Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.1.1.1.2.9
      1 /*
      2  * Copyright  2008 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eric Anholt <eric (at) anholt.net>
     25  *
     26  */
     27 
     28 #ifdef __NetBSD__
     29 #if 0				/* XXX uvmhist option?  */
     30 #include "opt_uvmhist.h"
     31 #endif
     32 
     33 #include <sys/types.h>
     34 #include <sys/param.h>
     35 
     36 #include <uvm/uvm.h>
     37 #include <uvm/uvm_fault.h>
     38 #include <uvm/uvm_page.h>
     39 #include <uvm/uvm_pmap.h>
     40 #include <uvm/uvm_prot.h>
     41 #endif
     42 
     43 #include <drm/drmP.h>
     44 #include <drm/i915_drm.h>
     45 #include "i915_drv.h"
     46 #include "i915_trace.h"
     47 #include "intel_drv.h"
     48 #include <linux/shmem_fs.h>
     49 #include <linux/slab.h>
     50 #include <linux/swap.h>
     51 #include <linux/pci.h>
     52 #include <linux/dma-buf.h>
     53 #include <linux/errno.h>
     54 #include <linux/time.h>
     55 #include <linux/err.h>
     56 #include <asm/param.h>
     57 
     58 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
     59 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
     60 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
     61 						    unsigned alignment,
     62 						    bool map_and_fenceable,
     63 						    bool nonblocking);
     64 static int i915_gem_phys_pwrite(struct drm_device *dev,
     65 				struct drm_i915_gem_object *obj,
     66 				struct drm_i915_gem_pwrite *args,
     67 				struct drm_file *file);
     68 
     69 static void i915_gem_write_fence(struct drm_device *dev, int reg,
     70 				 struct drm_i915_gem_object *obj);
     71 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
     72 					 struct drm_i915_fence_reg *fence,
     73 					 bool enable);
     74 
     75 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
     76 				    struct shrink_control *sc);
     77 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
     78 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
     79 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
     80 
     81 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
     82 {
     83 	if (obj->tiling_mode)
     84 		i915_gem_release_mmap(obj);
     85 
     86 	/* As we do not have an associated fence register, we will force
     87 	 * a tiling change if we ever need to acquire one.
     88 	 */
     89 	obj->fence_dirty = false;
     90 	obj->fence_reg = I915_FENCE_REG_NONE;
     91 }
     92 
     93 /* some bookkeeping */
     94 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
     95 				  size_t size)
     96 {
     97 	dev_priv->mm.object_count++;
     98 	dev_priv->mm.object_memory += size;
     99 }
    100 
    101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
    102 				     size_t size)
    103 {
    104 	dev_priv->mm.object_count--;
    105 	dev_priv->mm.object_memory -= size;
    106 }
    107 
    108 static int
    109 i915_gem_wait_for_error(struct drm_device *dev)
    110 {
    111 	struct drm_i915_private *dev_priv = dev->dev_private;
    112 	struct completion *x = &dev_priv->error_completion;
    113 #ifndef __NetBSD__
    114 	unsigned long flags;
    115 #endif
    116 	int ret;
    117 
    118 	if (!atomic_read(&dev_priv->mm.wedged))
    119 		return 0;
    120 
    121 	/*
    122 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
    123 	 * userspace. If it takes that long something really bad is going on and
    124 	 * we should simply try to bail out and fail as gracefully as possible.
    125 	 */
    126 	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
    127 	if (ret == 0) {
    128 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
    129 		return -EIO;
    130 	} else if (ret < 0) {
    131 		return ret;
    132 	}
    133 
    134 	if (atomic_read(&dev_priv->mm.wedged)) {
    135 		/* GPU is hung, bump the completion count to account for
    136 		 * the token we just consumed so that we never hit zero and
    137 		 * end up waiting upon a subsequent completion event that
    138 		 * will never happen.
    139 		 */
    140 #ifdef __NetBSD__
    141 		/* XXX Hope it's not a problem that we might wake someone.  */
    142 		complete(x);
    143 #else
    144 		spin_lock_irqsave(&x->wait.lock, flags);
    145 		x->done++;
    146 		spin_unlock_irqrestore(&x->wait.lock, flags);
    147 #endif
    148 	}
    149 	return 0;
    150 }
    151 
    152 int i915_mutex_lock_interruptible(struct drm_device *dev)
    153 {
    154 	int ret;
    155 
    156 	ret = i915_gem_wait_for_error(dev);
    157 	if (ret)
    158 		return ret;
    159 
    160 	ret = mutex_lock_interruptible(&dev->struct_mutex);
    161 	if (ret)
    162 		return ret;
    163 
    164 	WARN_ON(i915_verify_lists(dev));
    165 	return 0;
    166 }
    167 
    168 static inline bool
    169 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
    170 {
    171 	return obj->gtt_space && !obj->active;
    172 }
    173 
    174 int
    175 i915_gem_init_ioctl(struct drm_device *dev, void *data,
    176 		    struct drm_file *file)
    177 {
    178 	struct drm_i915_gem_init *args = data;
    179 
    180 	if (drm_core_check_feature(dev, DRIVER_MODESET))
    181 		return -ENODEV;
    182 
    183 	if (args->gtt_start >= args->gtt_end ||
    184 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
    185 		return -EINVAL;
    186 
    187 	/* GEM with user mode setting was never supported on ilk and later. */
    188 	if (INTEL_INFO(dev)->gen >= 5)
    189 		return -ENODEV;
    190 
    191 	mutex_lock(&dev->struct_mutex);
    192 	i915_gem_init_global_gtt(dev, args->gtt_start,
    193 				 args->gtt_end, args->gtt_end);
    194 	mutex_unlock(&dev->struct_mutex);
    195 
    196 	return 0;
    197 }
    198 
    199 int
    200 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    201 			    struct drm_file *file)
    202 {
    203 	struct drm_i915_private *dev_priv = dev->dev_private;
    204 	struct drm_i915_gem_get_aperture *args = data;
    205 	struct drm_i915_gem_object *obj;
    206 	size_t pinned;
    207 
    208 	pinned = 0;
    209 	mutex_lock(&dev->struct_mutex);
    210 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
    211 		if (obj->pin_count)
    212 			pinned += obj->gtt_space->size;
    213 	mutex_unlock(&dev->struct_mutex);
    214 
    215 	args->aper_size = dev_priv->mm.gtt_total;
    216 	args->aper_available_size = args->aper_size - pinned;
    217 
    218 	return 0;
    219 }
    220 
    221 static int
    222 i915_gem_create(struct drm_file *file,
    223 		struct drm_device *dev,
    224 		uint64_t size,
    225 		uint32_t *handle_p)
    226 {
    227 	struct drm_i915_gem_object *obj;
    228 	int ret;
    229 	u32 handle;
    230 
    231 	size = roundup(size, PAGE_SIZE);
    232 	if (size == 0)
    233 		return -EINVAL;
    234 
    235 	/* Allocate the new object */
    236 	obj = i915_gem_alloc_object(dev, size);
    237 	if (obj == NULL)
    238 		return -ENOMEM;
    239 
    240 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    241 	if (ret) {
    242 		drm_gem_object_release(&obj->base);
    243 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
    244 		kfree(obj);
    245 		return ret;
    246 	}
    247 
    248 	/* drop reference from allocate - handle holds it now */
    249 	drm_gem_object_unreference(&obj->base);
    250 	trace_i915_gem_object_create(obj);
    251 
    252 	*handle_p = handle;
    253 	return 0;
    254 }
    255 
    256 int
    257 i915_gem_dumb_create(struct drm_file *file,
    258 		     struct drm_device *dev,
    259 		     struct drm_mode_create_dumb *args)
    260 {
    261 	/* have to work out size/pitch and return them */
    262 #ifdef __NetBSD__		/* ALIGN already means something.  */
    263 	args->pitch = round_up(args->width * ((args->bpp + 7) / 8), 64);
    264 #else
    265 	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
    266 #endif
    267 	args->size = args->pitch * args->height;
    268 	return i915_gem_create(file, dev,
    269 			       args->size, &args->handle);
    270 }
    271 
    272 int i915_gem_dumb_destroy(struct drm_file *file,
    273 			  struct drm_device *dev,
    274 			  uint32_t handle)
    275 {
    276 	return drm_gem_handle_delete(file, handle);
    277 }
    278 
    279 /**
    280  * Creates a new mm object and returns a handle to it.
    281  */
    282 int
    283 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    284 		      struct drm_file *file)
    285 {
    286 	struct drm_i915_gem_create *args = data;
    287 
    288 	return i915_gem_create(file, dev,
    289 			       args->size, &args->handle);
    290 }
    291 
    292 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
    293 {
    294 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
    295 
    296 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
    297 		obj->tiling_mode != I915_TILING_NONE;
    298 }
    299 
    300 static inline int
    301 __copy_to_user_swizzled(char __user *cpu_vaddr,
    302 			const char *gpu_vaddr, int gpu_offset,
    303 			int length)
    304 {
    305 	int ret, cpu_offset = 0;
    306 
    307 	while (length > 0) {
    308 #ifdef __NetBSD__
    309 		int cacheline_end = round_up(gpu_offset + 1, 64);
    310 #else
    311 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    312 #endif
    313 		int this_length = min(cacheline_end - gpu_offset, length);
    314 		int swizzled_gpu_offset = gpu_offset ^ 64;
    315 
    316 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
    317 				     gpu_vaddr + swizzled_gpu_offset,
    318 				     this_length);
    319 		if (ret)
    320 			return ret + length;
    321 
    322 		cpu_offset += this_length;
    323 		gpu_offset += this_length;
    324 		length -= this_length;
    325 	}
    326 
    327 	return 0;
    328 }
    329 
    330 static inline int
    331 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
    332 			  const char __user *cpu_vaddr,
    333 			  int length)
    334 {
    335 	int ret, cpu_offset = 0;
    336 
    337 	while (length > 0) {
    338 #ifdef __NetBSD__
    339 		int cacheline_end = round_up(gpu_offset + 1, 64);
    340 #else
    341 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    342 #endif
    343 		int this_length = min(cacheline_end - gpu_offset, length);
    344 		int swizzled_gpu_offset = gpu_offset ^ 64;
    345 
    346 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
    347 				       cpu_vaddr + cpu_offset,
    348 				       this_length);
    349 		if (ret)
    350 			return ret + length;
    351 
    352 		cpu_offset += this_length;
    353 		gpu_offset += this_length;
    354 		length -= this_length;
    355 	}
    356 
    357 	return 0;
    358 }
    359 
    360 /* Per-page copy function for the shmem pread fastpath.
    361  * Flushes invalid cachelines before reading the target if
    362  * needs_clflush is set. */
    363 static int
    364 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
    365 		 char __user *user_data,
    366 		 bool page_do_bit17_swizzling, bool needs_clflush)
    367 {
    368 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    369 	return -EFAULT;
    370 #else
    371 	char *vaddr;
    372 	int ret;
    373 
    374 	if (unlikely(page_do_bit17_swizzling))
    375 		return -EINVAL;
    376 
    377 	vaddr = kmap_atomic(page);
    378 	if (needs_clflush)
    379 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    380 				       page_length);
    381 	ret = __copy_to_user_inatomic(user_data,
    382 				      vaddr + shmem_page_offset,
    383 				      page_length);
    384 	kunmap_atomic(vaddr);
    385 
    386 	return ret ? -EFAULT : 0;
    387 #endif
    388 }
    389 
    390 static void
    391 shmem_clflush_swizzled_range(char *addr, unsigned long length,
    392 			     bool swizzled)
    393 {
    394 	if (unlikely(swizzled)) {
    395 		unsigned long start = (unsigned long) addr;
    396 		unsigned long end = (unsigned long) addr + length;
    397 
    398 		/* For swizzling simply ensure that we always flush both
    399 		 * channels. Lame, but simple and it works. Swizzled
    400 		 * pwrite/pread is far from a hotpath - current userspace
    401 		 * doesn't use it at all. */
    402 		start = round_down(start, 128);
    403 		end = round_up(end, 128);
    404 
    405 		drm_clflush_virt_range((void *)start, end - start);
    406 	} else {
    407 		drm_clflush_virt_range(addr, length);
    408 	}
    409 
    410 }
    411 
    412 /* Only difference to the fast-path function is that this can handle bit17
    413  * and uses non-atomic copy and kmap functions. */
    414 static int
    415 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
    416 		 char __user *user_data,
    417 		 bool page_do_bit17_swizzling, bool needs_clflush)
    418 {
    419 	char *vaddr;
    420 	int ret;
    421 
    422 	vaddr = kmap(page);
    423 	if (needs_clflush)
    424 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    425 					     page_length,
    426 					     page_do_bit17_swizzling);
    427 
    428 	if (page_do_bit17_swizzling)
    429 		ret = __copy_to_user_swizzled(user_data,
    430 					      vaddr, shmem_page_offset,
    431 					      page_length);
    432 	else
    433 		ret = __copy_to_user(user_data,
    434 				     vaddr + shmem_page_offset,
    435 				     page_length);
    436 	kunmap(page);
    437 
    438 	return ret ? - EFAULT : 0;
    439 }
    440 
    441 static int
    442 i915_gem_shmem_pread(struct drm_device *dev,
    443 		     struct drm_i915_gem_object *obj,
    444 		     struct drm_i915_gem_pread *args,
    445 		     struct drm_file *file)
    446 {
    447 	char __user *user_data;
    448 	ssize_t remain;
    449 	loff_t offset;
    450 	int shmem_page_offset, page_length, ret = 0;
    451 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    452 	int hit_slowpath = 0;
    453 #ifndef __NetBSD__		/* XXX */
    454 	int prefaulted = 0;
    455 #endif
    456 	int needs_clflush = 0;
    457 #ifndef __NetBSD__
    458 	struct scatterlist *sg;
    459 	int i;
    460 #endif
    461 
    462 	user_data = (char __user *) (uintptr_t) args->data_ptr;
    463 	remain = args->size;
    464 
    465 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    466 
    467 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
    468 		/* If we're not in the cpu read domain, set ourself into the gtt
    469 		 * read domain and manually flush cachelines (if required). This
    470 		 * optimizes for the case when the gpu will dirty the data
    471 		 * anyway again before the next pread happens. */
    472 		if (obj->cache_level == I915_CACHE_NONE)
    473 			needs_clflush = 1;
    474 		if (obj->gtt_space) {
    475 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
    476 			if (ret)
    477 				return ret;
    478 		}
    479 	}
    480 
    481 	ret = i915_gem_object_get_pages(obj);
    482 	if (ret)
    483 		return ret;
    484 
    485 	i915_gem_object_pin_pages(obj);
    486 
    487 	offset = args->offset;
    488 
    489 #ifdef __NetBSD__
    490 	/*
    491 	 * XXX This is a big #ifdef with a lot of duplicated code, but
    492 	 * factoring out the loop head -- which is all that
    493 	 * substantially differs -- is probably more trouble than it's
    494 	 * worth at the moment.
    495 	 */
    496 	while (0 < remain) {
    497 		/* Get the next page.  */
    498 		shmem_page_offset = offset_in_page(offset);
    499 		KASSERT(shmem_page_offset < PAGE_SIZE);
    500 		page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
    501 		struct page *const page = i915_gem_object_get_page(obj,
    502 		    (offset & ~(PAGE_SIZE-1)));
    503 
    504 		/* Decide whether to swizzle bit 17.  */
    505 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    506 		    (page_to_phys(page) & (1 << 17)) != 0;
    507 
    508 		/* Try the fast path.  */
    509 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    510 		    user_data, page_do_bit17_swizzling, needs_clflush);
    511 		if (ret == 0)
    512 			goto next_page;
    513 
    514 		/* Fast path failed.  Try the slow path.  */
    515 		hit_slowpath = 1;
    516 		mutex_unlock(&dev->struct_mutex);
    517 		/* XXX prefault */
    518 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    519 		    user_data, page_do_bit17_swizzling, needs_clflush);
    520 		mutex_lock(&dev->struct_mutex);
    521 
    522 next_page:
    523 		/* XXX mark page accessed */
    524 		if (ret)
    525 			goto out;
    526 
    527 		KASSERT(page_length <= remain);
    528 		remain -= page_length;
    529 		user_data += page_length;
    530 		offset += page_length;
    531 	}
    532 #else
    533 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
    534 		struct page *page;
    535 
    536 		if (i < offset >> PAGE_SHIFT)
    537 			continue;
    538 
    539 		if (remain <= 0)
    540 			break;
    541 
    542 		/* Operation in this page
    543 		 *
    544 		 * shmem_page_offset = offset within page in shmem file
    545 		 * page_length = bytes to copy for this page
    546 		 */
    547 		shmem_page_offset = offset_in_page(offset);
    548 		page_length = remain;
    549 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    550 			page_length = PAGE_SIZE - shmem_page_offset;
    551 
    552 		page = sg_page(sg);
    553 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    554 			(page_to_phys(page) & (1 << 17)) != 0;
    555 
    556 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    557 				       user_data, page_do_bit17_swizzling,
    558 				       needs_clflush);
    559 		if (ret == 0)
    560 			goto next_page;
    561 
    562 		hit_slowpath = 1;
    563 		mutex_unlock(&dev->struct_mutex);
    564 
    565 		if (!prefaulted) {
    566 			ret = fault_in_multipages_writeable(user_data, remain);
    567 			/* Userspace is tricking us, but we've already clobbered
    568 			 * its pages with the prefault and promised to write the
    569 			 * data up to the first fault. Hence ignore any errors
    570 			 * and just continue. */
    571 			(void)ret;
    572 			prefaulted = 1;
    573 		}
    574 
    575 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    576 				       user_data, page_do_bit17_swizzling,
    577 				       needs_clflush);
    578 
    579 		mutex_lock(&dev->struct_mutex);
    580 
    581 next_page:
    582 		mark_page_accessed(page);
    583 
    584 		if (ret)
    585 			goto out;
    586 
    587 		remain -= page_length;
    588 		user_data += page_length;
    589 		offset += page_length;
    590 	}
    591 #endif
    592 
    593 out:
    594 	i915_gem_object_unpin_pages(obj);
    595 
    596 	if (hit_slowpath) {
    597 		/* Fixup: Kill any reinstated backing storage pages */
    598 		if (obj->madv == __I915_MADV_PURGED)
    599 			i915_gem_object_truncate(obj);
    600 	}
    601 
    602 	return ret;
    603 }
    604 
    605 /**
    606  * Reads data from the object referenced by handle.
    607  *
    608  * On error, the contents of *data are undefined.
    609  */
    610 int
    611 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    612 		     struct drm_file *file)
    613 {
    614 	struct drm_i915_gem_pread *args = data;
    615 	struct drm_i915_gem_object *obj;
    616 	int ret = 0;
    617 
    618 	if (args->size == 0)
    619 		return 0;
    620 
    621 	if (!access_ok(VERIFY_WRITE,
    622 		       (char __user *)(uintptr_t)args->data_ptr,
    623 		       args->size))
    624 		return -EFAULT;
    625 
    626 	ret = i915_mutex_lock_interruptible(dev);
    627 	if (ret)
    628 		return ret;
    629 
    630 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
    631 	if (&obj->base == NULL) {
    632 		ret = -ENOENT;
    633 		goto unlock;
    634 	}
    635 
    636 	/* Bounds check source.  */
    637 	if (args->offset > obj->base.size ||
    638 	    args->size > obj->base.size - args->offset) {
    639 		ret = -EINVAL;
    640 		goto out;
    641 	}
    642 
    643 #ifndef __NetBSD__		/* XXX drm prime */
    644 	/* prime objects have no backing filp to GEM pread/pwrite
    645 	 * pages from.
    646 	 */
    647 	if (!obj->base.filp) {
    648 		ret = -EINVAL;
    649 		goto out;
    650 	}
    651 #endif
    652 
    653 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    654 
    655 	ret = i915_gem_shmem_pread(dev, obj, args, file);
    656 
    657 out:
    658 	drm_gem_object_unreference(&obj->base);
    659 unlock:
    660 	mutex_unlock(&dev->struct_mutex);
    661 	return ret;
    662 }
    663 
    664 /* This is the fast write path which cannot handle
    665  * page faults in the source data
    666  */
    667 
    668 static inline int
    669 fast_user_write(struct io_mapping *mapping,
    670 		loff_t page_base, int page_offset,
    671 		char __user *user_data,
    672 		int length)
    673 {
    674 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    675 	return -EFAULT;
    676 #else
    677 	void __iomem *vaddr_atomic;
    678 	void *vaddr;
    679 	unsigned long unwritten;
    680 
    681 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
    682 	/* We can use the cpu mem copy function because this is X86. */
    683 	vaddr = (void __force*)vaddr_atomic + page_offset;
    684 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
    685 						      user_data, length);
    686 	io_mapping_unmap_atomic(vaddr_atomic);
    687 	return unwritten;
    688 #endif
    689 }
    690 
    691 /**
    692  * This is the fast pwrite path, where we copy the data directly from the
    693  * user into the GTT, uncached.
    694  */
    695 static int
    696 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
    697 			 struct drm_i915_gem_object *obj,
    698 			 struct drm_i915_gem_pwrite *args,
    699 			 struct drm_file *file)
    700 {
    701 	drm_i915_private_t *dev_priv = dev->dev_private;
    702 	ssize_t remain;
    703 	loff_t offset, page_base;
    704 	char __user *user_data;
    705 	int page_offset, page_length, ret;
    706 
    707 	ret = i915_gem_object_pin(obj, 0, true, true);
    708 	if (ret)
    709 		goto out;
    710 
    711 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    712 	if (ret)
    713 		goto out_unpin;
    714 
    715 	ret = i915_gem_object_put_fence(obj);
    716 	if (ret)
    717 		goto out_unpin;
    718 
    719 	user_data = (char __user *) (uintptr_t) args->data_ptr;
    720 	remain = args->size;
    721 
    722 	offset = obj->gtt_offset + args->offset;
    723 
    724 	while (remain > 0) {
    725 		/* Operation in this page
    726 		 *
    727 		 * page_base = page offset within aperture
    728 		 * page_offset = offset within page
    729 		 * page_length = bytes to copy for this page
    730 		 */
    731 		page_base = offset & PAGE_MASK;
    732 		page_offset = offset_in_page(offset);
    733 		page_length = remain;
    734 		if ((page_offset + remain) > PAGE_SIZE)
    735 			page_length = PAGE_SIZE - page_offset;
    736 
    737 		/* If we get a fault while copying data, then (presumably) our
    738 		 * source page isn't available.  Return the error and we'll
    739 		 * retry in the slow path.
    740 		 */
    741 		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
    742 				    page_offset, user_data, page_length)) {
    743 			ret = -EFAULT;
    744 			goto out_unpin;
    745 		}
    746 
    747 		remain -= page_length;
    748 		user_data += page_length;
    749 		offset += page_length;
    750 	}
    751 
    752 out_unpin:
    753 	i915_gem_object_unpin(obj);
    754 out:
    755 	return ret;
    756 }
    757 
    758 /* Per-page copy function for the shmem pwrite fastpath.
    759  * Flushes invalid cachelines before writing to the target if
    760  * needs_clflush_before is set and flushes out any written cachelines after
    761  * writing if needs_clflush is set. */
    762 static int
    763 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
    764 		  char __user *user_data,
    765 		  bool page_do_bit17_swizzling,
    766 		  bool needs_clflush_before,
    767 		  bool needs_clflush_after)
    768 {
    769 #ifdef __NetBSD__
    770 	return -EFAULT;
    771 #else
    772 	char *vaddr;
    773 	int ret;
    774 
    775 	if (unlikely(page_do_bit17_swizzling))
    776 		return -EINVAL;
    777 
    778 	vaddr = kmap_atomic(page);
    779 	if (needs_clflush_before)
    780 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    781 				       page_length);
    782 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
    783 						user_data,
    784 						page_length);
    785 	if (needs_clflush_after)
    786 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    787 				       page_length);
    788 	kunmap_atomic(vaddr);
    789 
    790 	return ret ? -EFAULT : 0;
    791 #endif
    792 }
    793 
    794 /* Only difference to the fast-path function is that this can handle bit17
    795  * and uses non-atomic copy and kmap functions. */
    796 static int
    797 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
    798 		  char __user *user_data,
    799 		  bool page_do_bit17_swizzling,
    800 		  bool needs_clflush_before,
    801 		  bool needs_clflush_after)
    802 {
    803 	char *vaddr;
    804 	int ret;
    805 
    806 	vaddr = kmap(page);
    807 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
    808 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    809 					     page_length,
    810 					     page_do_bit17_swizzling);
    811 	if (page_do_bit17_swizzling)
    812 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
    813 						user_data,
    814 						page_length);
    815 	else
    816 		ret = __copy_from_user(vaddr + shmem_page_offset,
    817 				       user_data,
    818 				       page_length);
    819 	if (needs_clflush_after)
    820 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    821 					     page_length,
    822 					     page_do_bit17_swizzling);
    823 	kunmap(page);
    824 
    825 	return ret ? -EFAULT : 0;
    826 }
    827 
    828 static int
    829 i915_gem_shmem_pwrite(struct drm_device *dev,
    830 		      struct drm_i915_gem_object *obj,
    831 		      struct drm_i915_gem_pwrite *args,
    832 		      struct drm_file *file)
    833 {
    834 	ssize_t remain;
    835 	loff_t offset;
    836 	char __user *user_data;
    837 	int shmem_page_offset, page_length, ret = 0;
    838 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    839 	int hit_slowpath = 0;
    840 	int needs_clflush_after = 0;
    841 	int needs_clflush_before = 0;
    842 #ifndef __NetBSD__
    843 	int i;
    844 	struct scatterlist *sg;
    845 #endif
    846 
    847 	user_data = (char __user *) (uintptr_t) args->data_ptr;
    848 	remain = args->size;
    849 
    850 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    851 
    852 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
    853 		/* If we're not in the cpu write domain, set ourself into the gtt
    854 		 * write domain and manually flush cachelines (if required). This
    855 		 * optimizes for the case when the gpu will use the data
    856 		 * right away and we therefore have to clflush anyway. */
    857 		if (obj->cache_level == I915_CACHE_NONE)
    858 			needs_clflush_after = 1;
    859 		if (obj->gtt_space) {
    860 			ret = i915_gem_object_set_to_gtt_domain(obj, true);
    861 			if (ret)
    862 				return ret;
    863 		}
    864 	}
    865 	/* Same trick applies for invalidate partially written cachelines before
    866 	 * writing.  */
    867 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
    868 	    && obj->cache_level == I915_CACHE_NONE)
    869 		needs_clflush_before = 1;
    870 
    871 	ret = i915_gem_object_get_pages(obj);
    872 	if (ret)
    873 		return ret;
    874 
    875 	i915_gem_object_pin_pages(obj);
    876 
    877 	offset = args->offset;
    878 	obj->dirty = 1;
    879 
    880 #ifdef __NetBSD__
    881 	while (0 < remain) {
    882 		/* Get the next page.  */
    883 		shmem_page_offset = offset_in_page(offset);
    884 		KASSERT(shmem_page_offset < PAGE_SIZE);
    885 		page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
    886 		struct page *const page = i915_gem_object_get_page(obj,
    887 		    (offset & ~(PAGE_SIZE-1)));
    888 
    889 		/* Decide whether to flush the cache or swizzle bit 17.  */
    890 		const bool partial_cacheline_write = needs_clflush_before &&
    891 		    ((shmem_page_offset | page_length)
    892 			& (cpu_info_primary.ci_cflush_lsize - 1));
    893 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    894 		    (page_to_phys(page) & (1 << 17)) != 0;
    895 
    896 		/* Try the fast path.  */
    897 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
    898 		    user_data, page_do_bit17_swizzling,
    899 		    partial_cacheline_write, needs_clflush_after);
    900 		if (ret == 0)
    901 			goto next_page;
    902 
    903 		/* Fast path failed.  Try the slow path.  */
    904 		hit_slowpath = 1;
    905 		mutex_unlock(&dev->struct_mutex);
    906 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
    907 		    user_data, page_do_bit17_swizzling,
    908 		    partial_cacheline_write, needs_clflush_after);
    909 		mutex_lock(&dev->struct_mutex);
    910 
    911 next_page:
    912 		page->p_vmp.flags &= ~PG_CLEAN;
    913 		/* XXX mark page accessed */
    914 		if (ret)
    915 			goto out;
    916 
    917 		KASSERT(page_length <= remain);
    918 		remain -= page_length;
    919 		user_data += page_length;
    920 		offset += page_length;
    921 	}
    922 #else
    923 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
    924 		struct page *page;
    925 		int partial_cacheline_write;
    926 
    927 		if (i < offset >> PAGE_SHIFT)
    928 			continue;
    929 
    930 		if (remain <= 0)
    931 			break;
    932 
    933 		/* Operation in this page
    934 		 *
    935 		 * shmem_page_offset = offset within page in shmem file
    936 		 * page_length = bytes to copy for this page
    937 		 */
    938 		shmem_page_offset = offset_in_page(offset);
    939 
    940 		page_length = remain;
    941 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    942 			page_length = PAGE_SIZE - shmem_page_offset;
    943 
    944 		/* If we don't overwrite a cacheline completely we need to be
    945 		 * careful to have up-to-date data by first clflushing. Don't
    946 		 * overcomplicate things and flush the entire patch. */
    947 		partial_cacheline_write = needs_clflush_before &&
    948 			((shmem_page_offset | page_length)
    949 				& (boot_cpu_data.x86_clflush_size - 1));
    950 
    951 		page = sg_page(sg);
    952 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    953 			(page_to_phys(page) & (1 << 17)) != 0;
    954 
    955 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
    956 					user_data, page_do_bit17_swizzling,
    957 					partial_cacheline_write,
    958 					needs_clflush_after);
    959 		if (ret == 0)
    960 			goto next_page;
    961 
    962 		hit_slowpath = 1;
    963 		mutex_unlock(&dev->struct_mutex);
    964 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
    965 					user_data, page_do_bit17_swizzling,
    966 					partial_cacheline_write,
    967 					needs_clflush_after);
    968 
    969 		mutex_lock(&dev->struct_mutex);
    970 
    971 next_page:
    972 		set_page_dirty(page);
    973 		mark_page_accessed(page);
    974 
    975 		if (ret)
    976 			goto out;
    977 
    978 		remain -= page_length;
    979 		user_data += page_length;
    980 		offset += page_length;
    981 	}
    982 #endif
    983 
    984 out:
    985 	i915_gem_object_unpin_pages(obj);
    986 
    987 	if (hit_slowpath) {
    988 		/* Fixup: Kill any reinstated backing storage pages */
    989 		if (obj->madv == __I915_MADV_PURGED)
    990 			i915_gem_object_truncate(obj);
    991 		/* and flush dirty cachelines in case the object isn't in the cpu write
    992 		 * domain anymore. */
    993 		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
    994 			i915_gem_clflush_object(obj);
    995 			i915_gem_chipset_flush(dev);
    996 		}
    997 	}
    998 
    999 	if (needs_clflush_after)
   1000 		i915_gem_chipset_flush(dev);
   1001 
   1002 	return ret;
   1003 }
   1004 
   1005 /**
   1006  * Writes data to the object referenced by handle.
   1007  *
   1008  * On error, the contents of the buffer that were to be modified are undefined.
   1009  */
   1010 int
   1011 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
   1012 		      struct drm_file *file)
   1013 {
   1014 	struct drm_i915_gem_pwrite *args = data;
   1015 	struct drm_i915_gem_object *obj;
   1016 	int ret;
   1017 
   1018 	if (args->size == 0)
   1019 		return 0;
   1020 
   1021 	if (!access_ok(VERIFY_READ,
   1022 		       (char __user *)(uintptr_t)args->data_ptr,
   1023 		       args->size))
   1024 		return -EFAULT;
   1025 
   1026 #ifndef __NetBSD__		/* XXX prefault */
   1027 	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
   1028 					   args->size);
   1029 	if (ret)
   1030 		return -EFAULT;
   1031 #endif
   1032 
   1033 	ret = i915_mutex_lock_interruptible(dev);
   1034 	if (ret)
   1035 		return ret;
   1036 
   1037 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   1038 	if (&obj->base == NULL) {
   1039 		ret = -ENOENT;
   1040 		goto unlock;
   1041 	}
   1042 
   1043 	/* Bounds check destination. */
   1044 	if (args->offset > obj->base.size ||
   1045 	    args->size > obj->base.size - args->offset) {
   1046 		ret = -EINVAL;
   1047 		goto out;
   1048 	}
   1049 
   1050 #ifndef __NetBSD__		/* XXX drm prime */
   1051 	/* prime objects have no backing filp to GEM pread/pwrite
   1052 	 * pages from.
   1053 	 */
   1054 	if (!obj->base.filp) {
   1055 		ret = -EINVAL;
   1056 		goto out;
   1057 	}
   1058 #endif
   1059 
   1060 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
   1061 
   1062 	ret = -EFAULT;
   1063 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
   1064 	 * it would end up going through the fenced access, and we'll get
   1065 	 * different detiling behavior between reading and writing.
   1066 	 * pread/pwrite currently are reading and writing from the CPU
   1067 	 * perspective, requiring manual detiling by the client.
   1068 	 */
   1069 	if (obj->phys_obj) {
   1070 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
   1071 		goto out;
   1072 	}
   1073 
   1074 	if (obj->cache_level == I915_CACHE_NONE &&
   1075 	    obj->tiling_mode == I915_TILING_NONE &&
   1076 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1077 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
   1078 		/* Note that the gtt paths might fail with non-page-backed user
   1079 		 * pointers (e.g. gtt mappings when moving data between
   1080 		 * textures). Fallback to the shmem path in that case. */
   1081 	}
   1082 
   1083 	if (ret == -EFAULT || ret == -ENOSPC)
   1084 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
   1085 
   1086 out:
   1087 	drm_gem_object_unreference(&obj->base);
   1088 unlock:
   1089 	mutex_unlock(&dev->struct_mutex);
   1090 	return ret;
   1091 }
   1092 
   1093 int
   1094 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
   1095 		     bool interruptible)
   1096 {
   1097 	if (atomic_read(&dev_priv->mm.wedged)) {
   1098 		struct completion *x = &dev_priv->error_completion;
   1099 		bool recovery_complete;
   1100 #ifndef __NetBSD__
   1101 		unsigned long flags;
   1102 #endif
   1103 
   1104 #ifdef __NetBSD__
   1105 		/*
   1106 		 * XXX This is a horrible kludge.  Reading internal
   1107 		 * fields is no good, nor is reading them unlocked, and
   1108 		 * neither is locking it and then unlocking it before
   1109 		 * making a decision.
   1110 		 */
   1111 		recovery_complete = x->c_done > 0;
   1112 #else
   1113 		/* Give the error handler a chance to run. */
   1114 		spin_lock_irqsave(&x->wait.lock, flags);
   1115 		recovery_complete = x->done > 0;
   1116 		spin_unlock_irqrestore(&x->wait.lock, flags);
   1117 #endif
   1118 
   1119 		/* Non-interruptible callers can't handle -EAGAIN, hence return
   1120 		 * -EIO unconditionally for these. */
   1121 		if (!interruptible)
   1122 			return -EIO;
   1123 
   1124 		/* Recovery complete, but still wedged means reset failure. */
   1125 		if (recovery_complete)
   1126 			return -EIO;
   1127 
   1128 		return -EAGAIN;
   1129 	}
   1130 
   1131 	return 0;
   1132 }
   1133 
   1134 /*
   1135  * Compare seqno against outstanding lazy request. Emit a request if they are
   1136  * equal.
   1137  */
   1138 static int
   1139 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
   1140 {
   1141 	int ret;
   1142 
   1143 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
   1144 
   1145 	ret = 0;
   1146 	if (seqno == ring->outstanding_lazy_request)
   1147 		ret = i915_add_request(ring, NULL, NULL);
   1148 
   1149 	return ret;
   1150 }
   1151 
   1152 /**
   1153  * __wait_seqno - wait until execution of seqno has finished
   1154  * @ring: the ring expected to report seqno
   1155  * @seqno: duh!
   1156  * @interruptible: do an interruptible wait (normally yes)
   1157  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
   1158  *
   1159  * Returns 0 if the seqno was found within the alloted time. Else returns the
   1160  * errno with remaining time filled in timeout argument.
   1161  */
   1162 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
   1163 			bool interruptible, struct timespec *timeout)
   1164 {
   1165 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
   1166 	struct timespec before, now, wait_time={1,0};
   1167 	unsigned long timeout_jiffies;
   1168 	long end;
   1169 	bool wait_forever = true;
   1170 	int ret;
   1171 
   1172 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
   1173 		return 0;
   1174 
   1175 	trace_i915_gem_request_wait_begin(ring, seqno);
   1176 
   1177 	if (timeout != NULL) {
   1178 		wait_time = *timeout;
   1179 		wait_forever = false;
   1180 	}
   1181 
   1182 	timeout_jiffies = timespec_to_jiffies(&wait_time);
   1183 
   1184 	if (WARN_ON(!ring->irq_get(ring)))
   1185 		return -ENODEV;
   1186 
   1187 	/* Record current time in case interrupted by signal, or wedged * */
   1188 	getrawmonotonic(&before);
   1189 
   1190 #define EXIT_COND \
   1191 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
   1192 	atomic_read(&dev_priv->mm.wedged))
   1193 	do {
   1194 #ifdef __NetBSD__
   1195 		/*
   1196 		 * XXX This wait is always interruptible; we should
   1197 		 * heed the flag `interruptible'.
   1198 		 */
   1199 		DRM_TIMED_WAIT_UNTIL(end, &ring->irq_queue, &drm_global_mutex,
   1200 		    timeout_jiffies,
   1201 		    EXIT_COND);
   1202 #else
   1203 		if (interruptible)
   1204 			end = wait_event_interruptible_timeout(ring->irq_queue,
   1205 							       EXIT_COND,
   1206 							       timeout_jiffies);
   1207 		else
   1208 			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
   1209 						 timeout_jiffies);
   1210 
   1211 #endif
   1212 		ret = i915_gem_check_wedge(dev_priv, interruptible);
   1213 		if (ret)
   1214 			end = ret;
   1215 	} while (end == 0 && wait_forever);
   1216 
   1217 	getrawmonotonic(&now);
   1218 
   1219 	ring->irq_put(ring);
   1220 	trace_i915_gem_request_wait_end(ring, seqno);
   1221 #undef EXIT_COND
   1222 
   1223 	if (timeout) {
   1224 		struct timespec sleep_time = timespec_sub(now, before);
   1225 		*timeout = timespec_sub(*timeout, sleep_time);
   1226 	}
   1227 
   1228 	switch (end) {
   1229 	case -EIO:
   1230 	case -EAGAIN: /* Wedged */
   1231 	case -ERESTARTSYS: /* Signal */
   1232 		return (int)end;
   1233 	case 0: /* Timeout */
   1234 		if (timeout)
   1235 			set_normalized_timespec(timeout, 0, 0);
   1236 		return -ETIME;
   1237 	default: /* Completed */
   1238 		WARN_ON(end < 0); /* We're not aware of other errors */
   1239 		return 0;
   1240 	}
   1241 }
   1242 
   1243 /**
   1244  * Waits for a sequence number to be signaled, and cleans up the
   1245  * request and object lists appropriately for that event.
   1246  */
   1247 int
   1248 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
   1249 {
   1250 	struct drm_device *dev = ring->dev;
   1251 	struct drm_i915_private *dev_priv = dev->dev_private;
   1252 	bool interruptible = dev_priv->mm.interruptible;
   1253 	int ret;
   1254 
   1255 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1256 	BUG_ON(seqno == 0);
   1257 
   1258 	ret = i915_gem_check_wedge(dev_priv, interruptible);
   1259 	if (ret)
   1260 		return ret;
   1261 
   1262 	ret = i915_gem_check_olr(ring, seqno);
   1263 	if (ret)
   1264 		return ret;
   1265 
   1266 	return __wait_seqno(ring, seqno, interruptible, NULL);
   1267 }
   1268 
   1269 /**
   1270  * Ensures that all rendering to the object has completed and the object is
   1271  * safe to unbind from the GTT or access from the CPU.
   1272  */
   1273 static __must_check int
   1274 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
   1275 			       bool readonly)
   1276 {
   1277 	struct intel_ring_buffer *ring = obj->ring;
   1278 	u32 seqno;
   1279 	int ret;
   1280 
   1281 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
   1282 	if (seqno == 0)
   1283 		return 0;
   1284 
   1285 	ret = i915_wait_seqno(ring, seqno);
   1286 	if (ret)
   1287 		return ret;
   1288 
   1289 	i915_gem_retire_requests_ring(ring);
   1290 
   1291 	/* Manually manage the write flush as we may have not yet
   1292 	 * retired the buffer.
   1293 	 */
   1294 	if (obj->last_write_seqno &&
   1295 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
   1296 		obj->last_write_seqno = 0;
   1297 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
   1298 	}
   1299 
   1300 	return 0;
   1301 }
   1302 
   1303 /* A nonblocking variant of the above wait. This is a highly dangerous routine
   1304  * as the object state may change during this call.
   1305  */
   1306 static __must_check int
   1307 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
   1308 					    bool readonly)
   1309 {
   1310 	struct drm_device *dev = obj->base.dev;
   1311 	struct drm_i915_private *dev_priv = dev->dev_private;
   1312 	struct intel_ring_buffer *ring = obj->ring;
   1313 	u32 seqno;
   1314 	int ret;
   1315 
   1316 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1317 	BUG_ON(!dev_priv->mm.interruptible);
   1318 
   1319 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
   1320 	if (seqno == 0)
   1321 		return 0;
   1322 
   1323 	ret = i915_gem_check_wedge(dev_priv, true);
   1324 	if (ret)
   1325 		return ret;
   1326 
   1327 	ret = i915_gem_check_olr(ring, seqno);
   1328 	if (ret)
   1329 		return ret;
   1330 
   1331 	mutex_unlock(&dev->struct_mutex);
   1332 	ret = __wait_seqno(ring, seqno, true, NULL);
   1333 	mutex_lock(&dev->struct_mutex);
   1334 
   1335 	i915_gem_retire_requests_ring(ring);
   1336 
   1337 	/* Manually manage the write flush as we may have not yet
   1338 	 * retired the buffer.
   1339 	 */
   1340 	if (obj->last_write_seqno &&
   1341 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
   1342 		obj->last_write_seqno = 0;
   1343 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
   1344 	}
   1345 
   1346 	return ret;
   1347 }
   1348 
   1349 /**
   1350  * Called when user space prepares to use an object with the CPU, either
   1351  * through the mmap ioctl's mapping or a GTT mapping.
   1352  */
   1353 int
   1354 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
   1355 			  struct drm_file *file)
   1356 {
   1357 	struct drm_i915_gem_set_domain *args = data;
   1358 	struct drm_i915_gem_object *obj;
   1359 	uint32_t read_domains = args->read_domains;
   1360 	uint32_t write_domain = args->write_domain;
   1361 	int ret;
   1362 
   1363 	/* Only handle setting domains to types used by the CPU. */
   1364 	if (write_domain & I915_GEM_GPU_DOMAINS)
   1365 		return -EINVAL;
   1366 
   1367 	if (read_domains & I915_GEM_GPU_DOMAINS)
   1368 		return -EINVAL;
   1369 
   1370 	/* Having something in the write domain implies it's in the read
   1371 	 * domain, and only that read domain.  Enforce that in the request.
   1372 	 */
   1373 	if (write_domain != 0 && read_domains != write_domain)
   1374 		return -EINVAL;
   1375 
   1376 	ret = i915_mutex_lock_interruptible(dev);
   1377 	if (ret)
   1378 		return ret;
   1379 
   1380 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   1381 	if (&obj->base == NULL) {
   1382 		ret = -ENOENT;
   1383 		goto unlock;
   1384 	}
   1385 
   1386 	/* Try to flush the object off the GPU without holding the lock.
   1387 	 * We will repeat the flush holding the lock in the normal manner
   1388 	 * to catch cases where we are gazumped.
   1389 	 */
   1390 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
   1391 	if (ret)
   1392 		goto unref;
   1393 
   1394 	if (read_domains & I915_GEM_DOMAIN_GTT) {
   1395 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
   1396 
   1397 		/* Silently promote "you're not bound, there was nothing to do"
   1398 		 * to success, since the client was just asking us to
   1399 		 * make sure everything was done.
   1400 		 */
   1401 		if (ret == -EINVAL)
   1402 			ret = 0;
   1403 	} else {
   1404 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
   1405 	}
   1406 
   1407 unref:
   1408 	drm_gem_object_unreference(&obj->base);
   1409 unlock:
   1410 	mutex_unlock(&dev->struct_mutex);
   1411 	return ret;
   1412 }
   1413 
   1414 /**
   1415  * Called when user space has done writes to this buffer
   1416  */
   1417 int
   1418 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
   1419 			 struct drm_file *file)
   1420 {
   1421 	struct drm_i915_gem_sw_finish *args = data;
   1422 	struct drm_i915_gem_object *obj;
   1423 	int ret = 0;
   1424 
   1425 	ret = i915_mutex_lock_interruptible(dev);
   1426 	if (ret)
   1427 		return ret;
   1428 
   1429 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   1430 	if (&obj->base == NULL) {
   1431 		ret = -ENOENT;
   1432 		goto unlock;
   1433 	}
   1434 
   1435 	/* Pinned buffers may be scanout, so flush the cache */
   1436 	if (obj->pin_count)
   1437 		i915_gem_object_flush_cpu_write_domain(obj);
   1438 
   1439 	drm_gem_object_unreference(&obj->base);
   1440 unlock:
   1441 	mutex_unlock(&dev->struct_mutex);
   1442 	return ret;
   1443 }
   1444 
   1445 /**
   1446  * Maps the contents of an object, returning the address it is mapped
   1447  * into.
   1448  *
   1449  * While the mapping holds a reference on the contents of the object, it doesn't
   1450  * imply a ref on the object itself.
   1451  */
   1452 int
   1453 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
   1454 		    struct drm_file *file)
   1455 {
   1456 	struct drm_i915_gem_mmap *args = data;
   1457 	struct drm_gem_object *obj;
   1458 	unsigned long addr;
   1459 #ifdef __NetBSD__
   1460 	int ret;
   1461 #endif
   1462 
   1463 	obj = drm_gem_object_lookup(dev, file, args->handle);
   1464 	if (obj == NULL)
   1465 		return -ENOENT;
   1466 
   1467 #ifndef __NetBSD__    /* XXX drm prime */
   1468 	/* prime objects have no backing filp to GEM mmap
   1469 	 * pages from.
   1470 	 */
   1471 	if (!obj->filp) {
   1472 		drm_gem_object_unreference_unlocked(obj);
   1473 		return -EINVAL;
   1474 	}
   1475 #endif
   1476 
   1477 #ifdef __NetBSD__
   1478 	addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
   1479 	    (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
   1480 	/* XXX errno NetBSD->Linux */
   1481 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
   1482 	    obj->gemo_shm_uao, args->offset, 0,
   1483 	    UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
   1484 		(VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
   1485 		UVM_FLAG_COPYONW));
   1486 	if (ret)
   1487 		return ret;
   1488 #else
   1489 	addr = vm_mmap(obj->filp, 0, args->size,
   1490 		       PROT_READ | PROT_WRITE, MAP_SHARED,
   1491 		       args->offset);
   1492 	drm_gem_object_unreference_unlocked(obj);
   1493 	if (IS_ERR((void *)addr))
   1494 		return addr;
   1495 #endif
   1496 
   1497 	args->addr_ptr = (uint64_t) addr;
   1498 
   1499 	return 0;
   1500 }
   1501 
   1502 #ifdef __NetBSD__		/* XXX gem gtt fault */
   1503 static int	i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
   1504 		    struct vm_page **, int, int, vm_prot_t, int, paddr_t);
   1505 
   1506 int
   1507 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   1508     int npages, int centeridx, vm_prot_t access_type, int flags)
   1509 {
   1510 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1511 	struct drm_gem_object *gem_obj =
   1512 	    container_of(uobj, struct drm_gem_object, gemo_uvmobj);
   1513 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   1514 	struct drm_device *dev = obj->base.dev;
   1515 	struct drm_i915_private *dev_priv = dev->dev_private;
   1516 	pgoff_t page_offset;
   1517 	int ret = 0;
   1518 	bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
   1519 
   1520 	page_offset = (ufi->entry->offset + (vaddr - ufi->entry->start)) >>
   1521 	    PAGE_SHIFT;
   1522 
   1523 	ret = i915_mutex_lock_interruptible(dev);
   1524 	if (ret)
   1525 		goto out;
   1526 
   1527 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   1528 
   1529 	/* Now bind it into the GTT if needed */
   1530 	ret = i915_gem_object_pin(obj, 0, true, false);
   1531 	if (ret)
   1532 		goto unlock;
   1533 
   1534 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   1535 	if (ret)
   1536 		goto unpin;
   1537 
   1538 	ret = i915_gem_object_get_fence(obj);
   1539 	if (ret)
   1540 		goto unpin;
   1541 
   1542 	obj->fault_mappable = true;
   1543 
   1544 	/* Finally, remap it using the new GTT offset */
   1545 	/* XXX errno NetBSD->Linux */
   1546 	ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
   1547 	    flags, (dev_priv->mm.gtt_base_addr + obj->gtt_offset));
   1548 unpin:
   1549 	i915_gem_object_unpin(obj);
   1550 unlock:
   1551 	mutex_unlock(&dev->struct_mutex);
   1552 out:
   1553 	return ret;
   1554 }
   1555 
   1556 /*
   1557  * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
   1558  *
   1559  * XXX pmap_enter_default instead of pmap_enter because of a problem
   1560  * with using weak aliases in kernel modules or something.
   1561  */
   1562 int	pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
   1563 
   1564 static int
   1565 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   1566     int npages, int centeridx, vm_prot_t access_type, int flags,
   1567     paddr_t gtt_paddr)
   1568 {
   1569 	struct vm_map_entry *entry = ufi->entry;
   1570 	struct uvm_object *uobj = entry->object.uvm_obj;
   1571 	vaddr_t curr_va;
   1572 	off_t curr_offset;
   1573 	paddr_t paddr;
   1574 	u_int mmapflags;
   1575 	int lcv, retval;
   1576 	vm_prot_t mapprot;
   1577 	UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
   1578 	UVMHIST_LOG(maphist,"  flags=%d", flags,0,0,0);
   1579 
   1580 	/*
   1581 	 * we do not allow device mappings to be mapped copy-on-write
   1582 	 * so we kill any attempt to do so here.
   1583 	 */
   1584 
   1585 	if (UVM_ET_ISCOPYONWRITE(entry)) {
   1586 		UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
   1587 		entry->etype, 0,0,0);
   1588 		uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
   1589 		return(EIO);
   1590 	}
   1591 
   1592 	/*
   1593 	 * now we must determine the offset in udv to use and the VA to
   1594 	 * use for pmap_enter.  note that we always use orig_map's pmap
   1595 	 * for pmap_enter (even if we have a submap).   since virtual
   1596 	 * addresses in a submap must match the main map, this is ok.
   1597 	 */
   1598 
   1599 	/* udv offset = (offset from start of entry) + entry's offset */
   1600 	curr_offset = entry->offset + (vaddr - entry->start);
   1601 	/* pmap va = vaddr (virtual address of pps[0]) */
   1602 	curr_va = vaddr;
   1603 
   1604 	/*
   1605 	 * loop over the page range entering in as needed
   1606 	 */
   1607 
   1608 	retval = 0;
   1609 	for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
   1610 	    curr_va += PAGE_SIZE) {
   1611 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
   1612 			continue;
   1613 
   1614 		if (pps[lcv] == PGO_DONTCARE)
   1615 			continue;
   1616 
   1617 		paddr = (gtt_paddr + curr_offset);
   1618 		mmapflags = 0;
   1619 		mapprot = ufi->entry->protection;
   1620 		UVMHIST_LOG(maphist,
   1621 		    "  MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
   1622 		    ufi->orig_map->pmap, curr_va, paddr, mapprot);
   1623 		if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
   1624 		    PMAP_CANFAIL | mapprot | mmapflags) != 0) {
   1625 			/*
   1626 			 * pmap_enter() didn't have the resource to
   1627 			 * enter this mapping.  Unlock everything,
   1628 			 * wait for the pagedaemon to free up some
   1629 			 * pages, and then tell uvm_fault() to start
   1630 			 * the fault again.
   1631 			 *
   1632 			 * XXX Needs some rethinking for the PGO_ALLPAGES
   1633 			 * XXX case.
   1634 			 */
   1635 			pmap_update(ufi->orig_map->pmap);	/* sync what we have so far */
   1636 			uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap,
   1637 			    uobj);
   1638 			uvm_wait("i915flt");
   1639 			return (ERESTART);
   1640 		}
   1641 	}
   1642 
   1643 	pmap_update(ufi->orig_map->pmap);
   1644 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
   1645 	return (retval);
   1646 }
   1647 #else
   1648 /**
   1649  * i915_gem_fault - fault a page into the GTT
   1650  * vma: VMA in question
   1651  * vmf: fault info
   1652  *
   1653  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
   1654  * from userspace.  The fault handler takes care of binding the object to
   1655  * the GTT (if needed), allocating and programming a fence register (again,
   1656  * only if needed based on whether the old reg is still valid or the object
   1657  * is tiled) and inserting a new PTE into the faulting process.
   1658  *
   1659  * Note that the faulting process may involve evicting existing objects
   1660  * from the GTT and/or fence registers to make room.  So performance may
   1661  * suffer if the GTT working set is large or there are few fence registers
   1662  * left.
   1663  */
   1664 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
   1665 {
   1666 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
   1667 	struct drm_device *dev = obj->base.dev;
   1668 	drm_i915_private_t *dev_priv = dev->dev_private;
   1669 	pgoff_t page_offset;
   1670 	unsigned long pfn;
   1671 	int ret = 0;
   1672 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
   1673 
   1674 	/* We don't use vmf->pgoff since that has the fake offset */
   1675 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
   1676 		PAGE_SHIFT;
   1677 
   1678 	ret = i915_mutex_lock_interruptible(dev);
   1679 	if (ret)
   1680 		goto out;
   1681 
   1682 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   1683 
   1684 	/* Now bind it into the GTT if needed */
   1685 	ret = i915_gem_object_pin(obj, 0, true, false);
   1686 	if (ret)
   1687 		goto unlock;
   1688 
   1689 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   1690 	if (ret)
   1691 		goto unpin;
   1692 
   1693 	ret = i915_gem_object_get_fence(obj);
   1694 	if (ret)
   1695 		goto unpin;
   1696 
   1697 	obj->fault_mappable = true;
   1698 
   1699 	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
   1700 		page_offset;
   1701 
   1702 	/* Finally, remap it using the new GTT offset */
   1703 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
   1704 unpin:
   1705 	i915_gem_object_unpin(obj);
   1706 unlock:
   1707 	mutex_unlock(&dev->struct_mutex);
   1708 out:
   1709 	switch (ret) {
   1710 	case -EIO:
   1711 		/* If this -EIO is due to a gpu hang, give the reset code a
   1712 		 * chance to clean up the mess. Otherwise return the proper
   1713 		 * SIGBUS. */
   1714 		if (!atomic_read(&dev_priv->mm.wedged))
   1715 			return VM_FAULT_SIGBUS;
   1716 	case -EAGAIN:
   1717 		/* Give the error handler a chance to run and move the
   1718 		 * objects off the GPU active list. Next time we service the
   1719 		 * fault, we should be able to transition the page into the
   1720 		 * GTT without touching the GPU (and so avoid further
   1721 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
   1722 		 * with coherency, just lost writes.
   1723 		 */
   1724 		set_need_resched();
   1725 	case 0:
   1726 	case -ERESTARTSYS:
   1727 	case -EINTR:
   1728 	case -EBUSY:
   1729 		/*
   1730 		 * EBUSY is ok: this just means that another thread
   1731 		 * already did the job.
   1732 		 */
   1733 		return VM_FAULT_NOPAGE;
   1734 	case -ENOMEM:
   1735 		return VM_FAULT_OOM;
   1736 	case -ENOSPC:
   1737 		return VM_FAULT_SIGBUS;
   1738 	default:
   1739 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
   1740 		return VM_FAULT_SIGBUS;
   1741 	}
   1742 }
   1743 #endif
   1744 
   1745 /**
   1746  * i915_gem_release_mmap - remove physical page mappings
   1747  * @obj: obj in question
   1748  *
   1749  * Preserve the reservation of the mmapping with the DRM core code, but
   1750  * relinquish ownership of the pages back to the system.
   1751  *
   1752  * It is vital that we remove the page mapping if we have mapped a tiled
   1753  * object through the GTT and then lose the fence register due to
   1754  * resource pressure. Similarly if the object has been moved out of the
   1755  * aperture, than pages mapped into userspace must be revoked. Removing the
   1756  * mapping will then trigger a page fault on the next user access, allowing
   1757  * fixup by i915_gem_fault().
   1758  */
   1759 void
   1760 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
   1761 {
   1762 	if (!obj->fault_mappable)
   1763 		return;
   1764 
   1765 #ifdef __NetBSD__		/* XXX gem gtt fault */
   1766 	{
   1767 		struct vm_page *page;
   1768 
   1769 		KASSERT(obj->pages != NULL);
   1770 		/* Force a fresh fault for each page.  */
   1771 		TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
   1772 			pmap_page_protect(page, VM_PROT_NONE);
   1773 	}
   1774 #else
   1775 	if (obj->base.dev->dev_mapping)
   1776 		unmap_mapping_range(obj->base.dev->dev_mapping,
   1777 				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
   1778 				    obj->base.size, 1);
   1779 #endif
   1780 
   1781 	obj->fault_mappable = false;
   1782 }
   1783 
   1784 static uint32_t
   1785 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
   1786 {
   1787 	uint32_t gtt_size;
   1788 
   1789 	if (INTEL_INFO(dev)->gen >= 4 ||
   1790 	    tiling_mode == I915_TILING_NONE)
   1791 		return size;
   1792 
   1793 	/* Previous chips need a power-of-two fence region when tiling */
   1794 	if (INTEL_INFO(dev)->gen == 3)
   1795 		gtt_size = 1024*1024;
   1796 	else
   1797 		gtt_size = 512*1024;
   1798 
   1799 	while (gtt_size < size)
   1800 		gtt_size <<= 1;
   1801 
   1802 	return gtt_size;
   1803 }
   1804 
   1805 /**
   1806  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
   1807  * @obj: object to check
   1808  *
   1809  * Return the required GTT alignment for an object, taking into account
   1810  * potential fence register mapping.
   1811  */
   1812 static uint32_t
   1813 i915_gem_get_gtt_alignment(struct drm_device *dev,
   1814 			   uint32_t size,
   1815 			   int tiling_mode)
   1816 {
   1817 	/*
   1818 	 * Minimum alignment is 4k (GTT page size), but might be greater
   1819 	 * if a fence register is needed for the object.
   1820 	 */
   1821 	if (INTEL_INFO(dev)->gen >= 4 ||
   1822 	    tiling_mode == I915_TILING_NONE)
   1823 		return 4096;
   1824 
   1825 	/*
   1826 	 * Previous chips need to be aligned to the size of the smallest
   1827 	 * fence register that can contain the object.
   1828 	 */
   1829 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
   1830 }
   1831 
   1832 /**
   1833  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
   1834  *					 unfenced object
   1835  * @dev: the device
   1836  * @size: size of the object
   1837  * @tiling_mode: tiling mode of the object
   1838  *
   1839  * Return the required GTT alignment for an object, only taking into account
   1840  * unfenced tiled surface requirements.
   1841  */
   1842 uint32_t
   1843 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
   1844 				    uint32_t size,
   1845 				    int tiling_mode)
   1846 {
   1847 	/*
   1848 	 * Minimum alignment is 4k (GTT page size) for sane hw.
   1849 	 */
   1850 	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
   1851 	    tiling_mode == I915_TILING_NONE)
   1852 		return 4096;
   1853 
   1854 	/* Previous hardware however needs to be aligned to a power-of-two
   1855 	 * tile height. The simplest method for determining this is to reuse
   1856 	 * the power-of-tile object size.
   1857 	 */
   1858 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
   1859 }
   1860 
   1861 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
   1862 {
   1863 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   1864 	int ret;
   1865 
   1866 	if (obj->base.map_list.map)
   1867 		return 0;
   1868 
   1869 	dev_priv->mm.shrinker_no_lock_stealing = true;
   1870 
   1871 	ret = drm_gem_create_mmap_offset(&obj->base);
   1872 	if (ret != -ENOSPC)
   1873 		goto out;
   1874 
   1875 	/* Badly fragmented mmap space? The only way we can recover
   1876 	 * space is by destroying unwanted objects. We can't randomly release
   1877 	 * mmap_offsets as userspace expects them to be persistent for the
   1878 	 * lifetime of the objects. The closest we can is to release the
   1879 	 * offsets on purgeable objects by truncating it and marking it purged,
   1880 	 * which prevents userspace from ever using that object again.
   1881 	 */
   1882 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
   1883 	ret = drm_gem_create_mmap_offset(&obj->base);
   1884 	if (ret != -ENOSPC)
   1885 		goto out;
   1886 
   1887 	i915_gem_shrink_all(dev_priv);
   1888 	ret = drm_gem_create_mmap_offset(&obj->base);
   1889 out:
   1890 	dev_priv->mm.shrinker_no_lock_stealing = false;
   1891 
   1892 	return ret;
   1893 }
   1894 
   1895 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
   1896 {
   1897 	if (!obj->base.map_list.map)
   1898 		return;
   1899 
   1900 	drm_gem_free_mmap_offset(&obj->base);
   1901 }
   1902 
   1903 int
   1904 i915_gem_mmap_gtt(struct drm_file *file,
   1905 		  struct drm_device *dev,
   1906 		  uint32_t handle,
   1907 		  uint64_t *offset)
   1908 {
   1909 	struct drm_i915_private *dev_priv = dev->dev_private;
   1910 	struct drm_i915_gem_object *obj;
   1911 	int ret;
   1912 
   1913 	ret = i915_mutex_lock_interruptible(dev);
   1914 	if (ret)
   1915 		return ret;
   1916 
   1917 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
   1918 	if (&obj->base == NULL) {
   1919 		ret = -ENOENT;
   1920 		goto unlock;
   1921 	}
   1922 
   1923 	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
   1924 		ret = -E2BIG;
   1925 		goto out;
   1926 	}
   1927 
   1928 	if (obj->madv != I915_MADV_WILLNEED) {
   1929 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
   1930 		ret = -EINVAL;
   1931 		goto out;
   1932 	}
   1933 
   1934 	ret = i915_gem_object_create_mmap_offset(obj);
   1935 	if (ret)
   1936 		goto out;
   1937 
   1938 	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
   1939 
   1940 out:
   1941 	drm_gem_object_unreference(&obj->base);
   1942 unlock:
   1943 	mutex_unlock(&dev->struct_mutex);
   1944 	return ret;
   1945 }
   1946 
   1947 /**
   1948  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
   1949  * @dev: DRM device
   1950  * @data: GTT mapping ioctl data
   1951  * @file: GEM object info
   1952  *
   1953  * Simply returns the fake offset to userspace so it can mmap it.
   1954  * The mmap call will end up in drm_gem_mmap(), which will set things
   1955  * up so we can get faults in the handler above.
   1956  *
   1957  * The fault handler will take care of binding the object into the GTT
   1958  * (since it may have been evicted to make room for something), allocating
   1959  * a fence register, and mapping the appropriate aperture address into
   1960  * userspace.
   1961  */
   1962 int
   1963 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
   1964 			struct drm_file *file)
   1965 {
   1966 	struct drm_i915_gem_mmap_gtt *args = data;
   1967 
   1968 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
   1969 }
   1970 
   1971 /* Immediately discard the backing storage */
   1972 static void
   1973 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
   1974 {
   1975 #ifndef __NetBSD__
   1976 	struct inode *inode;
   1977 #endif
   1978 
   1979 	i915_gem_object_free_mmap_offset(obj);
   1980 
   1981 #ifdef __NetBSD__
   1982 	{
   1983 		struct uvm_object *const uobj = obj->base.gemo_shm_uao;
   1984 
   1985 		if (uobj != NULL)
   1986 			/* XXX Calling pgo_put like this is bogus.  */
   1987 			(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   1988 			    (PGO_ALLPAGES | PGO_FREE));
   1989 	}
   1990 #else
   1991 	if (obj->base.filp == NULL)
   1992 		return;
   1993 
   1994 	/* Our goal here is to return as much of the memory as
   1995 	 * is possible back to the system as we are called from OOM.
   1996 	 * To do this we must instruct the shmfs to drop all of its
   1997 	 * backing pages, *now*.
   1998 	 */
   1999 	inode = obj->base.filp->f_path.dentry->d_inode;
   2000 	shmem_truncate_range(inode, 0, (loff_t)-1);
   2001 #endif
   2002 
   2003 	obj->madv = __I915_MADV_PURGED;
   2004 }
   2005 
   2006 static inline int
   2007 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
   2008 {
   2009 	return obj->madv == I915_MADV_DONTNEED;
   2010 }
   2011 
   2012 #ifdef __NetBSD__
   2013 static void
   2014 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2015 {
   2016 	struct drm_device *const dev = obj->base.dev;
   2017 	int ret;
   2018 
   2019 	/* XXX Cargo-culted from the Linux code.  */
   2020 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2021 
   2022 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2023 	if (ret) {
   2024 		WARN_ON(ret != -EIO);
   2025 		i915_gem_clflush_object(obj);
   2026 		obj->base.read_domains = obj->base.write_domain =
   2027 		    I915_GEM_DOMAIN_CPU;
   2028 	}
   2029 
   2030 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2031 		i915_gem_object_save_bit_17_swizzle(obj);
   2032 
   2033 	/* XXX Maintain dirty flag?  */
   2034 
   2035 	bus_dmamap_unload(dev->dmat, obj->igo_dmamap);
   2036 	bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
   2037 	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
   2038 	    obj->base.size, obj->pages, obj->igo_nsegs);
   2039 
   2040 	kfree(obj->pages);
   2041 }
   2042 #else
   2043 static void
   2044 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2045 {
   2046 	int page_count = obj->base.size / PAGE_SIZE;
   2047 	struct scatterlist *sg;
   2048 	int ret, i;
   2049 
   2050 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2051 
   2052 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2053 	if (ret) {
   2054 		/* In the event of a disaster, abandon all caches and
   2055 		 * hope for the best.
   2056 		 */
   2057 		WARN_ON(ret != -EIO);
   2058 		i915_gem_clflush_object(obj);
   2059 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   2060 	}
   2061 
   2062 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2063 		i915_gem_object_save_bit_17_swizzle(obj);
   2064 
   2065 	if (obj->madv == I915_MADV_DONTNEED)
   2066 		obj->dirty = 0;
   2067 
   2068 	for_each_sg(obj->pages->sgl, sg, page_count, i) {
   2069 		struct page *page = sg_page(sg);
   2070 
   2071 		if (obj->dirty)
   2072 			set_page_dirty(page);
   2073 
   2074 		if (obj->madv == I915_MADV_WILLNEED)
   2075 			mark_page_accessed(page);
   2076 
   2077 		page_cache_release(page);
   2078 	}
   2079 	obj->dirty = 0;
   2080 
   2081 	sg_free_table(obj->pages);
   2082 	kfree(obj->pages);
   2083 }
   2084 #endif
   2085 
   2086 static int
   2087 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
   2088 {
   2089 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2090 
   2091 	if (obj->pages == NULL)
   2092 		return 0;
   2093 
   2094 	BUG_ON(obj->gtt_space);
   2095 
   2096 	if (obj->pages_pin_count)
   2097 		return -EBUSY;
   2098 
   2099 	/* ->put_pages might need to allocate memory for the bit17 swizzle
   2100 	 * array, hence protect them from being reaped by removing them from gtt
   2101 	 * lists early. */
   2102 	list_del(&obj->gtt_list);
   2103 
   2104 	ops->put_pages(obj);
   2105 	obj->pages = NULL;
   2106 
   2107 	if (i915_gem_object_is_purgeable(obj))
   2108 		i915_gem_object_truncate(obj);
   2109 
   2110 	return 0;
   2111 }
   2112 
   2113 static long
   2114 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
   2115 		  bool purgeable_only)
   2116 {
   2117 	struct drm_i915_gem_object *obj, *next;
   2118 	long count = 0;
   2119 
   2120 	list_for_each_entry_safe(obj, next,
   2121 				 &dev_priv->mm.unbound_list,
   2122 				 gtt_list) {
   2123 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
   2124 		    i915_gem_object_put_pages(obj) == 0) {
   2125 			count += obj->base.size >> PAGE_SHIFT;
   2126 			if (count >= target)
   2127 				return count;
   2128 		}
   2129 	}
   2130 
   2131 	list_for_each_entry_safe(obj, next,
   2132 				 &dev_priv->mm.inactive_list,
   2133 				 mm_list) {
   2134 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
   2135 		    i915_gem_object_unbind(obj) == 0 &&
   2136 		    i915_gem_object_put_pages(obj) == 0) {
   2137 			count += obj->base.size >> PAGE_SHIFT;
   2138 			if (count >= target)
   2139 				return count;
   2140 		}
   2141 	}
   2142 
   2143 	return count;
   2144 }
   2145 
   2146 static long
   2147 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
   2148 {
   2149 	return __i915_gem_shrink(dev_priv, target, true);
   2150 }
   2151 
   2152 static void
   2153 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
   2154 {
   2155 	struct drm_i915_gem_object *obj, *next;
   2156 
   2157 	i915_gem_evict_everything(dev_priv->dev);
   2158 
   2159 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
   2160 		i915_gem_object_put_pages(obj);
   2161 }
   2162 
   2163 #ifdef __NetBSD__
   2164 static int
   2165 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2166 {
   2167 	struct drm_device *const dev = obj->base.dev;
   2168 	int error;
   2169 
   2170 	/* XXX Cargo-culted from the Linux code.  */
   2171 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2172 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2173 
   2174 	KASSERT(obj->pages == NULL);
   2175 	TAILQ_INIT(&obj->igo_pageq);
   2176 	obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
   2177 	    sizeof(obj->pages[0]), GFP_KERNEL);
   2178 	if (obj->pages == NULL) {
   2179 		error = -ENOMEM;
   2180 		goto fail0;
   2181 	}
   2182 
   2183 	/* XXX errno NetBSD->Linux */
   2184 	error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
   2185 	    0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
   2186 	    (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
   2187 	if (error)
   2188 		/* XXX Try i915_gem_purge, i915_gem_shrink_all.  */
   2189 		goto fail1;
   2190 	KASSERT(0 < obj->igo_nsegs);
   2191 	KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
   2192 
   2193 	/* XXX errno NetBSD->Linux */
   2194 	error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
   2195 	    PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
   2196 	if (error)
   2197 		goto fail2;
   2198 
   2199 	/* XXX errno NetBSD->Linux */
   2200 	error = -bus_dmamap_load_raw(dev->dmat, obj->igo_dmamap, obj->pages,
   2201 	    obj->igo_nsegs, obj->base.size, BUS_DMA_NOWAIT);
   2202 	if (error)
   2203 		goto fail3;
   2204 
   2205 	/* XXX Cargo-culted from the Linux code.  */
   2206 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2207 		i915_gem_object_do_bit_17_swizzle(obj);
   2208 
   2209 	/* Success!  */
   2210 	return 0;
   2211 
   2212 fail3:	bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
   2213 fail2:	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
   2214 	    obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
   2215 fail1:	kfree(obj->pages);
   2216 	obj->pages = NULL;
   2217 fail0:	return error;
   2218 }
   2219 #else
   2220 static int
   2221 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2222 {
   2223 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2224 	int page_count, i;
   2225 	struct address_space *mapping;
   2226 	struct sg_table *st;
   2227 	struct scatterlist *sg;
   2228 	struct page *page;
   2229 	gfp_t gfp;
   2230 
   2231 	/* Assert that the object is not currently in any GPU domain. As it
   2232 	 * wasn't in the GTT, there shouldn't be any way it could have been in
   2233 	 * a GPU cache
   2234 	 */
   2235 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2236 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2237 
   2238 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   2239 	if (st == NULL)
   2240 		return -ENOMEM;
   2241 
   2242 	page_count = obj->base.size / PAGE_SIZE;
   2243 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
   2244 		sg_free_table(st);
   2245 		kfree(st);
   2246 		return -ENOMEM;
   2247 	}
   2248 
   2249 	/* Get the list of pages out of our struct file.  They'll be pinned
   2250 	 * at this point until we release them.
   2251 	 *
   2252 	 * Fail silently without starting the shrinker
   2253 	 */
   2254 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
   2255 	gfp = mapping_gfp_mask(mapping);
   2256 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
   2257 	gfp &= ~(__GFP_IO | __GFP_WAIT);
   2258 	for_each_sg(st->sgl, sg, page_count, i) {
   2259 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2260 		if (IS_ERR(page)) {
   2261 			i915_gem_purge(dev_priv, page_count);
   2262 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2263 		}
   2264 		if (IS_ERR(page)) {
   2265 			/* We've tried hard to allocate the memory by reaping
   2266 			 * our own buffer, now let the real VM do its job and
   2267 			 * go down in flames if truly OOM.
   2268 			 */
   2269 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
   2270 			gfp |= __GFP_IO | __GFP_WAIT;
   2271 
   2272 			i915_gem_shrink_all(dev_priv);
   2273 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2274 			if (IS_ERR(page))
   2275 				goto err_pages;
   2276 
   2277 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
   2278 			gfp &= ~(__GFP_IO | __GFP_WAIT);
   2279 		}
   2280 
   2281 		sg_set_page(sg, page, PAGE_SIZE, 0);
   2282 	}
   2283 
   2284 	obj->pages = st;
   2285 
   2286 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2287 		i915_gem_object_do_bit_17_swizzle(obj);
   2288 
   2289 	return 0;
   2290 
   2291 err_pages:
   2292 	for_each_sg(st->sgl, sg, i, page_count)
   2293 		page_cache_release(sg_page(sg));
   2294 	sg_free_table(st);
   2295 	kfree(st);
   2296 	return PTR_ERR(page);
   2297 }
   2298 #endif
   2299 
   2300 /* Ensure that the associated pages are gathered from the backing storage
   2301  * and pinned into our object. i915_gem_object_get_pages() may be called
   2302  * multiple times before they are released by a single call to
   2303  * i915_gem_object_put_pages() - once the pages are no longer referenced
   2304  * either as a result of memory pressure (reaping pages under the shrinker)
   2305  * or as the object is itself released.
   2306  */
   2307 int
   2308 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
   2309 {
   2310 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2311 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2312 	int ret;
   2313 
   2314 	if (obj->pages)
   2315 		return 0;
   2316 
   2317 	BUG_ON(obj->pages_pin_count);
   2318 
   2319 	ret = ops->get_pages(obj);
   2320 	if (ret)
   2321 		return ret;
   2322 
   2323 	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
   2324 	return 0;
   2325 }
   2326 
   2327 void
   2328 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
   2329 			       struct intel_ring_buffer *ring)
   2330 {
   2331 	struct drm_device *dev = obj->base.dev;
   2332 	struct drm_i915_private *dev_priv = dev->dev_private;
   2333 	u32 seqno = intel_ring_get_seqno(ring);
   2334 
   2335 	BUG_ON(ring == NULL);
   2336 	obj->ring = ring;
   2337 
   2338 	/* Add a reference if we're newly entering the active list. */
   2339 	if (!obj->active) {
   2340 		drm_gem_object_reference(&obj->base);
   2341 		obj->active = 1;
   2342 	}
   2343 
   2344 	/* Move from whatever list we were on to the tail of execution. */
   2345 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
   2346 	list_move_tail(&obj->ring_list, &ring->active_list);
   2347 
   2348 	obj->last_read_seqno = seqno;
   2349 
   2350 	if (obj->fenced_gpu_access) {
   2351 		obj->last_fenced_seqno = seqno;
   2352 
   2353 		/* Bump MRU to take account of the delayed flush */
   2354 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
   2355 			struct drm_i915_fence_reg *reg;
   2356 
   2357 			reg = &dev_priv->fence_regs[obj->fence_reg];
   2358 			list_move_tail(&reg->lru_list,
   2359 				       &dev_priv->mm.fence_list);
   2360 		}
   2361 	}
   2362 }
   2363 
   2364 static void
   2365 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
   2366 {
   2367 	struct drm_device *dev = obj->base.dev;
   2368 	struct drm_i915_private *dev_priv = dev->dev_private;
   2369 
   2370 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
   2371 	BUG_ON(!obj->active);
   2372 
   2373 	if (obj->pin_count) /* are we a framebuffer? */
   2374 		intel_mark_fb_idle(obj);
   2375 
   2376 	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
   2377 
   2378 	list_del_init(&obj->ring_list);
   2379 	obj->ring = NULL;
   2380 
   2381 	obj->last_read_seqno = 0;
   2382 	obj->last_write_seqno = 0;
   2383 	obj->base.write_domain = 0;
   2384 
   2385 	obj->last_fenced_seqno = 0;
   2386 	obj->fenced_gpu_access = false;
   2387 
   2388 	obj->active = 0;
   2389 	drm_gem_object_unreference(&obj->base);
   2390 
   2391 	WARN_ON(i915_verify_lists(dev));
   2392 }
   2393 
   2394 static int
   2395 i915_gem_handle_seqno_wrap(struct drm_device *dev)
   2396 {
   2397 	struct drm_i915_private *dev_priv = dev->dev_private;
   2398 	struct intel_ring_buffer *ring;
   2399 	int ret, i, j;
   2400 
   2401 	/* The hardware uses various monotonic 32-bit counters, if we
   2402 	 * detect that they will wraparound we need to idle the GPU
   2403 	 * and reset those counters.
   2404 	 */
   2405 	ret = 0;
   2406 	for_each_ring(ring, dev_priv, i) {
   2407 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
   2408 			ret |= ring->sync_seqno[j] != 0;
   2409 	}
   2410 	if (ret == 0)
   2411 		return ret;
   2412 
   2413 	ret = i915_gpu_idle(dev);
   2414 	if (ret)
   2415 		return ret;
   2416 
   2417 	i915_gem_retire_requests(dev);
   2418 	for_each_ring(ring, dev_priv, i) {
   2419 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
   2420 			ring->sync_seqno[j] = 0;
   2421 	}
   2422 
   2423 	return 0;
   2424 }
   2425 
   2426 int
   2427 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
   2428 {
   2429 	struct drm_i915_private *dev_priv = dev->dev_private;
   2430 
   2431 	/* reserve 0 for non-seqno */
   2432 	if (dev_priv->next_seqno == 0) {
   2433 		int ret = i915_gem_handle_seqno_wrap(dev);
   2434 		if (ret)
   2435 			return ret;
   2436 
   2437 		dev_priv->next_seqno = 1;
   2438 	}
   2439 
   2440 	*seqno = dev_priv->next_seqno++;
   2441 	return 0;
   2442 }
   2443 
   2444 int
   2445 i915_add_request(struct intel_ring_buffer *ring,
   2446 		 struct drm_file *file,
   2447 		 u32 *out_seqno)
   2448 {
   2449 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
   2450 	struct drm_i915_gem_request *request;
   2451 	u32 request_ring_position;
   2452 	int was_empty;
   2453 	int ret;
   2454 
   2455 	/*
   2456 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
   2457 	 * after having emitted the batchbuffer command. Hence we need to fix
   2458 	 * things up similar to emitting the lazy request. The difference here
   2459 	 * is that the flush _must_ happen before the next request, no matter
   2460 	 * what.
   2461 	 */
   2462 	ret = intel_ring_flush_all_caches(ring);
   2463 	if (ret)
   2464 		return ret;
   2465 
   2466 	request = kmalloc(sizeof(*request), GFP_KERNEL);
   2467 	if (request == NULL)
   2468 		return -ENOMEM;
   2469 
   2470 
   2471 	/* Record the position of the start of the request so that
   2472 	 * should we detect the updated seqno part-way through the
   2473 	 * GPU processing the request, we never over-estimate the
   2474 	 * position of the head.
   2475 	 */
   2476 	request_ring_position = intel_ring_get_tail(ring);
   2477 
   2478 	ret = ring->add_request(ring);
   2479 	if (ret) {
   2480 		kfree(request);
   2481 		return ret;
   2482 	}
   2483 
   2484 	request->seqno = intel_ring_get_seqno(ring);
   2485 	request->ring = ring;
   2486 	request->tail = request_ring_position;
   2487 	request->emitted_jiffies = jiffies;
   2488 	was_empty = list_empty(&ring->request_list);
   2489 	list_add_tail(&request->list, &ring->request_list);
   2490 	request->file_priv = NULL;
   2491 
   2492 	if (file) {
   2493 		struct drm_i915_file_private *file_priv = file->driver_priv;
   2494 
   2495 		spin_lock(&file_priv->mm.lock);
   2496 		request->file_priv = file_priv;
   2497 		list_add_tail(&request->client_list,
   2498 			      &file_priv->mm.request_list);
   2499 		spin_unlock(&file_priv->mm.lock);
   2500 	}
   2501 
   2502 	trace_i915_gem_request_add(ring, request->seqno);
   2503 	ring->outstanding_lazy_request = 0;
   2504 
   2505 	if (!dev_priv->mm.suspended) {
   2506 		if (i915_enable_hangcheck) {
   2507 			mod_timer(&dev_priv->hangcheck_timer,
   2508 				  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
   2509 		}
   2510 		if (was_empty) {
   2511 			queue_delayed_work(dev_priv->wq,
   2512 					   &dev_priv->mm.retire_work,
   2513 					   round_jiffies_up_relative(HZ));
   2514 			intel_mark_busy(dev_priv->dev);
   2515 		}
   2516 	}
   2517 
   2518 	if (out_seqno)
   2519 		*out_seqno = request->seqno;
   2520 	return 0;
   2521 }
   2522 
   2523 static inline void
   2524 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
   2525 {
   2526 	struct drm_i915_file_private *file_priv = request->file_priv;
   2527 
   2528 	if (!file_priv)
   2529 		return;
   2530 
   2531 	spin_lock(&file_priv->mm.lock);
   2532 	if (request->file_priv) {
   2533 		list_del(&request->client_list);
   2534 		request->file_priv = NULL;
   2535 	}
   2536 	spin_unlock(&file_priv->mm.lock);
   2537 }
   2538 
   2539 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
   2540 				      struct intel_ring_buffer *ring)
   2541 {
   2542 	while (!list_empty(&ring->request_list)) {
   2543 		struct drm_i915_gem_request *request;
   2544 
   2545 		request = list_first_entry(&ring->request_list,
   2546 					   struct drm_i915_gem_request,
   2547 					   list);
   2548 
   2549 		list_del(&request->list);
   2550 		i915_gem_request_remove_from_client(request);
   2551 		kfree(request);
   2552 	}
   2553 
   2554 	while (!list_empty(&ring->active_list)) {
   2555 		struct drm_i915_gem_object *obj;
   2556 
   2557 		obj = list_first_entry(&ring->active_list,
   2558 				       struct drm_i915_gem_object,
   2559 				       ring_list);
   2560 
   2561 		i915_gem_object_move_to_inactive(obj);
   2562 	}
   2563 }
   2564 
   2565 static void i915_gem_reset_fences(struct drm_device *dev)
   2566 {
   2567 	struct drm_i915_private *dev_priv = dev->dev_private;
   2568 	int i;
   2569 
   2570 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
   2571 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
   2572 
   2573 		i915_gem_write_fence(dev, i, NULL);
   2574 
   2575 		if (reg->obj)
   2576 			i915_gem_object_fence_lost(reg->obj);
   2577 
   2578 		reg->pin_count = 0;
   2579 		reg->obj = NULL;
   2580 		INIT_LIST_HEAD(&reg->lru_list);
   2581 	}
   2582 
   2583 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   2584 }
   2585 
   2586 void i915_gem_reset(struct drm_device *dev)
   2587 {
   2588 	struct drm_i915_private *dev_priv = dev->dev_private;
   2589 	struct drm_i915_gem_object *obj;
   2590 	struct intel_ring_buffer *ring;
   2591 	int i;
   2592 
   2593 	for_each_ring(ring, dev_priv, i)
   2594 		i915_gem_reset_ring_lists(dev_priv, ring);
   2595 
   2596 	/* Move everything out of the GPU domains to ensure we do any
   2597 	 * necessary invalidation upon reuse.
   2598 	 */
   2599 	list_for_each_entry(obj,
   2600 			    &dev_priv->mm.inactive_list,
   2601 			    mm_list)
   2602 	{
   2603 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
   2604 	}
   2605 
   2606 	/* The fence registers are invalidated so clear them out */
   2607 	i915_gem_reset_fences(dev);
   2608 }
   2609 
   2610 /**
   2611  * This function clears the request list as sequence numbers are passed.
   2612  */
   2613 void
   2614 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
   2615 {
   2616 	uint32_t seqno;
   2617 
   2618 	if (list_empty(&ring->request_list))
   2619 		return;
   2620 
   2621 	WARN_ON(i915_verify_lists(ring->dev));
   2622 
   2623 	seqno = ring->get_seqno(ring, true);
   2624 
   2625 	while (!list_empty(&ring->request_list)) {
   2626 		struct drm_i915_gem_request *request;
   2627 
   2628 		request = list_first_entry(&ring->request_list,
   2629 					   struct drm_i915_gem_request,
   2630 					   list);
   2631 
   2632 		if (!i915_seqno_passed(seqno, request->seqno))
   2633 			break;
   2634 
   2635 		trace_i915_gem_request_retire(ring, request->seqno);
   2636 		/* We know the GPU must have read the request to have
   2637 		 * sent us the seqno + interrupt, so use the position
   2638 		 * of tail of the request to update the last known position
   2639 		 * of the GPU head.
   2640 		 */
   2641 		ring->last_retired_head = request->tail;
   2642 
   2643 		list_del(&request->list);
   2644 		i915_gem_request_remove_from_client(request);
   2645 		kfree(request);
   2646 	}
   2647 
   2648 	/* Move any buffers on the active list that are no longer referenced
   2649 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
   2650 	 */
   2651 	while (!list_empty(&ring->active_list)) {
   2652 		struct drm_i915_gem_object *obj;
   2653 
   2654 		obj = list_first_entry(&ring->active_list,
   2655 				      struct drm_i915_gem_object,
   2656 				      ring_list);
   2657 
   2658 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
   2659 			break;
   2660 
   2661 		i915_gem_object_move_to_inactive(obj);
   2662 	}
   2663 
   2664 	if (unlikely(ring->trace_irq_seqno &&
   2665 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
   2666 		ring->irq_put(ring);
   2667 		ring->trace_irq_seqno = 0;
   2668 	}
   2669 
   2670 	WARN_ON(i915_verify_lists(ring->dev));
   2671 }
   2672 
   2673 void
   2674 i915_gem_retire_requests(struct drm_device *dev)
   2675 {
   2676 	drm_i915_private_t *dev_priv = dev->dev_private;
   2677 	struct intel_ring_buffer *ring;
   2678 	int i;
   2679 
   2680 	for_each_ring(ring, dev_priv, i)
   2681 		i915_gem_retire_requests_ring(ring);
   2682 }
   2683 
   2684 static void
   2685 i915_gem_retire_work_handler(struct work_struct *work)
   2686 {
   2687 	drm_i915_private_t *dev_priv;
   2688 	struct drm_device *dev;
   2689 	struct intel_ring_buffer *ring;
   2690 	bool idle;
   2691 	int i;
   2692 
   2693 	dev_priv = container_of(work, drm_i915_private_t,
   2694 				mm.retire_work.work);
   2695 	dev = dev_priv->dev;
   2696 
   2697 	/* Come back later if the device is busy... */
   2698 	if (!mutex_trylock(&dev->struct_mutex)) {
   2699 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
   2700 				   round_jiffies_up_relative(HZ));
   2701 		return;
   2702 	}
   2703 
   2704 	i915_gem_retire_requests(dev);
   2705 
   2706 	/* Send a periodic flush down the ring so we don't hold onto GEM
   2707 	 * objects indefinitely.
   2708 	 */
   2709 	idle = true;
   2710 	for_each_ring(ring, dev_priv, i) {
   2711 		if (ring->gpu_caches_dirty)
   2712 			i915_add_request(ring, NULL, NULL);
   2713 
   2714 		idle &= list_empty(&ring->request_list);
   2715 	}
   2716 
   2717 	if (!dev_priv->mm.suspended && !idle)
   2718 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
   2719 				   round_jiffies_up_relative(HZ));
   2720 	if (idle)
   2721 		intel_mark_idle(dev);
   2722 
   2723 	mutex_unlock(&dev->struct_mutex);
   2724 }
   2725 
   2726 /**
   2727  * Ensures that an object will eventually get non-busy by flushing any required
   2728  * write domains, emitting any outstanding lazy request and retiring and
   2729  * completed requests.
   2730  */
   2731 static int
   2732 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
   2733 {
   2734 	int ret;
   2735 
   2736 	if (obj->active) {
   2737 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
   2738 		if (ret)
   2739 			return ret;
   2740 
   2741 		i915_gem_retire_requests_ring(obj->ring);
   2742 	}
   2743 
   2744 	return 0;
   2745 }
   2746 
   2747 /**
   2748  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
   2749  * @DRM_IOCTL_ARGS: standard ioctl arguments
   2750  *
   2751  * Returns 0 if successful, else an error is returned with the remaining time in
   2752  * the timeout parameter.
   2753  *  -ETIME: object is still busy after timeout
   2754  *  -ERESTARTSYS: signal interrupted the wait
   2755  *  -ENONENT: object doesn't exist
   2756  * Also possible, but rare:
   2757  *  -EAGAIN: GPU wedged
   2758  *  -ENOMEM: damn
   2759  *  -ENODEV: Internal IRQ fail
   2760  *  -E?: The add request failed
   2761  *
   2762  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
   2763  * non-zero timeout parameter the wait ioctl will wait for the given number of
   2764  * nanoseconds on an object becoming unbusy. Since the wait itself does so
   2765  * without holding struct_mutex the object may become re-busied before this
   2766  * function completes. A similar but shorter * race condition exists in the busy
   2767  * ioctl
   2768  */
   2769 int
   2770 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
   2771 {
   2772 	struct drm_i915_gem_wait *args = data;
   2773 	struct drm_i915_gem_object *obj;
   2774 	struct intel_ring_buffer *ring = NULL;
   2775 	struct timespec timeout_stack, *timeout = NULL;
   2776 	u32 seqno = 0;
   2777 	int ret = 0;
   2778 
   2779 	if (args->timeout_ns >= 0) {
   2780 		timeout_stack = ns_to_timespec(args->timeout_ns);
   2781 		timeout = &timeout_stack;
   2782 	}
   2783 
   2784 	ret = i915_mutex_lock_interruptible(dev);
   2785 	if (ret)
   2786 		return ret;
   2787 
   2788 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
   2789 	if (&obj->base == NULL) {
   2790 		mutex_unlock(&dev->struct_mutex);
   2791 		return -ENOENT;
   2792 	}
   2793 
   2794 	/* Need to make sure the object gets inactive eventually. */
   2795 	ret = i915_gem_object_flush_active(obj);
   2796 	if (ret)
   2797 		goto out;
   2798 
   2799 	if (obj->active) {
   2800 		seqno = obj->last_read_seqno;
   2801 		ring = obj->ring;
   2802 	}
   2803 
   2804 	if (seqno == 0)
   2805 		 goto out;
   2806 
   2807 	/* Do this after OLR check to make sure we make forward progress polling
   2808 	 * on this IOCTL with a 0 timeout (like busy ioctl)
   2809 	 */
   2810 	if (!args->timeout_ns) {
   2811 		ret = -ETIME;
   2812 		goto out;
   2813 	}
   2814 
   2815 	drm_gem_object_unreference(&obj->base);
   2816 	mutex_unlock(&dev->struct_mutex);
   2817 
   2818 	ret = __wait_seqno(ring, seqno, true, timeout);
   2819 	if (timeout) {
   2820 		WARN_ON(!timespec_valid(timeout));
   2821 		args->timeout_ns = timespec_to_ns(timeout);
   2822 	}
   2823 	return ret;
   2824 
   2825 out:
   2826 	drm_gem_object_unreference(&obj->base);
   2827 	mutex_unlock(&dev->struct_mutex);
   2828 	return ret;
   2829 }
   2830 
   2831 /**
   2832  * i915_gem_object_sync - sync an object to a ring.
   2833  *
   2834  * @obj: object which may be in use on another ring.
   2835  * @to: ring we wish to use the object on. May be NULL.
   2836  *
   2837  * This code is meant to abstract object synchronization with the GPU.
   2838  * Calling with NULL implies synchronizing the object with the CPU
   2839  * rather than a particular GPU ring.
   2840  *
   2841  * Returns 0 if successful, else propagates up the lower layer error.
   2842  */
   2843 int
   2844 i915_gem_object_sync(struct drm_i915_gem_object *obj,
   2845 		     struct intel_ring_buffer *to)
   2846 {
   2847 	struct intel_ring_buffer *from = obj->ring;
   2848 	u32 seqno;
   2849 	int ret, idx;
   2850 
   2851 	if (from == NULL || to == from)
   2852 		return 0;
   2853 
   2854 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
   2855 		return i915_gem_object_wait_rendering(obj, false);
   2856 
   2857 	idx = intel_ring_sync_index(from, to);
   2858 
   2859 	seqno = obj->last_read_seqno;
   2860 	if (seqno <= from->sync_seqno[idx])
   2861 		return 0;
   2862 
   2863 	ret = i915_gem_check_olr(obj->ring, seqno);
   2864 	if (ret)
   2865 		return ret;
   2866 
   2867 	ret = to->sync_to(to, from, seqno);
   2868 	if (!ret)
   2869 		/* We use last_read_seqno because sync_to()
   2870 		 * might have just caused seqno wrap under
   2871 		 * the radar.
   2872 		 */
   2873 		from->sync_seqno[idx] = obj->last_read_seqno;
   2874 
   2875 	return ret;
   2876 }
   2877 
   2878 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
   2879 {
   2880 	u32 old_write_domain, old_read_domains;
   2881 
   2882 	/* Act a barrier for all accesses through the GTT */
   2883 	mb();
   2884 
   2885 	/* Force a pagefault for domain tracking on next user access */
   2886 	i915_gem_release_mmap(obj);
   2887 
   2888 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   2889 		return;
   2890 
   2891 	old_read_domains = obj->base.read_domains;
   2892 	old_write_domain = obj->base.write_domain;
   2893 
   2894 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
   2895 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
   2896 
   2897 	trace_i915_gem_object_change_domain(obj,
   2898 					    old_read_domains,
   2899 					    old_write_domain);
   2900 }
   2901 
   2902 /**
   2903  * Unbinds an object from the GTT aperture.
   2904  */
   2905 int
   2906 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
   2907 {
   2908 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
   2909 	int ret = 0;
   2910 
   2911 	if (obj->gtt_space == NULL)
   2912 		return 0;
   2913 
   2914 	if (obj->pin_count)
   2915 		return -EBUSY;
   2916 
   2917 	BUG_ON(obj->pages == NULL);
   2918 
   2919 	ret = i915_gem_object_finish_gpu(obj);
   2920 	if (ret)
   2921 		return ret;
   2922 	/* Continue on if we fail due to EIO, the GPU is hung so we
   2923 	 * should be safe and we need to cleanup or else we might
   2924 	 * cause memory corruption through use-after-free.
   2925 	 */
   2926 
   2927 	i915_gem_object_finish_gtt(obj);
   2928 
   2929 	/* release the fence reg _after_ flushing */
   2930 	ret = i915_gem_object_put_fence(obj);
   2931 	if (ret)
   2932 		return ret;
   2933 
   2934 	trace_i915_gem_object_unbind(obj);
   2935 
   2936 	if (obj->has_global_gtt_mapping)
   2937 		i915_gem_gtt_unbind_object(obj);
   2938 	if (obj->has_aliasing_ppgtt_mapping) {
   2939 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
   2940 		obj->has_aliasing_ppgtt_mapping = 0;
   2941 	}
   2942 	i915_gem_gtt_finish_object(obj);
   2943 
   2944 	list_del(&obj->mm_list);
   2945 	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
   2946 	/* Avoid an unnecessary call to unbind on rebind. */
   2947 	obj->map_and_fenceable = true;
   2948 
   2949 	drm_mm_put_block(obj->gtt_space);
   2950 	obj->gtt_space = NULL;
   2951 	obj->gtt_offset = 0;
   2952 
   2953 	return 0;
   2954 }
   2955 
   2956 int i915_gpu_idle(struct drm_device *dev)
   2957 {
   2958 	drm_i915_private_t *dev_priv = dev->dev_private;
   2959 	struct intel_ring_buffer *ring;
   2960 	int ret, i;
   2961 
   2962 	/* Flush everything onto the inactive list. */
   2963 	for_each_ring(ring, dev_priv, i) {
   2964 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
   2965 		if (ret)
   2966 			return ret;
   2967 
   2968 		ret = intel_ring_idle(ring);
   2969 		if (ret)
   2970 			return ret;
   2971 	}
   2972 
   2973 	return 0;
   2974 }
   2975 
   2976 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
   2977 					struct drm_i915_gem_object *obj)
   2978 {
   2979 	drm_i915_private_t *dev_priv = dev->dev_private;
   2980 	uint64_t val;
   2981 
   2982 	if (obj) {
   2983 		u32 size = obj->gtt_space->size;
   2984 
   2985 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
   2986 				 0xfffff000) << 32;
   2987 		val |= obj->gtt_offset & 0xfffff000;
   2988 		val |= (uint64_t)((obj->stride / 128) - 1) <<
   2989 			SANDYBRIDGE_FENCE_PITCH_SHIFT;
   2990 
   2991 		if (obj->tiling_mode == I915_TILING_Y)
   2992 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
   2993 		val |= I965_FENCE_REG_VALID;
   2994 	} else
   2995 		val = 0;
   2996 
   2997 	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
   2998 	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
   2999 }
   3000 
   3001 static void i965_write_fence_reg(struct drm_device *dev, int reg,
   3002 				 struct drm_i915_gem_object *obj)
   3003 {
   3004 	drm_i915_private_t *dev_priv = dev->dev_private;
   3005 	uint64_t val;
   3006 
   3007 	if (obj) {
   3008 		u32 size = obj->gtt_space->size;
   3009 
   3010 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
   3011 				 0xfffff000) << 32;
   3012 		val |= obj->gtt_offset & 0xfffff000;
   3013 		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
   3014 		if (obj->tiling_mode == I915_TILING_Y)
   3015 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
   3016 		val |= I965_FENCE_REG_VALID;
   3017 	} else
   3018 		val = 0;
   3019 
   3020 	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
   3021 	POSTING_READ(FENCE_REG_965_0 + reg * 8);
   3022 }
   3023 
   3024 static void i915_write_fence_reg(struct drm_device *dev, int reg,
   3025 				 struct drm_i915_gem_object *obj)
   3026 {
   3027 	drm_i915_private_t *dev_priv = dev->dev_private;
   3028 	u32 val;
   3029 
   3030 	if (obj) {
   3031 		u32 size = obj->gtt_space->size;
   3032 		int pitch_val;
   3033 		int tile_width;
   3034 
   3035 		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
   3036 		     (size & -size) != size ||
   3037 		     (obj->gtt_offset & (size - 1)),
   3038 		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
   3039 		     obj->gtt_offset, obj->map_and_fenceable, size);
   3040 
   3041 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
   3042 			tile_width = 128;
   3043 		else
   3044 			tile_width = 512;
   3045 
   3046 		/* Note: pitch better be a power of two tile widths */
   3047 		pitch_val = obj->stride / tile_width;
   3048 		pitch_val = ffs(pitch_val) - 1;
   3049 
   3050 		val = obj->gtt_offset;
   3051 		if (obj->tiling_mode == I915_TILING_Y)
   3052 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
   3053 		val |= I915_FENCE_SIZE_BITS(size);
   3054 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
   3055 		val |= I830_FENCE_REG_VALID;
   3056 	} else
   3057 		val = 0;
   3058 
   3059 	if (reg < 8)
   3060 		reg = FENCE_REG_830_0 + reg * 4;
   3061 	else
   3062 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
   3063 
   3064 	I915_WRITE(reg, val);
   3065 	POSTING_READ(reg);
   3066 }
   3067 
   3068 static void i830_write_fence_reg(struct drm_device *dev, int reg,
   3069 				struct drm_i915_gem_object *obj)
   3070 {
   3071 	drm_i915_private_t *dev_priv = dev->dev_private;
   3072 	uint32_t val;
   3073 
   3074 	if (obj) {
   3075 		u32 size = obj->gtt_space->size;
   3076 		uint32_t pitch_val;
   3077 
   3078 		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
   3079 		     (size & -size) != size ||
   3080 		     (obj->gtt_offset & (size - 1)),
   3081 		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
   3082 		     obj->gtt_offset, size);
   3083 
   3084 		pitch_val = obj->stride / 128;
   3085 		pitch_val = ffs(pitch_val) - 1;
   3086 
   3087 		val = obj->gtt_offset;
   3088 		if (obj->tiling_mode == I915_TILING_Y)
   3089 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
   3090 		val |= I830_FENCE_SIZE_BITS(size);
   3091 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
   3092 		val |= I830_FENCE_REG_VALID;
   3093 	} else
   3094 		val = 0;
   3095 
   3096 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
   3097 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
   3098 }
   3099 
   3100 static void i915_gem_write_fence(struct drm_device *dev, int reg,
   3101 				 struct drm_i915_gem_object *obj)
   3102 {
   3103 	switch (INTEL_INFO(dev)->gen) {
   3104 	case 7:
   3105 	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
   3106 	case 5:
   3107 	case 4: i965_write_fence_reg(dev, reg, obj); break;
   3108 	case 3: i915_write_fence_reg(dev, reg, obj); break;
   3109 	case 2: i830_write_fence_reg(dev, reg, obj); break;
   3110 	default: break;
   3111 	}
   3112 }
   3113 
   3114 static inline int fence_number(struct drm_i915_private *dev_priv,
   3115 			       struct drm_i915_fence_reg *fence)
   3116 {
   3117 	return fence - dev_priv->fence_regs;
   3118 }
   3119 
   3120 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
   3121 					 struct drm_i915_fence_reg *fence,
   3122 					 bool enable)
   3123 {
   3124 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3125 	int reg = fence_number(dev_priv, fence);
   3126 
   3127 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
   3128 
   3129 	if (enable) {
   3130 		obj->fence_reg = reg;
   3131 		fence->obj = obj;
   3132 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
   3133 	} else {
   3134 		obj->fence_reg = I915_FENCE_REG_NONE;
   3135 		fence->obj = NULL;
   3136 		list_del_init(&fence->lru_list);
   3137 	}
   3138 }
   3139 
   3140 static int
   3141 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
   3142 {
   3143 	if (obj->last_fenced_seqno) {
   3144 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
   3145 		if (ret)
   3146 			return ret;
   3147 
   3148 		obj->last_fenced_seqno = 0;
   3149 	}
   3150 
   3151 	/* Ensure that all CPU reads are completed before installing a fence
   3152 	 * and all writes before removing the fence.
   3153 	 */
   3154 	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
   3155 		mb();
   3156 
   3157 	obj->fenced_gpu_access = false;
   3158 	return 0;
   3159 }
   3160 
   3161 int
   3162 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
   3163 {
   3164 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3165 	int ret;
   3166 
   3167 	ret = i915_gem_object_flush_fence(obj);
   3168 	if (ret)
   3169 		return ret;
   3170 
   3171 	if (obj->fence_reg == I915_FENCE_REG_NONE)
   3172 		return 0;
   3173 
   3174 	i915_gem_object_update_fence(obj,
   3175 				     &dev_priv->fence_regs[obj->fence_reg],
   3176 				     false);
   3177 	i915_gem_object_fence_lost(obj);
   3178 
   3179 	return 0;
   3180 }
   3181 
   3182 static struct drm_i915_fence_reg *
   3183 i915_find_fence_reg(struct drm_device *dev)
   3184 {
   3185 	struct drm_i915_private *dev_priv = dev->dev_private;
   3186 	struct drm_i915_fence_reg *reg, *avail;
   3187 	int i;
   3188 
   3189 	/* First try to find a free reg */
   3190 	avail = NULL;
   3191 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
   3192 		reg = &dev_priv->fence_regs[i];
   3193 		if (!reg->obj)
   3194 			return reg;
   3195 
   3196 		if (!reg->pin_count)
   3197 			avail = reg;
   3198 	}
   3199 
   3200 	if (avail == NULL)
   3201 		return NULL;
   3202 
   3203 	/* None available, try to steal one or wait for a user to finish */
   3204 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
   3205 		if (reg->pin_count)
   3206 			continue;
   3207 
   3208 		return reg;
   3209 	}
   3210 
   3211 	return NULL;
   3212 }
   3213 
   3214 /**
   3215  * i915_gem_object_get_fence - set up fencing for an object
   3216  * @obj: object to map through a fence reg
   3217  *
   3218  * When mapping objects through the GTT, userspace wants to be able to write
   3219  * to them without having to worry about swizzling if the object is tiled.
   3220  * This function walks the fence regs looking for a free one for @obj,
   3221  * stealing one if it can't find any.
   3222  *
   3223  * It then sets up the reg based on the object's properties: address, pitch
   3224  * and tiling format.
   3225  *
   3226  * For an untiled surface, this removes any existing fence.
   3227  */
   3228 int
   3229 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
   3230 {
   3231 	struct drm_device *dev = obj->base.dev;
   3232 	struct drm_i915_private *dev_priv = dev->dev_private;
   3233 	bool enable = obj->tiling_mode != I915_TILING_NONE;
   3234 	struct drm_i915_fence_reg *reg;
   3235 	int ret;
   3236 
   3237 	/* Have we updated the tiling parameters upon the object and so
   3238 	 * will need to serialise the write to the associated fence register?
   3239 	 */
   3240 	if (obj->fence_dirty) {
   3241 		ret = i915_gem_object_flush_fence(obj);
   3242 		if (ret)
   3243 			return ret;
   3244 	}
   3245 
   3246 	/* Just update our place in the LRU if our fence is getting reused. */
   3247 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
   3248 		reg = &dev_priv->fence_regs[obj->fence_reg];
   3249 		if (!obj->fence_dirty) {
   3250 			list_move_tail(&reg->lru_list,
   3251 				       &dev_priv->mm.fence_list);
   3252 			return 0;
   3253 		}
   3254 	} else if (enable) {
   3255 		reg = i915_find_fence_reg(dev);
   3256 		if (reg == NULL)
   3257 			return -EDEADLK;
   3258 
   3259 		if (reg->obj) {
   3260 			struct drm_i915_gem_object *old = reg->obj;
   3261 
   3262 			ret = i915_gem_object_flush_fence(old);
   3263 			if (ret)
   3264 				return ret;
   3265 
   3266 			i915_gem_object_fence_lost(old);
   3267 		}
   3268 	} else
   3269 		return 0;
   3270 
   3271 	i915_gem_object_update_fence(obj, reg, enable);
   3272 	obj->fence_dirty = false;
   3273 
   3274 	return 0;
   3275 }
   3276 
   3277 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
   3278 				     struct drm_mm_node *gtt_space,
   3279 				     unsigned long cache_level)
   3280 {
   3281 	struct drm_mm_node *other;
   3282 
   3283 	/* On non-LLC machines we have to be careful when putting differing
   3284 	 * types of snoopable memory together to avoid the prefetcher
   3285 	 * crossing memory domains and dieing.
   3286 	 */
   3287 	if (HAS_LLC(dev))
   3288 		return true;
   3289 
   3290 	if (gtt_space == NULL)
   3291 		return true;
   3292 
   3293 	if (list_empty(&gtt_space->node_list))
   3294 		return true;
   3295 
   3296 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
   3297 	if (other->allocated && !other->hole_follows && other->color != cache_level)
   3298 		return false;
   3299 
   3300 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
   3301 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
   3302 		return false;
   3303 
   3304 	return true;
   3305 }
   3306 
   3307 static void i915_gem_verify_gtt(struct drm_device *dev)
   3308 {
   3309 #if WATCH_GTT
   3310 	struct drm_i915_private *dev_priv = dev->dev_private;
   3311 	struct drm_i915_gem_object *obj;
   3312 	int err = 0;
   3313 
   3314 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
   3315 		if (obj->gtt_space == NULL) {
   3316 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
   3317 			err++;
   3318 			continue;
   3319 		}
   3320 
   3321 		if (obj->cache_level != obj->gtt_space->color) {
   3322 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
   3323 			       obj->gtt_space->start,
   3324 			       obj->gtt_space->start + obj->gtt_space->size,
   3325 			       obj->cache_level,
   3326 			       obj->gtt_space->color);
   3327 			err++;
   3328 			continue;
   3329 		}
   3330 
   3331 		if (!i915_gem_valid_gtt_space(dev,
   3332 					      obj->gtt_space,
   3333 					      obj->cache_level)) {
   3334 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
   3335 			       obj->gtt_space->start,
   3336 			       obj->gtt_space->start + obj->gtt_space->size,
   3337 			       obj->cache_level);
   3338 			err++;
   3339 			continue;
   3340 		}
   3341 	}
   3342 
   3343 	WARN_ON(err);
   3344 #endif
   3345 }
   3346 
   3347 /**
   3348  * Finds free space in the GTT aperture and binds the object there.
   3349  */
   3350 static int
   3351 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
   3352 			    unsigned alignment,
   3353 			    bool map_and_fenceable,
   3354 			    bool nonblocking)
   3355 {
   3356 	struct drm_device *dev = obj->base.dev;
   3357 	drm_i915_private_t *dev_priv = dev->dev_private;
   3358 	struct drm_mm_node *node;
   3359 	u32 size, fence_size, fence_alignment, unfenced_alignment;
   3360 	bool mappable, fenceable;
   3361 	int ret;
   3362 
   3363 	if (obj->madv != I915_MADV_WILLNEED) {
   3364 		DRM_ERROR("Attempting to bind a purgeable object\n");
   3365 		return -EINVAL;
   3366 	}
   3367 
   3368 	fence_size = i915_gem_get_gtt_size(dev,
   3369 					   obj->base.size,
   3370 					   obj->tiling_mode);
   3371 	fence_alignment = i915_gem_get_gtt_alignment(dev,
   3372 						     obj->base.size,
   3373 						     obj->tiling_mode);
   3374 	unfenced_alignment =
   3375 		i915_gem_get_unfenced_gtt_alignment(dev,
   3376 						    obj->base.size,
   3377 						    obj->tiling_mode);
   3378 
   3379 	if (alignment == 0)
   3380 		alignment = map_and_fenceable ? fence_alignment :
   3381 						unfenced_alignment;
   3382 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
   3383 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
   3384 		return -EINVAL;
   3385 	}
   3386 
   3387 	size = map_and_fenceable ? fence_size : obj->base.size;
   3388 
   3389 	/* If the object is bigger than the entire aperture, reject it early
   3390 	 * before evicting everything in a vain attempt to find space.
   3391 	 */
   3392 	if (obj->base.size >
   3393 	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
   3394 		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
   3395 		return -E2BIG;
   3396 	}
   3397 
   3398 	ret = i915_gem_object_get_pages(obj);
   3399 	if (ret)
   3400 		return ret;
   3401 
   3402 	i915_gem_object_pin_pages(obj);
   3403 
   3404 	node = kzalloc(sizeof(*node), GFP_KERNEL);
   3405 	if (node == NULL) {
   3406 		i915_gem_object_unpin_pages(obj);
   3407 		return -ENOMEM;
   3408 	}
   3409 
   3410  search_free:
   3411 	if (map_and_fenceable)
   3412 		ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
   3413 							  size, alignment, obj->cache_level,
   3414 							  0, dev_priv->mm.gtt_mappable_end);
   3415 	else
   3416 		ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
   3417 						 size, alignment, obj->cache_level);
   3418 	if (ret) {
   3419 		ret = i915_gem_evict_something(dev, size, alignment,
   3420 					       obj->cache_level,
   3421 					       map_and_fenceable,
   3422 					       nonblocking);
   3423 		if (ret == 0)
   3424 			goto search_free;
   3425 
   3426 		i915_gem_object_unpin_pages(obj);
   3427 		kfree(node);
   3428 		return ret;
   3429 	}
   3430 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
   3431 		i915_gem_object_unpin_pages(obj);
   3432 		drm_mm_put_block(node);
   3433 		return -EINVAL;
   3434 	}
   3435 
   3436 	ret = i915_gem_gtt_prepare_object(obj);
   3437 	if (ret) {
   3438 		i915_gem_object_unpin_pages(obj);
   3439 		drm_mm_put_block(node);
   3440 		return ret;
   3441 	}
   3442 
   3443 	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
   3444 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
   3445 
   3446 	obj->gtt_space = node;
   3447 	obj->gtt_offset = node->start;
   3448 
   3449 	fenceable =
   3450 		node->size == fence_size &&
   3451 		(node->start & (fence_alignment - 1)) == 0;
   3452 
   3453 	mappable =
   3454 		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
   3455 
   3456 	obj->map_and_fenceable = mappable && fenceable;
   3457 
   3458 	i915_gem_object_unpin_pages(obj);
   3459 	trace_i915_gem_object_bind(obj, map_and_fenceable);
   3460 	i915_gem_verify_gtt(dev);
   3461 	return 0;
   3462 }
   3463 
   3464 void
   3465 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
   3466 {
   3467 	/* If we don't have a page list set up, then we're not pinned
   3468 	 * to GPU, and we can ignore the cache flush because it'll happen
   3469 	 * again at bind time.
   3470 	 */
   3471 	if (obj->pages == NULL)
   3472 		return;
   3473 
   3474 	/* If the GPU is snooping the contents of the CPU cache,
   3475 	 * we do not need to manually clear the CPU cache lines.  However,
   3476 	 * the caches are only snooped when the render cache is
   3477 	 * flushed/invalidated.  As we always have to emit invalidations
   3478 	 * and flushes when moving into and out of the RENDER domain, correct
   3479 	 * snooping behaviour occurs naturally as the result of our domain
   3480 	 * tracking.
   3481 	 */
   3482 	if (obj->cache_level != I915_CACHE_NONE)
   3483 		return;
   3484 
   3485 	trace_i915_gem_object_clflush(obj);
   3486 
   3487 #ifdef __NetBSD__
   3488 	drm_clflush_pglist(&obj->igo_pageq);
   3489 #else
   3490 	drm_clflush_sg(obj->pages);
   3491 #endif
   3492 }
   3493 
   3494 /** Flushes the GTT write domain for the object if it's dirty. */
   3495 static void
   3496 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
   3497 {
   3498 	uint32_t old_write_domain;
   3499 
   3500 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
   3501 		return;
   3502 
   3503 	/* No actual flushing is required for the GTT write domain.  Writes
   3504 	 * to it immediately go to main memory as far as we know, so there's
   3505 	 * no chipset flush.  It also doesn't land in render cache.
   3506 	 *
   3507 	 * However, we do have to enforce the order so that all writes through
   3508 	 * the GTT land before any writes to the device, such as updates to
   3509 	 * the GATT itself.
   3510 	 */
   3511 	wmb();
   3512 
   3513 	old_write_domain = obj->base.write_domain;
   3514 	obj->base.write_domain = 0;
   3515 
   3516 	trace_i915_gem_object_change_domain(obj,
   3517 					    obj->base.read_domains,
   3518 					    old_write_domain);
   3519 }
   3520 
   3521 /** Flushes the CPU write domain for the object if it's dirty. */
   3522 static void
   3523 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
   3524 {
   3525 	uint32_t old_write_domain;
   3526 
   3527 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
   3528 		return;
   3529 
   3530 	i915_gem_clflush_object(obj);
   3531 	i915_gem_chipset_flush(obj->base.dev);
   3532 	old_write_domain = obj->base.write_domain;
   3533 	obj->base.write_domain = 0;
   3534 
   3535 	trace_i915_gem_object_change_domain(obj,
   3536 					    obj->base.read_domains,
   3537 					    old_write_domain);
   3538 }
   3539 
   3540 /**
   3541  * Moves a single object to the GTT read, and possibly write domain.
   3542  *
   3543  * This function returns when the move is complete, including waiting on
   3544  * flushes to occur.
   3545  */
   3546 int
   3547 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
   3548 {
   3549 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
   3550 	uint32_t old_write_domain, old_read_domains;
   3551 	int ret;
   3552 
   3553 	/* Not valid to be called on unbound objects. */
   3554 	if (obj->gtt_space == NULL)
   3555 		return -EINVAL;
   3556 
   3557 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
   3558 		return 0;
   3559 
   3560 	ret = i915_gem_object_wait_rendering(obj, !write);
   3561 	if (ret)
   3562 		return ret;
   3563 
   3564 	i915_gem_object_flush_cpu_write_domain(obj);
   3565 
   3566 	old_write_domain = obj->base.write_domain;
   3567 	old_read_domains = obj->base.read_domains;
   3568 
   3569 	/* It should now be out of any other write domains, and we can update
   3570 	 * the domain values for our changes.
   3571 	 */
   3572 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
   3573 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   3574 	if (write) {
   3575 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
   3576 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
   3577 		obj->dirty = 1;
   3578 	}
   3579 
   3580 	trace_i915_gem_object_change_domain(obj,
   3581 					    old_read_domains,
   3582 					    old_write_domain);
   3583 
   3584 	/* And bump the LRU for this access */
   3585 	if (i915_gem_object_is_inactive(obj))
   3586 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
   3587 
   3588 	return 0;
   3589 }
   3590 
   3591 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
   3592 				    enum i915_cache_level cache_level)
   3593 {
   3594 	struct drm_device *dev = obj->base.dev;
   3595 	drm_i915_private_t *dev_priv = dev->dev_private;
   3596 	int ret;
   3597 
   3598 	if (obj->cache_level == cache_level)
   3599 		return 0;
   3600 
   3601 	if (obj->pin_count) {
   3602 		DRM_DEBUG("can not change the cache level of pinned objects\n");
   3603 		return -EBUSY;
   3604 	}
   3605 
   3606 	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
   3607 		ret = i915_gem_object_unbind(obj);
   3608 		if (ret)
   3609 			return ret;
   3610 	}
   3611 
   3612 	if (obj->gtt_space) {
   3613 		ret = i915_gem_object_finish_gpu(obj);
   3614 		if (ret)
   3615 			return ret;
   3616 
   3617 		i915_gem_object_finish_gtt(obj);
   3618 
   3619 		/* Before SandyBridge, you could not use tiling or fence
   3620 		 * registers with snooped memory, so relinquish any fences
   3621 		 * currently pointing to our region in the aperture.
   3622 		 */
   3623 		if (INTEL_INFO(dev)->gen < 6) {
   3624 			ret = i915_gem_object_put_fence(obj);
   3625 			if (ret)
   3626 				return ret;
   3627 		}
   3628 
   3629 		if (obj->has_global_gtt_mapping)
   3630 			i915_gem_gtt_bind_object(obj, cache_level);
   3631 		if (obj->has_aliasing_ppgtt_mapping)
   3632 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
   3633 					       obj, cache_level);
   3634 
   3635 		obj->gtt_space->color = cache_level;
   3636 	}
   3637 
   3638 	if (cache_level == I915_CACHE_NONE) {
   3639 		u32 old_read_domains, old_write_domain;
   3640 
   3641 		/* If we're coming from LLC cached, then we haven't
   3642 		 * actually been tracking whether the data is in the
   3643 		 * CPU cache or not, since we only allow one bit set
   3644 		 * in obj->write_domain and have been skipping the clflushes.
   3645 		 * Just set it to the CPU cache for now.
   3646 		 */
   3647 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
   3648 		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
   3649 
   3650 		old_read_domains = obj->base.read_domains;
   3651 		old_write_domain = obj->base.write_domain;
   3652 
   3653 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   3654 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   3655 
   3656 		trace_i915_gem_object_change_domain(obj,
   3657 						    old_read_domains,
   3658 						    old_write_domain);
   3659 	}
   3660 
   3661 	obj->cache_level = cache_level;
   3662 	i915_gem_verify_gtt(dev);
   3663 	return 0;
   3664 }
   3665 
   3666 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
   3667 			       struct drm_file *file)
   3668 {
   3669 	struct drm_i915_gem_caching *args = data;
   3670 	struct drm_i915_gem_object *obj;
   3671 	int ret;
   3672 
   3673 	ret = i915_mutex_lock_interruptible(dev);
   3674 	if (ret)
   3675 		return ret;
   3676 
   3677 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   3678 	if (&obj->base == NULL) {
   3679 		ret = -ENOENT;
   3680 		goto unlock;
   3681 	}
   3682 
   3683 	args->caching = obj->cache_level != I915_CACHE_NONE;
   3684 
   3685 	drm_gem_object_unreference(&obj->base);
   3686 unlock:
   3687 	mutex_unlock(&dev->struct_mutex);
   3688 	return ret;
   3689 }
   3690 
   3691 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
   3692 			       struct drm_file *file)
   3693 {
   3694 	struct drm_i915_gem_caching *args = data;
   3695 	struct drm_i915_gem_object *obj;
   3696 	enum i915_cache_level level;
   3697 	int ret;
   3698 
   3699 	switch (args->caching) {
   3700 	case I915_CACHING_NONE:
   3701 		level = I915_CACHE_NONE;
   3702 		break;
   3703 	case I915_CACHING_CACHED:
   3704 		level = I915_CACHE_LLC;
   3705 		break;
   3706 	default:
   3707 		return -EINVAL;
   3708 	}
   3709 
   3710 	ret = i915_mutex_lock_interruptible(dev);
   3711 	if (ret)
   3712 		return ret;
   3713 
   3714 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   3715 	if (&obj->base == NULL) {
   3716 		ret = -ENOENT;
   3717 		goto unlock;
   3718 	}
   3719 
   3720 	ret = i915_gem_object_set_cache_level(obj, level);
   3721 
   3722 	drm_gem_object_unreference(&obj->base);
   3723 unlock:
   3724 	mutex_unlock(&dev->struct_mutex);
   3725 	return ret;
   3726 }
   3727 
   3728 /*
   3729  * Prepare buffer for display plane (scanout, cursors, etc).
   3730  * Can be called from an uninterruptible phase (modesetting) and allows
   3731  * any flushes to be pipelined (for pageflips).
   3732  */
   3733 int
   3734 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
   3735 				     u32 alignment,
   3736 				     struct intel_ring_buffer *pipelined)
   3737 {
   3738 	u32 old_read_domains, old_write_domain;
   3739 	int ret;
   3740 
   3741 	if (pipelined != obj->ring) {
   3742 		ret = i915_gem_object_sync(obj, pipelined);
   3743 		if (ret)
   3744 			return ret;
   3745 	}
   3746 
   3747 	/* The display engine is not coherent with the LLC cache on gen6.  As
   3748 	 * a result, we make sure that the pinning that is about to occur is
   3749 	 * done with uncached PTEs. This is lowest common denominator for all
   3750 	 * chipsets.
   3751 	 *
   3752 	 * However for gen6+, we could do better by using the GFDT bit instead
   3753 	 * of uncaching, which would allow us to flush all the LLC-cached data
   3754 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
   3755 	 */
   3756 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
   3757 	if (ret)
   3758 		return ret;
   3759 
   3760 	/* As the user may map the buffer once pinned in the display plane
   3761 	 * (e.g. libkms for the bootup splash), we have to ensure that we
   3762 	 * always use map_and_fenceable for all scanout buffers.
   3763 	 */
   3764 	ret = i915_gem_object_pin(obj, alignment, true, false);
   3765 	if (ret)
   3766 		return ret;
   3767 
   3768 	i915_gem_object_flush_cpu_write_domain(obj);
   3769 
   3770 	old_write_domain = obj->base.write_domain;
   3771 	old_read_domains = obj->base.read_domains;
   3772 
   3773 	/* It should now be out of any other write domains, and we can update
   3774 	 * the domain values for our changes.
   3775 	 */
   3776 	obj->base.write_domain = 0;
   3777 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   3778 
   3779 	trace_i915_gem_object_change_domain(obj,
   3780 					    old_read_domains,
   3781 					    old_write_domain);
   3782 
   3783 	return 0;
   3784 }
   3785 
   3786 int
   3787 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
   3788 {
   3789 	int ret;
   3790 
   3791 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
   3792 		return 0;
   3793 
   3794 	ret = i915_gem_object_wait_rendering(obj, false);
   3795 	if (ret)
   3796 		return ret;
   3797 
   3798 	/* Ensure that we invalidate the GPU's caches and TLBs. */
   3799 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
   3800 	return 0;
   3801 }
   3802 
   3803 /**
   3804  * Moves a single object to the CPU read, and possibly write domain.
   3805  *
   3806  * This function returns when the move is complete, including waiting on
   3807  * flushes to occur.
   3808  */
   3809 int
   3810 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
   3811 {
   3812 	uint32_t old_write_domain, old_read_domains;
   3813 	int ret;
   3814 
   3815 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
   3816 		return 0;
   3817 
   3818 	ret = i915_gem_object_wait_rendering(obj, !write);
   3819 	if (ret)
   3820 		return ret;
   3821 
   3822 	i915_gem_object_flush_gtt_write_domain(obj);
   3823 
   3824 	old_write_domain = obj->base.write_domain;
   3825 	old_read_domains = obj->base.read_domains;
   3826 
   3827 	/* Flush the CPU cache if it's still invalid. */
   3828 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
   3829 		i915_gem_clflush_object(obj);
   3830 
   3831 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
   3832 	}
   3833 
   3834 	/* It should now be out of any other write domains, and we can update
   3835 	 * the domain values for our changes.
   3836 	 */
   3837 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
   3838 
   3839 	/* If we're writing through the CPU, then the GPU read domains will
   3840 	 * need to be invalidated at next use.
   3841 	 */
   3842 	if (write) {
   3843 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   3844 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   3845 	}
   3846 
   3847 	trace_i915_gem_object_change_domain(obj,
   3848 					    old_read_domains,
   3849 					    old_write_domain);
   3850 
   3851 	return 0;
   3852 }
   3853 
   3854 /* Throttle our rendering by waiting until the ring has completed our requests
   3855  * emitted over 20 msec ago.
   3856  *
   3857  * Note that if we were to use the current jiffies each time around the loop,
   3858  * we wouldn't escape the function with any frames outstanding if the time to
   3859  * render a frame was over 20ms.
   3860  *
   3861  * This should get us reasonable parallelism between CPU and GPU but also
   3862  * relatively low latency when blocking on a particular request to finish.
   3863  */
   3864 static int
   3865 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
   3866 {
   3867 	struct drm_i915_private *dev_priv = dev->dev_private;
   3868 	struct drm_i915_file_private *file_priv = file->driver_priv;
   3869 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
   3870 	struct drm_i915_gem_request *request;
   3871 	struct intel_ring_buffer *ring = NULL;
   3872 	u32 seqno = 0;
   3873 	int ret;
   3874 
   3875 	if (atomic_read(&dev_priv->mm.wedged))
   3876 		return -EIO;
   3877 
   3878 	spin_lock(&file_priv->mm.lock);
   3879 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
   3880 		if (time_after_eq(request->emitted_jiffies, recent_enough))
   3881 			break;
   3882 
   3883 		ring = request->ring;
   3884 		seqno = request->seqno;
   3885 	}
   3886 	spin_unlock(&file_priv->mm.lock);
   3887 
   3888 	if (seqno == 0)
   3889 		return 0;
   3890 
   3891 	ret = __wait_seqno(ring, seqno, true, NULL);
   3892 	if (ret == 0)
   3893 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
   3894 
   3895 	return ret;
   3896 }
   3897 
   3898 int
   3899 i915_gem_object_pin(struct drm_i915_gem_object *obj,
   3900 		    uint32_t alignment,
   3901 		    bool map_and_fenceable,
   3902 		    bool nonblocking)
   3903 {
   3904 	int ret;
   3905 
   3906 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
   3907 		return -EBUSY;
   3908 
   3909 	if (obj->gtt_space != NULL) {
   3910 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
   3911 		    (map_and_fenceable && !obj->map_and_fenceable)) {
   3912 			WARN(obj->pin_count,
   3913 			     "bo is already pinned with incorrect alignment:"
   3914 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
   3915 			     " obj->map_and_fenceable=%d\n",
   3916 			     obj->gtt_offset, alignment,
   3917 			     map_and_fenceable,
   3918 			     obj->map_and_fenceable);
   3919 			ret = i915_gem_object_unbind(obj);
   3920 			if (ret)
   3921 				return ret;
   3922 		}
   3923 	}
   3924 
   3925 	if (obj->gtt_space == NULL) {
   3926 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3927 
   3928 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
   3929 						  map_and_fenceable,
   3930 						  nonblocking);
   3931 		if (ret)
   3932 			return ret;
   3933 
   3934 		if (!dev_priv->mm.aliasing_ppgtt)
   3935 			i915_gem_gtt_bind_object(obj, obj->cache_level);
   3936 	}
   3937 
   3938 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
   3939 		i915_gem_gtt_bind_object(obj, obj->cache_level);
   3940 
   3941 	obj->pin_count++;
   3942 	obj->pin_mappable |= map_and_fenceable;
   3943 
   3944 	return 0;
   3945 }
   3946 
   3947 void
   3948 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
   3949 {
   3950 	BUG_ON(obj->pin_count == 0);
   3951 	BUG_ON(obj->gtt_space == NULL);
   3952 
   3953 	if (--obj->pin_count == 0)
   3954 		obj->pin_mappable = false;
   3955 }
   3956 
   3957 int
   3958 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
   3959 		   struct drm_file *file)
   3960 {
   3961 	struct drm_i915_gem_pin *args = data;
   3962 	struct drm_i915_gem_object *obj;
   3963 	int ret;
   3964 
   3965 	ret = i915_mutex_lock_interruptible(dev);
   3966 	if (ret)
   3967 		return ret;
   3968 
   3969 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   3970 	if (&obj->base == NULL) {
   3971 		ret = -ENOENT;
   3972 		goto unlock;
   3973 	}
   3974 
   3975 	if (obj->madv != I915_MADV_WILLNEED) {
   3976 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
   3977 		ret = -EINVAL;
   3978 		goto out;
   3979 	}
   3980 
   3981 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
   3982 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
   3983 			  args->handle);
   3984 		ret = -EINVAL;
   3985 		goto out;
   3986 	}
   3987 
   3988 	if (obj->user_pin_count == 0) {
   3989 		ret = i915_gem_object_pin(obj, args->alignment, true, false);
   3990 		if (ret)
   3991 			goto out;
   3992 	}
   3993 
   3994 	obj->user_pin_count++;
   3995 	obj->pin_filp = file;
   3996 
   3997 	/* XXX - flush the CPU caches for pinned objects
   3998 	 * as the X server doesn't manage domains yet
   3999 	 */
   4000 	i915_gem_object_flush_cpu_write_domain(obj);
   4001 	args->offset = obj->gtt_offset;
   4002 out:
   4003 	drm_gem_object_unreference(&obj->base);
   4004 unlock:
   4005 	mutex_unlock(&dev->struct_mutex);
   4006 	return ret;
   4007 }
   4008 
   4009 int
   4010 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
   4011 		     struct drm_file *file)
   4012 {
   4013 	struct drm_i915_gem_pin *args = data;
   4014 	struct drm_i915_gem_object *obj;
   4015 	int ret;
   4016 
   4017 	ret = i915_mutex_lock_interruptible(dev);
   4018 	if (ret)
   4019 		return ret;
   4020 
   4021 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   4022 	if (&obj->base == NULL) {
   4023 		ret = -ENOENT;
   4024 		goto unlock;
   4025 	}
   4026 
   4027 	if (obj->pin_filp != file) {
   4028 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
   4029 			  args->handle);
   4030 		ret = -EINVAL;
   4031 		goto out;
   4032 	}
   4033 	obj->user_pin_count--;
   4034 	if (obj->user_pin_count == 0) {
   4035 		obj->pin_filp = NULL;
   4036 		i915_gem_object_unpin(obj);
   4037 	}
   4038 
   4039 out:
   4040 	drm_gem_object_unreference(&obj->base);
   4041 unlock:
   4042 	mutex_unlock(&dev->struct_mutex);
   4043 	return ret;
   4044 }
   4045 
   4046 int
   4047 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
   4048 		    struct drm_file *file)
   4049 {
   4050 	struct drm_i915_gem_busy *args = data;
   4051 	struct drm_i915_gem_object *obj;
   4052 	int ret;
   4053 
   4054 	ret = i915_mutex_lock_interruptible(dev);
   4055 	if (ret)
   4056 		return ret;
   4057 
   4058 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   4059 	if (&obj->base == NULL) {
   4060 		ret = -ENOENT;
   4061 		goto unlock;
   4062 	}
   4063 
   4064 	/* Count all active objects as busy, even if they are currently not used
   4065 	 * by the gpu. Users of this interface expect objects to eventually
   4066 	 * become non-busy without any further actions, therefore emit any
   4067 	 * necessary flushes here.
   4068 	 */
   4069 	ret = i915_gem_object_flush_active(obj);
   4070 
   4071 	args->busy = obj->active;
   4072 	if (obj->ring) {
   4073 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
   4074 		args->busy |= intel_ring_flag(obj->ring) << 16;
   4075 	}
   4076 
   4077 	drm_gem_object_unreference(&obj->base);
   4078 unlock:
   4079 	mutex_unlock(&dev->struct_mutex);
   4080 	return ret;
   4081 }
   4082 
   4083 int
   4084 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
   4085 			struct drm_file *file_priv)
   4086 {
   4087 	return i915_gem_ring_throttle(dev, file_priv);
   4088 }
   4089 
   4090 int
   4091 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   4092 		       struct drm_file *file_priv)
   4093 {
   4094 	struct drm_i915_gem_madvise *args = data;
   4095 	struct drm_i915_gem_object *obj;
   4096 	int ret;
   4097 
   4098 	switch (args->madv) {
   4099 	case I915_MADV_DONTNEED:
   4100 	case I915_MADV_WILLNEED:
   4101 	    break;
   4102 	default:
   4103 	    return -EINVAL;
   4104 	}
   4105 
   4106 	ret = i915_mutex_lock_interruptible(dev);
   4107 	if (ret)
   4108 		return ret;
   4109 
   4110 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
   4111 	if (&obj->base == NULL) {
   4112 		ret = -ENOENT;
   4113 		goto unlock;
   4114 	}
   4115 
   4116 	if (obj->pin_count) {
   4117 		ret = -EINVAL;
   4118 		goto out;
   4119 	}
   4120 
   4121 	if (obj->madv != __I915_MADV_PURGED)
   4122 		obj->madv = args->madv;
   4123 
   4124 	/* if the object is no longer attached, discard its backing storage */
   4125 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
   4126 		i915_gem_object_truncate(obj);
   4127 
   4128 	args->retained = obj->madv != __I915_MADV_PURGED;
   4129 
   4130 out:
   4131 	drm_gem_object_unreference(&obj->base);
   4132 unlock:
   4133 	mutex_unlock(&dev->struct_mutex);
   4134 	return ret;
   4135 }
   4136 
   4137 void i915_gem_object_init(struct drm_i915_gem_object *obj,
   4138 			  const struct drm_i915_gem_object_ops *ops)
   4139 {
   4140 	INIT_LIST_HEAD(&obj->mm_list);
   4141 	INIT_LIST_HEAD(&obj->gtt_list);
   4142 	INIT_LIST_HEAD(&obj->ring_list);
   4143 	INIT_LIST_HEAD(&obj->exec_list);
   4144 
   4145 	obj->ops = ops;
   4146 
   4147 	obj->fence_reg = I915_FENCE_REG_NONE;
   4148 	obj->madv = I915_MADV_WILLNEED;
   4149 	/* Avoid an unnecessary call to unbind on the first bind. */
   4150 	obj->map_and_fenceable = true;
   4151 
   4152 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
   4153 }
   4154 
   4155 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
   4156 	.get_pages = i915_gem_object_get_pages_gtt,
   4157 	.put_pages = i915_gem_object_put_pages_gtt,
   4158 };
   4159 
   4160 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
   4161 						  size_t size)
   4162 {
   4163 	struct drm_i915_gem_object *obj;
   4164 #ifndef __NetBSD__		/* XXX >32bit dma?  */
   4165 	struct address_space *mapping;
   4166 	u32 mask;
   4167 #endif
   4168 
   4169 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
   4170 	if (obj == NULL)
   4171 		return NULL;
   4172 
   4173 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
   4174 		kfree(obj);
   4175 		return NULL;
   4176 	}
   4177 
   4178 #ifndef __NetBSD__		/* XXX >32bit dma?  */
   4179 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
   4180 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
   4181 		/* 965gm cannot relocate objects above 4GiB. */
   4182 		mask &= ~__GFP_HIGHMEM;
   4183 		mask |= __GFP_DMA32;
   4184 	}
   4185 
   4186 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
   4187 	mapping_set_gfp_mask(mapping, mask);
   4188 #endif
   4189 
   4190 	i915_gem_object_init(obj, &i915_gem_object_ops);
   4191 
   4192 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4193 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4194 
   4195 	if (HAS_LLC(dev)) {
   4196 		/* On some devices, we can have the GPU use the LLC (the CPU
   4197 		 * cache) for about a 10% performance improvement
   4198 		 * compared to uncached.  Graphics requests other than
   4199 		 * display scanout are coherent with the CPU in
   4200 		 * accessing this cache.  This means in this mode we
   4201 		 * don't need to clflush on the CPU side, and on the
   4202 		 * GPU side we only need to flush internal caches to
   4203 		 * get data visible to the CPU.
   4204 		 *
   4205 		 * However, we maintain the display planes as UC, and so
   4206 		 * need to rebind when first used as such.
   4207 		 */
   4208 		obj->cache_level = I915_CACHE_LLC;
   4209 	} else
   4210 		obj->cache_level = I915_CACHE_NONE;
   4211 
   4212 	return obj;
   4213 }
   4214 
   4215 int i915_gem_init_object(struct drm_gem_object *obj)
   4216 {
   4217 	BUG();
   4218 
   4219 	return 0;
   4220 }
   4221 
   4222 void i915_gem_free_object(struct drm_gem_object *gem_obj)
   4223 {
   4224 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   4225 	struct drm_device *dev = obj->base.dev;
   4226 	drm_i915_private_t *dev_priv = dev->dev_private;
   4227 
   4228 	trace_i915_gem_object_destroy(obj);
   4229 
   4230 	if (obj->phys_obj)
   4231 		i915_gem_detach_phys_object(dev, obj);
   4232 
   4233 	obj->pin_count = 0;
   4234 	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
   4235 		bool was_interruptible;
   4236 
   4237 		was_interruptible = dev_priv->mm.interruptible;
   4238 		dev_priv->mm.interruptible = false;
   4239 
   4240 		WARN_ON(i915_gem_object_unbind(obj));
   4241 
   4242 		dev_priv->mm.interruptible = was_interruptible;
   4243 	}
   4244 
   4245 	obj->pages_pin_count = 0;
   4246 	i915_gem_object_put_pages(obj);
   4247 	i915_gem_object_free_mmap_offset(obj);
   4248 
   4249 	BUG_ON(obj->pages);
   4250 
   4251 #ifndef __NetBSD__		/* XXX drm prime */
   4252 	if (obj->base.import_attach)
   4253 		drm_prime_gem_destroy(&obj->base, NULL);
   4254 #endif
   4255 
   4256 	drm_gem_object_release(&obj->base);
   4257 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
   4258 
   4259 	kfree(obj->bit_17);
   4260 	kfree(obj);
   4261 }
   4262 
   4263 int
   4264 i915_gem_idle(struct drm_device *dev)
   4265 {
   4266 	drm_i915_private_t *dev_priv = dev->dev_private;
   4267 	int ret;
   4268 
   4269 	mutex_lock(&dev->struct_mutex);
   4270 
   4271 	if (dev_priv->mm.suspended) {
   4272 		mutex_unlock(&dev->struct_mutex);
   4273 		return 0;
   4274 	}
   4275 
   4276 	ret = i915_gpu_idle(dev);
   4277 	if (ret) {
   4278 		mutex_unlock(&dev->struct_mutex);
   4279 		return ret;
   4280 	}
   4281 	i915_gem_retire_requests(dev);
   4282 
   4283 	/* Under UMS, be paranoid and evict. */
   4284 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   4285 		i915_gem_evict_everything(dev);
   4286 
   4287 	i915_gem_reset_fences(dev);
   4288 
   4289 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
   4290 	 * We need to replace this with a semaphore, or something.
   4291 	 * And not confound mm.suspended!
   4292 	 */
   4293 	dev_priv->mm.suspended = 1;
   4294 	del_timer_sync(&dev_priv->hangcheck_timer);
   4295 
   4296 	i915_kernel_lost_context(dev);
   4297 	i915_gem_cleanup_ringbuffer(dev);
   4298 
   4299 	mutex_unlock(&dev->struct_mutex);
   4300 
   4301 	/* Cancel the retire work handler, which should be idle now. */
   4302 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
   4303 
   4304 	return 0;
   4305 }
   4306 
   4307 void i915_gem_l3_remap(struct drm_device *dev)
   4308 {
   4309 	drm_i915_private_t *dev_priv = dev->dev_private;
   4310 	u32 misccpctl;
   4311 	int i;
   4312 
   4313 	if (!IS_IVYBRIDGE(dev))
   4314 		return;
   4315 
   4316 	if (!dev_priv->l3_parity.remap_info)
   4317 		return;
   4318 
   4319 	misccpctl = I915_READ(GEN7_MISCCPCTL);
   4320 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
   4321 	POSTING_READ(GEN7_MISCCPCTL);
   4322 
   4323 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
   4324 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
   4325 		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
   4326 			DRM_DEBUG("0x%x was already programmed to %x\n",
   4327 				  GEN7_L3LOG_BASE + i, remap);
   4328 		if (remap && !dev_priv->l3_parity.remap_info[i/4])
   4329 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
   4330 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
   4331 	}
   4332 
   4333 	/* Make sure all the writes land before disabling dop clock gating */
   4334 	POSTING_READ(GEN7_L3LOG_BASE);
   4335 
   4336 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
   4337 }
   4338 
   4339 void i915_gem_init_swizzling(struct drm_device *dev)
   4340 {
   4341 	drm_i915_private_t *dev_priv = dev->dev_private;
   4342 
   4343 	if (INTEL_INFO(dev)->gen < 5 ||
   4344 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
   4345 		return;
   4346 
   4347 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
   4348 				 DISP_TILE_SURFACE_SWIZZLING);
   4349 
   4350 	if (IS_GEN5(dev))
   4351 		return;
   4352 
   4353 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
   4354 	if (IS_GEN6(dev))
   4355 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
   4356 	else
   4357 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
   4358 }
   4359 
   4360 static bool
   4361 intel_enable_blt(struct drm_device *dev)
   4362 {
   4363 	if (!HAS_BLT(dev))
   4364 		return false;
   4365 
   4366 	/* The blitter was dysfunctional on early prototypes */
   4367 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
   4368 		DRM_INFO("BLT not supported on this pre-production hardware;"
   4369 			 " graphics performance will be degraded.\n");
   4370 		return false;
   4371 	}
   4372 
   4373 	return true;
   4374 }
   4375 
   4376 int
   4377 i915_gem_init_hw(struct drm_device *dev)
   4378 {
   4379 	drm_i915_private_t *dev_priv = dev->dev_private;
   4380 	int ret;
   4381 
   4382 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
   4383 		return -EIO;
   4384 
   4385 	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
   4386 		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
   4387 
   4388 	i915_gem_l3_remap(dev);
   4389 
   4390 	i915_gem_init_swizzling(dev);
   4391 
   4392 	ret = intel_init_render_ring_buffer(dev);
   4393 	if (ret)
   4394 		return ret;
   4395 
   4396 	if (HAS_BSD(dev)) {
   4397 		ret = intel_init_bsd_ring_buffer(dev);
   4398 		if (ret)
   4399 			goto cleanup_render_ring;
   4400 	}
   4401 
   4402 	if (intel_enable_blt(dev)) {
   4403 		ret = intel_init_blt_ring_buffer(dev);
   4404 		if (ret)
   4405 			goto cleanup_bsd_ring;
   4406 	}
   4407 
   4408 	dev_priv->next_seqno = 1;
   4409 
   4410 	/*
   4411 	 * XXX: There was some w/a described somewhere suggesting loading
   4412 	 * contexts before PPGTT.
   4413 	 */
   4414 	i915_gem_context_init(dev);
   4415 	i915_gem_init_ppgtt(dev);
   4416 
   4417 	return 0;
   4418 
   4419 cleanup_bsd_ring:
   4420 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
   4421 cleanup_render_ring:
   4422 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
   4423 	return ret;
   4424 }
   4425 
   4426 static bool
   4427 intel_enable_ppgtt(struct drm_device *dev)
   4428 {
   4429 #ifdef __NetBSD__		/* XXX ppgtt */
   4430 	return false;
   4431 #else
   4432 	if (i915_enable_ppgtt >= 0)
   4433 		return i915_enable_ppgtt;
   4434 
   4435 #ifdef CONFIG_INTEL_IOMMU
   4436 	/* Disable ppgtt on SNB if VT-d is on. */
   4437 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
   4438 		return false;
   4439 #endif
   4440 
   4441 	return true;
   4442 #endif
   4443 }
   4444 
   4445 int i915_gem_init(struct drm_device *dev)
   4446 {
   4447 	struct drm_i915_private *dev_priv = dev->dev_private;
   4448 	unsigned long gtt_size, mappable_size;
   4449 	int ret;
   4450 
   4451 	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
   4452 	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
   4453 
   4454 	mutex_lock(&dev->struct_mutex);
   4455 	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
   4456 		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
   4457 		 * aperture accordingly when using aliasing ppgtt. */
   4458 		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
   4459 
   4460 		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
   4461 
   4462 		ret = i915_gem_init_aliasing_ppgtt(dev);
   4463 		if (ret) {
   4464 			mutex_unlock(&dev->struct_mutex);
   4465 			return ret;
   4466 		}
   4467 	} else {
   4468 		/* Let GEM Manage all of the aperture.
   4469 		 *
   4470 		 * However, leave one page at the end still bound to the scratch
   4471 		 * page.  There are a number of places where the hardware
   4472 		 * apparently prefetches past the end of the object, and we've
   4473 		 * seen multiple hangs with the GPU head pointer stuck in a
   4474 		 * batchbuffer bound at the last page of the aperture.  One page
   4475 		 * should be enough to keep any prefetching inside of the
   4476 		 * aperture.
   4477 		 */
   4478 		i915_gem_init_global_gtt(dev, 0, mappable_size,
   4479 					 gtt_size);
   4480 	}
   4481 
   4482 	ret = i915_gem_init_hw(dev);
   4483 	mutex_unlock(&dev->struct_mutex);
   4484 	if (ret) {
   4485 		i915_gem_cleanup_aliasing_ppgtt(dev);
   4486 		return ret;
   4487 	}
   4488 
   4489 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
   4490 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   4491 		dev_priv->dri1.allow_batchbuffer = 1;
   4492 	return 0;
   4493 }
   4494 
   4495 void
   4496 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
   4497 {
   4498 	drm_i915_private_t *dev_priv = dev->dev_private;
   4499 	struct intel_ring_buffer *ring;
   4500 	int i;
   4501 
   4502 	for_each_ring(ring, dev_priv, i)
   4503 		intel_cleanup_ring_buffer(ring);
   4504 }
   4505 
   4506 int
   4507 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
   4508 		       struct drm_file *file_priv)
   4509 {
   4510 	drm_i915_private_t *dev_priv = dev->dev_private;
   4511 	int ret;
   4512 
   4513 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   4514 		return 0;
   4515 
   4516 	if (atomic_read(&dev_priv->mm.wedged)) {
   4517 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
   4518 		atomic_set(&dev_priv->mm.wedged, 0);
   4519 	}
   4520 
   4521 	mutex_lock(&dev->struct_mutex);
   4522 	dev_priv->mm.suspended = 0;
   4523 
   4524 	ret = i915_gem_init_hw(dev);
   4525 	if (ret != 0) {
   4526 		mutex_unlock(&dev->struct_mutex);
   4527 		return ret;
   4528 	}
   4529 
   4530 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
   4531 	mutex_unlock(&dev->struct_mutex);
   4532 
   4533 	ret = drm_irq_install(dev);
   4534 	if (ret)
   4535 		goto cleanup_ringbuffer;
   4536 
   4537 	return 0;
   4538 
   4539 cleanup_ringbuffer:
   4540 	mutex_lock(&dev->struct_mutex);
   4541 	i915_gem_cleanup_ringbuffer(dev);
   4542 	dev_priv->mm.suspended = 1;
   4543 	mutex_unlock(&dev->struct_mutex);
   4544 
   4545 	return ret;
   4546 }
   4547 
   4548 int
   4549 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
   4550 		       struct drm_file *file_priv)
   4551 {
   4552 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   4553 		return 0;
   4554 
   4555 	drm_irq_uninstall(dev);
   4556 	return i915_gem_idle(dev);
   4557 }
   4558 
   4559 void
   4560 i915_gem_lastclose(struct drm_device *dev)
   4561 {
   4562 	int ret;
   4563 
   4564 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   4565 		return;
   4566 
   4567 	ret = i915_gem_idle(dev);
   4568 	if (ret)
   4569 		DRM_ERROR("failed to idle hardware: %d\n", ret);
   4570 }
   4571 
   4572 static void
   4573 init_ring_lists(struct intel_ring_buffer *ring)
   4574 {
   4575 	INIT_LIST_HEAD(&ring->active_list);
   4576 	INIT_LIST_HEAD(&ring->request_list);
   4577 }
   4578 
   4579 void
   4580 i915_gem_load(struct drm_device *dev)
   4581 {
   4582 	int i;
   4583 	drm_i915_private_t *dev_priv = dev->dev_private;
   4584 
   4585 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
   4586 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
   4587 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
   4588 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
   4589 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   4590 	for (i = 0; i < I915_NUM_RINGS; i++)
   4591 		init_ring_lists(&dev_priv->ring[i]);
   4592 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
   4593 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
   4594 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
   4595 			  i915_gem_retire_work_handler);
   4596 	init_completion(&dev_priv->error_completion);
   4597 
   4598 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
   4599 	if (IS_GEN3(dev)) {
   4600 		I915_WRITE(MI_ARB_STATE,
   4601 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
   4602 	}
   4603 
   4604 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
   4605 
   4606 	/* Old X drivers will take 0-2 for front, back, depth buffers */
   4607 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   4608 		dev_priv->fence_reg_start = 3;
   4609 
   4610 	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
   4611 		dev_priv->num_fence_regs = 16;
   4612 	else
   4613 		dev_priv->num_fence_regs = 8;
   4614 
   4615 	/* Initialize fence registers to zero */
   4616 	i915_gem_reset_fences(dev);
   4617 
   4618 	i915_gem_detect_bit_6_swizzle(dev);
   4619 #ifdef __NetBSD__
   4620 	DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
   4621 #else
   4622 	init_waitqueue_head(&dev_priv->pending_flip_queue);
   4623 #endif
   4624 
   4625 	dev_priv->mm.interruptible = true;
   4626 
   4627 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
   4628 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
   4629 	register_shrinker(&dev_priv->mm.inactive_shrinker);
   4630 }
   4631 
   4632 /*
   4633  * Create a physically contiguous memory object for this object
   4634  * e.g. for cursor + overlay regs
   4635  */
   4636 static int i915_gem_init_phys_object(struct drm_device *dev,
   4637 				     int id, int size, int align)
   4638 {
   4639 	drm_i915_private_t *dev_priv = dev->dev_private;
   4640 	struct drm_i915_gem_phys_object *phys_obj;
   4641 	int ret;
   4642 
   4643 	if (dev_priv->mm.phys_objs[id - 1] || !size)
   4644 		return 0;
   4645 
   4646 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
   4647 	if (!phys_obj)
   4648 		return -ENOMEM;
   4649 
   4650 	phys_obj->id = id;
   4651 
   4652 	phys_obj->handle = drm_pci_alloc(dev, size, align);
   4653 	if (!phys_obj->handle) {
   4654 		ret = -ENOMEM;
   4655 		goto kfree_obj;
   4656 	}
   4657 #ifndef __NetBSD__		/* XXX x86 wc?  */
   4658 #ifdef CONFIG_X86
   4659 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
   4660 #endif
   4661 #endif
   4662 
   4663 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
   4664 
   4665 	return 0;
   4666 kfree_obj:
   4667 	kfree(phys_obj);
   4668 	return ret;
   4669 }
   4670 
   4671 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
   4672 {
   4673 	drm_i915_private_t *dev_priv = dev->dev_private;
   4674 	struct drm_i915_gem_phys_object *phys_obj;
   4675 
   4676 	if (!dev_priv->mm.phys_objs[id - 1])
   4677 		return;
   4678 
   4679 	phys_obj = dev_priv->mm.phys_objs[id - 1];
   4680 	if (phys_obj->cur_obj) {
   4681 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
   4682 	}
   4683 
   4684 #ifndef __NetBSD__		/* XXX x86 wb?  */
   4685 #ifdef CONFIG_X86
   4686 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
   4687 #endif
   4688 #endif
   4689 	drm_pci_free(dev, phys_obj->handle);
   4690 	kfree(phys_obj);
   4691 	dev_priv->mm.phys_objs[id - 1] = NULL;
   4692 }
   4693 
   4694 void i915_gem_free_all_phys_object(struct drm_device *dev)
   4695 {
   4696 	int i;
   4697 
   4698 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
   4699 		i915_gem_free_phys_object(dev, i);
   4700 }
   4701 
   4702 void i915_gem_detach_phys_object(struct drm_device *dev,
   4703 				 struct drm_i915_gem_object *obj)
   4704 {
   4705 #ifndef __NetBSD__
   4706 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
   4707 #endif
   4708 	char *vaddr;
   4709 	int i;
   4710 	int page_count;
   4711 
   4712 	if (!obj->phys_obj)
   4713 		return;
   4714 	vaddr = obj->phys_obj->handle->vaddr;
   4715 
   4716 	page_count = obj->base.size / PAGE_SIZE;
   4717 	for (i = 0; i < page_count; i++) {
   4718 #ifdef __NetBSD__
   4719 		/* XXX Just use ubc_uiomove?  */
   4720 		struct pglist pages;
   4721 		int error;
   4722 
   4723 		TAILQ_INIT(&pages);
   4724 		error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
   4725 		    (i+1)*PAGE_SIZE, &pages);
   4726 		if (error) {
   4727 			printf("unable to map page %d of i915 gem obj: %d\n",
   4728 			    i, error);
   4729 			continue;
   4730 		}
   4731 
   4732 		KASSERT(!TAILQ_EMPTY(&pages));
   4733 		struct vm_page *const page = TAILQ_FIRST(&pages);
   4734 		TAILQ_REMOVE(&pages, page, pageq.queue);
   4735 		KASSERT(TAILQ_EMPTY(&pages));
   4736 
   4737 		char *const dst = kmap_atomic(container_of(page, struct page,
   4738 			p_vmp));
   4739 		(void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
   4740 		kunmap_atomic(dst);
   4741 
   4742 		drm_clflush_page(container_of(page, struct page, p_vmp));
   4743 		page->flags &= ~PG_CLEAN;
   4744 		/* XXX mark page accessed */
   4745 		uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
   4746 		    (i+1)*PAGE_SIZE);
   4747 #else
   4748 		struct page *page = shmem_read_mapping_page(mapping, i);
   4749 		if (!IS_ERR(page)) {
   4750 			char *dst = kmap_atomic(page);
   4751 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
   4752 			kunmap_atomic(dst);
   4753 
   4754 			drm_clflush_pages(&page, 1);
   4755 
   4756 			set_page_dirty(page);
   4757 			mark_page_accessed(page);
   4758 			page_cache_release(page);
   4759 		}
   4760 #endif
   4761 	}
   4762 	i915_gem_chipset_flush(dev);
   4763 
   4764 	obj->phys_obj->cur_obj = NULL;
   4765 	obj->phys_obj = NULL;
   4766 }
   4767 
   4768 int
   4769 i915_gem_attach_phys_object(struct drm_device *dev,
   4770 			    struct drm_i915_gem_object *obj,
   4771 			    int id,
   4772 			    int align)
   4773 {
   4774 #ifndef __NetBSD__
   4775 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
   4776 #endif
   4777 	drm_i915_private_t *dev_priv = dev->dev_private;
   4778 	int ret = 0;
   4779 	int page_count;
   4780 	int i;
   4781 
   4782 	if (id > I915_MAX_PHYS_OBJECT)
   4783 		return -EINVAL;
   4784 
   4785 	if (obj->phys_obj) {
   4786 		if (obj->phys_obj->id == id)
   4787 			return 0;
   4788 		i915_gem_detach_phys_object(dev, obj);
   4789 	}
   4790 
   4791 	/* create a new object */
   4792 	if (!dev_priv->mm.phys_objs[id - 1]) {
   4793 		ret = i915_gem_init_phys_object(dev, id,
   4794 						obj->base.size, align);
   4795 		if (ret) {
   4796 			DRM_ERROR("failed to init phys object %d size: %zu\n",
   4797 				  id, obj->base.size);
   4798 			return ret;
   4799 		}
   4800 	}
   4801 
   4802 	/* bind to the object */
   4803 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
   4804 	obj->phys_obj->cur_obj = obj;
   4805 
   4806 	page_count = obj->base.size / PAGE_SIZE;
   4807 
   4808 	for (i = 0; i < page_count; i++) {
   4809 #ifdef __NetBSD__
   4810 		char *const vaddr = obj->phys_obj->handle->vaddr;
   4811 		struct pglist pages;
   4812 		int error;
   4813 
   4814 		TAILQ_INIT(&pages);
   4815 		error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
   4816 		    (i+1)*PAGE_SIZE, &pages);
   4817 		if (error)
   4818 			/* XXX errno NetBSD->Linux */
   4819 			return -error;
   4820 
   4821 		KASSERT(!TAILQ_EMPTY(&pages));
   4822 		struct vm_page *const page = TAILQ_FIRST(&pages);
   4823 		TAILQ_REMOVE(&pages, page, pageq.queue);
   4824 		KASSERT(TAILQ_EMPTY(&pages));
   4825 
   4826 		char *const src = kmap_atomic(container_of(page, struct page,
   4827 			p_vmp));
   4828 		(void)memcpy(vaddr + (i*PAGE_SIZE), src, PAGE_SIZE);
   4829 		kunmap_atomic(src);
   4830 
   4831 		/* XXX mark page accessed */
   4832 		uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
   4833 		    (i+1)*PAGE_SIZE);
   4834 #else
   4835 		struct page *page;
   4836 		char *dst, *src;
   4837 
   4838 		page = shmem_read_mapping_page(mapping, i);
   4839 		if (IS_ERR(page))
   4840 			return PTR_ERR(page);
   4841 
   4842 		src = kmap_atomic(page);
   4843 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
   4844 		memcpy(dst, src, PAGE_SIZE);
   4845 		kunmap_atomic(src);
   4846 
   4847 		mark_page_accessed(page);
   4848 		page_cache_release(page);
   4849 #endif
   4850 	}
   4851 
   4852 	return 0;
   4853 }
   4854 
   4855 static int
   4856 i915_gem_phys_pwrite(struct drm_device *dev,
   4857 		     struct drm_i915_gem_object *obj,
   4858 		     struct drm_i915_gem_pwrite *args,
   4859 		     struct drm_file *file_priv)
   4860 {
   4861 	void *vaddr = (char *)obj->phys_obj->handle->vaddr + args->offset;
   4862 	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
   4863 
   4864 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
   4865 		unsigned long unwritten;
   4866 
   4867 		/* The physical object once assigned is fixed for the lifetime
   4868 		 * of the obj, so we can safely drop the lock and continue
   4869 		 * to access vaddr.
   4870 		 */
   4871 		mutex_unlock(&dev->struct_mutex);
   4872 		unwritten = copy_from_user(vaddr, user_data, args->size);
   4873 		mutex_lock(&dev->struct_mutex);
   4874 		if (unwritten)
   4875 			return -EFAULT;
   4876 	}
   4877 
   4878 	i915_gem_chipset_flush(dev);
   4879 	return 0;
   4880 }
   4881 
   4882 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   4883 {
   4884 	struct drm_i915_file_private *file_priv = file->driver_priv;
   4885 
   4886 	/* Clean up our request list when the client is going away, so that
   4887 	 * later retire_requests won't dereference our soon-to-be-gone
   4888 	 * file_priv.
   4889 	 */
   4890 	spin_lock(&file_priv->mm.lock);
   4891 	while (!list_empty(&file_priv->mm.request_list)) {
   4892 		struct drm_i915_gem_request *request;
   4893 
   4894 		request = list_first_entry(&file_priv->mm.request_list,
   4895 					   struct drm_i915_gem_request,
   4896 					   client_list);
   4897 		list_del(&request->client_list);
   4898 		request->file_priv = NULL;
   4899 	}
   4900 	spin_unlock(&file_priv->mm.lock);
   4901 }
   4902 
   4903 #ifndef __NetBSD__		/* XXX */
   4904 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
   4905 {
   4906 	if (!mutex_is_locked(mutex))
   4907 		return false;
   4908 
   4909 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
   4910 	return mutex->owner == task;
   4911 #else
   4912 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
   4913 	return false;
   4914 #endif
   4915 }
   4916 #endif
   4917 
   4918 static int
   4919 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
   4920 {
   4921 #ifdef __NetBSD__		/* XXX shrinkers */
   4922 	return 0;
   4923 #else
   4924 	struct drm_i915_private *dev_priv =
   4925 		container_of(shrinker,
   4926 			     struct drm_i915_private,
   4927 			     mm.inactive_shrinker);
   4928 	struct drm_device *dev = dev_priv->dev;
   4929 	struct drm_i915_gem_object *obj;
   4930 	int nr_to_scan = sc->nr_to_scan;
   4931 	bool unlock = true;
   4932 	int cnt;
   4933 
   4934 	if (!mutex_trylock(&dev->struct_mutex)) {
   4935 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
   4936 			return 0;
   4937 
   4938 		if (dev_priv->mm.shrinker_no_lock_stealing)
   4939 			return 0;
   4940 
   4941 		unlock = false;
   4942 	}
   4943 
   4944 	if (nr_to_scan) {
   4945 		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
   4946 		if (nr_to_scan > 0)
   4947 			nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
   4948 							false);
   4949 		if (nr_to_scan > 0)
   4950 			i915_gem_shrink_all(dev_priv);
   4951 	}
   4952 
   4953 	cnt = 0;
   4954 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
   4955 		if (obj->pages_pin_count == 0)
   4956 			cnt += obj->base.size >> PAGE_SHIFT;
   4957 	list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
   4958 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
   4959 			cnt += obj->base.size >> PAGE_SHIFT;
   4960 
   4961 	if (unlock)
   4962 		mutex_unlock(&dev->struct_mutex);
   4963 	return cnt;
   4964 #endif
   4965 }
   4966