 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
675 char __user *user_data,
676 bool page_do_bit17_swizzling,
677 bool needs_clflush_before,
678 bool needs_clflush_after)
679 {
680 char *vaddr;
681 int ret;
682
683 if (unlikely(page_do_bit17_swizzling))
684 return -EINVAL;
685
686 vaddr = kmap_atomic(page);
687 if (needs_clflush_before)
688 drm_clflush_virt_range(vaddr + shmem_page_offset,
689 page_length);
690 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
691 user_data,
692 page_length);
693 if (needs_clflush_after)
694 drm_clflush_virt_range(vaddr + shmem_page_offset,
695 page_length);
696 kunmap_atomic(vaddr);
697
698 return ret ? -EFAULT : 0;
699 }
700
701 /* Only difference to the fast-path function is that this can handle bit17
702 * and uses non-atomic copy and kmap functions. */
703 static int
704 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
705 char __user *user_data,
706 bool page_do_bit17_swizzling,
707 bool needs_clflush_before,
708 bool needs_clflush_after)
709 {
710 char *vaddr;
711 int ret;
712
713 vaddr = kmap(page);
714 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
715 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
716 page_length,
717 page_do_bit17_swizzling);
718 if (page_do_bit17_swizzling)
719 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
720 user_data,
721 page_length);
722 else
723 ret = __copy_from_user(vaddr + shmem_page_offset,
724 user_data,
725 page_length);
726 if (needs_clflush_after)
727 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
728 page_length,
729 page_do_bit17_swizzling);
730 kunmap(page);
731
732 return ret ? -EFAULT : 0;
733 }
734
735 static int
736 i915_gem_shmem_pwrite(struct drm_device *dev,
737 struct drm_i915_gem_object *obj,
738 struct drm_i915_gem_pwrite *args,
739 struct drm_file *file)
740 {
741 ssize_t remain;
742 loff_t offset;
743 char __user *user_data;
744 int shmem_page_offset, page_length, ret = 0;
745 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
746 int hit_slowpath = 0;
747 int needs_clflush_after = 0;
748 int needs_clflush_before = 0;
749 int i;
750 struct scatterlist *sg;
751
752 user_data = (char __user *) (uintptr_t) args->data_ptr;
753 remain = args->size;
754
755 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
756
757 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
758 /* If we're not in the cpu write domain, set ourself into the gtt
759 * write domain and manually flush cachelines (if required). This
760 * optimizes for the case when the gpu will use the data
761 * right away and we therefore have to clflush anyway. */
762 if (obj->cache_level == I915_CACHE_NONE)
763 needs_clflush_after = 1;
764 if (obj->gtt_space) {
765 ret = i915_gem_object_set_to_gtt_domain(obj, true);
766 if (ret)
767 return ret;
768 }
769 }
770 /* Same trick applies for invalidate partially written cachelines before
771 * writing. */
772 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
773 && obj->cache_level == I915_CACHE_NONE)
774 needs_clflush_before = 1;
775
776 ret = i915_gem_object_get_pages(obj);
777 if (ret)
778 return ret;
779
780 i915_gem_object_pin_pages(obj);
781
782 offset = args->offset;
783 obj->dirty = 1;
784
785 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
786 struct page *page;
787 int partial_cacheline_write;
788
789 if (i < offset >> PAGE_SHIFT)
790 continue;
791
792 if (remain <= 0)
793 break;
794
795 /* Operation in this page
796 *
797 * shmem_page_offset = offset within page in shmem file
798 * page_length = bytes to copy for this page
799 */
800 shmem_page_offset = offset_in_page(offset);
801
802 page_length = remain;
803 if ((shmem_page_offset + page_length) > PAGE_SIZE)
804 page_length = PAGE_SIZE - shmem_page_offset;
805
806 /* If we don't overwrite a cacheline completely we need to be
807 * careful to have up-to-date data by first clflushing. Don't
808 * overcomplicate things and flush the entire patch. */
809 partial_cacheline_write = needs_clflush_before &&
810 ((shmem_page_offset | page_length)
811 & (boot_cpu_data.x86_clflush_size - 1));
812
813 page = sg_page(sg);
814 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
815 (page_to_phys(page) & (1 << 17)) != 0;
816
817 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
818 user_data, page_do_bit17_swizzling,
819 partial_cacheline_write,
820 needs_clflush_after);
821 if (ret == 0)
822 goto next_page;
823
824 hit_slowpath = 1;
825 mutex_unlock(&dev->struct_mutex);
826 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
827 user_data, page_do_bit17_swizzling,
828 partial_cacheline_write,
829 needs_clflush_after);
830
831 mutex_lock(&dev->struct_mutex);
832
833 next_page:
834 set_page_dirty(page);
835 mark_page_accessed(page);
836
837 if (ret)
838 goto out;
839
840 remain -= page_length;
841 user_data += page_length;
842 offset += page_length;
843 }
844
845 out:
846 i915_gem_object_unpin_pages(obj);
847
848 if (hit_slowpath) {
849 /* Fixup: Kill any reinstated backing storage pages */
850 if (obj->madv == __I915_MADV_PURGED)
851 i915_gem_object_truncate(obj);
852 /* and flush dirty cachelines in case the object isn't in the cpu write
853 * domain anymore. */
854 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
855 i915_gem_clflush_object(obj);
856 i915_gem_chipset_flush(dev);
857 }
858 }
859
860 if (needs_clflush_after)
861 i915_gem_chipset_flush(dev);
862
863 return ret;
864 }
865
866 /**
867 * Writes data to the object referenced by handle.
868 *
869 * On error, the contents of the buffer that were to be modified are undefined.
870 */
871 int
872 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
873 struct drm_file *file)
874 {
875 struct drm_i915_gem_pwrite *args = data;
876 struct drm_i915_gem_object *obj;
877 int ret;
878
879 if (args->size == 0)
880 return 0;
881
882 if (!access_ok(VERIFY_READ,
883 (char __user *)(uintptr_t)args->data_ptr,
884 args->size))
885 return -EFAULT;
886
887 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
888 args->size);
889 if (ret)
890 return -EFAULT;
891
892 ret = i915_mutex_lock_interruptible(dev);
893 if (ret)
894 return ret;
895
896 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
897 if (&obj->base == NULL) {
898 ret = -ENOENT;
899 goto unlock;
900 }
901
902 /* Bounds check destination. */
903 if (args->offset > obj->base.size ||
904 args->size > obj->base.size - args->offset) {
905 ret = -EINVAL;
906 goto out;
907 }
908
909 /* prime objects have no backing filp to GEM pread/pwrite
910 * pages from.
911 */
912 if (!obj->base.filp) {
913 ret = -EINVAL;
914 goto out;
915 }
916
917 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
918
919 ret = -EFAULT;
920 /* We can only do the GTT pwrite on untiled buffers, as otherwise
921 * it would end up going through the fenced access, and we'll get
922 * different detiling behavior between reading and writing.
923 * pread/pwrite currently are reading and writing from the CPU
924 * perspective, requiring manual detiling by the client.
925 */
926 if (obj->phys_obj) {
927 ret = i915_gem_phys_pwrite(dev, obj, args, file);
928 goto out;
929 }
930
931 if (obj->cache_level == I915_CACHE_NONE &&
932 obj->tiling_mode == I915_TILING_NONE &&
933 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935 /* Note that the gtt paths might fail with non-page-backed user
936 * pointers (e.g. gtt mappings when moving data between
937 * textures). Fallback to the shmem path in that case. */
938 }
939
940 if (ret == -EFAULT || ret == -ENOSPC)
941 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
942
943 out:
944 drm_gem_object_unreference(&obj->base);
945 unlock:
946 mutex_unlock(&dev->struct_mutex);
947 return ret;
948 }
949
950 int
951 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
952 bool interruptible)
953 {
954 if (atomic_read(&dev_priv->mm.wedged)) {
955 struct completion *x = &dev_priv->error_completion;
956 bool recovery_complete;
957 unsigned long flags;
958
959 /* Give the error handler a chance to run. */
960 spin_lock_irqsave(&x->wait.lock, flags);
961 recovery_complete = x->done > 0;
962 spin_unlock_irqrestore(&x->wait.lock, flags);
963
964 /* Non-interruptible callers can't handle -EAGAIN, hence return
965 * -EIO unconditionally for these. */
966 if (!interruptible)
967 return -EIO;
968
969 /* Recovery complete, but still wedged means reset failure. */
970 if (recovery_complete)
971 return -EIO;
972
973 return -EAGAIN;
974 }
975
976 return 0;
977 }
978
979 /*
980 * Compare seqno against outstanding lazy request. Emit a request if they are
981 * equal.
982 */
983 static int
984 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
985 {
986 int ret;
987
988 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
989
990 ret = 0;
991 if (seqno == ring->outstanding_lazy_request)
992 ret = i915_add_request(ring, NULL, NULL);
993
994 return ret;
995 }
996
997 /**
998 * __wait_seqno - wait until execution of seqno has finished
999 * @ring: the ring expected to report seqno
1000 * @seqno: duh!
1001 * @interruptible: do an interruptible wait (normally yes)
1002 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1003 *
1004 * Returns 0 if the seqno was found within the alloted time. Else returns the
1005 * errno with remaining time filled in timeout argument.
1006 */
1007 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1008 bool interruptible, struct timespec *timeout)
1009 {
1010 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1011 struct timespec before, now, wait_time={1,0};
1012 unsigned long timeout_jiffies;
1013 long end;
1014 bool wait_forever = true;
1015 int ret;
1016
1017 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1018 return 0;
1019
1020 trace_i915_gem_request_wait_begin(ring, seqno);
1021
1022 if (timeout != NULL) {
1023 wait_time = *timeout;
1024 wait_forever = false;
1025 }
1026
1027 timeout_jiffies = timespec_to_jiffies(&wait_time);
1028
1029 if (WARN_ON(!ring->irq_get(ring)))
1030 return -ENODEV;
1031
1032 /* Record current time in case interrupted by signal, or wedged * */
1033 getrawmonotonic(&before);
1034
1035 #define EXIT_COND \
1036 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1037 atomic_read(&dev_priv->mm.wedged))
1038 do {
1039 #ifdef __NetBSD__
1040 /*
1041 * XXX This wait is always interruptible; we should
1042 * heed the flag `interruptible'.
1043 */
1044 DRM_TIMED_WAIT_UNTIL(end, &ring->irq_queue, &drm_global_mutex,
1045 timeout_jiffies,
1046 EXIT_COND);
1047 #else
1048 if (interruptible)
1049 end = wait_event_interruptible_timeout(ring->irq_queue,
1050 EXIT_COND,
1051 timeout_jiffies);
1052 else
1053 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1054 timeout_jiffies);
1055
1056 #endif
1057 ret = i915_gem_check_wedge(dev_priv, interruptible);
1058 if (ret)
1059 end = ret;
1060 } while (end == 0 && wait_forever);
1061
1062 getrawmonotonic(&now);
1063
1064 ring->irq_put(ring);
1065 trace_i915_gem_request_wait_end(ring, seqno);
1066 #undef EXIT_COND
1067
1068 if (timeout) {
1069 struct timespec sleep_time = timespec_sub(now, before);
1070 *timeout = timespec_sub(*timeout, sleep_time);
1071 }
1072
1073 switch (end) {
1074 case -EIO:
1075 case -EAGAIN: /* Wedged */
1076 case -ERESTARTSYS: /* Signal */
1077 return (int)end;
1078 case 0: /* Timeout */
1079 if (timeout)
1080 set_normalized_timespec(timeout, 0, 0);
1081 return -ETIME;
1082 default: /* Completed */
1083 WARN_ON(end < 0); /* We're not aware of other errors */
1084 return 0;
1085 }
1086 }
1087
1088 /**
1089 * Waits for a sequence number to be signaled, and cleans up the
1090 * request and object lists appropriately for that event.
1091 */
1092 int
1093 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1094 {
1095 struct drm_device *dev = ring->dev;
1096 struct drm_i915_private *dev_priv = dev->dev_private;
1097 bool interruptible = dev_priv->mm.interruptible;
1098 int ret;
1099
1100 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1101 BUG_ON(seqno == 0);
1102
1103 ret = i915_gem_check_wedge(dev_priv, interruptible);
1104 if (ret)
1105 return ret;
1106
1107 ret = i915_gem_check_olr(ring, seqno);
1108 if (ret)
1109 return ret;
1110
1111 return __wait_seqno(ring, seqno, interruptible, NULL);
1112 }
1113
1114 /**
1115 * Ensures that all rendering to the object has completed and the object is
1116 * safe to unbind from the GTT or access from the CPU.
1117 */
1118 static __must_check int
1119 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1120 bool readonly)
1121 {
1122 struct intel_ring_buffer *ring = obj->ring;
1123 u32 seqno;
1124 int ret;
1125
1126 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1127 if (seqno == 0)
1128 return 0;
1129
1130 ret = i915_wait_seqno(ring, seqno);
1131 if (ret)
1132 return ret;
1133
1134 i915_gem_retire_requests_ring(ring);
1135
1136 /* Manually manage the write flush as we may have not yet
1137 * retired the buffer.
1138 */
1139 if (obj->last_write_seqno &&
1140 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1141 obj->last_write_seqno = 0;
1142 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1143 }
1144
1145 return 0;
1146 }
1147
1148 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1149 * as the object state may change during this call.
1150 */
1151 static __must_check int
1152 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1153 bool readonly)
1154 {
1155 struct drm_device *dev = obj->base.dev;
1156 struct drm_i915_private *dev_priv = dev->dev_private;
1157 struct intel_ring_buffer *ring = obj->ring;
1158 u32 seqno;
1159 int ret;
1160
1161 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1162 BUG_ON(!dev_priv->mm.interruptible);
1163
1164 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1165 if (seqno == 0)
1166 return 0;
1167
1168 ret = i915_gem_check_wedge(dev_priv, true);
1169 if (ret)
1170 return ret;
1171
1172 ret = i915_gem_check_olr(ring, seqno);
1173 if (ret)
1174 return ret;
1175
1176 mutex_unlock(&dev->struct_mutex);
1177 ret = __wait_seqno(ring, seqno, true, NULL);
1178 mutex_lock(&dev->struct_mutex);
1179
1180 i915_gem_retire_requests_ring(ring);
1181
1182 /* Manually manage the write flush as we may have not yet
1183 * retired the buffer.
1184 */
1185 if (obj->last_write_seqno &&
1186 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1187 obj->last_write_seqno = 0;
1188 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1189 }
1190
1191 return ret;
1192 }
1193
1194 /**
1195 * Called when user space prepares to use an object with the CPU, either
1196 * through the mmap ioctl's mapping or a GTT mapping.
1197 */
1198 int
1199 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1200 struct drm_file *file)
1201 {
1202 struct drm_i915_gem_set_domain *args = data;
1203 struct drm_i915_gem_object *obj;
1204 uint32_t read_domains = args->read_domains;
1205 uint32_t write_domain = args->write_domain;
1206 int ret;
1207
1208 /* Only handle setting domains to types used by the CPU. */
1209 if (write_domain & I915_GEM_GPU_DOMAINS)
1210 return -EINVAL;
1211
1212 if (read_domains & I915_GEM_GPU_DOMAINS)
1213 return -EINVAL;
1214
1215 /* Having something in the write domain implies it's in the read
1216 * domain, and only that read domain. Enforce that in the request.
1217 */
1218 if (write_domain != 0 && read_domains != write_domain)
1219 return -EINVAL;
1220
1221 ret = i915_mutex_lock_interruptible(dev);
1222 if (ret)
1223 return ret;
1224
1225 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1226 if (&obj->base == NULL) {
1227 ret = -ENOENT;
1228 goto unlock;
1229 }
1230
1231 /* Try to flush the object off the GPU without holding the lock.
1232 * We will repeat the flush holding the lock in the normal manner
1233 * to catch cases where we are gazumped.
1234 */
1235 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1236 if (ret)
1237 goto unref;
1238
1239 if (read_domains & I915_GEM_DOMAIN_GTT) {
1240 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1241
1242 /* Silently promote "you're not bound, there was nothing to do"
1243 * to success, since the client was just asking us to
1244 * make sure everything was done.
1245 */
1246 if (ret == -EINVAL)
1247 ret = 0;
1248 } else {
1249 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1250 }
1251
1252 unref:
1253 drm_gem_object_unreference(&obj->base);
1254 unlock:
1255 mutex_unlock(&dev->struct_mutex);
1256 return ret;
1257 }
1258
1259 /**
1260 * Called when user space has done writes to this buffer
1261 */
1262 int
1263 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1264 struct drm_file *file)
1265 {
1266 struct drm_i915_gem_sw_finish *args = data;
1267 struct drm_i915_gem_object *obj;
1268 int ret = 0;
1269
1270 ret = i915_mutex_lock_interruptible(dev);
1271 if (ret)
1272 return ret;
1273
1274 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1275 if (&obj->base == NULL) {
1276 ret = -ENOENT;
1277 goto unlock;
1278 }
1279
1280 /* Pinned buffers may be scanout, so flush the cache */
1281 if (obj->pin_count)
1282 i915_gem_object_flush_cpu_write_domain(obj);
1283
1284 drm_gem_object_unreference(&obj->base);
1285 unlock:
1286 mutex_unlock(&dev->struct_mutex);
1287 return ret;
1288 }
1289
1290 /**
1291 * Maps the contents of an object, returning the address it is mapped
1292 * into.
1293 *
1294 * While the mapping holds a reference on the contents of the object, it doesn't
1295 * imply a ref on the object itself.
1296 */
1297 int
1298 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1299 struct drm_file *file)
1300 {
1301 struct drm_i915_gem_mmap *args = data;
1302 struct drm_gem_object *obj;
1303 unsigned long addr;
1304
1305 obj = drm_gem_object_lookup(dev, file, args->handle);
1306 if (obj == NULL)
1307 return -ENOENT;
1308
1309 /* prime objects have no backing filp to GEM mmap
1310 * pages from.
1311 */
1312 if (!obj->filp) {
1313 drm_gem_object_unreference_unlocked(obj);
1314 return -EINVAL;
1315 }
1316
1317 addr = vm_mmap(obj->filp, 0, args->size,
1318 PROT_READ | PROT_WRITE, MAP_SHARED,
1319 args->offset);
1320 drm_gem_object_unreference_unlocked(obj);
1321 if (IS_ERR((void *)addr))
1322 return addr;
1323
1324 args->addr_ptr = (uint64_t) addr;
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * i915_gem_fault - fault a page into the GTT
1331 * vma: VMA in question
1332 * vmf: fault info
1333 *
1334 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1335 * from userspace. The fault handler takes care of binding the object to
1336 * the GTT (if needed), allocating and programming a fence register (again,
1337 * only if needed based on whether the old reg is still valid or the object
1338 * is tiled) and inserting a new PTE into the faulting process.
1339 *
1340 * Note that the faulting process may involve evicting existing objects
1341 * from the GTT and/or fence registers to make room. So performance may
1342 * suffer if the GTT working set is large or there are few fence registers
1343 * left.
1344 */
1345 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1346 {
1347 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1348 struct drm_device *dev = obj->base.dev;
1349 drm_i915_private_t *dev_priv = dev->dev_private;
1350 pgoff_t page_offset;
1351 unsigned long pfn;
1352 int ret = 0;
1353 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1354
1355 /* We don't use vmf->pgoff since that has the fake offset */
1356 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1357 PAGE_SHIFT;
1358
1359 ret = i915_mutex_lock_interruptible(dev);
1360 if (ret)
1361 goto out;
1362
1363 trace_i915_gem_object_fault(obj, page_offset, true, write);
1364
1365 /* Now bind it into the GTT if needed */
1366 ret = i915_gem_object_pin(obj, 0, true, false);
1367 if (ret)
1368 goto unlock;
1369
1370 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1371 if (ret)
1372 goto unpin;
1373
1374 ret = i915_gem_object_get_fence(obj);
1375 if (ret)
1376 goto unpin;
1377
1378 obj->fault_mappable = true;
1379
1380 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1381 page_offset;
1382
1383 /* Finally, remap it using the new GTT offset */
1384 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1385 unpin:
1386 i915_gem_object_unpin(obj);
1387 unlock:
1388 mutex_unlock(&dev->struct_mutex);
1389 out:
1390 switch (ret) {
1391 case -EIO:
1392 /* If this -EIO is due to a gpu hang, give the reset code a
1393 * chance to clean up the mess. Otherwise return the proper
1394 * SIGBUS. */
1395 if (!atomic_read(&dev_priv->mm.wedged))
1396 return VM_FAULT_SIGBUS;
1397 case -EAGAIN:
1398 /* Give the error handler a chance to run and move the
1399 * objects off the GPU active list. Next time we service the
1400 * fault, we should be able to transition the page into the
1401 * GTT without touching the GPU (and so avoid further
1402 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1403 * with coherency, just lost writes.
1404 */
1405 set_need_resched();
1406 case 0:
1407 case -ERESTARTSYS:
1408 case -EINTR:
1409 case -EBUSY:
1410 /*
1411 * EBUSY is ok: this just means that another thread
1412 * already did the job.
1413 */
1414 return VM_FAULT_NOPAGE;
1415 case -ENOMEM:
1416 return VM_FAULT_OOM;
1417 case -ENOSPC:
1418 return VM_FAULT_SIGBUS;
1419 default:
1420 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1421 return VM_FAULT_SIGBUS;
1422 }
1423 }
1424
1425 /**
1426 * i915_gem_release_mmap - remove physical page mappings
1427 * @obj: obj in question
1428 *
1429 * Preserve the reservation of the mmapping with the DRM core code, but
1430 * relinquish ownership of the pages back to the system.
1431 *
1432 * It is vital that we remove the page mapping if we have mapped a tiled
1433 * object through the GTT and then lose the fence register due to
1434 * resource pressure. Similarly if the object has been moved out of the
1435 * aperture, than pages mapped into userspace must be revoked. Removing the
1436 * mapping will then trigger a page fault on the next user access, allowing
1437 * fixup by i915_gem_fault().
1438 */
1439 void
1440 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1441 {
1442 if (!obj->fault_mappable)
1443 return;
1444
1445 if (obj->base.dev->dev_mapping)
1446 unmap_mapping_range(obj->base.dev->dev_mapping,
1447 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1448 obj->base.size, 1);
1449
1450 obj->fault_mappable = false;
1451 }
1452
1453 static uint32_t
1454 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1455 {
1456 uint32_t gtt_size;
1457
1458 if (INTEL_INFO(dev)->gen >= 4 ||
1459 tiling_mode == I915_TILING_NONE)
1460 return size;
1461
1462 /* Previous chips need a power-of-two fence region when tiling */
1463 if (INTEL_INFO(dev)->gen == 3)
1464 gtt_size = 1024*1024;
1465 else
1466 gtt_size = 512*1024;
1467
1468 while (gtt_size < size)
1469 gtt_size <<= 1;
1470
1471 return gtt_size;
1472 }
1473
1474 /**
1475 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1476 * @obj: object to check
1477 *
1478 * Return the required GTT alignment for an object, taking into account
1479 * potential fence register mapping.
1480 */
1481 static uint32_t
1482 i915_gem_get_gtt_alignment(struct drm_device *dev,
1483 uint32_t size,
1484 int tiling_mode)
1485 {
1486 /*
1487 * Minimum alignment is 4k (GTT page size), but might be greater
1488 * if a fence register is needed for the object.
1489 */
1490 if (INTEL_INFO(dev)->gen >= 4 ||
1491 tiling_mode == I915_TILING_NONE)
1492 return 4096;
1493
1494 /*
1495 * Previous chips need to be aligned to the size of the smallest
1496 * fence register that can contain the object.
1497 */
1498 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1499 }
1500
1501 /**
1502 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1503 * unfenced object
1504 * @dev: the device
1505 * @size: size of the object
1506 * @tiling_mode: tiling mode of the object
1507 *
1508 * Return the required GTT alignment for an object, only taking into account
1509 * unfenced tiled surface requirements.
1510 */
1511 uint32_t
1512 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1513 uint32_t size,
1514 int tiling_mode)
1515 {
1516 /*
1517 * Minimum alignment is 4k (GTT page size) for sane hw.
1518 */
1519 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1520 tiling_mode == I915_TILING_NONE)
1521 return 4096;
1522
1523 /* Previous hardware however needs to be aligned to a power-of-two
1524 * tile height. The simplest method for determining this is to reuse
1525 * the power-of-tile object size.
1526 */
1527 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1528 }
1529
1530 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1531 {
1532 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1533 int ret;
1534
1535 if (obj->base.map_list.map)
1536 return 0;
1537
1538 dev_priv->mm.shrinker_no_lock_stealing = true;
1539
1540 ret = drm_gem_create_mmap_offset(&obj->base);
1541 if (ret != -ENOSPC)
1542 goto out;
1543
1544 /* Badly fragmented mmap space? The only way we can recover
1545 * space is by destroying unwanted objects. We can't randomly release
1546 * mmap_offsets as userspace expects them to be persistent for the
1547 * lifetime of the objects. The closest we can is to release the
1548 * offsets on purgeable objects by truncating it and marking it purged,
1549 * which prevents userspace from ever using that object again.
1550 */
1551 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1552 ret = drm_gem_create_mmap_offset(&obj->base);
1553 if (ret != -ENOSPC)
1554 goto out;
1555
1556 i915_gem_shrink_all(dev_priv);
1557 ret = drm_gem_create_mmap_offset(&obj->base);
1558 out:
1559 dev_priv->mm.shrinker_no_lock_stealing = false;
1560
1561 return ret;
1562 }
1563
1564 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1565 {
1566 if (!obj->base.map_list.map)
1567 return;
1568
1569 drm_gem_free_mmap_offset(&obj->base);
1570 }
1571
1572 int
1573 i915_gem_mmap_gtt(struct drm_file *file,
1574 struct drm_device *dev,
1575 uint32_t handle,
1576 uint64_t *offset)
1577 {
1578 struct drm_i915_private *dev_priv = dev->dev_private;
1579 struct drm_i915_gem_object *obj;
1580 int ret;
1581
1582 ret = i915_mutex_lock_interruptible(dev);
1583 if (ret)
1584 return ret;
1585
1586 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1587 if (&obj->base == NULL) {
1588 ret = -ENOENT;
1589 goto unlock;
1590 }
1591
1592 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1593 ret = -E2BIG;
1594 goto out;
1595 }
1596
1597 if (obj->madv != I915_MADV_WILLNEED) {
1598 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1599 ret = -EINVAL;
1600 goto out;
1601 }
1602
1603 ret = i915_gem_object_create_mmap_offset(obj);
1604 if (ret)
1605 goto out;
1606
1607 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1608
1609 out:
1610 drm_gem_object_unreference(&obj->base);
1611 unlock:
1612 mutex_unlock(&dev->struct_mutex);
1613 return ret;
1614 }
1615
1616 /**
1617 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1618 * @dev: DRM device
1619 * @data: GTT mapping ioctl data
1620 * @file: GEM object info
1621 *
1622 * Simply returns the fake offset to userspace so it can mmap it.
1623 * The mmap call will end up in drm_gem_mmap(), which will set things
1624 * up so we can get faults in the handler above.
1625 *
1626 * The fault handler will take care of binding the object into the GTT
1627 * (since it may have been evicted to make room for something), allocating
1628 * a fence register, and mapping the appropriate aperture address into
1629 * userspace.
1630 */
1631 int
1632 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1633 struct drm_file *file)
1634 {
1635 struct drm_i915_gem_mmap_gtt *args = data;
1636
1637 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1638 }
1639
1640 /* Immediately discard the backing storage */
1641 static void
1642 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1643 {
1644 struct inode *inode;
1645
1646 i915_gem_object_free_mmap_offset(obj);
1647
1648 if (obj->base.filp == NULL)
1649 return;
1650
1651 /* Our goal here is to return as much of the memory as
1652 * is possible back to the system as we are called from OOM.
1653 * To do this we must instruct the shmfs to drop all of its
1654 * backing pages, *now*.
1655 */
1656 inode = obj->base.filp->f_path.dentry->d_inode;
1657 shmem_truncate_range(inode, 0, (loff_t)-1);
1658
1659 obj->madv = __I915_MADV_PURGED;
1660 }
1661
1662 static inline int
1663 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1664 {
1665 return obj->madv == I915_MADV_DONTNEED;
1666 }
1667
1668 static void
1669 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1670 {
1671 int page_count = obj->base.size / PAGE_SIZE;
1672 struct scatterlist *sg;
1673 int ret, i;
1674
1675 BUG_ON(obj->madv == __I915_MADV_PURGED);
1676
1677 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1678 if (ret) {
1679 /* In the event of a disaster, abandon all caches and
1680 * hope for the best.
1681 */
1682 WARN_ON(ret != -EIO);
1683 i915_gem_clflush_object(obj);
1684 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1685 }
1686
1687 if (i915_gem_object_needs_bit17_swizzle(obj))
1688 i915_gem_object_save_bit_17_swizzle(obj);
1689
1690 if (obj->madv == I915_MADV_DONTNEED)
1691 obj->dirty = 0;
1692
1693 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1694 struct page *page = sg_page(sg);
1695
1696 if (obj->dirty)
1697 set_page_dirty(page);
1698
1699 if (obj->madv == I915_MADV_WILLNEED)
1700 mark_page_accessed(page);
1701
1702 page_cache_release(page);
1703 }
1704 obj->dirty = 0;
1705
1706 sg_free_table(obj->pages);
1707 kfree(obj->pages);
1708 }
1709
1710 static int
1711 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1712 {
1713 const struct drm_i915_gem_object_ops *ops = obj->ops;
1714
1715 if (obj->pages == NULL)
1716 return 0;
1717
1718 BUG_ON(obj->gtt_space);
1719
1720 if (obj->pages_pin_count)
1721 return -EBUSY;
1722
1723 /* ->put_pages might need to allocate memory for the bit17 swizzle
1724 * array, hence protect them from being reaped by removing them from gtt
1725 * lists early. */
1726 list_del(&obj->gtt_list);
1727
1728 ops->put_pages(obj);
1729 obj->pages = NULL;
1730
1731 if (i915_gem_object_is_purgeable(obj))
1732 i915_gem_object_truncate(obj);
1733
1734 return 0;
1735 }
1736
1737 static long
1738 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1739 bool purgeable_only)
1740 {
1741 struct drm_i915_gem_object *obj, *next;
1742 long count = 0;
1743
1744 list_for_each_entry_safe(obj, next,
1745 &dev_priv->mm.unbound_list,
1746 gtt_list) {
1747 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1748 i915_gem_object_put_pages(obj) == 0) {
1749 count += obj->base.size >> PAGE_SHIFT;
1750 if (count >= target)
1751 return count;
1752 }
1753 }
1754
1755 list_for_each_entry_safe(obj, next,
1756 &dev_priv->mm.inactive_list,
1757 mm_list) {
1758 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1759 i915_gem_object_unbind(obj) == 0 &&
1760 i915_gem_object_put_pages(obj) == 0) {
1761 count += obj->base.size >> PAGE_SHIFT;
1762 if (count >= target)
1763 return count;
1764 }
1765 }
1766
1767 return count;
1768 }
1769
1770 static long
1771 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1772 {
1773 return __i915_gem_shrink(dev_priv, target, true);
1774 }
1775
1776 static void
1777 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1778 {
1779 struct drm_i915_gem_object *obj, *next;
1780
1781 i915_gem_evict_everything(dev_priv->dev);
1782
1783 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1784 i915_gem_object_put_pages(obj);
1785 }
1786
1787 static int
1788 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1789 {
1790 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1791 int page_count, i;
1792 struct address_space *mapping;
1793 struct sg_table *st;
1794 struct scatterlist *sg;
1795 struct page *page;
1796 gfp_t gfp;
1797
1798 /* Assert that the object is not currently in any GPU domain. As it
1799 * wasn't in the GTT, there shouldn't be any way it could have been in
1800 * a GPU cache
1801 */
1802 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1803 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1804
1805 st = kmalloc(sizeof(*st), GFP_KERNEL);
1806 if (st == NULL)
1807 return -ENOMEM;
1808
1809 page_count = obj->base.size / PAGE_SIZE;
1810 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1811 sg_free_table(st);
1812 kfree(st);
1813 return -ENOMEM;
1814 }
1815
1816 /* Get the list of pages out of our struct file. They'll be pinned
1817 * at this point until we release them.
1818 *
1819 * Fail silently without starting the shrinker
1820 */
1821 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1822 gfp = mapping_gfp_mask(mapping);
1823 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1824 gfp &= ~(__GFP_IO | __GFP_WAIT);
1825 for_each_sg(st->sgl, sg, page_count, i) {
1826 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1827 if (IS_ERR(page)) {
1828 i915_gem_purge(dev_priv, page_count);
1829 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1830 }
1831 if (IS_ERR(page)) {
1832 /* We've tried hard to allocate the memory by reaping
1833 * our own buffer, now let the real VM do its job and
1834 * go down in flames if truly OOM.
1835 */
1836 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1837 gfp |= __GFP_IO | __GFP_WAIT;
1838
1839 i915_gem_shrink_all(dev_priv);
1840 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1841 if (IS_ERR(page))
1842 goto err_pages;
1843
1844 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1845 gfp &= ~(__GFP_IO | __GFP_WAIT);
1846 }
1847
1848 sg_set_page(sg, page, PAGE_SIZE, 0);
1849 }
1850
1851 obj->pages = st;
1852
1853 if (i915_gem_object_needs_bit17_swizzle(obj))
1854 i915_gem_object_do_bit_17_swizzle(obj);
1855
1856 return 0;
1857
1858 err_pages:
1859 for_each_sg(st->sgl, sg, i, page_count)
1860 page_cache_release(sg_page(sg));
1861 sg_free_table(st);
1862 kfree(st);
1863 return PTR_ERR(page);
1864 }
1865
1866 /* Ensure that the associated pages are gathered from the backing storage
1867 * and pinned into our object. i915_gem_object_get_pages() may be called
1868 * multiple times before they are released by a single call to
1869 * i915_gem_object_put_pages() - once the pages are no longer referenced
1870 * either as a result of memory pressure (reaping pages under the shrinker)
1871 * or as the object is itself released.
1872 */
1873 int
1874 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1875 {
1876 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1877 const struct drm_i915_gem_object_ops *ops = obj->ops;
1878 int ret;
1879
1880 if (obj->pages)
1881 return 0;
1882
1883 BUG_ON(obj->pages_pin_count);
1884
1885 ret = ops->get_pages(obj);
1886 if (ret)
1887 return ret;
1888
1889 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1890 return 0;
1891 }
1892
1893 void
1894 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1895 struct intel_ring_buffer *ring)
1896 {
1897 struct drm_device *dev = obj->base.dev;
1898 struct drm_i915_private *dev_priv = dev->dev_private;
1899 u32 seqno = intel_ring_get_seqno(ring);
1900
1901 BUG_ON(ring == NULL);
1902 obj->ring = ring;
1903
1904 /* Add a reference if we're newly entering the active list. */
1905 if (!obj->active) {
1906 drm_gem_object_reference(&obj->base);
1907 obj->active = 1;
1908 }
1909
1910 /* Move from whatever list we were on to the tail of execution. */
1911 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1912 list_move_tail(&obj->ring_list, &ring->active_list);
1913
1914 obj->last_read_seqno = seqno;
1915
1916 if (obj->fenced_gpu_access) {
1917 obj->last_fenced_seqno = seqno;
1918
1919 /* Bump MRU to take account of the delayed flush */
1920 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1921 struct drm_i915_fence_reg *reg;
1922
1923 reg = &dev_priv->fence_regs[obj->fence_reg];
1924 list_move_tail(®->lru_list,
1925 &dev_priv->mm.fence_list);
1926 }
1927 }
1928 }
1929
1930 static void
1931 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1932 {
1933 struct drm_device *dev = obj->base.dev;
1934 struct drm_i915_private *dev_priv = dev->dev_private;
1935
1936 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1937 BUG_ON(!obj->active);
1938
1939 if (obj->pin_count) /* are we a framebuffer? */
1940 intel_mark_fb_idle(obj);
1941
1942 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1943
1944 list_del_init(&obj->ring_list);
1945 obj->ring = NULL;
1946
1947 obj->last_read_seqno = 0;
1948 obj->last_write_seqno = 0;
1949 obj->base.write_domain = 0;
1950
1951 obj->last_fenced_seqno = 0;
1952 obj->fenced_gpu_access = false;
1953
1954 obj->active = 0;
1955 drm_gem_object_unreference(&obj->base);
1956
1957 WARN_ON(i915_verify_lists(dev));
1958 }
1959
1960 static int
1961 i915_gem_handle_seqno_wrap(struct drm_device *dev)
1962 {
1963 struct drm_i915_private *dev_priv = dev->dev_private;
1964 struct intel_ring_buffer *ring;
1965 int ret, i, j;
1966
1967 /* The hardware uses various monotonic 32-bit counters, if we
1968 * detect that they will wraparound we need to idle the GPU
1969 * and reset those counters.
1970 */
1971 ret = 0;
1972 for_each_ring(ring, dev_priv, i) {
1973 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1974 ret |= ring->sync_seqno[j] != 0;
1975 }
1976 if (ret == 0)
1977 return ret;
1978
1979 ret = i915_gpu_idle(dev);
1980 if (ret)
1981 return ret;
1982
1983 i915_gem_retire_requests(dev);
1984 for_each_ring(ring, dev_priv, i) {
1985 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1986 ring->sync_seqno[j] = 0;
1987 }
1988
1989 return 0;
1990 }
1991
1992 int
1993 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1994 {
1995 struct drm_i915_private *dev_priv = dev->dev_private;
1996
1997 /* reserve 0 for non-seqno */
1998 if (dev_priv->next_seqno == 0) {
1999 int ret = i915_gem_handle_seqno_wrap(dev);
2000 if (ret)
2001 return ret;
2002
2003 dev_priv->next_seqno = 1;
2004 }
2005
2006 *seqno = dev_priv->next_seqno++;
2007 return 0;
2008 }
2009
2010 int
2011 i915_add_request(struct intel_ring_buffer *ring,
2012 struct drm_file *file,
2013 u32 *out_seqno)
2014 {
2015 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2016 struct drm_i915_gem_request *request;
2017 u32 request_ring_position;
2018 int was_empty;
2019 int ret;
2020
2021 /*
2022 * Emit any outstanding flushes - execbuf can fail to emit the flush
2023 * after having emitted the batchbuffer command. Hence we need to fix
2024 * things up similar to emitting the lazy request. The difference here
2025 * is that the flush _must_ happen before the next request, no matter
2026 * what.
2027 */
2028 ret = intel_ring_flush_all_caches(ring);
2029 if (ret)
2030 return ret;
2031
2032 request = kmalloc(sizeof(*request), GFP_KERNEL);
2033 if (request == NULL)
2034 return -ENOMEM;
2035
2036
2037 /* Record the position of the start of the request so that
2038 * should we detect the updated seqno part-way through the
2039 * GPU processing the request, we never over-estimate the
2040 * position of the head.
2041 */
2042 request_ring_position = intel_ring_get_tail(ring);
2043
2044 ret = ring->add_request(ring);
2045 if (ret) {
2046 kfree(request);
2047 return ret;
2048 }
2049
2050 request->seqno = intel_ring_get_seqno(ring);
2051 request->ring = ring;
2052 request->tail = request_ring_position;
2053 request->emitted_jiffies = jiffies;
2054 was_empty = list_empty(&ring->request_list);
2055 list_add_tail(&request->list, &ring->request_list);
2056 request->file_priv = NULL;
2057
2058 if (file) {
2059 struct drm_i915_file_private *file_priv = file->driver_priv;
2060
2061 spin_lock(&file_priv->mm.lock);
2062 request->file_priv = file_priv;
2063 list_add_tail(&request->client_list,
2064 &file_priv->mm.request_list);
2065 spin_unlock(&file_priv->mm.lock);
2066 }
2067
2068 trace_i915_gem_request_add(ring, request->seqno);
2069 ring->outstanding_lazy_request = 0;
2070
2071 if (!dev_priv->mm.suspended) {
2072 if (i915_enable_hangcheck) {
2073 mod_timer(&dev_priv->hangcheck_timer,
2074 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2075 }
2076 if (was_empty) {
2077 queue_delayed_work(dev_priv->wq,
2078 &dev_priv->mm.retire_work,
2079 round_jiffies_up_relative(HZ));
2080 intel_mark_busy(dev_priv->dev);
2081 }
2082 }
2083
2084 if (out_seqno)
2085 *out_seqno = request->seqno;
2086 return 0;
2087 }
2088
2089 static inline void
2090 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2091 {
2092 struct drm_i915_file_private *file_priv = request->file_priv;
2093
2094 if (!file_priv)
2095 return;
2096
2097 spin_lock(&file_priv->mm.lock);
2098 if (request->file_priv) {
2099 list_del(&request->client_list);
2100 request->file_priv = NULL;
2101 }
2102 spin_unlock(&file_priv->mm.lock);
2103 }
2104
2105 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2106 struct intel_ring_buffer *ring)
2107 {
2108 while (!list_empty(&ring->request_list)) {
2109 struct drm_i915_gem_request *request;
2110
2111 request = list_first_entry(&ring->request_list,
2112 struct drm_i915_gem_request,
2113 list);
2114
2115 list_del(&request->list);
2116 i915_gem_request_remove_from_client(request);
2117 kfree(request);
2118 }
2119
2120 while (!list_empty(&ring->active_list)) {
2121 struct drm_i915_gem_object *obj;
2122
2123 obj = list_first_entry(&ring->active_list,
2124 struct drm_i915_gem_object,
2125 ring_list);
2126
2127 i915_gem_object_move_to_inactive(obj);
2128 }
2129 }
2130
2131 static void i915_gem_reset_fences(struct drm_device *dev)
2132 {
2133 struct drm_i915_private *dev_priv = dev->dev_private;
2134 int i;
2135
2136 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2137 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2138
2139 i915_gem_write_fence(dev, i, NULL);
2140
2141 if (reg->obj)
2142 i915_gem_object_fence_lost(reg->obj);
2143
2144 reg->pin_count = 0;
2145 reg->obj = NULL;
2146 INIT_LIST_HEAD(®->lru_list);
2147 }
2148
2149 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2150 }
2151
2152 void i915_gem_reset(struct drm_device *dev)
2153 {
2154 struct drm_i915_private *dev_priv = dev->dev_private;
2155 struct drm_i915_gem_object *obj;
2156 struct intel_ring_buffer *ring;
2157 int i;
2158
2159 for_each_ring(ring, dev_priv, i)
2160 i915_gem_reset_ring_lists(dev_priv, ring);
2161
2162 /* Move everything out of the GPU domains to ensure we do any
2163 * necessary invalidation upon reuse.
2164 */
2165 list_for_each_entry(obj,
2166 &dev_priv->mm.inactive_list,
2167 mm_list)
2168 {
2169 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2170 }
2171
2172 /* The fence registers are invalidated so clear them out */
2173 i915_gem_reset_fences(dev);
2174 }
2175
2176 /**
2177 * This function clears the request list as sequence numbers are passed.
2178 */
2179 void
2180 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2181 {
2182 uint32_t seqno;
2183
2184 if (list_empty(&ring->request_list))
2185 return;
2186
2187 WARN_ON(i915_verify_lists(ring->dev));
2188
2189 seqno = ring->get_seqno(ring, true);
2190
2191 while (!list_empty(&ring->request_list)) {
2192 struct drm_i915_gem_request *request;
2193
2194 request = list_first_entry(&ring->request_list,
2195 struct drm_i915_gem_request,
2196 list);
2197
2198 if (!i915_seqno_passed(seqno, request->seqno))
2199 break;
2200
2201 trace_i915_gem_request_retire(ring, request->seqno);
2202 /* We know the GPU must have read the request to have
2203 * sent us the seqno + interrupt, so use the position
2204 * of tail of the request to update the last known position
2205 * of the GPU head.
2206 */
2207 ring->last_retired_head = request->tail;
2208
2209 list_del(&request->list);
2210 i915_gem_request_remove_from_client(request);
2211 kfree(request);
2212 }
2213
2214 /* Move any buffers on the active list that are no longer referenced
2215 * by the ringbuffer to the flushing/inactive lists as appropriate.
2216 */
2217 while (!list_empty(&ring->active_list)) {
2218 struct drm_i915_gem_object *obj;
2219
2220 obj = list_first_entry(&ring->active_list,
2221 struct drm_i915_gem_object,
2222 ring_list);
2223
2224 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2225 break;
2226
2227 i915_gem_object_move_to_inactive(obj);
2228 }
2229
2230 if (unlikely(ring->trace_irq_seqno &&
2231 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2232 ring->irq_put(ring);
2233 ring->trace_irq_seqno = 0;
2234 }
2235
2236 WARN_ON(i915_verify_lists(ring->dev));
2237 }
2238
2239 void
2240 i915_gem_retire_requests(struct drm_device *dev)
2241 {
2242 drm_i915_private_t *dev_priv = dev->dev_private;
2243 struct intel_ring_buffer *ring;
2244 int i;
2245
2246 for_each_ring(ring, dev_priv, i)
2247 i915_gem_retire_requests_ring(ring);
2248 }
2249
2250 static void
2251 i915_gem_retire_work_handler(struct work_struct *work)
2252 {
2253 drm_i915_private_t *dev_priv;
2254 struct drm_device *dev;
2255 struct intel_ring_buffer *ring;
2256 bool idle;
2257 int i;
2258
2259 dev_priv = container_of(work, drm_i915_private_t,
2260 mm.retire_work.work);
2261 dev = dev_priv->dev;
2262
2263 /* Come back later if the device is busy... */
2264 if (!mutex_trylock(&dev->struct_mutex)) {
2265 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2266 round_jiffies_up_relative(HZ));
2267 return;
2268 }
2269
2270 i915_gem_retire_requests(dev);
2271
2272 /* Send a periodic flush down the ring so we don't hold onto GEM
2273 * objects indefinitely.
2274 */
2275 idle = true;
2276 for_each_ring(ring, dev_priv, i) {
2277 if (ring->gpu_caches_dirty)
2278 i915_add_request(ring, NULL, NULL);
2279
2280 idle &= list_empty(&ring->request_list);
2281 }
2282
2283 if (!dev_priv->mm.suspended && !idle)
2284 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2285 round_jiffies_up_relative(HZ));
2286 if (idle)
2287 intel_mark_idle(dev);
2288
2289 mutex_unlock(&dev->struct_mutex);
2290 }
2291
2292 /**
2293 * Ensures that an object will eventually get non-busy by flushing any required
2294 * write domains, emitting any outstanding lazy request and retiring and
2295 * completed requests.
2296 */
2297 static int
2298 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2299 {
2300 int ret;
2301
2302 if (obj->active) {
2303 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2304 if (ret)
2305 return ret;
2306
2307 i915_gem_retire_requests_ring(obj->ring);
2308 }
2309
2310 return 0;
2311 }
2312
2313 /**
2314 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2315 * @DRM_IOCTL_ARGS: standard ioctl arguments
2316 *
2317 * Returns 0 if successful, else an error is returned with the remaining time in
2318 * the timeout parameter.
2319 * -ETIME: object is still busy after timeout
2320 * -ERESTARTSYS: signal interrupted the wait
2321 * -ENONENT: object doesn't exist
2322 * Also possible, but rare:
2323 * -EAGAIN: GPU wedged
2324 * -ENOMEM: damn
2325 * -ENODEV: Internal IRQ fail
2326 * -E?: The add request failed
2327 *
2328 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2329 * non-zero timeout parameter the wait ioctl will wait for the given number of
2330 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2331 * without holding struct_mutex the object may become re-busied before this
2332 * function completes. A similar but shorter * race condition exists in the busy
2333 * ioctl
2334 */
2335 int
2336 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2337 {
2338 struct drm_i915_gem_wait *args = data;
2339 struct drm_i915_gem_object *obj;
2340 struct intel_ring_buffer *ring = NULL;
2341 struct timespec timeout_stack, *timeout = NULL;
2342 u32 seqno = 0;
2343 int ret = 0;
2344
2345 if (args->timeout_ns >= 0) {
2346 timeout_stack = ns_to_timespec(args->timeout_ns);
2347 timeout = &timeout_stack;
2348 }
2349
2350 ret = i915_mutex_lock_interruptible(dev);
2351 if (ret)
2352 return ret;
2353
2354 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2355 if (&obj->base == NULL) {
2356 mutex_unlock(&dev->struct_mutex);
2357 return -ENOENT;
2358 }
2359
2360 /* Need to make sure the object gets inactive eventually. */
2361 ret = i915_gem_object_flush_active(obj);
2362 if (ret)
2363 goto out;
2364
2365 if (obj->active) {
2366 seqno = obj->last_read_seqno;
2367 ring = obj->ring;
2368 }
2369
2370 if (seqno == 0)
2371 goto out;
2372
2373 /* Do this after OLR check to make sure we make forward progress polling
2374 * on this IOCTL with a 0 timeout (like busy ioctl)
2375 */
2376 if (!args->timeout_ns) {
2377 ret = -ETIME;
2378 goto out;
2379 }
2380
2381 drm_gem_object_unreference(&obj->base);
2382 mutex_unlock(&dev->struct_mutex);
2383
2384 ret = __wait_seqno(ring, seqno, true, timeout);
2385 if (timeout) {
2386 WARN_ON(!timespec_valid(timeout));
2387 args->timeout_ns = timespec_to_ns(timeout);
2388 }
2389 return ret;
2390
2391 out:
2392 drm_gem_object_unreference(&obj->base);
2393 mutex_unlock(&dev->struct_mutex);
2394 return ret;
2395 }
2396
2397 /**
2398 * i915_gem_object_sync - sync an object to a ring.
2399 *
2400 * @obj: object which may be in use on another ring.
2401 * @to: ring we wish to use the object on. May be NULL.
2402 *
2403 * This code is meant to abstract object synchronization with the GPU.
2404 * Calling with NULL implies synchronizing the object with the CPU
2405 * rather than a particular GPU ring.
2406 *
2407 * Returns 0 if successful, else propagates up the lower layer error.
2408 */
2409 int
2410 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2411 struct intel_ring_buffer *to)
2412 {
2413 struct intel_ring_buffer *from = obj->ring;
2414 u32 seqno;
2415 int ret, idx;
2416
2417 if (from == NULL || to == from)
2418 return 0;
2419
2420 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2421 return i915_gem_object_wait_rendering(obj, false);
2422
2423 idx = intel_ring_sync_index(from, to);
2424
2425 seqno = obj->last_read_seqno;
2426 if (seqno <= from->sync_seqno[idx])
2427 return 0;
2428
2429 ret = i915_gem_check_olr(obj->ring, seqno);
2430 if (ret)
2431 return ret;
2432
2433 ret = to->sync_to(to, from, seqno);
2434 if (!ret)
2435 /* We use last_read_seqno because sync_to()
2436 * might have just caused seqno wrap under
2437 * the radar.
2438 */
2439 from->sync_seqno[idx] = obj->last_read_seqno;
2440
2441 return ret;
2442 }
2443
2444 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2445 {
2446 u32 old_write_domain, old_read_domains;
2447
2448 /* Act a barrier for all accesses through the GTT */
2449 mb();
2450
2451 /* Force a pagefault for domain tracking on next user access */
2452 i915_gem_release_mmap(obj);
2453
2454 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2455 return;
2456
2457 old_read_domains = obj->base.read_domains;
2458 old_write_domain = obj->base.write_domain;
2459
2460 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2461 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2462
2463 trace_i915_gem_object_change_domain(obj,
2464 old_read_domains,
2465 old_write_domain);
2466 }
2467
2468 /**
2469 * Unbinds an object from the GTT aperture.
2470 */
2471 int
2472 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2473 {
2474 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2475 int ret = 0;
2476
2477 if (obj->gtt_space == NULL)
2478 return 0;
2479
2480 if (obj->pin_count)
2481 return -EBUSY;
2482
2483 BUG_ON(obj->pages == NULL);
2484
2485 ret = i915_gem_object_finish_gpu(obj);
2486 if (ret)
2487 return ret;
2488 /* Continue on if we fail due to EIO, the GPU is hung so we
2489 * should be safe and we need to cleanup or else we might
2490 * cause memory corruption through use-after-free.
2491 */
2492
2493 i915_gem_object_finish_gtt(obj);
2494
2495 /* release the fence reg _after_ flushing */
2496 ret = i915_gem_object_put_fence(obj);
2497 if (ret)
2498 return ret;
2499
2500 trace_i915_gem_object_unbind(obj);
2501
2502 if (obj->has_global_gtt_mapping)
2503 i915_gem_gtt_unbind_object(obj);
2504 if (obj->has_aliasing_ppgtt_mapping) {
2505 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2506 obj->has_aliasing_ppgtt_mapping = 0;
2507 }
2508 i915_gem_gtt_finish_object(obj);
2509
2510 list_del(&obj->mm_list);
2511 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2512 /* Avoid an unnecessary call to unbind on rebind. */
2513 obj->map_and_fenceable = true;
2514
2515 drm_mm_put_block(obj->gtt_space);
2516 obj->gtt_space = NULL;
2517 obj->gtt_offset = 0;
2518
2519 return 0;
2520 }
2521
2522 int i915_gpu_idle(struct drm_device *dev)
2523 {
2524 drm_i915_private_t *dev_priv = dev->dev_private;
2525 struct intel_ring_buffer *ring;
2526 int ret, i;
2527
2528 /* Flush everything onto the inactive list. */
2529 for_each_ring(ring, dev_priv, i) {
2530 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2531 if (ret)
2532 return ret;
2533
2534 ret = intel_ring_idle(ring);
2535 if (ret)
2536 return ret;
2537 }
2538
2539 return 0;
2540 }
2541
2542 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2543 struct drm_i915_gem_object *obj)
2544 {
2545 drm_i915_private_t *dev_priv = dev->dev_private;
2546 uint64_t val;
2547
2548 if (obj) {
2549 u32 size = obj->gtt_space->size;
2550
2551 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2552 0xfffff000) << 32;
2553 val |= obj->gtt_offset & 0xfffff000;
2554 val |= (uint64_t)((obj->stride / 128) - 1) <<
2555 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2556
2557 if (obj->tiling_mode == I915_TILING_Y)
2558 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2559 val |= I965_FENCE_REG_VALID;
2560 } else
2561 val = 0;
2562
2563 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2564 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2565 }
2566
2567 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2568 struct drm_i915_gem_object *obj)
2569 {
2570 drm_i915_private_t *dev_priv = dev->dev_private;
2571 uint64_t val;
2572
2573 if (obj) {
2574 u32 size = obj->gtt_space->size;
2575
2576 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2577 0xfffff000) << 32;
2578 val |= obj->gtt_offset & 0xfffff000;
2579 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2580 if (obj->tiling_mode == I915_TILING_Y)
2581 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2582 val |= I965_FENCE_REG_VALID;
2583 } else
2584 val = 0;
2585
2586 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2587 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2588 }
2589
2590 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2591 struct drm_i915_gem_object *obj)
2592 {
2593 drm_i915_private_t *dev_priv = dev->dev_private;
2594 u32 val;
2595
2596 if (obj) {
2597 u32 size = obj->gtt_space->size;
2598 int pitch_val;
2599 int tile_width;
2600
2601 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2602 (size & -size) != size ||
2603 (obj->gtt_offset & (size - 1)),
2604 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2605 obj->gtt_offset, obj->map_and_fenceable, size);
2606
2607 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2608 tile_width = 128;
2609 else
2610 tile_width = 512;
2611
2612 /* Note: pitch better be a power of two tile widths */
2613 pitch_val = obj->stride / tile_width;
2614 pitch_val = ffs(pitch_val) - 1;
2615
2616 val = obj->gtt_offset;
2617 if (obj->tiling_mode == I915_TILING_Y)
2618 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2619 val |= I915_FENCE_SIZE_BITS(size);
2620 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2621 val |= I830_FENCE_REG_VALID;
2622 } else
2623 val = 0;
2624
2625 if (reg < 8)
2626 reg = FENCE_REG_830_0 + reg * 4;
2627 else
2628 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2629
2630 I915_WRITE(reg, val);
2631 POSTING_READ(reg);
2632 }
2633
2634 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2635 struct drm_i915_gem_object *obj)
2636 {
2637 drm_i915_private_t *dev_priv = dev->dev_private;
2638 uint32_t val;
2639
2640 if (obj) {
2641 u32 size = obj->gtt_space->size;
2642 uint32_t pitch_val;
2643
2644 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2645 (size & -size) != size ||
2646 (obj->gtt_offset & (size - 1)),
2647 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2648 obj->gtt_offset, size);
2649
2650 pitch_val = obj->stride / 128;
2651 pitch_val = ffs(pitch_val) - 1;
2652
2653 val = obj->gtt_offset;
2654 if (obj->tiling_mode == I915_TILING_Y)
2655 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2656 val |= I830_FENCE_SIZE_BITS(size);
2657 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2658 val |= I830_FENCE_REG_VALID;
2659 } else
2660 val = 0;
2661
2662 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2663 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2664 }
2665
2666 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2667 struct drm_i915_gem_object *obj)
2668 {
2669 switch (INTEL_INFO(dev)->gen) {
2670 case 7:
2671 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2672 case 5:
2673 case 4: i965_write_fence_reg(dev, reg, obj); break;
2674 case 3: i915_write_fence_reg(dev, reg, obj); break;
2675 case 2: i830_write_fence_reg(dev, reg, obj); break;
2676 default: break;
2677 }
2678 }
2679
2680 static inline int fence_number(struct drm_i915_private *dev_priv,
2681 struct drm_i915_fence_reg *fence)
2682 {
2683 return fence - dev_priv->fence_regs;
2684 }
2685
2686 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2687 struct drm_i915_fence_reg *fence,
2688 bool enable)
2689 {
2690 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2691 int reg = fence_number(dev_priv, fence);
2692
2693 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2694
2695 if (enable) {
2696 obj->fence_reg = reg;
2697 fence->obj = obj;
2698 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2699 } else {
2700 obj->fence_reg = I915_FENCE_REG_NONE;
2701 fence->obj = NULL;
2702 list_del_init(&fence->lru_list);
2703 }
2704 }
2705
2706 static int
2707 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2708 {
2709 if (obj->last_fenced_seqno) {
2710 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2711 if (ret)
2712 return ret;
2713
2714 obj->last_fenced_seqno = 0;
2715 }
2716
2717 /* Ensure that all CPU reads are completed before installing a fence
2718 * and all writes before removing the fence.
2719 */
2720 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2721 mb();
2722
2723 obj->fenced_gpu_access = false;
2724 return 0;
2725 }
2726
2727 int
2728 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2729 {
2730 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2731 int ret;
2732
2733 ret = i915_gem_object_flush_fence(obj);
2734 if (ret)
2735 return ret;
2736
2737 if (obj->fence_reg == I915_FENCE_REG_NONE)
2738 return 0;
2739
2740 i915_gem_object_update_fence(obj,
2741 &dev_priv->fence_regs[obj->fence_reg],
2742 false);
2743 i915_gem_object_fence_lost(obj);
2744
2745 return 0;
2746 }
2747
2748 static struct drm_i915_fence_reg *
2749 i915_find_fence_reg(struct drm_device *dev)
2750 {
2751 struct drm_i915_private *dev_priv = dev->dev_private;
2752 struct drm_i915_fence_reg *reg, *avail;
2753 int i;
2754
2755 /* First try to find a free reg */
2756 avail = NULL;
2757 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2758 reg = &dev_priv->fence_regs[i];
2759 if (!reg->obj)
2760 return reg;
2761
2762 if (!reg->pin_count)
2763 avail = reg;
2764 }
2765
2766 if (avail == NULL)
2767 return NULL;
2768
2769 /* None available, try to steal one or wait for a user to finish */
2770 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2771 if (reg->pin_count)
2772 continue;
2773
2774 return reg;
2775 }
2776
2777 return NULL;
2778 }
2779
2780 /**
2781 * i915_gem_object_get_fence - set up fencing for an object
2782 * @obj: object to map through a fence reg
2783 *
2784 * When mapping objects through the GTT, userspace wants to be able to write
2785 * to them without having to worry about swizzling if the object is tiled.
2786 * This function walks the fence regs looking for a free one for @obj,
2787 * stealing one if it can't find any.
2788 *
2789 * It then sets up the reg based on the object's properties: address, pitch
2790 * and tiling format.
2791 *
2792 * For an untiled surface, this removes any existing fence.
2793 */
2794 int
2795 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2796 {
2797 struct drm_device *dev = obj->base.dev;
2798 struct drm_i915_private *dev_priv = dev->dev_private;
2799 bool enable = obj->tiling_mode != I915_TILING_NONE;
2800 struct drm_i915_fence_reg *reg;
2801 int ret;
2802
2803 /* Have we updated the tiling parameters upon the object and so
2804 * will need to serialise the write to the associated fence register?
2805 */
2806 if (obj->fence_dirty) {
2807 ret = i915_gem_object_flush_fence(obj);
2808 if (ret)
2809 return ret;
2810 }
2811
2812 /* Just update our place in the LRU if our fence is getting reused. */
2813 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2814 reg = &dev_priv->fence_regs[obj->fence_reg];
2815 if (!obj->fence_dirty) {
2816 list_move_tail(®->lru_list,
2817 &dev_priv->mm.fence_list);
2818 return 0;
2819 }
2820 } else if (enable) {
2821 reg = i915_find_fence_reg(dev);
2822 if (reg == NULL)
2823 return -EDEADLK;
2824
2825 if (reg->obj) {
2826 struct drm_i915_gem_object *old = reg->obj;
2827
2828 ret = i915_gem_object_flush_fence(old);
2829 if (ret)
2830 return ret;
2831
2832 i915_gem_object_fence_lost(old);
2833 }
2834 } else
2835 return 0;
2836
2837 i915_gem_object_update_fence(obj, reg, enable);
2838 obj->fence_dirty = false;
2839
2840 return 0;
2841 }
2842
2843 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2844 struct drm_mm_node *gtt_space,
2845 unsigned long cache_level)
2846 {
2847 struct drm_mm_node *other;
2848
2849 /* On non-LLC machines we have to be careful when putting differing
2850 * types of snoopable memory together to avoid the prefetcher
2851 * crossing memory domains and dieing.
2852 */
2853 if (HAS_LLC(dev))
2854 return true;
2855
2856 if (gtt_space == NULL)
2857 return true;
2858
2859 if (list_empty(>t_space->node_list))
2860 return true;
2861
2862 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2863 if (other->allocated && !other->hole_follows && other->color != cache_level)
2864 return false;
2865
2866 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2867 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2868 return false;
2869
2870 return true;
2871 }
2872
2873 static void i915_gem_verify_gtt(struct drm_device *dev)
2874 {
2875 #if WATCH_GTT
2876 struct drm_i915_private *dev_priv = dev->dev_private;
2877 struct drm_i915_gem_object *obj;
2878 int err = 0;
2879
2880 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2881 if (obj->gtt_space == NULL) {
2882 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2883 err++;
2884 continue;
2885 }
2886
2887 if (obj->cache_level != obj->gtt_space->color) {
2888 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2889 obj->gtt_space->start,
2890 obj->gtt_space->start + obj->gtt_space->size,
2891 obj->cache_level,
2892 obj->gtt_space->color);
2893 err++;
2894 continue;
2895 }
2896
2897 if (!i915_gem_valid_gtt_space(dev,
2898 obj->gtt_space,
2899 obj->cache_level)) {
2900 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2901 obj->gtt_space->start,
2902 obj->gtt_space->start + obj->gtt_space->size,
2903 obj->cache_level);
2904 err++;
2905 continue;
2906 }
2907 }
2908
2909 WARN_ON(err);
2910 #endif
2911 }
2912
2913 /**
2914 * Finds free space in the GTT aperture and binds the object there.
2915 */
2916 static int
2917 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2918 unsigned alignment,
2919 bool map_and_fenceable,
2920 bool nonblocking)
2921 {
2922 struct drm_device *dev = obj->base.dev;
2923 drm_i915_private_t *dev_priv = dev->dev_private;
2924 struct drm_mm_node *node;
2925 u32 size, fence_size, fence_alignment, unfenced_alignment;
2926 bool mappable, fenceable;
2927 int ret;
2928
2929 if (obj->madv != I915_MADV_WILLNEED) {
2930 DRM_ERROR("Attempting to bind a purgeable object\n");
2931 return -EINVAL;
2932 }
2933
2934 fence_size = i915_gem_get_gtt_size(dev,
2935 obj->base.size,
2936 obj->tiling_mode);
2937 fence_alignment = i915_gem_get_gtt_alignment(dev,
2938 obj->base.size,
2939 obj->tiling_mode);
2940 unfenced_alignment =
2941 i915_gem_get_unfenced_gtt_alignment(dev,
2942 obj->base.size,
2943 obj->tiling_mode);
2944
2945 if (alignment == 0)
2946 alignment = map_and_fenceable ? fence_alignment :
2947 unfenced_alignment;
2948 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2949 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2950 return -EINVAL;
2951 }
2952
2953 size = map_and_fenceable ? fence_size : obj->base.size;
2954
2955 /* If the object is bigger than the entire aperture, reject it early
2956 * before evicting everything in a vain attempt to find space.
2957 */
2958 if (obj->base.size >
2959 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2960 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2961 return -E2BIG;
2962 }
2963
2964 ret = i915_gem_object_get_pages(obj);
2965 if (ret)
2966 return ret;
2967
2968 i915_gem_object_pin_pages(obj);
2969
2970 node = kzalloc(sizeof(*node), GFP_KERNEL);
2971 if (node == NULL) {
2972 i915_gem_object_unpin_pages(obj);
2973 return -ENOMEM;
2974 }
2975
2976 search_free:
2977 if (map_and_fenceable)
2978 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2979 size, alignment, obj->cache_level,
2980 0, dev_priv->mm.gtt_mappable_end);
2981 else
2982 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2983 size, alignment, obj->cache_level);
2984 if (ret) {
2985 ret = i915_gem_evict_something(dev, size, alignment,
2986 obj->cache_level,
2987 map_and_fenceable,
2988 nonblocking);
2989 if (ret == 0)
2990 goto search_free;
2991
2992 i915_gem_object_unpin_pages(obj);
2993 kfree(node);
2994 return ret;
2995 }
2996 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2997 i915_gem_object_unpin_pages(obj);
2998 drm_mm_put_block(node);
2999 return -EINVAL;
3000 }
3001
3002 ret = i915_gem_gtt_prepare_object(obj);
3003 if (ret) {
3004 i915_gem_object_unpin_pages(obj);
3005 drm_mm_put_block(node);
3006 return ret;
3007 }
3008
3009 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3010 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3011
3012 obj->gtt_space = node;
3013 obj->gtt_offset = node->start;
3014
3015 fenceable =
3016 node->size == fence_size &&
3017 (node->start & (fence_alignment - 1)) == 0;
3018
3019 mappable =
3020 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3021
3022 obj->map_and_fenceable = mappable && fenceable;
3023
3024 i915_gem_object_unpin_pages(obj);
3025 trace_i915_gem_object_bind(obj, map_and_fenceable);
3026 i915_gem_verify_gtt(dev);
3027 return 0;
3028 }
3029
3030 void
3031 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3032 {
3033 /* If we don't have a page list set up, then we're not pinned
3034 * to GPU, and we can ignore the cache flush because it'll happen
3035 * again at bind time.
3036 */
3037 if (obj->pages == NULL)
3038 return;
3039
3040 /* If the GPU is snooping the contents of the CPU cache,
3041 * we do not need to manually clear the CPU cache lines. However,
3042 * the caches are only snooped when the render cache is
3043 * flushed/invalidated. As we always have to emit invalidations
3044 * and flushes when moving into and out of the RENDER domain, correct
3045 * snooping behaviour occurs naturally as the result of our domain
3046 * tracking.
3047 */
3048 if (obj->cache_level != I915_CACHE_NONE)
3049 return;
3050
3051 trace_i915_gem_object_clflush(obj);
3052
3053 drm_clflush_sg(obj->pages);
3054 }
3055
3056 /** Flushes the GTT write domain for the object if it's dirty. */
3057 static void
3058 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3059 {
3060 uint32_t old_write_domain;
3061
3062 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3063 return;
3064
3065 /* No actual flushing is required for the GTT write domain. Writes
3066 * to it immediately go to main memory as far as we know, so there's
3067 * no chipset flush. It also doesn't land in render cache.
3068 *
3069 * However, we do have to enforce the order so that all writes through
3070 * the GTT land before any writes to the device, such as updates to
3071 * the GATT itself.
3072 */
3073 wmb();
3074
3075 old_write_domain = obj->base.write_domain;
3076 obj->base.write_domain = 0;
3077
3078 trace_i915_gem_object_change_domain(obj,
3079 obj->base.read_domains,
3080 old_write_domain);
3081 }
3082
3083 /** Flushes the CPU write domain for the object if it's dirty. */
3084 static void
3085 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3086 {
3087 uint32_t old_write_domain;
3088
3089 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3090 return;
3091
3092 i915_gem_clflush_object(obj);
3093 i915_gem_chipset_flush(obj->base.dev);
3094 old_write_domain = obj->base.write_domain;
3095 obj->base.write_domain = 0;
3096
3097 trace_i915_gem_object_change_domain(obj,
3098 obj->base.read_domains,
3099 old_write_domain);
3100 }
3101
3102 /**
3103 * Moves a single object to the GTT read, and possibly write domain.
3104 *
3105 * This function returns when the move is complete, including waiting on
3106 * flushes to occur.
3107 */
3108 int
3109 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3110 {
3111 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3112 uint32_t old_write_domain, old_read_domains;
3113 int ret;
3114
3115 /* Not valid to be called on unbound objects. */
3116 if (obj->gtt_space == NULL)
3117 return -EINVAL;
3118
3119 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3120 return 0;
3121
3122 ret = i915_gem_object_wait_rendering(obj, !write);
3123 if (ret)
3124 return ret;
3125
3126 i915_gem_object_flush_cpu_write_domain(obj);
3127
3128 old_write_domain = obj->base.write_domain;
3129 old_read_domains = obj->base.read_domains;
3130
3131 /* It should now be out of any other write domains, and we can update
3132 * the domain values for our changes.
3133 */
3134 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3135 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3136 if (write) {
3137 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3138 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3139 obj->dirty = 1;
3140 }
3141
3142 trace_i915_gem_object_change_domain(obj,
3143 old_read_domains,
3144 old_write_domain);
3145
3146 /* And bump the LRU for this access */
3147 if (i915_gem_object_is_inactive(obj))
3148 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3149
3150 return 0;
3151 }
3152
3153 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3154 enum i915_cache_level cache_level)
3155 {
3156 struct drm_device *dev = obj->base.dev;
3157 drm_i915_private_t *dev_priv = dev->dev_private;
3158 int ret;
3159
3160 if (obj->cache_level == cache_level)
3161 return 0;
3162
3163 if (obj->pin_count) {
3164 DRM_DEBUG("can not change the cache level of pinned objects\n");
3165 return -EBUSY;
3166 }
3167
3168 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3169 ret = i915_gem_object_unbind(obj);
3170 if (ret)
3171 return ret;
3172 }
3173
3174 if (obj->gtt_space) {
3175 ret = i915_gem_object_finish_gpu(obj);
3176 if (ret)
3177 return ret;
3178
3179 i915_gem_object_finish_gtt(obj);
3180
3181 /* Before SandyBridge, you could not use tiling or fence
3182 * registers with snooped memory, so relinquish any fences
3183 * currently pointing to our region in the aperture.
3184 */
3185 if (INTEL_INFO(dev)->gen < 6) {
3186 ret = i915_gem_object_put_fence(obj);
3187 if (ret)
3188 return ret;
3189 }
3190
3191 if (obj->has_global_gtt_mapping)
3192 i915_gem_gtt_bind_object(obj, cache_level);
3193 if (obj->has_aliasing_ppgtt_mapping)
3194 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3195 obj, cache_level);
3196
3197 obj->gtt_space->color = cache_level;
3198 }
3199
3200 if (cache_level == I915_CACHE_NONE) {
3201 u32 old_read_domains, old_write_domain;
3202
3203 /* If we're coming from LLC cached, then we haven't
3204 * actually been tracking whether the data is in the
3205 * CPU cache or not, since we only allow one bit set
3206 * in obj->write_domain and have been skipping the clflushes.
3207 * Just set it to the CPU cache for now.
3208 */
3209 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3210 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3211
3212 old_read_domains = obj->base.read_domains;
3213 old_write_domain = obj->base.write_domain;
3214
3215 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3216 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3217
3218 trace_i915_gem_object_change_domain(obj,
3219 old_read_domains,
3220 old_write_domain);
3221 }
3222
3223 obj->cache_level = cache_level;
3224 i915_gem_verify_gtt(dev);
3225 return 0;
3226 }
3227
3228 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3229 struct drm_file *file)
3230 {
3231 struct drm_i915_gem_caching *args = data;
3232 struct drm_i915_gem_object *obj;
3233 int ret;
3234
3235 ret = i915_mutex_lock_interruptible(dev);
3236 if (ret)
3237 return ret;
3238
3239 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3240 if (&obj->base == NULL) {
3241 ret = -ENOENT;
3242 goto unlock;
3243 }
3244
3245 args->caching = obj->cache_level != I915_CACHE_NONE;
3246
3247 drm_gem_object_unreference(&obj->base);
3248 unlock:
3249 mutex_unlock(&dev->struct_mutex);
3250 return ret;
3251 }
3252
3253 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3254 struct drm_file *file)
3255 {
3256 struct drm_i915_gem_caching *args = data;
3257 struct drm_i915_gem_object *obj;
3258 enum i915_cache_level level;
3259 int ret;
3260
3261 switch (args->caching) {
3262 case I915_CACHING_NONE:
3263 level = I915_CACHE_NONE;
3264 break;
3265 case I915_CACHING_CACHED:
3266 level = I915_CACHE_LLC;
3267 break;
3268 default:
3269 return -EINVAL;
3270 }
3271
3272 ret = i915_mutex_lock_interruptible(dev);
3273 if (ret)
3274 return ret;
3275
3276 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3277 if (&obj->base == NULL) {
3278 ret = -ENOENT;
3279 goto unlock;
3280 }
3281
3282 ret = i915_gem_object_set_cache_level(obj, level);
3283
3284 drm_gem_object_unreference(&obj->base);
3285 unlock:
3286 mutex_unlock(&dev->struct_mutex);
3287 return ret;
3288 }
3289
3290 /*
3291 * Prepare buffer for display plane (scanout, cursors, etc).
3292 * Can be called from an uninterruptible phase (modesetting) and allows
3293 * any flushes to be pipelined (for pageflips).
3294 */
3295 int
3296 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3297 u32 alignment,
3298 struct intel_ring_buffer *pipelined)
3299 {
3300 u32 old_read_domains, old_write_domain;
3301 int ret;
3302
3303 if (pipelined != obj->ring) {
3304 ret = i915_gem_object_sync(obj, pipelined);
3305 if (ret)
3306 return ret;
3307 }
3308
3309 /* The display engine is not coherent with the LLC cache on gen6. As
3310 * a result, we make sure that the pinning that is about to occur is
3311 * done with uncached PTEs. This is lowest common denominator for all
3312 * chipsets.
3313 *
3314 * However for gen6+, we could do better by using the GFDT bit instead
3315 * of uncaching, which would allow us to flush all the LLC-cached data
3316 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3317 */
3318 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3319 if (ret)
3320 return ret;
3321
3322 /* As the user may map the buffer once pinned in the display plane
3323 * (e.g. libkms for the bootup splash), we have to ensure that we
3324 * always use map_and_fenceable for all scanout buffers.
3325 */
3326 ret = i915_gem_object_pin(obj, alignment, true, false);
3327 if (ret)
3328 return ret;
3329
3330 i915_gem_object_flush_cpu_write_domain(obj);
3331
3332 old_write_domain = obj->base.write_domain;
3333 old_read_domains = obj->base.read_domains;
3334
3335 /* It should now be out of any other write domains, and we can update
3336 * the domain values for our changes.
3337 */
3338 obj->base.write_domain = 0;
3339 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3340
3341 trace_i915_gem_object_change_domain(obj,
3342 old_read_domains,
3343 old_write_domain);
3344
3345 return 0;
3346 }
3347
3348 int
3349 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3350 {
3351 int ret;
3352
3353 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3354 return 0;
3355
3356 ret = i915_gem_object_wait_rendering(obj, false);
3357 if (ret)
3358 return ret;
3359
3360 /* Ensure that we invalidate the GPU's caches and TLBs. */
3361 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3362 return 0;
3363 }
3364
3365 /**
3366 * Moves a single object to the CPU read, and possibly write domain.
3367 *
3368 * This function returns when the move is complete, including waiting on
3369 * flushes to occur.
3370 */
3371 int
3372 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3373 {
3374 uint32_t old_write_domain, old_read_domains;
3375 int ret;
3376
3377 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3378 return 0;
3379
3380 ret = i915_gem_object_wait_rendering(obj, !write);
3381 if (ret)
3382 return ret;
3383
3384 i915_gem_object_flush_gtt_write_domain(obj);
3385
3386 old_write_domain = obj->base.write_domain;
3387 old_read_domains = obj->base.read_domains;
3388
3389 /* Flush the CPU cache if it's still invalid. */
3390 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3391 i915_gem_clflush_object(obj);
3392
3393 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3394 }
3395
3396 /* It should now be out of any other write domains, and we can update
3397 * the domain values for our changes.
3398 */
3399 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3400
3401 /* If we're writing through the CPU, then the GPU read domains will
3402 * need to be invalidated at next use.
3403 */
3404 if (write) {
3405 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3406 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3407 }
3408
3409 trace_i915_gem_object_change_domain(obj,
3410 old_read_domains,
3411 old_write_domain);
3412
3413 return 0;
3414 }
3415
3416 /* Throttle our rendering by waiting until the ring has completed our requests
3417 * emitted over 20 msec ago.
3418 *
3419 * Note that if we were to use the current jiffies each time around the loop,
3420 * we wouldn't escape the function with any frames outstanding if the time to
3421 * render a frame was over 20ms.
3422 *
3423 * This should get us reasonable parallelism between CPU and GPU but also
3424 * relatively low latency when blocking on a particular request to finish.
3425 */
3426 static int
3427 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3428 {
3429 struct drm_i915_private *dev_priv = dev->dev_private;
3430 struct drm_i915_file_private *file_priv = file->driver_priv;
3431 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3432 struct drm_i915_gem_request *request;
3433 struct intel_ring_buffer *ring = NULL;
3434 u32 seqno = 0;
3435 int ret;
3436
3437 if (atomic_read(&dev_priv->mm.wedged))
3438 return -EIO;
3439
3440 spin_lock(&file_priv->mm.lock);
3441 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3442 if (time_after_eq(request->emitted_jiffies, recent_enough))
3443 break;
3444
3445 ring = request->ring;
3446 seqno = request->seqno;
3447 }
3448 spin_unlock(&file_priv->mm.lock);
3449
3450 if (seqno == 0)
3451 return 0;
3452
3453 ret = __wait_seqno(ring, seqno, true, NULL);
3454 if (ret == 0)
3455 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3456
3457 return ret;
3458 }
3459
3460 int
3461 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3462 uint32_t alignment,
3463 bool map_and_fenceable,
3464 bool nonblocking)
3465 {
3466 int ret;
3467
3468 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3469 return -EBUSY;
3470
3471 if (obj->gtt_space != NULL) {
3472 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3473 (map_and_fenceable && !obj->map_and_fenceable)) {
3474 WARN(obj->pin_count,
3475 "bo is already pinned with incorrect alignment:"
3476 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3477 " obj->map_and_fenceable=%d\n",
3478 obj->gtt_offset, alignment,
3479 map_and_fenceable,
3480 obj->map_and_fenceable);
3481 ret = i915_gem_object_unbind(obj);
3482 if (ret)
3483 return ret;
3484 }
3485 }
3486
3487 if (obj->gtt_space == NULL) {
3488 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3489
3490 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3491 map_and_fenceable,
3492 nonblocking);
3493 if (ret)
3494 return ret;
3495
3496 if (!dev_priv->mm.aliasing_ppgtt)
3497 i915_gem_gtt_bind_object(obj, obj->cache_level);
3498 }
3499
3500 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3501 i915_gem_gtt_bind_object(obj, obj->cache_level);
3502
3503 obj->pin_count++;
3504 obj->pin_mappable |= map_and_fenceable;
3505
3506 return 0;
3507 }
3508
3509 void
3510 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3511 {
3512 BUG_ON(obj->pin_count == 0);
3513 BUG_ON(obj->gtt_space == NULL);
3514
3515 if (--obj->pin_count == 0)
3516 obj->pin_mappable = false;
3517 }
3518
3519 int
3520 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3521 struct drm_file *file)
3522 {
3523 struct drm_i915_gem_pin *args = data;
3524 struct drm_i915_gem_object *obj;
3525 int ret;
3526
3527 ret = i915_mutex_lock_interruptible(dev);
3528 if (ret)
3529 return ret;
3530
3531 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3532 if (&obj->base == NULL) {
3533 ret = -ENOENT;
3534 goto unlock;
3535 }
3536
3537 if (obj->madv != I915_MADV_WILLNEED) {
3538 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3539 ret = -EINVAL;
3540 goto out;
3541 }
3542
3543 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3544 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3545 args->handle);
3546 ret = -EINVAL;
3547 goto out;
3548 }
3549
3550 if (obj->user_pin_count == 0) {
3551 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3552 if (ret)
3553 goto out;
3554 }
3555
3556 obj->user_pin_count++;
3557 obj->pin_filp = file;
3558
3559 /* XXX - flush the CPU caches for pinned objects
3560 * as the X server doesn't manage domains yet
3561 */
3562 i915_gem_object_flush_cpu_write_domain(obj);
3563 args->offset = obj->gtt_offset;
3564 out:
3565 drm_gem_object_unreference(&obj->base);
3566 unlock:
3567 mutex_unlock(&dev->struct_mutex);
3568 return ret;
3569 }
3570
3571 int
3572 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3573 struct drm_file *file)
3574 {
3575 struct drm_i915_gem_pin *args = data;
3576 struct drm_i915_gem_object *obj;
3577 int ret;
3578
3579 ret = i915_mutex_lock_interruptible(dev);
3580 if (ret)
3581 return ret;
3582
3583 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3584 if (&obj->base == NULL) {
3585 ret = -ENOENT;
3586 goto unlock;
3587 }
3588
3589 if (obj->pin_filp != file) {
3590 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3591 args->handle);
3592 ret = -EINVAL;
3593 goto out;
3594 }
3595 obj->user_pin_count--;
3596 if (obj->user_pin_count == 0) {
3597 obj->pin_filp = NULL;
3598 i915_gem_object_unpin(obj);
3599 }
3600
3601 out:
3602 drm_gem_object_unreference(&obj->base);
3603 unlock:
3604 mutex_unlock(&dev->struct_mutex);
3605 return ret;
3606 }
3607
3608 int
3609 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3610 struct drm_file *file)
3611 {
3612 struct drm_i915_gem_busy *args = data;
3613 struct drm_i915_gem_object *obj;
3614 int ret;
3615
3616 ret = i915_mutex_lock_interruptible(dev);
3617 if (ret)
3618 return ret;
3619
3620 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3621 if (&obj->base == NULL) {
3622 ret = -ENOENT;
3623 goto unlock;
3624 }
3625
3626 /* Count all active objects as busy, even if they are currently not used
3627 * by the gpu. Users of this interface expect objects to eventually
3628 * become non-busy without any further actions, therefore emit any
3629 * necessary flushes here.
3630 */
3631 ret = i915_gem_object_flush_active(obj);
3632
3633 args->busy = obj->active;
3634 if (obj->ring) {
3635 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3636 args->busy |= intel_ring_flag(obj->ring) << 16;
3637 }
3638
3639 drm_gem_object_unreference(&obj->base);
3640 unlock:
3641 mutex_unlock(&dev->struct_mutex);
3642 return ret;
3643 }
3644
3645 int
3646 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3647 struct drm_file *file_priv)
3648 {
3649 return i915_gem_ring_throttle(dev, file_priv);
3650 }
3651
3652 int
3653 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3654 struct drm_file *file_priv)
3655 {
3656 struct drm_i915_gem_madvise *args = data;
3657 struct drm_i915_gem_object *obj;
3658 int ret;
3659
3660 switch (args->madv) {
3661 case I915_MADV_DONTNEED:
3662 case I915_MADV_WILLNEED:
3663 break;
3664 default:
3665 return -EINVAL;
3666 }
3667
3668 ret = i915_mutex_lock_interruptible(dev);
3669 if (ret)
3670 return ret;
3671
3672 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3673 if (&obj->base == NULL) {
3674 ret = -ENOENT;
3675 goto unlock;
3676 }
3677
3678 if (obj->pin_count) {
3679 ret = -EINVAL;
3680 goto out;
3681 }
3682
3683 if (obj->madv != __I915_MADV_PURGED)
3684 obj->madv = args->madv;
3685
3686 /* if the object is no longer attached, discard its backing storage */
3687 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3688 i915_gem_object_truncate(obj);
3689
3690 args->retained = obj->madv != __I915_MADV_PURGED;
3691
3692 out:
3693 drm_gem_object_unreference(&obj->base);
3694 unlock:
3695 mutex_unlock(&dev->struct_mutex);
3696 return ret;
3697 }
3698
3699 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3700 const struct drm_i915_gem_object_ops *ops)
3701 {
3702 INIT_LIST_HEAD(&obj->mm_list);
3703 INIT_LIST_HEAD(&obj->gtt_list);
3704 INIT_LIST_HEAD(&obj->ring_list);
3705 INIT_LIST_HEAD(&obj->exec_list);
3706
3707 obj->ops = ops;
3708
3709 obj->fence_reg = I915_FENCE_REG_NONE;
3710 obj->madv = I915_MADV_WILLNEED;
3711 /* Avoid an unnecessary call to unbind on the first bind. */
3712 obj->map_and_fenceable = true;
3713
3714 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3715 }
3716
3717 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3718 .get_pages = i915_gem_object_get_pages_gtt,
3719 .put_pages = i915_gem_object_put_pages_gtt,
3720 };
3721
3722 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3723 size_t size)
3724 {
3725 struct drm_i915_gem_object *obj;
3726 struct address_space *mapping;
3727 u32 mask;
3728
3729 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3730 if (obj == NULL)
3731 return NULL;
3732
3733 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3734 kfree(obj);
3735 return NULL;
3736 }
3737
3738 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3739 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3740 /* 965gm cannot relocate objects above 4GiB. */
3741 mask &= ~__GFP_HIGHMEM;
3742 mask |= __GFP_DMA32;
3743 }
3744
3745 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3746 mapping_set_gfp_mask(mapping, mask);
3747
3748 i915_gem_object_init(obj, &i915_gem_object_ops);
3749
3750 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3751 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3752
3753 if (HAS_LLC(dev)) {
3754 /* On some devices, we can have the GPU use the LLC (the CPU
3755 * cache) for about a 10% performance improvement
3756 * compared to uncached. Graphics requests other than
3757 * display scanout are coherent with the CPU in
3758 * accessing this cache. This means in this mode we
3759 * don't need to clflush on the CPU side, and on the
3760 * GPU side we only need to flush internal caches to
3761 * get data visible to the CPU.
3762 *
3763 * However, we maintain the display planes as UC, and so
3764 * need to rebind when first used as such.
3765 */
3766 obj->cache_level = I915_CACHE_LLC;
3767 } else
3768 obj->cache_level = I915_CACHE_NONE;
3769
3770 return obj;
3771 }
3772
3773 int i915_gem_init_object(struct drm_gem_object *obj)
3774 {
3775 BUG();
3776
3777 return 0;
3778 }
3779
3780 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3781 {
3782 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3783 struct drm_device *dev = obj->base.dev;
3784 drm_i915_private_t *dev_priv = dev->dev_private;
3785
3786 trace_i915_gem_object_destroy(obj);
3787
3788 if (obj->phys_obj)
3789 i915_gem_detach_phys_object(dev, obj);
3790
3791 obj->pin_count = 0;
3792 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3793 bool was_interruptible;
3794
3795 was_interruptible = dev_priv->mm.interruptible;
3796 dev_priv->mm.interruptible = false;
3797
3798 WARN_ON(i915_gem_object_unbind(obj));
3799
3800 dev_priv->mm.interruptible = was_interruptible;
3801 }
3802
3803 obj->pages_pin_count = 0;
3804 i915_gem_object_put_pages(obj);
3805 i915_gem_object_free_mmap_offset(obj);
3806
3807 BUG_ON(obj->pages);
3808
3809 if (obj->base.import_attach)
3810 drm_prime_gem_destroy(&obj->base, NULL);
3811
3812 drm_gem_object_release(&obj->base);
3813 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3814
3815 kfree(obj->bit_17);
3816 kfree(obj);
3817 }
3818
3819 int
3820 i915_gem_idle(struct drm_device *dev)
3821 {
3822 drm_i915_private_t *dev_priv = dev->dev_private;
3823 int ret;
3824
3825 mutex_lock(&dev->struct_mutex);
3826
3827 if (dev_priv->mm.suspended) {
3828 mutex_unlock(&dev->struct_mutex);
3829 return 0;
3830 }
3831
3832 ret = i915_gpu_idle(dev);
3833 if (ret) {
3834 mutex_unlock(&dev->struct_mutex);
3835 return ret;
3836 }
3837 i915_gem_retire_requests(dev);
3838
3839 /* Under UMS, be paranoid and evict. */
3840 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3841 i915_gem_evict_everything(dev);
3842
3843 i915_gem_reset_fences(dev);
3844
3845 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3846 * We need to replace this with a semaphore, or something.
3847 * And not confound mm.suspended!
3848 */
3849 dev_priv->mm.suspended = 1;
3850 del_timer_sync(&dev_priv->hangcheck_timer);
3851
3852 i915_kernel_lost_context(dev);
3853 i915_gem_cleanup_ringbuffer(dev);
3854
3855 mutex_unlock(&dev->struct_mutex);
3856
3857 /* Cancel the retire work handler, which should be idle now. */
3858 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3859
3860 return 0;
3861 }
3862
3863 void i915_gem_l3_remap(struct drm_device *dev)
3864 {
3865 drm_i915_private_t *dev_priv = dev->dev_private;
3866 u32 misccpctl;
3867 int i;
3868
3869 if (!IS_IVYBRIDGE(dev))
3870 return;
3871
3872 if (!dev_priv->l3_parity.remap_info)
3873 return;
3874
3875 misccpctl = I915_READ(GEN7_MISCCPCTL);
3876 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3877 POSTING_READ(GEN7_MISCCPCTL);
3878
3879 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3880 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3881 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3882 DRM_DEBUG("0x%x was already programmed to %x\n",
3883 GEN7_L3LOG_BASE + i, remap);
3884 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3885 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3886 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3887 }
3888
3889 /* Make sure all the writes land before disabling dop clock gating */
3890 POSTING_READ(GEN7_L3LOG_BASE);
3891
3892 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3893 }
3894
3895 void i915_gem_init_swizzling(struct drm_device *dev)
3896 {
3897 drm_i915_private_t *dev_priv = dev->dev_private;
3898
3899 if (INTEL_INFO(dev)->gen < 5 ||
3900 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3901 return;
3902
3903 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3904 DISP_TILE_SURFACE_SWIZZLING);
3905
3906 if (IS_GEN5(dev))
3907 return;
3908
3909 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3910 if (IS_GEN6(dev))
3911 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3912 else
3913 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3914 }
3915
3916 static bool
3917 intel_enable_blt(struct drm_device *dev)
3918 {
3919 if (!HAS_BLT(dev))
3920 return false;
3921
3922 /* The blitter was dysfunctional on early prototypes */
3923 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3924 DRM_INFO("BLT not supported on this pre-production hardware;"
3925 " graphics performance will be degraded.\n");
3926 return false;
3927 }
3928
3929 return true;
3930 }
3931
3932 int
3933 i915_gem_init_hw(struct drm_device *dev)
3934 {
3935 drm_i915_private_t *dev_priv = dev->dev_private;
3936 int ret;
3937
3938 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3939 return -EIO;
3940
3941 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3942 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3943
3944 i915_gem_l3_remap(dev);
3945
3946 i915_gem_init_swizzling(dev);
3947
3948 ret = intel_init_render_ring_buffer(dev);
3949 if (ret)
3950 return ret;
3951
3952 if (HAS_BSD(dev)) {
3953 ret = intel_init_bsd_ring_buffer(dev);
3954 if (ret)
3955 goto cleanup_render_ring;
3956 }
3957
3958 if (intel_enable_blt(dev)) {
3959 ret = intel_init_blt_ring_buffer(dev);
3960 if (ret)
3961 goto cleanup_bsd_ring;
3962 }
3963
3964 dev_priv->next_seqno = 1;
3965
3966 /*
3967 * XXX: There was some w/a described somewhere suggesting loading
3968 * contexts before PPGTT.
3969 */
3970 i915_gem_context_init(dev);
3971 i915_gem_init_ppgtt(dev);
3972
3973 return 0;
3974
3975 cleanup_bsd_ring:
3976 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3977 cleanup_render_ring:
3978 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3979 return ret;
3980 }
3981
3982 static bool
3983 intel_enable_ppgtt(struct drm_device *dev)
3984 {
3985 if (i915_enable_ppgtt >= 0)
3986 return i915_enable_ppgtt;
3987
3988 #ifdef CONFIG_INTEL_IOMMU
3989 /* Disable ppgtt on SNB if VT-d is on. */
3990 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3991 return false;
3992 #endif
3993
3994 return true;
3995 }
3996
3997 int i915_gem_init(struct drm_device *dev)
3998 {
3999 struct drm_i915_private *dev_priv = dev->dev_private;
4000 unsigned long gtt_size, mappable_size;
4001 int ret;
4002
4003 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4004 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4005
4006 mutex_lock(&dev->struct_mutex);
4007 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4008 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4009 * aperture accordingly when using aliasing ppgtt. */
4010 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4011
4012 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4013
4014 ret = i915_gem_init_aliasing_ppgtt(dev);
4015 if (ret) {
4016 mutex_unlock(&dev->struct_mutex);
4017 return ret;
4018 }
4019 } else {
4020 /* Let GEM Manage all of the aperture.
4021 *
4022 * However, leave one page at the end still bound to the scratch
4023 * page. There are a number of places where the hardware
4024 * apparently prefetches past the end of the object, and we've
4025 * seen multiple hangs with the GPU head pointer stuck in a
4026 * batchbuffer bound at the last page of the aperture. One page
4027 * should be enough to keep any prefetching inside of the
4028 * aperture.
4029 */
4030 i915_gem_init_global_gtt(dev, 0, mappable_size,
4031 gtt_size);
4032 }
4033
4034 ret = i915_gem_init_hw(dev);
4035 mutex_unlock(&dev->struct_mutex);
4036 if (ret) {
4037 i915_gem_cleanup_aliasing_ppgtt(dev);
4038 return ret;
4039 }
4040
4041 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4042 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4043 dev_priv->dri1.allow_batchbuffer = 1;
4044 return 0;
4045 }
4046
4047 void
4048 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4049 {
4050 drm_i915_private_t *dev_priv = dev->dev_private;
4051 struct intel_ring_buffer *ring;
4052 int i;
4053
4054 for_each_ring(ring, dev_priv, i)
4055 intel_cleanup_ring_buffer(ring);
4056 }
4057
4058 int
4059 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4060 struct drm_file *file_priv)
4061 {
4062 drm_i915_private_t *dev_priv = dev->dev_private;
4063 int ret;
4064
4065 if (drm_core_check_feature(dev, DRIVER_MODESET))
4066 return 0;
4067
4068 if (atomic_read(&dev_priv->mm.wedged)) {
4069 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4070 atomic_set(&dev_priv->mm.wedged, 0);
4071 }
4072
4073 mutex_lock(&dev->struct_mutex);
4074 dev_priv->mm.suspended = 0;
4075
4076 ret = i915_gem_init_hw(dev);
4077 if (ret != 0) {
4078 mutex_unlock(&dev->struct_mutex);
4079 return ret;
4080 }
4081
4082 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4083 mutex_unlock(&dev->struct_mutex);
4084
4085 ret = drm_irq_install(dev);
4086 if (ret)
4087 goto cleanup_ringbuffer;
4088
4089 return 0;
4090
4091 cleanup_ringbuffer:
4092 mutex_lock(&dev->struct_mutex);
4093 i915_gem_cleanup_ringbuffer(dev);
4094 dev_priv->mm.suspended = 1;
4095 mutex_unlock(&dev->struct_mutex);
4096
4097 return ret;
4098 }
4099
4100 int
4101 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4102 struct drm_file *file_priv)
4103 {
4104 if (drm_core_check_feature(dev, DRIVER_MODESET))
4105 return 0;
4106
4107 drm_irq_uninstall(dev);
4108 return i915_gem_idle(dev);
4109 }
4110
4111 void
4112 i915_gem_lastclose(struct drm_device *dev)
4113 {
4114 int ret;
4115
4116 if (drm_core_check_feature(dev, DRIVER_MODESET))
4117 return;
4118
4119 ret = i915_gem_idle(dev);
4120 if (ret)
4121 DRM_ERROR("failed to idle hardware: %d\n", ret);
4122 }
4123
4124 static void
4125 init_ring_lists(struct intel_ring_buffer *ring)
4126 {
4127 INIT_LIST_HEAD(&ring->active_list);
4128 INIT_LIST_HEAD(&ring->request_list);
4129 }
4130
4131 void
4132 i915_gem_load(struct drm_device *dev)
4133 {
4134 int i;
4135 drm_i915_private_t *dev_priv = dev->dev_private;
4136
4137 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4138 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4139 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4140 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4141 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4142 for (i = 0; i < I915_NUM_RINGS; i++)
4143 init_ring_lists(&dev_priv->ring[i]);
4144 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4145 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4146 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4147 i915_gem_retire_work_handler);
4148 init_completion(&dev_priv->error_completion);
4149
4150 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4151 if (IS_GEN3(dev)) {
4152 I915_WRITE(MI_ARB_STATE,
4153 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4154 }
4155
4156 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4157
4158 /* Old X drivers will take 0-2 for front, back, depth buffers */
4159 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4160 dev_priv->fence_reg_start = 3;
4161
4162 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4163 dev_priv->num_fence_regs = 16;
4164 else
4165 dev_priv->num_fence_regs = 8;
4166
4167 /* Initialize fence registers to zero */
4168 i915_gem_reset_fences(dev);
4169
4170 i915_gem_detect_bit_6_swizzle(dev);
4171 init_waitqueue_head(&dev_priv->pending_flip_queue);
4172
4173 dev_priv->mm.interruptible = true;
4174
4175 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4176 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4177 register_shrinker(&dev_priv->mm.inactive_shrinker);
4178 }
4179
4180 /*
4181 * Create a physically contiguous memory object for this object
4182 * e.g. for cursor + overlay regs
4183 */
4184 static int i915_gem_init_phys_object(struct drm_device *dev,
4185 int id, int size, int align)
4186 {
4187 drm_i915_private_t *dev_priv = dev->dev_private;
4188 struct drm_i915_gem_phys_object *phys_obj;
4189 int ret;
4190
4191 if (dev_priv->mm.phys_objs[id - 1] || !size)
4192 return 0;
4193
4194 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4195 if (!phys_obj)
4196 return -ENOMEM;
4197
4198 phys_obj->id = id;
4199
4200 phys_obj->handle = drm_pci_alloc(dev, size, align);
4201 if (!phys_obj->handle) {
4202 ret = -ENOMEM;
4203 goto kfree_obj;
4204 }
4205 #ifdef CONFIG_X86
4206 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4207 #endif
4208
4209 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4210
4211 return 0;
4212 kfree_obj:
4213 kfree(phys_obj);
4214 return ret;
4215 }
4216
4217 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4218 {
4219 drm_i915_private_t *dev_priv = dev->dev_private;
4220 struct drm_i915_gem_phys_object *phys_obj;
4221
4222 if (!dev_priv->mm.phys_objs[id - 1])
4223 return;
4224
4225 phys_obj = dev_priv->mm.phys_objs[id - 1];
4226 if (phys_obj->cur_obj) {
4227 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4228 }
4229
4230 #ifdef CONFIG_X86
4231 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4232 #endif
4233 drm_pci_free(dev, phys_obj->handle);
4234 kfree(phys_obj);
4235 dev_priv->mm.phys_objs[id - 1] = NULL;
4236 }
4237
4238 void i915_gem_free_all_phys_object(struct drm_device *dev)
4239 {
4240 int i;
4241
4242 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4243 i915_gem_free_phys_object(dev, i);
4244 }
4245
4246 void i915_gem_detach_phys_object(struct drm_device *dev,
4247 struct drm_i915_gem_object *obj)
4248 {
4249 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4250 char *vaddr;
4251 int i;
4252 int page_count;
4253
4254 if (!obj->phys_obj)
4255 return;
4256 vaddr = obj->phys_obj->handle->vaddr;
4257
4258 page_count = obj->base.size / PAGE_SIZE;
4259 for (i = 0; i < page_count; i++) {
4260 struct page *page = shmem_read_mapping_page(mapping, i);
4261 if (!IS_ERR(page)) {
4262 char *dst = kmap_atomic(page);
4263 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4264 kunmap_atomic(dst);
4265
4266 drm_clflush_pages(&page, 1);
4267
4268 set_page_dirty(page);
4269 mark_page_accessed(page);
4270 page_cache_release(page);
4271 }
4272 }
4273 i915_gem_chipset_flush(dev);
4274
4275 obj->phys_obj->cur_obj = NULL;
4276 obj->phys_obj = NULL;
4277 }
4278
4279 int
4280 i915_gem_attach_phys_object(struct drm_device *dev,
4281 struct drm_i915_gem_object *obj,
4282 int id,
4283 int align)
4284 {
4285 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4286 drm_i915_private_t *dev_priv = dev->dev_private;
4287 int ret = 0;
4288 int page_count;
4289 int i;
4290
4291 if (id > I915_MAX_PHYS_OBJECT)
4292 return -EINVAL;
4293
4294 if (obj->phys_obj) {
4295 if (obj->phys_obj->id == id)
4296 return 0;
4297 i915_gem_detach_phys_object(dev, obj);
4298 }
4299
4300 /* create a new object */
4301 if (!dev_priv->mm.phys_objs[id - 1]) {
4302 ret = i915_gem_init_phys_object(dev, id,
4303 obj->base.size, align);
4304 if (ret) {
4305 DRM_ERROR("failed to init phys object %d size: %zu\n",
4306 id, obj->base.size);
4307 return ret;
4308 }
4309 }
4310
4311 /* bind to the object */
4312 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4313 obj->phys_obj->cur_obj = obj;
4314
4315 page_count = obj->base.size / PAGE_SIZE;
4316
4317 for (i = 0; i < page_count; i++) {
4318 struct page *page;
4319 char *dst, *src;
4320
4321 page = shmem_read_mapping_page(mapping, i);
4322 if (IS_ERR(page))
4323 return PTR_ERR(page);
4324
4325 src = kmap_atomic(page);
4326 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4327 memcpy(dst, src, PAGE_SIZE);
4328 kunmap_atomic(src);
4329
4330 mark_page_accessed(page);
4331 page_cache_release(page);
4332 }
4333
4334 return 0;
4335 }
4336
4337 static int
4338 i915_gem_phys_pwrite(struct drm_device *dev,
4339 struct drm_i915_gem_object *obj,
4340 struct drm_i915_gem_pwrite *args,
4341 struct drm_file *file_priv)
4342 {
4343 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4344 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4345
4346 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4347 unsigned long unwritten;
4348
4349 /* The physical object once assigned is fixed for the lifetime
4350 * of the obj, so we can safely drop the lock and continue
4351 * to access vaddr.
4352 */
4353 mutex_unlock(&dev->struct_mutex);
4354 unwritten = copy_from_user(vaddr, user_data, args->size);
4355 mutex_lock(&dev->struct_mutex);
4356 if (unwritten)
4357 return -EFAULT;
4358 }
4359
4360 i915_gem_chipset_flush(dev);
4361 return 0;
4362 }
4363
4364 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4365 {
4366 struct drm_i915_file_private *file_priv = file->driver_priv;
4367
4368 /* Clean up our request list when the client is going away, so that
4369 * later retire_requests won't dereference our soon-to-be-gone
4370 * file_priv.
4371 */
4372 spin_lock(&file_priv->mm.lock);
4373 while (!list_empty(&file_priv->mm.request_list)) {
4374 struct drm_i915_gem_request *request;
4375
4376 request = list_first_entry(&file_priv->mm.request_list,
4377 struct drm_i915_gem_request,
4378 client_list);
4379 list_del(&request->client_list);
4380 request->file_priv = NULL;
4381 }
4382 spin_unlock(&file_priv->mm.lock);
4383 }
4384
4385 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4386 {
4387 if (!mutex_is_locked(mutex))
4388 return false;
4389
4390 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4391 return mutex->owner == task;
4392 #else
4393 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4394 return false;
4395 #endif
4396 }
4397
4398 static int
4399 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4400 {
4401 struct drm_i915_private *dev_priv =
4402 container_of(shrinker,
4403 struct drm_i915_private,
4404 mm.inactive_shrinker);
4405 struct drm_device *dev = dev_priv->dev;
4406 struct drm_i915_gem_object *obj;
4407 int nr_to_scan = sc->nr_to_scan;
4408 bool unlock = true;
4409 int cnt;
4410
4411 if (!mutex_trylock(&dev->struct_mutex)) {
4412 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4413 return 0;
4414
4415 if (dev_priv->mm.shrinker_no_lock_stealing)
4416 return 0;
4417
4418 unlock = false;
4419 }
4420
4421 if (nr_to_scan) {
4422 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4423 if (nr_to_scan > 0)
4424 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4425 false);
4426 if (nr_to_scan > 0)
4427 i915_gem_shrink_all(dev_priv);
4428 }
4429
4430 cnt = 0;
4431 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4432 if (obj->pages_pin_count == 0)
4433 cnt += obj->base.size >> PAGE_SHIFT;
4434 list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4435 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4436 cnt += obj->base.size >> PAGE_SHIFT;
4437
4438 if (unlock)
4439 mutex_unlock(&dev->struct_mutex);
4440 return cnt;
4441 }
4442