Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.10
      1 /*
      2  * Copyright  2008 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eric Anholt <eric (at) anholt.net>
     25  *
     26  */
     27 
     28 #ifdef __NetBSD__
     29 #if 0				/* XXX uvmhist option?  */
     30 #include "opt_uvmhist.h"
     31 #endif
     32 
     33 #include <sys/types.h>
     34 #include <sys/param.h>
     35 
     36 #include <uvm/uvm.h>
     37 #include <uvm/uvm_extern.h>
     38 #include <uvm/uvm_fault.h>
     39 #include <uvm/uvm_page.h>
     40 #include <uvm/uvm_pmap.h>
     41 #include <uvm/uvm_prot.h>
     42 #endif
     43 
     44 #include <drm/drmP.h>
     45 #include <drm/i915_drm.h>
     46 #include "i915_drv.h"
     47 #include "i915_trace.h"
     48 #include "intel_drv.h"
     49 #include <linux/shmem_fs.h>
     50 #include <linux/slab.h>
     51 #include <linux/swap.h>
     52 #include <linux/pci.h>
     53 #include <linux/dma-buf.h>
     54 #include <linux/errno.h>
     55 #include <linux/time.h>
     56 #include <linux/err.h>
     57 #include <asm/param.h>
     58 
     59 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
     60 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
     61 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
     62 						    unsigned alignment,
     63 						    bool map_and_fenceable,
     64 						    bool nonblocking);
     65 static int i915_gem_phys_pwrite(struct drm_device *dev,
     66 				struct drm_i915_gem_object *obj,
     67 				struct drm_i915_gem_pwrite *args,
     68 				struct drm_file *file);
     69 
     70 static void i915_gem_write_fence(struct drm_device *dev, int reg,
     71 				 struct drm_i915_gem_object *obj);
     72 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
     73 					 struct drm_i915_fence_reg *fence,
     74 					 bool enable);
     75 
     76 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
     77 				    struct shrink_control *sc);
     78 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
     79 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
     80 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
     81 
     82 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
     83 {
     84 	if (obj->tiling_mode)
     85 		i915_gem_release_mmap(obj);
     86 
     87 	/* As we do not have an associated fence register, we will force
     88 	 * a tiling change if we ever need to acquire one.
     89 	 */
     90 	obj->fence_dirty = false;
     91 	obj->fence_reg = I915_FENCE_REG_NONE;
     92 }
     93 
     94 /* some bookkeeping */
     95 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
     96 				  size_t size)
     97 {
     98 	dev_priv->mm.object_count++;
     99 	dev_priv->mm.object_memory += size;
    100 }
    101 
    102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
    103 				     size_t size)
    104 {
    105 	dev_priv->mm.object_count--;
    106 	dev_priv->mm.object_memory -= size;
    107 }
    108 
    109 static int
    110 i915_gem_wait_for_error(struct drm_device *dev)
    111 {
    112 	struct drm_i915_private *dev_priv = dev->dev_private;
    113 	struct completion *x = &dev_priv->error_completion;
    114 #ifndef __NetBSD__
    115 	unsigned long flags;
    116 #endif
    117 	int ret;
    118 
    119 	if (!atomic_read(&dev_priv->mm.wedged))
    120 		return 0;
    121 
    122 	/*
    123 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
    124 	 * userspace. If it takes that long something really bad is going on and
    125 	 * we should simply try to bail out and fail as gracefully as possible.
    126 	 */
    127 	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
    128 	if (ret == 0) {
    129 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
    130 		return -EIO;
    131 	} else if (ret < 0) {
    132 		return ret;
    133 	}
    134 
    135 	if (atomic_read(&dev_priv->mm.wedged)) {
    136 		/* GPU is hung, bump the completion count to account for
    137 		 * the token we just consumed so that we never hit zero and
    138 		 * end up waiting upon a subsequent completion event that
    139 		 * will never happen.
    140 		 */
    141 #ifdef __NetBSD__
    142 		/* XXX Hope it's not a problem that we might wake someone.  */
    143 		complete(x);
    144 #else
    145 		spin_lock_irqsave(&x->wait.lock, flags);
    146 		x->done++;
    147 		spin_unlock_irqrestore(&x->wait.lock, flags);
    148 #endif
    149 	}
    150 	return 0;
    151 }
    152 
    153 int i915_mutex_lock_interruptible(struct drm_device *dev)
    154 {
    155 	int ret;
    156 
    157 	ret = i915_gem_wait_for_error(dev);
    158 	if (ret)
    159 		return ret;
    160 
    161 	ret = mutex_lock_interruptible(&dev->struct_mutex);
    162 	if (ret)
    163 		return ret;
    164 
    165 	WARN_ON(i915_verify_lists(dev));
    166 	return 0;
    167 }
    168 
    169 static inline bool
    170 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
    171 {
    172 	return obj->gtt_space && !obj->active;
    173 }
    174 
    175 int
    176 i915_gem_init_ioctl(struct drm_device *dev, void *data,
    177 		    struct drm_file *file)
    178 {
    179 	struct drm_i915_gem_init *args = data;
    180 
    181 	if (drm_core_check_feature(dev, DRIVER_MODESET))
    182 		return -ENODEV;
    183 
    184 	if (args->gtt_start >= args->gtt_end ||
    185 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
    186 		return -EINVAL;
    187 
    188 	/* GEM with user mode setting was never supported on ilk and later. */
    189 	if (INTEL_INFO(dev)->gen >= 5)
    190 		return -ENODEV;
    191 
    192 	mutex_lock(&dev->struct_mutex);
    193 	i915_gem_init_global_gtt(dev, args->gtt_start,
    194 				 args->gtt_end, args->gtt_end);
    195 	mutex_unlock(&dev->struct_mutex);
    196 
    197 	return 0;
    198 }
    199 
    200 int
    201 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    202 			    struct drm_file *file)
    203 {
    204 	struct drm_i915_private *dev_priv = dev->dev_private;
    205 	struct drm_i915_gem_get_aperture *args = data;
    206 	struct drm_i915_gem_object *obj;
    207 	size_t pinned;
    208 
    209 	pinned = 0;
    210 	mutex_lock(&dev->struct_mutex);
    211 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
    212 		if (obj->pin_count)
    213 			pinned += obj->gtt_space->size;
    214 	mutex_unlock(&dev->struct_mutex);
    215 
    216 	args->aper_size = dev_priv->mm.gtt_total;
    217 	args->aper_available_size = args->aper_size - pinned;
    218 
    219 	return 0;
    220 }
    221 
    222 static int
    223 i915_gem_create(struct drm_file *file,
    224 		struct drm_device *dev,
    225 		uint64_t size,
    226 		uint32_t *handle_p)
    227 {
    228 	struct drm_i915_gem_object *obj;
    229 	int ret;
    230 	u32 handle;
    231 
    232 	size = roundup(size, PAGE_SIZE);
    233 	if (size == 0)
    234 		return -EINVAL;
    235 
    236 	/* Allocate the new object */
    237 	obj = i915_gem_alloc_object(dev, size);
    238 	if (obj == NULL)
    239 		return -ENOMEM;
    240 
    241 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    242 	if (ret) {
    243 		drm_gem_object_release(&obj->base);
    244 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
    245 		kfree(obj);
    246 		return ret;
    247 	}
    248 
    249 	/* drop reference from allocate - handle holds it now */
    250 	drm_gem_object_unreference(&obj->base);
    251 	trace_i915_gem_object_create(obj);
    252 
    253 	*handle_p = handle;
    254 	return 0;
    255 }
    256 
    257 int
    258 i915_gem_dumb_create(struct drm_file *file,
    259 		     struct drm_device *dev,
    260 		     struct drm_mode_create_dumb *args)
    261 {
    262 	/* have to work out size/pitch and return them */
    263 #ifdef __NetBSD__		/* ALIGN already means something.  */
    264 	args->pitch = round_up(args->width * ((args->bpp + 7) / 8), 64);
    265 #else
    266 	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
    267 #endif
    268 	args->size = args->pitch * args->height;
    269 	return i915_gem_create(file, dev,
    270 			       args->size, &args->handle);
    271 }
    272 
    273 int i915_gem_dumb_destroy(struct drm_file *file,
    274 			  struct drm_device *dev,
    275 			  uint32_t handle)
    276 {
    277 	return drm_gem_handle_delete(file, handle);
    278 }
    279 
    280 /**
    281  * Creates a new mm object and returns a handle to it.
    282  */
    283 int
    284 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    285 		      struct drm_file *file)
    286 {
    287 	struct drm_i915_gem_create *args = data;
    288 
    289 	return i915_gem_create(file, dev,
    290 			       args->size, &args->handle);
    291 }
    292 
    293 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
    294 {
    295 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
    296 
    297 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
    298 		obj->tiling_mode != I915_TILING_NONE;
    299 }
    300 
    301 static inline int
    302 __copy_to_user_swizzled(char __user *cpu_vaddr,
    303 			const char *gpu_vaddr, int gpu_offset,
    304 			int length)
    305 {
    306 	int ret, cpu_offset = 0;
    307 
    308 	while (length > 0) {
    309 #ifdef __NetBSD__
    310 		int cacheline_end = round_up(gpu_offset + 1, 64);
    311 #else
    312 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    313 #endif
    314 		int this_length = min(cacheline_end - gpu_offset, length);
    315 		int swizzled_gpu_offset = gpu_offset ^ 64;
    316 
    317 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
    318 				     gpu_vaddr + swizzled_gpu_offset,
    319 				     this_length);
    320 		if (ret)
    321 			return ret + length;
    322 
    323 		cpu_offset += this_length;
    324 		gpu_offset += this_length;
    325 		length -= this_length;
    326 	}
    327 
    328 	return 0;
    329 }
    330 
    331 static inline int
    332 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
    333 			  const char __user *cpu_vaddr,
    334 			  int length)
    335 {
    336 	int ret, cpu_offset = 0;
    337 
    338 	while (length > 0) {
    339 #ifdef __NetBSD__
    340 		int cacheline_end = round_up(gpu_offset + 1, 64);
    341 #else
    342 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    343 #endif
    344 		int this_length = min(cacheline_end - gpu_offset, length);
    345 		int swizzled_gpu_offset = gpu_offset ^ 64;
    346 
    347 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
    348 				       cpu_vaddr + cpu_offset,
    349 				       this_length);
    350 		if (ret)
    351 			return ret + length;
    352 
    353 		cpu_offset += this_length;
    354 		gpu_offset += this_length;
    355 		length -= this_length;
    356 	}
    357 
    358 	return 0;
    359 }
    360 
    361 /* Per-page copy function for the shmem pread fastpath.
    362  * Flushes invalid cachelines before reading the target if
    363  * needs_clflush is set. */
    364 static int
    365 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
    366 		 char __user *user_data,
    367 		 bool page_do_bit17_swizzling, bool needs_clflush)
    368 {
    369 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    370 	return -EFAULT;
    371 #else
    372 	char *vaddr;
    373 	int ret;
    374 
    375 	if (unlikely(page_do_bit17_swizzling))
    376 		return -EINVAL;
    377 
    378 	vaddr = kmap_atomic(page);
    379 	if (needs_clflush)
    380 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    381 				       page_length);
    382 	ret = __copy_to_user_inatomic(user_data,
    383 				      vaddr + shmem_page_offset,
    384 				      page_length);
    385 	kunmap_atomic(vaddr);
    386 
    387 	return ret ? -EFAULT : 0;
    388 #endif
    389 }
    390 
    391 static void
    392 shmem_clflush_swizzled_range(char *addr, unsigned long length,
    393 			     bool swizzled)
    394 {
    395 	if (unlikely(swizzled)) {
    396 		unsigned long start = (unsigned long) addr;
    397 		unsigned long end = (unsigned long) addr + length;
    398 
    399 		/* For swizzling simply ensure that we always flush both
    400 		 * channels. Lame, but simple and it works. Swizzled
    401 		 * pwrite/pread is far from a hotpath - current userspace
    402 		 * doesn't use it at all. */
    403 		start = round_down(start, 128);
    404 		end = round_up(end, 128);
    405 
    406 		drm_clflush_virt_range((void *)start, end - start);
    407 	} else {
    408 		drm_clflush_virt_range(addr, length);
    409 	}
    410 
    411 }
    412 
    413 /* Only difference to the fast-path function is that this can handle bit17
    414  * and uses non-atomic copy and kmap functions. */
    415 static int
    416 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
    417 		 char __user *user_data,
    418 		 bool page_do_bit17_swizzling, bool needs_clflush)
    419 {
    420 	char *vaddr;
    421 	int ret;
    422 
    423 	vaddr = kmap(page);
    424 	if (needs_clflush)
    425 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    426 					     page_length,
    427 					     page_do_bit17_swizzling);
    428 
    429 	if (page_do_bit17_swizzling)
    430 		ret = __copy_to_user_swizzled(user_data,
    431 					      vaddr, shmem_page_offset,
    432 					      page_length);
    433 	else
    434 		ret = __copy_to_user(user_data,
    435 				     vaddr + shmem_page_offset,
    436 				     page_length);
    437 	kunmap(page);
    438 
    439 	return ret ? - EFAULT : 0;
    440 }
    441 
    442 static int
    443 i915_gem_shmem_pread(struct drm_device *dev,
    444 		     struct drm_i915_gem_object *obj,
    445 		     struct drm_i915_gem_pread *args,
    446 		     struct drm_file *file)
    447 {
    448 	char __user *user_data;
    449 	ssize_t remain;
    450 	loff_t offset;
    451 	int shmem_page_offset, page_length, ret = 0;
    452 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    453 	int hit_slowpath = 0;
    454 #ifndef __NetBSD__		/* XXX */
    455 	int prefaulted = 0;
    456 #endif
    457 	int needs_clflush = 0;
    458 #ifndef __NetBSD__
    459 	struct scatterlist *sg;
    460 	int i;
    461 #endif
    462 
    463 	user_data = (char __user *) (uintptr_t) args->data_ptr;
    464 	remain = args->size;
    465 
    466 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    467 
    468 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
    469 		/* If we're not in the cpu read domain, set ourself into the gtt
    470 		 * read domain and manually flush cachelines (if required). This
    471 		 * optimizes for the case when the gpu will dirty the data
    472 		 * anyway again before the next pread happens. */
    473 		if (obj->cache_level == I915_CACHE_NONE)
    474 			needs_clflush = 1;
    475 		if (obj->gtt_space) {
    476 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
    477 			if (ret)
    478 				return ret;
    479 		}
    480 	}
    481 
    482 	ret = i915_gem_object_get_pages(obj);
    483 	if (ret)
    484 		return ret;
    485 
    486 	i915_gem_object_pin_pages(obj);
    487 
    488 	offset = args->offset;
    489 
    490 #ifdef __NetBSD__
    491 	/*
    492 	 * XXX This is a big #ifdef with a lot of duplicated code, but
    493 	 * factoring out the loop head -- which is all that
    494 	 * substantially differs -- is probably more trouble than it's
    495 	 * worth at the moment.
    496 	 */
    497 	while (0 < remain) {
    498 		/* Get the next page.  */
    499 		shmem_page_offset = offset_in_page(offset);
    500 		KASSERT(shmem_page_offset < PAGE_SIZE);
    501 		page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
    502 		struct page *const page = i915_gem_object_get_page(obj,
    503 		    atop(offset));
    504 
    505 		/* Decide whether to swizzle bit 17.  */
    506 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    507 		    (page_to_phys(page) & (1 << 17)) != 0;
    508 
    509 		/* Try the fast path.  */
    510 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    511 		    user_data, page_do_bit17_swizzling, needs_clflush);
    512 		if (ret == 0)
    513 			goto next_page;
    514 
    515 		/* Fast path failed.  Try the slow path.  */
    516 		hit_slowpath = 1;
    517 		mutex_unlock(&dev->struct_mutex);
    518 		/* XXX prefault */
    519 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    520 		    user_data, page_do_bit17_swizzling, needs_clflush);
    521 		mutex_lock(&dev->struct_mutex);
    522 
    523 next_page:
    524 		/* XXX mark page accessed */
    525 		if (ret)
    526 			goto out;
    527 
    528 		KASSERT(page_length <= remain);
    529 		remain -= page_length;
    530 		user_data += page_length;
    531 		offset += page_length;
    532 	}
    533 #else
    534 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
    535 		struct page *page;
    536 
    537 		if (i < offset >> PAGE_SHIFT)
    538 			continue;
    539 
    540 		if (remain <= 0)
    541 			break;
    542 
    543 		/* Operation in this page
    544 		 *
    545 		 * shmem_page_offset = offset within page in shmem file
    546 		 * page_length = bytes to copy for this page
    547 		 */
    548 		shmem_page_offset = offset_in_page(offset);
    549 		page_length = remain;
    550 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    551 			page_length = PAGE_SIZE - shmem_page_offset;
    552 
    553 		page = sg_page(sg);
    554 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    555 			(page_to_phys(page) & (1 << 17)) != 0;
    556 
    557 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    558 				       user_data, page_do_bit17_swizzling,
    559 				       needs_clflush);
    560 		if (ret == 0)
    561 			goto next_page;
    562 
    563 		hit_slowpath = 1;
    564 		mutex_unlock(&dev->struct_mutex);
    565 
    566 		if (!prefaulted) {
    567 			ret = fault_in_multipages_writeable(user_data, remain);
    568 			/* Userspace is tricking us, but we've already clobbered
    569 			 * its pages with the prefault and promised to write the
    570 			 * data up to the first fault. Hence ignore any errors
    571 			 * and just continue. */
    572 			(void)ret;
    573 			prefaulted = 1;
    574 		}
    575 
    576 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    577 				       user_data, page_do_bit17_swizzling,
    578 				       needs_clflush);
    579 
    580 		mutex_lock(&dev->struct_mutex);
    581 
    582 next_page:
    583 		mark_page_accessed(page);
    584 
    585 		if (ret)
    586 			goto out;
    587 
    588 		remain -= page_length;
    589 		user_data += page_length;
    590 		offset += page_length;
    591 	}
    592 #endif
    593 
    594 out:
    595 	i915_gem_object_unpin_pages(obj);
    596 
    597 	if (hit_slowpath) {
    598 		/* Fixup: Kill any reinstated backing storage pages */
    599 		if (obj->madv == __I915_MADV_PURGED)
    600 			i915_gem_object_truncate(obj);
    601 	}
    602 
    603 	return ret;
    604 }
    605 
    606 /**
    607  * Reads data from the object referenced by handle.
    608  *
    609  * On error, the contents of *data are undefined.
    610  */
    611 int
    612 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    613 		     struct drm_file *file)
    614 {
    615 	struct drm_i915_gem_pread *args = data;
    616 	struct drm_i915_gem_object *obj;
    617 	int ret = 0;
    618 
    619 	if (args->size == 0)
    620 		return 0;
    621 
    622 	if (!access_ok(VERIFY_WRITE,
    623 		       (char __user *)(uintptr_t)args->data_ptr,
    624 		       args->size))
    625 		return -EFAULT;
    626 
    627 	ret = i915_mutex_lock_interruptible(dev);
    628 	if (ret)
    629 		return ret;
    630 
    631 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
    632 	if (&obj->base == NULL) {
    633 		ret = -ENOENT;
    634 		goto unlock;
    635 	}
    636 
    637 	/* Bounds check source.  */
    638 	if (args->offset > obj->base.size ||
    639 	    args->size > obj->base.size - args->offset) {
    640 		ret = -EINVAL;
    641 		goto out;
    642 	}
    643 
    644 #ifndef __NetBSD__		/* XXX drm prime */
    645 	/* prime objects have no backing filp to GEM pread/pwrite
    646 	 * pages from.
    647 	 */
    648 	if (!obj->base.filp) {
    649 		ret = -EINVAL;
    650 		goto out;
    651 	}
    652 #endif
    653 
    654 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    655 
    656 	ret = i915_gem_shmem_pread(dev, obj, args, file);
    657 
    658 out:
    659 	drm_gem_object_unreference(&obj->base);
    660 unlock:
    661 	mutex_unlock(&dev->struct_mutex);
    662 	return ret;
    663 }
    664 
    665 /* This is the fast write path which cannot handle
    666  * page faults in the source data
    667  */
    668 
    669 static inline int
    670 fast_user_write(struct io_mapping *mapping,
    671 		loff_t page_base, int page_offset,
    672 		char __user *user_data,
    673 		int length)
    674 {
    675 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    676 	return -EFAULT;
    677 #else
    678 	void __iomem *vaddr_atomic;
    679 	void *vaddr;
    680 	unsigned long unwritten;
    681 
    682 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
    683 	/* We can use the cpu mem copy function because this is X86. */
    684 	vaddr = (void __force*)vaddr_atomic + page_offset;
    685 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
    686 						      user_data, length);
    687 	io_mapping_unmap_atomic(vaddr_atomic);
    688 	return unwritten;
    689 #endif
    690 }
    691 
    692 /**
    693  * This is the fast pwrite path, where we copy the data directly from the
    694  * user into the GTT, uncached.
    695  */
    696 static int
    697 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
    698 			 struct drm_i915_gem_object *obj,
    699 			 struct drm_i915_gem_pwrite *args,
    700 			 struct drm_file *file)
    701 {
    702 	drm_i915_private_t *dev_priv = dev->dev_private;
    703 	ssize_t remain;
    704 	loff_t offset, page_base;
    705 	char __user *user_data;
    706 	int page_offset, page_length, ret;
    707 
    708 	ret = i915_gem_object_pin(obj, 0, true, true);
    709 	if (ret)
    710 		goto out;
    711 
    712 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    713 	if (ret)
    714 		goto out_unpin;
    715 
    716 	ret = i915_gem_object_put_fence(obj);
    717 	if (ret)
    718 		goto out_unpin;
    719 
    720 	user_data = (char __user *) (uintptr_t) args->data_ptr;
    721 	remain = args->size;
    722 
    723 	offset = obj->gtt_offset + args->offset;
    724 
    725 	while (remain > 0) {
    726 		/* Operation in this page
    727 		 *
    728 		 * page_base = page offset within aperture
    729 		 * page_offset = offset within page
    730 		 * page_length = bytes to copy for this page
    731 		 */
    732 		page_base = offset & PAGE_MASK;
    733 		page_offset = offset_in_page(offset);
    734 		page_length = remain;
    735 		if ((page_offset + remain) > PAGE_SIZE)
    736 			page_length = PAGE_SIZE - page_offset;
    737 
    738 		/* If we get a fault while copying data, then (presumably) our
    739 		 * source page isn't available.  Return the error and we'll
    740 		 * retry in the slow path.
    741 		 */
    742 		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
    743 				    page_offset, user_data, page_length)) {
    744 			ret = -EFAULT;
    745 			goto out_unpin;
    746 		}
    747 
    748 		remain -= page_length;
    749 		user_data += page_length;
    750 		offset += page_length;
    751 	}
    752 
    753 out_unpin:
    754 	i915_gem_object_unpin(obj);
    755 out:
    756 	return ret;
    757 }
    758 
    759 /* Per-page copy function for the shmem pwrite fastpath.
    760  * Flushes invalid cachelines before writing to the target if
    761  * needs_clflush_before is set and flushes out any written cachelines after
    762  * writing if needs_clflush is set. */
    763 static int
    764 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
    765 		  char __user *user_data,
    766 		  bool page_do_bit17_swizzling,
    767 		  bool needs_clflush_before,
    768 		  bool needs_clflush_after)
    769 {
    770 #ifdef __NetBSD__
    771 	return -EFAULT;
    772 #else
    773 	char *vaddr;
    774 	int ret;
    775 
    776 	if (unlikely(page_do_bit17_swizzling))
    777 		return -EINVAL;
    778 
    779 	vaddr = kmap_atomic(page);
    780 	if (needs_clflush_before)
    781 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    782 				       page_length);
    783 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
    784 						user_data,
    785 						page_length);
    786 	if (needs_clflush_after)
    787 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    788 				       page_length);
    789 	kunmap_atomic(vaddr);
    790 
    791 	return ret ? -EFAULT : 0;
    792 #endif
    793 }
    794 
    795 /* Only difference to the fast-path function is that this can handle bit17
    796  * and uses non-atomic copy and kmap functions. */
    797 static int
    798 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
    799 		  char __user *user_data,
    800 		  bool page_do_bit17_swizzling,
    801 		  bool needs_clflush_before,
    802 		  bool needs_clflush_after)
    803 {
    804 	char *vaddr;
    805 	int ret;
    806 
    807 	vaddr = kmap(page);
    808 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
    809 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    810 					     page_length,
    811 					     page_do_bit17_swizzling);
    812 	if (page_do_bit17_swizzling)
    813 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
    814 						user_data,
    815 						page_length);
    816 	else
    817 		ret = __copy_from_user(vaddr + shmem_page_offset,
    818 				       user_data,
    819 				       page_length);
    820 	if (needs_clflush_after)
    821 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    822 					     page_length,
    823 					     page_do_bit17_swizzling);
    824 	kunmap(page);
    825 
    826 	return ret ? -EFAULT : 0;
    827 }
    828 
    829 static int
    830 i915_gem_shmem_pwrite(struct drm_device *dev,
    831 		      struct drm_i915_gem_object *obj,
    832 		      struct drm_i915_gem_pwrite *args,
    833 		      struct drm_file *file)
    834 {
    835 	ssize_t remain;
    836 	loff_t offset;
    837 	char __user *user_data;
    838 	int shmem_page_offset, page_length, ret = 0;
    839 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    840 	int hit_slowpath = 0;
    841 	int needs_clflush_after = 0;
    842 	int needs_clflush_before = 0;
    843 #ifndef __NetBSD__
    844 	int i;
    845 	struct scatterlist *sg;
    846 #endif
    847 
    848 	user_data = (char __user *) (uintptr_t) args->data_ptr;
    849 	remain = args->size;
    850 
    851 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    852 
    853 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
    854 		/* If we're not in the cpu write domain, set ourself into the gtt
    855 		 * write domain and manually flush cachelines (if required). This
    856 		 * optimizes for the case when the gpu will use the data
    857 		 * right away and we therefore have to clflush anyway. */
    858 		if (obj->cache_level == I915_CACHE_NONE)
    859 			needs_clflush_after = 1;
    860 		if (obj->gtt_space) {
    861 			ret = i915_gem_object_set_to_gtt_domain(obj, true);
    862 			if (ret)
    863 				return ret;
    864 		}
    865 	}
    866 	/* Same trick applies for invalidate partially written cachelines before
    867 	 * writing.  */
    868 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
    869 	    && obj->cache_level == I915_CACHE_NONE)
    870 		needs_clflush_before = 1;
    871 
    872 	ret = i915_gem_object_get_pages(obj);
    873 	if (ret)
    874 		return ret;
    875 
    876 	i915_gem_object_pin_pages(obj);
    877 
    878 	offset = args->offset;
    879 	obj->dirty = 1;
    880 
    881 #ifdef __NetBSD__
    882 	while (0 < remain) {
    883 		/* Get the next page.  */
    884 		shmem_page_offset = offset_in_page(offset);
    885 		KASSERT(shmem_page_offset < PAGE_SIZE);
    886 		page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
    887 		struct page *const page = i915_gem_object_get_page(obj,
    888 		    atop(offset));
    889 
    890 		/* Decide whether to flush the cache or swizzle bit 17.  */
    891 		const bool partial_cacheline_write = needs_clflush_before &&
    892 		    ((shmem_page_offset | page_length)
    893 			& (cpu_info_primary.ci_cflush_lsize - 1));
    894 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    895 		    (page_to_phys(page) & (1 << 17)) != 0;
    896 
    897 		/* Try the fast path.  */
    898 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
    899 		    user_data, page_do_bit17_swizzling,
    900 		    partial_cacheline_write, needs_clflush_after);
    901 		if (ret == 0)
    902 			goto next_page;
    903 
    904 		/* Fast path failed.  Try the slow path.  */
    905 		hit_slowpath = 1;
    906 		mutex_unlock(&dev->struct_mutex);
    907 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
    908 		    user_data, page_do_bit17_swizzling,
    909 		    partial_cacheline_write, needs_clflush_after);
    910 		mutex_lock(&dev->struct_mutex);
    911 
    912 next_page:
    913 		page->p_vmp.flags &= ~PG_CLEAN;
    914 		/* XXX mark page accessed */
    915 		if (ret)
    916 			goto out;
    917 
    918 		KASSERT(page_length <= remain);
    919 		remain -= page_length;
    920 		user_data += page_length;
    921 		offset += page_length;
    922 	}
    923 #else
    924 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
    925 		struct page *page;
    926 		int partial_cacheline_write;
    927 
    928 		if (i < offset >> PAGE_SHIFT)
    929 			continue;
    930 
    931 		if (remain <= 0)
    932 			break;
    933 
    934 		/* Operation in this page
    935 		 *
    936 		 * shmem_page_offset = offset within page in shmem file
    937 		 * page_length = bytes to copy for this page
    938 		 */
    939 		shmem_page_offset = offset_in_page(offset);
    940 
    941 		page_length = remain;
    942 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    943 			page_length = PAGE_SIZE - shmem_page_offset;
    944 
    945 		/* If we don't overwrite a cacheline completely we need to be
    946 		 * careful to have up-to-date data by first clflushing. Don't
    947 		 * overcomplicate things and flush the entire patch. */
    948 		partial_cacheline_write = needs_clflush_before &&
    949 			((shmem_page_offset | page_length)
    950 				& (boot_cpu_data.x86_clflush_size - 1));
    951 
    952 		page = sg_page(sg);
    953 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    954 			(page_to_phys(page) & (1 << 17)) != 0;
    955 
    956 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
    957 					user_data, page_do_bit17_swizzling,
    958 					partial_cacheline_write,
    959 					needs_clflush_after);
    960 		if (ret == 0)
    961 			goto next_page;
    962 
    963 		hit_slowpath = 1;
    964 		mutex_unlock(&dev->struct_mutex);
    965 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
    966 					user_data, page_do_bit17_swizzling,
    967 					partial_cacheline_write,
    968 					needs_clflush_after);
    969 
    970 		mutex_lock(&dev->struct_mutex);
    971 
    972 next_page:
    973 		set_page_dirty(page);
    974 		mark_page_accessed(page);
    975 
    976 		if (ret)
    977 			goto out;
    978 
    979 		remain -= page_length;
    980 		user_data += page_length;
    981 		offset += page_length;
    982 	}
    983 #endif
    984 
    985 out:
    986 	i915_gem_object_unpin_pages(obj);
    987 
    988 	if (hit_slowpath) {
    989 		/* Fixup: Kill any reinstated backing storage pages */
    990 		if (obj->madv == __I915_MADV_PURGED)
    991 			i915_gem_object_truncate(obj);
    992 		/* and flush dirty cachelines in case the object isn't in the cpu write
    993 		 * domain anymore. */
    994 		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
    995 			i915_gem_clflush_object(obj);
    996 			i915_gem_chipset_flush(dev);
    997 		}
    998 	}
    999 
   1000 	if (needs_clflush_after)
   1001 		i915_gem_chipset_flush(dev);
   1002 
   1003 	return ret;
   1004 }
   1005 
   1006 /**
   1007  * Writes data to the object referenced by handle.
   1008  *
   1009  * On error, the contents of the buffer that were to be modified are undefined.
   1010  */
   1011 int
   1012 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
   1013 		      struct drm_file *file)
   1014 {
   1015 	struct drm_i915_gem_pwrite *args = data;
   1016 	struct drm_i915_gem_object *obj;
   1017 	int ret;
   1018 
   1019 	if (args->size == 0)
   1020 		return 0;
   1021 
   1022 	if (!access_ok(VERIFY_READ,
   1023 		       (char __user *)(uintptr_t)args->data_ptr,
   1024 		       args->size))
   1025 		return -EFAULT;
   1026 
   1027 #ifndef __NetBSD__		/* XXX prefault */
   1028 	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
   1029 					   args->size);
   1030 	if (ret)
   1031 		return -EFAULT;
   1032 #endif
   1033 
   1034 	ret = i915_mutex_lock_interruptible(dev);
   1035 	if (ret)
   1036 		return ret;
   1037 
   1038 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   1039 	if (&obj->base == NULL) {
   1040 		ret = -ENOENT;
   1041 		goto unlock;
   1042 	}
   1043 
   1044 	/* Bounds check destination. */
   1045 	if (args->offset > obj->base.size ||
   1046 	    args->size > obj->base.size - args->offset) {
   1047 		ret = -EINVAL;
   1048 		goto out;
   1049 	}
   1050 
   1051 #ifndef __NetBSD__		/* XXX drm prime */
   1052 	/* prime objects have no backing filp to GEM pread/pwrite
   1053 	 * pages from.
   1054 	 */
   1055 	if (!obj->base.filp) {
   1056 		ret = -EINVAL;
   1057 		goto out;
   1058 	}
   1059 #endif
   1060 
   1061 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
   1062 
   1063 	ret = -EFAULT;
   1064 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
   1065 	 * it would end up going through the fenced access, and we'll get
   1066 	 * different detiling behavior between reading and writing.
   1067 	 * pread/pwrite currently are reading and writing from the CPU
   1068 	 * perspective, requiring manual detiling by the client.
   1069 	 */
   1070 	if (obj->phys_obj) {
   1071 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
   1072 		goto out;
   1073 	}
   1074 
   1075 	if (obj->cache_level == I915_CACHE_NONE &&
   1076 	    obj->tiling_mode == I915_TILING_NONE &&
   1077 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1078 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
   1079 		/* Note that the gtt paths might fail with non-page-backed user
   1080 		 * pointers (e.g. gtt mappings when moving data between
   1081 		 * textures). Fallback to the shmem path in that case. */
   1082 	}
   1083 
   1084 	if (ret == -EFAULT || ret == -ENOSPC)
   1085 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
   1086 
   1087 out:
   1088 	drm_gem_object_unreference(&obj->base);
   1089 unlock:
   1090 	mutex_unlock(&dev->struct_mutex);
   1091 	return ret;
   1092 }
   1093 
   1094 int
   1095 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
   1096 		     bool interruptible)
   1097 {
   1098 	if (atomic_read(&dev_priv->mm.wedged)) {
   1099 		struct completion *x = &dev_priv->error_completion;
   1100 		bool recovery_complete;
   1101 #ifndef __NetBSD__
   1102 		unsigned long flags;
   1103 #endif
   1104 
   1105 #ifdef __NetBSD__
   1106 		/*
   1107 		 * XXX This is a horrible kludge.  Reading internal
   1108 		 * fields is no good, nor is reading them unlocked, and
   1109 		 * neither is locking it and then unlocking it before
   1110 		 * making a decision.
   1111 		 */
   1112 		recovery_complete = x->c_done > 0;
   1113 #else
   1114 		/* Give the error handler a chance to run. */
   1115 		spin_lock_irqsave(&x->wait.lock, flags);
   1116 		recovery_complete = x->done > 0;
   1117 		spin_unlock_irqrestore(&x->wait.lock, flags);
   1118 #endif
   1119 
   1120 		/* Non-interruptible callers can't handle -EAGAIN, hence return
   1121 		 * -EIO unconditionally for these. */
   1122 		if (!interruptible)
   1123 			return -EIO;
   1124 
   1125 		/* Recovery complete, but still wedged means reset failure. */
   1126 		if (recovery_complete)
   1127 			return -EIO;
   1128 
   1129 		return -EAGAIN;
   1130 	}
   1131 
   1132 	return 0;
   1133 }
   1134 
   1135 /*
   1136  * Compare seqno against outstanding lazy request. Emit a request if they are
   1137  * equal.
   1138  */
   1139 static int
   1140 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
   1141 {
   1142 	int ret;
   1143 
   1144 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
   1145 
   1146 	ret = 0;
   1147 	if (seqno == ring->outstanding_lazy_request)
   1148 		ret = i915_add_request(ring, NULL, NULL);
   1149 
   1150 	return ret;
   1151 }
   1152 
   1153 /**
   1154  * __wait_seqno - wait until execution of seqno has finished
   1155  * @ring: the ring expected to report seqno
   1156  * @seqno: duh!
   1157  * @interruptible: do an interruptible wait (normally yes)
   1158  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
   1159  *
   1160  * Returns 0 if the seqno was found within the alloted time. Else returns the
   1161  * errno with remaining time filled in timeout argument.
   1162  */
   1163 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
   1164 			bool interruptible, struct timespec *timeout)
   1165 {
   1166 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
   1167 	struct timespec before, now, wait_time={1,0};
   1168 	unsigned long timeout_jiffies;
   1169 	long end;
   1170 	bool wait_forever = true;
   1171 	int ret;
   1172 
   1173 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
   1174 		return 0;
   1175 
   1176 	trace_i915_gem_request_wait_begin(ring, seqno);
   1177 
   1178 	if (timeout != NULL) {
   1179 		wait_time = *timeout;
   1180 		wait_forever = false;
   1181 	}
   1182 
   1183 	timeout_jiffies = timespec_to_jiffies(&wait_time);
   1184 
   1185 	if (WARN_ON(!ring->irq_get(ring)))
   1186 		return -ENODEV;
   1187 
   1188 	/* Record current time in case interrupted by signal, or wedged * */
   1189 	getrawmonotonic(&before);
   1190 
   1191 #define EXIT_COND \
   1192 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
   1193 	atomic_read(&dev_priv->mm.wedged))
   1194 	do {
   1195 #ifdef __NetBSD__
   1196 		unsigned long flags;
   1197 		spin_lock_irqsave(&dev_priv->irq_lock, flags);
   1198 		if (interruptible)
   1199 			DRM_SPIN_TIMED_WAIT_UNTIL(end, &ring->irq_queue,
   1200 			    &dev_priv->irq_lock,
   1201 			    timeout_jiffies,
   1202 			    EXIT_COND);
   1203 		else
   1204 			DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(end, &ring->irq_queue,
   1205 			    &dev_priv->irq_lock,
   1206 			    timeout_jiffies,
   1207 			    EXIT_COND);
   1208 		spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
   1209 #else
   1210 		if (interruptible)
   1211 			end = wait_event_interruptible_timeout(ring->irq_queue,
   1212 							       EXIT_COND,
   1213 							       timeout_jiffies);
   1214 		else
   1215 			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
   1216 						 timeout_jiffies);
   1217 
   1218 #endif
   1219 		ret = i915_gem_check_wedge(dev_priv, interruptible);
   1220 		if (ret)
   1221 			end = ret;
   1222 	} while (end == 0 && wait_forever);
   1223 
   1224 	getrawmonotonic(&now);
   1225 
   1226 	ring->irq_put(ring);
   1227 	trace_i915_gem_request_wait_end(ring, seqno);
   1228 #undef EXIT_COND
   1229 
   1230 	if (timeout) {
   1231 		struct timespec sleep_time = timespec_sub(now, before);
   1232 		*timeout = timespec_sub(*timeout, sleep_time);
   1233 	}
   1234 
   1235 	switch (end) {
   1236 	case -EIO:
   1237 	case -EAGAIN: /* Wedged */
   1238 	case -ERESTARTSYS: /* Signal */
   1239 	case -EINTR:
   1240 		return (int)end;
   1241 	case 0: /* Timeout */
   1242 		if (timeout)
   1243 			set_normalized_timespec(timeout, 0, 0);
   1244 		return -ETIME;
   1245 	default: /* Completed */
   1246 		WARN_ON(end < 0); /* We're not aware of other errors */
   1247 		return 0;
   1248 	}
   1249 }
   1250 
   1251 /**
   1252  * Waits for a sequence number to be signaled, and cleans up the
   1253  * request and object lists appropriately for that event.
   1254  */
   1255 int
   1256 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
   1257 {
   1258 	struct drm_device *dev = ring->dev;
   1259 	struct drm_i915_private *dev_priv = dev->dev_private;
   1260 	bool interruptible = dev_priv->mm.interruptible;
   1261 	int ret;
   1262 
   1263 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1264 	BUG_ON(seqno == 0);
   1265 
   1266 	ret = i915_gem_check_wedge(dev_priv, interruptible);
   1267 	if (ret)
   1268 		return ret;
   1269 
   1270 	ret = i915_gem_check_olr(ring, seqno);
   1271 	if (ret)
   1272 		return ret;
   1273 
   1274 	return __wait_seqno(ring, seqno, interruptible, NULL);
   1275 }
   1276 
   1277 /**
   1278  * Ensures that all rendering to the object has completed and the object is
   1279  * safe to unbind from the GTT or access from the CPU.
   1280  */
   1281 static __must_check int
   1282 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
   1283 			       bool readonly)
   1284 {
   1285 	struct intel_ring_buffer *ring = obj->ring;
   1286 	u32 seqno;
   1287 	int ret;
   1288 
   1289 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
   1290 	if (seqno == 0)
   1291 		return 0;
   1292 
   1293 	ret = i915_wait_seqno(ring, seqno);
   1294 	if (ret)
   1295 		return ret;
   1296 
   1297 	i915_gem_retire_requests_ring(ring);
   1298 
   1299 	/* Manually manage the write flush as we may have not yet
   1300 	 * retired the buffer.
   1301 	 */
   1302 	if (obj->last_write_seqno &&
   1303 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
   1304 		obj->last_write_seqno = 0;
   1305 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
   1306 	}
   1307 
   1308 	return 0;
   1309 }
   1310 
   1311 /* A nonblocking variant of the above wait. This is a highly dangerous routine
   1312  * as the object state may change during this call.
   1313  */
   1314 static __must_check int
   1315 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
   1316 					    bool readonly)
   1317 {
   1318 	struct drm_device *dev = obj->base.dev;
   1319 	struct drm_i915_private *dev_priv = dev->dev_private;
   1320 	struct intel_ring_buffer *ring = obj->ring;
   1321 	u32 seqno;
   1322 	int ret;
   1323 
   1324 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1325 	BUG_ON(!dev_priv->mm.interruptible);
   1326 
   1327 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
   1328 	if (seqno == 0)
   1329 		return 0;
   1330 
   1331 	ret = i915_gem_check_wedge(dev_priv, true);
   1332 	if (ret)
   1333 		return ret;
   1334 
   1335 	ret = i915_gem_check_olr(ring, seqno);
   1336 	if (ret)
   1337 		return ret;
   1338 
   1339 	mutex_unlock(&dev->struct_mutex);
   1340 	ret = __wait_seqno(ring, seqno, true, NULL);
   1341 	mutex_lock(&dev->struct_mutex);
   1342 
   1343 	i915_gem_retire_requests_ring(ring);
   1344 
   1345 	/* Manually manage the write flush as we may have not yet
   1346 	 * retired the buffer.
   1347 	 */
   1348 	if (obj->last_write_seqno &&
   1349 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
   1350 		obj->last_write_seqno = 0;
   1351 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
   1352 	}
   1353 
   1354 	return ret;
   1355 }
   1356 
   1357 /**
   1358  * Called when user space prepares to use an object with the CPU, either
   1359  * through the mmap ioctl's mapping or a GTT mapping.
   1360  */
   1361 int
   1362 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
   1363 			  struct drm_file *file)
   1364 {
   1365 	struct drm_i915_gem_set_domain *args = data;
   1366 	struct drm_i915_gem_object *obj;
   1367 	uint32_t read_domains = args->read_domains;
   1368 	uint32_t write_domain = args->write_domain;
   1369 	int ret;
   1370 
   1371 	/* Only handle setting domains to types used by the CPU. */
   1372 	if (write_domain & I915_GEM_GPU_DOMAINS)
   1373 		return -EINVAL;
   1374 
   1375 	if (read_domains & I915_GEM_GPU_DOMAINS)
   1376 		return -EINVAL;
   1377 
   1378 	/* Having something in the write domain implies it's in the read
   1379 	 * domain, and only that read domain.  Enforce that in the request.
   1380 	 */
   1381 	if (write_domain != 0 && read_domains != write_domain)
   1382 		return -EINVAL;
   1383 
   1384 	ret = i915_mutex_lock_interruptible(dev);
   1385 	if (ret)
   1386 		return ret;
   1387 
   1388 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   1389 	if (&obj->base == NULL) {
   1390 		ret = -ENOENT;
   1391 		goto unlock;
   1392 	}
   1393 
   1394 	/* Try to flush the object off the GPU without holding the lock.
   1395 	 * We will repeat the flush holding the lock in the normal manner
   1396 	 * to catch cases where we are gazumped.
   1397 	 */
   1398 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
   1399 	if (ret)
   1400 		goto unref;
   1401 
   1402 	if (read_domains & I915_GEM_DOMAIN_GTT) {
   1403 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
   1404 
   1405 		/* Silently promote "you're not bound, there was nothing to do"
   1406 		 * to success, since the client was just asking us to
   1407 		 * make sure everything was done.
   1408 		 */
   1409 		if (ret == -EINVAL)
   1410 			ret = 0;
   1411 	} else {
   1412 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
   1413 	}
   1414 
   1415 unref:
   1416 	drm_gem_object_unreference(&obj->base);
   1417 unlock:
   1418 	mutex_unlock(&dev->struct_mutex);
   1419 	return ret;
   1420 }
   1421 
   1422 /**
   1423  * Called when user space has done writes to this buffer
   1424  */
   1425 int
   1426 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
   1427 			 struct drm_file *file)
   1428 {
   1429 	struct drm_i915_gem_sw_finish *args = data;
   1430 	struct drm_i915_gem_object *obj;
   1431 	int ret = 0;
   1432 
   1433 	ret = i915_mutex_lock_interruptible(dev);
   1434 	if (ret)
   1435 		return ret;
   1436 
   1437 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   1438 	if (&obj->base == NULL) {
   1439 		ret = -ENOENT;
   1440 		goto unlock;
   1441 	}
   1442 
   1443 	/* Pinned buffers may be scanout, so flush the cache */
   1444 	if (obj->pin_count)
   1445 		i915_gem_object_flush_cpu_write_domain(obj);
   1446 
   1447 	drm_gem_object_unreference(&obj->base);
   1448 unlock:
   1449 	mutex_unlock(&dev->struct_mutex);
   1450 	return ret;
   1451 }
   1452 
   1453 /**
   1454  * Maps the contents of an object, returning the address it is mapped
   1455  * into.
   1456  *
   1457  * While the mapping holds a reference on the contents of the object, it doesn't
   1458  * imply a ref on the object itself.
   1459  */
   1460 int
   1461 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
   1462 		    struct drm_file *file)
   1463 {
   1464 	struct drm_i915_gem_mmap *args = data;
   1465 	struct drm_gem_object *obj;
   1466 	unsigned long addr;
   1467 #ifdef __NetBSD__
   1468 	int ret;
   1469 #endif
   1470 
   1471 	obj = drm_gem_object_lookup(dev, file, args->handle);
   1472 	if (obj == NULL)
   1473 		return -ENOENT;
   1474 
   1475 #ifndef __NetBSD__    /* XXX drm prime */
   1476 	/* prime objects have no backing filp to GEM mmap
   1477 	 * pages from.
   1478 	 */
   1479 	if (!obj->filp) {
   1480 		drm_gem_object_unreference_unlocked(obj);
   1481 		return -EINVAL;
   1482 	}
   1483 #endif
   1484 
   1485 #ifdef __NetBSD__
   1486 	addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
   1487 	    (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
   1488 	/* XXX errno NetBSD->Linux */
   1489 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
   1490 	    obj->gemo_shm_uao, args->offset, 0,
   1491 	    UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
   1492 		(VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
   1493 		0));
   1494 	if (ret) {
   1495 		drm_gem_object_unreference_unlocked(obj);
   1496 		return ret;
   1497 	}
   1498 	uao_reference(obj->gemo_shm_uao);
   1499 	drm_gem_object_unreference_unlocked(obj);
   1500 #else
   1501 	addr = vm_mmap(obj->filp, 0, args->size,
   1502 		       PROT_READ | PROT_WRITE, MAP_SHARED,
   1503 		       args->offset);
   1504 	drm_gem_object_unreference_unlocked(obj);
   1505 	if (IS_ERR((void *)addr))
   1506 		return addr;
   1507 #endif
   1508 
   1509 	args->addr_ptr = (uint64_t) addr;
   1510 
   1511 	return 0;
   1512 }
   1513 
   1514 #ifdef __NetBSD__		/* XXX gem gtt fault */
   1515 static int	i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
   1516 		    struct vm_page **, int, int, vm_prot_t, int, paddr_t);
   1517 
   1518 int
   1519 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   1520     int npages, int centeridx, vm_prot_t access_type, int flags)
   1521 {
   1522 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1523 	struct drm_gem_object *gem_obj =
   1524 	    container_of(uobj, struct drm_gem_object, gemo_uvmobj);
   1525 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   1526 	struct drm_device *dev = obj->base.dev;
   1527 	struct drm_i915_private *dev_priv = dev->dev_private;
   1528 	voff_t byte_offset;
   1529 	pgoff_t page_offset;
   1530 	int ret = 0;
   1531 	bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
   1532 
   1533 	byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
   1534 	KASSERT(byte_offset <= obj->base.size);
   1535 	page_offset = (byte_offset >> PAGE_SHIFT);
   1536 
   1537 	ret = i915_mutex_lock_interruptible(dev);
   1538 	if (ret)
   1539 		goto out;
   1540 
   1541 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   1542 
   1543 	/* Now bind it into the GTT if needed */
   1544 	ret = i915_gem_object_pin(obj, 0, true, false);
   1545 	if (ret)
   1546 		goto unlock;
   1547 
   1548 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   1549 	if (ret)
   1550 		goto unpin;
   1551 
   1552 	ret = i915_gem_object_get_fence(obj);
   1553 	if (ret)
   1554 		goto unpin;
   1555 
   1556 	obj->fault_mappable = true;
   1557 
   1558 	/* Finally, remap it using the new GTT offset */
   1559 	/* XXX errno NetBSD->Linux */
   1560 	ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
   1561 	    flags, (dev_priv->mm.gtt_base_addr + obj->gtt_offset));
   1562 unpin:
   1563 	i915_gem_object_unpin(obj);
   1564 unlock:
   1565 	mutex_unlock(&dev->struct_mutex);
   1566 out:
   1567 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
   1568 	if (ret == -ERESTART)
   1569 		uvm_wait("i915flt");
   1570 	return ret;
   1571 }
   1572 
   1573 /*
   1574  * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
   1575  *
   1576  * XXX pmap_enter_default instead of pmap_enter because of a problem
   1577  * with using weak aliases in kernel modules or something.
   1578  */
   1579 int	pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
   1580 
   1581 static int
   1582 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   1583     int npages, int centeridx, vm_prot_t access_type, int flags,
   1584     paddr_t gtt_paddr)
   1585 {
   1586 	struct vm_map_entry *entry = ufi->entry;
   1587 	vaddr_t curr_va;
   1588 	off_t curr_offset;
   1589 	paddr_t paddr;
   1590 	u_int mmapflags;
   1591 	int lcv, retval;
   1592 	vm_prot_t mapprot;
   1593 	UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
   1594 	UVMHIST_LOG(maphist,"  flags=%d", flags,0,0,0);
   1595 
   1596 	/*
   1597 	 * we do not allow device mappings to be mapped copy-on-write
   1598 	 * so we kill any attempt to do so here.
   1599 	 */
   1600 
   1601 	if (UVM_ET_ISCOPYONWRITE(entry)) {
   1602 		UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
   1603 		entry->etype, 0,0,0);
   1604 		return(EIO);
   1605 	}
   1606 
   1607 	/*
   1608 	 * now we must determine the offset in udv to use and the VA to
   1609 	 * use for pmap_enter.  note that we always use orig_map's pmap
   1610 	 * for pmap_enter (even if we have a submap).   since virtual
   1611 	 * addresses in a submap must match the main map, this is ok.
   1612 	 */
   1613 
   1614 	/* udv offset = (offset from start of entry) + entry's offset */
   1615 	curr_offset = entry->offset + (vaddr - entry->start);
   1616 	/* pmap va = vaddr (virtual address of pps[0]) */
   1617 	curr_va = vaddr;
   1618 
   1619 	/*
   1620 	 * loop over the page range entering in as needed
   1621 	 */
   1622 
   1623 	retval = 0;
   1624 	for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
   1625 	    curr_va += PAGE_SIZE) {
   1626 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
   1627 			continue;
   1628 
   1629 		if (pps[lcv] == PGO_DONTCARE)
   1630 			continue;
   1631 
   1632 		paddr = (gtt_paddr + curr_offset);
   1633 		mmapflags = 0;
   1634 		mapprot = ufi->entry->protection;
   1635 		UVMHIST_LOG(maphist,
   1636 		    "  MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
   1637 		    ufi->orig_map->pmap, curr_va, paddr, mapprot);
   1638 		if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
   1639 		    PMAP_CANFAIL | mapprot | mmapflags) != 0) {
   1640 			/*
   1641 			 * pmap_enter() didn't have the resource to
   1642 			 * enter this mapping.  Unlock everything,
   1643 			 * wait for the pagedaemon to free up some
   1644 			 * pages, and then tell uvm_fault() to start
   1645 			 * the fault again.
   1646 			 *
   1647 			 * XXX Needs some rethinking for the PGO_ALLPAGES
   1648 			 * XXX case.
   1649 			 */
   1650 			pmap_update(ufi->orig_map->pmap);	/* sync what we have so far */
   1651 			return (ERESTART);
   1652 		}
   1653 	}
   1654 
   1655 	pmap_update(ufi->orig_map->pmap);
   1656 	return (retval);
   1657 }
   1658 #else
   1659 /**
   1660  * i915_gem_fault - fault a page into the GTT
   1661  * vma: VMA in question
   1662  * vmf: fault info
   1663  *
   1664  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
   1665  * from userspace.  The fault handler takes care of binding the object to
   1666  * the GTT (if needed), allocating and programming a fence register (again,
   1667  * only if needed based on whether the old reg is still valid or the object
   1668  * is tiled) and inserting a new PTE into the faulting process.
   1669  *
   1670  * Note that the faulting process may involve evicting existing objects
   1671  * from the GTT and/or fence registers to make room.  So performance may
   1672  * suffer if the GTT working set is large or there are few fence registers
   1673  * left.
   1674  */
   1675 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
   1676 {
   1677 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
   1678 	struct drm_device *dev = obj->base.dev;
   1679 	drm_i915_private_t *dev_priv = dev->dev_private;
   1680 	pgoff_t page_offset;
   1681 	unsigned long pfn;
   1682 	int ret = 0;
   1683 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
   1684 
   1685 	/* We don't use vmf->pgoff since that has the fake offset */
   1686 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
   1687 		PAGE_SHIFT;
   1688 
   1689 	ret = i915_mutex_lock_interruptible(dev);
   1690 	if (ret)
   1691 		goto out;
   1692 
   1693 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   1694 
   1695 	/* Now bind it into the GTT if needed */
   1696 	ret = i915_gem_object_pin(obj, 0, true, false);
   1697 	if (ret)
   1698 		goto unlock;
   1699 
   1700 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   1701 	if (ret)
   1702 		goto unpin;
   1703 
   1704 	ret = i915_gem_object_get_fence(obj);
   1705 	if (ret)
   1706 		goto unpin;
   1707 
   1708 	obj->fault_mappable = true;
   1709 
   1710 	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
   1711 		page_offset;
   1712 
   1713 	/* Finally, remap it using the new GTT offset */
   1714 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
   1715 unpin:
   1716 	i915_gem_object_unpin(obj);
   1717 unlock:
   1718 	mutex_unlock(&dev->struct_mutex);
   1719 out:
   1720 	switch (ret) {
   1721 	case -EIO:
   1722 		/* If this -EIO is due to a gpu hang, give the reset code a
   1723 		 * chance to clean up the mess. Otherwise return the proper
   1724 		 * SIGBUS. */
   1725 		if (!atomic_read(&dev_priv->mm.wedged))
   1726 			return VM_FAULT_SIGBUS;
   1727 	case -EAGAIN:
   1728 		/* Give the error handler a chance to run and move the
   1729 		 * objects off the GPU active list. Next time we service the
   1730 		 * fault, we should be able to transition the page into the
   1731 		 * GTT without touching the GPU (and so avoid further
   1732 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
   1733 		 * with coherency, just lost writes.
   1734 		 */
   1735 		set_need_resched();
   1736 	case 0:
   1737 	case -ERESTARTSYS:
   1738 	case -EINTR:
   1739 	case -EBUSY:
   1740 		/*
   1741 		 * EBUSY is ok: this just means that another thread
   1742 		 * already did the job.
   1743 		 */
   1744 		return VM_FAULT_NOPAGE;
   1745 	case -ENOMEM:
   1746 		return VM_FAULT_OOM;
   1747 	case -ENOSPC:
   1748 		return VM_FAULT_SIGBUS;
   1749 	default:
   1750 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
   1751 		return VM_FAULT_SIGBUS;
   1752 	}
   1753 }
   1754 #endif
   1755 
   1756 /**
   1757  * i915_gem_release_mmap - remove physical page mappings
   1758  * @obj: obj in question
   1759  *
   1760  * Preserve the reservation of the mmapping with the DRM core code, but
   1761  * relinquish ownership of the pages back to the system.
   1762  *
   1763  * It is vital that we remove the page mapping if we have mapped a tiled
   1764  * object through the GTT and then lose the fence register due to
   1765  * resource pressure. Similarly if the object has been moved out of the
   1766  * aperture, than pages mapped into userspace must be revoked. Removing the
   1767  * mapping will then trigger a page fault on the next user access, allowing
   1768  * fixup by i915_gem_fault().
   1769  */
   1770 void
   1771 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
   1772 {
   1773 	if (!obj->fault_mappable)
   1774 		return;
   1775 
   1776 #ifdef __NetBSD__		/* XXX gem gtt fault */
   1777 	{
   1778 		struct vm_page *page;
   1779 
   1780 		mutex_enter(obj->base.gemo_shm_uao->vmobjlock);
   1781 		KASSERT(obj->pages != NULL);
   1782 		/* Force a fresh fault for each page.  */
   1783 		TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
   1784 			pmap_page_protect(page, VM_PROT_NONE);
   1785 		mutex_exit(obj->base.gemo_shm_uao->vmobjlock);
   1786 	}
   1787 #else
   1788 	if (obj->base.dev->dev_mapping)
   1789 		unmap_mapping_range(obj->base.dev->dev_mapping,
   1790 				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
   1791 				    obj->base.size, 1);
   1792 #endif
   1793 
   1794 	obj->fault_mappable = false;
   1795 }
   1796 
   1797 static uint32_t
   1798 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
   1799 {
   1800 	uint32_t gtt_size;
   1801 
   1802 	if (INTEL_INFO(dev)->gen >= 4 ||
   1803 	    tiling_mode == I915_TILING_NONE)
   1804 		return size;
   1805 
   1806 	/* Previous chips need a power-of-two fence region when tiling */
   1807 	if (INTEL_INFO(dev)->gen == 3)
   1808 		gtt_size = 1024*1024;
   1809 	else
   1810 		gtt_size = 512*1024;
   1811 
   1812 	while (gtt_size < size)
   1813 		gtt_size <<= 1;
   1814 
   1815 	return gtt_size;
   1816 }
   1817 
   1818 /**
   1819  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
   1820  * @obj: object to check
   1821  *
   1822  * Return the required GTT alignment for an object, taking into account
   1823  * potential fence register mapping.
   1824  */
   1825 static uint32_t
   1826 i915_gem_get_gtt_alignment(struct drm_device *dev,
   1827 			   uint32_t size,
   1828 			   int tiling_mode)
   1829 {
   1830 	/*
   1831 	 * Minimum alignment is 4k (GTT page size), but might be greater
   1832 	 * if a fence register is needed for the object.
   1833 	 */
   1834 	if (INTEL_INFO(dev)->gen >= 4 ||
   1835 	    tiling_mode == I915_TILING_NONE)
   1836 		return 4096;
   1837 
   1838 	/*
   1839 	 * Previous chips need to be aligned to the size of the smallest
   1840 	 * fence register that can contain the object.
   1841 	 */
   1842 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
   1843 }
   1844 
   1845 /**
   1846  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
   1847  *					 unfenced object
   1848  * @dev: the device
   1849  * @size: size of the object
   1850  * @tiling_mode: tiling mode of the object
   1851  *
   1852  * Return the required GTT alignment for an object, only taking into account
   1853  * unfenced tiled surface requirements.
   1854  */
   1855 uint32_t
   1856 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
   1857 				    uint32_t size,
   1858 				    int tiling_mode)
   1859 {
   1860 	/*
   1861 	 * Minimum alignment is 4k (GTT page size) for sane hw.
   1862 	 */
   1863 	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
   1864 	    tiling_mode == I915_TILING_NONE)
   1865 		return 4096;
   1866 
   1867 	/* Previous hardware however needs to be aligned to a power-of-two
   1868 	 * tile height. The simplest method for determining this is to reuse
   1869 	 * the power-of-tile object size.
   1870 	 */
   1871 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
   1872 }
   1873 
   1874 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
   1875 {
   1876 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   1877 	int ret;
   1878 
   1879 	if (obj->base.map_list.map)
   1880 		return 0;
   1881 
   1882 	dev_priv->mm.shrinker_no_lock_stealing = true;
   1883 
   1884 	ret = drm_gem_create_mmap_offset(&obj->base);
   1885 	if (ret != -ENOSPC)
   1886 		goto out;
   1887 
   1888 	/* Badly fragmented mmap space? The only way we can recover
   1889 	 * space is by destroying unwanted objects. We can't randomly release
   1890 	 * mmap_offsets as userspace expects them to be persistent for the
   1891 	 * lifetime of the objects. The closest we can is to release the
   1892 	 * offsets on purgeable objects by truncating it and marking it purged,
   1893 	 * which prevents userspace from ever using that object again.
   1894 	 */
   1895 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
   1896 	ret = drm_gem_create_mmap_offset(&obj->base);
   1897 	if (ret != -ENOSPC)
   1898 		goto out;
   1899 
   1900 	i915_gem_shrink_all(dev_priv);
   1901 	ret = drm_gem_create_mmap_offset(&obj->base);
   1902 out:
   1903 	dev_priv->mm.shrinker_no_lock_stealing = false;
   1904 
   1905 	return ret;
   1906 }
   1907 
   1908 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
   1909 {
   1910 	if (!obj->base.map_list.map)
   1911 		return;
   1912 
   1913 	drm_gem_free_mmap_offset(&obj->base);
   1914 }
   1915 
   1916 int
   1917 i915_gem_mmap_gtt(struct drm_file *file,
   1918 		  struct drm_device *dev,
   1919 		  uint32_t handle,
   1920 		  uint64_t *offset)
   1921 {
   1922 	struct drm_i915_private *dev_priv = dev->dev_private;
   1923 	struct drm_i915_gem_object *obj;
   1924 	int ret;
   1925 
   1926 	ret = i915_mutex_lock_interruptible(dev);
   1927 	if (ret)
   1928 		return ret;
   1929 
   1930 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
   1931 	if (&obj->base == NULL) {
   1932 		ret = -ENOENT;
   1933 		goto unlock;
   1934 	}
   1935 
   1936 	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
   1937 		ret = -E2BIG;
   1938 		goto out;
   1939 	}
   1940 
   1941 	if (obj->madv != I915_MADV_WILLNEED) {
   1942 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
   1943 		ret = -EINVAL;
   1944 		goto out;
   1945 	}
   1946 
   1947 	ret = i915_gem_object_create_mmap_offset(obj);
   1948 	if (ret)
   1949 		goto out;
   1950 
   1951 	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
   1952 
   1953 out:
   1954 	drm_gem_object_unreference(&obj->base);
   1955 unlock:
   1956 	mutex_unlock(&dev->struct_mutex);
   1957 	return ret;
   1958 }
   1959 
   1960 /**
   1961  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
   1962  * @dev: DRM device
   1963  * @data: GTT mapping ioctl data
   1964  * @file: GEM object info
   1965  *
   1966  * Simply returns the fake offset to userspace so it can mmap it.
   1967  * The mmap call will end up in drm_gem_mmap(), which will set things
   1968  * up so we can get faults in the handler above.
   1969  *
   1970  * The fault handler will take care of binding the object into the GTT
   1971  * (since it may have been evicted to make room for something), allocating
   1972  * a fence register, and mapping the appropriate aperture address into
   1973  * userspace.
   1974  */
   1975 int
   1976 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
   1977 			struct drm_file *file)
   1978 {
   1979 	struct drm_i915_gem_mmap_gtt *args = data;
   1980 
   1981 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
   1982 }
   1983 
   1984 /* Immediately discard the backing storage */
   1985 static void
   1986 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
   1987 {
   1988 #ifndef __NetBSD__
   1989 	struct inode *inode;
   1990 #endif
   1991 
   1992 	i915_gem_object_free_mmap_offset(obj);
   1993 
   1994 #ifdef __NetBSD__
   1995 	{
   1996 		struct uvm_object *const uobj = obj->base.gemo_shm_uao;
   1997 
   1998 		if (uobj != NULL) {
   1999 			/* XXX Calling pgo_put like this is bogus.  */
   2000 			mutex_enter(uobj->vmobjlock);
   2001 			(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   2002 			    (PGO_ALLPAGES | PGO_FREE));
   2003 		}
   2004 	}
   2005 #else
   2006 	if (obj->base.filp == NULL)
   2007 		return;
   2008 
   2009 	/* Our goal here is to return as much of the memory as
   2010 	 * is possible back to the system as we are called from OOM.
   2011 	 * To do this we must instruct the shmfs to drop all of its
   2012 	 * backing pages, *now*.
   2013 	 */
   2014 	inode = obj->base.filp->f_path.dentry->d_inode;
   2015 	shmem_truncate_range(inode, 0, (loff_t)-1);
   2016 #endif
   2017 
   2018 	obj->madv = __I915_MADV_PURGED;
   2019 }
   2020 
   2021 static inline int
   2022 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
   2023 {
   2024 	return obj->madv == I915_MADV_DONTNEED;
   2025 }
   2026 
   2027 #ifdef __NetBSD__
   2028 static void
   2029 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2030 {
   2031 	struct drm_device *const dev = obj->base.dev;
   2032 	int ret;
   2033 
   2034 	/* XXX Cargo-culted from the Linux code.  */
   2035 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2036 
   2037 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2038 	if (ret) {
   2039 		WARN_ON(ret != -EIO);
   2040 		i915_gem_clflush_object(obj);
   2041 		obj->base.read_domains = obj->base.write_domain =
   2042 		    I915_GEM_DOMAIN_CPU;
   2043 	}
   2044 
   2045 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2046 		i915_gem_object_save_bit_17_swizzle(obj);
   2047 
   2048 	/* XXX Maintain dirty flag?  */
   2049 
   2050 	bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
   2051 	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
   2052 	    obj->base.size, obj->pages, obj->igo_nsegs);
   2053 
   2054 	kfree(obj->pages);
   2055 }
   2056 #else
   2057 static void
   2058 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2059 {
   2060 	int page_count = obj->base.size / PAGE_SIZE;
   2061 	struct scatterlist *sg;
   2062 	int ret, i;
   2063 
   2064 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2065 
   2066 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2067 	if (ret) {
   2068 		/* In the event of a disaster, abandon all caches and
   2069 		 * hope for the best.
   2070 		 */
   2071 		WARN_ON(ret != -EIO);
   2072 		i915_gem_clflush_object(obj);
   2073 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   2074 	}
   2075 
   2076 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2077 		i915_gem_object_save_bit_17_swizzle(obj);
   2078 
   2079 	if (obj->madv == I915_MADV_DONTNEED)
   2080 		obj->dirty = 0;
   2081 
   2082 	for_each_sg(obj->pages->sgl, sg, page_count, i) {
   2083 		struct page *page = sg_page(sg);
   2084 
   2085 		if (obj->dirty)
   2086 			set_page_dirty(page);
   2087 
   2088 		if (obj->madv == I915_MADV_WILLNEED)
   2089 			mark_page_accessed(page);
   2090 
   2091 		page_cache_release(page);
   2092 	}
   2093 	obj->dirty = 0;
   2094 
   2095 	sg_free_table(obj->pages);
   2096 	kfree(obj->pages);
   2097 }
   2098 #endif
   2099 
   2100 static int
   2101 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
   2102 {
   2103 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2104 
   2105 	if (obj->pages == NULL)
   2106 		return 0;
   2107 
   2108 	BUG_ON(obj->gtt_space);
   2109 
   2110 	if (obj->pages_pin_count)
   2111 		return -EBUSY;
   2112 
   2113 	/* ->put_pages might need to allocate memory for the bit17 swizzle
   2114 	 * array, hence protect them from being reaped by removing them from gtt
   2115 	 * lists early. */
   2116 	list_del(&obj->gtt_list);
   2117 
   2118 	ops->put_pages(obj);
   2119 	obj->pages = NULL;
   2120 
   2121 	if (i915_gem_object_is_purgeable(obj))
   2122 		i915_gem_object_truncate(obj);
   2123 
   2124 	return 0;
   2125 }
   2126 
   2127 static long
   2128 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
   2129 		  bool purgeable_only)
   2130 {
   2131 	struct drm_i915_gem_object *obj, *next;
   2132 	long count = 0;
   2133 
   2134 	list_for_each_entry_safe(obj, next,
   2135 				 &dev_priv->mm.unbound_list,
   2136 				 gtt_list) {
   2137 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
   2138 		    i915_gem_object_put_pages(obj) == 0) {
   2139 			count += obj->base.size >> PAGE_SHIFT;
   2140 			if (count >= target)
   2141 				return count;
   2142 		}
   2143 	}
   2144 
   2145 	list_for_each_entry_safe(obj, next,
   2146 				 &dev_priv->mm.inactive_list,
   2147 				 mm_list) {
   2148 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
   2149 		    i915_gem_object_unbind(obj) == 0 &&
   2150 		    i915_gem_object_put_pages(obj) == 0) {
   2151 			count += obj->base.size >> PAGE_SHIFT;
   2152 			if (count >= target)
   2153 				return count;
   2154 		}
   2155 	}
   2156 
   2157 	return count;
   2158 }
   2159 
   2160 static long
   2161 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
   2162 {
   2163 	return __i915_gem_shrink(dev_priv, target, true);
   2164 }
   2165 
   2166 static void
   2167 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
   2168 {
   2169 	struct drm_i915_gem_object *obj, *next;
   2170 
   2171 	i915_gem_evict_everything(dev_priv->dev);
   2172 
   2173 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
   2174 		i915_gem_object_put_pages(obj);
   2175 }
   2176 
   2177 #ifdef __NetBSD__
   2178 static int
   2179 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2180 {
   2181 	struct drm_device *const dev = obj->base.dev;
   2182 	struct vm_page *page;
   2183 	int error;
   2184 
   2185 	/* XXX Cargo-culted from the Linux code.  */
   2186 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2187 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2188 
   2189 	KASSERT(obj->pages == NULL);
   2190 	TAILQ_INIT(&obj->igo_pageq);
   2191 	obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
   2192 	    sizeof(obj->pages[0]), GFP_KERNEL);
   2193 	if (obj->pages == NULL) {
   2194 		error = -ENOMEM;
   2195 		goto fail0;
   2196 	}
   2197 
   2198 	/* XXX errno NetBSD->Linux */
   2199 	error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
   2200 	    0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
   2201 	    (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
   2202 	if (error)
   2203 		/* XXX Try i915_gem_purge, i915_gem_shrink_all.  */
   2204 		goto fail1;
   2205 	KASSERT(0 < obj->igo_nsegs);
   2206 	KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
   2207 
   2208 	/*
   2209 	 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
   2210 	 *
   2211 	 * XXX This is wrong; we ought to pass this constraint to
   2212 	 * bus_dmamem_wire_uvm_object instead.
   2213 	 */
   2214 	TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
   2215 		const uint64_t mask =
   2216 		    (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
   2217 			0xffffffffULL : 0xffffffffffULL);
   2218 		if (VM_PAGE_TO_PHYS(page) & ~mask) {
   2219 			DRM_ERROR("GEM physical address exceeds %u bits"
   2220 			    ": %"PRIxMAX"\n",
   2221 			    popcount64(mask),
   2222 			    (uintmax_t)VM_PAGE_TO_PHYS(page));
   2223 			error = -EIO;
   2224 			goto fail2;
   2225 		}
   2226 	}
   2227 
   2228 	/* XXX errno NetBSD->Linux */
   2229 	error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
   2230 	    PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
   2231 	if (error)
   2232 		goto fail2;
   2233 
   2234 	/* XXX Cargo-culted from the Linux code.  */
   2235 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2236 		i915_gem_object_do_bit_17_swizzle(obj);
   2237 
   2238 	/* Success!  */
   2239 	return 0;
   2240 
   2241 fail2:	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
   2242 	    obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
   2243 fail1:	kfree(obj->pages);
   2244 	obj->pages = NULL;
   2245 fail0:	KASSERT(error);
   2246 	return error;
   2247 }
   2248 #else
   2249 static int
   2250 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2251 {
   2252 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2253 	int page_count, i;
   2254 	struct address_space *mapping;
   2255 	struct sg_table *st;
   2256 	struct scatterlist *sg;
   2257 	struct page *page;
   2258 	gfp_t gfp;
   2259 
   2260 	/* Assert that the object is not currently in any GPU domain. As it
   2261 	 * wasn't in the GTT, there shouldn't be any way it could have been in
   2262 	 * a GPU cache
   2263 	 */
   2264 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2265 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2266 
   2267 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   2268 	if (st == NULL)
   2269 		return -ENOMEM;
   2270 
   2271 	page_count = obj->base.size / PAGE_SIZE;
   2272 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
   2273 		sg_free_table(st);
   2274 		kfree(st);
   2275 		return -ENOMEM;
   2276 	}
   2277 
   2278 	/* Get the list of pages out of our struct file.  They'll be pinned
   2279 	 * at this point until we release them.
   2280 	 *
   2281 	 * Fail silently without starting the shrinker
   2282 	 */
   2283 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
   2284 	gfp = mapping_gfp_mask(mapping);
   2285 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
   2286 	gfp &= ~(__GFP_IO | __GFP_WAIT);
   2287 	for_each_sg(st->sgl, sg, page_count, i) {
   2288 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2289 		if (IS_ERR(page)) {
   2290 			i915_gem_purge(dev_priv, page_count);
   2291 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2292 		}
   2293 		if (IS_ERR(page)) {
   2294 			/* We've tried hard to allocate the memory by reaping
   2295 			 * our own buffer, now let the real VM do its job and
   2296 			 * go down in flames if truly OOM.
   2297 			 */
   2298 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
   2299 			gfp |= __GFP_IO | __GFP_WAIT;
   2300 
   2301 			i915_gem_shrink_all(dev_priv);
   2302 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2303 			if (IS_ERR(page))
   2304 				goto err_pages;
   2305 
   2306 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
   2307 			gfp &= ~(__GFP_IO | __GFP_WAIT);
   2308 		}
   2309 
   2310 		sg_set_page(sg, page, PAGE_SIZE, 0);
   2311 	}
   2312 
   2313 	obj->pages = st;
   2314 
   2315 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2316 		i915_gem_object_do_bit_17_swizzle(obj);
   2317 
   2318 	return 0;
   2319 
   2320 err_pages:
   2321 	for_each_sg(st->sgl, sg, i, page_count)
   2322 		page_cache_release(sg_page(sg));
   2323 	sg_free_table(st);
   2324 	kfree(st);
   2325 	return PTR_ERR(page);
   2326 }
   2327 #endif
   2328 
   2329 /* Ensure that the associated pages are gathered from the backing storage
   2330  * and pinned into our object. i915_gem_object_get_pages() may be called
   2331  * multiple times before they are released by a single call to
   2332  * i915_gem_object_put_pages() - once the pages are no longer referenced
   2333  * either as a result of memory pressure (reaping pages under the shrinker)
   2334  * or as the object is itself released.
   2335  */
   2336 int
   2337 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
   2338 {
   2339 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2340 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2341 	int ret;
   2342 
   2343 	if (obj->pages)
   2344 		return 0;
   2345 
   2346 	BUG_ON(obj->pages_pin_count);
   2347 
   2348 	ret = ops->get_pages(obj);
   2349 	if (ret)
   2350 		return ret;
   2351 
   2352 	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
   2353 	return 0;
   2354 }
   2355 
   2356 void
   2357 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
   2358 			       struct intel_ring_buffer *ring)
   2359 {
   2360 	struct drm_device *dev = obj->base.dev;
   2361 	struct drm_i915_private *dev_priv = dev->dev_private;
   2362 	u32 seqno = intel_ring_get_seqno(ring);
   2363 
   2364 	BUG_ON(ring == NULL);
   2365 	obj->ring = ring;
   2366 
   2367 	/* Add a reference if we're newly entering the active list. */
   2368 	if (!obj->active) {
   2369 		drm_gem_object_reference(&obj->base);
   2370 		obj->active = 1;
   2371 	}
   2372 
   2373 	/* Move from whatever list we were on to the tail of execution. */
   2374 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
   2375 	list_move_tail(&obj->ring_list, &ring->active_list);
   2376 
   2377 	obj->last_read_seqno = seqno;
   2378 
   2379 	if (obj->fenced_gpu_access) {
   2380 		obj->last_fenced_seqno = seqno;
   2381 
   2382 		/* Bump MRU to take account of the delayed flush */
   2383 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
   2384 			struct drm_i915_fence_reg *reg;
   2385 
   2386 			reg = &dev_priv->fence_regs[obj->fence_reg];
   2387 			list_move_tail(&reg->lru_list,
   2388 				       &dev_priv->mm.fence_list);
   2389 		}
   2390 	}
   2391 }
   2392 
   2393 static void
   2394 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
   2395 {
   2396 	struct drm_device *dev = obj->base.dev;
   2397 	struct drm_i915_private *dev_priv = dev->dev_private;
   2398 
   2399 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
   2400 	BUG_ON(!obj->active);
   2401 
   2402 	if (obj->pin_count) /* are we a framebuffer? */
   2403 		intel_mark_fb_idle(obj);
   2404 
   2405 	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
   2406 
   2407 	list_del_init(&obj->ring_list);
   2408 	obj->ring = NULL;
   2409 
   2410 	obj->last_read_seqno = 0;
   2411 	obj->last_write_seqno = 0;
   2412 	obj->base.write_domain = 0;
   2413 
   2414 	obj->last_fenced_seqno = 0;
   2415 	obj->fenced_gpu_access = false;
   2416 
   2417 	obj->active = 0;
   2418 	drm_gem_object_unreference(&obj->base);
   2419 
   2420 	WARN_ON(i915_verify_lists(dev));
   2421 }
   2422 
   2423 static int
   2424 i915_gem_handle_seqno_wrap(struct drm_device *dev)
   2425 {
   2426 	struct drm_i915_private *dev_priv = dev->dev_private;
   2427 	struct intel_ring_buffer *ring;
   2428 	int ret, i, j;
   2429 
   2430 	/* The hardware uses various monotonic 32-bit counters, if we
   2431 	 * detect that they will wraparound we need to idle the GPU
   2432 	 * and reset those counters.
   2433 	 */
   2434 	ret = 0;
   2435 	for_each_ring(ring, dev_priv, i) {
   2436 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
   2437 			ret |= ring->sync_seqno[j] != 0;
   2438 	}
   2439 	if (ret == 0)
   2440 		return ret;
   2441 
   2442 	ret = i915_gpu_idle(dev);
   2443 	if (ret)
   2444 		return ret;
   2445 
   2446 	i915_gem_retire_requests(dev);
   2447 	for_each_ring(ring, dev_priv, i) {
   2448 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
   2449 			ring->sync_seqno[j] = 0;
   2450 	}
   2451 
   2452 	return 0;
   2453 }
   2454 
   2455 int
   2456 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
   2457 {
   2458 	struct drm_i915_private *dev_priv = dev->dev_private;
   2459 
   2460 	/* reserve 0 for non-seqno */
   2461 	if (dev_priv->next_seqno == 0) {
   2462 		int ret = i915_gem_handle_seqno_wrap(dev);
   2463 		if (ret)
   2464 			return ret;
   2465 
   2466 		dev_priv->next_seqno = 1;
   2467 	}
   2468 
   2469 	*seqno = dev_priv->next_seqno++;
   2470 	return 0;
   2471 }
   2472 
   2473 int
   2474 i915_add_request(struct intel_ring_buffer *ring,
   2475 		 struct drm_file *file,
   2476 		 u32 *out_seqno)
   2477 {
   2478 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
   2479 	struct drm_i915_gem_request *request;
   2480 	u32 request_ring_position;
   2481 	int was_empty;
   2482 	int ret;
   2483 
   2484 	/*
   2485 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
   2486 	 * after having emitted the batchbuffer command. Hence we need to fix
   2487 	 * things up similar to emitting the lazy request. The difference here
   2488 	 * is that the flush _must_ happen before the next request, no matter
   2489 	 * what.
   2490 	 */
   2491 	ret = intel_ring_flush_all_caches(ring);
   2492 	if (ret)
   2493 		return ret;
   2494 
   2495 	request = kmalloc(sizeof(*request), GFP_KERNEL);
   2496 	if (request == NULL)
   2497 		return -ENOMEM;
   2498 
   2499 
   2500 	/* Record the position of the start of the request so that
   2501 	 * should we detect the updated seqno part-way through the
   2502 	 * GPU processing the request, we never over-estimate the
   2503 	 * position of the head.
   2504 	 */
   2505 	request_ring_position = intel_ring_get_tail(ring);
   2506 
   2507 	ret = ring->add_request(ring);
   2508 	if (ret) {
   2509 		kfree(request);
   2510 		return ret;
   2511 	}
   2512 
   2513 	request->seqno = intel_ring_get_seqno(ring);
   2514 	request->ring = ring;
   2515 	request->tail = request_ring_position;
   2516 	request->emitted_jiffies = jiffies;
   2517 	was_empty = list_empty(&ring->request_list);
   2518 	list_add_tail(&request->list, &ring->request_list);
   2519 	request->file_priv = NULL;
   2520 
   2521 	if (file) {
   2522 		struct drm_i915_file_private *file_priv = file->driver_priv;
   2523 
   2524 		spin_lock(&file_priv->mm.lock);
   2525 		request->file_priv = file_priv;
   2526 		list_add_tail(&request->client_list,
   2527 			      &file_priv->mm.request_list);
   2528 		spin_unlock(&file_priv->mm.lock);
   2529 	}
   2530 
   2531 	trace_i915_gem_request_add(ring, request->seqno);
   2532 	ring->outstanding_lazy_request = 0;
   2533 
   2534 	if (!dev_priv->mm.suspended) {
   2535 		if (i915_enable_hangcheck) {
   2536 			mod_timer(&dev_priv->hangcheck_timer,
   2537 				  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
   2538 		}
   2539 		if (was_empty) {
   2540 			queue_delayed_work(dev_priv->wq,
   2541 					   &dev_priv->mm.retire_work,
   2542 					   round_jiffies_up_relative(HZ));
   2543 			intel_mark_busy(dev_priv->dev);
   2544 		}
   2545 	}
   2546 
   2547 	if (out_seqno)
   2548 		*out_seqno = request->seqno;
   2549 	return 0;
   2550 }
   2551 
   2552 static inline void
   2553 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
   2554 {
   2555 	struct drm_i915_file_private *file_priv = request->file_priv;
   2556 
   2557 	if (!file_priv)
   2558 		return;
   2559 
   2560 	spin_lock(&file_priv->mm.lock);
   2561 	if (request->file_priv) {
   2562 		list_del(&request->client_list);
   2563 		request->file_priv = NULL;
   2564 	}
   2565 	spin_unlock(&file_priv->mm.lock);
   2566 }
   2567 
   2568 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
   2569 				      struct intel_ring_buffer *ring)
   2570 {
   2571 	while (!list_empty(&ring->request_list)) {
   2572 		struct drm_i915_gem_request *request;
   2573 
   2574 		request = list_first_entry(&ring->request_list,
   2575 					   struct drm_i915_gem_request,
   2576 					   list);
   2577 
   2578 		list_del(&request->list);
   2579 		i915_gem_request_remove_from_client(request);
   2580 		kfree(request);
   2581 	}
   2582 
   2583 	while (!list_empty(&ring->active_list)) {
   2584 		struct drm_i915_gem_object *obj;
   2585 
   2586 		obj = list_first_entry(&ring->active_list,
   2587 				       struct drm_i915_gem_object,
   2588 				       ring_list);
   2589 
   2590 		i915_gem_object_move_to_inactive(obj);
   2591 	}
   2592 }
   2593 
   2594 static void i915_gem_reset_fences(struct drm_device *dev)
   2595 {
   2596 	struct drm_i915_private *dev_priv = dev->dev_private;
   2597 	int i;
   2598 
   2599 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
   2600 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
   2601 
   2602 		i915_gem_write_fence(dev, i, NULL);
   2603 
   2604 		if (reg->obj)
   2605 			i915_gem_object_fence_lost(reg->obj);
   2606 
   2607 		reg->pin_count = 0;
   2608 		reg->obj = NULL;
   2609 		INIT_LIST_HEAD(&reg->lru_list);
   2610 	}
   2611 
   2612 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   2613 }
   2614 
   2615 void i915_gem_reset(struct drm_device *dev)
   2616 {
   2617 	struct drm_i915_private *dev_priv = dev->dev_private;
   2618 	struct drm_i915_gem_object *obj;
   2619 	struct intel_ring_buffer *ring;
   2620 	int i;
   2621 
   2622 	for_each_ring(ring, dev_priv, i)
   2623 		i915_gem_reset_ring_lists(dev_priv, ring);
   2624 
   2625 	/* Move everything out of the GPU domains to ensure we do any
   2626 	 * necessary invalidation upon reuse.
   2627 	 */
   2628 	list_for_each_entry(obj,
   2629 			    &dev_priv->mm.inactive_list,
   2630 			    mm_list)
   2631 	{
   2632 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
   2633 	}
   2634 
   2635 	/* The fence registers are invalidated so clear them out */
   2636 	i915_gem_reset_fences(dev);
   2637 }
   2638 
   2639 /**
   2640  * This function clears the request list as sequence numbers are passed.
   2641  */
   2642 void
   2643 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
   2644 {
   2645 	uint32_t seqno;
   2646 
   2647 	if (list_empty(&ring->request_list))
   2648 		return;
   2649 
   2650 	WARN_ON(i915_verify_lists(ring->dev));
   2651 
   2652 	seqno = ring->get_seqno(ring, true);
   2653 
   2654 	while (!list_empty(&ring->request_list)) {
   2655 		struct drm_i915_gem_request *request;
   2656 
   2657 		request = list_first_entry(&ring->request_list,
   2658 					   struct drm_i915_gem_request,
   2659 					   list);
   2660 
   2661 		if (!i915_seqno_passed(seqno, request->seqno))
   2662 			break;
   2663 
   2664 		trace_i915_gem_request_retire(ring, request->seqno);
   2665 		/* We know the GPU must have read the request to have
   2666 		 * sent us the seqno + interrupt, so use the position
   2667 		 * of tail of the request to update the last known position
   2668 		 * of the GPU head.
   2669 		 */
   2670 		ring->last_retired_head = request->tail;
   2671 
   2672 		list_del(&request->list);
   2673 		i915_gem_request_remove_from_client(request);
   2674 		kfree(request);
   2675 	}
   2676 
   2677 	/* Move any buffers on the active list that are no longer referenced
   2678 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
   2679 	 */
   2680 	while (!list_empty(&ring->active_list)) {
   2681 		struct drm_i915_gem_object *obj;
   2682 
   2683 		obj = list_first_entry(&ring->active_list,
   2684 				      struct drm_i915_gem_object,
   2685 				      ring_list);
   2686 
   2687 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
   2688 			break;
   2689 
   2690 		i915_gem_object_move_to_inactive(obj);
   2691 	}
   2692 
   2693 	if (unlikely(ring->trace_irq_seqno &&
   2694 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
   2695 		ring->irq_put(ring);
   2696 		ring->trace_irq_seqno = 0;
   2697 	}
   2698 
   2699 	WARN_ON(i915_verify_lists(ring->dev));
   2700 }
   2701 
   2702 void
   2703 i915_gem_retire_requests(struct drm_device *dev)
   2704 {
   2705 	drm_i915_private_t *dev_priv = dev->dev_private;
   2706 	struct intel_ring_buffer *ring;
   2707 	int i;
   2708 
   2709 	for_each_ring(ring, dev_priv, i)
   2710 		i915_gem_retire_requests_ring(ring);
   2711 }
   2712 
   2713 static void
   2714 i915_gem_retire_work_handler(struct work_struct *work)
   2715 {
   2716 	drm_i915_private_t *dev_priv;
   2717 	struct drm_device *dev;
   2718 	struct intel_ring_buffer *ring;
   2719 	bool idle;
   2720 	int i;
   2721 
   2722 	dev_priv = container_of(work, drm_i915_private_t,
   2723 				mm.retire_work.work);
   2724 	dev = dev_priv->dev;
   2725 
   2726 	/* Come back later if the device is busy... */
   2727 	if (!mutex_trylock(&dev->struct_mutex)) {
   2728 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
   2729 				   round_jiffies_up_relative(HZ));
   2730 		return;
   2731 	}
   2732 
   2733 	i915_gem_retire_requests(dev);
   2734 
   2735 	/* Send a periodic flush down the ring so we don't hold onto GEM
   2736 	 * objects indefinitely.
   2737 	 */
   2738 	idle = true;
   2739 	for_each_ring(ring, dev_priv, i) {
   2740 		if (ring->gpu_caches_dirty)
   2741 			i915_add_request(ring, NULL, NULL);
   2742 
   2743 		idle &= list_empty(&ring->request_list);
   2744 	}
   2745 
   2746 	if (!dev_priv->mm.suspended && !idle)
   2747 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
   2748 				   round_jiffies_up_relative(HZ));
   2749 	if (idle)
   2750 		intel_mark_idle(dev);
   2751 
   2752 	mutex_unlock(&dev->struct_mutex);
   2753 }
   2754 
   2755 /**
   2756  * Ensures that an object will eventually get non-busy by flushing any required
   2757  * write domains, emitting any outstanding lazy request and retiring and
   2758  * completed requests.
   2759  */
   2760 static int
   2761 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
   2762 {
   2763 	int ret;
   2764 
   2765 	if (obj->active) {
   2766 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
   2767 		if (ret)
   2768 			return ret;
   2769 
   2770 		i915_gem_retire_requests_ring(obj->ring);
   2771 	}
   2772 
   2773 	return 0;
   2774 }
   2775 
   2776 /**
   2777  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
   2778  * @DRM_IOCTL_ARGS: standard ioctl arguments
   2779  *
   2780  * Returns 0 if successful, else an error is returned with the remaining time in
   2781  * the timeout parameter.
   2782  *  -ETIME: object is still busy after timeout
   2783  *  -ERESTARTSYS: signal interrupted the wait
   2784  *  -ENONENT: object doesn't exist
   2785  * Also possible, but rare:
   2786  *  -EAGAIN: GPU wedged
   2787  *  -ENOMEM: damn
   2788  *  -ENODEV: Internal IRQ fail
   2789  *  -E?: The add request failed
   2790  *
   2791  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
   2792  * non-zero timeout parameter the wait ioctl will wait for the given number of
   2793  * nanoseconds on an object becoming unbusy. Since the wait itself does so
   2794  * without holding struct_mutex the object may become re-busied before this
   2795  * function completes. A similar but shorter * race condition exists in the busy
   2796  * ioctl
   2797  */
   2798 int
   2799 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
   2800 {
   2801 	struct drm_i915_gem_wait *args = data;
   2802 	struct drm_i915_gem_object *obj;
   2803 	struct intel_ring_buffer *ring = NULL;
   2804 	struct timespec timeout_stack, *timeout = NULL;
   2805 	u32 seqno = 0;
   2806 	int ret = 0;
   2807 
   2808 	if (args->timeout_ns >= 0) {
   2809 		timeout_stack = ns_to_timespec(args->timeout_ns);
   2810 		timeout = &timeout_stack;
   2811 	}
   2812 
   2813 	ret = i915_mutex_lock_interruptible(dev);
   2814 	if (ret)
   2815 		return ret;
   2816 
   2817 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
   2818 	if (&obj->base == NULL) {
   2819 		mutex_unlock(&dev->struct_mutex);
   2820 		return -ENOENT;
   2821 	}
   2822 
   2823 	/* Need to make sure the object gets inactive eventually. */
   2824 	ret = i915_gem_object_flush_active(obj);
   2825 	if (ret)
   2826 		goto out;
   2827 
   2828 	if (obj->active) {
   2829 		seqno = obj->last_read_seqno;
   2830 		ring = obj->ring;
   2831 	}
   2832 
   2833 	if (seqno == 0)
   2834 		 goto out;
   2835 
   2836 	/* Do this after OLR check to make sure we make forward progress polling
   2837 	 * on this IOCTL with a 0 timeout (like busy ioctl)
   2838 	 */
   2839 	if (!args->timeout_ns) {
   2840 		ret = -ETIME;
   2841 		goto out;
   2842 	}
   2843 
   2844 	drm_gem_object_unreference(&obj->base);
   2845 	mutex_unlock(&dev->struct_mutex);
   2846 
   2847 	ret = __wait_seqno(ring, seqno, true, timeout);
   2848 	if (timeout) {
   2849 		WARN_ON(!timespec_valid(timeout));
   2850 		args->timeout_ns = timespec_to_ns(timeout);
   2851 	}
   2852 	return ret;
   2853 
   2854 out:
   2855 	drm_gem_object_unreference(&obj->base);
   2856 	mutex_unlock(&dev->struct_mutex);
   2857 	return ret;
   2858 }
   2859 
   2860 /**
   2861  * i915_gem_object_sync - sync an object to a ring.
   2862  *
   2863  * @obj: object which may be in use on another ring.
   2864  * @to: ring we wish to use the object on. May be NULL.
   2865  *
   2866  * This code is meant to abstract object synchronization with the GPU.
   2867  * Calling with NULL implies synchronizing the object with the CPU
   2868  * rather than a particular GPU ring.
   2869  *
   2870  * Returns 0 if successful, else propagates up the lower layer error.
   2871  */
   2872 int
   2873 i915_gem_object_sync(struct drm_i915_gem_object *obj,
   2874 		     struct intel_ring_buffer *to)
   2875 {
   2876 	struct intel_ring_buffer *from = obj->ring;
   2877 	u32 seqno;
   2878 	int ret, idx;
   2879 
   2880 	if (from == NULL || to == from)
   2881 		return 0;
   2882 
   2883 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
   2884 		return i915_gem_object_wait_rendering(obj, false);
   2885 
   2886 	idx = intel_ring_sync_index(from, to);
   2887 
   2888 	seqno = obj->last_read_seqno;
   2889 	if (seqno <= from->sync_seqno[idx])
   2890 		return 0;
   2891 
   2892 	ret = i915_gem_check_olr(obj->ring, seqno);
   2893 	if (ret)
   2894 		return ret;
   2895 
   2896 	ret = to->sync_to(to, from, seqno);
   2897 	if (!ret)
   2898 		/* We use last_read_seqno because sync_to()
   2899 		 * might have just caused seqno wrap under
   2900 		 * the radar.
   2901 		 */
   2902 		from->sync_seqno[idx] = obj->last_read_seqno;
   2903 
   2904 	return ret;
   2905 }
   2906 
   2907 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
   2908 {
   2909 	u32 old_write_domain, old_read_domains;
   2910 
   2911 	/* Act a barrier for all accesses through the GTT */
   2912 	mb();
   2913 
   2914 	/* Force a pagefault for domain tracking on next user access */
   2915 	i915_gem_release_mmap(obj);
   2916 
   2917 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   2918 		return;
   2919 
   2920 	old_read_domains = obj->base.read_domains;
   2921 	old_write_domain = obj->base.write_domain;
   2922 
   2923 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
   2924 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
   2925 
   2926 	trace_i915_gem_object_change_domain(obj,
   2927 					    old_read_domains,
   2928 					    old_write_domain);
   2929 }
   2930 
   2931 /**
   2932  * Unbinds an object from the GTT aperture.
   2933  */
   2934 int
   2935 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
   2936 {
   2937 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
   2938 	int ret = 0;
   2939 
   2940 	if (obj->gtt_space == NULL)
   2941 		return 0;
   2942 
   2943 	if (obj->pin_count)
   2944 		return -EBUSY;
   2945 
   2946 	BUG_ON(obj->pages == NULL);
   2947 
   2948 	ret = i915_gem_object_finish_gpu(obj);
   2949 	if (ret)
   2950 		return ret;
   2951 	/* Continue on if we fail due to EIO, the GPU is hung so we
   2952 	 * should be safe and we need to cleanup or else we might
   2953 	 * cause memory corruption through use-after-free.
   2954 	 */
   2955 
   2956 	i915_gem_object_finish_gtt(obj);
   2957 
   2958 	/* release the fence reg _after_ flushing */
   2959 	ret = i915_gem_object_put_fence(obj);
   2960 	if (ret)
   2961 		return ret;
   2962 
   2963 	trace_i915_gem_object_unbind(obj);
   2964 
   2965 	if (obj->has_global_gtt_mapping)
   2966 		i915_gem_gtt_unbind_object(obj);
   2967 	if (obj->has_aliasing_ppgtt_mapping) {
   2968 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
   2969 		obj->has_aliasing_ppgtt_mapping = 0;
   2970 	}
   2971 	i915_gem_gtt_finish_object(obj);
   2972 
   2973 	list_del(&obj->mm_list);
   2974 	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
   2975 	/* Avoid an unnecessary call to unbind on rebind. */
   2976 	obj->map_and_fenceable = true;
   2977 
   2978 	drm_mm_put_block(obj->gtt_space);
   2979 	obj->gtt_space = NULL;
   2980 	obj->gtt_offset = 0;
   2981 
   2982 	return 0;
   2983 }
   2984 
   2985 int i915_gpu_idle(struct drm_device *dev)
   2986 {
   2987 	drm_i915_private_t *dev_priv = dev->dev_private;
   2988 	struct intel_ring_buffer *ring;
   2989 	int ret, i;
   2990 
   2991 	/* Flush everything onto the inactive list. */
   2992 	for_each_ring(ring, dev_priv, i) {
   2993 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
   2994 		if (ret)
   2995 			return ret;
   2996 
   2997 		ret = intel_ring_idle(ring);
   2998 		if (ret)
   2999 			return ret;
   3000 	}
   3001 
   3002 	return 0;
   3003 }
   3004 
   3005 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
   3006 					struct drm_i915_gem_object *obj)
   3007 {
   3008 	drm_i915_private_t *dev_priv = dev->dev_private;
   3009 	uint64_t val;
   3010 
   3011 	if (obj) {
   3012 		u32 size = obj->gtt_space->size;
   3013 
   3014 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
   3015 				 0xfffff000) << 32;
   3016 		val |= obj->gtt_offset & 0xfffff000;
   3017 		val |= (uint64_t)((obj->stride / 128) - 1) <<
   3018 			SANDYBRIDGE_FENCE_PITCH_SHIFT;
   3019 
   3020 		if (obj->tiling_mode == I915_TILING_Y)
   3021 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
   3022 		val |= I965_FENCE_REG_VALID;
   3023 	} else
   3024 		val = 0;
   3025 
   3026 	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
   3027 	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
   3028 }
   3029 
   3030 static void i965_write_fence_reg(struct drm_device *dev, int reg,
   3031 				 struct drm_i915_gem_object *obj)
   3032 {
   3033 	drm_i915_private_t *dev_priv = dev->dev_private;
   3034 	uint64_t val;
   3035 
   3036 	if (obj) {
   3037 		u32 size = obj->gtt_space->size;
   3038 
   3039 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
   3040 				 0xfffff000) << 32;
   3041 		val |= obj->gtt_offset & 0xfffff000;
   3042 		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
   3043 		if (obj->tiling_mode == I915_TILING_Y)
   3044 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
   3045 		val |= I965_FENCE_REG_VALID;
   3046 	} else
   3047 		val = 0;
   3048 
   3049 	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
   3050 	POSTING_READ(FENCE_REG_965_0 + reg * 8);
   3051 }
   3052 
   3053 static void i915_write_fence_reg(struct drm_device *dev, int reg,
   3054 				 struct drm_i915_gem_object *obj)
   3055 {
   3056 	drm_i915_private_t *dev_priv = dev->dev_private;
   3057 	u32 val;
   3058 
   3059 	if (obj) {
   3060 		u32 size = obj->gtt_space->size;
   3061 		int pitch_val;
   3062 		int tile_width;
   3063 
   3064 		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
   3065 		     (size & -size) != size ||
   3066 		     (obj->gtt_offset & (size - 1)),
   3067 		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
   3068 		     obj->gtt_offset, obj->map_and_fenceable, size);
   3069 
   3070 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
   3071 			tile_width = 128;
   3072 		else
   3073 			tile_width = 512;
   3074 
   3075 		/* Note: pitch better be a power of two tile widths */
   3076 		pitch_val = obj->stride / tile_width;
   3077 		pitch_val = ffs(pitch_val) - 1;
   3078 
   3079 		val = obj->gtt_offset;
   3080 		if (obj->tiling_mode == I915_TILING_Y)
   3081 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
   3082 		val |= I915_FENCE_SIZE_BITS(size);
   3083 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
   3084 		val |= I830_FENCE_REG_VALID;
   3085 	} else
   3086 		val = 0;
   3087 
   3088 	if (reg < 8)
   3089 		reg = FENCE_REG_830_0 + reg * 4;
   3090 	else
   3091 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
   3092 
   3093 	I915_WRITE(reg, val);
   3094 	POSTING_READ(reg);
   3095 }
   3096 
   3097 static void i830_write_fence_reg(struct drm_device *dev, int reg,
   3098 				struct drm_i915_gem_object *obj)
   3099 {
   3100 	drm_i915_private_t *dev_priv = dev->dev_private;
   3101 	uint32_t val;
   3102 
   3103 	if (obj) {
   3104 		u32 size = obj->gtt_space->size;
   3105 		uint32_t pitch_val;
   3106 
   3107 		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
   3108 		     (size & -size) != size ||
   3109 		     (obj->gtt_offset & (size - 1)),
   3110 		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
   3111 		     obj->gtt_offset, size);
   3112 
   3113 		pitch_val = obj->stride / 128;
   3114 		pitch_val = ffs(pitch_val) - 1;
   3115 
   3116 		val = obj->gtt_offset;
   3117 		if (obj->tiling_mode == I915_TILING_Y)
   3118 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
   3119 		val |= I830_FENCE_SIZE_BITS(size);
   3120 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
   3121 		val |= I830_FENCE_REG_VALID;
   3122 	} else
   3123 		val = 0;
   3124 
   3125 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
   3126 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
   3127 }
   3128 
   3129 static void i915_gem_write_fence(struct drm_device *dev, int reg,
   3130 				 struct drm_i915_gem_object *obj)
   3131 {
   3132 	switch (INTEL_INFO(dev)->gen) {
   3133 	case 7:
   3134 	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
   3135 	case 5:
   3136 	case 4: i965_write_fence_reg(dev, reg, obj); break;
   3137 	case 3: i915_write_fence_reg(dev, reg, obj); break;
   3138 	case 2: i830_write_fence_reg(dev, reg, obj); break;
   3139 	default: break;
   3140 	}
   3141 }
   3142 
   3143 static inline int fence_number(struct drm_i915_private *dev_priv,
   3144 			       struct drm_i915_fence_reg *fence)
   3145 {
   3146 	return fence - dev_priv->fence_regs;
   3147 }
   3148 
   3149 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
   3150 					 struct drm_i915_fence_reg *fence,
   3151 					 bool enable)
   3152 {
   3153 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3154 	int reg = fence_number(dev_priv, fence);
   3155 
   3156 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
   3157 
   3158 	if (enable) {
   3159 		obj->fence_reg = reg;
   3160 		fence->obj = obj;
   3161 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
   3162 	} else {
   3163 		obj->fence_reg = I915_FENCE_REG_NONE;
   3164 		fence->obj = NULL;
   3165 		list_del_init(&fence->lru_list);
   3166 	}
   3167 }
   3168 
   3169 static int
   3170 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
   3171 {
   3172 	if (obj->last_fenced_seqno) {
   3173 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
   3174 		if (ret)
   3175 			return ret;
   3176 
   3177 		obj->last_fenced_seqno = 0;
   3178 	}
   3179 
   3180 	/* Ensure that all CPU reads are completed before installing a fence
   3181 	 * and all writes before removing the fence.
   3182 	 */
   3183 	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
   3184 		mb();
   3185 
   3186 	obj->fenced_gpu_access = false;
   3187 	return 0;
   3188 }
   3189 
   3190 int
   3191 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
   3192 {
   3193 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3194 	int ret;
   3195 
   3196 	ret = i915_gem_object_flush_fence(obj);
   3197 	if (ret)
   3198 		return ret;
   3199 
   3200 	if (obj->fence_reg == I915_FENCE_REG_NONE)
   3201 		return 0;
   3202 
   3203 	i915_gem_object_update_fence(obj,
   3204 				     &dev_priv->fence_regs[obj->fence_reg],
   3205 				     false);
   3206 	i915_gem_object_fence_lost(obj);
   3207 
   3208 	return 0;
   3209 }
   3210 
   3211 static struct drm_i915_fence_reg *
   3212 i915_find_fence_reg(struct drm_device *dev)
   3213 {
   3214 	struct drm_i915_private *dev_priv = dev->dev_private;
   3215 	struct drm_i915_fence_reg *reg, *avail;
   3216 	int i;
   3217 
   3218 	/* First try to find a free reg */
   3219 	avail = NULL;
   3220 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
   3221 		reg = &dev_priv->fence_regs[i];
   3222 		if (!reg->obj)
   3223 			return reg;
   3224 
   3225 		if (!reg->pin_count)
   3226 			avail = reg;
   3227 	}
   3228 
   3229 	if (avail == NULL)
   3230 		return NULL;
   3231 
   3232 	/* None available, try to steal one or wait for a user to finish */
   3233 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
   3234 		if (reg->pin_count)
   3235 			continue;
   3236 
   3237 		return reg;
   3238 	}
   3239 
   3240 	return NULL;
   3241 }
   3242 
   3243 /**
   3244  * i915_gem_object_get_fence - set up fencing for an object
   3245  * @obj: object to map through a fence reg
   3246  *
   3247  * When mapping objects through the GTT, userspace wants to be able to write
   3248  * to them without having to worry about swizzling if the object is tiled.
   3249  * This function walks the fence regs looking for a free one for @obj,
   3250  * stealing one if it can't find any.
   3251  *
   3252  * It then sets up the reg based on the object's properties: address, pitch
   3253  * and tiling format.
   3254  *
   3255  * For an untiled surface, this removes any existing fence.
   3256  */
   3257 int
   3258 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
   3259 {
   3260 	struct drm_device *dev = obj->base.dev;
   3261 	struct drm_i915_private *dev_priv = dev->dev_private;
   3262 	bool enable = obj->tiling_mode != I915_TILING_NONE;
   3263 	struct drm_i915_fence_reg *reg;
   3264 	int ret;
   3265 
   3266 	/* Have we updated the tiling parameters upon the object and so
   3267 	 * will need to serialise the write to the associated fence register?
   3268 	 */
   3269 	if (obj->fence_dirty) {
   3270 		ret = i915_gem_object_flush_fence(obj);
   3271 		if (ret)
   3272 			return ret;
   3273 	}
   3274 
   3275 	/* Just update our place in the LRU if our fence is getting reused. */
   3276 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
   3277 		reg = &dev_priv->fence_regs[obj->fence_reg];
   3278 		if (!obj->fence_dirty) {
   3279 			list_move_tail(&reg->lru_list,
   3280 				       &dev_priv->mm.fence_list);
   3281 			return 0;
   3282 		}
   3283 	} else if (enable) {
   3284 		reg = i915_find_fence_reg(dev);
   3285 		if (reg == NULL)
   3286 			return -EDEADLK;
   3287 
   3288 		if (reg->obj) {
   3289 			struct drm_i915_gem_object *old = reg->obj;
   3290 
   3291 			ret = i915_gem_object_flush_fence(old);
   3292 			if (ret)
   3293 				return ret;
   3294 
   3295 			i915_gem_object_fence_lost(old);
   3296 		}
   3297 	} else
   3298 		return 0;
   3299 
   3300 	i915_gem_object_update_fence(obj, reg, enable);
   3301 	obj->fence_dirty = false;
   3302 
   3303 	return 0;
   3304 }
   3305 
   3306 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
   3307 				     struct drm_mm_node *gtt_space,
   3308 				     unsigned long cache_level)
   3309 {
   3310 	struct drm_mm_node *other;
   3311 
   3312 	/* On non-LLC machines we have to be careful when putting differing
   3313 	 * types of snoopable memory together to avoid the prefetcher
   3314 	 * crossing memory domains and dieing.
   3315 	 */
   3316 	if (HAS_LLC(dev))
   3317 		return true;
   3318 
   3319 	if (gtt_space == NULL)
   3320 		return true;
   3321 
   3322 	if (list_empty(&gtt_space->node_list))
   3323 		return true;
   3324 
   3325 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
   3326 	if (other->allocated && !other->hole_follows && other->color != cache_level)
   3327 		return false;
   3328 
   3329 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
   3330 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
   3331 		return false;
   3332 
   3333 	return true;
   3334 }
   3335 
   3336 static void i915_gem_verify_gtt(struct drm_device *dev)
   3337 {
   3338 #if WATCH_GTT
   3339 	struct drm_i915_private *dev_priv = dev->dev_private;
   3340 	struct drm_i915_gem_object *obj;
   3341 	int err = 0;
   3342 
   3343 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
   3344 		if (obj->gtt_space == NULL) {
   3345 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
   3346 			err++;
   3347 			continue;
   3348 		}
   3349 
   3350 		if (obj->cache_level != obj->gtt_space->color) {
   3351 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
   3352 			       obj->gtt_space->start,
   3353 			       obj->gtt_space->start + obj->gtt_space->size,
   3354 			       obj->cache_level,
   3355 			       obj->gtt_space->color);
   3356 			err++;
   3357 			continue;
   3358 		}
   3359 
   3360 		if (!i915_gem_valid_gtt_space(dev,
   3361 					      obj->gtt_space,
   3362 					      obj->cache_level)) {
   3363 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
   3364 			       obj->gtt_space->start,
   3365 			       obj->gtt_space->start + obj->gtt_space->size,
   3366 			       obj->cache_level);
   3367 			err++;
   3368 			continue;
   3369 		}
   3370 	}
   3371 
   3372 	WARN_ON(err);
   3373 #endif
   3374 }
   3375 
   3376 /**
   3377  * Finds free space in the GTT aperture and binds the object there.
   3378  */
   3379 static int
   3380 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
   3381 			    unsigned alignment,
   3382 			    bool map_and_fenceable,
   3383 			    bool nonblocking)
   3384 {
   3385 	struct drm_device *dev = obj->base.dev;
   3386 	drm_i915_private_t *dev_priv = dev->dev_private;
   3387 	struct drm_mm_node *node;
   3388 	u32 size, fence_size, fence_alignment, unfenced_alignment;
   3389 	bool mappable, fenceable;
   3390 	int ret;
   3391 
   3392 	if (obj->madv != I915_MADV_WILLNEED) {
   3393 		DRM_ERROR("Attempting to bind a purgeable object\n");
   3394 		return -EINVAL;
   3395 	}
   3396 
   3397 	fence_size = i915_gem_get_gtt_size(dev,
   3398 					   obj->base.size,
   3399 					   obj->tiling_mode);
   3400 	fence_alignment = i915_gem_get_gtt_alignment(dev,
   3401 						     obj->base.size,
   3402 						     obj->tiling_mode);
   3403 	unfenced_alignment =
   3404 		i915_gem_get_unfenced_gtt_alignment(dev,
   3405 						    obj->base.size,
   3406 						    obj->tiling_mode);
   3407 
   3408 	if (alignment == 0)
   3409 		alignment = map_and_fenceable ? fence_alignment :
   3410 						unfenced_alignment;
   3411 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
   3412 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
   3413 		return -EINVAL;
   3414 	}
   3415 
   3416 	size = map_and_fenceable ? fence_size : obj->base.size;
   3417 
   3418 	/* If the object is bigger than the entire aperture, reject it early
   3419 	 * before evicting everything in a vain attempt to find space.
   3420 	 */
   3421 	if (obj->base.size >
   3422 	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
   3423 		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
   3424 		return -E2BIG;
   3425 	}
   3426 
   3427 	ret = i915_gem_object_get_pages(obj);
   3428 	if (ret)
   3429 		return ret;
   3430 
   3431 	i915_gem_object_pin_pages(obj);
   3432 
   3433 	node = kzalloc(sizeof(*node), GFP_KERNEL);
   3434 	if (node == NULL) {
   3435 		i915_gem_object_unpin_pages(obj);
   3436 		return -ENOMEM;
   3437 	}
   3438 
   3439  search_free:
   3440 	if (map_and_fenceable)
   3441 		ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
   3442 							  size, alignment, obj->cache_level,
   3443 							  0, dev_priv->mm.gtt_mappable_end);
   3444 	else
   3445 		ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
   3446 						 size, alignment, obj->cache_level);
   3447 	if (ret) {
   3448 		ret = i915_gem_evict_something(dev, size, alignment,
   3449 					       obj->cache_level,
   3450 					       map_and_fenceable,
   3451 					       nonblocking);
   3452 		if (ret == 0)
   3453 			goto search_free;
   3454 
   3455 		i915_gem_object_unpin_pages(obj);
   3456 		kfree(node);
   3457 		return ret;
   3458 	}
   3459 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
   3460 		i915_gem_object_unpin_pages(obj);
   3461 		drm_mm_put_block(node);
   3462 		return -EINVAL;
   3463 	}
   3464 
   3465 	ret = i915_gem_gtt_prepare_object(obj);
   3466 	if (ret) {
   3467 		i915_gem_object_unpin_pages(obj);
   3468 		drm_mm_put_block(node);
   3469 		return ret;
   3470 	}
   3471 
   3472 	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
   3473 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
   3474 
   3475 	obj->gtt_space = node;
   3476 	obj->gtt_offset = node->start;
   3477 
   3478 	fenceable =
   3479 		node->size == fence_size &&
   3480 		(node->start & (fence_alignment - 1)) == 0;
   3481 
   3482 	mappable =
   3483 		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
   3484 
   3485 	obj->map_and_fenceable = mappable && fenceable;
   3486 
   3487 	i915_gem_object_unpin_pages(obj);
   3488 	trace_i915_gem_object_bind(obj, map_and_fenceable);
   3489 	i915_gem_verify_gtt(dev);
   3490 	return 0;
   3491 }
   3492 
   3493 void
   3494 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
   3495 {
   3496 	/* If we don't have a page list set up, then we're not pinned
   3497 	 * to GPU, and we can ignore the cache flush because it'll happen
   3498 	 * again at bind time.
   3499 	 */
   3500 	if (obj->pages == NULL)
   3501 		return;
   3502 
   3503 	/* If the GPU is snooping the contents of the CPU cache,
   3504 	 * we do not need to manually clear the CPU cache lines.  However,
   3505 	 * the caches are only snooped when the render cache is
   3506 	 * flushed/invalidated.  As we always have to emit invalidations
   3507 	 * and flushes when moving into and out of the RENDER domain, correct
   3508 	 * snooping behaviour occurs naturally as the result of our domain
   3509 	 * tracking.
   3510 	 */
   3511 	if (obj->cache_level != I915_CACHE_NONE)
   3512 		return;
   3513 
   3514 	trace_i915_gem_object_clflush(obj);
   3515 
   3516 #ifdef __NetBSD__
   3517 	drm_clflush_pglist(&obj->igo_pageq);
   3518 #else
   3519 	drm_clflush_sg(obj->pages);
   3520 #endif
   3521 }
   3522 
   3523 /** Flushes the GTT write domain for the object if it's dirty. */
   3524 static void
   3525 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
   3526 {
   3527 	uint32_t old_write_domain;
   3528 
   3529 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
   3530 		return;
   3531 
   3532 	/* No actual flushing is required for the GTT write domain.  Writes
   3533 	 * to it immediately go to main memory as far as we know, so there's
   3534 	 * no chipset flush.  It also doesn't land in render cache.
   3535 	 *
   3536 	 * However, we do have to enforce the order so that all writes through
   3537 	 * the GTT land before any writes to the device, such as updates to
   3538 	 * the GATT itself.
   3539 	 */
   3540 	wmb();
   3541 
   3542 	old_write_domain = obj->base.write_domain;
   3543 	obj->base.write_domain = 0;
   3544 
   3545 	trace_i915_gem_object_change_domain(obj,
   3546 					    obj->base.read_domains,
   3547 					    old_write_domain);
   3548 }
   3549 
   3550 /** Flushes the CPU write domain for the object if it's dirty. */
   3551 static void
   3552 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
   3553 {
   3554 	uint32_t old_write_domain;
   3555 
   3556 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
   3557 		return;
   3558 
   3559 	i915_gem_clflush_object(obj);
   3560 	i915_gem_chipset_flush(obj->base.dev);
   3561 	old_write_domain = obj->base.write_domain;
   3562 	obj->base.write_domain = 0;
   3563 
   3564 	trace_i915_gem_object_change_domain(obj,
   3565 					    obj->base.read_domains,
   3566 					    old_write_domain);
   3567 }
   3568 
   3569 /**
   3570  * Moves a single object to the GTT read, and possibly write domain.
   3571  *
   3572  * This function returns when the move is complete, including waiting on
   3573  * flushes to occur.
   3574  */
   3575 int
   3576 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
   3577 {
   3578 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
   3579 	uint32_t old_write_domain, old_read_domains;
   3580 	int ret;
   3581 
   3582 	/* Not valid to be called on unbound objects. */
   3583 	if (obj->gtt_space == NULL)
   3584 		return -EINVAL;
   3585 
   3586 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
   3587 		return 0;
   3588 
   3589 	ret = i915_gem_object_wait_rendering(obj, !write);
   3590 	if (ret)
   3591 		return ret;
   3592 
   3593 	i915_gem_object_flush_cpu_write_domain(obj);
   3594 
   3595 	old_write_domain = obj->base.write_domain;
   3596 	old_read_domains = obj->base.read_domains;
   3597 
   3598 	/* It should now be out of any other write domains, and we can update
   3599 	 * the domain values for our changes.
   3600 	 */
   3601 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
   3602 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   3603 	if (write) {
   3604 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
   3605 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
   3606 		obj->dirty = 1;
   3607 	}
   3608 
   3609 	trace_i915_gem_object_change_domain(obj,
   3610 					    old_read_domains,
   3611 					    old_write_domain);
   3612 
   3613 	/* And bump the LRU for this access */
   3614 	if (i915_gem_object_is_inactive(obj))
   3615 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
   3616 
   3617 	return 0;
   3618 }
   3619 
   3620 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
   3621 				    enum i915_cache_level cache_level)
   3622 {
   3623 	struct drm_device *dev = obj->base.dev;
   3624 	drm_i915_private_t *dev_priv = dev->dev_private;
   3625 	int ret;
   3626 
   3627 	if (obj->cache_level == cache_level)
   3628 		return 0;
   3629 
   3630 	if (obj->pin_count) {
   3631 		DRM_DEBUG("can not change the cache level of pinned objects\n");
   3632 		return -EBUSY;
   3633 	}
   3634 
   3635 	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
   3636 		ret = i915_gem_object_unbind(obj);
   3637 		if (ret)
   3638 			return ret;
   3639 	}
   3640 
   3641 	if (obj->gtt_space) {
   3642 		ret = i915_gem_object_finish_gpu(obj);
   3643 		if (ret)
   3644 			return ret;
   3645 
   3646 		i915_gem_object_finish_gtt(obj);
   3647 
   3648 		/* Before SandyBridge, you could not use tiling or fence
   3649 		 * registers with snooped memory, so relinquish any fences
   3650 		 * currently pointing to our region in the aperture.
   3651 		 */
   3652 		if (INTEL_INFO(dev)->gen < 6) {
   3653 			ret = i915_gem_object_put_fence(obj);
   3654 			if (ret)
   3655 				return ret;
   3656 		}
   3657 
   3658 		if (obj->has_global_gtt_mapping)
   3659 			i915_gem_gtt_bind_object(obj, cache_level);
   3660 		if (obj->has_aliasing_ppgtt_mapping)
   3661 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
   3662 					       obj, cache_level);
   3663 
   3664 		obj->gtt_space->color = cache_level;
   3665 	}
   3666 
   3667 	if (cache_level == I915_CACHE_NONE) {
   3668 		u32 old_read_domains, old_write_domain;
   3669 
   3670 		/* If we're coming from LLC cached, then we haven't
   3671 		 * actually been tracking whether the data is in the
   3672 		 * CPU cache or not, since we only allow one bit set
   3673 		 * in obj->write_domain and have been skipping the clflushes.
   3674 		 * Just set it to the CPU cache for now.
   3675 		 */
   3676 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
   3677 		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
   3678 
   3679 		old_read_domains = obj->base.read_domains;
   3680 		old_write_domain = obj->base.write_domain;
   3681 
   3682 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   3683 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   3684 
   3685 		trace_i915_gem_object_change_domain(obj,
   3686 						    old_read_domains,
   3687 						    old_write_domain);
   3688 	}
   3689 
   3690 	obj->cache_level = cache_level;
   3691 	i915_gem_verify_gtt(dev);
   3692 	return 0;
   3693 }
   3694 
   3695 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
   3696 			       struct drm_file *file)
   3697 {
   3698 	struct drm_i915_gem_caching *args = data;
   3699 	struct drm_i915_gem_object *obj;
   3700 	int ret;
   3701 
   3702 	ret = i915_mutex_lock_interruptible(dev);
   3703 	if (ret)
   3704 		return ret;
   3705 
   3706 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   3707 	if (&obj->base == NULL) {
   3708 		ret = -ENOENT;
   3709 		goto unlock;
   3710 	}
   3711 
   3712 	args->caching = obj->cache_level != I915_CACHE_NONE;
   3713 
   3714 	drm_gem_object_unreference(&obj->base);
   3715 unlock:
   3716 	mutex_unlock(&dev->struct_mutex);
   3717 	return ret;
   3718 }
   3719 
   3720 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
   3721 			       struct drm_file *file)
   3722 {
   3723 	struct drm_i915_gem_caching *args = data;
   3724 	struct drm_i915_gem_object *obj;
   3725 	enum i915_cache_level level;
   3726 	int ret;
   3727 
   3728 	switch (args->caching) {
   3729 	case I915_CACHING_NONE:
   3730 		level = I915_CACHE_NONE;
   3731 		break;
   3732 	case I915_CACHING_CACHED:
   3733 		level = I915_CACHE_LLC;
   3734 		break;
   3735 	default:
   3736 		return -EINVAL;
   3737 	}
   3738 
   3739 	ret = i915_mutex_lock_interruptible(dev);
   3740 	if (ret)
   3741 		return ret;
   3742 
   3743 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   3744 	if (&obj->base == NULL) {
   3745 		ret = -ENOENT;
   3746 		goto unlock;
   3747 	}
   3748 
   3749 	ret = i915_gem_object_set_cache_level(obj, level);
   3750 
   3751 	drm_gem_object_unreference(&obj->base);
   3752 unlock:
   3753 	mutex_unlock(&dev->struct_mutex);
   3754 	return ret;
   3755 }
   3756 
   3757 /*
   3758  * Prepare buffer for display plane (scanout, cursors, etc).
   3759  * Can be called from an uninterruptible phase (modesetting) and allows
   3760  * any flushes to be pipelined (for pageflips).
   3761  */
   3762 int
   3763 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
   3764 				     u32 alignment,
   3765 				     struct intel_ring_buffer *pipelined)
   3766 {
   3767 	u32 old_read_domains, old_write_domain;
   3768 	int ret;
   3769 
   3770 	if (pipelined != obj->ring) {
   3771 		ret = i915_gem_object_sync(obj, pipelined);
   3772 		if (ret)
   3773 			return ret;
   3774 	}
   3775 
   3776 	/* The display engine is not coherent with the LLC cache on gen6.  As
   3777 	 * a result, we make sure that the pinning that is about to occur is
   3778 	 * done with uncached PTEs. This is lowest common denominator for all
   3779 	 * chipsets.
   3780 	 *
   3781 	 * However for gen6+, we could do better by using the GFDT bit instead
   3782 	 * of uncaching, which would allow us to flush all the LLC-cached data
   3783 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
   3784 	 */
   3785 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
   3786 	if (ret)
   3787 		return ret;
   3788 
   3789 	/* As the user may map the buffer once pinned in the display plane
   3790 	 * (e.g. libkms for the bootup splash), we have to ensure that we
   3791 	 * always use map_and_fenceable for all scanout buffers.
   3792 	 */
   3793 	ret = i915_gem_object_pin(obj, alignment, true, false);
   3794 	if (ret)
   3795 		return ret;
   3796 
   3797 	i915_gem_object_flush_cpu_write_domain(obj);
   3798 
   3799 	old_write_domain = obj->base.write_domain;
   3800 	old_read_domains = obj->base.read_domains;
   3801 
   3802 	/* It should now be out of any other write domains, and we can update
   3803 	 * the domain values for our changes.
   3804 	 */
   3805 	obj->base.write_domain = 0;
   3806 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   3807 
   3808 	trace_i915_gem_object_change_domain(obj,
   3809 					    old_read_domains,
   3810 					    old_write_domain);
   3811 
   3812 	return 0;
   3813 }
   3814 
   3815 int
   3816 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
   3817 {
   3818 	int ret;
   3819 
   3820 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
   3821 		return 0;
   3822 
   3823 	ret = i915_gem_object_wait_rendering(obj, false);
   3824 	if (ret)
   3825 		return ret;
   3826 
   3827 	/* Ensure that we invalidate the GPU's caches and TLBs. */
   3828 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
   3829 	return 0;
   3830 }
   3831 
   3832 /**
   3833  * Moves a single object to the CPU read, and possibly write domain.
   3834  *
   3835  * This function returns when the move is complete, including waiting on
   3836  * flushes to occur.
   3837  */
   3838 int
   3839 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
   3840 {
   3841 	uint32_t old_write_domain, old_read_domains;
   3842 	int ret;
   3843 
   3844 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
   3845 		return 0;
   3846 
   3847 	ret = i915_gem_object_wait_rendering(obj, !write);
   3848 	if (ret)
   3849 		return ret;
   3850 
   3851 	i915_gem_object_flush_gtt_write_domain(obj);
   3852 
   3853 	old_write_domain = obj->base.write_domain;
   3854 	old_read_domains = obj->base.read_domains;
   3855 
   3856 	/* Flush the CPU cache if it's still invalid. */
   3857 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
   3858 		i915_gem_clflush_object(obj);
   3859 
   3860 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
   3861 	}
   3862 
   3863 	/* It should now be out of any other write domains, and we can update
   3864 	 * the domain values for our changes.
   3865 	 */
   3866 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
   3867 
   3868 	/* If we're writing through the CPU, then the GPU read domains will
   3869 	 * need to be invalidated at next use.
   3870 	 */
   3871 	if (write) {
   3872 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   3873 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   3874 	}
   3875 
   3876 	trace_i915_gem_object_change_domain(obj,
   3877 					    old_read_domains,
   3878 					    old_write_domain);
   3879 
   3880 	return 0;
   3881 }
   3882 
   3883 /* Throttle our rendering by waiting until the ring has completed our requests
   3884  * emitted over 20 msec ago.
   3885  *
   3886  * Note that if we were to use the current jiffies each time around the loop,
   3887  * we wouldn't escape the function with any frames outstanding if the time to
   3888  * render a frame was over 20ms.
   3889  *
   3890  * This should get us reasonable parallelism between CPU and GPU but also
   3891  * relatively low latency when blocking on a particular request to finish.
   3892  */
   3893 static int
   3894 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
   3895 {
   3896 	struct drm_i915_private *dev_priv = dev->dev_private;
   3897 	struct drm_i915_file_private *file_priv = file->driver_priv;
   3898 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
   3899 	struct drm_i915_gem_request *request;
   3900 	struct intel_ring_buffer *ring = NULL;
   3901 	u32 seqno = 0;
   3902 	int ret;
   3903 
   3904 	if (atomic_read(&dev_priv->mm.wedged))
   3905 		return -EIO;
   3906 
   3907 	spin_lock(&file_priv->mm.lock);
   3908 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
   3909 		if (time_after_eq(request->emitted_jiffies, recent_enough))
   3910 			break;
   3911 
   3912 		ring = request->ring;
   3913 		seqno = request->seqno;
   3914 	}
   3915 	spin_unlock(&file_priv->mm.lock);
   3916 
   3917 	if (seqno == 0)
   3918 		return 0;
   3919 
   3920 	ret = __wait_seqno(ring, seqno, true, NULL);
   3921 	if (ret == 0)
   3922 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
   3923 
   3924 	return ret;
   3925 }
   3926 
   3927 int
   3928 i915_gem_object_pin(struct drm_i915_gem_object *obj,
   3929 		    uint32_t alignment,
   3930 		    bool map_and_fenceable,
   3931 		    bool nonblocking)
   3932 {
   3933 	int ret;
   3934 
   3935 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
   3936 		return -EBUSY;
   3937 
   3938 	if (obj->gtt_space != NULL) {
   3939 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
   3940 		    (map_and_fenceable && !obj->map_and_fenceable)) {
   3941 			WARN(obj->pin_count,
   3942 			     "bo is already pinned with incorrect alignment:"
   3943 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
   3944 			     " obj->map_and_fenceable=%d\n",
   3945 			     obj->gtt_offset, alignment,
   3946 			     map_and_fenceable,
   3947 			     obj->map_and_fenceable);
   3948 			ret = i915_gem_object_unbind(obj);
   3949 			if (ret)
   3950 				return ret;
   3951 		}
   3952 	}
   3953 
   3954 	if (obj->gtt_space == NULL) {
   3955 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3956 
   3957 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
   3958 						  map_and_fenceable,
   3959 						  nonblocking);
   3960 		if (ret)
   3961 			return ret;
   3962 
   3963 		if (!dev_priv->mm.aliasing_ppgtt)
   3964 			i915_gem_gtt_bind_object(obj, obj->cache_level);
   3965 	}
   3966 
   3967 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
   3968 		i915_gem_gtt_bind_object(obj, obj->cache_level);
   3969 
   3970 	obj->pin_count++;
   3971 	obj->pin_mappable |= map_and_fenceable;
   3972 
   3973 	return 0;
   3974 }
   3975 
   3976 void
   3977 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
   3978 {
   3979 	BUG_ON(obj->pin_count == 0);
   3980 	BUG_ON(obj->gtt_space == NULL);
   3981 
   3982 	if (--obj->pin_count == 0)
   3983 		obj->pin_mappable = false;
   3984 }
   3985 
   3986 int
   3987 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
   3988 		   struct drm_file *file)
   3989 {
   3990 	struct drm_i915_gem_pin *args = data;
   3991 	struct drm_i915_gem_object *obj;
   3992 	int ret;
   3993 
   3994 	ret = i915_mutex_lock_interruptible(dev);
   3995 	if (ret)
   3996 		return ret;
   3997 
   3998 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   3999 	if (&obj->base == NULL) {
   4000 		ret = -ENOENT;
   4001 		goto unlock;
   4002 	}
   4003 
   4004 	if (obj->madv != I915_MADV_WILLNEED) {
   4005 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
   4006 		ret = -EINVAL;
   4007 		goto out;
   4008 	}
   4009 
   4010 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
   4011 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
   4012 			  args->handle);
   4013 		ret = -EINVAL;
   4014 		goto out;
   4015 	}
   4016 
   4017 	if (obj->user_pin_count == 0) {
   4018 		ret = i915_gem_object_pin(obj, args->alignment, true, false);
   4019 		if (ret)
   4020 			goto out;
   4021 	}
   4022 
   4023 	obj->user_pin_count++;
   4024 	obj->pin_filp = file;
   4025 
   4026 	/* XXX - flush the CPU caches for pinned objects
   4027 	 * as the X server doesn't manage domains yet
   4028 	 */
   4029 	i915_gem_object_flush_cpu_write_domain(obj);
   4030 	args->offset = obj->gtt_offset;
   4031 out:
   4032 	drm_gem_object_unreference(&obj->base);
   4033 unlock:
   4034 	mutex_unlock(&dev->struct_mutex);
   4035 	return ret;
   4036 }
   4037 
   4038 int
   4039 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
   4040 		     struct drm_file *file)
   4041 {
   4042 	struct drm_i915_gem_pin *args = data;
   4043 	struct drm_i915_gem_object *obj;
   4044 	int ret;
   4045 
   4046 	ret = i915_mutex_lock_interruptible(dev);
   4047 	if (ret)
   4048 		return ret;
   4049 
   4050 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   4051 	if (&obj->base == NULL) {
   4052 		ret = -ENOENT;
   4053 		goto unlock;
   4054 	}
   4055 
   4056 	if (obj->pin_filp != file) {
   4057 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
   4058 			  args->handle);
   4059 		ret = -EINVAL;
   4060 		goto out;
   4061 	}
   4062 	obj->user_pin_count--;
   4063 	if (obj->user_pin_count == 0) {
   4064 		obj->pin_filp = NULL;
   4065 		i915_gem_object_unpin(obj);
   4066 	}
   4067 
   4068 out:
   4069 	drm_gem_object_unreference(&obj->base);
   4070 unlock:
   4071 	mutex_unlock(&dev->struct_mutex);
   4072 	return ret;
   4073 }
   4074 
   4075 int
   4076 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
   4077 		    struct drm_file *file)
   4078 {
   4079 	struct drm_i915_gem_busy *args = data;
   4080 	struct drm_i915_gem_object *obj;
   4081 	int ret;
   4082 
   4083 	ret = i915_mutex_lock_interruptible(dev);
   4084 	if (ret)
   4085 		return ret;
   4086 
   4087 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   4088 	if (&obj->base == NULL) {
   4089 		ret = -ENOENT;
   4090 		goto unlock;
   4091 	}
   4092 
   4093 	/* Count all active objects as busy, even if they are currently not used
   4094 	 * by the gpu. Users of this interface expect objects to eventually
   4095 	 * become non-busy without any further actions, therefore emit any
   4096 	 * necessary flushes here.
   4097 	 */
   4098 	ret = i915_gem_object_flush_active(obj);
   4099 
   4100 	args->busy = obj->active;
   4101 	if (obj->ring) {
   4102 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
   4103 		args->busy |= intel_ring_flag(obj->ring) << 16;
   4104 	}
   4105 
   4106 	drm_gem_object_unreference(&obj->base);
   4107 unlock:
   4108 	mutex_unlock(&dev->struct_mutex);
   4109 	return ret;
   4110 }
   4111 
   4112 int
   4113 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
   4114 			struct drm_file *file_priv)
   4115 {
   4116 	return i915_gem_ring_throttle(dev, file_priv);
   4117 }
   4118 
   4119 int
   4120 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   4121 		       struct drm_file *file_priv)
   4122 {
   4123 	struct drm_i915_gem_madvise *args = data;
   4124 	struct drm_i915_gem_object *obj;
   4125 	int ret;
   4126 
   4127 	switch (args->madv) {
   4128 	case I915_MADV_DONTNEED:
   4129 	case I915_MADV_WILLNEED:
   4130 	    break;
   4131 	default:
   4132 	    return -EINVAL;
   4133 	}
   4134 
   4135 	ret = i915_mutex_lock_interruptible(dev);
   4136 	if (ret)
   4137 		return ret;
   4138 
   4139 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
   4140 	if (&obj->base == NULL) {
   4141 		ret = -ENOENT;
   4142 		goto unlock;
   4143 	}
   4144 
   4145 	if (obj->pin_count) {
   4146 		ret = -EINVAL;
   4147 		goto out;
   4148 	}
   4149 
   4150 	if (obj->madv != __I915_MADV_PURGED)
   4151 		obj->madv = args->madv;
   4152 
   4153 	/* if the object is no longer attached, discard its backing storage */
   4154 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
   4155 		i915_gem_object_truncate(obj);
   4156 
   4157 	args->retained = obj->madv != __I915_MADV_PURGED;
   4158 
   4159 out:
   4160 	drm_gem_object_unreference(&obj->base);
   4161 unlock:
   4162 	mutex_unlock(&dev->struct_mutex);
   4163 	return ret;
   4164 }
   4165 
   4166 void i915_gem_object_init(struct drm_i915_gem_object *obj,
   4167 			  const struct drm_i915_gem_object_ops *ops)
   4168 {
   4169 	INIT_LIST_HEAD(&obj->mm_list);
   4170 	INIT_LIST_HEAD(&obj->gtt_list);
   4171 	INIT_LIST_HEAD(&obj->ring_list);
   4172 	INIT_LIST_HEAD(&obj->exec_list);
   4173 
   4174 	obj->ops = ops;
   4175 
   4176 	obj->fence_reg = I915_FENCE_REG_NONE;
   4177 	obj->madv = I915_MADV_WILLNEED;
   4178 	/* Avoid an unnecessary call to unbind on the first bind. */
   4179 	obj->map_and_fenceable = true;
   4180 
   4181 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
   4182 }
   4183 
   4184 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
   4185 	.get_pages = i915_gem_object_get_pages_gtt,
   4186 	.put_pages = i915_gem_object_put_pages_gtt,
   4187 };
   4188 
   4189 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
   4190 						  size_t size)
   4191 {
   4192 	struct drm_i915_gem_object *obj;
   4193 #ifndef __NetBSD__		/* XXX >32bit dma?  */
   4194 	struct address_space *mapping;
   4195 	u32 mask;
   4196 #endif
   4197 
   4198 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
   4199 	if (obj == NULL)
   4200 		return NULL;
   4201 
   4202 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
   4203 		kfree(obj);
   4204 		return NULL;
   4205 	}
   4206 
   4207 #ifndef __NetBSD__		/* XXX >32bit dma?  */
   4208 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
   4209 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
   4210 		/* 965gm cannot relocate objects above 4GiB. */
   4211 		mask &= ~__GFP_HIGHMEM;
   4212 		mask |= __GFP_DMA32;
   4213 	}
   4214 
   4215 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
   4216 	mapping_set_gfp_mask(mapping, mask);
   4217 #endif
   4218 
   4219 	i915_gem_object_init(obj, &i915_gem_object_ops);
   4220 
   4221 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4222 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4223 
   4224 	if (HAS_LLC(dev)) {
   4225 		/* On some devices, we can have the GPU use the LLC (the CPU
   4226 		 * cache) for about a 10% performance improvement
   4227 		 * compared to uncached.  Graphics requests other than
   4228 		 * display scanout are coherent with the CPU in
   4229 		 * accessing this cache.  This means in this mode we
   4230 		 * don't need to clflush on the CPU side, and on the
   4231 		 * GPU side we only need to flush internal caches to
   4232 		 * get data visible to the CPU.
   4233 		 *
   4234 		 * However, we maintain the display planes as UC, and so
   4235 		 * need to rebind when first used as such.
   4236 		 */
   4237 		obj->cache_level = I915_CACHE_LLC;
   4238 	} else
   4239 		obj->cache_level = I915_CACHE_NONE;
   4240 
   4241 	return obj;
   4242 }
   4243 
   4244 int i915_gem_init_object(struct drm_gem_object *obj)
   4245 {
   4246 	BUG();
   4247 
   4248 	return 0;
   4249 }
   4250 
   4251 void i915_gem_free_object(struct drm_gem_object *gem_obj)
   4252 {
   4253 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   4254 	struct drm_device *dev = obj->base.dev;
   4255 	drm_i915_private_t *dev_priv = dev->dev_private;
   4256 
   4257 	trace_i915_gem_object_destroy(obj);
   4258 
   4259 	if (obj->phys_obj)
   4260 		i915_gem_detach_phys_object(dev, obj);
   4261 
   4262 	obj->pin_count = 0;
   4263 	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
   4264 		bool was_interruptible;
   4265 
   4266 		was_interruptible = dev_priv->mm.interruptible;
   4267 		dev_priv->mm.interruptible = false;
   4268 
   4269 		WARN_ON(i915_gem_object_unbind(obj));
   4270 
   4271 		dev_priv->mm.interruptible = was_interruptible;
   4272 	}
   4273 
   4274 	obj->pages_pin_count = 0;
   4275 	i915_gem_object_put_pages(obj);
   4276 	i915_gem_object_free_mmap_offset(obj);
   4277 
   4278 	BUG_ON(obj->pages);
   4279 
   4280 #ifndef __NetBSD__		/* XXX drm prime */
   4281 	if (obj->base.import_attach)
   4282 		drm_prime_gem_destroy(&obj->base, NULL);
   4283 #endif
   4284 
   4285 	drm_gem_object_release(&obj->base);
   4286 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
   4287 
   4288 	kfree(obj->bit_17);
   4289 	kfree(obj);
   4290 }
   4291 
   4292 int
   4293 i915_gem_idle(struct drm_device *dev)
   4294 {
   4295 	drm_i915_private_t *dev_priv = dev->dev_private;
   4296 	int ret;
   4297 
   4298 	mutex_lock(&dev->struct_mutex);
   4299 
   4300 	if (dev_priv->mm.suspended) {
   4301 		mutex_unlock(&dev->struct_mutex);
   4302 		return 0;
   4303 	}
   4304 
   4305 	ret = i915_gpu_idle(dev);
   4306 	if (ret) {
   4307 		mutex_unlock(&dev->struct_mutex);
   4308 		return ret;
   4309 	}
   4310 	i915_gem_retire_requests(dev);
   4311 
   4312 	/* Under UMS, be paranoid and evict. */
   4313 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   4314 		i915_gem_evict_everything(dev);
   4315 
   4316 	i915_gem_reset_fences(dev);
   4317 
   4318 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
   4319 	 * We need to replace this with a semaphore, or something.
   4320 	 * And not confound mm.suspended!
   4321 	 */
   4322 	dev_priv->mm.suspended = 1;
   4323 	del_timer_sync(&dev_priv->hangcheck_timer);
   4324 
   4325 	i915_kernel_lost_context(dev);
   4326 	i915_gem_cleanup_ringbuffer(dev);
   4327 
   4328 	mutex_unlock(&dev->struct_mutex);
   4329 
   4330 	/* Cancel the retire work handler, which should be idle now. */
   4331 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
   4332 
   4333 	return 0;
   4334 }
   4335 
   4336 void i915_gem_l3_remap(struct drm_device *dev)
   4337 {
   4338 	drm_i915_private_t *dev_priv = dev->dev_private;
   4339 	u32 misccpctl;
   4340 	int i;
   4341 
   4342 	if (!IS_IVYBRIDGE(dev))
   4343 		return;
   4344 
   4345 	if (!dev_priv->l3_parity.remap_info)
   4346 		return;
   4347 
   4348 	misccpctl = I915_READ(GEN7_MISCCPCTL);
   4349 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
   4350 	POSTING_READ(GEN7_MISCCPCTL);
   4351 
   4352 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
   4353 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
   4354 		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
   4355 			DRM_DEBUG("0x%x was already programmed to %x\n",
   4356 				  GEN7_L3LOG_BASE + i, remap);
   4357 		if (remap && !dev_priv->l3_parity.remap_info[i/4])
   4358 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
   4359 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
   4360 	}
   4361 
   4362 	/* Make sure all the writes land before disabling dop clock gating */
   4363 	POSTING_READ(GEN7_L3LOG_BASE);
   4364 
   4365 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
   4366 }
   4367 
   4368 void i915_gem_init_swizzling(struct drm_device *dev)
   4369 {
   4370 	drm_i915_private_t *dev_priv = dev->dev_private;
   4371 
   4372 	if (INTEL_INFO(dev)->gen < 5 ||
   4373 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
   4374 		return;
   4375 
   4376 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
   4377 				 DISP_TILE_SURFACE_SWIZZLING);
   4378 
   4379 	if (IS_GEN5(dev))
   4380 		return;
   4381 
   4382 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
   4383 	if (IS_GEN6(dev))
   4384 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
   4385 	else
   4386 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
   4387 }
   4388 
   4389 static bool
   4390 intel_enable_blt(struct drm_device *dev)
   4391 {
   4392 	if (!HAS_BLT(dev))
   4393 		return false;
   4394 
   4395 	/* The blitter was dysfunctional on early prototypes */
   4396 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
   4397 		DRM_INFO("BLT not supported on this pre-production hardware;"
   4398 			 " graphics performance will be degraded.\n");
   4399 		return false;
   4400 	}
   4401 
   4402 	return true;
   4403 }
   4404 
   4405 int
   4406 i915_gem_init_hw(struct drm_device *dev)
   4407 {
   4408 	drm_i915_private_t *dev_priv = dev->dev_private;
   4409 	int ret;
   4410 
   4411 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
   4412 		return -EIO;
   4413 
   4414 	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
   4415 		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
   4416 
   4417 	i915_gem_l3_remap(dev);
   4418 
   4419 	i915_gem_init_swizzling(dev);
   4420 
   4421 	ret = intel_init_render_ring_buffer(dev);
   4422 	if (ret)
   4423 		return ret;
   4424 
   4425 	if (HAS_BSD(dev)) {
   4426 		ret = intel_init_bsd_ring_buffer(dev);
   4427 		if (ret)
   4428 			goto cleanup_render_ring;
   4429 	}
   4430 
   4431 	if (intel_enable_blt(dev)) {
   4432 		ret = intel_init_blt_ring_buffer(dev);
   4433 		if (ret)
   4434 			goto cleanup_bsd_ring;
   4435 	}
   4436 
   4437 	dev_priv->next_seqno = 1;
   4438 
   4439 	/*
   4440 	 * XXX: There was some w/a described somewhere suggesting loading
   4441 	 * contexts before PPGTT.
   4442 	 */
   4443 	i915_gem_context_init(dev);
   4444 	i915_gem_init_ppgtt(dev);
   4445 
   4446 	return 0;
   4447 
   4448 cleanup_bsd_ring:
   4449 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
   4450 cleanup_render_ring:
   4451 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
   4452 	return ret;
   4453 }
   4454 
   4455 static bool
   4456 intel_enable_ppgtt(struct drm_device *dev)
   4457 {
   4458 #ifdef __NetBSD__		/* XXX ppgtt */
   4459 	return false;
   4460 #else
   4461 	if (i915_enable_ppgtt >= 0)
   4462 		return i915_enable_ppgtt;
   4463 
   4464 #ifdef CONFIG_INTEL_IOMMU
   4465 	/* Disable ppgtt on SNB if VT-d is on. */
   4466 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
   4467 		return false;
   4468 #endif
   4469 
   4470 	return true;
   4471 #endif
   4472 }
   4473 
   4474 int i915_gem_init(struct drm_device *dev)
   4475 {
   4476 	struct drm_i915_private *dev_priv = dev->dev_private;
   4477 	unsigned long gtt_size, mappable_size;
   4478 	int ret;
   4479 
   4480 	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
   4481 	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
   4482 
   4483 	mutex_lock(&dev->struct_mutex);
   4484 	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
   4485 		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
   4486 		 * aperture accordingly when using aliasing ppgtt. */
   4487 		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
   4488 
   4489 		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
   4490 
   4491 		ret = i915_gem_init_aliasing_ppgtt(dev);
   4492 		if (ret) {
   4493 			i915_gem_fini_global_gtt(dev);
   4494 			mutex_unlock(&dev->struct_mutex);
   4495 			return ret;
   4496 		}
   4497 	} else {
   4498 		/* Let GEM Manage all of the aperture.
   4499 		 *
   4500 		 * However, leave one page at the end still bound to the scratch
   4501 		 * page.  There are a number of places where the hardware
   4502 		 * apparently prefetches past the end of the object, and we've
   4503 		 * seen multiple hangs with the GPU head pointer stuck in a
   4504 		 * batchbuffer bound at the last page of the aperture.  One page
   4505 		 * should be enough to keep any prefetching inside of the
   4506 		 * aperture.
   4507 		 */
   4508 		i915_gem_init_global_gtt(dev, 0, mappable_size,
   4509 					 gtt_size);
   4510 	}
   4511 
   4512 	ret = i915_gem_init_hw(dev);
   4513 #ifdef __NetBSD__		/* XXX fini global gtt */
   4514 	if (ret)
   4515 		i915_gem_fini_global_gtt(dev);
   4516 #endif
   4517 	mutex_unlock(&dev->struct_mutex);
   4518 	if (ret) {
   4519 		i915_gem_cleanup_aliasing_ppgtt(dev);
   4520 		return ret;
   4521 	}
   4522 
   4523 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
   4524 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   4525 		dev_priv->dri1.allow_batchbuffer = 1;
   4526 	return 0;
   4527 }
   4528 
   4529 void
   4530 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
   4531 {
   4532 	drm_i915_private_t *dev_priv = dev->dev_private;
   4533 	struct intel_ring_buffer *ring;
   4534 	int i;
   4535 
   4536 	for_each_ring(ring, dev_priv, i)
   4537 		intel_cleanup_ring_buffer(ring);
   4538 }
   4539 
   4540 int
   4541 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
   4542 		       struct drm_file *file_priv)
   4543 {
   4544 	drm_i915_private_t *dev_priv = dev->dev_private;
   4545 	int ret;
   4546 
   4547 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   4548 		return 0;
   4549 
   4550 	if (atomic_read(&dev_priv->mm.wedged)) {
   4551 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
   4552 		atomic_set(&dev_priv->mm.wedged, 0);
   4553 	}
   4554 
   4555 	mutex_lock(&dev->struct_mutex);
   4556 	dev_priv->mm.suspended = 0;
   4557 
   4558 	ret = i915_gem_init_hw(dev);
   4559 	if (ret != 0) {
   4560 		mutex_unlock(&dev->struct_mutex);
   4561 		return ret;
   4562 	}
   4563 
   4564 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
   4565 	mutex_unlock(&dev->struct_mutex);
   4566 
   4567 	ret = drm_irq_install(dev);
   4568 	if (ret)
   4569 		goto cleanup_ringbuffer;
   4570 
   4571 	return 0;
   4572 
   4573 cleanup_ringbuffer:
   4574 	mutex_lock(&dev->struct_mutex);
   4575 	i915_gem_cleanup_ringbuffer(dev);
   4576 	dev_priv->mm.suspended = 1;
   4577 	mutex_unlock(&dev->struct_mutex);
   4578 
   4579 	return ret;
   4580 }
   4581 
   4582 int
   4583 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
   4584 		       struct drm_file *file_priv)
   4585 {
   4586 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   4587 		return 0;
   4588 
   4589 	drm_irq_uninstall(dev);
   4590 	return i915_gem_idle(dev);
   4591 }
   4592 
   4593 void
   4594 i915_gem_lastclose(struct drm_device *dev)
   4595 {
   4596 	int ret;
   4597 
   4598 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   4599 		return;
   4600 
   4601 	ret = i915_gem_idle(dev);
   4602 	if (ret)
   4603 		DRM_ERROR("failed to idle hardware: %d\n", ret);
   4604 }
   4605 
   4606 static void
   4607 init_ring_lists(struct intel_ring_buffer *ring)
   4608 {
   4609 	INIT_LIST_HEAD(&ring->active_list);
   4610 	INIT_LIST_HEAD(&ring->request_list);
   4611 }
   4612 
   4613 void
   4614 i915_gem_load(struct drm_device *dev)
   4615 {
   4616 	int i;
   4617 	drm_i915_private_t *dev_priv = dev->dev_private;
   4618 
   4619 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
   4620 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
   4621 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
   4622 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
   4623 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   4624 	for (i = 0; i < I915_NUM_RINGS; i++)
   4625 		init_ring_lists(&dev_priv->ring[i]);
   4626 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
   4627 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
   4628 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
   4629 			  i915_gem_retire_work_handler);
   4630 	init_completion(&dev_priv->error_completion);
   4631 
   4632 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
   4633 	if (IS_GEN3(dev)) {
   4634 		I915_WRITE(MI_ARB_STATE,
   4635 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
   4636 	}
   4637 
   4638 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
   4639 
   4640 	/* Old X drivers will take 0-2 for front, back, depth buffers */
   4641 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   4642 		dev_priv->fence_reg_start = 3;
   4643 
   4644 	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
   4645 		dev_priv->num_fence_regs = 16;
   4646 	else
   4647 		dev_priv->num_fence_regs = 8;
   4648 
   4649 	/* Initialize fence registers to zero */
   4650 	i915_gem_reset_fences(dev);
   4651 
   4652 	i915_gem_detect_bit_6_swizzle(dev);
   4653 #ifdef __NetBSD__
   4654 	DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
   4655 	spin_lock_init(&dev_priv->pending_flip_lock);
   4656 #else
   4657 	init_waitqueue_head(&dev_priv->pending_flip_queue);
   4658 #endif
   4659 
   4660 	dev_priv->mm.interruptible = true;
   4661 
   4662 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
   4663 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
   4664 	register_shrinker(&dev_priv->mm.inactive_shrinker);
   4665 }
   4666 
   4667 /*
   4668  * Create a physically contiguous memory object for this object
   4669  * e.g. for cursor + overlay regs
   4670  */
   4671 static int i915_gem_init_phys_object(struct drm_device *dev,
   4672 				     int id, int size, int align)
   4673 {
   4674 	drm_i915_private_t *dev_priv = dev->dev_private;
   4675 	struct drm_i915_gem_phys_object *phys_obj;
   4676 	int ret;
   4677 
   4678 	if (dev_priv->mm.phys_objs[id - 1] || !size)
   4679 		return 0;
   4680 
   4681 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
   4682 	if (!phys_obj)
   4683 		return -ENOMEM;
   4684 
   4685 	phys_obj->id = id;
   4686 
   4687 	phys_obj->handle = drm_pci_alloc(dev, size, align);
   4688 	if (!phys_obj->handle) {
   4689 		ret = -ENOMEM;
   4690 		goto kfree_obj;
   4691 	}
   4692 #ifndef __NetBSD__		/* XXX x86 wc?  */
   4693 #ifdef CONFIG_X86
   4694 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
   4695 #endif
   4696 #endif
   4697 
   4698 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
   4699 
   4700 	return 0;
   4701 kfree_obj:
   4702 	kfree(phys_obj);
   4703 	return ret;
   4704 }
   4705 
   4706 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
   4707 {
   4708 	drm_i915_private_t *dev_priv = dev->dev_private;
   4709 	struct drm_i915_gem_phys_object *phys_obj;
   4710 
   4711 	if (!dev_priv->mm.phys_objs[id - 1])
   4712 		return;
   4713 
   4714 	phys_obj = dev_priv->mm.phys_objs[id - 1];
   4715 	if (phys_obj->cur_obj) {
   4716 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
   4717 	}
   4718 
   4719 #ifndef __NetBSD__		/* XXX x86 wb?  */
   4720 #ifdef CONFIG_X86
   4721 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
   4722 #endif
   4723 #endif
   4724 	drm_pci_free(dev, phys_obj->handle);
   4725 	kfree(phys_obj);
   4726 	dev_priv->mm.phys_objs[id - 1] = NULL;
   4727 }
   4728 
   4729 void i915_gem_free_all_phys_object(struct drm_device *dev)
   4730 {
   4731 	int i;
   4732 
   4733 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
   4734 		i915_gem_free_phys_object(dev, i);
   4735 }
   4736 
   4737 void i915_gem_detach_phys_object(struct drm_device *dev,
   4738 				 struct drm_i915_gem_object *obj)
   4739 {
   4740 #ifndef __NetBSD__
   4741 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
   4742 #endif
   4743 	char *vaddr;
   4744 	int i;
   4745 	int page_count;
   4746 
   4747 	if (!obj->phys_obj)
   4748 		return;
   4749 	vaddr = obj->phys_obj->handle->vaddr;
   4750 
   4751 	page_count = obj->base.size / PAGE_SIZE;
   4752 	for (i = 0; i < page_count; i++) {
   4753 #ifdef __NetBSD__
   4754 		/* XXX Just use ubc_uiomove?  */
   4755 		struct pglist pages;
   4756 		int error;
   4757 
   4758 		TAILQ_INIT(&pages);
   4759 		error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
   4760 		    (i+1)*PAGE_SIZE, &pages);
   4761 		if (error) {
   4762 			printf("unable to map page %d of i915 gem obj: %d\n",
   4763 			    i, error);
   4764 			continue;
   4765 		}
   4766 
   4767 		KASSERT(!TAILQ_EMPTY(&pages));
   4768 		struct vm_page *const page = TAILQ_FIRST(&pages);
   4769 		TAILQ_REMOVE(&pages, page, pageq.queue);
   4770 		KASSERT(TAILQ_EMPTY(&pages));
   4771 
   4772 		char *const dst = kmap_atomic(container_of(page, struct page,
   4773 			p_vmp));
   4774 		(void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
   4775 		kunmap_atomic(dst);
   4776 
   4777 		drm_clflush_page(container_of(page, struct page, p_vmp));
   4778 		page->flags &= ~PG_CLEAN;
   4779 		/* XXX mark page accessed */
   4780 		uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
   4781 		    (i+1)*PAGE_SIZE);
   4782 #else
   4783 		struct page *page = shmem_read_mapping_page(mapping, i);
   4784 		if (!IS_ERR(page)) {
   4785 			char *dst = kmap_atomic(page);
   4786 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
   4787 			kunmap_atomic(dst);
   4788 
   4789 			drm_clflush_pages(&page, 1);
   4790 
   4791 			set_page_dirty(page);
   4792 			mark_page_accessed(page);
   4793 			page_cache_release(page);
   4794 		}
   4795 #endif
   4796 	}
   4797 	i915_gem_chipset_flush(dev);
   4798 
   4799 	obj->phys_obj->cur_obj = NULL;
   4800 	obj->phys_obj = NULL;
   4801 }
   4802 
   4803 int
   4804 i915_gem_attach_phys_object(struct drm_device *dev,
   4805 			    struct drm_i915_gem_object *obj,
   4806 			    int id,
   4807 			    int align)
   4808 {
   4809 #ifndef __NetBSD__
   4810 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
   4811 #endif
   4812 	drm_i915_private_t *dev_priv = dev->dev_private;
   4813 	int ret = 0;
   4814 	int page_count;
   4815 	int i;
   4816 
   4817 	if (id > I915_MAX_PHYS_OBJECT)
   4818 		return -EINVAL;
   4819 
   4820 	if (obj->phys_obj) {
   4821 		if (obj->phys_obj->id == id)
   4822 			return 0;
   4823 		i915_gem_detach_phys_object(dev, obj);
   4824 	}
   4825 
   4826 	/* create a new object */
   4827 	if (!dev_priv->mm.phys_objs[id - 1]) {
   4828 		ret = i915_gem_init_phys_object(dev, id,
   4829 						obj->base.size, align);
   4830 		if (ret) {
   4831 			DRM_ERROR("failed to init phys object %d size: %zu\n",
   4832 				  id, obj->base.size);
   4833 			return ret;
   4834 		}
   4835 	}
   4836 
   4837 	/* bind to the object */
   4838 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
   4839 	obj->phys_obj->cur_obj = obj;
   4840 
   4841 	page_count = obj->base.size / PAGE_SIZE;
   4842 
   4843 	for (i = 0; i < page_count; i++) {
   4844 #ifdef __NetBSD__
   4845 		char *const vaddr = obj->phys_obj->handle->vaddr;
   4846 		struct pglist pages;
   4847 		int error;
   4848 
   4849 		TAILQ_INIT(&pages);
   4850 		error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
   4851 		    (i+1)*PAGE_SIZE, &pages);
   4852 		if (error)
   4853 			/* XXX errno NetBSD->Linux */
   4854 			return -error;
   4855 
   4856 		KASSERT(!TAILQ_EMPTY(&pages));
   4857 		struct vm_page *const page = TAILQ_FIRST(&pages);
   4858 		TAILQ_REMOVE(&pages, page, pageq.queue);
   4859 		KASSERT(TAILQ_EMPTY(&pages));
   4860 
   4861 		char *const src = kmap_atomic(container_of(page, struct page,
   4862 			p_vmp));
   4863 		(void)memcpy(vaddr + (i*PAGE_SIZE), src, PAGE_SIZE);
   4864 		kunmap_atomic(src);
   4865 
   4866 		/* XXX mark page accessed */
   4867 		uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
   4868 		    (i+1)*PAGE_SIZE);
   4869 #else
   4870 		struct page *page;
   4871 		char *dst, *src;
   4872 
   4873 		page = shmem_read_mapping_page(mapping, i);
   4874 		if (IS_ERR(page))
   4875 			return PTR_ERR(page);
   4876 
   4877 		src = kmap_atomic(page);
   4878 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
   4879 		memcpy(dst, src, PAGE_SIZE);
   4880 		kunmap_atomic(src);
   4881 
   4882 		mark_page_accessed(page);
   4883 		page_cache_release(page);
   4884 #endif
   4885 	}
   4886 
   4887 	return 0;
   4888 }
   4889 
   4890 static int
   4891 i915_gem_phys_pwrite(struct drm_device *dev,
   4892 		     struct drm_i915_gem_object *obj,
   4893 		     struct drm_i915_gem_pwrite *args,
   4894 		     struct drm_file *file_priv)
   4895 {
   4896 	void *vaddr = (char *)obj->phys_obj->handle->vaddr + args->offset;
   4897 	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
   4898 
   4899 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
   4900 		unsigned long unwritten;
   4901 
   4902 		/* The physical object once assigned is fixed for the lifetime
   4903 		 * of the obj, so we can safely drop the lock and continue
   4904 		 * to access vaddr.
   4905 		 */
   4906 		mutex_unlock(&dev->struct_mutex);
   4907 		unwritten = copy_from_user(vaddr, user_data, args->size);
   4908 		mutex_lock(&dev->struct_mutex);
   4909 		if (unwritten)
   4910 			return -EFAULT;
   4911 	}
   4912 
   4913 	i915_gem_chipset_flush(dev);
   4914 	return 0;
   4915 }
   4916 
   4917 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   4918 {
   4919 	struct drm_i915_file_private *file_priv = file->driver_priv;
   4920 
   4921 	/* Clean up our request list when the client is going away, so that
   4922 	 * later retire_requests won't dereference our soon-to-be-gone
   4923 	 * file_priv.
   4924 	 */
   4925 	spin_lock(&file_priv->mm.lock);
   4926 	while (!list_empty(&file_priv->mm.request_list)) {
   4927 		struct drm_i915_gem_request *request;
   4928 
   4929 		request = list_first_entry(&file_priv->mm.request_list,
   4930 					   struct drm_i915_gem_request,
   4931 					   client_list);
   4932 		list_del(&request->client_list);
   4933 		request->file_priv = NULL;
   4934 	}
   4935 	spin_unlock(&file_priv->mm.lock);
   4936 }
   4937 
   4938 #ifndef __NetBSD__		/* XXX */
   4939 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
   4940 {
   4941 	if (!mutex_is_locked(mutex))
   4942 		return false;
   4943 
   4944 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
   4945 	return mutex->owner == task;
   4946 #else
   4947 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
   4948 	return false;
   4949 #endif
   4950 }
   4951 #endif
   4952 
   4953 static int
   4954 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
   4955 {
   4956 #ifdef __NetBSD__		/* XXX shrinkers */
   4957 	return 0;
   4958 #else
   4959 	struct drm_i915_private *dev_priv =
   4960 		container_of(shrinker,
   4961 			     struct drm_i915_private,
   4962 			     mm.inactive_shrinker);
   4963 	struct drm_device *dev = dev_priv->dev;
   4964 	struct drm_i915_gem_object *obj;
   4965 	int nr_to_scan = sc->nr_to_scan;
   4966 	bool unlock = true;
   4967 	int cnt;
   4968 
   4969 	if (!mutex_trylock(&dev->struct_mutex)) {
   4970 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
   4971 			return 0;
   4972 
   4973 		if (dev_priv->mm.shrinker_no_lock_stealing)
   4974 			return 0;
   4975 
   4976 		unlock = false;
   4977 	}
   4978 
   4979 	if (nr_to_scan) {
   4980 		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
   4981 		if (nr_to_scan > 0)
   4982 			nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
   4983 							false);
   4984 		if (nr_to_scan > 0)
   4985 			i915_gem_shrink_all(dev_priv);
   4986 	}
   4987 
   4988 	cnt = 0;
   4989 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
   4990 		if (obj->pages_pin_count == 0)
   4991 			cnt += obj->base.size >> PAGE_SHIFT;
   4992 	list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
   4993 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
   4994 			cnt += obj->base.size >> PAGE_SHIFT;
   4995 
   4996 	if (unlock)
   4997 		mutex_unlock(&dev->struct_mutex);
   4998 	return cnt;
   4999 #endif
   5000 }
   5001