i915_gem.c revision 1.10 1 /*
2 * Copyright 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric (at) anholt.net>
25 *
26 */
27
28 #ifdef __NetBSD__
29 #if 0 /* XXX uvmhist option? */
30 #include "opt_uvmhist.h"
31 #endif
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35
36 #include <uvm/uvm.h>
37 #include <uvm/uvm_extern.h>
38 #include <uvm/uvm_fault.h>
39 #include <uvm/uvm_page.h>
40 #include <uvm/uvm_pmap.h>
41 #include <uvm/uvm_prot.h>
42 #endif
43
44 #include <drm/drmP.h>
45 #include <drm/i915_drm.h>
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_drv.h"
49 #include <linux/shmem_fs.h>
50 #include <linux/slab.h>
51 #include <linux/swap.h>
52 #include <linux/pci.h>
53 #include <linux/dma-buf.h>
54 #include <linux/errno.h>
55 #include <linux/time.h>
56 #include <linux/err.h>
57 #include <asm/param.h>
58
59 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
60 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
62 unsigned alignment,
63 bool map_and_fenceable,
64 bool nonblocking);
65 static int i915_gem_phys_pwrite(struct drm_device *dev,
66 struct drm_i915_gem_object *obj,
67 struct drm_i915_gem_pwrite *args,
68 struct drm_file *file);
69
70 static void i915_gem_write_fence(struct drm_device *dev, int reg,
71 struct drm_i915_gem_object *obj);
72 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
73 struct drm_i915_fence_reg *fence,
74 bool enable);
75
76 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
77 struct shrink_control *sc);
78 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
79 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
80 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
81
82 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
83 {
84 if (obj->tiling_mode)
85 i915_gem_release_mmap(obj);
86
87 /* As we do not have an associated fence register, we will force
88 * a tiling change if we ever need to acquire one.
89 */
90 obj->fence_dirty = false;
91 obj->fence_reg = I915_FENCE_REG_NONE;
92 }
93
94 /* some bookkeeping */
95 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
96 size_t size)
97 {
98 dev_priv->mm.object_count++;
99 dev_priv->mm.object_memory += size;
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104 {
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 }
108
109 static int
110 i915_gem_wait_for_error(struct drm_device *dev)
111 {
112 struct drm_i915_private *dev_priv = dev->dev_private;
113 struct completion *x = &dev_priv->error_completion;
114 #ifndef __NetBSD__
115 unsigned long flags;
116 #endif
117 int ret;
118
119 if (!atomic_read(&dev_priv->mm.wedged))
120 return 0;
121
122 /*
123 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
124 * userspace. If it takes that long something really bad is going on and
125 * we should simply try to bail out and fail as gracefully as possible.
126 */
127 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134
135 if (atomic_read(&dev_priv->mm.wedged)) {
136 /* GPU is hung, bump the completion count to account for
137 * the token we just consumed so that we never hit zero and
138 * end up waiting upon a subsequent completion event that
139 * will never happen.
140 */
141 #ifdef __NetBSD__
142 /* XXX Hope it's not a problem that we might wake someone. */
143 complete(x);
144 #else
145 spin_lock_irqsave(&x->wait.lock, flags);
146 x->done++;
147 spin_unlock_irqrestore(&x->wait.lock, flags);
148 #endif
149 }
150 return 0;
151 }
152
153 int i915_mutex_lock_interruptible(struct drm_device *dev)
154 {
155 int ret;
156
157 ret = i915_gem_wait_for_error(dev);
158 if (ret)
159 return ret;
160
161 ret = mutex_lock_interruptible(&dev->struct_mutex);
162 if (ret)
163 return ret;
164
165 WARN_ON(i915_verify_lists(dev));
166 return 0;
167 }
168
169 static inline bool
170 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
171 {
172 return obj->gtt_space && !obj->active;
173 }
174
175 int
176 i915_gem_init_ioctl(struct drm_device *dev, void *data,
177 struct drm_file *file)
178 {
179 struct drm_i915_gem_init *args = data;
180
181 if (drm_core_check_feature(dev, DRIVER_MODESET))
182 return -ENODEV;
183
184 if (args->gtt_start >= args->gtt_end ||
185 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
186 return -EINVAL;
187
188 /* GEM with user mode setting was never supported on ilk and later. */
189 if (INTEL_INFO(dev)->gen >= 5)
190 return -ENODEV;
191
192 mutex_lock(&dev->struct_mutex);
193 i915_gem_init_global_gtt(dev, args->gtt_start,
194 args->gtt_end, args->gtt_end);
195 mutex_unlock(&dev->struct_mutex);
196
197 return 0;
198 }
199
200 int
201 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
202 struct drm_file *file)
203 {
204 struct drm_i915_private *dev_priv = dev->dev_private;
205 struct drm_i915_gem_get_aperture *args = data;
206 struct drm_i915_gem_object *obj;
207 size_t pinned;
208
209 pinned = 0;
210 mutex_lock(&dev->struct_mutex);
211 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
212 if (obj->pin_count)
213 pinned += obj->gtt_space->size;
214 mutex_unlock(&dev->struct_mutex);
215
216 args->aper_size = dev_priv->mm.gtt_total;
217 args->aper_available_size = args->aper_size - pinned;
218
219 return 0;
220 }
221
222 static int
223 i915_gem_create(struct drm_file *file,
224 struct drm_device *dev,
225 uint64_t size,
226 uint32_t *handle_p)
227 {
228 struct drm_i915_gem_object *obj;
229 int ret;
230 u32 handle;
231
232 size = roundup(size, PAGE_SIZE);
233 if (size == 0)
234 return -EINVAL;
235
236 /* Allocate the new object */
237 obj = i915_gem_alloc_object(dev, size);
238 if (obj == NULL)
239 return -ENOMEM;
240
241 ret = drm_gem_handle_create(file, &obj->base, &handle);
242 if (ret) {
243 drm_gem_object_release(&obj->base);
244 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
245 kfree(obj);
246 return ret;
247 }
248
249 /* drop reference from allocate - handle holds it now */
250 drm_gem_object_unreference(&obj->base);
251 trace_i915_gem_object_create(obj);
252
253 *handle_p = handle;
254 return 0;
255 }
256
257 int
258 i915_gem_dumb_create(struct drm_file *file,
259 struct drm_device *dev,
260 struct drm_mode_create_dumb *args)
261 {
262 /* have to work out size/pitch and return them */
263 #ifdef __NetBSD__ /* ALIGN already means something. */
264 args->pitch = round_up(args->width * ((args->bpp + 7) / 8), 64);
265 #else
266 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
267 #endif
268 args->size = args->pitch * args->height;
269 return i915_gem_create(file, dev,
270 args->size, &args->handle);
271 }
272
273 int i915_gem_dumb_destroy(struct drm_file *file,
274 struct drm_device *dev,
275 uint32_t handle)
276 {
277 return drm_gem_handle_delete(file, handle);
278 }
279
280 /**
281 * Creates a new mm object and returns a handle to it.
282 */
283 int
284 i915_gem_create_ioctl(struct drm_device *dev, void *data,
285 struct drm_file *file)
286 {
287 struct drm_i915_gem_create *args = data;
288
289 return i915_gem_create(file, dev,
290 args->size, &args->handle);
291 }
292
293 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
294 {
295 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
296
297 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
298 obj->tiling_mode != I915_TILING_NONE;
299 }
300
301 static inline int
302 __copy_to_user_swizzled(char __user *cpu_vaddr,
303 const char *gpu_vaddr, int gpu_offset,
304 int length)
305 {
306 int ret, cpu_offset = 0;
307
308 while (length > 0) {
309 #ifdef __NetBSD__
310 int cacheline_end = round_up(gpu_offset + 1, 64);
311 #else
312 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313 #endif
314 int this_length = min(cacheline_end - gpu_offset, length);
315 int swizzled_gpu_offset = gpu_offset ^ 64;
316
317 ret = __copy_to_user(cpu_vaddr + cpu_offset,
318 gpu_vaddr + swizzled_gpu_offset,
319 this_length);
320 if (ret)
321 return ret + length;
322
323 cpu_offset += this_length;
324 gpu_offset += this_length;
325 length -= this_length;
326 }
327
328 return 0;
329 }
330
331 static inline int
332 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
333 const char __user *cpu_vaddr,
334 int length)
335 {
336 int ret, cpu_offset = 0;
337
338 while (length > 0) {
339 #ifdef __NetBSD__
340 int cacheline_end = round_up(gpu_offset + 1, 64);
341 #else
342 int cacheline_end = ALIGN(gpu_offset + 1, 64);
343 #endif
344 int this_length = min(cacheline_end - gpu_offset, length);
345 int swizzled_gpu_offset = gpu_offset ^ 64;
346
347 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
348 cpu_vaddr + cpu_offset,
349 this_length);
350 if (ret)
351 return ret + length;
352
353 cpu_offset += this_length;
354 gpu_offset += this_length;
355 length -= this_length;
356 }
357
358 return 0;
359 }
360
361 /* Per-page copy function for the shmem pread fastpath.
362 * Flushes invalid cachelines before reading the target if
363 * needs_clflush is set. */
364 static int
365 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
366 char __user *user_data,
367 bool page_do_bit17_swizzling, bool needs_clflush)
368 {
369 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
370 return -EFAULT;
371 #else
372 char *vaddr;
373 int ret;
374
375 if (unlikely(page_do_bit17_swizzling))
376 return -EINVAL;
377
378 vaddr = kmap_atomic(page);
379 if (needs_clflush)
380 drm_clflush_virt_range(vaddr + shmem_page_offset,
381 page_length);
382 ret = __copy_to_user_inatomic(user_data,
383 vaddr + shmem_page_offset,
384 page_length);
385 kunmap_atomic(vaddr);
386
387 return ret ? -EFAULT : 0;
388 #endif
389 }
390
391 static void
392 shmem_clflush_swizzled_range(char *addr, unsigned long length,
393 bool swizzled)
394 {
395 if (unlikely(swizzled)) {
396 unsigned long start = (unsigned long) addr;
397 unsigned long end = (unsigned long) addr + length;
398
399 /* For swizzling simply ensure that we always flush both
400 * channels. Lame, but simple and it works. Swizzled
401 * pwrite/pread is far from a hotpath - current userspace
402 * doesn't use it at all. */
403 start = round_down(start, 128);
404 end = round_up(end, 128);
405
406 drm_clflush_virt_range((void *)start, end - start);
407 } else {
408 drm_clflush_virt_range(addr, length);
409 }
410
411 }
412
413 /* Only difference to the fast-path function is that this can handle bit17
414 * and uses non-atomic copy and kmap functions. */
415 static int
416 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
417 char __user *user_data,
418 bool page_do_bit17_swizzling, bool needs_clflush)
419 {
420 char *vaddr;
421 int ret;
422
423 vaddr = kmap(page);
424 if (needs_clflush)
425 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
426 page_length,
427 page_do_bit17_swizzling);
428
429 if (page_do_bit17_swizzling)
430 ret = __copy_to_user_swizzled(user_data,
431 vaddr, shmem_page_offset,
432 page_length);
433 else
434 ret = __copy_to_user(user_data,
435 vaddr + shmem_page_offset,
436 page_length);
437 kunmap(page);
438
439 return ret ? - EFAULT : 0;
440 }
441
442 static int
443 i915_gem_shmem_pread(struct drm_device *dev,
444 struct drm_i915_gem_object *obj,
445 struct drm_i915_gem_pread *args,
446 struct drm_file *file)
447 {
448 char __user *user_data;
449 ssize_t remain;
450 loff_t offset;
451 int shmem_page_offset, page_length, ret = 0;
452 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
453 int hit_slowpath = 0;
454 #ifndef __NetBSD__ /* XXX */
455 int prefaulted = 0;
456 #endif
457 int needs_clflush = 0;
458 #ifndef __NetBSD__
459 struct scatterlist *sg;
460 int i;
461 #endif
462
463 user_data = (char __user *) (uintptr_t) args->data_ptr;
464 remain = args->size;
465
466 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
467
468 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
469 /* If we're not in the cpu read domain, set ourself into the gtt
470 * read domain and manually flush cachelines (if required). This
471 * optimizes for the case when the gpu will dirty the data
472 * anyway again before the next pread happens. */
473 if (obj->cache_level == I915_CACHE_NONE)
474 needs_clflush = 1;
475 if (obj->gtt_space) {
476 ret = i915_gem_object_set_to_gtt_domain(obj, false);
477 if (ret)
478 return ret;
479 }
480 }
481
482 ret = i915_gem_object_get_pages(obj);
483 if (ret)
484 return ret;
485
486 i915_gem_object_pin_pages(obj);
487
488 offset = args->offset;
489
490 #ifdef __NetBSD__
491 /*
492 * XXX This is a big #ifdef with a lot of duplicated code, but
493 * factoring out the loop head -- which is all that
494 * substantially differs -- is probably more trouble than it's
495 * worth at the moment.
496 */
497 while (0 < remain) {
498 /* Get the next page. */
499 shmem_page_offset = offset_in_page(offset);
500 KASSERT(shmem_page_offset < PAGE_SIZE);
501 page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
502 struct page *const page = i915_gem_object_get_page(obj,
503 atop(offset));
504
505 /* Decide whether to swizzle bit 17. */
506 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
507 (page_to_phys(page) & (1 << 17)) != 0;
508
509 /* Try the fast path. */
510 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
511 user_data, page_do_bit17_swizzling, needs_clflush);
512 if (ret == 0)
513 goto next_page;
514
515 /* Fast path failed. Try the slow path. */
516 hit_slowpath = 1;
517 mutex_unlock(&dev->struct_mutex);
518 /* XXX prefault */
519 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
520 user_data, page_do_bit17_swizzling, needs_clflush);
521 mutex_lock(&dev->struct_mutex);
522
523 next_page:
524 /* XXX mark page accessed */
525 if (ret)
526 goto out;
527
528 KASSERT(page_length <= remain);
529 remain -= page_length;
530 user_data += page_length;
531 offset += page_length;
532 }
533 #else
534 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
535 struct page *page;
536
537 if (i < offset >> PAGE_SHIFT)
538 continue;
539
540 if (remain <= 0)
541 break;
542
543 /* Operation in this page
544 *
545 * shmem_page_offset = offset within page in shmem file
546 * page_length = bytes to copy for this page
547 */
548 shmem_page_offset = offset_in_page(offset);
549 page_length = remain;
550 if ((shmem_page_offset + page_length) > PAGE_SIZE)
551 page_length = PAGE_SIZE - shmem_page_offset;
552
553 page = sg_page(sg);
554 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
555 (page_to_phys(page) & (1 << 17)) != 0;
556
557 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
558 user_data, page_do_bit17_swizzling,
559 needs_clflush);
560 if (ret == 0)
561 goto next_page;
562
563 hit_slowpath = 1;
564 mutex_unlock(&dev->struct_mutex);
565
566 if (!prefaulted) {
567 ret = fault_in_multipages_writeable(user_data, remain);
568 /* Userspace is tricking us, but we've already clobbered
569 * its pages with the prefault and promised to write the
570 * data up to the first fault. Hence ignore any errors
571 * and just continue. */
572 (void)ret;
573 prefaulted = 1;
574 }
575
576 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
577 user_data, page_do_bit17_swizzling,
578 needs_clflush);
579
580 mutex_lock(&dev->struct_mutex);
581
582 next_page:
583 mark_page_accessed(page);
584
585 if (ret)
586 goto out;
587
588 remain -= page_length;
589 user_data += page_length;
590 offset += page_length;
591 }
592 #endif
593
594 out:
595 i915_gem_object_unpin_pages(obj);
596
597 if (hit_slowpath) {
598 /* Fixup: Kill any reinstated backing storage pages */
599 if (obj->madv == __I915_MADV_PURGED)
600 i915_gem_object_truncate(obj);
601 }
602
603 return ret;
604 }
605
606 /**
607 * Reads data from the object referenced by handle.
608 *
609 * On error, the contents of *data are undefined.
610 */
611 int
612 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
613 struct drm_file *file)
614 {
615 struct drm_i915_gem_pread *args = data;
616 struct drm_i915_gem_object *obj;
617 int ret = 0;
618
619 if (args->size == 0)
620 return 0;
621
622 if (!access_ok(VERIFY_WRITE,
623 (char __user *)(uintptr_t)args->data_ptr,
624 args->size))
625 return -EFAULT;
626
627 ret = i915_mutex_lock_interruptible(dev);
628 if (ret)
629 return ret;
630
631 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
632 if (&obj->base == NULL) {
633 ret = -ENOENT;
634 goto unlock;
635 }
636
637 /* Bounds check source. */
638 if (args->offset > obj->base.size ||
639 args->size > obj->base.size - args->offset) {
640 ret = -EINVAL;
641 goto out;
642 }
643
644 #ifndef __NetBSD__ /* XXX drm prime */
645 /* prime objects have no backing filp to GEM pread/pwrite
646 * pages from.
647 */
648 if (!obj->base.filp) {
649 ret = -EINVAL;
650 goto out;
651 }
652 #endif
653
654 trace_i915_gem_object_pread(obj, args->offset, args->size);
655
656 ret = i915_gem_shmem_pread(dev, obj, args, file);
657
658 out:
659 drm_gem_object_unreference(&obj->base);
660 unlock:
661 mutex_unlock(&dev->struct_mutex);
662 return ret;
663 }
664
665 /* This is the fast write path which cannot handle
666 * page faults in the source data
667 */
668
669 static inline int
670 fast_user_write(struct io_mapping *mapping,
671 loff_t page_base, int page_offset,
672 char __user *user_data,
673 int length)
674 {
675 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
676 return -EFAULT;
677 #else
678 void __iomem *vaddr_atomic;
679 void *vaddr;
680 unsigned long unwritten;
681
682 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
683 /* We can use the cpu mem copy function because this is X86. */
684 vaddr = (void __force*)vaddr_atomic + page_offset;
685 unwritten = __copy_from_user_inatomic_nocache(vaddr,
686 user_data, length);
687 io_mapping_unmap_atomic(vaddr_atomic);
688 return unwritten;
689 #endif
690 }
691
692 /**
693 * This is the fast pwrite path, where we copy the data directly from the
694 * user into the GTT, uncached.
695 */
696 static int
697 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
698 struct drm_i915_gem_object *obj,
699 struct drm_i915_gem_pwrite *args,
700 struct drm_file *file)
701 {
702 drm_i915_private_t *dev_priv = dev->dev_private;
703 ssize_t remain;
704 loff_t offset, page_base;
705 char __user *user_data;
706 int page_offset, page_length, ret;
707
708 ret = i915_gem_object_pin(obj, 0, true, true);
709 if (ret)
710 goto out;
711
712 ret = i915_gem_object_set_to_gtt_domain(obj, true);
713 if (ret)
714 goto out_unpin;
715
716 ret = i915_gem_object_put_fence(obj);
717 if (ret)
718 goto out_unpin;
719
720 user_data = (char __user *) (uintptr_t) args->data_ptr;
721 remain = args->size;
722
723 offset = obj->gtt_offset + args->offset;
724
725 while (remain > 0) {
726 /* Operation in this page
727 *
728 * page_base = page offset within aperture
729 * page_offset = offset within page
730 * page_length = bytes to copy for this page
731 */
732 page_base = offset & PAGE_MASK;
733 page_offset = offset_in_page(offset);
734 page_length = remain;
735 if ((page_offset + remain) > PAGE_SIZE)
736 page_length = PAGE_SIZE - page_offset;
737
738 /* If we get a fault while copying data, then (presumably) our
739 * source page isn't available. Return the error and we'll
740 * retry in the slow path.
741 */
742 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
743 page_offset, user_data, page_length)) {
744 ret = -EFAULT;
745 goto out_unpin;
746 }
747
748 remain -= page_length;
749 user_data += page_length;
750 offset += page_length;
751 }
752
753 out_unpin:
754 i915_gem_object_unpin(obj);
755 out:
756 return ret;
757 }
758
759 /* Per-page copy function for the shmem pwrite fastpath.
760 * Flushes invalid cachelines before writing to the target if
761 * needs_clflush_before is set and flushes out any written cachelines after
762 * writing if needs_clflush is set. */
763 static int
764 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
765 char __user *user_data,
766 bool page_do_bit17_swizzling,
767 bool needs_clflush_before,
768 bool needs_clflush_after)
769 {
770 #ifdef __NetBSD__
771 return -EFAULT;
772 #else
773 char *vaddr;
774 int ret;
775
776 if (unlikely(page_do_bit17_swizzling))
777 return -EINVAL;
778
779 vaddr = kmap_atomic(page);
780 if (needs_clflush_before)
781 drm_clflush_virt_range(vaddr + shmem_page_offset,
782 page_length);
783 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
784 user_data,
785 page_length);
786 if (needs_clflush_after)
787 drm_clflush_virt_range(vaddr + shmem_page_offset,
788 page_length);
789 kunmap_atomic(vaddr);
790
791 return ret ? -EFAULT : 0;
792 #endif
793 }
794
795 /* Only difference to the fast-path function is that this can handle bit17
796 * and uses non-atomic copy and kmap functions. */
797 static int
798 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
799 char __user *user_data,
800 bool page_do_bit17_swizzling,
801 bool needs_clflush_before,
802 bool needs_clflush_after)
803 {
804 char *vaddr;
805 int ret;
806
807 vaddr = kmap(page);
808 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
809 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
810 page_length,
811 page_do_bit17_swizzling);
812 if (page_do_bit17_swizzling)
813 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
814 user_data,
815 page_length);
816 else
817 ret = __copy_from_user(vaddr + shmem_page_offset,
818 user_data,
819 page_length);
820 if (needs_clflush_after)
821 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
822 page_length,
823 page_do_bit17_swizzling);
824 kunmap(page);
825
826 return ret ? -EFAULT : 0;
827 }
828
829 static int
830 i915_gem_shmem_pwrite(struct drm_device *dev,
831 struct drm_i915_gem_object *obj,
832 struct drm_i915_gem_pwrite *args,
833 struct drm_file *file)
834 {
835 ssize_t remain;
836 loff_t offset;
837 char __user *user_data;
838 int shmem_page_offset, page_length, ret = 0;
839 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
840 int hit_slowpath = 0;
841 int needs_clflush_after = 0;
842 int needs_clflush_before = 0;
843 #ifndef __NetBSD__
844 int i;
845 struct scatterlist *sg;
846 #endif
847
848 user_data = (char __user *) (uintptr_t) args->data_ptr;
849 remain = args->size;
850
851 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
852
853 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
854 /* If we're not in the cpu write domain, set ourself into the gtt
855 * write domain and manually flush cachelines (if required). This
856 * optimizes for the case when the gpu will use the data
857 * right away and we therefore have to clflush anyway. */
858 if (obj->cache_level == I915_CACHE_NONE)
859 needs_clflush_after = 1;
860 if (obj->gtt_space) {
861 ret = i915_gem_object_set_to_gtt_domain(obj, true);
862 if (ret)
863 return ret;
864 }
865 }
866 /* Same trick applies for invalidate partially written cachelines before
867 * writing. */
868 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
869 && obj->cache_level == I915_CACHE_NONE)
870 needs_clflush_before = 1;
871
872 ret = i915_gem_object_get_pages(obj);
873 if (ret)
874 return ret;
875
876 i915_gem_object_pin_pages(obj);
877
878 offset = args->offset;
879 obj->dirty = 1;
880
881 #ifdef __NetBSD__
882 while (0 < remain) {
883 /* Get the next page. */
884 shmem_page_offset = offset_in_page(offset);
885 KASSERT(shmem_page_offset < PAGE_SIZE);
886 page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
887 struct page *const page = i915_gem_object_get_page(obj,
888 atop(offset));
889
890 /* Decide whether to flush the cache or swizzle bit 17. */
891 const bool partial_cacheline_write = needs_clflush_before &&
892 ((shmem_page_offset | page_length)
893 & (cpu_info_primary.ci_cflush_lsize - 1));
894 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
895 (page_to_phys(page) & (1 << 17)) != 0;
896
897 /* Try the fast path. */
898 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
899 user_data, page_do_bit17_swizzling,
900 partial_cacheline_write, needs_clflush_after);
901 if (ret == 0)
902 goto next_page;
903
904 /* Fast path failed. Try the slow path. */
905 hit_slowpath = 1;
906 mutex_unlock(&dev->struct_mutex);
907 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
908 user_data, page_do_bit17_swizzling,
909 partial_cacheline_write, needs_clflush_after);
910 mutex_lock(&dev->struct_mutex);
911
912 next_page:
913 page->p_vmp.flags &= ~PG_CLEAN;
914 /* XXX mark page accessed */
915 if (ret)
916 goto out;
917
918 KASSERT(page_length <= remain);
919 remain -= page_length;
920 user_data += page_length;
921 offset += page_length;
922 }
923 #else
924 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
925 struct page *page;
926 int partial_cacheline_write;
927
928 if (i < offset >> PAGE_SHIFT)
929 continue;
930
931 if (remain <= 0)
932 break;
933
934 /* Operation in this page
935 *
936 * shmem_page_offset = offset within page in shmem file
937 * page_length = bytes to copy for this page
938 */
939 shmem_page_offset = offset_in_page(offset);
940
941 page_length = remain;
942 if ((shmem_page_offset + page_length) > PAGE_SIZE)
943 page_length = PAGE_SIZE - shmem_page_offset;
944
945 /* If we don't overwrite a cacheline completely we need to be
946 * careful to have up-to-date data by first clflushing. Don't
947 * overcomplicate things and flush the entire patch. */
948 partial_cacheline_write = needs_clflush_before &&
949 ((shmem_page_offset | page_length)
950 & (boot_cpu_data.x86_clflush_size - 1));
951
952 page = sg_page(sg);
953 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
954 (page_to_phys(page) & (1 << 17)) != 0;
955
956 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
957 user_data, page_do_bit17_swizzling,
958 partial_cacheline_write,
959 needs_clflush_after);
960 if (ret == 0)
961 goto next_page;
962
963 hit_slowpath = 1;
964 mutex_unlock(&dev->struct_mutex);
965 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
966 user_data, page_do_bit17_swizzling,
967 partial_cacheline_write,
968 needs_clflush_after);
969
970 mutex_lock(&dev->struct_mutex);
971
972 next_page:
973 set_page_dirty(page);
974 mark_page_accessed(page);
975
976 if (ret)
977 goto out;
978
979 remain -= page_length;
980 user_data += page_length;
981 offset += page_length;
982 }
983 #endif
984
985 out:
986 i915_gem_object_unpin_pages(obj);
987
988 if (hit_slowpath) {
989 /* Fixup: Kill any reinstated backing storage pages */
990 if (obj->madv == __I915_MADV_PURGED)
991 i915_gem_object_truncate(obj);
992 /* and flush dirty cachelines in case the object isn't in the cpu write
993 * domain anymore. */
994 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
995 i915_gem_clflush_object(obj);
996 i915_gem_chipset_flush(dev);
997 }
998 }
999
1000 if (needs_clflush_after)
1001 i915_gem_chipset_flush(dev);
1002
1003 return ret;
1004 }
1005
1006 /**
1007 * Writes data to the object referenced by handle.
1008 *
1009 * On error, the contents of the buffer that were to be modified are undefined.
1010 */
1011 int
1012 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1013 struct drm_file *file)
1014 {
1015 struct drm_i915_gem_pwrite *args = data;
1016 struct drm_i915_gem_object *obj;
1017 int ret;
1018
1019 if (args->size == 0)
1020 return 0;
1021
1022 if (!access_ok(VERIFY_READ,
1023 (char __user *)(uintptr_t)args->data_ptr,
1024 args->size))
1025 return -EFAULT;
1026
1027 #ifndef __NetBSD__ /* XXX prefault */
1028 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
1029 args->size);
1030 if (ret)
1031 return -EFAULT;
1032 #endif
1033
1034 ret = i915_mutex_lock_interruptible(dev);
1035 if (ret)
1036 return ret;
1037
1038 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1039 if (&obj->base == NULL) {
1040 ret = -ENOENT;
1041 goto unlock;
1042 }
1043
1044 /* Bounds check destination. */
1045 if (args->offset > obj->base.size ||
1046 args->size > obj->base.size - args->offset) {
1047 ret = -EINVAL;
1048 goto out;
1049 }
1050
1051 #ifndef __NetBSD__ /* XXX drm prime */
1052 /* prime objects have no backing filp to GEM pread/pwrite
1053 * pages from.
1054 */
1055 if (!obj->base.filp) {
1056 ret = -EINVAL;
1057 goto out;
1058 }
1059 #endif
1060
1061 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1062
1063 ret = -EFAULT;
1064 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1065 * it would end up going through the fenced access, and we'll get
1066 * different detiling behavior between reading and writing.
1067 * pread/pwrite currently are reading and writing from the CPU
1068 * perspective, requiring manual detiling by the client.
1069 */
1070 if (obj->phys_obj) {
1071 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1072 goto out;
1073 }
1074
1075 if (obj->cache_level == I915_CACHE_NONE &&
1076 obj->tiling_mode == I915_TILING_NONE &&
1077 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1078 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1079 /* Note that the gtt paths might fail with non-page-backed user
1080 * pointers (e.g. gtt mappings when moving data between
1081 * textures). Fallback to the shmem path in that case. */
1082 }
1083
1084 if (ret == -EFAULT || ret == -ENOSPC)
1085 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1086
1087 out:
1088 drm_gem_object_unreference(&obj->base);
1089 unlock:
1090 mutex_unlock(&dev->struct_mutex);
1091 return ret;
1092 }
1093
1094 int
1095 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1096 bool interruptible)
1097 {
1098 if (atomic_read(&dev_priv->mm.wedged)) {
1099 struct completion *x = &dev_priv->error_completion;
1100 bool recovery_complete;
1101 #ifndef __NetBSD__
1102 unsigned long flags;
1103 #endif
1104
1105 #ifdef __NetBSD__
1106 /*
1107 * XXX This is a horrible kludge. Reading internal
1108 * fields is no good, nor is reading them unlocked, and
1109 * neither is locking it and then unlocking it before
1110 * making a decision.
1111 */
1112 recovery_complete = x->c_done > 0;
1113 #else
1114 /* Give the error handler a chance to run. */
1115 spin_lock_irqsave(&x->wait.lock, flags);
1116 recovery_complete = x->done > 0;
1117 spin_unlock_irqrestore(&x->wait.lock, flags);
1118 #endif
1119
1120 /* Non-interruptible callers can't handle -EAGAIN, hence return
1121 * -EIO unconditionally for these. */
1122 if (!interruptible)
1123 return -EIO;
1124
1125 /* Recovery complete, but still wedged means reset failure. */
1126 if (recovery_complete)
1127 return -EIO;
1128
1129 return -EAGAIN;
1130 }
1131
1132 return 0;
1133 }
1134
1135 /*
1136 * Compare seqno against outstanding lazy request. Emit a request if they are
1137 * equal.
1138 */
1139 static int
1140 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1141 {
1142 int ret;
1143
1144 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1145
1146 ret = 0;
1147 if (seqno == ring->outstanding_lazy_request)
1148 ret = i915_add_request(ring, NULL, NULL);
1149
1150 return ret;
1151 }
1152
1153 /**
1154 * __wait_seqno - wait until execution of seqno has finished
1155 * @ring: the ring expected to report seqno
1156 * @seqno: duh!
1157 * @interruptible: do an interruptible wait (normally yes)
1158 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1159 *
1160 * Returns 0 if the seqno was found within the alloted time. Else returns the
1161 * errno with remaining time filled in timeout argument.
1162 */
1163 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1164 bool interruptible, struct timespec *timeout)
1165 {
1166 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1167 struct timespec before, now, wait_time={1,0};
1168 unsigned long timeout_jiffies;
1169 long end;
1170 bool wait_forever = true;
1171 int ret;
1172
1173 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1174 return 0;
1175
1176 trace_i915_gem_request_wait_begin(ring, seqno);
1177
1178 if (timeout != NULL) {
1179 wait_time = *timeout;
1180 wait_forever = false;
1181 }
1182
1183 timeout_jiffies = timespec_to_jiffies(&wait_time);
1184
1185 if (WARN_ON(!ring->irq_get(ring)))
1186 return -ENODEV;
1187
1188 /* Record current time in case interrupted by signal, or wedged * */
1189 getrawmonotonic(&before);
1190
1191 #define EXIT_COND \
1192 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1193 atomic_read(&dev_priv->mm.wedged))
1194 do {
1195 #ifdef __NetBSD__
1196 unsigned long flags;
1197 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1198 if (interruptible)
1199 DRM_SPIN_TIMED_WAIT_UNTIL(end, &ring->irq_queue,
1200 &dev_priv->irq_lock,
1201 timeout_jiffies,
1202 EXIT_COND);
1203 else
1204 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(end, &ring->irq_queue,
1205 &dev_priv->irq_lock,
1206 timeout_jiffies,
1207 EXIT_COND);
1208 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1209 #else
1210 if (interruptible)
1211 end = wait_event_interruptible_timeout(ring->irq_queue,
1212 EXIT_COND,
1213 timeout_jiffies);
1214 else
1215 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1216 timeout_jiffies);
1217
1218 #endif
1219 ret = i915_gem_check_wedge(dev_priv, interruptible);
1220 if (ret)
1221 end = ret;
1222 } while (end == 0 && wait_forever);
1223
1224 getrawmonotonic(&now);
1225
1226 ring->irq_put(ring);
1227 trace_i915_gem_request_wait_end(ring, seqno);
1228 #undef EXIT_COND
1229
1230 if (timeout) {
1231 struct timespec sleep_time = timespec_sub(now, before);
1232 *timeout = timespec_sub(*timeout, sleep_time);
1233 }
1234
1235 switch (end) {
1236 case -EIO:
1237 case -EAGAIN: /* Wedged */
1238 case -ERESTARTSYS: /* Signal */
1239 case -EINTR:
1240 return (int)end;
1241 case 0: /* Timeout */
1242 if (timeout)
1243 set_normalized_timespec(timeout, 0, 0);
1244 return -ETIME;
1245 default: /* Completed */
1246 WARN_ON(end < 0); /* We're not aware of other errors */
1247 return 0;
1248 }
1249 }
1250
1251 /**
1252 * Waits for a sequence number to be signaled, and cleans up the
1253 * request and object lists appropriately for that event.
1254 */
1255 int
1256 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1257 {
1258 struct drm_device *dev = ring->dev;
1259 struct drm_i915_private *dev_priv = dev->dev_private;
1260 bool interruptible = dev_priv->mm.interruptible;
1261 int ret;
1262
1263 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1264 BUG_ON(seqno == 0);
1265
1266 ret = i915_gem_check_wedge(dev_priv, interruptible);
1267 if (ret)
1268 return ret;
1269
1270 ret = i915_gem_check_olr(ring, seqno);
1271 if (ret)
1272 return ret;
1273
1274 return __wait_seqno(ring, seqno, interruptible, NULL);
1275 }
1276
1277 /**
1278 * Ensures that all rendering to the object has completed and the object is
1279 * safe to unbind from the GTT or access from the CPU.
1280 */
1281 static __must_check int
1282 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1283 bool readonly)
1284 {
1285 struct intel_ring_buffer *ring = obj->ring;
1286 u32 seqno;
1287 int ret;
1288
1289 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1290 if (seqno == 0)
1291 return 0;
1292
1293 ret = i915_wait_seqno(ring, seqno);
1294 if (ret)
1295 return ret;
1296
1297 i915_gem_retire_requests_ring(ring);
1298
1299 /* Manually manage the write flush as we may have not yet
1300 * retired the buffer.
1301 */
1302 if (obj->last_write_seqno &&
1303 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1304 obj->last_write_seqno = 0;
1305 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1306 }
1307
1308 return 0;
1309 }
1310
1311 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1312 * as the object state may change during this call.
1313 */
1314 static __must_check int
1315 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1316 bool readonly)
1317 {
1318 struct drm_device *dev = obj->base.dev;
1319 struct drm_i915_private *dev_priv = dev->dev_private;
1320 struct intel_ring_buffer *ring = obj->ring;
1321 u32 seqno;
1322 int ret;
1323
1324 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1325 BUG_ON(!dev_priv->mm.interruptible);
1326
1327 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1328 if (seqno == 0)
1329 return 0;
1330
1331 ret = i915_gem_check_wedge(dev_priv, true);
1332 if (ret)
1333 return ret;
1334
1335 ret = i915_gem_check_olr(ring, seqno);
1336 if (ret)
1337 return ret;
1338
1339 mutex_unlock(&dev->struct_mutex);
1340 ret = __wait_seqno(ring, seqno, true, NULL);
1341 mutex_lock(&dev->struct_mutex);
1342
1343 i915_gem_retire_requests_ring(ring);
1344
1345 /* Manually manage the write flush as we may have not yet
1346 * retired the buffer.
1347 */
1348 if (obj->last_write_seqno &&
1349 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1350 obj->last_write_seqno = 0;
1351 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1352 }
1353
1354 return ret;
1355 }
1356
1357 /**
1358 * Called when user space prepares to use an object with the CPU, either
1359 * through the mmap ioctl's mapping or a GTT mapping.
1360 */
1361 int
1362 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1363 struct drm_file *file)
1364 {
1365 struct drm_i915_gem_set_domain *args = data;
1366 struct drm_i915_gem_object *obj;
1367 uint32_t read_domains = args->read_domains;
1368 uint32_t write_domain = args->write_domain;
1369 int ret;
1370
1371 /* Only handle setting domains to types used by the CPU. */
1372 if (write_domain & I915_GEM_GPU_DOMAINS)
1373 return -EINVAL;
1374
1375 if (read_domains & I915_GEM_GPU_DOMAINS)
1376 return -EINVAL;
1377
1378 /* Having something in the write domain implies it's in the read
1379 * domain, and only that read domain. Enforce that in the request.
1380 */
1381 if (write_domain != 0 && read_domains != write_domain)
1382 return -EINVAL;
1383
1384 ret = i915_mutex_lock_interruptible(dev);
1385 if (ret)
1386 return ret;
1387
1388 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1389 if (&obj->base == NULL) {
1390 ret = -ENOENT;
1391 goto unlock;
1392 }
1393
1394 /* Try to flush the object off the GPU without holding the lock.
1395 * We will repeat the flush holding the lock in the normal manner
1396 * to catch cases where we are gazumped.
1397 */
1398 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1399 if (ret)
1400 goto unref;
1401
1402 if (read_domains & I915_GEM_DOMAIN_GTT) {
1403 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1404
1405 /* Silently promote "you're not bound, there was nothing to do"
1406 * to success, since the client was just asking us to
1407 * make sure everything was done.
1408 */
1409 if (ret == -EINVAL)
1410 ret = 0;
1411 } else {
1412 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1413 }
1414
1415 unref:
1416 drm_gem_object_unreference(&obj->base);
1417 unlock:
1418 mutex_unlock(&dev->struct_mutex);
1419 return ret;
1420 }
1421
1422 /**
1423 * Called when user space has done writes to this buffer
1424 */
1425 int
1426 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1427 struct drm_file *file)
1428 {
1429 struct drm_i915_gem_sw_finish *args = data;
1430 struct drm_i915_gem_object *obj;
1431 int ret = 0;
1432
1433 ret = i915_mutex_lock_interruptible(dev);
1434 if (ret)
1435 return ret;
1436
1437 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1438 if (&obj->base == NULL) {
1439 ret = -ENOENT;
1440 goto unlock;
1441 }
1442
1443 /* Pinned buffers may be scanout, so flush the cache */
1444 if (obj->pin_count)
1445 i915_gem_object_flush_cpu_write_domain(obj);
1446
1447 drm_gem_object_unreference(&obj->base);
1448 unlock:
1449 mutex_unlock(&dev->struct_mutex);
1450 return ret;
1451 }
1452
1453 /**
1454 * Maps the contents of an object, returning the address it is mapped
1455 * into.
1456 *
1457 * While the mapping holds a reference on the contents of the object, it doesn't
1458 * imply a ref on the object itself.
1459 */
1460 int
1461 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1462 struct drm_file *file)
1463 {
1464 struct drm_i915_gem_mmap *args = data;
1465 struct drm_gem_object *obj;
1466 unsigned long addr;
1467 #ifdef __NetBSD__
1468 int ret;
1469 #endif
1470
1471 obj = drm_gem_object_lookup(dev, file, args->handle);
1472 if (obj == NULL)
1473 return -ENOENT;
1474
1475 #ifndef __NetBSD__ /* XXX drm prime */
1476 /* prime objects have no backing filp to GEM mmap
1477 * pages from.
1478 */
1479 if (!obj->filp) {
1480 drm_gem_object_unreference_unlocked(obj);
1481 return -EINVAL;
1482 }
1483 #endif
1484
1485 #ifdef __NetBSD__
1486 addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
1487 (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
1488 /* XXX errno NetBSD->Linux */
1489 ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
1490 obj->gemo_shm_uao, args->offset, 0,
1491 UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
1492 (VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
1493 0));
1494 if (ret) {
1495 drm_gem_object_unreference_unlocked(obj);
1496 return ret;
1497 }
1498 uao_reference(obj->gemo_shm_uao);
1499 drm_gem_object_unreference_unlocked(obj);
1500 #else
1501 addr = vm_mmap(obj->filp, 0, args->size,
1502 PROT_READ | PROT_WRITE, MAP_SHARED,
1503 args->offset);
1504 drm_gem_object_unreference_unlocked(obj);
1505 if (IS_ERR((void *)addr))
1506 return addr;
1507 #endif
1508
1509 args->addr_ptr = (uint64_t) addr;
1510
1511 return 0;
1512 }
1513
1514 #ifdef __NetBSD__ /* XXX gem gtt fault */
1515 static int i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
1516 struct vm_page **, int, int, vm_prot_t, int, paddr_t);
1517
1518 int
1519 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1520 int npages, int centeridx, vm_prot_t access_type, int flags)
1521 {
1522 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1523 struct drm_gem_object *gem_obj =
1524 container_of(uobj, struct drm_gem_object, gemo_uvmobj);
1525 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
1526 struct drm_device *dev = obj->base.dev;
1527 struct drm_i915_private *dev_priv = dev->dev_private;
1528 voff_t byte_offset;
1529 pgoff_t page_offset;
1530 int ret = 0;
1531 bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
1532
1533 byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
1534 KASSERT(byte_offset <= obj->base.size);
1535 page_offset = (byte_offset >> PAGE_SHIFT);
1536
1537 ret = i915_mutex_lock_interruptible(dev);
1538 if (ret)
1539 goto out;
1540
1541 trace_i915_gem_object_fault(obj, page_offset, true, write);
1542
1543 /* Now bind it into the GTT if needed */
1544 ret = i915_gem_object_pin(obj, 0, true, false);
1545 if (ret)
1546 goto unlock;
1547
1548 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1549 if (ret)
1550 goto unpin;
1551
1552 ret = i915_gem_object_get_fence(obj);
1553 if (ret)
1554 goto unpin;
1555
1556 obj->fault_mappable = true;
1557
1558 /* Finally, remap it using the new GTT offset */
1559 /* XXX errno NetBSD->Linux */
1560 ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
1561 flags, (dev_priv->mm.gtt_base_addr + obj->gtt_offset));
1562 unpin:
1563 i915_gem_object_unpin(obj);
1564 unlock:
1565 mutex_unlock(&dev->struct_mutex);
1566 out:
1567 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
1568 if (ret == -ERESTART)
1569 uvm_wait("i915flt");
1570 return ret;
1571 }
1572
1573 /*
1574 * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
1575 *
1576 * XXX pmap_enter_default instead of pmap_enter because of a problem
1577 * with using weak aliases in kernel modules or something.
1578 */
1579 int pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
1580
1581 static int
1582 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1583 int npages, int centeridx, vm_prot_t access_type, int flags,
1584 paddr_t gtt_paddr)
1585 {
1586 struct vm_map_entry *entry = ufi->entry;
1587 vaddr_t curr_va;
1588 off_t curr_offset;
1589 paddr_t paddr;
1590 u_int mmapflags;
1591 int lcv, retval;
1592 vm_prot_t mapprot;
1593 UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
1594 UVMHIST_LOG(maphist," flags=%d", flags,0,0,0);
1595
1596 /*
1597 * we do not allow device mappings to be mapped copy-on-write
1598 * so we kill any attempt to do so here.
1599 */
1600
1601 if (UVM_ET_ISCOPYONWRITE(entry)) {
1602 UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
1603 entry->etype, 0,0,0);
1604 return(EIO);
1605 }
1606
1607 /*
1608 * now we must determine the offset in udv to use and the VA to
1609 * use for pmap_enter. note that we always use orig_map's pmap
1610 * for pmap_enter (even if we have a submap). since virtual
1611 * addresses in a submap must match the main map, this is ok.
1612 */
1613
1614 /* udv offset = (offset from start of entry) + entry's offset */
1615 curr_offset = entry->offset + (vaddr - entry->start);
1616 /* pmap va = vaddr (virtual address of pps[0]) */
1617 curr_va = vaddr;
1618
1619 /*
1620 * loop over the page range entering in as needed
1621 */
1622
1623 retval = 0;
1624 for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
1625 curr_va += PAGE_SIZE) {
1626 if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
1627 continue;
1628
1629 if (pps[lcv] == PGO_DONTCARE)
1630 continue;
1631
1632 paddr = (gtt_paddr + curr_offset);
1633 mmapflags = 0;
1634 mapprot = ufi->entry->protection;
1635 UVMHIST_LOG(maphist,
1636 " MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
1637 ufi->orig_map->pmap, curr_va, paddr, mapprot);
1638 if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
1639 PMAP_CANFAIL | mapprot | mmapflags) != 0) {
1640 /*
1641 * pmap_enter() didn't have the resource to
1642 * enter this mapping. Unlock everything,
1643 * wait for the pagedaemon to free up some
1644 * pages, and then tell uvm_fault() to start
1645 * the fault again.
1646 *
1647 * XXX Needs some rethinking for the PGO_ALLPAGES
1648 * XXX case.
1649 */
1650 pmap_update(ufi->orig_map->pmap); /* sync what we have so far */
1651 return (ERESTART);
1652 }
1653 }
1654
1655 pmap_update(ufi->orig_map->pmap);
1656 return (retval);
1657 }
1658 #else
1659 /**
1660 * i915_gem_fault - fault a page into the GTT
1661 * vma: VMA in question
1662 * vmf: fault info
1663 *
1664 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1665 * from userspace. The fault handler takes care of binding the object to
1666 * the GTT (if needed), allocating and programming a fence register (again,
1667 * only if needed based on whether the old reg is still valid or the object
1668 * is tiled) and inserting a new PTE into the faulting process.
1669 *
1670 * Note that the faulting process may involve evicting existing objects
1671 * from the GTT and/or fence registers to make room. So performance may
1672 * suffer if the GTT working set is large or there are few fence registers
1673 * left.
1674 */
1675 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1676 {
1677 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1678 struct drm_device *dev = obj->base.dev;
1679 drm_i915_private_t *dev_priv = dev->dev_private;
1680 pgoff_t page_offset;
1681 unsigned long pfn;
1682 int ret = 0;
1683 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1684
1685 /* We don't use vmf->pgoff since that has the fake offset */
1686 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1687 PAGE_SHIFT;
1688
1689 ret = i915_mutex_lock_interruptible(dev);
1690 if (ret)
1691 goto out;
1692
1693 trace_i915_gem_object_fault(obj, page_offset, true, write);
1694
1695 /* Now bind it into the GTT if needed */
1696 ret = i915_gem_object_pin(obj, 0, true, false);
1697 if (ret)
1698 goto unlock;
1699
1700 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1701 if (ret)
1702 goto unpin;
1703
1704 ret = i915_gem_object_get_fence(obj);
1705 if (ret)
1706 goto unpin;
1707
1708 obj->fault_mappable = true;
1709
1710 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1711 page_offset;
1712
1713 /* Finally, remap it using the new GTT offset */
1714 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1715 unpin:
1716 i915_gem_object_unpin(obj);
1717 unlock:
1718 mutex_unlock(&dev->struct_mutex);
1719 out:
1720 switch (ret) {
1721 case -EIO:
1722 /* If this -EIO is due to a gpu hang, give the reset code a
1723 * chance to clean up the mess. Otherwise return the proper
1724 * SIGBUS. */
1725 if (!atomic_read(&dev_priv->mm.wedged))
1726 return VM_FAULT_SIGBUS;
1727 case -EAGAIN:
1728 /* Give the error handler a chance to run and move the
1729 * objects off the GPU active list. Next time we service the
1730 * fault, we should be able to transition the page into the
1731 * GTT without touching the GPU (and so avoid further
1732 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1733 * with coherency, just lost writes.
1734 */
1735 set_need_resched();
1736 case 0:
1737 case -ERESTARTSYS:
1738 case -EINTR:
1739 case -EBUSY:
1740 /*
1741 * EBUSY is ok: this just means that another thread
1742 * already did the job.
1743 */
1744 return VM_FAULT_NOPAGE;
1745 case -ENOMEM:
1746 return VM_FAULT_OOM;
1747 case -ENOSPC:
1748 return VM_FAULT_SIGBUS;
1749 default:
1750 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1751 return VM_FAULT_SIGBUS;
1752 }
1753 }
1754 #endif
1755
1756 /**
1757 * i915_gem_release_mmap - remove physical page mappings
1758 * @obj: obj in question
1759 *
1760 * Preserve the reservation of the mmapping with the DRM core code, but
1761 * relinquish ownership of the pages back to the system.
1762 *
1763 * It is vital that we remove the page mapping if we have mapped a tiled
1764 * object through the GTT and then lose the fence register due to
1765 * resource pressure. Similarly if the object has been moved out of the
1766 * aperture, than pages mapped into userspace must be revoked. Removing the
1767 * mapping will then trigger a page fault on the next user access, allowing
1768 * fixup by i915_gem_fault().
1769 */
1770 void
1771 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1772 {
1773 if (!obj->fault_mappable)
1774 return;
1775
1776 #ifdef __NetBSD__ /* XXX gem gtt fault */
1777 {
1778 struct vm_page *page;
1779
1780 mutex_enter(obj->base.gemo_shm_uao->vmobjlock);
1781 KASSERT(obj->pages != NULL);
1782 /* Force a fresh fault for each page. */
1783 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
1784 pmap_page_protect(page, VM_PROT_NONE);
1785 mutex_exit(obj->base.gemo_shm_uao->vmobjlock);
1786 }
1787 #else
1788 if (obj->base.dev->dev_mapping)
1789 unmap_mapping_range(obj->base.dev->dev_mapping,
1790 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1791 obj->base.size, 1);
1792 #endif
1793
1794 obj->fault_mappable = false;
1795 }
1796
1797 static uint32_t
1798 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1799 {
1800 uint32_t gtt_size;
1801
1802 if (INTEL_INFO(dev)->gen >= 4 ||
1803 tiling_mode == I915_TILING_NONE)
1804 return size;
1805
1806 /* Previous chips need a power-of-two fence region when tiling */
1807 if (INTEL_INFO(dev)->gen == 3)
1808 gtt_size = 1024*1024;
1809 else
1810 gtt_size = 512*1024;
1811
1812 while (gtt_size < size)
1813 gtt_size <<= 1;
1814
1815 return gtt_size;
1816 }
1817
1818 /**
1819 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1820 * @obj: object to check
1821 *
1822 * Return the required GTT alignment for an object, taking into account
1823 * potential fence register mapping.
1824 */
1825 static uint32_t
1826 i915_gem_get_gtt_alignment(struct drm_device *dev,
1827 uint32_t size,
1828 int tiling_mode)
1829 {
1830 /*
1831 * Minimum alignment is 4k (GTT page size), but might be greater
1832 * if a fence register is needed for the object.
1833 */
1834 if (INTEL_INFO(dev)->gen >= 4 ||
1835 tiling_mode == I915_TILING_NONE)
1836 return 4096;
1837
1838 /*
1839 * Previous chips need to be aligned to the size of the smallest
1840 * fence register that can contain the object.
1841 */
1842 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1843 }
1844
1845 /**
1846 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1847 * unfenced object
1848 * @dev: the device
1849 * @size: size of the object
1850 * @tiling_mode: tiling mode of the object
1851 *
1852 * Return the required GTT alignment for an object, only taking into account
1853 * unfenced tiled surface requirements.
1854 */
1855 uint32_t
1856 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1857 uint32_t size,
1858 int tiling_mode)
1859 {
1860 /*
1861 * Minimum alignment is 4k (GTT page size) for sane hw.
1862 */
1863 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1864 tiling_mode == I915_TILING_NONE)
1865 return 4096;
1866
1867 /* Previous hardware however needs to be aligned to a power-of-two
1868 * tile height. The simplest method for determining this is to reuse
1869 * the power-of-tile object size.
1870 */
1871 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1872 }
1873
1874 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1875 {
1876 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1877 int ret;
1878
1879 if (obj->base.map_list.map)
1880 return 0;
1881
1882 dev_priv->mm.shrinker_no_lock_stealing = true;
1883
1884 ret = drm_gem_create_mmap_offset(&obj->base);
1885 if (ret != -ENOSPC)
1886 goto out;
1887
1888 /* Badly fragmented mmap space? The only way we can recover
1889 * space is by destroying unwanted objects. We can't randomly release
1890 * mmap_offsets as userspace expects them to be persistent for the
1891 * lifetime of the objects. The closest we can is to release the
1892 * offsets on purgeable objects by truncating it and marking it purged,
1893 * which prevents userspace from ever using that object again.
1894 */
1895 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1896 ret = drm_gem_create_mmap_offset(&obj->base);
1897 if (ret != -ENOSPC)
1898 goto out;
1899
1900 i915_gem_shrink_all(dev_priv);
1901 ret = drm_gem_create_mmap_offset(&obj->base);
1902 out:
1903 dev_priv->mm.shrinker_no_lock_stealing = false;
1904
1905 return ret;
1906 }
1907
1908 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1909 {
1910 if (!obj->base.map_list.map)
1911 return;
1912
1913 drm_gem_free_mmap_offset(&obj->base);
1914 }
1915
1916 int
1917 i915_gem_mmap_gtt(struct drm_file *file,
1918 struct drm_device *dev,
1919 uint32_t handle,
1920 uint64_t *offset)
1921 {
1922 struct drm_i915_private *dev_priv = dev->dev_private;
1923 struct drm_i915_gem_object *obj;
1924 int ret;
1925
1926 ret = i915_mutex_lock_interruptible(dev);
1927 if (ret)
1928 return ret;
1929
1930 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1931 if (&obj->base == NULL) {
1932 ret = -ENOENT;
1933 goto unlock;
1934 }
1935
1936 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1937 ret = -E2BIG;
1938 goto out;
1939 }
1940
1941 if (obj->madv != I915_MADV_WILLNEED) {
1942 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1943 ret = -EINVAL;
1944 goto out;
1945 }
1946
1947 ret = i915_gem_object_create_mmap_offset(obj);
1948 if (ret)
1949 goto out;
1950
1951 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1952
1953 out:
1954 drm_gem_object_unreference(&obj->base);
1955 unlock:
1956 mutex_unlock(&dev->struct_mutex);
1957 return ret;
1958 }
1959
1960 /**
1961 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1962 * @dev: DRM device
1963 * @data: GTT mapping ioctl data
1964 * @file: GEM object info
1965 *
1966 * Simply returns the fake offset to userspace so it can mmap it.
1967 * The mmap call will end up in drm_gem_mmap(), which will set things
1968 * up so we can get faults in the handler above.
1969 *
1970 * The fault handler will take care of binding the object into the GTT
1971 * (since it may have been evicted to make room for something), allocating
1972 * a fence register, and mapping the appropriate aperture address into
1973 * userspace.
1974 */
1975 int
1976 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1977 struct drm_file *file)
1978 {
1979 struct drm_i915_gem_mmap_gtt *args = data;
1980
1981 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1982 }
1983
1984 /* Immediately discard the backing storage */
1985 static void
1986 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1987 {
1988 #ifndef __NetBSD__
1989 struct inode *inode;
1990 #endif
1991
1992 i915_gem_object_free_mmap_offset(obj);
1993
1994 #ifdef __NetBSD__
1995 {
1996 struct uvm_object *const uobj = obj->base.gemo_shm_uao;
1997
1998 if (uobj != NULL) {
1999 /* XXX Calling pgo_put like this is bogus. */
2000 mutex_enter(uobj->vmobjlock);
2001 (*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
2002 (PGO_ALLPAGES | PGO_FREE));
2003 }
2004 }
2005 #else
2006 if (obj->base.filp == NULL)
2007 return;
2008
2009 /* Our goal here is to return as much of the memory as
2010 * is possible back to the system as we are called from OOM.
2011 * To do this we must instruct the shmfs to drop all of its
2012 * backing pages, *now*.
2013 */
2014 inode = obj->base.filp->f_path.dentry->d_inode;
2015 shmem_truncate_range(inode, 0, (loff_t)-1);
2016 #endif
2017
2018 obj->madv = __I915_MADV_PURGED;
2019 }
2020
2021 static inline int
2022 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
2023 {
2024 return obj->madv == I915_MADV_DONTNEED;
2025 }
2026
2027 #ifdef __NetBSD__
2028 static void
2029 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2030 {
2031 struct drm_device *const dev = obj->base.dev;
2032 int ret;
2033
2034 /* XXX Cargo-culted from the Linux code. */
2035 BUG_ON(obj->madv == __I915_MADV_PURGED);
2036
2037 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2038 if (ret) {
2039 WARN_ON(ret != -EIO);
2040 i915_gem_clflush_object(obj);
2041 obj->base.read_domains = obj->base.write_domain =
2042 I915_GEM_DOMAIN_CPU;
2043 }
2044
2045 if (i915_gem_object_needs_bit17_swizzle(obj))
2046 i915_gem_object_save_bit_17_swizzle(obj);
2047
2048 /* XXX Maintain dirty flag? */
2049
2050 bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
2051 bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2052 obj->base.size, obj->pages, obj->igo_nsegs);
2053
2054 kfree(obj->pages);
2055 }
2056 #else
2057 static void
2058 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2059 {
2060 int page_count = obj->base.size / PAGE_SIZE;
2061 struct scatterlist *sg;
2062 int ret, i;
2063
2064 BUG_ON(obj->madv == __I915_MADV_PURGED);
2065
2066 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2067 if (ret) {
2068 /* In the event of a disaster, abandon all caches and
2069 * hope for the best.
2070 */
2071 WARN_ON(ret != -EIO);
2072 i915_gem_clflush_object(obj);
2073 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2074 }
2075
2076 if (i915_gem_object_needs_bit17_swizzle(obj))
2077 i915_gem_object_save_bit_17_swizzle(obj);
2078
2079 if (obj->madv == I915_MADV_DONTNEED)
2080 obj->dirty = 0;
2081
2082 for_each_sg(obj->pages->sgl, sg, page_count, i) {
2083 struct page *page = sg_page(sg);
2084
2085 if (obj->dirty)
2086 set_page_dirty(page);
2087
2088 if (obj->madv == I915_MADV_WILLNEED)
2089 mark_page_accessed(page);
2090
2091 page_cache_release(page);
2092 }
2093 obj->dirty = 0;
2094
2095 sg_free_table(obj->pages);
2096 kfree(obj->pages);
2097 }
2098 #endif
2099
2100 static int
2101 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2102 {
2103 const struct drm_i915_gem_object_ops *ops = obj->ops;
2104
2105 if (obj->pages == NULL)
2106 return 0;
2107
2108 BUG_ON(obj->gtt_space);
2109
2110 if (obj->pages_pin_count)
2111 return -EBUSY;
2112
2113 /* ->put_pages might need to allocate memory for the bit17 swizzle
2114 * array, hence protect them from being reaped by removing them from gtt
2115 * lists early. */
2116 list_del(&obj->gtt_list);
2117
2118 ops->put_pages(obj);
2119 obj->pages = NULL;
2120
2121 if (i915_gem_object_is_purgeable(obj))
2122 i915_gem_object_truncate(obj);
2123
2124 return 0;
2125 }
2126
2127 static long
2128 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
2129 bool purgeable_only)
2130 {
2131 struct drm_i915_gem_object *obj, *next;
2132 long count = 0;
2133
2134 list_for_each_entry_safe(obj, next,
2135 &dev_priv->mm.unbound_list,
2136 gtt_list) {
2137 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2138 i915_gem_object_put_pages(obj) == 0) {
2139 count += obj->base.size >> PAGE_SHIFT;
2140 if (count >= target)
2141 return count;
2142 }
2143 }
2144
2145 list_for_each_entry_safe(obj, next,
2146 &dev_priv->mm.inactive_list,
2147 mm_list) {
2148 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2149 i915_gem_object_unbind(obj) == 0 &&
2150 i915_gem_object_put_pages(obj) == 0) {
2151 count += obj->base.size >> PAGE_SHIFT;
2152 if (count >= target)
2153 return count;
2154 }
2155 }
2156
2157 return count;
2158 }
2159
2160 static long
2161 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2162 {
2163 return __i915_gem_shrink(dev_priv, target, true);
2164 }
2165
2166 static void
2167 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2168 {
2169 struct drm_i915_gem_object *obj, *next;
2170
2171 i915_gem_evict_everything(dev_priv->dev);
2172
2173 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
2174 i915_gem_object_put_pages(obj);
2175 }
2176
2177 #ifdef __NetBSD__
2178 static int
2179 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2180 {
2181 struct drm_device *const dev = obj->base.dev;
2182 struct vm_page *page;
2183 int error;
2184
2185 /* XXX Cargo-culted from the Linux code. */
2186 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2187 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2188
2189 KASSERT(obj->pages == NULL);
2190 TAILQ_INIT(&obj->igo_pageq);
2191 obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
2192 sizeof(obj->pages[0]), GFP_KERNEL);
2193 if (obj->pages == NULL) {
2194 error = -ENOMEM;
2195 goto fail0;
2196 }
2197
2198 /* XXX errno NetBSD->Linux */
2199 error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
2200 0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
2201 (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
2202 if (error)
2203 /* XXX Try i915_gem_purge, i915_gem_shrink_all. */
2204 goto fail1;
2205 KASSERT(0 < obj->igo_nsegs);
2206 KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
2207
2208 /*
2209 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
2210 *
2211 * XXX This is wrong; we ought to pass this constraint to
2212 * bus_dmamem_wire_uvm_object instead.
2213 */
2214 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
2215 const uint64_t mask =
2216 (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
2217 0xffffffffULL : 0xffffffffffULL);
2218 if (VM_PAGE_TO_PHYS(page) & ~mask) {
2219 DRM_ERROR("GEM physical address exceeds %u bits"
2220 ": %"PRIxMAX"\n",
2221 popcount64(mask),
2222 (uintmax_t)VM_PAGE_TO_PHYS(page));
2223 error = -EIO;
2224 goto fail2;
2225 }
2226 }
2227
2228 /* XXX errno NetBSD->Linux */
2229 error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
2230 PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
2231 if (error)
2232 goto fail2;
2233
2234 /* XXX Cargo-culted from the Linux code. */
2235 if (i915_gem_object_needs_bit17_swizzle(obj))
2236 i915_gem_object_do_bit_17_swizzle(obj);
2237
2238 /* Success! */
2239 return 0;
2240
2241 fail2: bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2242 obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
2243 fail1: kfree(obj->pages);
2244 obj->pages = NULL;
2245 fail0: KASSERT(error);
2246 return error;
2247 }
2248 #else
2249 static int
2250 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2251 {
2252 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2253 int page_count, i;
2254 struct address_space *mapping;
2255 struct sg_table *st;
2256 struct scatterlist *sg;
2257 struct page *page;
2258 gfp_t gfp;
2259
2260 /* Assert that the object is not currently in any GPU domain. As it
2261 * wasn't in the GTT, there shouldn't be any way it could have been in
2262 * a GPU cache
2263 */
2264 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2265 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2266
2267 st = kmalloc(sizeof(*st), GFP_KERNEL);
2268 if (st == NULL)
2269 return -ENOMEM;
2270
2271 page_count = obj->base.size / PAGE_SIZE;
2272 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2273 sg_free_table(st);
2274 kfree(st);
2275 return -ENOMEM;
2276 }
2277
2278 /* Get the list of pages out of our struct file. They'll be pinned
2279 * at this point until we release them.
2280 *
2281 * Fail silently without starting the shrinker
2282 */
2283 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
2284 gfp = mapping_gfp_mask(mapping);
2285 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2286 gfp &= ~(__GFP_IO | __GFP_WAIT);
2287 for_each_sg(st->sgl, sg, page_count, i) {
2288 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2289 if (IS_ERR(page)) {
2290 i915_gem_purge(dev_priv, page_count);
2291 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2292 }
2293 if (IS_ERR(page)) {
2294 /* We've tried hard to allocate the memory by reaping
2295 * our own buffer, now let the real VM do its job and
2296 * go down in flames if truly OOM.
2297 */
2298 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2299 gfp |= __GFP_IO | __GFP_WAIT;
2300
2301 i915_gem_shrink_all(dev_priv);
2302 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2303 if (IS_ERR(page))
2304 goto err_pages;
2305
2306 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2307 gfp &= ~(__GFP_IO | __GFP_WAIT);
2308 }
2309
2310 sg_set_page(sg, page, PAGE_SIZE, 0);
2311 }
2312
2313 obj->pages = st;
2314
2315 if (i915_gem_object_needs_bit17_swizzle(obj))
2316 i915_gem_object_do_bit_17_swizzle(obj);
2317
2318 return 0;
2319
2320 err_pages:
2321 for_each_sg(st->sgl, sg, i, page_count)
2322 page_cache_release(sg_page(sg));
2323 sg_free_table(st);
2324 kfree(st);
2325 return PTR_ERR(page);
2326 }
2327 #endif
2328
2329 /* Ensure that the associated pages are gathered from the backing storage
2330 * and pinned into our object. i915_gem_object_get_pages() may be called
2331 * multiple times before they are released by a single call to
2332 * i915_gem_object_put_pages() - once the pages are no longer referenced
2333 * either as a result of memory pressure (reaping pages under the shrinker)
2334 * or as the object is itself released.
2335 */
2336 int
2337 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2338 {
2339 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2340 const struct drm_i915_gem_object_ops *ops = obj->ops;
2341 int ret;
2342
2343 if (obj->pages)
2344 return 0;
2345
2346 BUG_ON(obj->pages_pin_count);
2347
2348 ret = ops->get_pages(obj);
2349 if (ret)
2350 return ret;
2351
2352 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2353 return 0;
2354 }
2355
2356 void
2357 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2358 struct intel_ring_buffer *ring)
2359 {
2360 struct drm_device *dev = obj->base.dev;
2361 struct drm_i915_private *dev_priv = dev->dev_private;
2362 u32 seqno = intel_ring_get_seqno(ring);
2363
2364 BUG_ON(ring == NULL);
2365 obj->ring = ring;
2366
2367 /* Add a reference if we're newly entering the active list. */
2368 if (!obj->active) {
2369 drm_gem_object_reference(&obj->base);
2370 obj->active = 1;
2371 }
2372
2373 /* Move from whatever list we were on to the tail of execution. */
2374 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
2375 list_move_tail(&obj->ring_list, &ring->active_list);
2376
2377 obj->last_read_seqno = seqno;
2378
2379 if (obj->fenced_gpu_access) {
2380 obj->last_fenced_seqno = seqno;
2381
2382 /* Bump MRU to take account of the delayed flush */
2383 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2384 struct drm_i915_fence_reg *reg;
2385
2386 reg = &dev_priv->fence_regs[obj->fence_reg];
2387 list_move_tail(®->lru_list,
2388 &dev_priv->mm.fence_list);
2389 }
2390 }
2391 }
2392
2393 static void
2394 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2395 {
2396 struct drm_device *dev = obj->base.dev;
2397 struct drm_i915_private *dev_priv = dev->dev_private;
2398
2399 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2400 BUG_ON(!obj->active);
2401
2402 if (obj->pin_count) /* are we a framebuffer? */
2403 intel_mark_fb_idle(obj);
2404
2405 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2406
2407 list_del_init(&obj->ring_list);
2408 obj->ring = NULL;
2409
2410 obj->last_read_seqno = 0;
2411 obj->last_write_seqno = 0;
2412 obj->base.write_domain = 0;
2413
2414 obj->last_fenced_seqno = 0;
2415 obj->fenced_gpu_access = false;
2416
2417 obj->active = 0;
2418 drm_gem_object_unreference(&obj->base);
2419
2420 WARN_ON(i915_verify_lists(dev));
2421 }
2422
2423 static int
2424 i915_gem_handle_seqno_wrap(struct drm_device *dev)
2425 {
2426 struct drm_i915_private *dev_priv = dev->dev_private;
2427 struct intel_ring_buffer *ring;
2428 int ret, i, j;
2429
2430 /* The hardware uses various monotonic 32-bit counters, if we
2431 * detect that they will wraparound we need to idle the GPU
2432 * and reset those counters.
2433 */
2434 ret = 0;
2435 for_each_ring(ring, dev_priv, i) {
2436 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2437 ret |= ring->sync_seqno[j] != 0;
2438 }
2439 if (ret == 0)
2440 return ret;
2441
2442 ret = i915_gpu_idle(dev);
2443 if (ret)
2444 return ret;
2445
2446 i915_gem_retire_requests(dev);
2447 for_each_ring(ring, dev_priv, i) {
2448 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2449 ring->sync_seqno[j] = 0;
2450 }
2451
2452 return 0;
2453 }
2454
2455 int
2456 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2457 {
2458 struct drm_i915_private *dev_priv = dev->dev_private;
2459
2460 /* reserve 0 for non-seqno */
2461 if (dev_priv->next_seqno == 0) {
2462 int ret = i915_gem_handle_seqno_wrap(dev);
2463 if (ret)
2464 return ret;
2465
2466 dev_priv->next_seqno = 1;
2467 }
2468
2469 *seqno = dev_priv->next_seqno++;
2470 return 0;
2471 }
2472
2473 int
2474 i915_add_request(struct intel_ring_buffer *ring,
2475 struct drm_file *file,
2476 u32 *out_seqno)
2477 {
2478 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2479 struct drm_i915_gem_request *request;
2480 u32 request_ring_position;
2481 int was_empty;
2482 int ret;
2483
2484 /*
2485 * Emit any outstanding flushes - execbuf can fail to emit the flush
2486 * after having emitted the batchbuffer command. Hence we need to fix
2487 * things up similar to emitting the lazy request. The difference here
2488 * is that the flush _must_ happen before the next request, no matter
2489 * what.
2490 */
2491 ret = intel_ring_flush_all_caches(ring);
2492 if (ret)
2493 return ret;
2494
2495 request = kmalloc(sizeof(*request), GFP_KERNEL);
2496 if (request == NULL)
2497 return -ENOMEM;
2498
2499
2500 /* Record the position of the start of the request so that
2501 * should we detect the updated seqno part-way through the
2502 * GPU processing the request, we never over-estimate the
2503 * position of the head.
2504 */
2505 request_ring_position = intel_ring_get_tail(ring);
2506
2507 ret = ring->add_request(ring);
2508 if (ret) {
2509 kfree(request);
2510 return ret;
2511 }
2512
2513 request->seqno = intel_ring_get_seqno(ring);
2514 request->ring = ring;
2515 request->tail = request_ring_position;
2516 request->emitted_jiffies = jiffies;
2517 was_empty = list_empty(&ring->request_list);
2518 list_add_tail(&request->list, &ring->request_list);
2519 request->file_priv = NULL;
2520
2521 if (file) {
2522 struct drm_i915_file_private *file_priv = file->driver_priv;
2523
2524 spin_lock(&file_priv->mm.lock);
2525 request->file_priv = file_priv;
2526 list_add_tail(&request->client_list,
2527 &file_priv->mm.request_list);
2528 spin_unlock(&file_priv->mm.lock);
2529 }
2530
2531 trace_i915_gem_request_add(ring, request->seqno);
2532 ring->outstanding_lazy_request = 0;
2533
2534 if (!dev_priv->mm.suspended) {
2535 if (i915_enable_hangcheck) {
2536 mod_timer(&dev_priv->hangcheck_timer,
2537 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2538 }
2539 if (was_empty) {
2540 queue_delayed_work(dev_priv->wq,
2541 &dev_priv->mm.retire_work,
2542 round_jiffies_up_relative(HZ));
2543 intel_mark_busy(dev_priv->dev);
2544 }
2545 }
2546
2547 if (out_seqno)
2548 *out_seqno = request->seqno;
2549 return 0;
2550 }
2551
2552 static inline void
2553 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2554 {
2555 struct drm_i915_file_private *file_priv = request->file_priv;
2556
2557 if (!file_priv)
2558 return;
2559
2560 spin_lock(&file_priv->mm.lock);
2561 if (request->file_priv) {
2562 list_del(&request->client_list);
2563 request->file_priv = NULL;
2564 }
2565 spin_unlock(&file_priv->mm.lock);
2566 }
2567
2568 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2569 struct intel_ring_buffer *ring)
2570 {
2571 while (!list_empty(&ring->request_list)) {
2572 struct drm_i915_gem_request *request;
2573
2574 request = list_first_entry(&ring->request_list,
2575 struct drm_i915_gem_request,
2576 list);
2577
2578 list_del(&request->list);
2579 i915_gem_request_remove_from_client(request);
2580 kfree(request);
2581 }
2582
2583 while (!list_empty(&ring->active_list)) {
2584 struct drm_i915_gem_object *obj;
2585
2586 obj = list_first_entry(&ring->active_list,
2587 struct drm_i915_gem_object,
2588 ring_list);
2589
2590 i915_gem_object_move_to_inactive(obj);
2591 }
2592 }
2593
2594 static void i915_gem_reset_fences(struct drm_device *dev)
2595 {
2596 struct drm_i915_private *dev_priv = dev->dev_private;
2597 int i;
2598
2599 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2600 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2601
2602 i915_gem_write_fence(dev, i, NULL);
2603
2604 if (reg->obj)
2605 i915_gem_object_fence_lost(reg->obj);
2606
2607 reg->pin_count = 0;
2608 reg->obj = NULL;
2609 INIT_LIST_HEAD(®->lru_list);
2610 }
2611
2612 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2613 }
2614
2615 void i915_gem_reset(struct drm_device *dev)
2616 {
2617 struct drm_i915_private *dev_priv = dev->dev_private;
2618 struct drm_i915_gem_object *obj;
2619 struct intel_ring_buffer *ring;
2620 int i;
2621
2622 for_each_ring(ring, dev_priv, i)
2623 i915_gem_reset_ring_lists(dev_priv, ring);
2624
2625 /* Move everything out of the GPU domains to ensure we do any
2626 * necessary invalidation upon reuse.
2627 */
2628 list_for_each_entry(obj,
2629 &dev_priv->mm.inactive_list,
2630 mm_list)
2631 {
2632 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2633 }
2634
2635 /* The fence registers are invalidated so clear them out */
2636 i915_gem_reset_fences(dev);
2637 }
2638
2639 /**
2640 * This function clears the request list as sequence numbers are passed.
2641 */
2642 void
2643 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2644 {
2645 uint32_t seqno;
2646
2647 if (list_empty(&ring->request_list))
2648 return;
2649
2650 WARN_ON(i915_verify_lists(ring->dev));
2651
2652 seqno = ring->get_seqno(ring, true);
2653
2654 while (!list_empty(&ring->request_list)) {
2655 struct drm_i915_gem_request *request;
2656
2657 request = list_first_entry(&ring->request_list,
2658 struct drm_i915_gem_request,
2659 list);
2660
2661 if (!i915_seqno_passed(seqno, request->seqno))
2662 break;
2663
2664 trace_i915_gem_request_retire(ring, request->seqno);
2665 /* We know the GPU must have read the request to have
2666 * sent us the seqno + interrupt, so use the position
2667 * of tail of the request to update the last known position
2668 * of the GPU head.
2669 */
2670 ring->last_retired_head = request->tail;
2671
2672 list_del(&request->list);
2673 i915_gem_request_remove_from_client(request);
2674 kfree(request);
2675 }
2676
2677 /* Move any buffers on the active list that are no longer referenced
2678 * by the ringbuffer to the flushing/inactive lists as appropriate.
2679 */
2680 while (!list_empty(&ring->active_list)) {
2681 struct drm_i915_gem_object *obj;
2682
2683 obj = list_first_entry(&ring->active_list,
2684 struct drm_i915_gem_object,
2685 ring_list);
2686
2687 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2688 break;
2689
2690 i915_gem_object_move_to_inactive(obj);
2691 }
2692
2693 if (unlikely(ring->trace_irq_seqno &&
2694 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2695 ring->irq_put(ring);
2696 ring->trace_irq_seqno = 0;
2697 }
2698
2699 WARN_ON(i915_verify_lists(ring->dev));
2700 }
2701
2702 void
2703 i915_gem_retire_requests(struct drm_device *dev)
2704 {
2705 drm_i915_private_t *dev_priv = dev->dev_private;
2706 struct intel_ring_buffer *ring;
2707 int i;
2708
2709 for_each_ring(ring, dev_priv, i)
2710 i915_gem_retire_requests_ring(ring);
2711 }
2712
2713 static void
2714 i915_gem_retire_work_handler(struct work_struct *work)
2715 {
2716 drm_i915_private_t *dev_priv;
2717 struct drm_device *dev;
2718 struct intel_ring_buffer *ring;
2719 bool idle;
2720 int i;
2721
2722 dev_priv = container_of(work, drm_i915_private_t,
2723 mm.retire_work.work);
2724 dev = dev_priv->dev;
2725
2726 /* Come back later if the device is busy... */
2727 if (!mutex_trylock(&dev->struct_mutex)) {
2728 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2729 round_jiffies_up_relative(HZ));
2730 return;
2731 }
2732
2733 i915_gem_retire_requests(dev);
2734
2735 /* Send a periodic flush down the ring so we don't hold onto GEM
2736 * objects indefinitely.
2737 */
2738 idle = true;
2739 for_each_ring(ring, dev_priv, i) {
2740 if (ring->gpu_caches_dirty)
2741 i915_add_request(ring, NULL, NULL);
2742
2743 idle &= list_empty(&ring->request_list);
2744 }
2745
2746 if (!dev_priv->mm.suspended && !idle)
2747 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2748 round_jiffies_up_relative(HZ));
2749 if (idle)
2750 intel_mark_idle(dev);
2751
2752 mutex_unlock(&dev->struct_mutex);
2753 }
2754
2755 /**
2756 * Ensures that an object will eventually get non-busy by flushing any required
2757 * write domains, emitting any outstanding lazy request and retiring and
2758 * completed requests.
2759 */
2760 static int
2761 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2762 {
2763 int ret;
2764
2765 if (obj->active) {
2766 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2767 if (ret)
2768 return ret;
2769
2770 i915_gem_retire_requests_ring(obj->ring);
2771 }
2772
2773 return 0;
2774 }
2775
2776 /**
2777 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2778 * @DRM_IOCTL_ARGS: standard ioctl arguments
2779 *
2780 * Returns 0 if successful, else an error is returned with the remaining time in
2781 * the timeout parameter.
2782 * -ETIME: object is still busy after timeout
2783 * -ERESTARTSYS: signal interrupted the wait
2784 * -ENONENT: object doesn't exist
2785 * Also possible, but rare:
2786 * -EAGAIN: GPU wedged
2787 * -ENOMEM: damn
2788 * -ENODEV: Internal IRQ fail
2789 * -E?: The add request failed
2790 *
2791 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2792 * non-zero timeout parameter the wait ioctl will wait for the given number of
2793 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2794 * without holding struct_mutex the object may become re-busied before this
2795 * function completes. A similar but shorter * race condition exists in the busy
2796 * ioctl
2797 */
2798 int
2799 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2800 {
2801 struct drm_i915_gem_wait *args = data;
2802 struct drm_i915_gem_object *obj;
2803 struct intel_ring_buffer *ring = NULL;
2804 struct timespec timeout_stack, *timeout = NULL;
2805 u32 seqno = 0;
2806 int ret = 0;
2807
2808 if (args->timeout_ns >= 0) {
2809 timeout_stack = ns_to_timespec(args->timeout_ns);
2810 timeout = &timeout_stack;
2811 }
2812
2813 ret = i915_mutex_lock_interruptible(dev);
2814 if (ret)
2815 return ret;
2816
2817 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2818 if (&obj->base == NULL) {
2819 mutex_unlock(&dev->struct_mutex);
2820 return -ENOENT;
2821 }
2822
2823 /* Need to make sure the object gets inactive eventually. */
2824 ret = i915_gem_object_flush_active(obj);
2825 if (ret)
2826 goto out;
2827
2828 if (obj->active) {
2829 seqno = obj->last_read_seqno;
2830 ring = obj->ring;
2831 }
2832
2833 if (seqno == 0)
2834 goto out;
2835
2836 /* Do this after OLR check to make sure we make forward progress polling
2837 * on this IOCTL with a 0 timeout (like busy ioctl)
2838 */
2839 if (!args->timeout_ns) {
2840 ret = -ETIME;
2841 goto out;
2842 }
2843
2844 drm_gem_object_unreference(&obj->base);
2845 mutex_unlock(&dev->struct_mutex);
2846
2847 ret = __wait_seqno(ring, seqno, true, timeout);
2848 if (timeout) {
2849 WARN_ON(!timespec_valid(timeout));
2850 args->timeout_ns = timespec_to_ns(timeout);
2851 }
2852 return ret;
2853
2854 out:
2855 drm_gem_object_unreference(&obj->base);
2856 mutex_unlock(&dev->struct_mutex);
2857 return ret;
2858 }
2859
2860 /**
2861 * i915_gem_object_sync - sync an object to a ring.
2862 *
2863 * @obj: object which may be in use on another ring.
2864 * @to: ring we wish to use the object on. May be NULL.
2865 *
2866 * This code is meant to abstract object synchronization with the GPU.
2867 * Calling with NULL implies synchronizing the object with the CPU
2868 * rather than a particular GPU ring.
2869 *
2870 * Returns 0 if successful, else propagates up the lower layer error.
2871 */
2872 int
2873 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2874 struct intel_ring_buffer *to)
2875 {
2876 struct intel_ring_buffer *from = obj->ring;
2877 u32 seqno;
2878 int ret, idx;
2879
2880 if (from == NULL || to == from)
2881 return 0;
2882
2883 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2884 return i915_gem_object_wait_rendering(obj, false);
2885
2886 idx = intel_ring_sync_index(from, to);
2887
2888 seqno = obj->last_read_seqno;
2889 if (seqno <= from->sync_seqno[idx])
2890 return 0;
2891
2892 ret = i915_gem_check_olr(obj->ring, seqno);
2893 if (ret)
2894 return ret;
2895
2896 ret = to->sync_to(to, from, seqno);
2897 if (!ret)
2898 /* We use last_read_seqno because sync_to()
2899 * might have just caused seqno wrap under
2900 * the radar.
2901 */
2902 from->sync_seqno[idx] = obj->last_read_seqno;
2903
2904 return ret;
2905 }
2906
2907 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2908 {
2909 u32 old_write_domain, old_read_domains;
2910
2911 /* Act a barrier for all accesses through the GTT */
2912 mb();
2913
2914 /* Force a pagefault for domain tracking on next user access */
2915 i915_gem_release_mmap(obj);
2916
2917 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2918 return;
2919
2920 old_read_domains = obj->base.read_domains;
2921 old_write_domain = obj->base.write_domain;
2922
2923 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2924 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2925
2926 trace_i915_gem_object_change_domain(obj,
2927 old_read_domains,
2928 old_write_domain);
2929 }
2930
2931 /**
2932 * Unbinds an object from the GTT aperture.
2933 */
2934 int
2935 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2936 {
2937 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2938 int ret = 0;
2939
2940 if (obj->gtt_space == NULL)
2941 return 0;
2942
2943 if (obj->pin_count)
2944 return -EBUSY;
2945
2946 BUG_ON(obj->pages == NULL);
2947
2948 ret = i915_gem_object_finish_gpu(obj);
2949 if (ret)
2950 return ret;
2951 /* Continue on if we fail due to EIO, the GPU is hung so we
2952 * should be safe and we need to cleanup or else we might
2953 * cause memory corruption through use-after-free.
2954 */
2955
2956 i915_gem_object_finish_gtt(obj);
2957
2958 /* release the fence reg _after_ flushing */
2959 ret = i915_gem_object_put_fence(obj);
2960 if (ret)
2961 return ret;
2962
2963 trace_i915_gem_object_unbind(obj);
2964
2965 if (obj->has_global_gtt_mapping)
2966 i915_gem_gtt_unbind_object(obj);
2967 if (obj->has_aliasing_ppgtt_mapping) {
2968 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2969 obj->has_aliasing_ppgtt_mapping = 0;
2970 }
2971 i915_gem_gtt_finish_object(obj);
2972
2973 list_del(&obj->mm_list);
2974 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2975 /* Avoid an unnecessary call to unbind on rebind. */
2976 obj->map_and_fenceable = true;
2977
2978 drm_mm_put_block(obj->gtt_space);
2979 obj->gtt_space = NULL;
2980 obj->gtt_offset = 0;
2981
2982 return 0;
2983 }
2984
2985 int i915_gpu_idle(struct drm_device *dev)
2986 {
2987 drm_i915_private_t *dev_priv = dev->dev_private;
2988 struct intel_ring_buffer *ring;
2989 int ret, i;
2990
2991 /* Flush everything onto the inactive list. */
2992 for_each_ring(ring, dev_priv, i) {
2993 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2994 if (ret)
2995 return ret;
2996
2997 ret = intel_ring_idle(ring);
2998 if (ret)
2999 return ret;
3000 }
3001
3002 return 0;
3003 }
3004
3005 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
3006 struct drm_i915_gem_object *obj)
3007 {
3008 drm_i915_private_t *dev_priv = dev->dev_private;
3009 uint64_t val;
3010
3011 if (obj) {
3012 u32 size = obj->gtt_space->size;
3013
3014 val = (uint64_t)((obj->gtt_offset + size - 4096) &
3015 0xfffff000) << 32;
3016 val |= obj->gtt_offset & 0xfffff000;
3017 val |= (uint64_t)((obj->stride / 128) - 1) <<
3018 SANDYBRIDGE_FENCE_PITCH_SHIFT;
3019
3020 if (obj->tiling_mode == I915_TILING_Y)
3021 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3022 val |= I965_FENCE_REG_VALID;
3023 } else
3024 val = 0;
3025
3026 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
3027 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
3028 }
3029
3030 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3031 struct drm_i915_gem_object *obj)
3032 {
3033 drm_i915_private_t *dev_priv = dev->dev_private;
3034 uint64_t val;
3035
3036 if (obj) {
3037 u32 size = obj->gtt_space->size;
3038
3039 val = (uint64_t)((obj->gtt_offset + size - 4096) &
3040 0xfffff000) << 32;
3041 val |= obj->gtt_offset & 0xfffff000;
3042 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
3043 if (obj->tiling_mode == I915_TILING_Y)
3044 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3045 val |= I965_FENCE_REG_VALID;
3046 } else
3047 val = 0;
3048
3049 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
3050 POSTING_READ(FENCE_REG_965_0 + reg * 8);
3051 }
3052
3053 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3054 struct drm_i915_gem_object *obj)
3055 {
3056 drm_i915_private_t *dev_priv = dev->dev_private;
3057 u32 val;
3058
3059 if (obj) {
3060 u32 size = obj->gtt_space->size;
3061 int pitch_val;
3062 int tile_width;
3063
3064 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
3065 (size & -size) != size ||
3066 (obj->gtt_offset & (size - 1)),
3067 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3068 obj->gtt_offset, obj->map_and_fenceable, size);
3069
3070 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3071 tile_width = 128;
3072 else
3073 tile_width = 512;
3074
3075 /* Note: pitch better be a power of two tile widths */
3076 pitch_val = obj->stride / tile_width;
3077 pitch_val = ffs(pitch_val) - 1;
3078
3079 val = obj->gtt_offset;
3080 if (obj->tiling_mode == I915_TILING_Y)
3081 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3082 val |= I915_FENCE_SIZE_BITS(size);
3083 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3084 val |= I830_FENCE_REG_VALID;
3085 } else
3086 val = 0;
3087
3088 if (reg < 8)
3089 reg = FENCE_REG_830_0 + reg * 4;
3090 else
3091 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3092
3093 I915_WRITE(reg, val);
3094 POSTING_READ(reg);
3095 }
3096
3097 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3098 struct drm_i915_gem_object *obj)
3099 {
3100 drm_i915_private_t *dev_priv = dev->dev_private;
3101 uint32_t val;
3102
3103 if (obj) {
3104 u32 size = obj->gtt_space->size;
3105 uint32_t pitch_val;
3106
3107 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
3108 (size & -size) != size ||
3109 (obj->gtt_offset & (size - 1)),
3110 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
3111 obj->gtt_offset, size);
3112
3113 pitch_val = obj->stride / 128;
3114 pitch_val = ffs(pitch_val) - 1;
3115
3116 val = obj->gtt_offset;
3117 if (obj->tiling_mode == I915_TILING_Y)
3118 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3119 val |= I830_FENCE_SIZE_BITS(size);
3120 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3121 val |= I830_FENCE_REG_VALID;
3122 } else
3123 val = 0;
3124
3125 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3126 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3127 }
3128
3129 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3130 struct drm_i915_gem_object *obj)
3131 {
3132 switch (INTEL_INFO(dev)->gen) {
3133 case 7:
3134 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
3135 case 5:
3136 case 4: i965_write_fence_reg(dev, reg, obj); break;
3137 case 3: i915_write_fence_reg(dev, reg, obj); break;
3138 case 2: i830_write_fence_reg(dev, reg, obj); break;
3139 default: break;
3140 }
3141 }
3142
3143 static inline int fence_number(struct drm_i915_private *dev_priv,
3144 struct drm_i915_fence_reg *fence)
3145 {
3146 return fence - dev_priv->fence_regs;
3147 }
3148
3149 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3150 struct drm_i915_fence_reg *fence,
3151 bool enable)
3152 {
3153 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3154 int reg = fence_number(dev_priv, fence);
3155
3156 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3157
3158 if (enable) {
3159 obj->fence_reg = reg;
3160 fence->obj = obj;
3161 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3162 } else {
3163 obj->fence_reg = I915_FENCE_REG_NONE;
3164 fence->obj = NULL;
3165 list_del_init(&fence->lru_list);
3166 }
3167 }
3168
3169 static int
3170 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
3171 {
3172 if (obj->last_fenced_seqno) {
3173 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3174 if (ret)
3175 return ret;
3176
3177 obj->last_fenced_seqno = 0;
3178 }
3179
3180 /* Ensure that all CPU reads are completed before installing a fence
3181 * and all writes before removing the fence.
3182 */
3183 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
3184 mb();
3185
3186 obj->fenced_gpu_access = false;
3187 return 0;
3188 }
3189
3190 int
3191 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3192 {
3193 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3194 int ret;
3195
3196 ret = i915_gem_object_flush_fence(obj);
3197 if (ret)
3198 return ret;
3199
3200 if (obj->fence_reg == I915_FENCE_REG_NONE)
3201 return 0;
3202
3203 i915_gem_object_update_fence(obj,
3204 &dev_priv->fence_regs[obj->fence_reg],
3205 false);
3206 i915_gem_object_fence_lost(obj);
3207
3208 return 0;
3209 }
3210
3211 static struct drm_i915_fence_reg *
3212 i915_find_fence_reg(struct drm_device *dev)
3213 {
3214 struct drm_i915_private *dev_priv = dev->dev_private;
3215 struct drm_i915_fence_reg *reg, *avail;
3216 int i;
3217
3218 /* First try to find a free reg */
3219 avail = NULL;
3220 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3221 reg = &dev_priv->fence_regs[i];
3222 if (!reg->obj)
3223 return reg;
3224
3225 if (!reg->pin_count)
3226 avail = reg;
3227 }
3228
3229 if (avail == NULL)
3230 return NULL;
3231
3232 /* None available, try to steal one or wait for a user to finish */
3233 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3234 if (reg->pin_count)
3235 continue;
3236
3237 return reg;
3238 }
3239
3240 return NULL;
3241 }
3242
3243 /**
3244 * i915_gem_object_get_fence - set up fencing for an object
3245 * @obj: object to map through a fence reg
3246 *
3247 * When mapping objects through the GTT, userspace wants to be able to write
3248 * to them without having to worry about swizzling if the object is tiled.
3249 * This function walks the fence regs looking for a free one for @obj,
3250 * stealing one if it can't find any.
3251 *
3252 * It then sets up the reg based on the object's properties: address, pitch
3253 * and tiling format.
3254 *
3255 * For an untiled surface, this removes any existing fence.
3256 */
3257 int
3258 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3259 {
3260 struct drm_device *dev = obj->base.dev;
3261 struct drm_i915_private *dev_priv = dev->dev_private;
3262 bool enable = obj->tiling_mode != I915_TILING_NONE;
3263 struct drm_i915_fence_reg *reg;
3264 int ret;
3265
3266 /* Have we updated the tiling parameters upon the object and so
3267 * will need to serialise the write to the associated fence register?
3268 */
3269 if (obj->fence_dirty) {
3270 ret = i915_gem_object_flush_fence(obj);
3271 if (ret)
3272 return ret;
3273 }
3274
3275 /* Just update our place in the LRU if our fence is getting reused. */
3276 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3277 reg = &dev_priv->fence_regs[obj->fence_reg];
3278 if (!obj->fence_dirty) {
3279 list_move_tail(®->lru_list,
3280 &dev_priv->mm.fence_list);
3281 return 0;
3282 }
3283 } else if (enable) {
3284 reg = i915_find_fence_reg(dev);
3285 if (reg == NULL)
3286 return -EDEADLK;
3287
3288 if (reg->obj) {
3289 struct drm_i915_gem_object *old = reg->obj;
3290
3291 ret = i915_gem_object_flush_fence(old);
3292 if (ret)
3293 return ret;
3294
3295 i915_gem_object_fence_lost(old);
3296 }
3297 } else
3298 return 0;
3299
3300 i915_gem_object_update_fence(obj, reg, enable);
3301 obj->fence_dirty = false;
3302
3303 return 0;
3304 }
3305
3306 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3307 struct drm_mm_node *gtt_space,
3308 unsigned long cache_level)
3309 {
3310 struct drm_mm_node *other;
3311
3312 /* On non-LLC machines we have to be careful when putting differing
3313 * types of snoopable memory together to avoid the prefetcher
3314 * crossing memory domains and dieing.
3315 */
3316 if (HAS_LLC(dev))
3317 return true;
3318
3319 if (gtt_space == NULL)
3320 return true;
3321
3322 if (list_empty(>t_space->node_list))
3323 return true;
3324
3325 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3326 if (other->allocated && !other->hole_follows && other->color != cache_level)
3327 return false;
3328
3329 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3330 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3331 return false;
3332
3333 return true;
3334 }
3335
3336 static void i915_gem_verify_gtt(struct drm_device *dev)
3337 {
3338 #if WATCH_GTT
3339 struct drm_i915_private *dev_priv = dev->dev_private;
3340 struct drm_i915_gem_object *obj;
3341 int err = 0;
3342
3343 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
3344 if (obj->gtt_space == NULL) {
3345 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3346 err++;
3347 continue;
3348 }
3349
3350 if (obj->cache_level != obj->gtt_space->color) {
3351 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3352 obj->gtt_space->start,
3353 obj->gtt_space->start + obj->gtt_space->size,
3354 obj->cache_level,
3355 obj->gtt_space->color);
3356 err++;
3357 continue;
3358 }
3359
3360 if (!i915_gem_valid_gtt_space(dev,
3361 obj->gtt_space,
3362 obj->cache_level)) {
3363 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3364 obj->gtt_space->start,
3365 obj->gtt_space->start + obj->gtt_space->size,
3366 obj->cache_level);
3367 err++;
3368 continue;
3369 }
3370 }
3371
3372 WARN_ON(err);
3373 #endif
3374 }
3375
3376 /**
3377 * Finds free space in the GTT aperture and binds the object there.
3378 */
3379 static int
3380 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3381 unsigned alignment,
3382 bool map_and_fenceable,
3383 bool nonblocking)
3384 {
3385 struct drm_device *dev = obj->base.dev;
3386 drm_i915_private_t *dev_priv = dev->dev_private;
3387 struct drm_mm_node *node;
3388 u32 size, fence_size, fence_alignment, unfenced_alignment;
3389 bool mappable, fenceable;
3390 int ret;
3391
3392 if (obj->madv != I915_MADV_WILLNEED) {
3393 DRM_ERROR("Attempting to bind a purgeable object\n");
3394 return -EINVAL;
3395 }
3396
3397 fence_size = i915_gem_get_gtt_size(dev,
3398 obj->base.size,
3399 obj->tiling_mode);
3400 fence_alignment = i915_gem_get_gtt_alignment(dev,
3401 obj->base.size,
3402 obj->tiling_mode);
3403 unfenced_alignment =
3404 i915_gem_get_unfenced_gtt_alignment(dev,
3405 obj->base.size,
3406 obj->tiling_mode);
3407
3408 if (alignment == 0)
3409 alignment = map_and_fenceable ? fence_alignment :
3410 unfenced_alignment;
3411 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3412 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3413 return -EINVAL;
3414 }
3415
3416 size = map_and_fenceable ? fence_size : obj->base.size;
3417
3418 /* If the object is bigger than the entire aperture, reject it early
3419 * before evicting everything in a vain attempt to find space.
3420 */
3421 if (obj->base.size >
3422 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
3423 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
3424 return -E2BIG;
3425 }
3426
3427 ret = i915_gem_object_get_pages(obj);
3428 if (ret)
3429 return ret;
3430
3431 i915_gem_object_pin_pages(obj);
3432
3433 node = kzalloc(sizeof(*node), GFP_KERNEL);
3434 if (node == NULL) {
3435 i915_gem_object_unpin_pages(obj);
3436 return -ENOMEM;
3437 }
3438
3439 search_free:
3440 if (map_and_fenceable)
3441 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3442 size, alignment, obj->cache_level,
3443 0, dev_priv->mm.gtt_mappable_end);
3444 else
3445 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
3446 size, alignment, obj->cache_level);
3447 if (ret) {
3448 ret = i915_gem_evict_something(dev, size, alignment,
3449 obj->cache_level,
3450 map_and_fenceable,
3451 nonblocking);
3452 if (ret == 0)
3453 goto search_free;
3454
3455 i915_gem_object_unpin_pages(obj);
3456 kfree(node);
3457 return ret;
3458 }
3459 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3460 i915_gem_object_unpin_pages(obj);
3461 drm_mm_put_block(node);
3462 return -EINVAL;
3463 }
3464
3465 ret = i915_gem_gtt_prepare_object(obj);
3466 if (ret) {
3467 i915_gem_object_unpin_pages(obj);
3468 drm_mm_put_block(node);
3469 return ret;
3470 }
3471
3472 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3473 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3474
3475 obj->gtt_space = node;
3476 obj->gtt_offset = node->start;
3477
3478 fenceable =
3479 node->size == fence_size &&
3480 (node->start & (fence_alignment - 1)) == 0;
3481
3482 mappable =
3483 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3484
3485 obj->map_and_fenceable = mappable && fenceable;
3486
3487 i915_gem_object_unpin_pages(obj);
3488 trace_i915_gem_object_bind(obj, map_and_fenceable);
3489 i915_gem_verify_gtt(dev);
3490 return 0;
3491 }
3492
3493 void
3494 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3495 {
3496 /* If we don't have a page list set up, then we're not pinned
3497 * to GPU, and we can ignore the cache flush because it'll happen
3498 * again at bind time.
3499 */
3500 if (obj->pages == NULL)
3501 return;
3502
3503 /* If the GPU is snooping the contents of the CPU cache,
3504 * we do not need to manually clear the CPU cache lines. However,
3505 * the caches are only snooped when the render cache is
3506 * flushed/invalidated. As we always have to emit invalidations
3507 * and flushes when moving into and out of the RENDER domain, correct
3508 * snooping behaviour occurs naturally as the result of our domain
3509 * tracking.
3510 */
3511 if (obj->cache_level != I915_CACHE_NONE)
3512 return;
3513
3514 trace_i915_gem_object_clflush(obj);
3515
3516 #ifdef __NetBSD__
3517 drm_clflush_pglist(&obj->igo_pageq);
3518 #else
3519 drm_clflush_sg(obj->pages);
3520 #endif
3521 }
3522
3523 /** Flushes the GTT write domain for the object if it's dirty. */
3524 static void
3525 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3526 {
3527 uint32_t old_write_domain;
3528
3529 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3530 return;
3531
3532 /* No actual flushing is required for the GTT write domain. Writes
3533 * to it immediately go to main memory as far as we know, so there's
3534 * no chipset flush. It also doesn't land in render cache.
3535 *
3536 * However, we do have to enforce the order so that all writes through
3537 * the GTT land before any writes to the device, such as updates to
3538 * the GATT itself.
3539 */
3540 wmb();
3541
3542 old_write_domain = obj->base.write_domain;
3543 obj->base.write_domain = 0;
3544
3545 trace_i915_gem_object_change_domain(obj,
3546 obj->base.read_domains,
3547 old_write_domain);
3548 }
3549
3550 /** Flushes the CPU write domain for the object if it's dirty. */
3551 static void
3552 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3553 {
3554 uint32_t old_write_domain;
3555
3556 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3557 return;
3558
3559 i915_gem_clflush_object(obj);
3560 i915_gem_chipset_flush(obj->base.dev);
3561 old_write_domain = obj->base.write_domain;
3562 obj->base.write_domain = 0;
3563
3564 trace_i915_gem_object_change_domain(obj,
3565 obj->base.read_domains,
3566 old_write_domain);
3567 }
3568
3569 /**
3570 * Moves a single object to the GTT read, and possibly write domain.
3571 *
3572 * This function returns when the move is complete, including waiting on
3573 * flushes to occur.
3574 */
3575 int
3576 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3577 {
3578 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3579 uint32_t old_write_domain, old_read_domains;
3580 int ret;
3581
3582 /* Not valid to be called on unbound objects. */
3583 if (obj->gtt_space == NULL)
3584 return -EINVAL;
3585
3586 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3587 return 0;
3588
3589 ret = i915_gem_object_wait_rendering(obj, !write);
3590 if (ret)
3591 return ret;
3592
3593 i915_gem_object_flush_cpu_write_domain(obj);
3594
3595 old_write_domain = obj->base.write_domain;
3596 old_read_domains = obj->base.read_domains;
3597
3598 /* It should now be out of any other write domains, and we can update
3599 * the domain values for our changes.
3600 */
3601 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3602 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3603 if (write) {
3604 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3605 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3606 obj->dirty = 1;
3607 }
3608
3609 trace_i915_gem_object_change_domain(obj,
3610 old_read_domains,
3611 old_write_domain);
3612
3613 /* And bump the LRU for this access */
3614 if (i915_gem_object_is_inactive(obj))
3615 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3616
3617 return 0;
3618 }
3619
3620 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3621 enum i915_cache_level cache_level)
3622 {
3623 struct drm_device *dev = obj->base.dev;
3624 drm_i915_private_t *dev_priv = dev->dev_private;
3625 int ret;
3626
3627 if (obj->cache_level == cache_level)
3628 return 0;
3629
3630 if (obj->pin_count) {
3631 DRM_DEBUG("can not change the cache level of pinned objects\n");
3632 return -EBUSY;
3633 }
3634
3635 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3636 ret = i915_gem_object_unbind(obj);
3637 if (ret)
3638 return ret;
3639 }
3640
3641 if (obj->gtt_space) {
3642 ret = i915_gem_object_finish_gpu(obj);
3643 if (ret)
3644 return ret;
3645
3646 i915_gem_object_finish_gtt(obj);
3647
3648 /* Before SandyBridge, you could not use tiling or fence
3649 * registers with snooped memory, so relinquish any fences
3650 * currently pointing to our region in the aperture.
3651 */
3652 if (INTEL_INFO(dev)->gen < 6) {
3653 ret = i915_gem_object_put_fence(obj);
3654 if (ret)
3655 return ret;
3656 }
3657
3658 if (obj->has_global_gtt_mapping)
3659 i915_gem_gtt_bind_object(obj, cache_level);
3660 if (obj->has_aliasing_ppgtt_mapping)
3661 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3662 obj, cache_level);
3663
3664 obj->gtt_space->color = cache_level;
3665 }
3666
3667 if (cache_level == I915_CACHE_NONE) {
3668 u32 old_read_domains, old_write_domain;
3669
3670 /* If we're coming from LLC cached, then we haven't
3671 * actually been tracking whether the data is in the
3672 * CPU cache or not, since we only allow one bit set
3673 * in obj->write_domain and have been skipping the clflushes.
3674 * Just set it to the CPU cache for now.
3675 */
3676 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3677 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3678
3679 old_read_domains = obj->base.read_domains;
3680 old_write_domain = obj->base.write_domain;
3681
3682 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3683 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3684
3685 trace_i915_gem_object_change_domain(obj,
3686 old_read_domains,
3687 old_write_domain);
3688 }
3689
3690 obj->cache_level = cache_level;
3691 i915_gem_verify_gtt(dev);
3692 return 0;
3693 }
3694
3695 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3696 struct drm_file *file)
3697 {
3698 struct drm_i915_gem_caching *args = data;
3699 struct drm_i915_gem_object *obj;
3700 int ret;
3701
3702 ret = i915_mutex_lock_interruptible(dev);
3703 if (ret)
3704 return ret;
3705
3706 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3707 if (&obj->base == NULL) {
3708 ret = -ENOENT;
3709 goto unlock;
3710 }
3711
3712 args->caching = obj->cache_level != I915_CACHE_NONE;
3713
3714 drm_gem_object_unreference(&obj->base);
3715 unlock:
3716 mutex_unlock(&dev->struct_mutex);
3717 return ret;
3718 }
3719
3720 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3721 struct drm_file *file)
3722 {
3723 struct drm_i915_gem_caching *args = data;
3724 struct drm_i915_gem_object *obj;
3725 enum i915_cache_level level;
3726 int ret;
3727
3728 switch (args->caching) {
3729 case I915_CACHING_NONE:
3730 level = I915_CACHE_NONE;
3731 break;
3732 case I915_CACHING_CACHED:
3733 level = I915_CACHE_LLC;
3734 break;
3735 default:
3736 return -EINVAL;
3737 }
3738
3739 ret = i915_mutex_lock_interruptible(dev);
3740 if (ret)
3741 return ret;
3742
3743 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3744 if (&obj->base == NULL) {
3745 ret = -ENOENT;
3746 goto unlock;
3747 }
3748
3749 ret = i915_gem_object_set_cache_level(obj, level);
3750
3751 drm_gem_object_unreference(&obj->base);
3752 unlock:
3753 mutex_unlock(&dev->struct_mutex);
3754 return ret;
3755 }
3756
3757 /*
3758 * Prepare buffer for display plane (scanout, cursors, etc).
3759 * Can be called from an uninterruptible phase (modesetting) and allows
3760 * any flushes to be pipelined (for pageflips).
3761 */
3762 int
3763 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3764 u32 alignment,
3765 struct intel_ring_buffer *pipelined)
3766 {
3767 u32 old_read_domains, old_write_domain;
3768 int ret;
3769
3770 if (pipelined != obj->ring) {
3771 ret = i915_gem_object_sync(obj, pipelined);
3772 if (ret)
3773 return ret;
3774 }
3775
3776 /* The display engine is not coherent with the LLC cache on gen6. As
3777 * a result, we make sure that the pinning that is about to occur is
3778 * done with uncached PTEs. This is lowest common denominator for all
3779 * chipsets.
3780 *
3781 * However for gen6+, we could do better by using the GFDT bit instead
3782 * of uncaching, which would allow us to flush all the LLC-cached data
3783 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3784 */
3785 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3786 if (ret)
3787 return ret;
3788
3789 /* As the user may map the buffer once pinned in the display plane
3790 * (e.g. libkms for the bootup splash), we have to ensure that we
3791 * always use map_and_fenceable for all scanout buffers.
3792 */
3793 ret = i915_gem_object_pin(obj, alignment, true, false);
3794 if (ret)
3795 return ret;
3796
3797 i915_gem_object_flush_cpu_write_domain(obj);
3798
3799 old_write_domain = obj->base.write_domain;
3800 old_read_domains = obj->base.read_domains;
3801
3802 /* It should now be out of any other write domains, and we can update
3803 * the domain values for our changes.
3804 */
3805 obj->base.write_domain = 0;
3806 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3807
3808 trace_i915_gem_object_change_domain(obj,
3809 old_read_domains,
3810 old_write_domain);
3811
3812 return 0;
3813 }
3814
3815 int
3816 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3817 {
3818 int ret;
3819
3820 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3821 return 0;
3822
3823 ret = i915_gem_object_wait_rendering(obj, false);
3824 if (ret)
3825 return ret;
3826
3827 /* Ensure that we invalidate the GPU's caches and TLBs. */
3828 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3829 return 0;
3830 }
3831
3832 /**
3833 * Moves a single object to the CPU read, and possibly write domain.
3834 *
3835 * This function returns when the move is complete, including waiting on
3836 * flushes to occur.
3837 */
3838 int
3839 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3840 {
3841 uint32_t old_write_domain, old_read_domains;
3842 int ret;
3843
3844 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3845 return 0;
3846
3847 ret = i915_gem_object_wait_rendering(obj, !write);
3848 if (ret)
3849 return ret;
3850
3851 i915_gem_object_flush_gtt_write_domain(obj);
3852
3853 old_write_domain = obj->base.write_domain;
3854 old_read_domains = obj->base.read_domains;
3855
3856 /* Flush the CPU cache if it's still invalid. */
3857 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3858 i915_gem_clflush_object(obj);
3859
3860 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3861 }
3862
3863 /* It should now be out of any other write domains, and we can update
3864 * the domain values for our changes.
3865 */
3866 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3867
3868 /* If we're writing through the CPU, then the GPU read domains will
3869 * need to be invalidated at next use.
3870 */
3871 if (write) {
3872 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3873 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3874 }
3875
3876 trace_i915_gem_object_change_domain(obj,
3877 old_read_domains,
3878 old_write_domain);
3879
3880 return 0;
3881 }
3882
3883 /* Throttle our rendering by waiting until the ring has completed our requests
3884 * emitted over 20 msec ago.
3885 *
3886 * Note that if we were to use the current jiffies each time around the loop,
3887 * we wouldn't escape the function with any frames outstanding if the time to
3888 * render a frame was over 20ms.
3889 *
3890 * This should get us reasonable parallelism between CPU and GPU but also
3891 * relatively low latency when blocking on a particular request to finish.
3892 */
3893 static int
3894 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3895 {
3896 struct drm_i915_private *dev_priv = dev->dev_private;
3897 struct drm_i915_file_private *file_priv = file->driver_priv;
3898 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3899 struct drm_i915_gem_request *request;
3900 struct intel_ring_buffer *ring = NULL;
3901 u32 seqno = 0;
3902 int ret;
3903
3904 if (atomic_read(&dev_priv->mm.wedged))
3905 return -EIO;
3906
3907 spin_lock(&file_priv->mm.lock);
3908 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3909 if (time_after_eq(request->emitted_jiffies, recent_enough))
3910 break;
3911
3912 ring = request->ring;
3913 seqno = request->seqno;
3914 }
3915 spin_unlock(&file_priv->mm.lock);
3916
3917 if (seqno == 0)
3918 return 0;
3919
3920 ret = __wait_seqno(ring, seqno, true, NULL);
3921 if (ret == 0)
3922 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3923
3924 return ret;
3925 }
3926
3927 int
3928 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3929 uint32_t alignment,
3930 bool map_and_fenceable,
3931 bool nonblocking)
3932 {
3933 int ret;
3934
3935 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3936 return -EBUSY;
3937
3938 if (obj->gtt_space != NULL) {
3939 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3940 (map_and_fenceable && !obj->map_and_fenceable)) {
3941 WARN(obj->pin_count,
3942 "bo is already pinned with incorrect alignment:"
3943 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3944 " obj->map_and_fenceable=%d\n",
3945 obj->gtt_offset, alignment,
3946 map_and_fenceable,
3947 obj->map_and_fenceable);
3948 ret = i915_gem_object_unbind(obj);
3949 if (ret)
3950 return ret;
3951 }
3952 }
3953
3954 if (obj->gtt_space == NULL) {
3955 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3956
3957 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3958 map_and_fenceable,
3959 nonblocking);
3960 if (ret)
3961 return ret;
3962
3963 if (!dev_priv->mm.aliasing_ppgtt)
3964 i915_gem_gtt_bind_object(obj, obj->cache_level);
3965 }
3966
3967 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3968 i915_gem_gtt_bind_object(obj, obj->cache_level);
3969
3970 obj->pin_count++;
3971 obj->pin_mappable |= map_and_fenceable;
3972
3973 return 0;
3974 }
3975
3976 void
3977 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3978 {
3979 BUG_ON(obj->pin_count == 0);
3980 BUG_ON(obj->gtt_space == NULL);
3981
3982 if (--obj->pin_count == 0)
3983 obj->pin_mappable = false;
3984 }
3985
3986 int
3987 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3988 struct drm_file *file)
3989 {
3990 struct drm_i915_gem_pin *args = data;
3991 struct drm_i915_gem_object *obj;
3992 int ret;
3993
3994 ret = i915_mutex_lock_interruptible(dev);
3995 if (ret)
3996 return ret;
3997
3998 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3999 if (&obj->base == NULL) {
4000 ret = -ENOENT;
4001 goto unlock;
4002 }
4003
4004 if (obj->madv != I915_MADV_WILLNEED) {
4005 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4006 ret = -EINVAL;
4007 goto out;
4008 }
4009
4010 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4011 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4012 args->handle);
4013 ret = -EINVAL;
4014 goto out;
4015 }
4016
4017 if (obj->user_pin_count == 0) {
4018 ret = i915_gem_object_pin(obj, args->alignment, true, false);
4019 if (ret)
4020 goto out;
4021 }
4022
4023 obj->user_pin_count++;
4024 obj->pin_filp = file;
4025
4026 /* XXX - flush the CPU caches for pinned objects
4027 * as the X server doesn't manage domains yet
4028 */
4029 i915_gem_object_flush_cpu_write_domain(obj);
4030 args->offset = obj->gtt_offset;
4031 out:
4032 drm_gem_object_unreference(&obj->base);
4033 unlock:
4034 mutex_unlock(&dev->struct_mutex);
4035 return ret;
4036 }
4037
4038 int
4039 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4040 struct drm_file *file)
4041 {
4042 struct drm_i915_gem_pin *args = data;
4043 struct drm_i915_gem_object *obj;
4044 int ret;
4045
4046 ret = i915_mutex_lock_interruptible(dev);
4047 if (ret)
4048 return ret;
4049
4050 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4051 if (&obj->base == NULL) {
4052 ret = -ENOENT;
4053 goto unlock;
4054 }
4055
4056 if (obj->pin_filp != file) {
4057 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4058 args->handle);
4059 ret = -EINVAL;
4060 goto out;
4061 }
4062 obj->user_pin_count--;
4063 if (obj->user_pin_count == 0) {
4064 obj->pin_filp = NULL;
4065 i915_gem_object_unpin(obj);
4066 }
4067
4068 out:
4069 drm_gem_object_unreference(&obj->base);
4070 unlock:
4071 mutex_unlock(&dev->struct_mutex);
4072 return ret;
4073 }
4074
4075 int
4076 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4077 struct drm_file *file)
4078 {
4079 struct drm_i915_gem_busy *args = data;
4080 struct drm_i915_gem_object *obj;
4081 int ret;
4082
4083 ret = i915_mutex_lock_interruptible(dev);
4084 if (ret)
4085 return ret;
4086
4087 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4088 if (&obj->base == NULL) {
4089 ret = -ENOENT;
4090 goto unlock;
4091 }
4092
4093 /* Count all active objects as busy, even if they are currently not used
4094 * by the gpu. Users of this interface expect objects to eventually
4095 * become non-busy without any further actions, therefore emit any
4096 * necessary flushes here.
4097 */
4098 ret = i915_gem_object_flush_active(obj);
4099
4100 args->busy = obj->active;
4101 if (obj->ring) {
4102 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4103 args->busy |= intel_ring_flag(obj->ring) << 16;
4104 }
4105
4106 drm_gem_object_unreference(&obj->base);
4107 unlock:
4108 mutex_unlock(&dev->struct_mutex);
4109 return ret;
4110 }
4111
4112 int
4113 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4114 struct drm_file *file_priv)
4115 {
4116 return i915_gem_ring_throttle(dev, file_priv);
4117 }
4118
4119 int
4120 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4121 struct drm_file *file_priv)
4122 {
4123 struct drm_i915_gem_madvise *args = data;
4124 struct drm_i915_gem_object *obj;
4125 int ret;
4126
4127 switch (args->madv) {
4128 case I915_MADV_DONTNEED:
4129 case I915_MADV_WILLNEED:
4130 break;
4131 default:
4132 return -EINVAL;
4133 }
4134
4135 ret = i915_mutex_lock_interruptible(dev);
4136 if (ret)
4137 return ret;
4138
4139 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4140 if (&obj->base == NULL) {
4141 ret = -ENOENT;
4142 goto unlock;
4143 }
4144
4145 if (obj->pin_count) {
4146 ret = -EINVAL;
4147 goto out;
4148 }
4149
4150 if (obj->madv != __I915_MADV_PURGED)
4151 obj->madv = args->madv;
4152
4153 /* if the object is no longer attached, discard its backing storage */
4154 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4155 i915_gem_object_truncate(obj);
4156
4157 args->retained = obj->madv != __I915_MADV_PURGED;
4158
4159 out:
4160 drm_gem_object_unreference(&obj->base);
4161 unlock:
4162 mutex_unlock(&dev->struct_mutex);
4163 return ret;
4164 }
4165
4166 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4167 const struct drm_i915_gem_object_ops *ops)
4168 {
4169 INIT_LIST_HEAD(&obj->mm_list);
4170 INIT_LIST_HEAD(&obj->gtt_list);
4171 INIT_LIST_HEAD(&obj->ring_list);
4172 INIT_LIST_HEAD(&obj->exec_list);
4173
4174 obj->ops = ops;
4175
4176 obj->fence_reg = I915_FENCE_REG_NONE;
4177 obj->madv = I915_MADV_WILLNEED;
4178 /* Avoid an unnecessary call to unbind on the first bind. */
4179 obj->map_and_fenceable = true;
4180
4181 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4182 }
4183
4184 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4185 .get_pages = i915_gem_object_get_pages_gtt,
4186 .put_pages = i915_gem_object_put_pages_gtt,
4187 };
4188
4189 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4190 size_t size)
4191 {
4192 struct drm_i915_gem_object *obj;
4193 #ifndef __NetBSD__ /* XXX >32bit dma? */
4194 struct address_space *mapping;
4195 u32 mask;
4196 #endif
4197
4198 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4199 if (obj == NULL)
4200 return NULL;
4201
4202 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4203 kfree(obj);
4204 return NULL;
4205 }
4206
4207 #ifndef __NetBSD__ /* XXX >32bit dma? */
4208 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4209 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4210 /* 965gm cannot relocate objects above 4GiB. */
4211 mask &= ~__GFP_HIGHMEM;
4212 mask |= __GFP_DMA32;
4213 }
4214
4215 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4216 mapping_set_gfp_mask(mapping, mask);
4217 #endif
4218
4219 i915_gem_object_init(obj, &i915_gem_object_ops);
4220
4221 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4222 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4223
4224 if (HAS_LLC(dev)) {
4225 /* On some devices, we can have the GPU use the LLC (the CPU
4226 * cache) for about a 10% performance improvement
4227 * compared to uncached. Graphics requests other than
4228 * display scanout are coherent with the CPU in
4229 * accessing this cache. This means in this mode we
4230 * don't need to clflush on the CPU side, and on the
4231 * GPU side we only need to flush internal caches to
4232 * get data visible to the CPU.
4233 *
4234 * However, we maintain the display planes as UC, and so
4235 * need to rebind when first used as such.
4236 */
4237 obj->cache_level = I915_CACHE_LLC;
4238 } else
4239 obj->cache_level = I915_CACHE_NONE;
4240
4241 return obj;
4242 }
4243
4244 int i915_gem_init_object(struct drm_gem_object *obj)
4245 {
4246 BUG();
4247
4248 return 0;
4249 }
4250
4251 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4252 {
4253 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4254 struct drm_device *dev = obj->base.dev;
4255 drm_i915_private_t *dev_priv = dev->dev_private;
4256
4257 trace_i915_gem_object_destroy(obj);
4258
4259 if (obj->phys_obj)
4260 i915_gem_detach_phys_object(dev, obj);
4261
4262 obj->pin_count = 0;
4263 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
4264 bool was_interruptible;
4265
4266 was_interruptible = dev_priv->mm.interruptible;
4267 dev_priv->mm.interruptible = false;
4268
4269 WARN_ON(i915_gem_object_unbind(obj));
4270
4271 dev_priv->mm.interruptible = was_interruptible;
4272 }
4273
4274 obj->pages_pin_count = 0;
4275 i915_gem_object_put_pages(obj);
4276 i915_gem_object_free_mmap_offset(obj);
4277
4278 BUG_ON(obj->pages);
4279
4280 #ifndef __NetBSD__ /* XXX drm prime */
4281 if (obj->base.import_attach)
4282 drm_prime_gem_destroy(&obj->base, NULL);
4283 #endif
4284
4285 drm_gem_object_release(&obj->base);
4286 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4287
4288 kfree(obj->bit_17);
4289 kfree(obj);
4290 }
4291
4292 int
4293 i915_gem_idle(struct drm_device *dev)
4294 {
4295 drm_i915_private_t *dev_priv = dev->dev_private;
4296 int ret;
4297
4298 mutex_lock(&dev->struct_mutex);
4299
4300 if (dev_priv->mm.suspended) {
4301 mutex_unlock(&dev->struct_mutex);
4302 return 0;
4303 }
4304
4305 ret = i915_gpu_idle(dev);
4306 if (ret) {
4307 mutex_unlock(&dev->struct_mutex);
4308 return ret;
4309 }
4310 i915_gem_retire_requests(dev);
4311
4312 /* Under UMS, be paranoid and evict. */
4313 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4314 i915_gem_evict_everything(dev);
4315
4316 i915_gem_reset_fences(dev);
4317
4318 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4319 * We need to replace this with a semaphore, or something.
4320 * And not confound mm.suspended!
4321 */
4322 dev_priv->mm.suspended = 1;
4323 del_timer_sync(&dev_priv->hangcheck_timer);
4324
4325 i915_kernel_lost_context(dev);
4326 i915_gem_cleanup_ringbuffer(dev);
4327
4328 mutex_unlock(&dev->struct_mutex);
4329
4330 /* Cancel the retire work handler, which should be idle now. */
4331 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4332
4333 return 0;
4334 }
4335
4336 void i915_gem_l3_remap(struct drm_device *dev)
4337 {
4338 drm_i915_private_t *dev_priv = dev->dev_private;
4339 u32 misccpctl;
4340 int i;
4341
4342 if (!IS_IVYBRIDGE(dev))
4343 return;
4344
4345 if (!dev_priv->l3_parity.remap_info)
4346 return;
4347
4348 misccpctl = I915_READ(GEN7_MISCCPCTL);
4349 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4350 POSTING_READ(GEN7_MISCCPCTL);
4351
4352 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4353 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4354 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4355 DRM_DEBUG("0x%x was already programmed to %x\n",
4356 GEN7_L3LOG_BASE + i, remap);
4357 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4358 DRM_DEBUG_DRIVER("Clearing remapped register\n");
4359 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4360 }
4361
4362 /* Make sure all the writes land before disabling dop clock gating */
4363 POSTING_READ(GEN7_L3LOG_BASE);
4364
4365 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4366 }
4367
4368 void i915_gem_init_swizzling(struct drm_device *dev)
4369 {
4370 drm_i915_private_t *dev_priv = dev->dev_private;
4371
4372 if (INTEL_INFO(dev)->gen < 5 ||
4373 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4374 return;
4375
4376 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4377 DISP_TILE_SURFACE_SWIZZLING);
4378
4379 if (IS_GEN5(dev))
4380 return;
4381
4382 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4383 if (IS_GEN6(dev))
4384 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4385 else
4386 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4387 }
4388
4389 static bool
4390 intel_enable_blt(struct drm_device *dev)
4391 {
4392 if (!HAS_BLT(dev))
4393 return false;
4394
4395 /* The blitter was dysfunctional on early prototypes */
4396 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4397 DRM_INFO("BLT not supported on this pre-production hardware;"
4398 " graphics performance will be degraded.\n");
4399 return false;
4400 }
4401
4402 return true;
4403 }
4404
4405 int
4406 i915_gem_init_hw(struct drm_device *dev)
4407 {
4408 drm_i915_private_t *dev_priv = dev->dev_private;
4409 int ret;
4410
4411 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4412 return -EIO;
4413
4414 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4415 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4416
4417 i915_gem_l3_remap(dev);
4418
4419 i915_gem_init_swizzling(dev);
4420
4421 ret = intel_init_render_ring_buffer(dev);
4422 if (ret)
4423 return ret;
4424
4425 if (HAS_BSD(dev)) {
4426 ret = intel_init_bsd_ring_buffer(dev);
4427 if (ret)
4428 goto cleanup_render_ring;
4429 }
4430
4431 if (intel_enable_blt(dev)) {
4432 ret = intel_init_blt_ring_buffer(dev);
4433 if (ret)
4434 goto cleanup_bsd_ring;
4435 }
4436
4437 dev_priv->next_seqno = 1;
4438
4439 /*
4440 * XXX: There was some w/a described somewhere suggesting loading
4441 * contexts before PPGTT.
4442 */
4443 i915_gem_context_init(dev);
4444 i915_gem_init_ppgtt(dev);
4445
4446 return 0;
4447
4448 cleanup_bsd_ring:
4449 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4450 cleanup_render_ring:
4451 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4452 return ret;
4453 }
4454
4455 static bool
4456 intel_enable_ppgtt(struct drm_device *dev)
4457 {
4458 #ifdef __NetBSD__ /* XXX ppgtt */
4459 return false;
4460 #else
4461 if (i915_enable_ppgtt >= 0)
4462 return i915_enable_ppgtt;
4463
4464 #ifdef CONFIG_INTEL_IOMMU
4465 /* Disable ppgtt on SNB if VT-d is on. */
4466 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4467 return false;
4468 #endif
4469
4470 return true;
4471 #endif
4472 }
4473
4474 int i915_gem_init(struct drm_device *dev)
4475 {
4476 struct drm_i915_private *dev_priv = dev->dev_private;
4477 unsigned long gtt_size, mappable_size;
4478 int ret;
4479
4480 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4481 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4482
4483 mutex_lock(&dev->struct_mutex);
4484 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4485 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4486 * aperture accordingly when using aliasing ppgtt. */
4487 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4488
4489 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4490
4491 ret = i915_gem_init_aliasing_ppgtt(dev);
4492 if (ret) {
4493 i915_gem_fini_global_gtt(dev);
4494 mutex_unlock(&dev->struct_mutex);
4495 return ret;
4496 }
4497 } else {
4498 /* Let GEM Manage all of the aperture.
4499 *
4500 * However, leave one page at the end still bound to the scratch
4501 * page. There are a number of places where the hardware
4502 * apparently prefetches past the end of the object, and we've
4503 * seen multiple hangs with the GPU head pointer stuck in a
4504 * batchbuffer bound at the last page of the aperture. One page
4505 * should be enough to keep any prefetching inside of the
4506 * aperture.
4507 */
4508 i915_gem_init_global_gtt(dev, 0, mappable_size,
4509 gtt_size);
4510 }
4511
4512 ret = i915_gem_init_hw(dev);
4513 #ifdef __NetBSD__ /* XXX fini global gtt */
4514 if (ret)
4515 i915_gem_fini_global_gtt(dev);
4516 #endif
4517 mutex_unlock(&dev->struct_mutex);
4518 if (ret) {
4519 i915_gem_cleanup_aliasing_ppgtt(dev);
4520 return ret;
4521 }
4522
4523 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4524 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4525 dev_priv->dri1.allow_batchbuffer = 1;
4526 return 0;
4527 }
4528
4529 void
4530 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4531 {
4532 drm_i915_private_t *dev_priv = dev->dev_private;
4533 struct intel_ring_buffer *ring;
4534 int i;
4535
4536 for_each_ring(ring, dev_priv, i)
4537 intel_cleanup_ring_buffer(ring);
4538 }
4539
4540 int
4541 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4542 struct drm_file *file_priv)
4543 {
4544 drm_i915_private_t *dev_priv = dev->dev_private;
4545 int ret;
4546
4547 if (drm_core_check_feature(dev, DRIVER_MODESET))
4548 return 0;
4549
4550 if (atomic_read(&dev_priv->mm.wedged)) {
4551 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4552 atomic_set(&dev_priv->mm.wedged, 0);
4553 }
4554
4555 mutex_lock(&dev->struct_mutex);
4556 dev_priv->mm.suspended = 0;
4557
4558 ret = i915_gem_init_hw(dev);
4559 if (ret != 0) {
4560 mutex_unlock(&dev->struct_mutex);
4561 return ret;
4562 }
4563
4564 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4565 mutex_unlock(&dev->struct_mutex);
4566
4567 ret = drm_irq_install(dev);
4568 if (ret)
4569 goto cleanup_ringbuffer;
4570
4571 return 0;
4572
4573 cleanup_ringbuffer:
4574 mutex_lock(&dev->struct_mutex);
4575 i915_gem_cleanup_ringbuffer(dev);
4576 dev_priv->mm.suspended = 1;
4577 mutex_unlock(&dev->struct_mutex);
4578
4579 return ret;
4580 }
4581
4582 int
4583 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4584 struct drm_file *file_priv)
4585 {
4586 if (drm_core_check_feature(dev, DRIVER_MODESET))
4587 return 0;
4588
4589 drm_irq_uninstall(dev);
4590 return i915_gem_idle(dev);
4591 }
4592
4593 void
4594 i915_gem_lastclose(struct drm_device *dev)
4595 {
4596 int ret;
4597
4598 if (drm_core_check_feature(dev, DRIVER_MODESET))
4599 return;
4600
4601 ret = i915_gem_idle(dev);
4602 if (ret)
4603 DRM_ERROR("failed to idle hardware: %d\n", ret);
4604 }
4605
4606 static void
4607 init_ring_lists(struct intel_ring_buffer *ring)
4608 {
4609 INIT_LIST_HEAD(&ring->active_list);
4610 INIT_LIST_HEAD(&ring->request_list);
4611 }
4612
4613 void
4614 i915_gem_load(struct drm_device *dev)
4615 {
4616 int i;
4617 drm_i915_private_t *dev_priv = dev->dev_private;
4618
4619 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4620 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4621 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4622 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4623 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4624 for (i = 0; i < I915_NUM_RINGS; i++)
4625 init_ring_lists(&dev_priv->ring[i]);
4626 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4627 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4628 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4629 i915_gem_retire_work_handler);
4630 init_completion(&dev_priv->error_completion);
4631
4632 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4633 if (IS_GEN3(dev)) {
4634 I915_WRITE(MI_ARB_STATE,
4635 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4636 }
4637
4638 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4639
4640 /* Old X drivers will take 0-2 for front, back, depth buffers */
4641 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4642 dev_priv->fence_reg_start = 3;
4643
4644 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4645 dev_priv->num_fence_regs = 16;
4646 else
4647 dev_priv->num_fence_regs = 8;
4648
4649 /* Initialize fence registers to zero */
4650 i915_gem_reset_fences(dev);
4651
4652 i915_gem_detect_bit_6_swizzle(dev);
4653 #ifdef __NetBSD__
4654 DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
4655 spin_lock_init(&dev_priv->pending_flip_lock);
4656 #else
4657 init_waitqueue_head(&dev_priv->pending_flip_queue);
4658 #endif
4659
4660 dev_priv->mm.interruptible = true;
4661
4662 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4663 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4664 register_shrinker(&dev_priv->mm.inactive_shrinker);
4665 }
4666
4667 /*
4668 * Create a physically contiguous memory object for this object
4669 * e.g. for cursor + overlay regs
4670 */
4671 static int i915_gem_init_phys_object(struct drm_device *dev,
4672 int id, int size, int align)
4673 {
4674 drm_i915_private_t *dev_priv = dev->dev_private;
4675 struct drm_i915_gem_phys_object *phys_obj;
4676 int ret;
4677
4678 if (dev_priv->mm.phys_objs[id - 1] || !size)
4679 return 0;
4680
4681 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4682 if (!phys_obj)
4683 return -ENOMEM;
4684
4685 phys_obj->id = id;
4686
4687 phys_obj->handle = drm_pci_alloc(dev, size, align);
4688 if (!phys_obj->handle) {
4689 ret = -ENOMEM;
4690 goto kfree_obj;
4691 }
4692 #ifndef __NetBSD__ /* XXX x86 wc? */
4693 #ifdef CONFIG_X86
4694 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4695 #endif
4696 #endif
4697
4698 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4699
4700 return 0;
4701 kfree_obj:
4702 kfree(phys_obj);
4703 return ret;
4704 }
4705
4706 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4707 {
4708 drm_i915_private_t *dev_priv = dev->dev_private;
4709 struct drm_i915_gem_phys_object *phys_obj;
4710
4711 if (!dev_priv->mm.phys_objs[id - 1])
4712 return;
4713
4714 phys_obj = dev_priv->mm.phys_objs[id - 1];
4715 if (phys_obj->cur_obj) {
4716 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4717 }
4718
4719 #ifndef __NetBSD__ /* XXX x86 wb? */
4720 #ifdef CONFIG_X86
4721 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4722 #endif
4723 #endif
4724 drm_pci_free(dev, phys_obj->handle);
4725 kfree(phys_obj);
4726 dev_priv->mm.phys_objs[id - 1] = NULL;
4727 }
4728
4729 void i915_gem_free_all_phys_object(struct drm_device *dev)
4730 {
4731 int i;
4732
4733 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4734 i915_gem_free_phys_object(dev, i);
4735 }
4736
4737 void i915_gem_detach_phys_object(struct drm_device *dev,
4738 struct drm_i915_gem_object *obj)
4739 {
4740 #ifndef __NetBSD__
4741 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4742 #endif
4743 char *vaddr;
4744 int i;
4745 int page_count;
4746
4747 if (!obj->phys_obj)
4748 return;
4749 vaddr = obj->phys_obj->handle->vaddr;
4750
4751 page_count = obj->base.size / PAGE_SIZE;
4752 for (i = 0; i < page_count; i++) {
4753 #ifdef __NetBSD__
4754 /* XXX Just use ubc_uiomove? */
4755 struct pglist pages;
4756 int error;
4757
4758 TAILQ_INIT(&pages);
4759 error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4760 (i+1)*PAGE_SIZE, &pages);
4761 if (error) {
4762 printf("unable to map page %d of i915 gem obj: %d\n",
4763 i, error);
4764 continue;
4765 }
4766
4767 KASSERT(!TAILQ_EMPTY(&pages));
4768 struct vm_page *const page = TAILQ_FIRST(&pages);
4769 TAILQ_REMOVE(&pages, page, pageq.queue);
4770 KASSERT(TAILQ_EMPTY(&pages));
4771
4772 char *const dst = kmap_atomic(container_of(page, struct page,
4773 p_vmp));
4774 (void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
4775 kunmap_atomic(dst);
4776
4777 drm_clflush_page(container_of(page, struct page, p_vmp));
4778 page->flags &= ~PG_CLEAN;
4779 /* XXX mark page accessed */
4780 uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4781 (i+1)*PAGE_SIZE);
4782 #else
4783 struct page *page = shmem_read_mapping_page(mapping, i);
4784 if (!IS_ERR(page)) {
4785 char *dst = kmap_atomic(page);
4786 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4787 kunmap_atomic(dst);
4788
4789 drm_clflush_pages(&page, 1);
4790
4791 set_page_dirty(page);
4792 mark_page_accessed(page);
4793 page_cache_release(page);
4794 }
4795 #endif
4796 }
4797 i915_gem_chipset_flush(dev);
4798
4799 obj->phys_obj->cur_obj = NULL;
4800 obj->phys_obj = NULL;
4801 }
4802
4803 int
4804 i915_gem_attach_phys_object(struct drm_device *dev,
4805 struct drm_i915_gem_object *obj,
4806 int id,
4807 int align)
4808 {
4809 #ifndef __NetBSD__
4810 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4811 #endif
4812 drm_i915_private_t *dev_priv = dev->dev_private;
4813 int ret = 0;
4814 int page_count;
4815 int i;
4816
4817 if (id > I915_MAX_PHYS_OBJECT)
4818 return -EINVAL;
4819
4820 if (obj->phys_obj) {
4821 if (obj->phys_obj->id == id)
4822 return 0;
4823 i915_gem_detach_phys_object(dev, obj);
4824 }
4825
4826 /* create a new object */
4827 if (!dev_priv->mm.phys_objs[id - 1]) {
4828 ret = i915_gem_init_phys_object(dev, id,
4829 obj->base.size, align);
4830 if (ret) {
4831 DRM_ERROR("failed to init phys object %d size: %zu\n",
4832 id, obj->base.size);
4833 return ret;
4834 }
4835 }
4836
4837 /* bind to the object */
4838 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4839 obj->phys_obj->cur_obj = obj;
4840
4841 page_count = obj->base.size / PAGE_SIZE;
4842
4843 for (i = 0; i < page_count; i++) {
4844 #ifdef __NetBSD__
4845 char *const vaddr = obj->phys_obj->handle->vaddr;
4846 struct pglist pages;
4847 int error;
4848
4849 TAILQ_INIT(&pages);
4850 error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4851 (i+1)*PAGE_SIZE, &pages);
4852 if (error)
4853 /* XXX errno NetBSD->Linux */
4854 return -error;
4855
4856 KASSERT(!TAILQ_EMPTY(&pages));
4857 struct vm_page *const page = TAILQ_FIRST(&pages);
4858 TAILQ_REMOVE(&pages, page, pageq.queue);
4859 KASSERT(TAILQ_EMPTY(&pages));
4860
4861 char *const src = kmap_atomic(container_of(page, struct page,
4862 p_vmp));
4863 (void)memcpy(vaddr + (i*PAGE_SIZE), src, PAGE_SIZE);
4864 kunmap_atomic(src);
4865
4866 /* XXX mark page accessed */
4867 uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4868 (i+1)*PAGE_SIZE);
4869 #else
4870 struct page *page;
4871 char *dst, *src;
4872
4873 page = shmem_read_mapping_page(mapping, i);
4874 if (IS_ERR(page))
4875 return PTR_ERR(page);
4876
4877 src = kmap_atomic(page);
4878 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4879 memcpy(dst, src, PAGE_SIZE);
4880 kunmap_atomic(src);
4881
4882 mark_page_accessed(page);
4883 page_cache_release(page);
4884 #endif
4885 }
4886
4887 return 0;
4888 }
4889
4890 static int
4891 i915_gem_phys_pwrite(struct drm_device *dev,
4892 struct drm_i915_gem_object *obj,
4893 struct drm_i915_gem_pwrite *args,
4894 struct drm_file *file_priv)
4895 {
4896 void *vaddr = (char *)obj->phys_obj->handle->vaddr + args->offset;
4897 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4898
4899 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4900 unsigned long unwritten;
4901
4902 /* The physical object once assigned is fixed for the lifetime
4903 * of the obj, so we can safely drop the lock and continue
4904 * to access vaddr.
4905 */
4906 mutex_unlock(&dev->struct_mutex);
4907 unwritten = copy_from_user(vaddr, user_data, args->size);
4908 mutex_lock(&dev->struct_mutex);
4909 if (unwritten)
4910 return -EFAULT;
4911 }
4912
4913 i915_gem_chipset_flush(dev);
4914 return 0;
4915 }
4916
4917 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4918 {
4919 struct drm_i915_file_private *file_priv = file->driver_priv;
4920
4921 /* Clean up our request list when the client is going away, so that
4922 * later retire_requests won't dereference our soon-to-be-gone
4923 * file_priv.
4924 */
4925 spin_lock(&file_priv->mm.lock);
4926 while (!list_empty(&file_priv->mm.request_list)) {
4927 struct drm_i915_gem_request *request;
4928
4929 request = list_first_entry(&file_priv->mm.request_list,
4930 struct drm_i915_gem_request,
4931 client_list);
4932 list_del(&request->client_list);
4933 request->file_priv = NULL;
4934 }
4935 spin_unlock(&file_priv->mm.lock);
4936 }
4937
4938 #ifndef __NetBSD__ /* XXX */
4939 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4940 {
4941 if (!mutex_is_locked(mutex))
4942 return false;
4943
4944 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4945 return mutex->owner == task;
4946 #else
4947 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4948 return false;
4949 #endif
4950 }
4951 #endif
4952
4953 static int
4954 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4955 {
4956 #ifdef __NetBSD__ /* XXX shrinkers */
4957 return 0;
4958 #else
4959 struct drm_i915_private *dev_priv =
4960 container_of(shrinker,
4961 struct drm_i915_private,
4962 mm.inactive_shrinker);
4963 struct drm_device *dev = dev_priv->dev;
4964 struct drm_i915_gem_object *obj;
4965 int nr_to_scan = sc->nr_to_scan;
4966 bool unlock = true;
4967 int cnt;
4968
4969 if (!mutex_trylock(&dev->struct_mutex)) {
4970 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4971 return 0;
4972
4973 if (dev_priv->mm.shrinker_no_lock_stealing)
4974 return 0;
4975
4976 unlock = false;
4977 }
4978
4979 if (nr_to_scan) {
4980 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4981 if (nr_to_scan > 0)
4982 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4983 false);
4984 if (nr_to_scan > 0)
4985 i915_gem_shrink_all(dev_priv);
4986 }
4987
4988 cnt = 0;
4989 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4990 if (obj->pages_pin_count == 0)
4991 cnt += obj->base.size >> PAGE_SHIFT;
4992 list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4993 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4994 cnt += obj->base.size >> PAGE_SHIFT;
4995
4996 if (unlock)
4997 mutex_unlock(&dev->struct_mutex);
4998 return cnt;
4999 #endif
5000 }
5001