Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.1.1.4
      1 /*	$NetBSD: i915_gem.c,v 1.1.1.4 2021/12/18 20:15:25 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright  2008-2015 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  * Authors:
     26  *    Eric Anholt <eric (at) anholt.net>
     27  *
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: i915_gem.c,v 1.1.1.4 2021/12/18 20:15:25 riastradh Exp $");
     32 
     33 #include <drm/drm_vma_manager.h>
     34 #include <drm/i915_drm.h>
     35 #include <linux/dma-fence-array.h>
     36 #include <linux/kthread.h>
     37 #include <linux/dma-resv.h>
     38 #include <linux/shmem_fs.h>
     39 #include <linux/slab.h>
     40 #include <linux/stop_machine.h>
     41 #include <linux/swap.h>
     42 #include <linux/pci.h>
     43 #include <linux/dma-buf.h>
     44 #include <linux/mman.h>
     45 
     46 #include "display/intel_display.h"
     47 #include "display/intel_frontbuffer.h"
     48 
     49 #include "gem/i915_gem_clflush.h"
     50 #include "gem/i915_gem_context.h"
     51 #include "gem/i915_gem_ioctls.h"
     52 #include "gem/i915_gem_mman.h"
     53 #include "gem/i915_gem_region.h"
     54 #include "gt/intel_engine_user.h"
     55 #include "gt/intel_gt.h"
     56 #include "gt/intel_gt_pm.h"
     57 #include "gt/intel_workarounds.h"
     58 
     59 #include "i915_drv.h"
     60 #include "i915_trace.h"
     61 #include "i915_vgpu.h"
     62 
     63 #include "intel_pm.h"
     64 
     65 static int
     66 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
     67 {
     68 	int err;
     69 
     70 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
     71 	if (err)
     72 		return err;
     73 
     74 	memset(node, 0, sizeof(*node));
     75 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
     76 					  size, 0, I915_COLOR_UNEVICTABLE,
     77 					  0, ggtt->mappable_end,
     78 					  DRM_MM_INSERT_LOW);
     79 
     80 	mutex_unlock(&ggtt->vm.mutex);
     81 
     82 	return err;
     83 }
     84 
     85 static void
     86 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
     87 {
     88 	mutex_lock(&ggtt->vm.mutex);
     89 	drm_mm_remove_node(node);
     90 	mutex_unlock(&ggtt->vm.mutex);
     91 }
     92 
     93 int
     94 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
     95 			    struct drm_file *file)
     96 {
     97 	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
     98 	struct drm_i915_gem_get_aperture *args = data;
     99 	struct i915_vma *vma;
    100 	u64 pinned;
    101 
    102 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
    103 		return -EINTR;
    104 
    105 	pinned = ggtt->vm.reserved;
    106 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
    107 		if (i915_vma_is_pinned(vma))
    108 			pinned += vma->node.size;
    109 
    110 	mutex_unlock(&ggtt->vm.mutex);
    111 
    112 	args->aper_size = ggtt->vm.total;
    113 	args->aper_available_size = args->aper_size - pinned;
    114 
    115 	return 0;
    116 }
    117 
    118 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
    119 			   unsigned long flags)
    120 {
    121 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
    122 	LIST_HEAD(still_in_list);
    123 	intel_wakeref_t wakeref;
    124 	struct i915_vma *vma;
    125 	int ret;
    126 
    127 	if (!atomic_read(&obj->bind_count))
    128 		return 0;
    129 
    130 	/*
    131 	 * As some machines use ACPI to handle runtime-resume callbacks, and
    132 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
    133 	 * as they are required by the shrinker. Ergo, we wake the device up
    134 	 * first just in case.
    135 	 */
    136 	wakeref = intel_runtime_pm_get(rpm);
    137 
    138 try_again:
    139 	ret = 0;
    140 	spin_lock(&obj->vma.lock);
    141 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
    142 						       struct i915_vma,
    143 						       obj_link))) {
    144 		struct i915_address_space *vm = vma->vm;
    145 
    146 		list_move_tail(&vma->obj_link, &still_in_list);
    147 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
    148 			continue;
    149 
    150 		ret = -EAGAIN;
    151 		if (!i915_vm_tryopen(vm))
    152 			break;
    153 
    154 		/* Prevent vma being freed by i915_vma_parked as we unbind */
    155 		vma = __i915_vma_get(vma);
    156 		spin_unlock(&obj->vma.lock);
    157 
    158 		if (vma) {
    159 			ret = -EBUSY;
    160 			if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
    161 			    !i915_vma_is_active(vma))
    162 				ret = i915_vma_unbind(vma);
    163 
    164 			__i915_vma_put(vma);
    165 		}
    166 
    167 		i915_vm_close(vm);
    168 		spin_lock(&obj->vma.lock);
    169 	}
    170 	list_splice_init(&still_in_list, &obj->vma.list);
    171 	spin_unlock(&obj->vma.lock);
    172 
    173 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
    174 		rcu_barrier(); /* flush the i915_vm_release() */
    175 		goto try_again;
    176 	}
    177 
    178 	intel_runtime_pm_put(rpm, wakeref);
    179 
    180 	return ret;
    181 }
    182 
    183 static int
    184 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
    185 		     struct drm_i915_gem_pwrite *args,
    186 		     struct drm_file *file)
    187 {
    188 	void *vaddr = sg_page(obj->mm.pages->sgl) + args->offset;
    189 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
    190 
    191 	/*
    192 	 * We manually control the domain here and pretend that it
    193 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
    194 	 */
    195 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
    196 
    197 	if (copy_from_user(vaddr, user_data, args->size))
    198 		return -EFAULT;
    199 
    200 	drm_clflush_virt_range(vaddr, args->size);
    201 	intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
    202 
    203 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
    204 	return 0;
    205 }
    206 
    207 static int
    208 i915_gem_create(struct drm_file *file,
    209 		struct intel_memory_region *mr,
    210 		u64 *size_p,
    211 		u32 *handle_p)
    212 {
    213 	struct drm_i915_gem_object *obj;
    214 	u32 handle;
    215 	u64 size;
    216 	int ret;
    217 
    218 	GEM_BUG_ON(!is_power_of_2(mr->min_page_size));
    219 	size = round_up(*size_p, mr->min_page_size);
    220 	if (size == 0)
    221 		return -EINVAL;
    222 
    223 	/* For most of the ABI (e.g. mmap) we think in system pages */
    224 	GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
    225 
    226 	/* Allocate the new object */
    227 	obj = i915_gem_object_create_region(mr, size, 0);
    228 	if (IS_ERR(obj))
    229 		return PTR_ERR(obj);
    230 
    231 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    232 	/* drop reference from allocate - handle holds it now */
    233 	i915_gem_object_put(obj);
    234 	if (ret)
    235 		return ret;
    236 
    237 	*handle_p = handle;
    238 	*size_p = size;
    239 	return 0;
    240 }
    241 
    242 int
    243 i915_gem_dumb_create(struct drm_file *file,
    244 		     struct drm_device *dev,
    245 		     struct drm_mode_create_dumb *args)
    246 {
    247 	enum intel_memory_type mem_type;
    248 	int cpp = DIV_ROUND_UP(args->bpp, 8);
    249 	u32 format;
    250 
    251 	switch (cpp) {
    252 	case 1:
    253 		format = DRM_FORMAT_C8;
    254 		break;
    255 	case 2:
    256 		format = DRM_FORMAT_RGB565;
    257 		break;
    258 	case 4:
    259 		format = DRM_FORMAT_XRGB8888;
    260 		break;
    261 	default:
    262 		return -EINVAL;
    263 	}
    264 
    265 	/* have to work out size/pitch and return them */
    266 	args->pitch = ALIGN(args->width * cpp, 64);
    267 
    268 	/* align stride to page size so that we can remap */
    269 	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
    270 						    DRM_FORMAT_MOD_LINEAR))
    271 		args->pitch = ALIGN(args->pitch, 4096);
    272 
    273 	if (args->pitch < args->width)
    274 		return -EINVAL;
    275 
    276 	args->size = mul_u32_u32(args->pitch, args->height);
    277 
    278 	mem_type = INTEL_MEMORY_SYSTEM;
    279 	if (HAS_LMEM(to_i915(dev)))
    280 		mem_type = INTEL_MEMORY_LOCAL;
    281 
    282 	return i915_gem_create(file,
    283 			       intel_memory_region_by_type(to_i915(dev),
    284 							   mem_type),
    285 			       &args->size, &args->handle);
    286 }
    287 
    288 /**
    289  * Creates a new mm object and returns a handle to it.
    290  * @dev: drm device pointer
    291  * @data: ioctl data blob
    292  * @file: drm file pointer
    293  */
    294 int
    295 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    296 		      struct drm_file *file)
    297 {
    298 	struct drm_i915_private *i915 = to_i915(dev);
    299 	struct drm_i915_gem_create *args = data;
    300 
    301 	i915_gem_flush_free_objects(i915);
    302 
    303 	return i915_gem_create(file,
    304 			       intel_memory_region_by_type(i915,
    305 							   INTEL_MEMORY_SYSTEM),
    306 			       &args->size, &args->handle);
    307 }
    308 
    309 static int
    310 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
    311 	    bool needs_clflush)
    312 {
    313 	char *vaddr;
    314 	int ret;
    315 
    316 	vaddr = kmap(page);
    317 
    318 	if (needs_clflush)
    319 		drm_clflush_virt_range(vaddr + offset, len);
    320 
    321 	ret = __copy_to_user(user_data, vaddr + offset, len);
    322 
    323 	kunmap(page);
    324 
    325 	return ret ? -EFAULT : 0;
    326 }
    327 
    328 static int
    329 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
    330 		     struct drm_i915_gem_pread *args)
    331 {
    332 	unsigned int needs_clflush;
    333 	unsigned int idx, offset;
    334 	struct dma_fence *fence;
    335 	char __user *user_data;
    336 	u64 remain;
    337 	int ret;
    338 
    339 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
    340 	if (ret)
    341 		return ret;
    342 
    343 	fence = i915_gem_object_lock_fence(obj);
    344 	i915_gem_object_finish_access(obj);
    345 	if (!fence)
    346 		return -ENOMEM;
    347 
    348 	remain = args->size;
    349 	user_data = u64_to_user_ptr(args->data_ptr);
    350 	offset = offset_in_page(args->offset);
    351 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
    352 		struct page *page = i915_gem_object_get_page(obj, idx);
    353 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
    354 
    355 		ret = shmem_pread(page, offset, length, user_data,
    356 				  needs_clflush);
    357 		if (ret)
    358 			break;
    359 
    360 		remain -= length;
    361 		user_data += length;
    362 		offset = 0;
    363 	}
    364 
    365 	i915_gem_object_unlock_fence(obj, fence);
    366 	return ret;
    367 }
    368 
    369 static inline bool
    370 gtt_user_read(struct io_mapping *mapping,
    371 	      loff_t base, int offset,
    372 	      char __user *user_data, int length)
    373 {
    374 	void __iomem *vaddr;
    375 	unsigned long unwritten;
    376 
    377 	/* We can use the cpu mem copy function because this is X86. */
    378 	vaddr = io_mapping_map_atomic_wc(mapping, base);
    379 	unwritten = __copy_to_user_inatomic(user_data,
    380 					    (void __force *)vaddr + offset,
    381 					    length);
    382 	io_mapping_unmap_atomic(vaddr);
    383 	if (unwritten) {
    384 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
    385 		unwritten = copy_to_user(user_data,
    386 					 (void __force *)vaddr + offset,
    387 					 length);
    388 		io_mapping_unmap(vaddr);
    389 	}
    390 	return unwritten;
    391 }
    392 
    393 static int
    394 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
    395 		   const struct drm_i915_gem_pread *args)
    396 {
    397 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
    398 	struct i915_ggtt *ggtt = &i915->ggtt;
    399 	intel_wakeref_t wakeref;
    400 	struct drm_mm_node node;
    401 	struct dma_fence *fence;
    402 	void __user *user_data;
    403 	struct i915_vma *vma;
    404 	u64 remain, offset;
    405 	int ret;
    406 
    407 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
    408 	vma = ERR_PTR(-ENODEV);
    409 	if (!i915_gem_object_is_tiled(obj))
    410 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
    411 					       PIN_MAPPABLE |
    412 					       PIN_NONBLOCK /* NOWARN */ |
    413 					       PIN_NOEVICT);
    414 	if (!IS_ERR(vma)) {
    415 		node.start = i915_ggtt_offset(vma);
    416 		node.flags = 0;
    417 	} else {
    418 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
    419 		if (ret)
    420 			goto out_rpm;
    421 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
    422 	}
    423 
    424 	ret = i915_gem_object_lock_interruptible(obj);
    425 	if (ret)
    426 		goto out_unpin;
    427 
    428 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
    429 	if (ret) {
    430 		i915_gem_object_unlock(obj);
    431 		goto out_unpin;
    432 	}
    433 
    434 	fence = i915_gem_object_lock_fence(obj);
    435 	i915_gem_object_unlock(obj);
    436 	if (!fence) {
    437 		ret = -ENOMEM;
    438 		goto out_unpin;
    439 	}
    440 
    441 	user_data = u64_to_user_ptr(args->data_ptr);
    442 	remain = args->size;
    443 	offset = args->offset;
    444 
    445 	while (remain > 0) {
    446 		/* Operation in this page
    447 		 *
    448 		 * page_base = page offset within aperture
    449 		 * page_offset = offset within page
    450 		 * page_length = bytes to copy for this page
    451 		 */
    452 		u32 page_base = node.start;
    453 		unsigned page_offset = offset_in_page(offset);
    454 		unsigned page_length = PAGE_SIZE - page_offset;
    455 		page_length = remain < page_length ? remain : page_length;
    456 		if (drm_mm_node_allocated(&node)) {
    457 			ggtt->vm.insert_page(&ggtt->vm,
    458 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
    459 					     node.start, I915_CACHE_NONE, 0);
    460 		} else {
    461 			page_base += offset & PAGE_MASK;
    462 		}
    463 
    464 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
    465 				  user_data, page_length)) {
    466 			ret = -EFAULT;
    467 			break;
    468 		}
    469 
    470 		remain -= page_length;
    471 		user_data += page_length;
    472 		offset += page_length;
    473 	}
    474 
    475 	i915_gem_object_unlock_fence(obj, fence);
    476 out_unpin:
    477 	if (drm_mm_node_allocated(&node)) {
    478 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
    479 		remove_mappable_node(ggtt, &node);
    480 	} else {
    481 		i915_vma_unpin(vma);
    482 	}
    483 out_rpm:
    484 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
    485 	return ret;
    486 }
    487 
    488 /**
    489  * Reads data from the object referenced by handle.
    490  * @dev: drm device pointer
    491  * @data: ioctl data blob
    492  * @file: drm file pointer
    493  *
    494  * On error, the contents of *data are undefined.
    495  */
    496 int
    497 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    498 		     struct drm_file *file)
    499 {
    500 	struct drm_i915_gem_pread *args = data;
    501 	struct drm_i915_gem_object *obj;
    502 	int ret;
    503 
    504 	if (args->size == 0)
    505 		return 0;
    506 
    507 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
    508 		       args->size))
    509 		return -EFAULT;
    510 
    511 	obj = i915_gem_object_lookup(file, args->handle);
    512 	if (!obj)
    513 		return -ENOENT;
    514 
    515 	/* Bounds check source.  */
    516 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
    517 		ret = -EINVAL;
    518 		goto out;
    519 	}
    520 
    521 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    522 
    523 	ret = i915_gem_object_wait(obj,
    524 				   I915_WAIT_INTERRUPTIBLE,
    525 				   MAX_SCHEDULE_TIMEOUT);
    526 	if (ret)
    527 		goto out;
    528 
    529 	ret = i915_gem_object_pin_pages(obj);
    530 	if (ret)
    531 		goto out;
    532 
    533 	ret = i915_gem_shmem_pread(obj, args);
    534 	if (ret == -EFAULT || ret == -ENODEV)
    535 		ret = i915_gem_gtt_pread(obj, args);
    536 
    537 	i915_gem_object_unpin_pages(obj);
    538 out:
    539 	i915_gem_object_put(obj);
    540 	return ret;
    541 }
    542 
    543 /* This is the fast write path which cannot handle
    544  * page faults in the source data
    545  */
    546 
    547 static inline bool
    548 ggtt_write(struct io_mapping *mapping,
    549 	   loff_t base, int offset,
    550 	   char __user *user_data, int length)
    551 {
    552 	void __iomem *vaddr;
    553 	unsigned long unwritten;
    554 
    555 	/* We can use the cpu mem copy function because this is X86. */
    556 	vaddr = io_mapping_map_atomic_wc(mapping, base);
    557 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
    558 						      user_data, length);
    559 	io_mapping_unmap_atomic(vaddr);
    560 	if (unwritten) {
    561 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
    562 		unwritten = copy_from_user((void __force *)vaddr + offset,
    563 					   user_data, length);
    564 		io_mapping_unmap(vaddr);
    565 	}
    566 
    567 	return unwritten;
    568 }
    569 
    570 /**
    571  * This is the fast pwrite path, where we copy the data directly from the
    572  * user into the GTT, uncached.
    573  * @obj: i915 GEM object
    574  * @args: pwrite arguments structure
    575  */
    576 static int
    577 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
    578 			 const struct drm_i915_gem_pwrite *args)
    579 {
    580 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
    581 	struct i915_ggtt *ggtt = &i915->ggtt;
    582 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
    583 	intel_wakeref_t wakeref;
    584 	struct drm_mm_node node;
    585 	struct dma_fence *fence;
    586 	struct i915_vma *vma;
    587 	u64 remain, offset;
    588 	void __user *user_data;
    589 	int ret;
    590 
    591 	if (i915_gem_object_has_struct_page(obj)) {
    592 		/*
    593 		 * Avoid waking the device up if we can fallback, as
    594 		 * waking/resuming is very slow (worst-case 10-100 ms
    595 		 * depending on PCI sleeps and our own resume time).
    596 		 * This easily dwarfs any performance advantage from
    597 		 * using the cache bypass of indirect GGTT access.
    598 		 */
    599 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
    600 		if (!wakeref)
    601 			return -EFAULT;
    602 	} else {
    603 		/* No backing pages, no fallback, we must force GGTT access */
    604 		wakeref = intel_runtime_pm_get(rpm);
    605 	}
    606 
    607 	vma = ERR_PTR(-ENODEV);
    608 	if (!i915_gem_object_is_tiled(obj))
    609 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
    610 					       PIN_MAPPABLE |
    611 					       PIN_NONBLOCK /* NOWARN */ |
    612 					       PIN_NOEVICT);
    613 	if (!IS_ERR(vma)) {
    614 		node.start = i915_ggtt_offset(vma);
    615 		node.flags = 0;
    616 	} else {
    617 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
    618 		if (ret)
    619 			goto out_rpm;
    620 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
    621 	}
    622 
    623 	ret = i915_gem_object_lock_interruptible(obj);
    624 	if (ret)
    625 		goto out_unpin;
    626 
    627 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    628 	if (ret) {
    629 		i915_gem_object_unlock(obj);
    630 		goto out_unpin;
    631 	}
    632 
    633 	fence = i915_gem_object_lock_fence(obj);
    634 	i915_gem_object_unlock(obj);
    635 	if (!fence) {
    636 		ret = -ENOMEM;
    637 		goto out_unpin;
    638 	}
    639 
    640 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
    641 
    642 	user_data = u64_to_user_ptr(args->data_ptr);
    643 	offset = args->offset;
    644 	remain = args->size;
    645 	while (remain) {
    646 		/* Operation in this page
    647 		 *
    648 		 * page_base = page offset within aperture
    649 		 * page_offset = offset within page
    650 		 * page_length = bytes to copy for this page
    651 		 */
    652 		u32 page_base = node.start;
    653 		unsigned int page_offset = offset_in_page(offset);
    654 		unsigned int page_length = PAGE_SIZE - page_offset;
    655 		page_length = remain < page_length ? remain : page_length;
    656 		if (drm_mm_node_allocated(&node)) {
    657 			/* flush the write before we modify the GGTT */
    658 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
    659 			ggtt->vm.insert_page(&ggtt->vm,
    660 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
    661 					     node.start, I915_CACHE_NONE, 0);
    662 			wmb(); /* flush modifications to the GGTT (insert_page) */
    663 		} else {
    664 			page_base += offset & PAGE_MASK;
    665 		}
    666 		/* If we get a fault while copying data, then (presumably) our
    667 		 * source page isn't available.  Return the error and we'll
    668 		 * retry in the slow path.
    669 		 * If the object is non-shmem backed, we retry again with the
    670 		 * path that handles page fault.
    671 		 */
    672 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
    673 			       user_data, page_length)) {
    674 			ret = -EFAULT;
    675 			break;
    676 		}
    677 
    678 		remain -= page_length;
    679 		user_data += page_length;
    680 		offset += page_length;
    681 	}
    682 
    683 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
    684 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
    685 
    686 	i915_gem_object_unlock_fence(obj, fence);
    687 out_unpin:
    688 	if (drm_mm_node_allocated(&node)) {
    689 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
    690 		remove_mappable_node(ggtt, &node);
    691 	} else {
    692 		i915_vma_unpin(vma);
    693 	}
    694 out_rpm:
    695 	intel_runtime_pm_put(rpm, wakeref);
    696 	return ret;
    697 }
    698 
    699 /* Per-page copy function for the shmem pwrite fastpath.
    700  * Flushes invalid cachelines before writing to the target if
    701  * needs_clflush_before is set and flushes out any written cachelines after
    702  * writing if needs_clflush is set.
    703  */
    704 static int
    705 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
    706 	     bool needs_clflush_before,
    707 	     bool needs_clflush_after)
    708 {
    709 	char *vaddr;
    710 	int ret;
    711 
    712 	vaddr = kmap(page);
    713 
    714 	if (needs_clflush_before)
    715 		drm_clflush_virt_range(vaddr + offset, len);
    716 
    717 	ret = __copy_from_user(vaddr + offset, user_data, len);
    718 	if (!ret && needs_clflush_after)
    719 		drm_clflush_virt_range(vaddr + offset, len);
    720 
    721 	kunmap(page);
    722 
    723 	return ret ? -EFAULT : 0;
    724 }
    725 
    726 static int
    727 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
    728 		      const struct drm_i915_gem_pwrite *args)
    729 {
    730 	unsigned int partial_cacheline_write;
    731 	unsigned int needs_clflush;
    732 	unsigned int offset, idx;
    733 	struct dma_fence *fence;
    734 	void __user *user_data;
    735 	u64 remain;
    736 	int ret;
    737 
    738 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
    739 	if (ret)
    740 		return ret;
    741 
    742 	fence = i915_gem_object_lock_fence(obj);
    743 	i915_gem_object_finish_access(obj);
    744 	if (!fence)
    745 		return -ENOMEM;
    746 
    747 	/* If we don't overwrite a cacheline completely we need to be
    748 	 * careful to have up-to-date data by first clflushing. Don't
    749 	 * overcomplicate things and flush the entire patch.
    750 	 */
    751 	partial_cacheline_write = 0;
    752 	if (needs_clflush & CLFLUSH_BEFORE)
    753 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
    754 
    755 	user_data = u64_to_user_ptr(args->data_ptr);
    756 	remain = args->size;
    757 	offset = offset_in_page(args->offset);
    758 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
    759 		struct page *page = i915_gem_object_get_page(obj, idx);
    760 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
    761 
    762 		ret = shmem_pwrite(page, offset, length, user_data,
    763 				   (offset | length) & partial_cacheline_write,
    764 				   needs_clflush & CLFLUSH_AFTER);
    765 		if (ret)
    766 			break;
    767 
    768 		remain -= length;
    769 		user_data += length;
    770 		offset = 0;
    771 	}
    772 
    773 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
    774 	i915_gem_object_unlock_fence(obj, fence);
    775 
    776 	return ret;
    777 }
    778 
    779 /**
    780  * Writes data to the object referenced by handle.
    781  * @dev: drm device
    782  * @data: ioctl data blob
    783  * @file: drm file
    784  *
    785  * On error, the contents of the buffer that were to be modified are undefined.
    786  */
    787 int
    788 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
    789 		      struct drm_file *file)
    790 {
    791 	struct drm_i915_gem_pwrite *args = data;
    792 	struct drm_i915_gem_object *obj;
    793 	int ret;
    794 
    795 	if (args->size == 0)
    796 		return 0;
    797 
    798 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
    799 		return -EFAULT;
    800 
    801 	obj = i915_gem_object_lookup(file, args->handle);
    802 	if (!obj)
    803 		return -ENOENT;
    804 
    805 	/* Bounds check destination. */
    806 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
    807 		ret = -EINVAL;
    808 		goto err;
    809 	}
    810 
    811 	/* Writes not allowed into this read-only object */
    812 	if (i915_gem_object_is_readonly(obj)) {
    813 		ret = -EINVAL;
    814 		goto err;
    815 	}
    816 
    817 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
    818 
    819 	ret = -ENODEV;
    820 	if (obj->ops->pwrite)
    821 		ret = obj->ops->pwrite(obj, args);
    822 	if (ret != -ENODEV)
    823 		goto err;
    824 
    825 	ret = i915_gem_object_wait(obj,
    826 				   I915_WAIT_INTERRUPTIBLE |
    827 				   I915_WAIT_ALL,
    828 				   MAX_SCHEDULE_TIMEOUT);
    829 	if (ret)
    830 		goto err;
    831 
    832 	ret = i915_gem_object_pin_pages(obj);
    833 	if (ret)
    834 		goto err;
    835 
    836 	ret = -EFAULT;
    837 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
    838 	 * it would end up going through the fenced access, and we'll get
    839 	 * different detiling behavior between reading and writing.
    840 	 * pread/pwrite currently are reading and writing from the CPU
    841 	 * perspective, requiring manual detiling by the client.
    842 	 */
    843 	if (!i915_gem_object_has_struct_page(obj) ||
    844 	    cpu_write_needs_clflush(obj))
    845 		/* Note that the gtt paths might fail with non-page-backed user
    846 		 * pointers (e.g. gtt mappings when moving data between
    847 		 * textures). Fallback to the shmem path in that case.
    848 		 */
    849 		ret = i915_gem_gtt_pwrite_fast(obj, args);
    850 
    851 	if (ret == -EFAULT || ret == -ENOSPC) {
    852 		if (i915_gem_object_has_struct_page(obj))
    853 			ret = i915_gem_shmem_pwrite(obj, args);
    854 		else
    855 			ret = i915_gem_phys_pwrite(obj, args, file);
    856 	}
    857 
    858 	i915_gem_object_unpin_pages(obj);
    859 err:
    860 	i915_gem_object_put(obj);
    861 	return ret;
    862 }
    863 
    864 /**
    865  * Called when user space has done writes to this buffer
    866  * @dev: drm device
    867  * @data: ioctl data blob
    868  * @file: drm file
    869  */
    870 int
    871 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
    872 			 struct drm_file *file)
    873 {
    874 	struct drm_i915_gem_sw_finish *args = data;
    875 	struct drm_i915_gem_object *obj;
    876 
    877 	obj = i915_gem_object_lookup(file, args->handle);
    878 	if (!obj)
    879 		return -ENOENT;
    880 
    881 	/*
    882 	 * Proxy objects are barred from CPU access, so there is no
    883 	 * need to ban sw_finish as it is a nop.
    884 	 */
    885 
    886 	/* Pinned buffers may be scanout, so flush the cache */
    887 	i915_gem_object_flush_if_display(obj);
    888 	i915_gem_object_put(obj);
    889 
    890 	return 0;
    891 }
    892 
    893 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
    894 {
    895 	struct drm_i915_gem_object *obj, *on;
    896 	int i;
    897 
    898 	/*
    899 	 * Only called during RPM suspend. All users of the userfault_list
    900 	 * must be holding an RPM wakeref to ensure that this can not
    901 	 * run concurrently with themselves (and use the struct_mutex for
    902 	 * protection between themselves).
    903 	 */
    904 
    905 	list_for_each_entry_safe(obj, on,
    906 				 &i915->ggtt.userfault_list, userfault_link)
    907 		__i915_gem_object_release_mmap_gtt(obj);
    908 
    909 	/*
    910 	 * The fence will be lost when the device powers down. If any were
    911 	 * in use by hardware (i.e. they are pinned), we should not be powering
    912 	 * down! All other fences will be reacquired by the user upon waking.
    913 	 */
    914 	for (i = 0; i < i915->ggtt.num_fences; i++) {
    915 		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
    916 
    917 		/*
    918 		 * Ideally we want to assert that the fence register is not
    919 		 * live at this point (i.e. that no piece of code will be
    920 		 * trying to write through fence + GTT, as that both violates
    921 		 * our tracking of activity and associated locking/barriers,
    922 		 * but also is illegal given that the hw is powered down).
    923 		 *
    924 		 * Previously we used reg->pin_count as a "liveness" indicator.
    925 		 * That is not sufficient, and we need a more fine-grained
    926 		 * tool if we want to have a sanity check here.
    927 		 */
    928 
    929 		if (!reg->vma)
    930 			continue;
    931 
    932 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
    933 		reg->dirty = true;
    934 	}
    935 }
    936 
    937 struct i915_vma *
    938 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
    939 			 const struct i915_ggtt_view *view,
    940 			 u64 size,
    941 			 u64 alignment,
    942 			 u64 flags)
    943 {
    944 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
    945 	struct i915_ggtt *ggtt = &i915->ggtt;
    946 	struct i915_vma *vma;
    947 	int ret;
    948 
    949 	if (i915_gem_object_never_bind_ggtt(obj))
    950 		return ERR_PTR(-ENODEV);
    951 
    952 	if (flags & PIN_MAPPABLE &&
    953 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
    954 		/*
    955 		 * If the required space is larger than the available
    956 		 * aperture, we will not able to find a slot for the
    957 		 * object and unbinding the object now will be in
    958 		 * vain. Worse, doing so may cause us to ping-pong
    959 		 * the object in and out of the Global GTT and
    960 		 * waste a lot of cycles under the mutex.
    961 		 */
    962 		if (obj->base.size > ggtt->mappable_end)
    963 			return ERR_PTR(-E2BIG);
    964 
    965 		/*
    966 		 * If NONBLOCK is set the caller is optimistically
    967 		 * trying to cache the full object within the mappable
    968 		 * aperture, and *must* have a fallback in place for
    969 		 * situations where we cannot bind the object. We
    970 		 * can be a little more lax here and use the fallback
    971 		 * more often to avoid costly migrations of ourselves
    972 		 * and other objects within the aperture.
    973 		 *
    974 		 * Half-the-aperture is used as a simple heuristic.
    975 		 * More interesting would to do search for a free
    976 		 * block prior to making the commitment to unbind.
    977 		 * That caters for the self-harm case, and with a
    978 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
    979 		 * we could try to minimise harm to others.
    980 		 */
    981 		if (flags & PIN_NONBLOCK &&
    982 		    obj->base.size > ggtt->mappable_end / 2)
    983 			return ERR_PTR(-ENOSPC);
    984 	}
    985 
    986 	vma = i915_vma_instance(obj, &ggtt->vm, view);
    987 	if (IS_ERR(vma))
    988 		return vma;
    989 
    990 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
    991 		if (flags & PIN_NONBLOCK) {
    992 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
    993 				return ERR_PTR(-ENOSPC);
    994 
    995 			if (flags & PIN_MAPPABLE &&
    996 			    vma->fence_size > ggtt->mappable_end / 2)
    997 				return ERR_PTR(-ENOSPC);
    998 		}
    999 
   1000 		ret = i915_vma_unbind(vma);
   1001 		if (ret)
   1002 			return ERR_PTR(ret);
   1003 	}
   1004 
   1005 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
   1006 		mutex_lock(&ggtt->vm.mutex);
   1007 		ret = i915_vma_revoke_fence(vma);
   1008 		mutex_unlock(&ggtt->vm.mutex);
   1009 		if (ret)
   1010 			return ERR_PTR(ret);
   1011 	}
   1012 
   1013 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
   1014 	if (ret)
   1015 		return ERR_PTR(ret);
   1016 
   1017 	return vma;
   1018 }
   1019 
   1020 int
   1021 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   1022 		       struct drm_file *file_priv)
   1023 {
   1024 	struct drm_i915_private *i915 = to_i915(dev);
   1025 	struct drm_i915_gem_madvise *args = data;
   1026 	struct drm_i915_gem_object *obj;
   1027 	int err;
   1028 
   1029 	switch (args->madv) {
   1030 	case I915_MADV_DONTNEED:
   1031 	case I915_MADV_WILLNEED:
   1032 	    break;
   1033 	default:
   1034 	    return -EINVAL;
   1035 	}
   1036 
   1037 	obj = i915_gem_object_lookup(file_priv, args->handle);
   1038 	if (!obj)
   1039 		return -ENOENT;
   1040 
   1041 	err = mutex_lock_interruptible(&obj->mm.lock);
   1042 	if (err)
   1043 		goto out;
   1044 
   1045 	if (i915_gem_object_has_pages(obj) &&
   1046 	    i915_gem_object_is_tiled(obj) &&
   1047 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
   1048 		if (obj->mm.madv == I915_MADV_WILLNEED) {
   1049 			GEM_BUG_ON(!obj->mm.quirked);
   1050 			__i915_gem_object_unpin_pages(obj);
   1051 			obj->mm.quirked = false;
   1052 		}
   1053 		if (args->madv == I915_MADV_WILLNEED) {
   1054 			GEM_BUG_ON(obj->mm.quirked);
   1055 			__i915_gem_object_pin_pages(obj);
   1056 			obj->mm.quirked = true;
   1057 		}
   1058 	}
   1059 
   1060 	if (obj->mm.madv != __I915_MADV_PURGED)
   1061 		obj->mm.madv = args->madv;
   1062 
   1063 	if (i915_gem_object_has_pages(obj)) {
   1064 		struct list_head *list;
   1065 
   1066 		if (i915_gem_object_is_shrinkable(obj)) {
   1067 			unsigned long flags;
   1068 
   1069 			spin_lock_irqsave(&i915->mm.obj_lock, flags);
   1070 
   1071 			if (obj->mm.madv != I915_MADV_WILLNEED)
   1072 				list = &i915->mm.purge_list;
   1073 			else
   1074 				list = &i915->mm.shrink_list;
   1075 			list_move_tail(&obj->mm.link, list);
   1076 
   1077 			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
   1078 		}
   1079 	}
   1080 
   1081 	/* if the object is no longer attached, discard its backing storage */
   1082 	if (obj->mm.madv == I915_MADV_DONTNEED &&
   1083 	    !i915_gem_object_has_pages(obj))
   1084 		i915_gem_object_truncate(obj);
   1085 
   1086 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
   1087 	mutex_unlock(&obj->mm.lock);
   1088 
   1089 out:
   1090 	i915_gem_object_put(obj);
   1091 	return err;
   1092 }
   1093 
   1094 int i915_gem_init(struct drm_i915_private *dev_priv)
   1095 {
   1096 	int ret;
   1097 
   1098 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
   1099 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
   1100 		mkwrite_device_info(dev_priv)->page_sizes =
   1101 			I915_GTT_PAGE_SIZE_4K;
   1102 
   1103 	ret = i915_gem_init_userptr(dev_priv);
   1104 	if (ret)
   1105 		return ret;
   1106 
   1107 	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
   1108 	intel_wopcm_init(&dev_priv->wopcm);
   1109 
   1110 	ret = i915_init_ggtt(dev_priv);
   1111 	if (ret) {
   1112 		GEM_BUG_ON(ret == -EIO);
   1113 		goto err_unlock;
   1114 	}
   1115 
   1116 	/*
   1117 	 * Despite its name intel_init_clock_gating applies both display
   1118 	 * clock gating workarounds; GT mmio workarounds and the occasional
   1119 	 * GT power context workaround. Worse, sometimes it includes a context
   1120 	 * register workaround which we need to apply before we record the
   1121 	 * default HW state for all contexts.
   1122 	 *
   1123 	 * FIXME: break up the workarounds and apply them at the right time!
   1124 	 */
   1125 	intel_init_clock_gating(dev_priv);
   1126 
   1127 	ret = intel_gt_init(&dev_priv->gt);
   1128 	if (ret)
   1129 		goto err_unlock;
   1130 
   1131 	return 0;
   1132 
   1133 	/*
   1134 	 * Unwinding is complicated by that we want to handle -EIO to mean
   1135 	 * disable GPU submission but keep KMS alive. We want to mark the
   1136 	 * HW as irrevisibly wedged, but keep enough state around that the
   1137 	 * driver doesn't explode during runtime.
   1138 	 */
   1139 err_unlock:
   1140 	i915_gem_drain_workqueue(dev_priv);
   1141 
   1142 	if (ret != -EIO) {
   1143 		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
   1144 		i915_gem_cleanup_userptr(dev_priv);
   1145 	}
   1146 
   1147 	if (ret == -EIO) {
   1148 		/*
   1149 		 * Allow engines or uC initialisation to fail by marking the GPU
   1150 		 * as wedged. But we only want to do this when the GPU is angry,
   1151 		 * for all other failure, such as an allocation failure, bail.
   1152 		 */
   1153 		if (!intel_gt_is_wedged(&dev_priv->gt)) {
   1154 			i915_probe_error(dev_priv,
   1155 					 "Failed to initialize GPU, declaring it wedged!\n");
   1156 			intel_gt_set_wedged(&dev_priv->gt);
   1157 		}
   1158 
   1159 		/* Minimal basic recovery for KMS */
   1160 		ret = i915_ggtt_enable_hw(dev_priv);
   1161 		i915_gem_restore_gtt_mappings(dev_priv);
   1162 		i915_gem_restore_fences(&dev_priv->ggtt);
   1163 		intel_init_clock_gating(dev_priv);
   1164 	}
   1165 
   1166 	i915_gem_drain_freed_objects(dev_priv);
   1167 	return ret;
   1168 }
   1169 
   1170 void i915_gem_driver_register(struct drm_i915_private *i915)
   1171 {
   1172 	i915_gem_driver_register__shrinker(i915);
   1173 
   1174 	intel_engines_driver_register(i915);
   1175 }
   1176 
   1177 void i915_gem_driver_unregister(struct drm_i915_private *i915)
   1178 {
   1179 	i915_gem_driver_unregister__shrinker(i915);
   1180 }
   1181 
   1182 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
   1183 {
   1184 	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
   1185 
   1186 	i915_gem_suspend_late(dev_priv);
   1187 	intel_gt_driver_remove(&dev_priv->gt);
   1188 	dev_priv->uabi_engines = RB_ROOT;
   1189 
   1190 	/* Flush any outstanding unpin_work. */
   1191 	i915_gem_drain_workqueue(dev_priv);
   1192 
   1193 	i915_gem_drain_freed_objects(dev_priv);
   1194 }
   1195 
   1196 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
   1197 {
   1198 	i915_gem_driver_release__contexts(dev_priv);
   1199 
   1200 	intel_gt_driver_release(&dev_priv->gt);
   1201 
   1202 	intel_wa_list_free(&dev_priv->gt_wa_list);
   1203 
   1204 	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
   1205 	i915_gem_cleanup_userptr(dev_priv);
   1206 
   1207 	i915_gem_drain_freed_objects(dev_priv);
   1208 
   1209 	WARN_ON(!list_empty(&dev_priv->gem.contexts.list));
   1210 }
   1211 
   1212 static void i915_gem_init__mm(struct drm_i915_private *i915)
   1213 {
   1214 	spin_lock_init(&i915->mm.obj_lock);
   1215 
   1216 	init_llist_head(&i915->mm.free_list);
   1217 
   1218 	INIT_LIST_HEAD(&i915->mm.purge_list);
   1219 	INIT_LIST_HEAD(&i915->mm.shrink_list);
   1220 
   1221 	i915_gem_init__objects(i915);
   1222 }
   1223 
   1224 void i915_gem_init_early(struct drm_i915_private *dev_priv)
   1225 {
   1226 	i915_gem_init__mm(dev_priv);
   1227 	i915_gem_init__contexts(dev_priv);
   1228 
   1229 	spin_lock_init(&dev_priv->fb_tracking.lock);
   1230 }
   1231 
   1232 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
   1233 {
   1234 	i915_gem_drain_freed_objects(dev_priv);
   1235 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
   1236 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
   1237 	WARN_ON(dev_priv->mm.shrink_count);
   1238 }
   1239 
   1240 int i915_gem_freeze(struct drm_i915_private *dev_priv)
   1241 {
   1242 	/* Discard all purgeable objects, let userspace recover those as
   1243 	 * required after resuming.
   1244 	 */
   1245 	i915_gem_shrink_all(dev_priv);
   1246 
   1247 	return 0;
   1248 }
   1249 
   1250 int i915_gem_freeze_late(struct drm_i915_private *i915)
   1251 {
   1252 	struct drm_i915_gem_object *obj;
   1253 	intel_wakeref_t wakeref;
   1254 
   1255 	/*
   1256 	 * Called just before we write the hibernation image.
   1257 	 *
   1258 	 * We need to update the domain tracking to reflect that the CPU
   1259 	 * will be accessing all the pages to create and restore from the
   1260 	 * hibernation, and so upon restoration those pages will be in the
   1261 	 * CPU domain.
   1262 	 *
   1263 	 * To make sure the hibernation image contains the latest state,
   1264 	 * we update that state just before writing out the image.
   1265 	 *
   1266 	 * To try and reduce the hibernation image, we manually shrink
   1267 	 * the objects as well, see i915_gem_freeze()
   1268 	 */
   1269 
   1270 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
   1271 
   1272 	i915_gem_shrink(i915, -1UL, NULL, ~0);
   1273 	i915_gem_drain_freed_objects(i915);
   1274 
   1275 	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
   1276 		i915_gem_object_lock(obj);
   1277 		WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
   1278 		i915_gem_object_unlock(obj);
   1279 	}
   1280 
   1281 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
   1282 
   1283 	return 0;
   1284 }
   1285 
   1286 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   1287 {
   1288 	struct drm_i915_file_private *file_priv = file->driver_priv;
   1289 	struct i915_request *request;
   1290 
   1291 	/* Clean up our request list when the client is going away, so that
   1292 	 * later retire_requests won't dereference our soon-to-be-gone
   1293 	 * file_priv.
   1294 	 */
   1295 	spin_lock(&file_priv->mm.lock);
   1296 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
   1297 		request->file_priv = NULL;
   1298 	spin_unlock(&file_priv->mm.lock);
   1299 }
   1300 
   1301 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
   1302 {
   1303 	struct drm_i915_file_private *file_priv;
   1304 	int ret;
   1305 
   1306 	DRM_DEBUG("\n");
   1307 
   1308 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
   1309 	if (!file_priv)
   1310 		return -ENOMEM;
   1311 
   1312 	file->driver_priv = file_priv;
   1313 	file_priv->dev_priv = i915;
   1314 	file_priv->file = file;
   1315 
   1316 	spin_lock_init(&file_priv->mm.lock);
   1317 	INIT_LIST_HEAD(&file_priv->mm.request_list);
   1318 
   1319 	file_priv->bsd_engine = -1;
   1320 	file_priv->hang_timestamp = jiffies;
   1321 
   1322 	ret = i915_gem_context_open(i915, file);
   1323 	if (ret)
   1324 		kfree(file_priv);
   1325 
   1326 	return ret;
   1327 }
   1328 
   1329 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
   1330 #include "selftests/mock_gem_device.c"
   1331 #include "selftests/i915_gem.c"
   1332 #endif
   1333