i915_gem.c revision 1.1.1.3 1 /* $NetBSD: i915_gem.c,v 1.1.1.3 2018/08/27 01:34:53 riastradh Exp $ */
2
3 /*
4 * Copyright 2008-2015 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 *
25 * Authors:
26 * Eric Anholt <eric (at) anholt.net>
27 *
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: i915_gem.c,v 1.1.1.3 2018/08/27 01:34:53 riastradh Exp $");
32
33 #include <drm/drmP.h>
34 #include <drm/drm_vma_manager.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_vgpu.h"
38 #include "i915_trace.h"
39 #include "intel_drv.h"
40 #include <linux/shmem_fs.h>
41 #include <linux/slab.h>
42 #include <linux/swap.h>
43 #include <linux/pci.h>
44 #include <linux/dma-buf.h>
45
46 #define RQ_BUG_ON(expr)
47
48 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
49 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
50 static void
51 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
52 static void
53 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 /* some bookkeeping */
70 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
71 size_t size)
72 {
73 spin_lock(&dev_priv->mm.object_stat_lock);
74 dev_priv->mm.object_count++;
75 dev_priv->mm.object_memory += size;
76 spin_unlock(&dev_priv->mm.object_stat_lock);
77 }
78
79 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
81 {
82 spin_lock(&dev_priv->mm.object_stat_lock);
83 dev_priv->mm.object_count--;
84 dev_priv->mm.object_memory -= size;
85 spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87
88 static int
89 i915_gem_wait_for_error(struct i915_gpu_error *error)
90 {
91 int ret;
92
93 #define EXIT_COND (!i915_reset_in_progress(error) || \
94 i915_terminally_wedged(error))
95 if (EXIT_COND)
96 return 0;
97
98 /*
99 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
100 * userspace. If it takes that long something really bad is going on and
101 * we should simply try to bail out and fail as gracefully as possible.
102 */
103 ret = wait_event_interruptible_timeout(error->reset_queue,
104 EXIT_COND,
105 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
110 return ret;
111 }
112 #undef EXIT_COND
113
114 return 0;
115 }
116
117 int i915_mutex_lock_interruptible(struct drm_device *dev)
118 {
119 struct drm_i915_private *dev_priv = dev->dev_private;
120 int ret;
121
122 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
123 if (ret)
124 return ret;
125
126 ret = mutex_lock_interruptible(&dev->struct_mutex);
127 if (ret)
128 return ret;
129
130 WARN_ON(i915_verify_lists(dev));
131 return 0;
132 }
133
134 int
135 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
136 struct drm_file *file)
137 {
138 struct drm_i915_private *dev_priv = dev->dev_private;
139 struct drm_i915_gem_get_aperture *args = data;
140 struct i915_gtt *ggtt = &dev_priv->gtt;
141 struct i915_vma *vma;
142 size_t pinned;
143
144 pinned = 0;
145 mutex_lock(&dev->struct_mutex);
146 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
147 if (vma->pin_count)
148 pinned += vma->node.size;
149 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
150 if (vma->pin_count)
151 pinned += vma->node.size;
152 mutex_unlock(&dev->struct_mutex);
153
154 args->aper_size = dev_priv->gtt.base.total;
155 args->aper_available_size = args->aper_size - pinned;
156
157 return 0;
158 }
159
160 static int
161 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
162 {
163 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
164 char *vaddr = obj->phys_handle->vaddr;
165 struct sg_table *st;
166 struct scatterlist *sg;
167 int i;
168
169 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
170 return -EINVAL;
171
172 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
173 struct page *page;
174 char *src;
175
176 page = shmem_read_mapping_page(mapping, i);
177 if (IS_ERR(page))
178 return PTR_ERR(page);
179
180 src = kmap_atomic(page);
181 memcpy(vaddr, src, PAGE_SIZE);
182 drm_clflush_virt_range(vaddr, PAGE_SIZE);
183 kunmap_atomic(src);
184
185 page_cache_release(page);
186 vaddr += PAGE_SIZE;
187 }
188
189 i915_gem_chipset_flush(obj->base.dev);
190
191 st = kmalloc(sizeof(*st), GFP_KERNEL);
192 if (st == NULL)
193 return -ENOMEM;
194
195 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
196 kfree(st);
197 return -ENOMEM;
198 }
199
200 sg = st->sgl;
201 sg->offset = 0;
202 sg->length = obj->base.size;
203
204 sg_dma_address(sg) = obj->phys_handle->busaddr;
205 sg_dma_len(sg) = obj->base.size;
206
207 obj->pages = st;
208 return 0;
209 }
210
211 static void
212 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
213 {
214 int ret;
215
216 BUG_ON(obj->madv == __I915_MADV_PURGED);
217
218 ret = i915_gem_object_set_to_cpu_domain(obj, true);
219 if (ret) {
220 /* In the event of a disaster, abandon all caches and
221 * hope for the best.
222 */
223 WARN_ON(ret != -EIO);
224 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
225 }
226
227 if (obj->madv == I915_MADV_DONTNEED)
228 obj->dirty = 0;
229
230 if (obj->dirty) {
231 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
232 char *vaddr = obj->phys_handle->vaddr;
233 int i;
234
235 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
236 struct page *page;
237 char *dst;
238
239 page = shmem_read_mapping_page(mapping, i);
240 if (IS_ERR(page))
241 continue;
242
243 dst = kmap_atomic(page);
244 drm_clflush_virt_range(vaddr, PAGE_SIZE);
245 memcpy(dst, vaddr, PAGE_SIZE);
246 kunmap_atomic(dst);
247
248 set_page_dirty(page);
249 if (obj->madv == I915_MADV_WILLNEED)
250 mark_page_accessed(page);
251 page_cache_release(page);
252 vaddr += PAGE_SIZE;
253 }
254 obj->dirty = 0;
255 }
256
257 sg_free_table(obj->pages);
258 kfree(obj->pages);
259 }
260
261 static void
262 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
263 {
264 drm_pci_free(obj->base.dev, obj->phys_handle);
265 }
266
267 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
268 .get_pages = i915_gem_object_get_pages_phys,
269 .put_pages = i915_gem_object_put_pages_phys,
270 .release = i915_gem_object_release_phys,
271 };
272
273 static int
274 drop_pages(struct drm_i915_gem_object *obj)
275 {
276 struct i915_vma *vma, *next;
277 int ret;
278
279 drm_gem_object_reference(&obj->base);
280 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
281 if (i915_vma_unbind(vma))
282 break;
283
284 ret = i915_gem_object_put_pages(obj);
285 drm_gem_object_unreference(&obj->base);
286
287 return ret;
288 }
289
290 int
291 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
292 int align)
293 {
294 drm_dma_handle_t *phys;
295 int ret;
296
297 if (obj->phys_handle) {
298 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
299 return -EBUSY;
300
301 return 0;
302 }
303
304 if (obj->madv != I915_MADV_WILLNEED)
305 return -EFAULT;
306
307 if (obj->base.filp == NULL)
308 return -EINVAL;
309
310 ret = drop_pages(obj);
311 if (ret)
312 return ret;
313
314 /* create a new object */
315 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
316 if (!phys)
317 return -ENOMEM;
318
319 obj->phys_handle = phys;
320 obj->ops = &i915_gem_phys_ops;
321
322 return i915_gem_object_get_pages(obj);
323 }
324
325 static int
326 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
327 struct drm_i915_gem_pwrite *args,
328 struct drm_file *file_priv)
329 {
330 struct drm_device *dev = obj->base.dev;
331 void *vaddr = obj->phys_handle->vaddr + args->offset;
332 char __user *user_data = to_user_ptr(args->data_ptr);
333 int ret = 0;
334
335 /* We manually control the domain here and pretend that it
336 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
337 */
338 ret = i915_gem_object_wait_rendering(obj, false);
339 if (ret)
340 return ret;
341
342 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
343 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
344 unsigned long unwritten;
345
346 /* The physical object once assigned is fixed for the lifetime
347 * of the obj, so we can safely drop the lock and continue
348 * to access vaddr.
349 */
350 mutex_unlock(&dev->struct_mutex);
351 unwritten = copy_from_user(vaddr, user_data, args->size);
352 mutex_lock(&dev->struct_mutex);
353 if (unwritten) {
354 ret = -EFAULT;
355 goto out;
356 }
357 }
358
359 drm_clflush_virt_range(vaddr, args->size);
360 i915_gem_chipset_flush(dev);
361
362 out:
363 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
364 return ret;
365 }
366
367 void *i915_gem_object_alloc(struct drm_device *dev)
368 {
369 struct drm_i915_private *dev_priv = dev->dev_private;
370 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
371 }
372
373 void i915_gem_object_free(struct drm_i915_gem_object *obj)
374 {
375 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
376 kmem_cache_free(dev_priv->objects, obj);
377 }
378
379 static int
380 i915_gem_create(struct drm_file *file,
381 struct drm_device *dev,
382 uint64_t size,
383 uint32_t *handle_p)
384 {
385 struct drm_i915_gem_object *obj;
386 int ret;
387 u32 handle;
388
389 size = roundup(size, PAGE_SIZE);
390 if (size == 0)
391 return -EINVAL;
392
393 /* Allocate the new object */
394 obj = i915_gem_alloc_object(dev, size);
395 if (obj == NULL)
396 return -ENOMEM;
397
398 ret = drm_gem_handle_create(file, &obj->base, &handle);
399 /* drop reference from allocate - handle holds it now */
400 drm_gem_object_unreference_unlocked(&obj->base);
401 if (ret)
402 return ret;
403
404 *handle_p = handle;
405 return 0;
406 }
407
408 int
409 i915_gem_dumb_create(struct drm_file *file,
410 struct drm_device *dev,
411 struct drm_mode_create_dumb *args)
412 {
413 /* have to work out size/pitch and return them */
414 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
415 args->size = args->pitch * args->height;
416 return i915_gem_create(file, dev,
417 args->size, &args->handle);
418 }
419
420 /**
421 * Creates a new mm object and returns a handle to it.
422 */
423 int
424 i915_gem_create_ioctl(struct drm_device *dev, void *data,
425 struct drm_file *file)
426 {
427 struct drm_i915_gem_create *args = data;
428
429 return i915_gem_create(file, dev,
430 args->size, &args->handle);
431 }
432
433 static inline int
434 __copy_to_user_swizzled(char __user *cpu_vaddr,
435 const char *gpu_vaddr, int gpu_offset,
436 int length)
437 {
438 int ret, cpu_offset = 0;
439
440 while (length > 0) {
441 int cacheline_end = ALIGN(gpu_offset + 1, 64);
442 int this_length = min(cacheline_end - gpu_offset, length);
443 int swizzled_gpu_offset = gpu_offset ^ 64;
444
445 ret = __copy_to_user(cpu_vaddr + cpu_offset,
446 gpu_vaddr + swizzled_gpu_offset,
447 this_length);
448 if (ret)
449 return ret + length;
450
451 cpu_offset += this_length;
452 gpu_offset += this_length;
453 length -= this_length;
454 }
455
456 return 0;
457 }
458
459 static inline int
460 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
461 const char __user *cpu_vaddr,
462 int length)
463 {
464 int ret, cpu_offset = 0;
465
466 while (length > 0) {
467 int cacheline_end = ALIGN(gpu_offset + 1, 64);
468 int this_length = min(cacheline_end - gpu_offset, length);
469 int swizzled_gpu_offset = gpu_offset ^ 64;
470
471 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
472 cpu_vaddr + cpu_offset,
473 this_length);
474 if (ret)
475 return ret + length;
476
477 cpu_offset += this_length;
478 gpu_offset += this_length;
479 length -= this_length;
480 }
481
482 return 0;
483 }
484
485 /*
486 * Pins the specified object's pages and synchronizes the object with
487 * GPU accesses. Sets needs_clflush to non-zero if the caller should
488 * flush the object from the CPU cache.
489 */
490 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
491 int *needs_clflush)
492 {
493 int ret;
494
495 *needs_clflush = 0;
496
497 if (!obj->base.filp)
498 return -EINVAL;
499
500 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
501 /* If we're not in the cpu read domain, set ourself into the gtt
502 * read domain and manually flush cachelines (if required). This
503 * optimizes for the case when the gpu will dirty the data
504 * anyway again before the next pread happens. */
505 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
506 obj->cache_level);
507 ret = i915_gem_object_wait_rendering(obj, true);
508 if (ret)
509 return ret;
510 }
511
512 ret = i915_gem_object_get_pages(obj);
513 if (ret)
514 return ret;
515
516 i915_gem_object_pin_pages(obj);
517
518 return ret;
519 }
520
521 /* Per-page copy function for the shmem pread fastpath.
522 * Flushes invalid cachelines before reading the target if
523 * needs_clflush is set. */
524 static int
525 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
526 char __user *user_data,
527 bool page_do_bit17_swizzling, bool needs_clflush)
528 {
529 char *vaddr;
530 int ret;
531
532 if (unlikely(page_do_bit17_swizzling))
533 return -EINVAL;
534
535 vaddr = kmap_atomic(page);
536 if (needs_clflush)
537 drm_clflush_virt_range(vaddr + shmem_page_offset,
538 page_length);
539 ret = __copy_to_user_inatomic(user_data,
540 vaddr + shmem_page_offset,
541 page_length);
542 kunmap_atomic(vaddr);
543
544 return ret ? -EFAULT : 0;
545 }
546
547 static void
548 shmem_clflush_swizzled_range(char *addr, unsigned long length,
549 bool swizzled)
550 {
551 if (unlikely(swizzled)) {
552 unsigned long start = (unsigned long) addr;
553 unsigned long end = (unsigned long) addr + length;
554
555 /* For swizzling simply ensure that we always flush both
556 * channels. Lame, but simple and it works. Swizzled
557 * pwrite/pread is far from a hotpath - current userspace
558 * doesn't use it at all. */
559 start = round_down(start, 128);
560 end = round_up(end, 128);
561
562 drm_clflush_virt_range((void *)start, end - start);
563 } else {
564 drm_clflush_virt_range(addr, length);
565 }
566
567 }
568
569 /* Only difference to the fast-path function is that this can handle bit17
570 * and uses non-atomic copy and kmap functions. */
571 static int
572 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
573 char __user *user_data,
574 bool page_do_bit17_swizzling, bool needs_clflush)
575 {
576 char *vaddr;
577 int ret;
578
579 vaddr = kmap(page);
580 if (needs_clflush)
581 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
582 page_length,
583 page_do_bit17_swizzling);
584
585 if (page_do_bit17_swizzling)
586 ret = __copy_to_user_swizzled(user_data,
587 vaddr, shmem_page_offset,
588 page_length);
589 else
590 ret = __copy_to_user(user_data,
591 vaddr + shmem_page_offset,
592 page_length);
593 kunmap(page);
594
595 return ret ? - EFAULT : 0;
596 }
597
598 static int
599 i915_gem_shmem_pread(struct drm_device *dev,
600 struct drm_i915_gem_object *obj,
601 struct drm_i915_gem_pread *args,
602 struct drm_file *file)
603 {
604 char __user *user_data;
605 ssize_t remain;
606 loff_t offset;
607 int shmem_page_offset, page_length, ret = 0;
608 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
609 int prefaulted = 0;
610 int needs_clflush = 0;
611 struct sg_page_iter sg_iter;
612
613 user_data = to_user_ptr(args->data_ptr);
614 remain = args->size;
615
616 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
617
618 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
619 if (ret)
620 return ret;
621
622 offset = args->offset;
623
624 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
625 offset >> PAGE_SHIFT) {
626 struct page *page = sg_page_iter_page(&sg_iter);
627
628 if (remain <= 0)
629 break;
630
631 /* Operation in this page
632 *
633 * shmem_page_offset = offset within page in shmem file
634 * page_length = bytes to copy for this page
635 */
636 shmem_page_offset = offset_in_page(offset);
637 page_length = remain;
638 if ((shmem_page_offset + page_length) > PAGE_SIZE)
639 page_length = PAGE_SIZE - shmem_page_offset;
640
641 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
642 (page_to_phys(page) & (1 << 17)) != 0;
643
644 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
645 user_data, page_do_bit17_swizzling,
646 needs_clflush);
647 if (ret == 0)
648 goto next_page;
649
650 mutex_unlock(&dev->struct_mutex);
651
652 if (likely(!i915.prefault_disable) && !prefaulted) {
653 ret = fault_in_multipages_writeable(user_data, remain);
654 /* Userspace is tricking us, but we've already clobbered
655 * its pages with the prefault and promised to write the
656 * data up to the first fault. Hence ignore any errors
657 * and just continue. */
658 (void)ret;
659 prefaulted = 1;
660 }
661
662 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
663 user_data, page_do_bit17_swizzling,
664 needs_clflush);
665
666 mutex_lock(&dev->struct_mutex);
667
668 if (ret)
669 goto out;
670
671 next_page:
672 remain -= page_length;
673 user_data += page_length;
674 offset += page_length;
675 }
676
677 out:
678 i915_gem_object_unpin_pages(obj);
679
680 return ret;
681 }
682
683 /**
684 * Reads data from the object referenced by handle.
685 *
686 * On error, the contents of *data are undefined.
687 */
688 int
689 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
690 struct drm_file *file)
691 {
692 struct drm_i915_gem_pread *args = data;
693 struct drm_i915_gem_object *obj;
694 int ret = 0;
695
696 if (args->size == 0)
697 return 0;
698
699 if (!access_ok(VERIFY_WRITE,
700 to_user_ptr(args->data_ptr),
701 args->size))
702 return -EFAULT;
703
704 ret = i915_mutex_lock_interruptible(dev);
705 if (ret)
706 return ret;
707
708 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
709 if (&obj->base == NULL) {
710 ret = -ENOENT;
711 goto unlock;
712 }
713
714 /* Bounds check source. */
715 if (args->offset > obj->base.size ||
716 args->size > obj->base.size - args->offset) {
717 ret = -EINVAL;
718 goto out;
719 }
720
721 /* prime objects have no backing filp to GEM pread/pwrite
722 * pages from.
723 */
724 if (!obj->base.filp) {
725 ret = -EINVAL;
726 goto out;
727 }
728
729 trace_i915_gem_object_pread(obj, args->offset, args->size);
730
731 ret = i915_gem_shmem_pread(dev, obj, args, file);
732
733 out:
734 drm_gem_object_unreference(&obj->base);
735 unlock:
736 mutex_unlock(&dev->struct_mutex);
737 return ret;
738 }
739
740 /* This is the fast write path which cannot handle
741 * page faults in the source data
742 */
743
744 static inline int
745 fast_user_write(struct io_mapping *mapping,
746 loff_t page_base, int page_offset,
747 char __user *user_data,
748 int length)
749 {
750 void __iomem *vaddr_atomic;
751 void *vaddr;
752 unsigned long unwritten;
753
754 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
755 /* We can use the cpu mem copy function because this is X86. */
756 vaddr = (void __force*)vaddr_atomic + page_offset;
757 unwritten = __copy_from_user_inatomic_nocache(vaddr,
758 user_data, length);
759 io_mapping_unmap_atomic(vaddr_atomic);
760 return unwritten;
761 }
762
763 /**
764 * This is the fast pwrite path, where we copy the data directly from the
765 * user into the GTT, uncached.
766 */
767 static int
768 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
769 struct drm_i915_gem_object *obj,
770 struct drm_i915_gem_pwrite *args,
771 struct drm_file *file)
772 {
773 struct drm_i915_private *dev_priv = dev->dev_private;
774 ssize_t remain;
775 loff_t offset, page_base;
776 char __user *user_data;
777 int page_offset, page_length, ret;
778
779 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
780 if (ret)
781 goto out;
782
783 ret = i915_gem_object_set_to_gtt_domain(obj, true);
784 if (ret)
785 goto out_unpin;
786
787 ret = i915_gem_object_put_fence(obj);
788 if (ret)
789 goto out_unpin;
790
791 user_data = to_user_ptr(args->data_ptr);
792 remain = args->size;
793
794 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
795
796 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
797
798 while (remain > 0) {
799 /* Operation in this page
800 *
801 * page_base = page offset within aperture
802 * page_offset = offset within page
803 * page_length = bytes to copy for this page
804 */
805 page_base = offset & PAGE_MASK;
806 page_offset = offset_in_page(offset);
807 page_length = remain;
808 if ((page_offset + remain) > PAGE_SIZE)
809 page_length = PAGE_SIZE - page_offset;
810
811 /* If we get a fault while copying data, then (presumably) our
812 * source page isn't available. Return the error and we'll
813 * retry in the slow path.
814 */
815 if (fast_user_write(dev_priv->gtt.mappable, page_base,
816 page_offset, user_data, page_length)) {
817 ret = -EFAULT;
818 goto out_flush;
819 }
820
821 remain -= page_length;
822 user_data += page_length;
823 offset += page_length;
824 }
825
826 out_flush:
827 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
828 out_unpin:
829 i915_gem_object_ggtt_unpin(obj);
830 out:
831 return ret;
832 }
833
834 /* Per-page copy function for the shmem pwrite fastpath.
835 * Flushes invalid cachelines before writing to the target if
836 * needs_clflush_before is set and flushes out any written cachelines after
837 * writing if needs_clflush is set. */
838 static int
839 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
840 char __user *user_data,
841 bool page_do_bit17_swizzling,
842 bool needs_clflush_before,
843 bool needs_clflush_after)
844 {
845 char *vaddr;
846 int ret;
847
848 if (unlikely(page_do_bit17_swizzling))
849 return -EINVAL;
850
851 vaddr = kmap_atomic(page);
852 if (needs_clflush_before)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
856 user_data, page_length);
857 if (needs_clflush_after)
858 drm_clflush_virt_range(vaddr + shmem_page_offset,
859 page_length);
860 kunmap_atomic(vaddr);
861
862 return ret ? -EFAULT : 0;
863 }
864
865 /* Only difference to the fast-path function is that this can handle bit17
866 * and uses non-atomic copy and kmap functions. */
867 static int
868 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
869 char __user *user_data,
870 bool page_do_bit17_swizzling,
871 bool needs_clflush_before,
872 bool needs_clflush_after)
873 {
874 char *vaddr;
875 int ret;
876
877 vaddr = kmap(page);
878 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
879 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
880 page_length,
881 page_do_bit17_swizzling);
882 if (page_do_bit17_swizzling)
883 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
884 user_data,
885 page_length);
886 else
887 ret = __copy_from_user(vaddr + shmem_page_offset,
888 user_data,
889 page_length);
890 if (needs_clflush_after)
891 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
892 page_length,
893 page_do_bit17_swizzling);
894 kunmap(page);
895
896 return ret ? -EFAULT : 0;
897 }
898
899 static int
900 i915_gem_shmem_pwrite(struct drm_device *dev,
901 struct drm_i915_gem_object *obj,
902 struct drm_i915_gem_pwrite *args,
903 struct drm_file *file)
904 {
905 ssize_t remain;
906 loff_t offset;
907 char __user *user_data;
908 int shmem_page_offset, page_length, ret = 0;
909 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
910 int hit_slowpath = 0;
911 int needs_clflush_after = 0;
912 int needs_clflush_before = 0;
913 struct sg_page_iter sg_iter;
914
915 user_data = to_user_ptr(args->data_ptr);
916 remain = args->size;
917
918 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
919
920 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
921 /* If we're not in the cpu write domain, set ourself into the gtt
922 * write domain and manually flush cachelines (if required). This
923 * optimizes for the case when the gpu will use the data
924 * right away and we therefore have to clflush anyway. */
925 needs_clflush_after = cpu_write_needs_clflush(obj);
926 ret = i915_gem_object_wait_rendering(obj, false);
927 if (ret)
928 return ret;
929 }
930 /* Same trick applies to invalidate partially written cachelines read
931 * before writing. */
932 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
933 needs_clflush_before =
934 !cpu_cache_is_coherent(dev, obj->cache_level);
935
936 ret = i915_gem_object_get_pages(obj);
937 if (ret)
938 return ret;
939
940 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
941
942 i915_gem_object_pin_pages(obj);
943
944 offset = args->offset;
945 obj->dirty = 1;
946
947 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
948 offset >> PAGE_SHIFT) {
949 struct page *page = sg_page_iter_page(&sg_iter);
950 int partial_cacheline_write;
951
952 if (remain <= 0)
953 break;
954
955 /* Operation in this page
956 *
957 * shmem_page_offset = offset within page in shmem file
958 * page_length = bytes to copy for this page
959 */
960 shmem_page_offset = offset_in_page(offset);
961
962 page_length = remain;
963 if ((shmem_page_offset + page_length) > PAGE_SIZE)
964 page_length = PAGE_SIZE - shmem_page_offset;
965
966 /* If we don't overwrite a cacheline completely we need to be
967 * careful to have up-to-date data by first clflushing. Don't
968 * overcomplicate things and flush the entire patch. */
969 partial_cacheline_write = needs_clflush_before &&
970 ((shmem_page_offset | page_length)
971 & (boot_cpu_data.x86_clflush_size - 1));
972
973 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
974 (page_to_phys(page) & (1 << 17)) != 0;
975
976 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 partial_cacheline_write,
979 needs_clflush_after);
980 if (ret == 0)
981 goto next_page;
982
983 hit_slowpath = 1;
984 mutex_unlock(&dev->struct_mutex);
985 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
986 user_data, page_do_bit17_swizzling,
987 partial_cacheline_write,
988 needs_clflush_after);
989
990 mutex_lock(&dev->struct_mutex);
991
992 if (ret)
993 goto out;
994
995 next_page:
996 remain -= page_length;
997 user_data += page_length;
998 offset += page_length;
999 }
1000
1001 out:
1002 i915_gem_object_unpin_pages(obj);
1003
1004 if (hit_slowpath) {
1005 /*
1006 * Fixup: Flush cpu caches in case we didn't flush the dirty
1007 * cachelines in-line while writing and the object moved
1008 * out of the cpu write domain while we've dropped the lock.
1009 */
1010 if (!needs_clflush_after &&
1011 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1012 if (i915_gem_clflush_object(obj, obj->pin_display))
1013 needs_clflush_after = true;
1014 }
1015 }
1016
1017 if (needs_clflush_after)
1018 i915_gem_chipset_flush(dev);
1019 else
1020 obj->cache_dirty = true;
1021
1022 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1023 return ret;
1024 }
1025
1026 /**
1027 * Writes data to the object referenced by handle.
1028 *
1029 * On error, the contents of the buffer that were to be modified are undefined.
1030 */
1031 int
1032 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1033 struct drm_file *file)
1034 {
1035 struct drm_i915_private *dev_priv = dev->dev_private;
1036 struct drm_i915_gem_pwrite *args = data;
1037 struct drm_i915_gem_object *obj;
1038 int ret;
1039
1040 if (args->size == 0)
1041 return 0;
1042
1043 if (!access_ok(VERIFY_READ,
1044 to_user_ptr(args->data_ptr),
1045 args->size))
1046 return -EFAULT;
1047
1048 if (likely(!i915.prefault_disable)) {
1049 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1050 args->size);
1051 if (ret)
1052 return -EFAULT;
1053 }
1054
1055 intel_runtime_pm_get(dev_priv);
1056
1057 ret = i915_mutex_lock_interruptible(dev);
1058 if (ret)
1059 goto put_rpm;
1060
1061 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1062 if (&obj->base == NULL) {
1063 ret = -ENOENT;
1064 goto unlock;
1065 }
1066
1067 /* Bounds check destination. */
1068 if (args->offset > obj->base.size ||
1069 args->size > obj->base.size - args->offset) {
1070 ret = -EINVAL;
1071 goto out;
1072 }
1073
1074 /* prime objects have no backing filp to GEM pread/pwrite
1075 * pages from.
1076 */
1077 if (!obj->base.filp) {
1078 ret = -EINVAL;
1079 goto out;
1080 }
1081
1082 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1083
1084 ret = -EFAULT;
1085 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1086 * it would end up going through the fenced access, and we'll get
1087 * different detiling behavior between reading and writing.
1088 * pread/pwrite currently are reading and writing from the CPU
1089 * perspective, requiring manual detiling by the client.
1090 */
1091 if (obj->tiling_mode == I915_TILING_NONE &&
1092 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1093 cpu_write_needs_clflush(obj)) {
1094 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1095 /* Note that the gtt paths might fail with non-page-backed user
1096 * pointers (e.g. gtt mappings when moving data between
1097 * textures). Fallback to the shmem path in that case. */
1098 }
1099
1100 if (ret == -EFAULT || ret == -ENOSPC) {
1101 if (obj->phys_handle)
1102 ret = i915_gem_phys_pwrite(obj, args, file);
1103 else
1104 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1105 }
1106
1107 out:
1108 drm_gem_object_unreference(&obj->base);
1109 unlock:
1110 mutex_unlock(&dev->struct_mutex);
1111 put_rpm:
1112 intel_runtime_pm_put(dev_priv);
1113
1114 return ret;
1115 }
1116
1117 int
1118 i915_gem_check_wedge(struct i915_gpu_error *error,
1119 bool interruptible)
1120 {
1121 if (i915_reset_in_progress(error)) {
1122 /* Non-interruptible callers can't handle -EAGAIN, hence return
1123 * -EIO unconditionally for these. */
1124 if (!interruptible)
1125 return -EIO;
1126
1127 /* Recovery complete, but the reset failed ... */
1128 if (i915_terminally_wedged(error))
1129 return -EIO;
1130
1131 /*
1132 * Check if GPU Reset is in progress - we need intel_ring_begin
1133 * to work properly to reinit the hw state while the gpu is
1134 * still marked as reset-in-progress. Handle this with a flag.
1135 */
1136 if (!error->reload_in_reset)
1137 return -EAGAIN;
1138 }
1139
1140 return 0;
1141 }
1142
1143 static void fake_irq(unsigned long data)
1144 {
1145 wake_up_process((struct task_struct *)data);
1146 }
1147
1148 static bool missed_irq(struct drm_i915_private *dev_priv,
1149 struct intel_engine_cs *ring)
1150 {
1151 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1152 }
1153
1154 static unsigned long local_clock_us(unsigned *cpu)
1155 {
1156 unsigned long t;
1157
1158 /* Cheaply and approximately convert from nanoseconds to microseconds.
1159 * The result and subsequent calculations are also defined in the same
1160 * approximate microseconds units. The principal source of timing
1161 * error here is from the simple truncation.
1162 *
1163 * Note that local_clock() is only defined wrt to the current CPU;
1164 * the comparisons are no longer valid if we switch CPUs. Instead of
1165 * blocking preemption for the entire busywait, we can detect the CPU
1166 * switch and use that as indicator of system load and a reason to
1167 * stop busywaiting, see busywait_stop().
1168 */
1169 *cpu = get_cpu();
1170 t = local_clock() >> 10;
1171 put_cpu();
1172
1173 return t;
1174 }
1175
1176 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1177 {
1178 unsigned this_cpu;
1179
1180 if (time_after(local_clock_us(&this_cpu), timeout))
1181 return true;
1182
1183 return this_cpu != cpu;
1184 }
1185
1186 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1187 {
1188 unsigned long timeout;
1189 unsigned cpu;
1190
1191 /* When waiting for high frequency requests, e.g. during synchronous
1192 * rendering split between the CPU and GPU, the finite amount of time
1193 * required to set up the irq and wait upon it limits the response
1194 * rate. By busywaiting on the request completion for a short while we
1195 * can service the high frequency waits as quick as possible. However,
1196 * if it is a slow request, we want to sleep as quickly as possible.
1197 * The tradeoff between waiting and sleeping is roughly the time it
1198 * takes to sleep on a request, on the order of a microsecond.
1199 */
1200
1201 if (req->ring->irq_refcount)
1202 return -EBUSY;
1203
1204 /* Only spin if we know the GPU is processing this request */
1205 if (!i915_gem_request_started(req, true))
1206 return -EAGAIN;
1207
1208 timeout = local_clock_us(&cpu) + 5;
1209 while (!need_resched()) {
1210 if (i915_gem_request_completed(req, true))
1211 return 0;
1212
1213 if (signal_pending_state(state, current))
1214 break;
1215
1216 if (busywait_stop(timeout, cpu))
1217 break;
1218
1219 cpu_relax_lowlatency();
1220 }
1221
1222 if (i915_gem_request_completed(req, false))
1223 return 0;
1224
1225 return -EAGAIN;
1226 }
1227
1228 /**
1229 * __i915_wait_request - wait until execution of request has finished
1230 * @req: duh!
1231 * @reset_counter: reset sequence associated with the given request
1232 * @interruptible: do an interruptible wait (normally yes)
1233 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1234 *
1235 * Note: It is of utmost importance that the passed in seqno and reset_counter
1236 * values have been read by the caller in an smp safe manner. Where read-side
1237 * locks are involved, it is sufficient to read the reset_counter before
1238 * unlocking the lock that protects the seqno. For lockless tricks, the
1239 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1240 * inserted.
1241 *
1242 * Returns 0 if the request was found within the alloted time. Else returns the
1243 * errno with remaining time filled in timeout argument.
1244 */
1245 int __i915_wait_request(struct drm_i915_gem_request *req,
1246 unsigned reset_counter,
1247 bool interruptible,
1248 s64 *timeout,
1249 struct intel_rps_client *rps)
1250 {
1251 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1252 struct drm_device *dev = ring->dev;
1253 struct drm_i915_private *dev_priv = dev->dev_private;
1254 const bool irq_test_in_progress =
1255 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1256 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1257 DEFINE_WAIT(wait);
1258 unsigned long timeout_expire;
1259 s64 before, now;
1260 int ret;
1261
1262 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1263
1264 if (list_empty(&req->list))
1265 return 0;
1266
1267 if (i915_gem_request_completed(req, true))
1268 return 0;
1269
1270 timeout_expire = 0;
1271 if (timeout) {
1272 if (WARN_ON(*timeout < 0))
1273 return -EINVAL;
1274
1275 if (*timeout == 0)
1276 return -ETIME;
1277
1278 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1279 }
1280
1281 if (INTEL_INFO(dev_priv)->gen >= 6)
1282 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1283
1284 /* Record current time in case interrupted by signal, or wedged */
1285 trace_i915_gem_request_wait_begin(req);
1286 before = ktime_get_raw_ns();
1287
1288 /* Optimistic spin for the next jiffie before touching IRQs */
1289 ret = __i915_spin_request(req, state);
1290 if (ret == 0)
1291 goto out;
1292
1293 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1294 ret = -ENODEV;
1295 goto out;
1296 }
1297
1298 for (;;) {
1299 struct timer_list timer;
1300
1301 prepare_to_wait(&ring->irq_queue, &wait, state);
1302
1303 /* We need to check whether any gpu reset happened in between
1304 * the caller grabbing the seqno and now ... */
1305 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1306 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1307 * is truely gone. */
1308 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1309 if (ret == 0)
1310 ret = -EAGAIN;
1311 break;
1312 }
1313
1314 if (i915_gem_request_completed(req, false)) {
1315 ret = 0;
1316 break;
1317 }
1318
1319 if (signal_pending_state(state, current)) {
1320 ret = -ERESTARTSYS;
1321 break;
1322 }
1323
1324 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1325 ret = -ETIME;
1326 break;
1327 }
1328
1329 timer.function = NULL;
1330 if (timeout || missed_irq(dev_priv, ring)) {
1331 unsigned long expire;
1332
1333 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1334 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1335 mod_timer(&timer, expire);
1336 }
1337
1338 io_schedule();
1339
1340 if (timer.function) {
1341 del_singleshot_timer_sync(&timer);
1342 destroy_timer_on_stack(&timer);
1343 }
1344 }
1345 if (!irq_test_in_progress)
1346 ring->irq_put(ring);
1347
1348 finish_wait(&ring->irq_queue, &wait);
1349
1350 out:
1351 now = ktime_get_raw_ns();
1352 trace_i915_gem_request_wait_end(req);
1353
1354 if (timeout) {
1355 s64 tres = *timeout - (now - before);
1356
1357 *timeout = tres < 0 ? 0 : tres;
1358
1359 /*
1360 * Apparently ktime isn't accurate enough and occasionally has a
1361 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1362 * things up to make the test happy. We allow up to 1 jiffy.
1363 *
1364 * This is a regrssion from the timespec->ktime conversion.
1365 */
1366 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1367 *timeout = 0;
1368 }
1369
1370 return ret;
1371 }
1372
1373 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1374 struct drm_file *file)
1375 {
1376 struct drm_i915_private *dev_private;
1377 struct drm_i915_file_private *file_priv;
1378
1379 WARN_ON(!req || !file || req->file_priv);
1380
1381 if (!req || !file)
1382 return -EINVAL;
1383
1384 if (req->file_priv)
1385 return -EINVAL;
1386
1387 dev_private = req->ring->dev->dev_private;
1388 file_priv = file->driver_priv;
1389
1390 spin_lock(&file_priv->mm.lock);
1391 req->file_priv = file_priv;
1392 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1393 spin_unlock(&file_priv->mm.lock);
1394
1395 req->pid = get_pid(task_pid(current));
1396
1397 return 0;
1398 }
1399
1400 static inline void
1401 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1402 {
1403 struct drm_i915_file_private *file_priv = request->file_priv;
1404
1405 if (!file_priv)
1406 return;
1407
1408 spin_lock(&file_priv->mm.lock);
1409 list_del(&request->client_list);
1410 request->file_priv = NULL;
1411 spin_unlock(&file_priv->mm.lock);
1412
1413 put_pid(request->pid);
1414 request->pid = NULL;
1415 }
1416
1417 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1418 {
1419 trace_i915_gem_request_retire(request);
1420
1421 /* We know the GPU must have read the request to have
1422 * sent us the seqno + interrupt, so use the position
1423 * of tail of the request to update the last known position
1424 * of the GPU head.
1425 *
1426 * Note this requires that we are always called in request
1427 * completion order.
1428 */
1429 request->ringbuf->last_retired_head = request->postfix;
1430
1431 list_del_init(&request->list);
1432 i915_gem_request_remove_from_client(request);
1433
1434 i915_gem_request_unreference(request);
1435 }
1436
1437 static void
1438 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1439 {
1440 struct intel_engine_cs *engine = req->ring;
1441 struct drm_i915_gem_request *tmp;
1442
1443 lockdep_assert_held(&engine->dev->struct_mutex);
1444
1445 if (list_empty(&req->list))
1446 return;
1447
1448 do {
1449 tmp = list_first_entry(&engine->request_list,
1450 typeof(*tmp), list);
1451
1452 i915_gem_request_retire(tmp);
1453 } while (tmp != req);
1454
1455 WARN_ON(i915_verify_lists(engine->dev));
1456 }
1457
1458 /**
1459 * Waits for a request to be signaled, and cleans up the
1460 * request and object lists appropriately for that event.
1461 */
1462 int
1463 i915_wait_request(struct drm_i915_gem_request *req)
1464 {
1465 struct drm_device *dev;
1466 struct drm_i915_private *dev_priv;
1467 bool interruptible;
1468 int ret;
1469
1470 BUG_ON(req == NULL);
1471
1472 dev = req->ring->dev;
1473 dev_priv = dev->dev_private;
1474 interruptible = dev_priv->mm.interruptible;
1475
1476 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1477
1478 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1479 if (ret)
1480 return ret;
1481
1482 ret = __i915_wait_request(req,
1483 atomic_read(&dev_priv->gpu_error.reset_counter),
1484 interruptible, NULL, NULL);
1485 if (ret)
1486 return ret;
1487
1488 __i915_gem_request_retire__upto(req);
1489 return 0;
1490 }
1491
1492 /**
1493 * Ensures that all rendering to the object has completed and the object is
1494 * safe to unbind from the GTT or access from the CPU.
1495 */
1496 int
1497 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1498 bool readonly)
1499 {
1500 int ret, i;
1501
1502 if (!obj->active)
1503 return 0;
1504
1505 if (readonly) {
1506 if (obj->last_write_req != NULL) {
1507 ret = i915_wait_request(obj->last_write_req);
1508 if (ret)
1509 return ret;
1510
1511 i = obj->last_write_req->ring->id;
1512 if (obj->last_read_req[i] == obj->last_write_req)
1513 i915_gem_object_retire__read(obj, i);
1514 else
1515 i915_gem_object_retire__write(obj);
1516 }
1517 } else {
1518 for (i = 0; i < I915_NUM_RINGS; i++) {
1519 if (obj->last_read_req[i] == NULL)
1520 continue;
1521
1522 ret = i915_wait_request(obj->last_read_req[i]);
1523 if (ret)
1524 return ret;
1525
1526 i915_gem_object_retire__read(obj, i);
1527 }
1528 RQ_BUG_ON(obj->active);
1529 }
1530
1531 return 0;
1532 }
1533
1534 static void
1535 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1536 struct drm_i915_gem_request *req)
1537 {
1538 int ring = req->ring->id;
1539
1540 if (obj->last_read_req[ring] == req)
1541 i915_gem_object_retire__read(obj, ring);
1542 else if (obj->last_write_req == req)
1543 i915_gem_object_retire__write(obj);
1544
1545 __i915_gem_request_retire__upto(req);
1546 }
1547
1548 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1549 * as the object state may change during this call.
1550 */
1551 static __must_check int
1552 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1553 struct intel_rps_client *rps,
1554 bool readonly)
1555 {
1556 struct drm_device *dev = obj->base.dev;
1557 struct drm_i915_private *dev_priv = dev->dev_private;
1558 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1559 unsigned reset_counter;
1560 int ret, i, n = 0;
1561
1562 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1563 BUG_ON(!dev_priv->mm.interruptible);
1564
1565 if (!obj->active)
1566 return 0;
1567
1568 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1569 if (ret)
1570 return ret;
1571
1572 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1573
1574 if (readonly) {
1575 struct drm_i915_gem_request *req;
1576
1577 req = obj->last_write_req;
1578 if (req == NULL)
1579 return 0;
1580
1581 requests[n++] = i915_gem_request_reference(req);
1582 } else {
1583 for (i = 0; i < I915_NUM_RINGS; i++) {
1584 struct drm_i915_gem_request *req;
1585
1586 req = obj->last_read_req[i];
1587 if (req == NULL)
1588 continue;
1589
1590 requests[n++] = i915_gem_request_reference(req);
1591 }
1592 }
1593
1594 mutex_unlock(&dev->struct_mutex);
1595 for (i = 0; ret == 0 && i < n; i++)
1596 ret = __i915_wait_request(requests[i], reset_counter, true,
1597 NULL, rps);
1598 mutex_lock(&dev->struct_mutex);
1599
1600 for (i = 0; i < n; i++) {
1601 if (ret == 0)
1602 i915_gem_object_retire_request(obj, requests[i]);
1603 i915_gem_request_unreference(requests[i]);
1604 }
1605
1606 return ret;
1607 }
1608
1609 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1610 {
1611 struct drm_i915_file_private *fpriv = file->driver_priv;
1612 return &fpriv->rps;
1613 }
1614
1615 /**
1616 * Called when user space prepares to use an object with the CPU, either
1617 * through the mmap ioctl's mapping or a GTT mapping.
1618 */
1619 int
1620 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1621 struct drm_file *file)
1622 {
1623 struct drm_i915_gem_set_domain *args = data;
1624 struct drm_i915_gem_object *obj;
1625 uint32_t read_domains = args->read_domains;
1626 uint32_t write_domain = args->write_domain;
1627 int ret;
1628
1629 /* Only handle setting domains to types used by the CPU. */
1630 if (write_domain & I915_GEM_GPU_DOMAINS)
1631 return -EINVAL;
1632
1633 if (read_domains & I915_GEM_GPU_DOMAINS)
1634 return -EINVAL;
1635
1636 /* Having something in the write domain implies it's in the read
1637 * domain, and only that read domain. Enforce that in the request.
1638 */
1639 if (write_domain != 0 && read_domains != write_domain)
1640 return -EINVAL;
1641
1642 ret = i915_mutex_lock_interruptible(dev);
1643 if (ret)
1644 return ret;
1645
1646 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1647 if (&obj->base == NULL) {
1648 ret = -ENOENT;
1649 goto unlock;
1650 }
1651
1652 /* Try to flush the object off the GPU without holding the lock.
1653 * We will repeat the flush holding the lock in the normal manner
1654 * to catch cases where we are gazumped.
1655 */
1656 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1657 to_rps_client(file),
1658 !write_domain);
1659 if (ret)
1660 goto unref;
1661
1662 if (read_domains & I915_GEM_DOMAIN_GTT)
1663 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1664 else
1665 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1666
1667 if (write_domain != 0)
1668 intel_fb_obj_invalidate(obj,
1669 write_domain == I915_GEM_DOMAIN_GTT ?
1670 ORIGIN_GTT : ORIGIN_CPU);
1671
1672 unref:
1673 drm_gem_object_unreference(&obj->base);
1674 unlock:
1675 mutex_unlock(&dev->struct_mutex);
1676 return ret;
1677 }
1678
1679 /**
1680 * Called when user space has done writes to this buffer
1681 */
1682 int
1683 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1684 struct drm_file *file)
1685 {
1686 struct drm_i915_gem_sw_finish *args = data;
1687 struct drm_i915_gem_object *obj;
1688 int ret = 0;
1689
1690 ret = i915_mutex_lock_interruptible(dev);
1691 if (ret)
1692 return ret;
1693
1694 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1695 if (&obj->base == NULL) {
1696 ret = -ENOENT;
1697 goto unlock;
1698 }
1699
1700 /* Pinned buffers may be scanout, so flush the cache */
1701 if (obj->pin_display)
1702 i915_gem_object_flush_cpu_write_domain(obj);
1703
1704 drm_gem_object_unreference(&obj->base);
1705 unlock:
1706 mutex_unlock(&dev->struct_mutex);
1707 return ret;
1708 }
1709
1710 /**
1711 * Maps the contents of an object, returning the address it is mapped
1712 * into.
1713 *
1714 * While the mapping holds a reference on the contents of the object, it doesn't
1715 * imply a ref on the object itself.
1716 *
1717 * IMPORTANT:
1718 *
1719 * DRM driver writers who look a this function as an example for how to do GEM
1720 * mmap support, please don't implement mmap support like here. The modern way
1721 * to implement DRM mmap support is with an mmap offset ioctl (like
1722 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1723 * That way debug tooling like valgrind will understand what's going on, hiding
1724 * the mmap call in a driver private ioctl will break that. The i915 driver only
1725 * does cpu mmaps this way because we didn't know better.
1726 */
1727 int
1728 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1729 struct drm_file *file)
1730 {
1731 struct drm_i915_gem_mmap *args = data;
1732 struct drm_gem_object *obj;
1733 unsigned long addr;
1734
1735 if (args->flags & ~(I915_MMAP_WC))
1736 return -EINVAL;
1737
1738 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1739 return -ENODEV;
1740
1741 obj = drm_gem_object_lookup(dev, file, args->handle);
1742 if (obj == NULL)
1743 return -ENOENT;
1744
1745 /* prime objects have no backing filp to GEM mmap
1746 * pages from.
1747 */
1748 if (!obj->filp) {
1749 drm_gem_object_unreference_unlocked(obj);
1750 return -EINVAL;
1751 }
1752
1753 addr = vm_mmap(obj->filp, 0, args->size,
1754 PROT_READ | PROT_WRITE, MAP_SHARED,
1755 args->offset);
1756 if (args->flags & I915_MMAP_WC) {
1757 struct mm_struct *mm = current->mm;
1758 struct vm_area_struct *vma;
1759
1760 down_write(&mm->mmap_sem);
1761 vma = find_vma(mm, addr);
1762 if (vma)
1763 vma->vm_page_prot =
1764 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1765 else
1766 addr = -ENOMEM;
1767 up_write(&mm->mmap_sem);
1768 }
1769 drm_gem_object_unreference_unlocked(obj);
1770 if (IS_ERR((void *)addr))
1771 return addr;
1772
1773 args->addr_ptr = (uint64_t) addr;
1774
1775 return 0;
1776 }
1777
1778 /**
1779 * i915_gem_fault - fault a page into the GTT
1780 * @vma: VMA in question
1781 * @vmf: fault info
1782 *
1783 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1784 * from userspace. The fault handler takes care of binding the object to
1785 * the GTT (if needed), allocating and programming a fence register (again,
1786 * only if needed based on whether the old reg is still valid or the object
1787 * is tiled) and inserting a new PTE into the faulting process.
1788 *
1789 * Note that the faulting process may involve evicting existing objects
1790 * from the GTT and/or fence registers to make room. So performance may
1791 * suffer if the GTT working set is large or there are few fence registers
1792 * left.
1793 */
1794 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1795 {
1796 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1797 struct drm_device *dev = obj->base.dev;
1798 struct drm_i915_private *dev_priv = dev->dev_private;
1799 struct i915_ggtt_view view = i915_ggtt_view_normal;
1800 pgoff_t page_offset;
1801 unsigned long pfn;
1802 int ret = 0;
1803 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1804
1805 intel_runtime_pm_get(dev_priv);
1806
1807 /* We don't use vmf->pgoff since that has the fake offset */
1808 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1809 PAGE_SHIFT;
1810
1811 ret = i915_mutex_lock_interruptible(dev);
1812 if (ret)
1813 goto out;
1814
1815 trace_i915_gem_object_fault(obj, page_offset, true, write);
1816
1817 /* Try to flush the object off the GPU first without holding the lock.
1818 * Upon reacquiring the lock, we will perform our sanity checks and then
1819 * repeat the flush holding the lock in the normal manner to catch cases
1820 * where we are gazumped.
1821 */
1822 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1823 if (ret)
1824 goto unlock;
1825
1826 /* Access to snoopable pages through the GTT is incoherent. */
1827 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1828 ret = -EFAULT;
1829 goto unlock;
1830 }
1831
1832 /* Use a partial view if the object is bigger than the aperture. */
1833 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1834 obj->tiling_mode == I915_TILING_NONE) {
1835 static const unsigned int chunk_size = 256; // 1 MiB
1836
1837 memset(&view, 0, sizeof(view));
1838 view.type = I915_GGTT_VIEW_PARTIAL;
1839 view.params.partial.offset = rounddown(page_offset, chunk_size);
1840 view.params.partial.size =
1841 min_t(unsigned int,
1842 chunk_size,
1843 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1844 view.params.partial.offset);
1845 }
1846
1847 /* Now pin it into the GTT if needed */
1848 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1849 if (ret)
1850 goto unlock;
1851
1852 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1853 if (ret)
1854 goto unpin;
1855
1856 ret = i915_gem_object_get_fence(obj);
1857 if (ret)
1858 goto unpin;
1859
1860 /* Finally, remap it using the new GTT offset */
1861 pfn = dev_priv->gtt.mappable_base +
1862 i915_gem_obj_ggtt_offset_view(obj, &view);
1863 pfn >>= PAGE_SHIFT;
1864
1865 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1866 /* Overriding existing pages in partial view does not cause
1867 * us any trouble as TLBs are still valid because the fault
1868 * is due to userspace losing part of the mapping or never
1869 * having accessed it before (at this partials' range).
1870 */
1871 unsigned long base = vma->vm_start +
1872 (view.params.partial.offset << PAGE_SHIFT);
1873 unsigned int i;
1874
1875 for (i = 0; i < view.params.partial.size; i++) {
1876 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1877 if (ret)
1878 break;
1879 }
1880
1881 obj->fault_mappable = true;
1882 } else {
1883 if (!obj->fault_mappable) {
1884 unsigned long size = min_t(unsigned long,
1885 vma->vm_end - vma->vm_start,
1886 obj->base.size);
1887 int i;
1888
1889 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1890 ret = vm_insert_pfn(vma,
1891 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1892 pfn + i);
1893 if (ret)
1894 break;
1895 }
1896
1897 obj->fault_mappable = true;
1898 } else
1899 ret = vm_insert_pfn(vma,
1900 (unsigned long)vmf->virtual_address,
1901 pfn + page_offset);
1902 }
1903 unpin:
1904 i915_gem_object_ggtt_unpin_view(obj, &view);
1905 unlock:
1906 mutex_unlock(&dev->struct_mutex);
1907 out:
1908 switch (ret) {
1909 case -EIO:
1910 /*
1911 * We eat errors when the gpu is terminally wedged to avoid
1912 * userspace unduly crashing (gl has no provisions for mmaps to
1913 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1914 * and so needs to be reported.
1915 */
1916 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1917 ret = VM_FAULT_SIGBUS;
1918 break;
1919 }
1920 case -EAGAIN:
1921 /*
1922 * EAGAIN means the gpu is hung and we'll wait for the error
1923 * handler to reset everything when re-faulting in
1924 * i915_mutex_lock_interruptible.
1925 */
1926 case 0:
1927 case -ERESTARTSYS:
1928 case -EINTR:
1929 case -EBUSY:
1930 /*
1931 * EBUSY is ok: this just means that another thread
1932 * already did the job.
1933 */
1934 ret = VM_FAULT_NOPAGE;
1935 break;
1936 case -ENOMEM:
1937 ret = VM_FAULT_OOM;
1938 break;
1939 case -ENOSPC:
1940 case -EFAULT:
1941 ret = VM_FAULT_SIGBUS;
1942 break;
1943 default:
1944 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1945 ret = VM_FAULT_SIGBUS;
1946 break;
1947 }
1948
1949 intel_runtime_pm_put(dev_priv);
1950 return ret;
1951 }
1952
1953 /**
1954 * i915_gem_release_mmap - remove physical page mappings
1955 * @obj: obj in question
1956 *
1957 * Preserve the reservation of the mmapping with the DRM core code, but
1958 * relinquish ownership of the pages back to the system.
1959 *
1960 * It is vital that we remove the page mapping if we have mapped a tiled
1961 * object through the GTT and then lose the fence register due to
1962 * resource pressure. Similarly if the object has been moved out of the
1963 * aperture, than pages mapped into userspace must be revoked. Removing the
1964 * mapping will then trigger a page fault on the next user access, allowing
1965 * fixup by i915_gem_fault().
1966 */
1967 void
1968 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1969 {
1970 if (!obj->fault_mappable)
1971 return;
1972
1973 drm_vma_node_unmap(&obj->base.vma_node,
1974 obj->base.dev->anon_inode->i_mapping);
1975 obj->fault_mappable = false;
1976 }
1977
1978 void
1979 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1980 {
1981 struct drm_i915_gem_object *obj;
1982
1983 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1984 i915_gem_release_mmap(obj);
1985 }
1986
1987 uint32_t
1988 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1989 {
1990 uint32_t gtt_size;
1991
1992 if (INTEL_INFO(dev)->gen >= 4 ||
1993 tiling_mode == I915_TILING_NONE)
1994 return size;
1995
1996 /* Previous chips need a power-of-two fence region when tiling */
1997 if (INTEL_INFO(dev)->gen == 3)
1998 gtt_size = 1024*1024;
1999 else
2000 gtt_size = 512*1024;
2001
2002 while (gtt_size < size)
2003 gtt_size <<= 1;
2004
2005 return gtt_size;
2006 }
2007
2008 /**
2009 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2010 * @obj: object to check
2011 *
2012 * Return the required GTT alignment for an object, taking into account
2013 * potential fence register mapping.
2014 */
2015 uint32_t
2016 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2017 int tiling_mode, bool fenced)
2018 {
2019 /*
2020 * Minimum alignment is 4k (GTT page size), but might be greater
2021 * if a fence register is needed for the object.
2022 */
2023 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2024 tiling_mode == I915_TILING_NONE)
2025 return 4096;
2026
2027 /*
2028 * Previous chips need to be aligned to the size of the smallest
2029 * fence register that can contain the object.
2030 */
2031 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2032 }
2033
2034 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2035 {
2036 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2037 int ret;
2038
2039 if (drm_vma_node_has_offset(&obj->base.vma_node))
2040 return 0;
2041
2042 dev_priv->mm.shrinker_no_lock_stealing = true;
2043
2044 ret = drm_gem_create_mmap_offset(&obj->base);
2045 if (ret != -ENOSPC)
2046 goto out;
2047
2048 /* Badly fragmented mmap space? The only way we can recover
2049 * space is by destroying unwanted objects. We can't randomly release
2050 * mmap_offsets as userspace expects them to be persistent for the
2051 * lifetime of the objects. The closest we can is to release the
2052 * offsets on purgeable objects by truncating it and marking it purged,
2053 * which prevents userspace from ever using that object again.
2054 */
2055 i915_gem_shrink(dev_priv,
2056 obj->base.size >> PAGE_SHIFT,
2057 I915_SHRINK_BOUND |
2058 I915_SHRINK_UNBOUND |
2059 I915_SHRINK_PURGEABLE);
2060 ret = drm_gem_create_mmap_offset(&obj->base);
2061 if (ret != -ENOSPC)
2062 goto out;
2063
2064 i915_gem_shrink_all(dev_priv);
2065 ret = drm_gem_create_mmap_offset(&obj->base);
2066 out:
2067 dev_priv->mm.shrinker_no_lock_stealing = false;
2068
2069 return ret;
2070 }
2071
2072 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2073 {
2074 drm_gem_free_mmap_offset(&obj->base);
2075 }
2076
2077 int
2078 i915_gem_mmap_gtt(struct drm_file *file,
2079 struct drm_device *dev,
2080 uint32_t handle,
2081 uint64_t *offset)
2082 {
2083 struct drm_i915_gem_object *obj;
2084 int ret;
2085
2086 ret = i915_mutex_lock_interruptible(dev);
2087 if (ret)
2088 return ret;
2089
2090 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2091 if (&obj->base == NULL) {
2092 ret = -ENOENT;
2093 goto unlock;
2094 }
2095
2096 if (obj->madv != I915_MADV_WILLNEED) {
2097 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2098 ret = -EFAULT;
2099 goto out;
2100 }
2101
2102 ret = i915_gem_object_create_mmap_offset(obj);
2103 if (ret)
2104 goto out;
2105
2106 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2107
2108 out:
2109 drm_gem_object_unreference(&obj->base);
2110 unlock:
2111 mutex_unlock(&dev->struct_mutex);
2112 return ret;
2113 }
2114
2115 /**
2116 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2117 * @dev: DRM device
2118 * @data: GTT mapping ioctl data
2119 * @file: GEM object info
2120 *
2121 * Simply returns the fake offset to userspace so it can mmap it.
2122 * The mmap call will end up in drm_gem_mmap(), which will set things
2123 * up so we can get faults in the handler above.
2124 *
2125 * The fault handler will take care of binding the object into the GTT
2126 * (since it may have been evicted to make room for something), allocating
2127 * a fence register, and mapping the appropriate aperture address into
2128 * userspace.
2129 */
2130 int
2131 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2132 struct drm_file *file)
2133 {
2134 struct drm_i915_gem_mmap_gtt *args = data;
2135
2136 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2137 }
2138
2139 /* Immediately discard the backing storage */
2140 static void
2141 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2142 {
2143 i915_gem_object_free_mmap_offset(obj);
2144
2145 if (obj->base.filp == NULL)
2146 return;
2147
2148 /* Our goal here is to return as much of the memory as
2149 * is possible back to the system as we are called from OOM.
2150 * To do this we must instruct the shmfs to drop all of its
2151 * backing pages, *now*.
2152 */
2153 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2154 obj->madv = __I915_MADV_PURGED;
2155 }
2156
2157 /* Try to discard unwanted pages */
2158 static void
2159 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2160 {
2161 struct address_space *mapping;
2162
2163 switch (obj->madv) {
2164 case I915_MADV_DONTNEED:
2165 i915_gem_object_truncate(obj);
2166 case __I915_MADV_PURGED:
2167 return;
2168 }
2169
2170 if (obj->base.filp == NULL)
2171 return;
2172
2173 mapping = file_inode(obj->base.filp)->i_mapping,
2174 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2175 }
2176
2177 static void
2178 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2179 {
2180 struct sg_page_iter sg_iter;
2181 int ret;
2182
2183 BUG_ON(obj->madv == __I915_MADV_PURGED);
2184
2185 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2186 if (ret) {
2187 /* In the event of a disaster, abandon all caches and
2188 * hope for the best.
2189 */
2190 WARN_ON(ret != -EIO);
2191 i915_gem_clflush_object(obj, true);
2192 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2193 }
2194
2195 i915_gem_gtt_finish_object(obj);
2196
2197 if (i915_gem_object_needs_bit17_swizzle(obj))
2198 i915_gem_object_save_bit_17_swizzle(obj);
2199
2200 if (obj->madv == I915_MADV_DONTNEED)
2201 obj->dirty = 0;
2202
2203 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2204 struct page *page = sg_page_iter_page(&sg_iter);
2205
2206 if (obj->dirty)
2207 set_page_dirty(page);
2208
2209 if (obj->madv == I915_MADV_WILLNEED)
2210 mark_page_accessed(page);
2211
2212 page_cache_release(page);
2213 }
2214 obj->dirty = 0;
2215
2216 sg_free_table(obj->pages);
2217 kfree(obj->pages);
2218 }
2219
2220 int
2221 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2222 {
2223 const struct drm_i915_gem_object_ops *ops = obj->ops;
2224
2225 if (obj->pages == NULL)
2226 return 0;
2227
2228 if (obj->pages_pin_count)
2229 return -EBUSY;
2230
2231 BUG_ON(i915_gem_obj_bound_any(obj));
2232
2233 /* ->put_pages might need to allocate memory for the bit17 swizzle
2234 * array, hence protect them from being reaped by removing them from gtt
2235 * lists early. */
2236 list_del(&obj->global_list);
2237
2238 ops->put_pages(obj);
2239 obj->pages = NULL;
2240
2241 i915_gem_object_invalidate(obj);
2242
2243 return 0;
2244 }
2245
2246 static int
2247 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2248 {
2249 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2250 int page_count, i;
2251 struct address_space *mapping;
2252 struct sg_table *st;
2253 struct scatterlist *sg;
2254 struct sg_page_iter sg_iter;
2255 struct page *page;
2256 unsigned long last_pfn = 0; /* suppress gcc warning */
2257 int ret;
2258 gfp_t gfp;
2259
2260 /* Assert that the object is not currently in any GPU domain. As it
2261 * wasn't in the GTT, there shouldn't be any way it could have been in
2262 * a GPU cache
2263 */
2264 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2265 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2266
2267 st = kmalloc(sizeof(*st), GFP_KERNEL);
2268 if (st == NULL)
2269 return -ENOMEM;
2270
2271 page_count = obj->base.size / PAGE_SIZE;
2272 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2273 kfree(st);
2274 return -ENOMEM;
2275 }
2276
2277 /* Get the list of pages out of our struct file. They'll be pinned
2278 * at this point until we release them.
2279 *
2280 * Fail silently without starting the shrinker
2281 */
2282 mapping = file_inode(obj->base.filp)->i_mapping;
2283 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2284 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2285 sg = st->sgl;
2286 st->nents = 0;
2287 for (i = 0; i < page_count; i++) {
2288 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2289 if (IS_ERR(page)) {
2290 i915_gem_shrink(dev_priv,
2291 page_count,
2292 I915_SHRINK_BOUND |
2293 I915_SHRINK_UNBOUND |
2294 I915_SHRINK_PURGEABLE);
2295 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2296 }
2297 if (IS_ERR(page)) {
2298 /* We've tried hard to allocate the memory by reaping
2299 * our own buffer, now let the real VM do its job and
2300 * go down in flames if truly OOM.
2301 */
2302 i915_gem_shrink_all(dev_priv);
2303 page = shmem_read_mapping_page(mapping, i);
2304 if (IS_ERR(page)) {
2305 ret = PTR_ERR(page);
2306 goto err_pages;
2307 }
2308 }
2309 #ifdef CONFIG_SWIOTLB
2310 if (swiotlb_nr_tbl()) {
2311 st->nents++;
2312 sg_set_page(sg, page, PAGE_SIZE, 0);
2313 sg = sg_next(sg);
2314 continue;
2315 }
2316 #endif
2317 if (!i || page_to_pfn(page) != last_pfn + 1) {
2318 if (i)
2319 sg = sg_next(sg);
2320 st->nents++;
2321 sg_set_page(sg, page, PAGE_SIZE, 0);
2322 } else {
2323 sg->length += PAGE_SIZE;
2324 }
2325 last_pfn = page_to_pfn(page);
2326
2327 /* Check that the i965g/gm workaround works. */
2328 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2329 }
2330 #ifdef CONFIG_SWIOTLB
2331 if (!swiotlb_nr_tbl())
2332 #endif
2333 sg_mark_end(sg);
2334 obj->pages = st;
2335
2336 ret = i915_gem_gtt_prepare_object(obj);
2337 if (ret)
2338 goto err_pages;
2339
2340 if (i915_gem_object_needs_bit17_swizzle(obj))
2341 i915_gem_object_do_bit_17_swizzle(obj);
2342
2343 if (obj->tiling_mode != I915_TILING_NONE &&
2344 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2345 i915_gem_object_pin_pages(obj);
2346
2347 return 0;
2348
2349 err_pages:
2350 sg_mark_end(sg);
2351 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2352 page_cache_release(sg_page_iter_page(&sg_iter));
2353 sg_free_table(st);
2354 kfree(st);
2355
2356 /* shmemfs first checks if there is enough memory to allocate the page
2357 * and reports ENOSPC should there be insufficient, along with the usual
2358 * ENOMEM for a genuine allocation failure.
2359 *
2360 * We use ENOSPC in our driver to mean that we have run out of aperture
2361 * space and so want to translate the error from shmemfs back to our
2362 * usual understanding of ENOMEM.
2363 */
2364 if (ret == -ENOSPC)
2365 ret = -ENOMEM;
2366
2367 return ret;
2368 }
2369
2370 /* Ensure that the associated pages are gathered from the backing storage
2371 * and pinned into our object. i915_gem_object_get_pages() may be called
2372 * multiple times before they are released by a single call to
2373 * i915_gem_object_put_pages() - once the pages are no longer referenced
2374 * either as a result of memory pressure (reaping pages under the shrinker)
2375 * or as the object is itself released.
2376 */
2377 int
2378 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2379 {
2380 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2381 const struct drm_i915_gem_object_ops *ops = obj->ops;
2382 int ret;
2383
2384 if (obj->pages)
2385 return 0;
2386
2387 if (obj->madv != I915_MADV_WILLNEED) {
2388 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2389 return -EFAULT;
2390 }
2391
2392 BUG_ON(obj->pages_pin_count);
2393
2394 ret = ops->get_pages(obj);
2395 if (ret)
2396 return ret;
2397
2398 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2399
2400 obj->get_page.sg = obj->pages->sgl;
2401 obj->get_page.last = 0;
2402
2403 return 0;
2404 }
2405
2406 void i915_vma_move_to_active(struct i915_vma *vma,
2407 struct drm_i915_gem_request *req)
2408 {
2409 struct drm_i915_gem_object *obj = vma->obj;
2410 struct intel_engine_cs *ring;
2411
2412 ring = i915_gem_request_get_ring(req);
2413
2414 /* Add a reference if we're newly entering the active list. */
2415 if (obj->active == 0)
2416 drm_gem_object_reference(&obj->base);
2417 obj->active |= intel_ring_flag(ring);
2418
2419 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2420 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2421
2422 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2423 }
2424
2425 static void
2426 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2427 {
2428 RQ_BUG_ON(obj->last_write_req == NULL);
2429 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2430
2431 i915_gem_request_assign(&obj->last_write_req, NULL);
2432 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2433 }
2434
2435 static void
2436 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2437 {
2438 struct i915_vma *vma;
2439
2440 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2441 RQ_BUG_ON(!(obj->active & (1 << ring)));
2442
2443 list_del_init(&obj->ring_list[ring]);
2444 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2445
2446 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2447 i915_gem_object_retire__write(obj);
2448
2449 obj->active &= ~(1 << ring);
2450 if (obj->active)
2451 return;
2452
2453 /* Bump our place on the bound list to keep it roughly in LRU order
2454 * so that we don't steal from recently used but inactive objects
2455 * (unless we are forced to ofc!)
2456 */
2457 list_move_tail(&obj->global_list,
2458 &to_i915(obj->base.dev)->mm.bound_list);
2459
2460 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2461 if (!list_empty(&vma->mm_list))
2462 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2463 }
2464
2465 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2466 drm_gem_object_unreference(&obj->base);
2467 }
2468
2469 static int
2470 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2471 {
2472 struct drm_i915_private *dev_priv = dev->dev_private;
2473 struct intel_engine_cs *ring;
2474 int ret, i, j;
2475
2476 /* Carefully retire all requests without writing to the rings */
2477 for_each_ring(ring, dev_priv, i) {
2478 ret = intel_ring_idle(ring);
2479 if (ret)
2480 return ret;
2481 }
2482 i915_gem_retire_requests(dev);
2483
2484 /* Finally reset hw state */
2485 for_each_ring(ring, dev_priv, i) {
2486 intel_ring_init_seqno(ring, seqno);
2487
2488 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2489 ring->semaphore.sync_seqno[j] = 0;
2490 }
2491
2492 return 0;
2493 }
2494
2495 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2496 {
2497 struct drm_i915_private *dev_priv = dev->dev_private;
2498 int ret;
2499
2500 if (seqno == 0)
2501 return -EINVAL;
2502
2503 /* HWS page needs to be set less than what we
2504 * will inject to ring
2505 */
2506 ret = i915_gem_init_seqno(dev, seqno - 1);
2507 if (ret)
2508 return ret;
2509
2510 /* Carefully set the last_seqno value so that wrap
2511 * detection still works
2512 */
2513 dev_priv->next_seqno = seqno;
2514 dev_priv->last_seqno = seqno - 1;
2515 if (dev_priv->last_seqno == 0)
2516 dev_priv->last_seqno--;
2517
2518 return 0;
2519 }
2520
2521 int
2522 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2523 {
2524 struct drm_i915_private *dev_priv = dev->dev_private;
2525
2526 /* reserve 0 for non-seqno */
2527 if (dev_priv->next_seqno == 0) {
2528 int ret = i915_gem_init_seqno(dev, 0);
2529 if (ret)
2530 return ret;
2531
2532 dev_priv->next_seqno = 1;
2533 }
2534
2535 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2536 return 0;
2537 }
2538
2539 /*
2540 * NB: This function is not allowed to fail. Doing so would mean the the
2541 * request is not being tracked for completion but the work itself is
2542 * going to happen on the hardware. This would be a Bad Thing(tm).
2543 */
2544 void __i915_add_request(struct drm_i915_gem_request *request,
2545 struct drm_i915_gem_object *obj,
2546 bool flush_caches)
2547 {
2548 struct intel_engine_cs *ring;
2549 struct drm_i915_private *dev_priv;
2550 struct intel_ringbuffer *ringbuf;
2551 u32 request_start;
2552 int ret;
2553
2554 if (WARN_ON(request == NULL))
2555 return;
2556
2557 ring = request->ring;
2558 dev_priv = ring->dev->dev_private;
2559 ringbuf = request->ringbuf;
2560
2561 /*
2562 * To ensure that this call will not fail, space for its emissions
2563 * should already have been reserved in the ring buffer. Let the ring
2564 * know that it is time to use that space up.
2565 */
2566 intel_ring_reserved_space_use(ringbuf);
2567
2568 request_start = intel_ring_get_tail(ringbuf);
2569 /*
2570 * Emit any outstanding flushes - execbuf can fail to emit the flush
2571 * after having emitted the batchbuffer command. Hence we need to fix
2572 * things up similar to emitting the lazy request. The difference here
2573 * is that the flush _must_ happen before the next request, no matter
2574 * what.
2575 */
2576 if (flush_caches) {
2577 if (i915.enable_execlists)
2578 ret = logical_ring_flush_all_caches(request);
2579 else
2580 ret = intel_ring_flush_all_caches(request);
2581 /* Not allowed to fail! */
2582 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2583 }
2584
2585 /* Record the position of the start of the request so that
2586 * should we detect the updated seqno part-way through the
2587 * GPU processing the request, we never over-estimate the
2588 * position of the head.
2589 */
2590 request->postfix = intel_ring_get_tail(ringbuf);
2591
2592 if (i915.enable_execlists)
2593 ret = ring->emit_request(request);
2594 else {
2595 ret = ring->add_request(request);
2596
2597 request->tail = intel_ring_get_tail(ringbuf);
2598 }
2599 /* Not allowed to fail! */
2600 WARN(ret, "emit|add_request failed: %d!\n", ret);
2601
2602 request->head = request_start;
2603
2604 /* Whilst this request exists, batch_obj will be on the
2605 * active_list, and so will hold the active reference. Only when this
2606 * request is retired will the the batch_obj be moved onto the
2607 * inactive_list and lose its active reference. Hence we do not need
2608 * to explicitly hold another reference here.
2609 */
2610 request->batch_obj = obj;
2611
2612 request->emitted_jiffies = jiffies;
2613 request->previous_seqno = ring->last_submitted_seqno;
2614 ring->last_submitted_seqno = request->seqno;
2615 list_add_tail(&request->list, &ring->request_list);
2616
2617 trace_i915_gem_request_add(request);
2618
2619 i915_queue_hangcheck(ring->dev);
2620
2621 queue_delayed_work(dev_priv->wq,
2622 &dev_priv->mm.retire_work,
2623 round_jiffies_up_relative(HZ));
2624 intel_mark_busy(dev_priv->dev);
2625
2626 /* Sanity check that the reserved size was large enough. */
2627 intel_ring_reserved_space_end(ringbuf);
2628 }
2629
2630 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2631 const struct intel_context *ctx)
2632 {
2633 unsigned long elapsed;
2634
2635 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2636
2637 if (ctx->hang_stats.banned)
2638 return true;
2639
2640 if (ctx->hang_stats.ban_period_seconds &&
2641 elapsed <= ctx->hang_stats.ban_period_seconds) {
2642 if (!i915_gem_context_is_default(ctx)) {
2643 DRM_DEBUG("context hanging too fast, banning!\n");
2644 return true;
2645 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2646 if (i915_stop_ring_allow_warn(dev_priv))
2647 DRM_ERROR("gpu hanging too fast, banning!\n");
2648 return true;
2649 }
2650 }
2651
2652 return false;
2653 }
2654
2655 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2656 struct intel_context *ctx,
2657 const bool guilty)
2658 {
2659 struct i915_ctx_hang_stats *hs;
2660
2661 if (WARN_ON(!ctx))
2662 return;
2663
2664 hs = &ctx->hang_stats;
2665
2666 if (guilty) {
2667 hs->banned = i915_context_is_banned(dev_priv, ctx);
2668 hs->batch_active++;
2669 hs->guilty_ts = get_seconds();
2670 } else {
2671 hs->batch_pending++;
2672 }
2673 }
2674
2675 void i915_gem_request_free(struct kref *req_ref)
2676 {
2677 struct drm_i915_gem_request *req = container_of(req_ref,
2678 typeof(*req), ref);
2679 struct intel_context *ctx = req->ctx;
2680
2681 if (req->file_priv)
2682 i915_gem_request_remove_from_client(req);
2683
2684 if (ctx) {
2685 if (i915.enable_execlists) {
2686 if (ctx != req->ring->default_context)
2687 intel_lr_context_unpin(req);
2688 }
2689
2690 i915_gem_context_unreference(ctx);
2691 }
2692
2693 kmem_cache_free(req->i915->requests, req);
2694 }
2695
2696 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2697 struct intel_context *ctx,
2698 struct drm_i915_gem_request **req_out)
2699 {
2700 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2701 struct drm_i915_gem_request *req;
2702 int ret;
2703
2704 if (!req_out)
2705 return -EINVAL;
2706
2707 *req_out = NULL;
2708
2709 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2710 if (req == NULL)
2711 return -ENOMEM;
2712
2713 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2714 if (ret)
2715 goto err;
2716
2717 kref_init(&req->ref);
2718 req->i915 = dev_priv;
2719 req->ring = ring;
2720 req->ctx = ctx;
2721 i915_gem_context_reference(req->ctx);
2722
2723 if (i915.enable_execlists)
2724 ret = intel_logical_ring_alloc_request_extras(req);
2725 else
2726 ret = intel_ring_alloc_request_extras(req);
2727 if (ret) {
2728 i915_gem_context_unreference(req->ctx);
2729 goto err;
2730 }
2731
2732 /*
2733 * Reserve space in the ring buffer for all the commands required to
2734 * eventually emit this request. This is to guarantee that the
2735 * i915_add_request() call can't fail. Note that the reserve may need
2736 * to be redone if the request is not actually submitted straight
2737 * away, e.g. because a GPU scheduler has deferred it.
2738 */
2739 if (i915.enable_execlists)
2740 ret = intel_logical_ring_reserve_space(req);
2741 else
2742 ret = intel_ring_reserve_space(req);
2743 if (ret) {
2744 /*
2745 * At this point, the request is fully allocated even if not
2746 * fully prepared. Thus it can be cleaned up using the proper
2747 * free code.
2748 */
2749 i915_gem_request_cancel(req);
2750 return ret;
2751 }
2752
2753 *req_out = req;
2754 return 0;
2755
2756 err:
2757 kmem_cache_free(dev_priv->requests, req);
2758 return ret;
2759 }
2760
2761 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2762 {
2763 intel_ring_reserved_space_cancel(req->ringbuf);
2764
2765 i915_gem_request_unreference(req);
2766 }
2767
2768 struct drm_i915_gem_request *
2769 i915_gem_find_active_request(struct intel_engine_cs *ring)
2770 {
2771 struct drm_i915_gem_request *request;
2772
2773 list_for_each_entry(request, &ring->request_list, list) {
2774 if (i915_gem_request_completed(request, false))
2775 continue;
2776
2777 return request;
2778 }
2779
2780 return NULL;
2781 }
2782
2783 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2784 struct intel_engine_cs *ring)
2785 {
2786 struct drm_i915_gem_request *request;
2787 bool ring_hung;
2788
2789 request = i915_gem_find_active_request(ring);
2790
2791 if (request == NULL)
2792 return;
2793
2794 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2795
2796 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2797
2798 list_for_each_entry_continue(request, &ring->request_list, list)
2799 i915_set_reset_status(dev_priv, request->ctx, false);
2800 }
2801
2802 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2803 struct intel_engine_cs *ring)
2804 {
2805 while (!list_empty(&ring->active_list)) {
2806 struct drm_i915_gem_object *obj;
2807
2808 obj = list_first_entry(&ring->active_list,
2809 struct drm_i915_gem_object,
2810 ring_list[ring->id]);
2811
2812 i915_gem_object_retire__read(obj, ring->id);
2813 }
2814
2815 /*
2816 * Clear the execlists queue up before freeing the requests, as those
2817 * are the ones that keep the context and ringbuffer backing objects
2818 * pinned in place.
2819 */
2820 while (!list_empty(&ring->execlist_queue)) {
2821 struct drm_i915_gem_request *submit_req;
2822
2823 submit_req = list_first_entry(&ring->execlist_queue,
2824 struct drm_i915_gem_request,
2825 execlist_link);
2826 list_del(&submit_req->execlist_link);
2827
2828 if (submit_req->ctx != ring->default_context)
2829 intel_lr_context_unpin(submit_req);
2830
2831 i915_gem_request_unreference(submit_req);
2832 }
2833
2834 /*
2835 * We must free the requests after all the corresponding objects have
2836 * been moved off active lists. Which is the same order as the normal
2837 * retire_requests function does. This is important if object hold
2838 * implicit references on things like e.g. ppgtt address spaces through
2839 * the request.
2840 */
2841 while (!list_empty(&ring->request_list)) {
2842 struct drm_i915_gem_request *request;
2843
2844 request = list_first_entry(&ring->request_list,
2845 struct drm_i915_gem_request,
2846 list);
2847
2848 i915_gem_request_retire(request);
2849 }
2850 }
2851
2852 void i915_gem_reset(struct drm_device *dev)
2853 {
2854 struct drm_i915_private *dev_priv = dev->dev_private;
2855 struct intel_engine_cs *ring;
2856 int i;
2857
2858 /*
2859 * Before we free the objects from the requests, we need to inspect
2860 * them for finding the guilty party. As the requests only borrow
2861 * their reference to the objects, the inspection must be done first.
2862 */
2863 for_each_ring(ring, dev_priv, i)
2864 i915_gem_reset_ring_status(dev_priv, ring);
2865
2866 for_each_ring(ring, dev_priv, i)
2867 i915_gem_reset_ring_cleanup(dev_priv, ring);
2868
2869 i915_gem_context_reset(dev);
2870
2871 i915_gem_restore_fences(dev);
2872
2873 WARN_ON(i915_verify_lists(dev));
2874 }
2875
2876 /**
2877 * This function clears the request list as sequence numbers are passed.
2878 */
2879 void
2880 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2881 {
2882 WARN_ON(i915_verify_lists(ring->dev));
2883
2884 /* Retire requests first as we use it above for the early return.
2885 * If we retire requests last, we may use a later seqno and so clear
2886 * the requests lists without clearing the active list, leading to
2887 * confusion.
2888 */
2889 while (!list_empty(&ring->request_list)) {
2890 struct drm_i915_gem_request *request;
2891
2892 request = list_first_entry(&ring->request_list,
2893 struct drm_i915_gem_request,
2894 list);
2895
2896 if (!i915_gem_request_completed(request, true))
2897 break;
2898
2899 i915_gem_request_retire(request);
2900 }
2901
2902 /* Move any buffers on the active list that are no longer referenced
2903 * by the ringbuffer to the flushing/inactive lists as appropriate,
2904 * before we free the context associated with the requests.
2905 */
2906 while (!list_empty(&ring->active_list)) {
2907 struct drm_i915_gem_object *obj;
2908
2909 obj = list_first_entry(&ring->active_list,
2910 struct drm_i915_gem_object,
2911 ring_list[ring->id]);
2912
2913 if (!list_empty(&obj->last_read_req[ring->id]->list))
2914 break;
2915
2916 i915_gem_object_retire__read(obj, ring->id);
2917 }
2918
2919 if (unlikely(ring->trace_irq_req &&
2920 i915_gem_request_completed(ring->trace_irq_req, true))) {
2921 ring->irq_put(ring);
2922 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2923 }
2924
2925 WARN_ON(i915_verify_lists(ring->dev));
2926 }
2927
2928 bool
2929 i915_gem_retire_requests(struct drm_device *dev)
2930 {
2931 struct drm_i915_private *dev_priv = dev->dev_private;
2932 struct intel_engine_cs *ring;
2933 bool idle = true;
2934 int i;
2935
2936 for_each_ring(ring, dev_priv, i) {
2937 i915_gem_retire_requests_ring(ring);
2938 idle &= list_empty(&ring->request_list);
2939 if (i915.enable_execlists) {
2940 unsigned long flags;
2941
2942 spin_lock_irqsave(&ring->execlist_lock, flags);
2943 idle &= list_empty(&ring->execlist_queue);
2944 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2945
2946 intel_execlists_retire_requests(ring);
2947 }
2948 }
2949
2950 if (idle)
2951 mod_delayed_work(dev_priv->wq,
2952 &dev_priv->mm.idle_work,
2953 msecs_to_jiffies(100));
2954
2955 return idle;
2956 }
2957
2958 static void
2959 i915_gem_retire_work_handler(struct work_struct *work)
2960 {
2961 struct drm_i915_private *dev_priv =
2962 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2963 struct drm_device *dev = dev_priv->dev;
2964 bool idle;
2965
2966 /* Come back later if the device is busy... */
2967 idle = false;
2968 if (mutex_trylock(&dev->struct_mutex)) {
2969 idle = i915_gem_retire_requests(dev);
2970 mutex_unlock(&dev->struct_mutex);
2971 }
2972 if (!idle)
2973 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2974 round_jiffies_up_relative(HZ));
2975 }
2976
2977 static void
2978 i915_gem_idle_work_handler(struct work_struct *work)
2979 {
2980 struct drm_i915_private *dev_priv =
2981 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2982 struct drm_device *dev = dev_priv->dev;
2983 struct intel_engine_cs *ring;
2984 int i;
2985
2986 for_each_ring(ring, dev_priv, i)
2987 if (!list_empty(&ring->request_list))
2988 return;
2989
2990 intel_mark_idle(dev);
2991
2992 if (mutex_trylock(&dev->struct_mutex)) {
2993 struct intel_engine_cs *ring;
2994 int i;
2995
2996 for_each_ring(ring, dev_priv, i)
2997 i915_gem_batch_pool_fini(&ring->batch_pool);
2998
2999 mutex_unlock(&dev->struct_mutex);
3000 }
3001 }
3002
3003 /**
3004 * Ensures that an object will eventually get non-busy by flushing any required
3005 * write domains, emitting any outstanding lazy request and retiring and
3006 * completed requests.
3007 */
3008 static int
3009 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3010 {
3011 int i;
3012
3013 if (!obj->active)
3014 return 0;
3015
3016 for (i = 0; i < I915_NUM_RINGS; i++) {
3017 struct drm_i915_gem_request *req;
3018
3019 req = obj->last_read_req[i];
3020 if (req == NULL)
3021 continue;
3022
3023 if (list_empty(&req->list))
3024 goto retire;
3025
3026 if (i915_gem_request_completed(req, true)) {
3027 __i915_gem_request_retire__upto(req);
3028 retire:
3029 i915_gem_object_retire__read(obj, i);
3030 }
3031 }
3032
3033 return 0;
3034 }
3035
3036 /**
3037 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3038 * @DRM_IOCTL_ARGS: standard ioctl arguments
3039 *
3040 * Returns 0 if successful, else an error is returned with the remaining time in
3041 * the timeout parameter.
3042 * -ETIME: object is still busy after timeout
3043 * -ERESTARTSYS: signal interrupted the wait
3044 * -ENONENT: object doesn't exist
3045 * Also possible, but rare:
3046 * -EAGAIN: GPU wedged
3047 * -ENOMEM: damn
3048 * -ENODEV: Internal IRQ fail
3049 * -E?: The add request failed
3050 *
3051 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3052 * non-zero timeout parameter the wait ioctl will wait for the given number of
3053 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3054 * without holding struct_mutex the object may become re-busied before this
3055 * function completes. A similar but shorter * race condition exists in the busy
3056 * ioctl
3057 */
3058 int
3059 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3060 {
3061 struct drm_i915_private *dev_priv = dev->dev_private;
3062 struct drm_i915_gem_wait *args = data;
3063 struct drm_i915_gem_object *obj;
3064 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3065 unsigned reset_counter;
3066 int i, n = 0;
3067 int ret;
3068
3069 if (args->flags != 0)
3070 return -EINVAL;
3071
3072 ret = i915_mutex_lock_interruptible(dev);
3073 if (ret)
3074 return ret;
3075
3076 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3077 if (&obj->base == NULL) {
3078 mutex_unlock(&dev->struct_mutex);
3079 return -ENOENT;
3080 }
3081
3082 /* Need to make sure the object gets inactive eventually. */
3083 ret = i915_gem_object_flush_active(obj);
3084 if (ret)
3085 goto out;
3086
3087 if (!obj->active)
3088 goto out;
3089
3090 /* Do this after OLR check to make sure we make forward progress polling
3091 * on this IOCTL with a timeout == 0 (like busy ioctl)
3092 */
3093 if (args->timeout_ns == 0) {
3094 ret = -ETIME;
3095 goto out;
3096 }
3097
3098 drm_gem_object_unreference(&obj->base);
3099 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3100
3101 for (i = 0; i < I915_NUM_RINGS; i++) {
3102 if (obj->last_read_req[i] == NULL)
3103 continue;
3104
3105 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3106 }
3107
3108 mutex_unlock(&dev->struct_mutex);
3109
3110 for (i = 0; i < n; i++) {
3111 if (ret == 0)
3112 ret = __i915_wait_request(req[i], reset_counter, true,
3113 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3114 file->driver_priv);
3115 i915_gem_request_unreference__unlocked(req[i]);
3116 }
3117 return ret;
3118
3119 out:
3120 drm_gem_object_unreference(&obj->base);
3121 mutex_unlock(&dev->struct_mutex);
3122 return ret;
3123 }
3124
3125 static int
3126 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3127 struct intel_engine_cs *to,
3128 struct drm_i915_gem_request *from_req,
3129 struct drm_i915_gem_request **to_req)
3130 {
3131 struct intel_engine_cs *from;
3132 int ret;
3133
3134 from = i915_gem_request_get_ring(from_req);
3135 if (to == from)
3136 return 0;
3137
3138 if (i915_gem_request_completed(from_req, true))
3139 return 0;
3140
3141 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3142 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3143 ret = __i915_wait_request(from_req,
3144 atomic_read(&i915->gpu_error.reset_counter),
3145 i915->mm.interruptible,
3146 NULL,
3147 &i915->rps.semaphores);
3148 if (ret)
3149 return ret;
3150
3151 i915_gem_object_retire_request(obj, from_req);
3152 } else {
3153 int idx = intel_ring_sync_index(from, to);
3154 u32 seqno = i915_gem_request_get_seqno(from_req);
3155
3156 WARN_ON(!to_req);
3157
3158 if (seqno <= from->semaphore.sync_seqno[idx])
3159 return 0;
3160
3161 if (*to_req == NULL) {
3162 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3163 if (ret)
3164 return ret;
3165 }
3166
3167 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3168 ret = to->semaphore.sync_to(*to_req, from, seqno);
3169 if (ret)
3170 return ret;
3171
3172 /* We use last_read_req because sync_to()
3173 * might have just caused seqno wrap under
3174 * the radar.
3175 */
3176 from->semaphore.sync_seqno[idx] =
3177 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3178 }
3179
3180 return 0;
3181 }
3182
3183 /**
3184 * i915_gem_object_sync - sync an object to a ring.
3185 *
3186 * @obj: object which may be in use on another ring.
3187 * @to: ring we wish to use the object on. May be NULL.
3188 * @to_req: request we wish to use the object for. See below.
3189 * This will be allocated and returned if a request is
3190 * required but not passed in.
3191 *
3192 * This code is meant to abstract object synchronization with the GPU.
3193 * Calling with NULL implies synchronizing the object with the CPU
3194 * rather than a particular GPU ring. Conceptually we serialise writes
3195 * between engines inside the GPU. We only allow one engine to write
3196 * into a buffer at any time, but multiple readers. To ensure each has
3197 * a coherent view of memory, we must:
3198 *
3199 * - If there is an outstanding write request to the object, the new
3200 * request must wait for it to complete (either CPU or in hw, requests
3201 * on the same ring will be naturally ordered).
3202 *
3203 * - If we are a write request (pending_write_domain is set), the new
3204 * request must wait for outstanding read requests to complete.
3205 *
3206 * For CPU synchronisation (NULL to) no request is required. For syncing with
3207 * rings to_req must be non-NULL. However, a request does not have to be
3208 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3209 * request will be allocated automatically and returned through *to_req. Note
3210 * that it is not guaranteed that commands will be emitted (because the system
3211 * might already be idle). Hence there is no need to create a request that
3212 * might never have any work submitted. Note further that if a request is
3213 * returned in *to_req, it is the responsibility of the caller to submit
3214 * that request (after potentially adding more work to it).
3215 *
3216 * Returns 0 if successful, else propagates up the lower layer error.
3217 */
3218 int
3219 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3220 struct intel_engine_cs *to,
3221 struct drm_i915_gem_request **to_req)
3222 {
3223 const bool readonly = obj->base.pending_write_domain == 0;
3224 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3225 int ret, i, n;
3226
3227 if (!obj->active)
3228 return 0;
3229
3230 if (to == NULL)
3231 return i915_gem_object_wait_rendering(obj, readonly);
3232
3233 n = 0;
3234 if (readonly) {
3235 if (obj->last_write_req)
3236 req[n++] = obj->last_write_req;
3237 } else {
3238 for (i = 0; i < I915_NUM_RINGS; i++)
3239 if (obj->last_read_req[i])
3240 req[n++] = obj->last_read_req[i];
3241 }
3242 for (i = 0; i < n; i++) {
3243 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3244 if (ret)
3245 return ret;
3246 }
3247
3248 return 0;
3249 }
3250
3251 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3252 {
3253 u32 old_write_domain, old_read_domains;
3254
3255 /* Force a pagefault for domain tracking on next user access */
3256 i915_gem_release_mmap(obj);
3257
3258 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3259 return;
3260
3261 /* Wait for any direct GTT access to complete */
3262 mb();
3263
3264 old_read_domains = obj->base.read_domains;
3265 old_write_domain = obj->base.write_domain;
3266
3267 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3268 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3269
3270 trace_i915_gem_object_change_domain(obj,
3271 old_read_domains,
3272 old_write_domain);
3273 }
3274
3275 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3276 {
3277 struct drm_i915_gem_object *obj = vma->obj;
3278 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3279 int ret;
3280
3281 if (list_empty(&vma->vma_link))
3282 return 0;
3283
3284 if (!drm_mm_node_allocated(&vma->node)) {
3285 i915_gem_vma_destroy(vma);
3286 return 0;
3287 }
3288
3289 if (vma->pin_count)
3290 return -EBUSY;
3291
3292 BUG_ON(obj->pages == NULL);
3293
3294 if (wait) {
3295 ret = i915_gem_object_wait_rendering(obj, false);
3296 if (ret)
3297 return ret;
3298 }
3299
3300 if (i915_is_ggtt(vma->vm) &&
3301 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3302 i915_gem_object_finish_gtt(obj);
3303
3304 /* release the fence reg _after_ flushing */
3305 ret = i915_gem_object_put_fence(obj);
3306 if (ret)
3307 return ret;
3308 }
3309
3310 trace_i915_vma_unbind(vma);
3311
3312 vma->vm->unbind_vma(vma);
3313 vma->bound = 0;
3314
3315 list_del_init(&vma->mm_list);
3316 if (i915_is_ggtt(vma->vm)) {
3317 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3318 obj->map_and_fenceable = false;
3319 } else if (vma->ggtt_view.pages) {
3320 sg_free_table(vma->ggtt_view.pages);
3321 kfree(vma->ggtt_view.pages);
3322 }
3323 vma->ggtt_view.pages = NULL;
3324 }
3325
3326 drm_mm_remove_node(&vma->node);
3327 i915_gem_vma_destroy(vma);
3328
3329 /* Since the unbound list is global, only move to that list if
3330 * no more VMAs exist. */
3331 if (list_empty(&obj->vma_list))
3332 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3333
3334 /* And finally now the object is completely decoupled from this vma,
3335 * we can drop its hold on the backing storage and allow it to be
3336 * reaped by the shrinker.
3337 */
3338 i915_gem_object_unpin_pages(obj);
3339
3340 return 0;
3341 }
3342
3343 int i915_vma_unbind(struct i915_vma *vma)
3344 {
3345 return __i915_vma_unbind(vma, true);
3346 }
3347
3348 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3349 {
3350 return __i915_vma_unbind(vma, false);
3351 }
3352
3353 int i915_gpu_idle(struct drm_device *dev)
3354 {
3355 struct drm_i915_private *dev_priv = dev->dev_private;
3356 struct intel_engine_cs *ring;
3357 int ret, i;
3358
3359 /* Flush everything onto the inactive list. */
3360 for_each_ring(ring, dev_priv, i) {
3361 if (!i915.enable_execlists) {
3362 struct drm_i915_gem_request *req;
3363
3364 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3365 if (ret)
3366 return ret;
3367
3368 ret = i915_switch_context(req);
3369 if (ret) {
3370 i915_gem_request_cancel(req);
3371 return ret;
3372 }
3373
3374 i915_add_request_no_flush(req);
3375 }
3376
3377 ret = intel_ring_idle(ring);
3378 if (ret)
3379 return ret;
3380 }
3381
3382 WARN_ON(i915_verify_lists(dev));
3383 return 0;
3384 }
3385
3386 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3387 unsigned long cache_level)
3388 {
3389 struct drm_mm_node *gtt_space = &vma->node;
3390 struct drm_mm_node *other;
3391
3392 /*
3393 * On some machines we have to be careful when putting differing types
3394 * of snoopable memory together to avoid the prefetcher crossing memory
3395 * domains and dying. During vm initialisation, we decide whether or not
3396 * these constraints apply and set the drm_mm.color_adjust
3397 * appropriately.
3398 */
3399 if (vma->vm->mm.color_adjust == NULL)
3400 return true;
3401
3402 if (!drm_mm_node_allocated(gtt_space))
3403 return true;
3404
3405 if (list_empty(>t_space->node_list))
3406 return true;
3407
3408 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3409 if (other->allocated && !other->hole_follows && other->color != cache_level)
3410 return false;
3411
3412 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3413 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3414 return false;
3415
3416 return true;
3417 }
3418
3419 /**
3420 * Finds free space in the GTT aperture and binds the object or a view of it
3421 * there.
3422 */
3423 static struct i915_vma *
3424 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3425 struct i915_address_space *vm,
3426 const struct i915_ggtt_view *ggtt_view,
3427 unsigned alignment,
3428 uint64_t flags)
3429 {
3430 struct drm_device *dev = obj->base.dev;
3431 struct drm_i915_private *dev_priv = dev->dev_private;
3432 u32 fence_alignment, unfenced_alignment;
3433 u32 search_flag, alloc_flag;
3434 u64 start, end;
3435 u64 size, fence_size;
3436 struct i915_vma *vma;
3437 int ret;
3438
3439 if (i915_is_ggtt(vm)) {
3440 u32 view_size;
3441
3442 if (WARN_ON(!ggtt_view))
3443 return ERR_PTR(-EINVAL);
3444
3445 view_size = i915_ggtt_view_size(obj, ggtt_view);
3446
3447 fence_size = i915_gem_get_gtt_size(dev,
3448 view_size,
3449 obj->tiling_mode);
3450 fence_alignment = i915_gem_get_gtt_alignment(dev,
3451 view_size,
3452 obj->tiling_mode,
3453 true);
3454 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3455 view_size,
3456 obj->tiling_mode,
3457 false);
3458 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3459 } else {
3460 fence_size = i915_gem_get_gtt_size(dev,
3461 obj->base.size,
3462 obj->tiling_mode);
3463 fence_alignment = i915_gem_get_gtt_alignment(dev,
3464 obj->base.size,
3465 obj->tiling_mode,
3466 true);
3467 unfenced_alignment =
3468 i915_gem_get_gtt_alignment(dev,
3469 obj->base.size,
3470 obj->tiling_mode,
3471 false);
3472 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3473 }
3474
3475 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3476 end = vm->total;
3477 if (flags & PIN_MAPPABLE)
3478 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3479 if (flags & PIN_ZONE_4G)
3480 end = min_t(u64, end, (1ULL << 32));
3481
3482 if (alignment == 0)
3483 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3484 unfenced_alignment;
3485 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3486 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3487 ggtt_view ? ggtt_view->type : 0,
3488 alignment);
3489 return ERR_PTR(-EINVAL);
3490 }
3491
3492 /* If binding the object/GGTT view requires more space than the entire
3493 * aperture has, reject it early before evicting everything in a vain
3494 * attempt to find space.
3495 */
3496 if (size > end) {
3497 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3498 ggtt_view ? ggtt_view->type : 0,
3499 size,
3500 flags & PIN_MAPPABLE ? "mappable" : "total",
3501 end);
3502 return ERR_PTR(-E2BIG);
3503 }
3504
3505 ret = i915_gem_object_get_pages(obj);
3506 if (ret)
3507 return ERR_PTR(ret);
3508
3509 i915_gem_object_pin_pages(obj);
3510
3511 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3512 i915_gem_obj_lookup_or_create_vma(obj, vm);
3513
3514 if (IS_ERR(vma))
3515 goto err_unpin;
3516
3517 if (flags & PIN_HIGH) {
3518 search_flag = DRM_MM_SEARCH_BELOW;
3519 alloc_flag = DRM_MM_CREATE_TOP;
3520 } else {
3521 search_flag = DRM_MM_SEARCH_DEFAULT;
3522 alloc_flag = DRM_MM_CREATE_DEFAULT;
3523 }
3524
3525 search_free:
3526 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3527 size, alignment,
3528 obj->cache_level,
3529 start, end,
3530 search_flag,
3531 alloc_flag);
3532 if (ret) {
3533 ret = i915_gem_evict_something(dev, vm, size, alignment,
3534 obj->cache_level,
3535 start, end,
3536 flags);
3537 if (ret == 0)
3538 goto search_free;
3539
3540 goto err_free_vma;
3541 }
3542 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3543 ret = -EINVAL;
3544 goto err_remove_node;
3545 }
3546
3547 trace_i915_vma_bind(vma, flags);
3548 ret = i915_vma_bind(vma, obj->cache_level, flags);
3549 if (ret)
3550 goto err_remove_node;
3551
3552 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3553 list_add_tail(&vma->mm_list, &vm->inactive_list);
3554
3555 return vma;
3556
3557 err_remove_node:
3558 drm_mm_remove_node(&vma->node);
3559 err_free_vma:
3560 i915_gem_vma_destroy(vma);
3561 vma = ERR_PTR(ret);
3562 err_unpin:
3563 i915_gem_object_unpin_pages(obj);
3564 return vma;
3565 }
3566
3567 bool
3568 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3569 bool force)
3570 {
3571 /* If we don't have a page list set up, then we're not pinned
3572 * to GPU, and we can ignore the cache flush because it'll happen
3573 * again at bind time.
3574 */
3575 if (obj->pages == NULL)
3576 return false;
3577
3578 /*
3579 * Stolen memory is always coherent with the GPU as it is explicitly
3580 * marked as wc by the system, or the system is cache-coherent.
3581 */
3582 if (obj->stolen || obj->phys_handle)
3583 return false;
3584
3585 /* If the GPU is snooping the contents of the CPU cache,
3586 * we do not need to manually clear the CPU cache lines. However,
3587 * the caches are only snooped when the render cache is
3588 * flushed/invalidated. As we always have to emit invalidations
3589 * and flushes when moving into and out of the RENDER domain, correct
3590 * snooping behaviour occurs naturally as the result of our domain
3591 * tracking.
3592 */
3593 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3594 obj->cache_dirty = true;
3595 return false;
3596 }
3597
3598 trace_i915_gem_object_clflush(obj);
3599 drm_clflush_sg(obj->pages);
3600 obj->cache_dirty = false;
3601
3602 return true;
3603 }
3604
3605 /** Flushes the GTT write domain for the object if it's dirty. */
3606 static void
3607 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3608 {
3609 uint32_t old_write_domain;
3610
3611 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3612 return;
3613
3614 /* No actual flushing is required for the GTT write domain. Writes
3615 * to it immediately go to main memory as far as we know, so there's
3616 * no chipset flush. It also doesn't land in render cache.
3617 *
3618 * However, we do have to enforce the order so that all writes through
3619 * the GTT land before any writes to the device, such as updates to
3620 * the GATT itself.
3621 */
3622 wmb();
3623
3624 old_write_domain = obj->base.write_domain;
3625 obj->base.write_domain = 0;
3626
3627 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3628
3629 trace_i915_gem_object_change_domain(obj,
3630 obj->base.read_domains,
3631 old_write_domain);
3632 }
3633
3634 /** Flushes the CPU write domain for the object if it's dirty. */
3635 static void
3636 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3637 {
3638 uint32_t old_write_domain;
3639
3640 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3641 return;
3642
3643 if (i915_gem_clflush_object(obj, obj->pin_display))
3644 i915_gem_chipset_flush(obj->base.dev);
3645
3646 old_write_domain = obj->base.write_domain;
3647 obj->base.write_domain = 0;
3648
3649 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3650
3651 trace_i915_gem_object_change_domain(obj,
3652 obj->base.read_domains,
3653 old_write_domain);
3654 }
3655
3656 /**
3657 * Moves a single object to the GTT read, and possibly write domain.
3658 *
3659 * This function returns when the move is complete, including waiting on
3660 * flushes to occur.
3661 */
3662 int
3663 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3664 {
3665 uint32_t old_write_domain, old_read_domains;
3666 struct i915_vma *vma;
3667 int ret;
3668
3669 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3670 return 0;
3671
3672 ret = i915_gem_object_wait_rendering(obj, !write);
3673 if (ret)
3674 return ret;
3675
3676 /* Flush and acquire obj->pages so that we are coherent through
3677 * direct access in memory with previous cached writes through
3678 * shmemfs and that our cache domain tracking remains valid.
3679 * For example, if the obj->filp was moved to swap without us
3680 * being notified and releasing the pages, we would mistakenly
3681 * continue to assume that the obj remained out of the CPU cached
3682 * domain.
3683 */
3684 ret = i915_gem_object_get_pages(obj);
3685 if (ret)
3686 return ret;
3687
3688 i915_gem_object_flush_cpu_write_domain(obj);
3689
3690 /* Serialise direct access to this object with the barriers for
3691 * coherent writes from the GPU, by effectively invalidating the
3692 * GTT domain upon first access.
3693 */
3694 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3695 mb();
3696
3697 old_write_domain = obj->base.write_domain;
3698 old_read_domains = obj->base.read_domains;
3699
3700 /* It should now be out of any other write domains, and we can update
3701 * the domain values for our changes.
3702 */
3703 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3704 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3705 if (write) {
3706 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3707 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3708 obj->dirty = 1;
3709 }
3710
3711 trace_i915_gem_object_change_domain(obj,
3712 old_read_domains,
3713 old_write_domain);
3714
3715 /* And bump the LRU for this access */
3716 vma = i915_gem_obj_to_ggtt(obj);
3717 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3718 list_move_tail(&vma->mm_list,
3719 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3720
3721 return 0;
3722 }
3723
3724 /**
3725 * Changes the cache-level of an object across all VMA.
3726 *
3727 * After this function returns, the object will be in the new cache-level
3728 * across all GTT and the contents of the backing storage will be coherent,
3729 * with respect to the new cache-level. In order to keep the backing storage
3730 * coherent for all users, we only allow a single cache level to be set
3731 * globally on the object and prevent it from being changed whilst the
3732 * hardware is reading from the object. That is if the object is currently
3733 * on the scanout it will be set to uncached (or equivalent display
3734 * cache coherency) and all non-MOCS GPU access will also be uncached so
3735 * that all direct access to the scanout remains coherent.
3736 */
3737 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3738 enum i915_cache_level cache_level)
3739 {
3740 struct drm_device *dev = obj->base.dev;
3741 struct i915_vma *vma, *next;
3742 bool bound = false;
3743 int ret = 0;
3744
3745 if (obj->cache_level == cache_level)
3746 goto out;
3747
3748 /* Inspect the list of currently bound VMA and unbind any that would
3749 * be invalid given the new cache-level. This is principally to
3750 * catch the issue of the CS prefetch crossing page boundaries and
3751 * reading an invalid PTE on older architectures.
3752 */
3753 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3754 if (!drm_mm_node_allocated(&vma->node))
3755 continue;
3756
3757 if (vma->pin_count) {
3758 DRM_DEBUG("can not change the cache level of pinned objects\n");
3759 return -EBUSY;
3760 }
3761
3762 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3763 ret = i915_vma_unbind(vma);
3764 if (ret)
3765 return ret;
3766 } else
3767 bound = true;
3768 }
3769
3770 /* We can reuse the existing drm_mm nodes but need to change the
3771 * cache-level on the PTE. We could simply unbind them all and
3772 * rebind with the correct cache-level on next use. However since
3773 * we already have a valid slot, dma mapping, pages etc, we may as
3774 * rewrite the PTE in the belief that doing so tramples upon less
3775 * state and so involves less work.
3776 */
3777 if (bound) {
3778 /* Before we change the PTE, the GPU must not be accessing it.
3779 * If we wait upon the object, we know that all the bound
3780 * VMA are no longer active.
3781 */
3782 ret = i915_gem_object_wait_rendering(obj, false);
3783 if (ret)
3784 return ret;
3785
3786 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3787 /* Access to snoopable pages through the GTT is
3788 * incoherent and on some machines causes a hard
3789 * lockup. Relinquish the CPU mmaping to force
3790 * userspace to refault in the pages and we can
3791 * then double check if the GTT mapping is still
3792 * valid for that pointer access.
3793 */
3794 i915_gem_release_mmap(obj);
3795
3796 /* As we no longer need a fence for GTT access,
3797 * we can relinquish it now (and so prevent having
3798 * to steal a fence from someone else on the next
3799 * fence request). Note GPU activity would have
3800 * dropped the fence as all snoopable access is
3801 * supposed to be linear.
3802 */
3803 ret = i915_gem_object_put_fence(obj);
3804 if (ret)
3805 return ret;
3806 } else {
3807 /* We either have incoherent backing store and
3808 * so no GTT access or the architecture is fully
3809 * coherent. In such cases, existing GTT mmaps
3810 * ignore the cache bit in the PTE and we can
3811 * rewrite it without confusing the GPU or having
3812 * to force userspace to fault back in its mmaps.
3813 */
3814 }
3815
3816 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3817 if (!drm_mm_node_allocated(&vma->node))
3818 continue;
3819
3820 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3821 if (ret)
3822 return ret;
3823 }
3824 }
3825
3826 list_for_each_entry(vma, &obj->vma_list, vma_link)
3827 vma->node.color = cache_level;
3828 obj->cache_level = cache_level;
3829
3830 out:
3831 /* Flush the dirty CPU caches to the backing storage so that the
3832 * object is now coherent at its new cache level (with respect
3833 * to the access domain).
3834 */
3835 if (obj->cache_dirty &&
3836 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3837 cpu_write_needs_clflush(obj)) {
3838 if (i915_gem_clflush_object(obj, true))
3839 i915_gem_chipset_flush(obj->base.dev);
3840 }
3841
3842 return 0;
3843 }
3844
3845 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3846 struct drm_file *file)
3847 {
3848 struct drm_i915_gem_caching *args = data;
3849 struct drm_i915_gem_object *obj;
3850
3851 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3852 if (&obj->base == NULL)
3853 return -ENOENT;
3854
3855 switch (obj->cache_level) {
3856 case I915_CACHE_LLC:
3857 case I915_CACHE_L3_LLC:
3858 args->caching = I915_CACHING_CACHED;
3859 break;
3860
3861 case I915_CACHE_WT:
3862 args->caching = I915_CACHING_DISPLAY;
3863 break;
3864
3865 default:
3866 args->caching = I915_CACHING_NONE;
3867 break;
3868 }
3869
3870 drm_gem_object_unreference_unlocked(&obj->base);
3871 return 0;
3872 }
3873
3874 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3875 struct drm_file *file)
3876 {
3877 struct drm_i915_private *dev_priv = dev->dev_private;
3878 struct drm_i915_gem_caching *args = data;
3879 struct drm_i915_gem_object *obj;
3880 enum i915_cache_level level;
3881 int ret;
3882
3883 switch (args->caching) {
3884 case I915_CACHING_NONE:
3885 level = I915_CACHE_NONE;
3886 break;
3887 case I915_CACHING_CACHED:
3888 /*
3889 * Due to a HW issue on BXT A stepping, GPU stores via a
3890 * snooped mapping may leave stale data in a corresponding CPU
3891 * cacheline, whereas normally such cachelines would get
3892 * invalidated.
3893 */
3894 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
3895 return -ENODEV;
3896
3897 level = I915_CACHE_LLC;
3898 break;
3899 case I915_CACHING_DISPLAY:
3900 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3901 break;
3902 default:
3903 return -EINVAL;
3904 }
3905
3906 intel_runtime_pm_get(dev_priv);
3907
3908 ret = i915_mutex_lock_interruptible(dev);
3909 if (ret)
3910 goto rpm_put;
3911
3912 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3913 if (&obj->base == NULL) {
3914 ret = -ENOENT;
3915 goto unlock;
3916 }
3917
3918 ret = i915_gem_object_set_cache_level(obj, level);
3919
3920 drm_gem_object_unreference(&obj->base);
3921 unlock:
3922 mutex_unlock(&dev->struct_mutex);
3923 rpm_put:
3924 intel_runtime_pm_put(dev_priv);
3925
3926 return ret;
3927 }
3928
3929 /*
3930 * Prepare buffer for display plane (scanout, cursors, etc).
3931 * Can be called from an uninterruptible phase (modesetting) and allows
3932 * any flushes to be pipelined (for pageflips).
3933 */
3934 int
3935 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3936 u32 alignment,
3937 struct intel_engine_cs *pipelined,
3938 struct drm_i915_gem_request **pipelined_request,
3939 const struct i915_ggtt_view *view)
3940 {
3941 u32 old_read_domains, old_write_domain;
3942 int ret;
3943
3944 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3945 if (ret)
3946 return ret;
3947
3948 /* Mark the pin_display early so that we account for the
3949 * display coherency whilst setting up the cache domains.
3950 */
3951 obj->pin_display++;
3952
3953 /* The display engine is not coherent with the LLC cache on gen6. As
3954 * a result, we make sure that the pinning that is about to occur is
3955 * done with uncached PTEs. This is lowest common denominator for all
3956 * chipsets.
3957 *
3958 * However for gen6+, we could do better by using the GFDT bit instead
3959 * of uncaching, which would allow us to flush all the LLC-cached data
3960 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3961 */
3962 ret = i915_gem_object_set_cache_level(obj,
3963 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3964 if (ret)
3965 goto err_unpin_display;
3966
3967 /* As the user may map the buffer once pinned in the display plane
3968 * (e.g. libkms for the bootup splash), we have to ensure that we
3969 * always use map_and_fenceable for all scanout buffers.
3970 */
3971 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3972 view->type == I915_GGTT_VIEW_NORMAL ?
3973 PIN_MAPPABLE : 0);
3974 if (ret)
3975 goto err_unpin_display;
3976
3977 i915_gem_object_flush_cpu_write_domain(obj);
3978
3979 old_write_domain = obj->base.write_domain;
3980 old_read_domains = obj->base.read_domains;
3981
3982 /* It should now be out of any other write domains, and we can update
3983 * the domain values for our changes.
3984 */
3985 obj->base.write_domain = 0;
3986 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3987
3988 trace_i915_gem_object_change_domain(obj,
3989 old_read_domains,
3990 old_write_domain);
3991
3992 return 0;
3993
3994 err_unpin_display:
3995 obj->pin_display--;
3996 return ret;
3997 }
3998
3999 void
4000 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4001 const struct i915_ggtt_view *view)
4002 {
4003 if (WARN_ON(obj->pin_display == 0))
4004 return;
4005
4006 i915_gem_object_ggtt_unpin_view(obj, view);
4007
4008 obj->pin_display--;
4009 }
4010
4011 /**
4012 * Moves a single object to the CPU read, and possibly write domain.
4013 *
4014 * This function returns when the move is complete, including waiting on
4015 * flushes to occur.
4016 */
4017 int
4018 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4019 {
4020 uint32_t old_write_domain, old_read_domains;
4021 int ret;
4022
4023 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4024 return 0;
4025
4026 ret = i915_gem_object_wait_rendering(obj, !write);
4027 if (ret)
4028 return ret;
4029
4030 i915_gem_object_flush_gtt_write_domain(obj);
4031
4032 old_write_domain = obj->base.write_domain;
4033 old_read_domains = obj->base.read_domains;
4034
4035 /* Flush the CPU cache if it's still invalid. */
4036 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4037 i915_gem_clflush_object(obj, false);
4038
4039 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4040 }
4041
4042 /* It should now be out of any other write domains, and we can update
4043 * the domain values for our changes.
4044 */
4045 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4046
4047 /* If we're writing through the CPU, then the GPU read domains will
4048 * need to be invalidated at next use.
4049 */
4050 if (write) {
4051 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4052 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4053 }
4054
4055 trace_i915_gem_object_change_domain(obj,
4056 old_read_domains,
4057 old_write_domain);
4058
4059 return 0;
4060 }
4061
4062 /* Throttle our rendering by waiting until the ring has completed our requests
4063 * emitted over 20 msec ago.
4064 *
4065 * Note that if we were to use the current jiffies each time around the loop,
4066 * we wouldn't escape the function with any frames outstanding if the time to
4067 * render a frame was over 20ms.
4068 *
4069 * This should get us reasonable parallelism between CPU and GPU but also
4070 * relatively low latency when blocking on a particular request to finish.
4071 */
4072 static int
4073 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4074 {
4075 struct drm_i915_private *dev_priv = dev->dev_private;
4076 struct drm_i915_file_private *file_priv = file->driver_priv;
4077 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4078 struct drm_i915_gem_request *request, *target = NULL;
4079 unsigned reset_counter;
4080 int ret;
4081
4082 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4083 if (ret)
4084 return ret;
4085
4086 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4087 if (ret)
4088 return ret;
4089
4090 spin_lock(&file_priv->mm.lock);
4091 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4092 if (time_after_eq(request->emitted_jiffies, recent_enough))
4093 break;
4094
4095 /*
4096 * Note that the request might not have been submitted yet.
4097 * In which case emitted_jiffies will be zero.
4098 */
4099 if (!request->emitted_jiffies)
4100 continue;
4101
4102 target = request;
4103 }
4104 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4105 if (target)
4106 i915_gem_request_reference(target);
4107 spin_unlock(&file_priv->mm.lock);
4108
4109 if (target == NULL)
4110 return 0;
4111
4112 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4113 if (ret == 0)
4114 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4115
4116 i915_gem_request_unreference__unlocked(target);
4117
4118 return ret;
4119 }
4120
4121 static bool
4122 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4123 {
4124 struct drm_i915_gem_object *obj = vma->obj;
4125
4126 if (alignment &&
4127 vma->node.start & (alignment - 1))
4128 return true;
4129
4130 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4131 return true;
4132
4133 if (flags & PIN_OFFSET_BIAS &&
4134 vma->node.start < (flags & PIN_OFFSET_MASK))
4135 return true;
4136
4137 return false;
4138 }
4139
4140 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4141 {
4142 struct drm_i915_gem_object *obj = vma->obj;
4143 bool mappable, fenceable;
4144 u32 fence_size, fence_alignment;
4145
4146 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4147 obj->base.size,
4148 obj->tiling_mode);
4149 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4150 obj->base.size,
4151 obj->tiling_mode,
4152 true);
4153
4154 fenceable = (vma->node.size == fence_size &&
4155 (vma->node.start & (fence_alignment - 1)) == 0);
4156
4157 mappable = (vma->node.start + fence_size <=
4158 to_i915(obj->base.dev)->gtt.mappable_end);
4159
4160 obj->map_and_fenceable = mappable && fenceable;
4161 }
4162
4163 static int
4164 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4165 struct i915_address_space *vm,
4166 const struct i915_ggtt_view *ggtt_view,
4167 uint32_t alignment,
4168 uint64_t flags)
4169 {
4170 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4171 struct i915_vma *vma;
4172 unsigned bound;
4173 int ret;
4174
4175 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4176 return -ENODEV;
4177
4178 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4179 return -EINVAL;
4180
4181 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4182 return -EINVAL;
4183
4184 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4185 return -EINVAL;
4186
4187 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4188 i915_gem_obj_to_vma(obj, vm);
4189
4190 if (IS_ERR(vma))
4191 return PTR_ERR(vma);
4192
4193 if (vma) {
4194 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4195 return -EBUSY;
4196
4197 if (i915_vma_misplaced(vma, alignment, flags)) {
4198 WARN(vma->pin_count,
4199 "bo is already pinned in %s with incorrect alignment:"
4200 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4201 " obj->map_and_fenceable=%d\n",
4202 ggtt_view ? "ggtt" : "ppgtt",
4203 upper_32_bits(vma->node.start),
4204 lower_32_bits(vma->node.start),
4205 alignment,
4206 !!(flags & PIN_MAPPABLE),
4207 obj->map_and_fenceable);
4208 ret = i915_vma_unbind(vma);
4209 if (ret)
4210 return ret;
4211
4212 vma = NULL;
4213 }
4214 }
4215
4216 bound = vma ? vma->bound : 0;
4217 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4218 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4219 flags);
4220 if (IS_ERR(vma))
4221 return PTR_ERR(vma);
4222 } else {
4223 ret = i915_vma_bind(vma, obj->cache_level, flags);
4224 if (ret)
4225 return ret;
4226 }
4227
4228 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4229 (bound ^ vma->bound) & GLOBAL_BIND) {
4230 __i915_vma_set_map_and_fenceable(vma);
4231 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4232 }
4233
4234 vma->pin_count++;
4235 return 0;
4236 }
4237
4238 int
4239 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4240 struct i915_address_space *vm,
4241 uint32_t alignment,
4242 uint64_t flags)
4243 {
4244 return i915_gem_object_do_pin(obj, vm,
4245 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4246 alignment, flags);
4247 }
4248
4249 int
4250 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4251 const struct i915_ggtt_view *view,
4252 uint32_t alignment,
4253 uint64_t flags)
4254 {
4255 if (WARN_ONCE(!view, "no view specified"))
4256 return -EINVAL;
4257
4258 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4259 alignment, flags | PIN_GLOBAL);
4260 }
4261
4262 void
4263 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4264 const struct i915_ggtt_view *view)
4265 {
4266 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4267
4268 BUG_ON(!vma);
4269 WARN_ON(vma->pin_count == 0);
4270 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4271
4272 --vma->pin_count;
4273 }
4274
4275 int
4276 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4277 struct drm_file *file)
4278 {
4279 struct drm_i915_gem_busy *args = data;
4280 struct drm_i915_gem_object *obj;
4281 int ret;
4282
4283 ret = i915_mutex_lock_interruptible(dev);
4284 if (ret)
4285 return ret;
4286
4287 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4288 if (&obj->base == NULL) {
4289 ret = -ENOENT;
4290 goto unlock;
4291 }
4292
4293 /* Count all active objects as busy, even if they are currently not used
4294 * by the gpu. Users of this interface expect objects to eventually
4295 * become non-busy without any further actions, therefore emit any
4296 * necessary flushes here.
4297 */
4298 ret = i915_gem_object_flush_active(obj);
4299 if (ret)
4300 goto unref;
4301
4302 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4303 args->busy = obj->active << 16;
4304 if (obj->last_write_req)
4305 args->busy |= obj->last_write_req->ring->id;
4306
4307 unref:
4308 drm_gem_object_unreference(&obj->base);
4309 unlock:
4310 mutex_unlock(&dev->struct_mutex);
4311 return ret;
4312 }
4313
4314 int
4315 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4316 struct drm_file *file_priv)
4317 {
4318 return i915_gem_ring_throttle(dev, file_priv);
4319 }
4320
4321 int
4322 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4323 struct drm_file *file_priv)
4324 {
4325 struct drm_i915_private *dev_priv = dev->dev_private;
4326 struct drm_i915_gem_madvise *args = data;
4327 struct drm_i915_gem_object *obj;
4328 int ret;
4329
4330 switch (args->madv) {
4331 case I915_MADV_DONTNEED:
4332 case I915_MADV_WILLNEED:
4333 break;
4334 default:
4335 return -EINVAL;
4336 }
4337
4338 ret = i915_mutex_lock_interruptible(dev);
4339 if (ret)
4340 return ret;
4341
4342 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4343 if (&obj->base == NULL) {
4344 ret = -ENOENT;
4345 goto unlock;
4346 }
4347
4348 if (i915_gem_obj_is_pinned(obj)) {
4349 ret = -EINVAL;
4350 goto out;
4351 }
4352
4353 if (obj->pages &&
4354 obj->tiling_mode != I915_TILING_NONE &&
4355 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4356 if (obj->madv == I915_MADV_WILLNEED)
4357 i915_gem_object_unpin_pages(obj);
4358 if (args->madv == I915_MADV_WILLNEED)
4359 i915_gem_object_pin_pages(obj);
4360 }
4361
4362 if (obj->madv != __I915_MADV_PURGED)
4363 obj->madv = args->madv;
4364
4365 /* if the object is no longer attached, discard its backing storage */
4366 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4367 i915_gem_object_truncate(obj);
4368
4369 args->retained = obj->madv != __I915_MADV_PURGED;
4370
4371 out:
4372 drm_gem_object_unreference(&obj->base);
4373 unlock:
4374 mutex_unlock(&dev->struct_mutex);
4375 return ret;
4376 }
4377
4378 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4379 const struct drm_i915_gem_object_ops *ops)
4380 {
4381 int i;
4382
4383 INIT_LIST_HEAD(&obj->global_list);
4384 for (i = 0; i < I915_NUM_RINGS; i++)
4385 INIT_LIST_HEAD(&obj->ring_list[i]);
4386 INIT_LIST_HEAD(&obj->obj_exec_link);
4387 INIT_LIST_HEAD(&obj->vma_list);
4388 INIT_LIST_HEAD(&obj->batch_pool_link);
4389
4390 obj->ops = ops;
4391
4392 obj->fence_reg = I915_FENCE_REG_NONE;
4393 obj->madv = I915_MADV_WILLNEED;
4394
4395 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4396 }
4397
4398 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4399 .get_pages = i915_gem_object_get_pages_gtt,
4400 .put_pages = i915_gem_object_put_pages_gtt,
4401 };
4402
4403 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4404 size_t size)
4405 {
4406 struct drm_i915_gem_object *obj;
4407 struct address_space *mapping;
4408 gfp_t mask;
4409
4410 obj = i915_gem_object_alloc(dev);
4411 if (obj == NULL)
4412 return NULL;
4413
4414 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4415 i915_gem_object_free(obj);
4416 return NULL;
4417 }
4418
4419 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4420 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4421 /* 965gm cannot relocate objects above 4GiB. */
4422 mask &= ~__GFP_HIGHMEM;
4423 mask |= __GFP_DMA32;
4424 }
4425
4426 mapping = file_inode(obj->base.filp)->i_mapping;
4427 mapping_set_gfp_mask(mapping, mask);
4428
4429 i915_gem_object_init(obj, &i915_gem_object_ops);
4430
4431 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4432 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4433
4434 if (HAS_LLC(dev)) {
4435 /* On some devices, we can have the GPU use the LLC (the CPU
4436 * cache) for about a 10% performance improvement
4437 * compared to uncached. Graphics requests other than
4438 * display scanout are coherent with the CPU in
4439 * accessing this cache. This means in this mode we
4440 * don't need to clflush on the CPU side, and on the
4441 * GPU side we only need to flush internal caches to
4442 * get data visible to the CPU.
4443 *
4444 * However, we maintain the display planes as UC, and so
4445 * need to rebind when first used as such.
4446 */
4447 obj->cache_level = I915_CACHE_LLC;
4448 } else
4449 obj->cache_level = I915_CACHE_NONE;
4450
4451 trace_i915_gem_object_create(obj);
4452
4453 return obj;
4454 }
4455
4456 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4457 {
4458 /* If we are the last user of the backing storage (be it shmemfs
4459 * pages or stolen etc), we know that the pages are going to be
4460 * immediately released. In this case, we can then skip copying
4461 * back the contents from the GPU.
4462 */
4463
4464 if (obj->madv != I915_MADV_WILLNEED)
4465 return false;
4466
4467 if (obj->base.filp == NULL)
4468 return true;
4469
4470 /* At first glance, this looks racy, but then again so would be
4471 * userspace racing mmap against close. However, the first external
4472 * reference to the filp can only be obtained through the
4473 * i915_gem_mmap_ioctl() which safeguards us against the user
4474 * acquiring such a reference whilst we are in the middle of
4475 * freeing the object.
4476 */
4477 return atomic_long_read(&obj->base.filp->f_count) == 1;
4478 }
4479
4480 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4481 {
4482 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4483 struct drm_device *dev = obj->base.dev;
4484 struct drm_i915_private *dev_priv = dev->dev_private;
4485 struct i915_vma *vma, *next;
4486
4487 intel_runtime_pm_get(dev_priv);
4488
4489 trace_i915_gem_object_destroy(obj);
4490
4491 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4492 int ret;
4493
4494 vma->pin_count = 0;
4495 ret = i915_vma_unbind(vma);
4496 if (WARN_ON(ret == -ERESTARTSYS)) {
4497 bool was_interruptible;
4498
4499 was_interruptible = dev_priv->mm.interruptible;
4500 dev_priv->mm.interruptible = false;
4501
4502 WARN_ON(i915_vma_unbind(vma));
4503
4504 dev_priv->mm.interruptible = was_interruptible;
4505 }
4506 }
4507
4508 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4509 * before progressing. */
4510 if (obj->stolen)
4511 i915_gem_object_unpin_pages(obj);
4512
4513 WARN_ON(obj->frontbuffer_bits);
4514
4515 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4516 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4517 obj->tiling_mode != I915_TILING_NONE)
4518 i915_gem_object_unpin_pages(obj);
4519
4520 if (WARN_ON(obj->pages_pin_count))
4521 obj->pages_pin_count = 0;
4522 if (discard_backing_storage(obj))
4523 obj->madv = I915_MADV_DONTNEED;
4524 i915_gem_object_put_pages(obj);
4525 i915_gem_object_free_mmap_offset(obj);
4526
4527 BUG_ON(obj->pages);
4528
4529 if (obj->base.import_attach)
4530 drm_prime_gem_destroy(&obj->base, NULL);
4531
4532 if (obj->ops->release)
4533 obj->ops->release(obj);
4534
4535 drm_gem_object_release(&obj->base);
4536 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4537
4538 kfree(obj->bit_17);
4539 i915_gem_object_free(obj);
4540
4541 intel_runtime_pm_put(dev_priv);
4542 }
4543
4544 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4545 struct i915_address_space *vm)
4546 {
4547 struct i915_vma *vma;
4548 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4549 if (i915_is_ggtt(vma->vm) &&
4550 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4551 continue;
4552 if (vma->vm == vm)
4553 return vma;
4554 }
4555 return NULL;
4556 }
4557
4558 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4559 const struct i915_ggtt_view *view)
4560 {
4561 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4562 struct i915_vma *vma;
4563
4564 if (WARN_ONCE(!view, "no view specified"))
4565 return ERR_PTR(-EINVAL);
4566
4567 list_for_each_entry(vma, &obj->vma_list, vma_link)
4568 if (vma->vm == ggtt &&
4569 i915_ggtt_view_equal(&vma->ggtt_view, view))
4570 return vma;
4571 return NULL;
4572 }
4573
4574 void i915_gem_vma_destroy(struct i915_vma *vma)
4575 {
4576 struct i915_address_space *vm = NULL;
4577 WARN_ON(vma->node.allocated);
4578
4579 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4580 if (!list_empty(&vma->exec_list))
4581 return;
4582
4583 vm = vma->vm;
4584
4585 if (!i915_is_ggtt(vm))
4586 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4587
4588 list_del(&vma->vma_link);
4589
4590 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4591 }
4592
4593 static void
4594 i915_gem_stop_ringbuffers(struct drm_device *dev)
4595 {
4596 struct drm_i915_private *dev_priv = dev->dev_private;
4597 struct intel_engine_cs *ring;
4598 int i;
4599
4600 for_each_ring(ring, dev_priv, i)
4601 dev_priv->gt.stop_ring(ring);
4602 }
4603
4604 int
4605 i915_gem_suspend(struct drm_device *dev)
4606 {
4607 struct drm_i915_private *dev_priv = dev->dev_private;
4608 int ret = 0;
4609
4610 mutex_lock(&dev->struct_mutex);
4611 ret = i915_gpu_idle(dev);
4612 if (ret)
4613 goto err;
4614
4615 i915_gem_retire_requests(dev);
4616
4617 i915_gem_stop_ringbuffers(dev);
4618 mutex_unlock(&dev->struct_mutex);
4619
4620 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4621 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4622 flush_delayed_work(&dev_priv->mm.idle_work);
4623
4624 /* Assert that we sucessfully flushed all the work and
4625 * reset the GPU back to its idle, low power state.
4626 */
4627 WARN_ON(dev_priv->mm.busy);
4628
4629 return 0;
4630
4631 err:
4632 mutex_unlock(&dev->struct_mutex);
4633 return ret;
4634 }
4635
4636 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4637 {
4638 struct intel_engine_cs *ring = req->ring;
4639 struct drm_device *dev = ring->dev;
4640 struct drm_i915_private *dev_priv = dev->dev_private;
4641 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4642 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4643 int i, ret;
4644
4645 if (!HAS_L3_DPF(dev) || !remap_info)
4646 return 0;
4647
4648 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4649 if (ret)
4650 return ret;
4651
4652 /*
4653 * Note: We do not worry about the concurrent register cacheline hang
4654 * here because no other code should access these registers other than
4655 * at initialization time.
4656 */
4657 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4658 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4659 intel_ring_emit(ring, reg_base + i);
4660 intel_ring_emit(ring, remap_info[i/4]);
4661 }
4662
4663 intel_ring_advance(ring);
4664
4665 return ret;
4666 }
4667
4668 void i915_gem_init_swizzling(struct drm_device *dev)
4669 {
4670 struct drm_i915_private *dev_priv = dev->dev_private;
4671
4672 if (INTEL_INFO(dev)->gen < 5 ||
4673 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4674 return;
4675
4676 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4677 DISP_TILE_SURFACE_SWIZZLING);
4678
4679 if (IS_GEN5(dev))
4680 return;
4681
4682 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4683 if (IS_GEN6(dev))
4684 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4685 else if (IS_GEN7(dev))
4686 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4687 else if (IS_GEN8(dev))
4688 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4689 else
4690 BUG();
4691 }
4692
4693 static void init_unused_ring(struct drm_device *dev, u32 base)
4694 {
4695 struct drm_i915_private *dev_priv = dev->dev_private;
4696
4697 I915_WRITE(RING_CTL(base), 0);
4698 I915_WRITE(RING_HEAD(base), 0);
4699 I915_WRITE(RING_TAIL(base), 0);
4700 I915_WRITE(RING_START(base), 0);
4701 }
4702
4703 static void init_unused_rings(struct drm_device *dev)
4704 {
4705 if (IS_I830(dev)) {
4706 init_unused_ring(dev, PRB1_BASE);
4707 init_unused_ring(dev, SRB0_BASE);
4708 init_unused_ring(dev, SRB1_BASE);
4709 init_unused_ring(dev, SRB2_BASE);
4710 init_unused_ring(dev, SRB3_BASE);
4711 } else if (IS_GEN2(dev)) {
4712 init_unused_ring(dev, SRB0_BASE);
4713 init_unused_ring(dev, SRB1_BASE);
4714 } else if (IS_GEN3(dev)) {
4715 init_unused_ring(dev, PRB1_BASE);
4716 init_unused_ring(dev, PRB2_BASE);
4717 }
4718 }
4719
4720 int i915_gem_init_rings(struct drm_device *dev)
4721 {
4722 struct drm_i915_private *dev_priv = dev->dev_private;
4723 int ret;
4724
4725 ret = intel_init_render_ring_buffer(dev);
4726 if (ret)
4727 return ret;
4728
4729 if (HAS_BSD(dev)) {
4730 ret = intel_init_bsd_ring_buffer(dev);
4731 if (ret)
4732 goto cleanup_render_ring;
4733 }
4734
4735 if (HAS_BLT(dev)) {
4736 ret = intel_init_blt_ring_buffer(dev);
4737 if (ret)
4738 goto cleanup_bsd_ring;
4739 }
4740
4741 if (HAS_VEBOX(dev)) {
4742 ret = intel_init_vebox_ring_buffer(dev);
4743 if (ret)
4744 goto cleanup_blt_ring;
4745 }
4746
4747 if (HAS_BSD2(dev)) {
4748 ret = intel_init_bsd2_ring_buffer(dev);
4749 if (ret)
4750 goto cleanup_vebox_ring;
4751 }
4752
4753 return 0;
4754
4755 cleanup_vebox_ring:
4756 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4757 cleanup_blt_ring:
4758 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4759 cleanup_bsd_ring:
4760 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4761 cleanup_render_ring:
4762 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4763
4764 return ret;
4765 }
4766
4767 int
4768 i915_gem_init_hw(struct drm_device *dev)
4769 {
4770 struct drm_i915_private *dev_priv = dev->dev_private;
4771 struct intel_engine_cs *ring;
4772 int ret, i, j;
4773
4774 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4775 return -EIO;
4776
4777 /* Double layer security blanket, see i915_gem_init() */
4778 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4779
4780 if (dev_priv->ellc_size)
4781 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4782
4783 if (IS_HASWELL(dev))
4784 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4785 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4786
4787 if (HAS_PCH_NOP(dev)) {
4788 if (IS_IVYBRIDGE(dev)) {
4789 u32 temp = I915_READ(GEN7_MSG_CTL);
4790 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4791 I915_WRITE(GEN7_MSG_CTL, temp);
4792 } else if (INTEL_INFO(dev)->gen >= 7) {
4793 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4794 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4795 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4796 }
4797 }
4798
4799 i915_gem_init_swizzling(dev);
4800
4801 /*
4802 * At least 830 can leave some of the unused rings
4803 * "active" (ie. head != tail) after resume which
4804 * will prevent c3 entry. Makes sure all unused rings
4805 * are totally idle.
4806 */
4807 init_unused_rings(dev);
4808
4809 BUG_ON(!dev_priv->ring[RCS].default_context);
4810
4811 ret = i915_ppgtt_init_hw(dev);
4812 if (ret) {
4813 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4814 goto out;
4815 }
4816
4817 /* Need to do basic initialisation of all rings first: */
4818 for_each_ring(ring, dev_priv, i) {
4819 ret = ring->init_hw(ring);
4820 if (ret)
4821 goto out;
4822 }
4823
4824 /* We can't enable contexts until all firmware is loaded */
4825 if (HAS_GUC_UCODE(dev)) {
4826 ret = intel_guc_ucode_load(dev);
4827 if (ret) {
4828 /*
4829 * If we got an error and GuC submission is enabled, map
4830 * the error to -EIO so the GPU will be declared wedged.
4831 * OTOH, if we didn't intend to use the GuC anyway, just
4832 * discard the error and carry on.
4833 */
4834 DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
4835 i915.enable_guc_submission ? "" :
4836 " (ignored)");
4837 ret = i915.enable_guc_submission ? -EIO : 0;
4838 if (ret)
4839 goto out;
4840 }
4841 }
4842
4843 /*
4844 * Increment the next seqno by 0x100 so we have a visible break
4845 * on re-initialisation
4846 */
4847 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4848 if (ret)
4849 goto out;
4850
4851 /* Now it is safe to go back round and do everything else: */
4852 for_each_ring(ring, dev_priv, i) {
4853 struct drm_i915_gem_request *req;
4854
4855 WARN_ON(!ring->default_context);
4856
4857 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4858 if (ret) {
4859 i915_gem_cleanup_ringbuffer(dev);
4860 goto out;
4861 }
4862
4863 if (ring->id == RCS) {
4864 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4865 i915_gem_l3_remap(req, j);
4866 }
4867
4868 ret = i915_ppgtt_init_ring(req);
4869 if (ret && ret != -EIO) {
4870 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4871 i915_gem_request_cancel(req);
4872 i915_gem_cleanup_ringbuffer(dev);
4873 goto out;
4874 }
4875
4876 ret = i915_gem_context_enable(req);
4877 if (ret && ret != -EIO) {
4878 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4879 i915_gem_request_cancel(req);
4880 i915_gem_cleanup_ringbuffer(dev);
4881 goto out;
4882 }
4883
4884 i915_add_request_no_flush(req);
4885 }
4886
4887 out:
4888 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4889 return ret;
4890 }
4891
4892 int i915_gem_init(struct drm_device *dev)
4893 {
4894 struct drm_i915_private *dev_priv = dev->dev_private;
4895 int ret;
4896
4897 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4898 i915.enable_execlists);
4899
4900 mutex_lock(&dev->struct_mutex);
4901
4902 if (IS_VALLEYVIEW(dev)) {
4903 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4904 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4905 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4906 VLV_GTLC_ALLOWWAKEACK), 10))
4907 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4908 }
4909
4910 if (!i915.enable_execlists) {
4911 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4912 dev_priv->gt.init_rings = i915_gem_init_rings;
4913 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4914 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4915 } else {
4916 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4917 dev_priv->gt.init_rings = intel_logical_rings_init;
4918 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4919 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4920 }
4921
4922 /* This is just a security blanket to placate dragons.
4923 * On some systems, we very sporadically observe that the first TLBs
4924 * used by the CS may be stale, despite us poking the TLB reset. If
4925 * we hold the forcewake during initialisation these problems
4926 * just magically go away.
4927 */
4928 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4929
4930 ret = i915_gem_init_userptr(dev);
4931 if (ret)
4932 goto out_unlock;
4933
4934 i915_gem_init_global_gtt(dev);
4935
4936 ret = i915_gem_context_init(dev);
4937 if (ret)
4938 goto out_unlock;
4939
4940 ret = dev_priv->gt.init_rings(dev);
4941 if (ret)
4942 goto out_unlock;
4943
4944 ret = i915_gem_init_hw(dev);
4945 if (ret == -EIO) {
4946 /* Allow ring initialisation to fail by marking the GPU as
4947 * wedged. But we only want to do this where the GPU is angry,
4948 * for all other failure, such as an allocation failure, bail.
4949 */
4950 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4951 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4952 ret = 0;
4953 }
4954
4955 out_unlock:
4956 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4957 mutex_unlock(&dev->struct_mutex);
4958
4959 return ret;
4960 }
4961
4962 void
4963 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4964 {
4965 struct drm_i915_private *dev_priv = dev->dev_private;
4966 struct intel_engine_cs *ring;
4967 int i;
4968
4969 for_each_ring(ring, dev_priv, i)
4970 dev_priv->gt.cleanup_ring(ring);
4971
4972 if (i915.enable_execlists)
4973 /*
4974 * Neither the BIOS, ourselves or any other kernel
4975 * expects the system to be in execlists mode on startup,
4976 * so we need to reset the GPU back to legacy mode.
4977 */
4978 intel_gpu_reset(dev);
4979 }
4980
4981 static void
4982 init_ring_lists(struct intel_engine_cs *ring)
4983 {
4984 INIT_LIST_HEAD(&ring->active_list);
4985 INIT_LIST_HEAD(&ring->request_list);
4986 }
4987
4988 void
4989 i915_gem_load(struct drm_device *dev)
4990 {
4991 struct drm_i915_private *dev_priv = dev->dev_private;
4992 int i;
4993
4994 dev_priv->objects =
4995 kmem_cache_create("i915_gem_object",
4996 sizeof(struct drm_i915_gem_object), 0,
4997 SLAB_HWCACHE_ALIGN,
4998 NULL);
4999 dev_priv->vmas =
5000 kmem_cache_create("i915_gem_vma",
5001 sizeof(struct i915_vma), 0,
5002 SLAB_HWCACHE_ALIGN,
5003 NULL);
5004 dev_priv->requests =
5005 kmem_cache_create("i915_gem_request",
5006 sizeof(struct drm_i915_gem_request), 0,
5007 SLAB_HWCACHE_ALIGN,
5008 NULL);
5009
5010 INIT_LIST_HEAD(&dev_priv->vm_list);
5011 INIT_LIST_HEAD(&dev_priv->context_list);
5012 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5013 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5014 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5015 for (i = 0; i < I915_NUM_RINGS; i++)
5016 init_ring_lists(&dev_priv->ring[i]);
5017 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5018 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5019 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5020 i915_gem_retire_work_handler);
5021 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5022 i915_gem_idle_work_handler);
5023 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5024
5025 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5026
5027 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5028 dev_priv->num_fence_regs = 32;
5029 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5030 dev_priv->num_fence_regs = 16;
5031 else
5032 dev_priv->num_fence_regs = 8;
5033
5034 if (intel_vgpu_active(dev))
5035 dev_priv->num_fence_regs =
5036 I915_READ(vgtif_reg(avail_rs.fence_num));
5037
5038 /*
5039 * Set initial sequence number for requests.
5040 * Using this number allows the wraparound to happen early,
5041 * catching any obvious problems.
5042 */
5043 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5044 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5045
5046 /* Initialize fence registers to zero */
5047 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5048 i915_gem_restore_fences(dev);
5049
5050 i915_gem_detect_bit_6_swizzle(dev);
5051 init_waitqueue_head(&dev_priv->pending_flip_queue);
5052
5053 dev_priv->mm.interruptible = true;
5054
5055 i915_gem_shrinker_init(dev_priv);
5056
5057 mutex_init(&dev_priv->fb_tracking.lock);
5058 }
5059
5060 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5061 {
5062 struct drm_i915_file_private *file_priv = file->driver_priv;
5063
5064 /* Clean up our request list when the client is going away, so that
5065 * later retire_requests won't dereference our soon-to-be-gone
5066 * file_priv.
5067 */
5068 spin_lock(&file_priv->mm.lock);
5069 while (!list_empty(&file_priv->mm.request_list)) {
5070 struct drm_i915_gem_request *request;
5071
5072 request = list_first_entry(&file_priv->mm.request_list,
5073 struct drm_i915_gem_request,
5074 client_list);
5075 list_del(&request->client_list);
5076 request->file_priv = NULL;
5077 }
5078 spin_unlock(&file_priv->mm.lock);
5079
5080 if (!list_empty(&file_priv->rps.link)) {
5081 spin_lock(&to_i915(dev)->rps.client_lock);
5082 list_del(&file_priv->rps.link);
5083 spin_unlock(&to_i915(dev)->rps.client_lock);
5084 }
5085 }
5086
5087 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5088 {
5089 struct drm_i915_file_private *file_priv;
5090 int ret;
5091
5092 DRM_DEBUG_DRIVER("\n");
5093
5094 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5095 if (!file_priv)
5096 return -ENOMEM;
5097
5098 file->driver_priv = file_priv;
5099 file_priv->dev_priv = dev->dev_private;
5100 file_priv->file = file;
5101 INIT_LIST_HEAD(&file_priv->rps.link);
5102
5103 spin_lock_init(&file_priv->mm.lock);
5104 INIT_LIST_HEAD(&file_priv->mm.request_list);
5105
5106 ret = i915_gem_context_open(dev, file);
5107 if (ret)
5108 kfree(file_priv);
5109
5110 return ret;
5111 }
5112
5113 /**
5114 * i915_gem_track_fb - update frontbuffer tracking
5115 * @old: current GEM buffer for the frontbuffer slots
5116 * @new: new GEM buffer for the frontbuffer slots
5117 * @frontbuffer_bits: bitmask of frontbuffer slots
5118 *
5119 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5120 * from @old and setting them in @new. Both @old and @new can be NULL.
5121 */
5122 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5123 struct drm_i915_gem_object *new,
5124 unsigned frontbuffer_bits)
5125 {
5126 if (old) {
5127 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5128 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5129 old->frontbuffer_bits &= ~frontbuffer_bits;
5130 }
5131
5132 if (new) {
5133 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5134 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5135 new->frontbuffer_bits |= frontbuffer_bits;
5136 }
5137 }
5138
5139 /* All the new VM stuff */
5140 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5141 struct i915_address_space *vm)
5142 {
5143 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5144 struct i915_vma *vma;
5145
5146 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5147
5148 list_for_each_entry(vma, &o->vma_list, vma_link) {
5149 if (i915_is_ggtt(vma->vm) &&
5150 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5151 continue;
5152 if (vma->vm == vm)
5153 return vma->node.start;
5154 }
5155
5156 WARN(1, "%s vma for this object not found.\n",
5157 i915_is_ggtt(vm) ? "global" : "ppgtt");
5158 return -1;
5159 }
5160
5161 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5162 const struct i915_ggtt_view *view)
5163 {
5164 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5165 struct i915_vma *vma;
5166
5167 list_for_each_entry(vma, &o->vma_list, vma_link)
5168 if (vma->vm == ggtt &&
5169 i915_ggtt_view_equal(&vma->ggtt_view, view))
5170 return vma->node.start;
5171
5172 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5173 return -1;
5174 }
5175
5176 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5177 struct i915_address_space *vm)
5178 {
5179 struct i915_vma *vma;
5180
5181 list_for_each_entry(vma, &o->vma_list, vma_link) {
5182 if (i915_is_ggtt(vma->vm) &&
5183 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5184 continue;
5185 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5186 return true;
5187 }
5188
5189 return false;
5190 }
5191
5192 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5193 const struct i915_ggtt_view *view)
5194 {
5195 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5196 struct i915_vma *vma;
5197
5198 list_for_each_entry(vma, &o->vma_list, vma_link)
5199 if (vma->vm == ggtt &&
5200 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5201 drm_mm_node_allocated(&vma->node))
5202 return true;
5203
5204 return false;
5205 }
5206
5207 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5208 {
5209 struct i915_vma *vma;
5210
5211 list_for_each_entry(vma, &o->vma_list, vma_link)
5212 if (drm_mm_node_allocated(&vma->node))
5213 return true;
5214
5215 return false;
5216 }
5217
5218 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5219 struct i915_address_space *vm)
5220 {
5221 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5222 struct i915_vma *vma;
5223
5224 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5225
5226 BUG_ON(list_empty(&o->vma_list));
5227
5228 list_for_each_entry(vma, &o->vma_list, vma_link) {
5229 if (i915_is_ggtt(vma->vm) &&
5230 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5231 continue;
5232 if (vma->vm == vm)
5233 return vma->node.size;
5234 }
5235 return 0;
5236 }
5237
5238 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5239 {
5240 struct i915_vma *vma;
5241 list_for_each_entry(vma, &obj->vma_list, vma_link)
5242 if (vma->pin_count > 0)
5243 return true;
5244
5245 return false;
5246 }
5247
5248 /* Allocate a new GEM object and fill it with the supplied data */
5249 struct drm_i915_gem_object *
5250 i915_gem_object_create_from_data(struct drm_device *dev,
5251 const void *data, size_t size)
5252 {
5253 struct drm_i915_gem_object *obj;
5254 struct sg_table *sg;
5255 size_t bytes;
5256 int ret;
5257
5258 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5259 if (IS_ERR_OR_NULL(obj))
5260 return obj;
5261
5262 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5263 if (ret)
5264 goto fail;
5265
5266 ret = i915_gem_object_get_pages(obj);
5267 if (ret)
5268 goto fail;
5269
5270 i915_gem_object_pin_pages(obj);
5271 sg = obj->pages;
5272 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5273 i915_gem_object_unpin_pages(obj);
5274
5275 if (WARN_ON(bytes != size)) {
5276 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5277 ret = -EFAULT;
5278 goto fail;
5279 }
5280
5281 return obj;
5282
5283 fail:
5284 drm_gem_object_unreference(&obj->base);
5285 return ERR_PTR(ret);
5286 }
5287