Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.13
      1 /*
      2  * Copyright  2008 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eric Anholt <eric (at) anholt.net>
     25  *
     26  */
     27 
     28 #ifdef __NetBSD__
     29 #if 0				/* XXX uvmhist option?  */
     30 #include "opt_uvmhist.h"
     31 #endif
     32 
     33 #include <sys/types.h>
     34 #include <sys/param.h>
     35 
     36 #include <uvm/uvm.h>
     37 #include <uvm/uvm_extern.h>
     38 #include <uvm/uvm_fault.h>
     39 #include <uvm/uvm_page.h>
     40 #include <uvm/uvm_pmap.h>
     41 #include <uvm/uvm_prot.h>
     42 
     43 #include <drm/bus_dma_hacks.h>
     44 #endif
     45 
     46 #include <drm/drmP.h>
     47 #include <drm/drm_vma_manager.h>
     48 #include <drm/i915_drm.h>
     49 #include "i915_drv.h"
     50 #include "i915_trace.h"
     51 #include "intel_drv.h"
     52 #include <linux/shmem_fs.h>
     53 #include <linux/slab.h>
     54 #include <linux/swap.h>
     55 #include <linux/pci.h>
     56 #include <linux/dma-buf.h>
     57 #include <linux/errno.h>
     58 #include <linux/time.h>
     59 #include <linux/err.h>
     60 #include <linux/bitops.h>
     61 #include <asm/param.h>
     62 #include <asm/page.h>
     63 
     64 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
     65 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
     66 						   bool force);
     67 static __must_check int
     68 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
     69 			       bool readonly);
     70 
     71 static void i915_gem_write_fence(struct drm_device *dev, int reg,
     72 				 struct drm_i915_gem_object *obj);
     73 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
     74 					 struct drm_i915_fence_reg *fence,
     75 					 bool enable);
     76 
     77 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
     78 					     struct shrink_control *sc);
     79 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
     80 					    struct shrink_control *sc);
     81 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
     82 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
     83 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
     84 static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
     85 
     86 static bool cpu_cache_is_coherent(struct drm_device *dev,
     87 				  enum i915_cache_level level)
     88 {
     89 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
     90 }
     91 
     92 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
     93 {
     94 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
     95 		return true;
     96 
     97 	return obj->pin_display;
     98 }
     99 
    100 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
    101 {
    102 	if (obj->tiling_mode)
    103 		i915_gem_release_mmap(obj);
    104 
    105 	/* As we do not have an associated fence register, we will force
    106 	 * a tiling change if we ever need to acquire one.
    107 	 */
    108 	obj->fence_dirty = false;
    109 	obj->fence_reg = I915_FENCE_REG_NONE;
    110 }
    111 
    112 /* some bookkeeping */
    113 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
    114 				  size_t size)
    115 {
    116 	spin_lock(&dev_priv->mm.object_stat_lock);
    117 	dev_priv->mm.object_count++;
    118 	dev_priv->mm.object_memory += size;
    119 	spin_unlock(&dev_priv->mm.object_stat_lock);
    120 }
    121 
    122 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
    123 				     size_t size)
    124 {
    125 	spin_lock(&dev_priv->mm.object_stat_lock);
    126 	dev_priv->mm.object_count--;
    127 	dev_priv->mm.object_memory -= size;
    128 	spin_unlock(&dev_priv->mm.object_stat_lock);
    129 }
    130 
    131 static int
    132 i915_gem_wait_for_error(struct i915_gpu_error *error)
    133 {
    134 	int ret;
    135 
    136 #define EXIT_COND (!i915_reset_in_progress(error) || \
    137 		   i915_terminally_wedged(error))
    138 	if (EXIT_COND)
    139 		return 0;
    140 
    141 	/*
    142 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
    143 	 * userspace. If it takes that long something really bad is going on and
    144 	 * we should simply try to bail out and fail as gracefully as possible.
    145 	 */
    146 #ifdef __NetBSD__
    147 	spin_lock(&error->reset_lock);
    148 	DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
    149 	    10*HZ, EXIT_COND);
    150 	spin_unlock(&error->reset_lock);
    151 #else
    152 	ret = wait_event_interruptible_timeout(error->reset_queue,
    153 					       EXIT_COND,
    154 					       10*HZ);
    155 #endif
    156 	if (ret == 0) {
    157 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
    158 		return -EIO;
    159 	} else if (ret < 0) {
    160 		return ret;
    161 	}
    162 #undef EXIT_COND
    163 
    164 	return 0;
    165 }
    166 
    167 int i915_mutex_lock_interruptible(struct drm_device *dev)
    168 {
    169 	struct drm_i915_private *dev_priv = dev->dev_private;
    170 	int ret;
    171 
    172 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
    173 	if (ret)
    174 		return ret;
    175 
    176 	ret = mutex_lock_interruptible(&dev->struct_mutex);
    177 	if (ret)
    178 		return ret;
    179 
    180 	WARN_ON(i915_verify_lists(dev));
    181 	return 0;
    182 }
    183 
    184 static inline bool
    185 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
    186 {
    187 	return i915_gem_obj_bound_any(obj) && !obj->active;
    188 }
    189 
    190 int
    191 i915_gem_init_ioctl(struct drm_device *dev, void *data,
    192 		    struct drm_file *file)
    193 {
    194 	struct drm_i915_private *dev_priv = dev->dev_private;
    195 	struct drm_i915_gem_init *args = data;
    196 
    197 	if (drm_core_check_feature(dev, DRIVER_MODESET))
    198 		return -ENODEV;
    199 
    200 	if (args->gtt_start >= args->gtt_end ||
    201 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
    202 		return -EINVAL;
    203 
    204 	/* GEM with user mode setting was never supported on ilk and later. */
    205 	if (INTEL_INFO(dev)->gen >= 5)
    206 		return -ENODEV;
    207 
    208 	mutex_lock(&dev->struct_mutex);
    209 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
    210 				  args->gtt_end);
    211 	dev_priv->gtt.mappable_end = args->gtt_end;
    212 	mutex_unlock(&dev->struct_mutex);
    213 
    214 	return 0;
    215 }
    216 
    217 int
    218 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    219 			    struct drm_file *file)
    220 {
    221 	struct drm_i915_private *dev_priv = dev->dev_private;
    222 	struct drm_i915_gem_get_aperture *args = data;
    223 	struct drm_i915_gem_object *obj;
    224 	size_t pinned;
    225 
    226 	pinned = 0;
    227 	mutex_lock(&dev->struct_mutex);
    228 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
    229 		if (i915_gem_obj_is_pinned(obj))
    230 			pinned += i915_gem_obj_ggtt_size(obj);
    231 	mutex_unlock(&dev->struct_mutex);
    232 
    233 	args->aper_size = dev_priv->gtt.base.total;
    234 	args->aper_available_size = args->aper_size - pinned;
    235 
    236 	return 0;
    237 }
    238 
    239 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
    240 {
    241 	drm_dma_handle_t *phys = obj->phys_handle;
    242 
    243 	if (!phys)
    244 		return;
    245 
    246 	if (obj->madv == I915_MADV_WILLNEED) {
    247 #ifdef __NetBSD__
    248 		const char *vaddr = phys->vaddr;
    249 		unsigned i;
    250 
    251 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    252 			struct pglist pages;
    253 			int error;
    254 
    255 			TAILQ_INIT(&pages);
    256 			error = uvm_obj_wirepages(obj->base.gemo_shm_uao,
    257 			    i*PAGE_SIZE, (i+1)*PAGE_SIZE, &pages);
    258 			if (error)
    259 				continue;
    260 
    261 			struct vm_page *const vm_page = TAILQ_FIRST(&pages);
    262 			struct page *const page = container_of(vm_page,
    263 			    struct page, p_vmp);
    264 			char *const dst = kmap_atomic(page);
    265 			(void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
    266 			drm_clflush_virt_range(dst, PAGE_SIZE);
    267 			kunmap_atomic(dst);
    268 
    269 			vm_page->flags &= ~PG_CLEAN;
    270 			/* XXX mark page accessed */
    271 			uvm_obj_unwirepages(obj->base.gemo_shm_uao,
    272 			    i*PAGE_SIZE, (i+1)*PAGE_SIZE);
    273 		}
    274 #else
    275 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    276 		char *vaddr = phys->vaddr;
    277 		int i;
    278 
    279 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    280 			struct page *page = shmem_read_mapping_page(mapping, i);
    281 			if (!IS_ERR(page)) {
    282 				char *dst = kmap_atomic(page);
    283 				memcpy(dst, vaddr, PAGE_SIZE);
    284 				drm_clflush_virt_range(dst, PAGE_SIZE);
    285 				kunmap_atomic(dst);
    286 
    287 				set_page_dirty(page);
    288 				mark_page_accessed(page);
    289 				page_cache_release(page);
    290 			}
    291 			vaddr += PAGE_SIZE;
    292 		}
    293 #endif
    294 		i915_gem_chipset_flush(obj->base.dev);
    295 	}
    296 
    297 #ifndef __NetBSD__
    298 #ifdef CONFIG_X86
    299 	set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
    300 #endif
    301 #endif
    302 	drm_pci_free(obj->base.dev, phys);
    303 	obj->phys_handle = NULL;
    304 }
    305 
    306 int
    307 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
    308 			    int align)
    309 {
    310 	drm_dma_handle_t *phys;
    311 #ifndef __NetBSD__
    312 	struct address_space *mapping;
    313 #endif
    314 	char *vaddr;
    315 	int i;
    316 
    317 	if (obj->phys_handle) {
    318 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
    319 			return -EBUSY;
    320 
    321 		return 0;
    322 	}
    323 
    324 	if (obj->madv != I915_MADV_WILLNEED)
    325 		return -EFAULT;
    326 
    327 #ifdef __NetBSD__
    328 	if (obj->base.gemo_shm_uao == NULL)
    329 		return -EINVAL;
    330 #else
    331 	if (obj->base.filp == NULL)
    332 		return -EINVAL;
    333 #endif
    334 
    335 	/* create a new object */
    336 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
    337 	if (!phys)
    338 		return -ENOMEM;
    339 
    340 	vaddr = phys->vaddr;
    341 #ifndef __NetBSD__
    342 #ifdef CONFIG_X86
    343 	set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
    344 #endif
    345 	mapping = file_inode(obj->base.filp)->i_mapping;
    346 #endif
    347 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    348 		struct page *page;
    349 		char *src;
    350 
    351 #ifdef __NetBSD__
    352 		struct pglist pages;
    353 		int ret;
    354 
    355 		TAILQ_INIT(&pages);
    356 
    357 		/* XXX errno NetBSD->Linux */
    358 		ret = -uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
    359 		    (i+1)*PAGE_SIZE, &pages);
    360 		if (ret) {
    361 			drm_pci_free(obj->base.dev, phys);
    362 			return ret;
    363 		}
    364 		KASSERT(!TAILQ_EMPTY(&pages));
    365 		page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
    366 #else
    367 		page = shmem_read_mapping_page(mapping, i);
    368 		if (IS_ERR(page)) {
    369 #ifdef CONFIG_X86
    370 			set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
    371 #endif
    372 			drm_pci_free(obj->base.dev, phys);
    373 			return PTR_ERR(page);
    374 		}
    375 #endif	/* defined(__NetBSD__) */
    376 
    377 		src = kmap_atomic(page);
    378 		memcpy(vaddr, src, PAGE_SIZE);
    379 		kunmap_atomic(src);
    380 
    381 #ifndef __NetBSD__
    382 		mark_page_accessed(page);
    383 		page_cache_release(page);
    384 #endif
    385 
    386 		vaddr += PAGE_SIZE;
    387 	}
    388 
    389 	obj->phys_handle = phys;
    390 	return 0;
    391 }
    392 
    393 static int
    394 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
    395 		     struct drm_i915_gem_pwrite *args,
    396 		     struct drm_file *file_priv)
    397 {
    398 	struct drm_device *dev = obj->base.dev;
    399 	void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
    400 	char __user *user_data = to_user_ptr(args->data_ptr);
    401 
    402 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
    403 		unsigned long unwritten;
    404 
    405 		/* The physical object once assigned is fixed for the lifetime
    406 		 * of the obj, so we can safely drop the lock and continue
    407 		 * to access vaddr.
    408 		 */
    409 		mutex_unlock(&dev->struct_mutex);
    410 		unwritten = copy_from_user(vaddr, user_data, args->size);
    411 		mutex_lock(&dev->struct_mutex);
    412 		if (unwritten)
    413 			return -EFAULT;
    414 	}
    415 
    416 	i915_gem_chipset_flush(dev);
    417 	return 0;
    418 }
    419 
    420 void *i915_gem_object_alloc(struct drm_device *dev)
    421 {
    422 	struct drm_i915_private *dev_priv = dev->dev_private;
    423 	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
    424 }
    425 
    426 void i915_gem_object_free(struct drm_i915_gem_object *obj)
    427 {
    428 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
    429 	kmem_cache_free(dev_priv->slab, obj);
    430 }
    431 
    432 static int
    433 i915_gem_create(struct drm_file *file,
    434 		struct drm_device *dev,
    435 		uint64_t size,
    436 		uint32_t *handle_p)
    437 {
    438 	struct drm_i915_gem_object *obj;
    439 	int ret;
    440 	u32 handle;
    441 
    442 	size = roundup(size, PAGE_SIZE);
    443 	if (size == 0)
    444 		return -EINVAL;
    445 
    446 	/* Allocate the new object */
    447 	obj = i915_gem_alloc_object(dev, size);
    448 	if (obj == NULL)
    449 		return -ENOMEM;
    450 
    451 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    452 	/* drop reference from allocate - handle holds it now */
    453 	drm_gem_object_unreference_unlocked(&obj->base);
    454 	if (ret)
    455 		return ret;
    456 
    457 	*handle_p = handle;
    458 	return 0;
    459 }
    460 
    461 int
    462 i915_gem_dumb_create(struct drm_file *file,
    463 		     struct drm_device *dev,
    464 		     struct drm_mode_create_dumb *args)
    465 {
    466 	/* have to work out size/pitch and return them */
    467 #ifdef __NetBSD__		/* ALIGN means something else.  */
    468 	args->pitch = round_up(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    469 #else
    470 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    471 #endif
    472 	args->size = args->pitch * args->height;
    473 	return i915_gem_create(file, dev,
    474 			       args->size, &args->handle);
    475 }
    476 
    477 /**
    478  * Creates a new mm object and returns a handle to it.
    479  */
    480 int
    481 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    482 		      struct drm_file *file)
    483 {
    484 	struct drm_i915_gem_create *args = data;
    485 
    486 	return i915_gem_create(file, dev,
    487 			       args->size, &args->handle);
    488 }
    489 
    490 static inline int
    491 __copy_to_user_swizzled(char __user *cpu_vaddr,
    492 			const char *gpu_vaddr, int gpu_offset,
    493 			int length)
    494 {
    495 	int ret, cpu_offset = 0;
    496 
    497 	while (length > 0) {
    498 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    499 		int cacheline_end = round_up(gpu_offset + 1, 64);
    500 #else
    501 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    502 #endif
    503 		int this_length = min(cacheline_end - gpu_offset, length);
    504 		int swizzled_gpu_offset = gpu_offset ^ 64;
    505 
    506 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
    507 				     gpu_vaddr + swizzled_gpu_offset,
    508 				     this_length);
    509 		if (ret)
    510 			return ret + length;
    511 
    512 		cpu_offset += this_length;
    513 		gpu_offset += this_length;
    514 		length -= this_length;
    515 	}
    516 
    517 	return 0;
    518 }
    519 
    520 static inline int
    521 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
    522 			  const char __user *cpu_vaddr,
    523 			  int length)
    524 {
    525 	int ret, cpu_offset = 0;
    526 
    527 	while (length > 0) {
    528 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    529 		int cacheline_end = round_up(gpu_offset + 1, 64);
    530 #else
    531 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    532 #endif
    533 		int this_length = min(cacheline_end - gpu_offset, length);
    534 		int swizzled_gpu_offset = gpu_offset ^ 64;
    535 
    536 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
    537 				       cpu_vaddr + cpu_offset,
    538 				       this_length);
    539 		if (ret)
    540 			return ret + length;
    541 
    542 		cpu_offset += this_length;
    543 		gpu_offset += this_length;
    544 		length -= this_length;
    545 	}
    546 
    547 	return 0;
    548 }
    549 
    550 /*
    551  * Pins the specified object's pages and synchronizes the object with
    552  * GPU accesses. Sets needs_clflush to non-zero if the caller should
    553  * flush the object from the CPU cache.
    554  */
    555 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
    556 				    int *needs_clflush)
    557 {
    558 	int ret;
    559 
    560 	*needs_clflush = 0;
    561 
    562 #ifdef __NetBSD__
    563 	if (obj->base.gemo_shm_uao == NULL)
    564 		return -EINVAL;
    565 #else
    566 	if (!obj->base.filp)
    567 		return -EINVAL;
    568 #endif
    569 
    570 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
    571 		/* If we're not in the cpu read domain, set ourself into the gtt
    572 		 * read domain and manually flush cachelines (if required). This
    573 		 * optimizes for the case when the gpu will dirty the data
    574 		 * anyway again before the next pread happens. */
    575 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
    576 							obj->cache_level);
    577 		ret = i915_gem_object_wait_rendering(obj, true);
    578 		if (ret)
    579 			return ret;
    580 	}
    581 
    582 	ret = i915_gem_object_get_pages(obj);
    583 	if (ret)
    584 		return ret;
    585 
    586 	i915_gem_object_pin_pages(obj);
    587 
    588 	return ret;
    589 }
    590 
    591 /* Per-page copy function for the shmem pread fastpath.
    592  * Flushes invalid cachelines before reading the target if
    593  * needs_clflush is set. */
    594 static int
    595 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
    596 		 char __user *user_data,
    597 		 bool page_do_bit17_swizzling, bool needs_clflush)
    598 {
    599 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    600 	return -EFAULT;
    601 #else
    602 	char *vaddr;
    603 	int ret;
    604 
    605 	if (unlikely(page_do_bit17_swizzling))
    606 		return -EINVAL;
    607 
    608 	vaddr = kmap_atomic(page);
    609 	if (needs_clflush)
    610 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    611 				       page_length);
    612 	ret = __copy_to_user_inatomic(user_data,
    613 				      vaddr + shmem_page_offset,
    614 				      page_length);
    615 	kunmap_atomic(vaddr);
    616 
    617 	return ret ? -EFAULT : 0;
    618 #endif
    619 }
    620 
    621 static void
    622 shmem_clflush_swizzled_range(char *addr, unsigned long length,
    623 			     bool swizzled)
    624 {
    625 	if (unlikely(swizzled)) {
    626 		unsigned long start = (unsigned long) addr;
    627 		unsigned long end = (unsigned long) addr + length;
    628 
    629 		/* For swizzling simply ensure that we always flush both
    630 		 * channels. Lame, but simple and it works. Swizzled
    631 		 * pwrite/pread is far from a hotpath - current userspace
    632 		 * doesn't use it at all. */
    633 		start = round_down(start, 128);
    634 		end = round_up(end, 128);
    635 
    636 		drm_clflush_virt_range((void *)start, end - start);
    637 	} else {
    638 		drm_clflush_virt_range(addr, length);
    639 	}
    640 
    641 }
    642 
    643 /* Only difference to the fast-path function is that this can handle bit17
    644  * and uses non-atomic copy and kmap functions. */
    645 static int
    646 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
    647 		 char __user *user_data,
    648 		 bool page_do_bit17_swizzling, bool needs_clflush)
    649 {
    650 	char *vaddr;
    651 	int ret;
    652 
    653 	vaddr = kmap(page);
    654 	if (needs_clflush)
    655 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    656 					     page_length,
    657 					     page_do_bit17_swizzling);
    658 
    659 	if (page_do_bit17_swizzling)
    660 		ret = __copy_to_user_swizzled(user_data,
    661 					      vaddr, shmem_page_offset,
    662 					      page_length);
    663 	else
    664 		ret = __copy_to_user(user_data,
    665 				     vaddr + shmem_page_offset,
    666 				     page_length);
    667 	kunmap(page);
    668 
    669 	return ret ? - EFAULT : 0;
    670 }
    671 
    672 static int
    673 i915_gem_shmem_pread(struct drm_device *dev,
    674 		     struct drm_i915_gem_object *obj,
    675 		     struct drm_i915_gem_pread *args,
    676 		     struct drm_file *file)
    677 {
    678 	char __user *user_data;
    679 	ssize_t remain;
    680 	loff_t offset;
    681 	int shmem_page_offset, page_length, ret = 0;
    682 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    683 #ifndef __NetBSD__		/* XXX */
    684 	int prefaulted = 0;
    685 #endif
    686 	int needs_clflush = 0;
    687 #ifndef __NetBSD__
    688 	struct sg_page_iter sg_iter;
    689 #endif
    690 
    691 	user_data = to_user_ptr(args->data_ptr);
    692 	remain = args->size;
    693 
    694 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    695 
    696 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
    697 	if (ret)
    698 		return ret;
    699 
    700 	offset = args->offset;
    701 
    702 #ifdef __NetBSD__
    703 	/*
    704 	 * XXX This is a big #ifdef with a lot of duplicated code, but
    705 	 * factoring out the loop head -- which is all that
    706 	 * substantially differs -- is probably more trouble than it's
    707 	 * worth at the moment.
    708 	 */
    709 	while (0 < remain) {
    710 		/* Get the next page.  */
    711 		shmem_page_offset = offset_in_page(offset);
    712 		KASSERT(shmem_page_offset < PAGE_SIZE);
    713 		page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
    714 		struct page *const page = i915_gem_object_get_page(obj,
    715 		    atop(offset));
    716 
    717 		/* Decide whether to swizzle bit 17.  */
    718 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    719 		    (page_to_phys(page) & (1 << 17)) != 0;
    720 
    721 		/* Try the fast path.  */
    722 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    723 		    user_data, page_do_bit17_swizzling, needs_clflush);
    724 		if (ret == 0)
    725 			goto next_page;
    726 
    727 		/* Fast path failed.  Try the slow path.  */
    728 		mutex_unlock(&dev->struct_mutex);
    729 		/* XXX prefault */
    730 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    731 		    user_data, page_do_bit17_swizzling, needs_clflush);
    732 		mutex_lock(&dev->struct_mutex);
    733 		if (ret)
    734 			goto out;
    735 
    736 next_page:	KASSERT(page_length <= remain);
    737 		remain -= page_length;
    738 		user_data += page_length;
    739 		offset += page_length;
    740 	}
    741 #else
    742 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
    743 			 offset >> PAGE_SHIFT) {
    744 		struct page *page = sg_page_iter_page(&sg_iter);
    745 
    746 		if (remain <= 0)
    747 			break;
    748 
    749 		/* Operation in this page
    750 		 *
    751 		 * shmem_page_offset = offset within page in shmem file
    752 		 * page_length = bytes to copy for this page
    753 		 */
    754 		shmem_page_offset = offset_in_page(offset);
    755 		page_length = remain;
    756 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    757 			page_length = PAGE_SIZE - shmem_page_offset;
    758 
    759 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    760 			(page_to_phys(page) & (1 << 17)) != 0;
    761 
    762 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    763 				       user_data, page_do_bit17_swizzling,
    764 				       needs_clflush);
    765 		if (ret == 0)
    766 			goto next_page;
    767 
    768 		mutex_unlock(&dev->struct_mutex);
    769 
    770 		if (likely(!i915.prefault_disable) && !prefaulted) {
    771 			ret = fault_in_multipages_writeable(user_data, remain);
    772 			/* Userspace is tricking us, but we've already clobbered
    773 			 * its pages with the prefault and promised to write the
    774 			 * data up to the first fault. Hence ignore any errors
    775 			 * and just continue. */
    776 			(void)ret;
    777 			prefaulted = 1;
    778 		}
    779 
    780 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    781 				       user_data, page_do_bit17_swizzling,
    782 				       needs_clflush);
    783 
    784 		mutex_lock(&dev->struct_mutex);
    785 
    786 		if (ret)
    787 			goto out;
    788 
    789 next_page:
    790 		remain -= page_length;
    791 		user_data += page_length;
    792 		offset += page_length;
    793 	}
    794 #endif
    795 
    796 out:
    797 	i915_gem_object_unpin_pages(obj);
    798 
    799 	return ret;
    800 }
    801 
    802 /**
    803  * Reads data from the object referenced by handle.
    804  *
    805  * On error, the contents of *data are undefined.
    806  */
    807 int
    808 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    809 		     struct drm_file *file)
    810 {
    811 	struct drm_i915_gem_pread *args = data;
    812 	struct drm_i915_gem_object *obj;
    813 	int ret = 0;
    814 
    815 	if (args->size == 0)
    816 		return 0;
    817 
    818 	if (!access_ok(VERIFY_WRITE,
    819 		       to_user_ptr(args->data_ptr),
    820 		       args->size))
    821 		return -EFAULT;
    822 
    823 	ret = i915_mutex_lock_interruptible(dev);
    824 	if (ret)
    825 		return ret;
    826 
    827 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
    828 	if (&obj->base == NULL) {
    829 		ret = -ENOENT;
    830 		goto unlock;
    831 	}
    832 
    833 	/* Bounds check source.  */
    834 	if (args->offset > obj->base.size ||
    835 	    args->size > obj->base.size - args->offset) {
    836 		ret = -EINVAL;
    837 		goto out;
    838 	}
    839 
    840 	/* prime objects have no backing filp to GEM pread/pwrite
    841 	 * pages from.
    842 	 */
    843 #ifdef __NetBSD__
    844 	/* Also stolen objects.  */
    845 	if (obj->base.gemo_shm_uao == NULL) {
    846 		ret = -EINVAL;
    847 		goto out;
    848 	}
    849 #else
    850 	if (!obj->base.filp) {
    851 		ret = -EINVAL;
    852 		goto out;
    853 	}
    854 #endif
    855 
    856 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    857 
    858 	ret = i915_gem_shmem_pread(dev, obj, args, file);
    859 
    860 out:
    861 	drm_gem_object_unreference(&obj->base);
    862 unlock:
    863 	mutex_unlock(&dev->struct_mutex);
    864 	return ret;
    865 }
    866 
    867 /* This is the fast write path which cannot handle
    868  * page faults in the source data
    869  */
    870 
    871 static inline int
    872 fast_user_write(struct io_mapping *mapping,
    873 		loff_t page_base, int page_offset,
    874 		char __user *user_data,
    875 		int length)
    876 {
    877 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    878 	return -EFAULT;
    879 #else
    880 	void __iomem *vaddr_atomic;
    881 	void *vaddr;
    882 	unsigned long unwritten;
    883 
    884 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
    885 	/* We can use the cpu mem copy function because this is X86. */
    886 	vaddr = (void __force*)vaddr_atomic + page_offset;
    887 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
    888 						      user_data, length);
    889 	io_mapping_unmap_atomic(vaddr_atomic);
    890 	return unwritten;
    891 #endif
    892 }
    893 
    894 /**
    895  * This is the fast pwrite path, where we copy the data directly from the
    896  * user into the GTT, uncached.
    897  */
    898 static int
    899 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
    900 			 struct drm_i915_gem_object *obj,
    901 			 struct drm_i915_gem_pwrite *args,
    902 			 struct drm_file *file)
    903 {
    904 	struct drm_i915_private *dev_priv = dev->dev_private;
    905 	ssize_t remain;
    906 	loff_t offset, page_base;
    907 	char __user *user_data;
    908 	int page_offset, page_length, ret;
    909 
    910 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
    911 	if (ret)
    912 		goto out;
    913 
    914 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    915 	if (ret)
    916 		goto out_unpin;
    917 
    918 	ret = i915_gem_object_put_fence(obj);
    919 	if (ret)
    920 		goto out_unpin;
    921 
    922 	user_data = to_user_ptr(args->data_ptr);
    923 	remain = args->size;
    924 
    925 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
    926 
    927 	while (remain > 0) {
    928 		/* Operation in this page
    929 		 *
    930 		 * page_base = page offset within aperture
    931 		 * page_offset = offset within page
    932 		 * page_length = bytes to copy for this page
    933 		 */
    934 		page_base = offset & PAGE_MASK;
    935 		page_offset = offset_in_page(offset);
    936 		page_length = remain;
    937 		if ((page_offset + remain) > PAGE_SIZE)
    938 			page_length = PAGE_SIZE - page_offset;
    939 
    940 		/* If we get a fault while copying data, then (presumably) our
    941 		 * source page isn't available.  Return the error and we'll
    942 		 * retry in the slow path.
    943 		 */
    944 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
    945 				    page_offset, user_data, page_length)) {
    946 			ret = -EFAULT;
    947 			goto out_unpin;
    948 		}
    949 
    950 		remain -= page_length;
    951 		user_data += page_length;
    952 		offset += page_length;
    953 	}
    954 
    955 out_unpin:
    956 	i915_gem_object_ggtt_unpin(obj);
    957 out:
    958 	return ret;
    959 }
    960 
    961 /* Per-page copy function for the shmem pwrite fastpath.
    962  * Flushes invalid cachelines before writing to the target if
    963  * needs_clflush_before is set and flushes out any written cachelines after
    964  * writing if needs_clflush is set. */
    965 static int
    966 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
    967 		  char __user *user_data,
    968 		  bool page_do_bit17_swizzling,
    969 		  bool needs_clflush_before,
    970 		  bool needs_clflush_after)
    971 {
    972 #ifdef __NetBSD__
    973 	return -EFAULT;
    974 #else
    975 	char *vaddr;
    976 	int ret;
    977 
    978 	if (unlikely(page_do_bit17_swizzling))
    979 		return -EINVAL;
    980 
    981 	vaddr = kmap_atomic(page);
    982 	if (needs_clflush_before)
    983 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    984 				       page_length);
    985 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
    986 					user_data, page_length);
    987 	if (needs_clflush_after)
    988 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    989 				       page_length);
    990 	kunmap_atomic(vaddr);
    991 
    992 	return ret ? -EFAULT : 0;
    993 #endif
    994 }
    995 
    996 /* Only difference to the fast-path function is that this can handle bit17
    997  * and uses non-atomic copy and kmap functions. */
    998 static int
    999 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
   1000 		  char __user *user_data,
   1001 		  bool page_do_bit17_swizzling,
   1002 		  bool needs_clflush_before,
   1003 		  bool needs_clflush_after)
   1004 {
   1005 	char *vaddr;
   1006 	int ret;
   1007 
   1008 	vaddr = kmap(page);
   1009 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
   1010 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
   1011 					     page_length,
   1012 					     page_do_bit17_swizzling);
   1013 	if (page_do_bit17_swizzling)
   1014 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
   1015 						user_data,
   1016 						page_length);
   1017 	else
   1018 		ret = __copy_from_user(vaddr + shmem_page_offset,
   1019 				       user_data,
   1020 				       page_length);
   1021 	if (needs_clflush_after)
   1022 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
   1023 					     page_length,
   1024 					     page_do_bit17_swizzling);
   1025 	kunmap(page);
   1026 
   1027 	return ret ? -EFAULT : 0;
   1028 }
   1029 
   1030 static int
   1031 i915_gem_shmem_pwrite(struct drm_device *dev,
   1032 		      struct drm_i915_gem_object *obj,
   1033 		      struct drm_i915_gem_pwrite *args,
   1034 		      struct drm_file *file)
   1035 {
   1036 	ssize_t remain;
   1037 	loff_t offset;
   1038 	char __user *user_data;
   1039 	int shmem_page_offset, page_length, ret = 0;
   1040 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
   1041 	int hit_slowpath = 0;
   1042 	int needs_clflush_after = 0;
   1043 	int needs_clflush_before = 0;
   1044 #ifndef __NetBSD__
   1045 	struct sg_page_iter sg_iter;
   1046 #endif
   1047 
   1048 	user_data = to_user_ptr(args->data_ptr);
   1049 	remain = args->size;
   1050 
   1051 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
   1052 
   1053 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1054 		/* If we're not in the cpu write domain, set ourself into the gtt
   1055 		 * write domain and manually flush cachelines (if required). This
   1056 		 * optimizes for the case when the gpu will use the data
   1057 		 * right away and we therefore have to clflush anyway. */
   1058 		needs_clflush_after = cpu_write_needs_clflush(obj);
   1059 		ret = i915_gem_object_wait_rendering(obj, false);
   1060 		if (ret)
   1061 			return ret;
   1062 	}
   1063 	/* Same trick applies to invalidate partially written cachelines read
   1064 	 * before writing. */
   1065 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
   1066 		needs_clflush_before =
   1067 			!cpu_cache_is_coherent(dev, obj->cache_level);
   1068 
   1069 	ret = i915_gem_object_get_pages(obj);
   1070 	if (ret)
   1071 		return ret;
   1072 
   1073 	i915_gem_object_pin_pages(obj);
   1074 
   1075 	offset = args->offset;
   1076 	obj->dirty = 1;
   1077 
   1078 #ifdef __NetBSD__
   1079 	while (0 < remain) {
   1080 		/* Get the next page.  */
   1081 		shmem_page_offset = offset_in_page(offset);
   1082 		KASSERT(shmem_page_offset < PAGE_SIZE);
   1083 		page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
   1084 		struct page *const page = i915_gem_object_get_page(obj,
   1085 		    atop(offset));
   1086 
   1087 		/* Decide whether to flush the cache or swizzle bit 17.  */
   1088 		const bool partial_cacheline_write = needs_clflush_before &&
   1089 		    ((shmem_page_offset | page_length)
   1090 			& (cpu_info_primary.ci_cflush_lsize - 1));
   1091 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
   1092 		    (page_to_phys(page) & (1 << 17)) != 0;
   1093 
   1094 		/* Try the fast path.  */
   1095 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
   1096 		    user_data, page_do_bit17_swizzling,
   1097 		    partial_cacheline_write, needs_clflush_after);
   1098 		if (ret == 0)
   1099 			goto next_page;
   1100 
   1101 		/* Fast path failed.  Try the slow path.  */
   1102 		hit_slowpath = 1;
   1103 		mutex_unlock(&dev->struct_mutex);
   1104 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
   1105 		    user_data, page_do_bit17_swizzling,
   1106 		    partial_cacheline_write, needs_clflush_after);
   1107 		mutex_lock(&dev->struct_mutex);
   1108 		if (ret)
   1109 			goto out;
   1110 
   1111 next_page:	KASSERT(page_length <= remain);
   1112 		remain -= page_length;
   1113 		user_data += page_length;
   1114 		offset += page_length;
   1115 	}
   1116 #else
   1117 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
   1118 			 offset >> PAGE_SHIFT) {
   1119 		struct page *page = sg_page_iter_page(&sg_iter);
   1120 		int partial_cacheline_write;
   1121 
   1122 		if (remain <= 0)
   1123 			break;
   1124 
   1125 		/* Operation in this page
   1126 		 *
   1127 		 * shmem_page_offset = offset within page in shmem file
   1128 		 * page_length = bytes to copy for this page
   1129 		 */
   1130 		shmem_page_offset = offset_in_page(offset);
   1131 
   1132 		page_length = remain;
   1133 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
   1134 			page_length = PAGE_SIZE - shmem_page_offset;
   1135 
   1136 		/* If we don't overwrite a cacheline completely we need to be
   1137 		 * careful to have up-to-date data by first clflushing. Don't
   1138 		 * overcomplicate things and flush the entire patch. */
   1139 		partial_cacheline_write = needs_clflush_before &&
   1140 			((shmem_page_offset | page_length)
   1141 				& (boot_cpu_data.x86_clflush_size - 1));
   1142 
   1143 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
   1144 			(page_to_phys(page) & (1 << 17)) != 0;
   1145 
   1146 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
   1147 					user_data, page_do_bit17_swizzling,
   1148 					partial_cacheline_write,
   1149 					needs_clflush_after);
   1150 		if (ret == 0)
   1151 			goto next_page;
   1152 
   1153 		hit_slowpath = 1;
   1154 		mutex_unlock(&dev->struct_mutex);
   1155 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
   1156 					user_data, page_do_bit17_swizzling,
   1157 					partial_cacheline_write,
   1158 					needs_clflush_after);
   1159 
   1160 		mutex_lock(&dev->struct_mutex);
   1161 
   1162 		if (ret)
   1163 			goto out;
   1164 
   1165 next_page:
   1166 		remain -= page_length;
   1167 		user_data += page_length;
   1168 		offset += page_length;
   1169 	}
   1170 #endif
   1171 
   1172 out:
   1173 	i915_gem_object_unpin_pages(obj);
   1174 
   1175 	if (hit_slowpath) {
   1176 		/*
   1177 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
   1178 		 * cachelines in-line while writing and the object moved
   1179 		 * out of the cpu write domain while we've dropped the lock.
   1180 		 */
   1181 		if (!needs_clflush_after &&
   1182 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1183 			if (i915_gem_clflush_object(obj, obj->pin_display))
   1184 				i915_gem_chipset_flush(dev);
   1185 		}
   1186 	}
   1187 
   1188 	if (needs_clflush_after)
   1189 		i915_gem_chipset_flush(dev);
   1190 
   1191 	return ret;
   1192 }
   1193 
   1194 /**
   1195  * Writes data to the object referenced by handle.
   1196  *
   1197  * On error, the contents of the buffer that were to be modified are undefined.
   1198  */
   1199 int
   1200 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
   1201 		      struct drm_file *file)
   1202 {
   1203 	struct drm_i915_gem_pwrite *args = data;
   1204 	struct drm_i915_gem_object *obj;
   1205 	int ret;
   1206 
   1207 	if (args->size == 0)
   1208 		return 0;
   1209 
   1210 	if (!access_ok(VERIFY_READ,
   1211 		       to_user_ptr(args->data_ptr),
   1212 		       args->size))
   1213 		return -EFAULT;
   1214 
   1215 #ifndef __NetBSD__		/* XXX prefault */
   1216 	if (likely(!i915.prefault_disable)) {
   1217 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
   1218 						   args->size);
   1219 		if (ret)
   1220 			return -EFAULT;
   1221 	}
   1222 #endif
   1223 
   1224 	ret = i915_mutex_lock_interruptible(dev);
   1225 	if (ret)
   1226 		return ret;
   1227 
   1228 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   1229 	if (&obj->base == NULL) {
   1230 		ret = -ENOENT;
   1231 		goto unlock;
   1232 	}
   1233 
   1234 	/* Bounds check destination. */
   1235 	if (args->offset > obj->base.size ||
   1236 	    args->size > obj->base.size - args->offset) {
   1237 		ret = -EINVAL;
   1238 		goto out;
   1239 	}
   1240 
   1241 	/* prime objects have no backing filp to GEM pread/pwrite
   1242 	 * pages from.
   1243 	 */
   1244 #ifdef __NetBSD__
   1245 	/* Also stolen objects.  */
   1246 	if (obj->base.gemo_shm_uao == NULL) {
   1247 		ret = -EINVAL;
   1248 		goto out;
   1249 	}
   1250 #else
   1251 	if (!obj->base.filp) {
   1252 		ret = -EINVAL;
   1253 		goto out;
   1254 	}
   1255 #endif
   1256 
   1257 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
   1258 
   1259 	ret = -EFAULT;
   1260 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
   1261 	 * it would end up going through the fenced access, and we'll get
   1262 	 * different detiling behavior between reading and writing.
   1263 	 * pread/pwrite currently are reading and writing from the CPU
   1264 	 * perspective, requiring manual detiling by the client.
   1265 	 */
   1266 	if (obj->phys_handle) {
   1267 		ret = i915_gem_phys_pwrite(obj, args, file);
   1268 		goto out;
   1269 	}
   1270 
   1271 	if (obj->tiling_mode == I915_TILING_NONE &&
   1272 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
   1273 	    cpu_write_needs_clflush(obj)) {
   1274 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
   1275 		/* Note that the gtt paths might fail with non-page-backed user
   1276 		 * pointers (e.g. gtt mappings when moving data between
   1277 		 * textures). Fallback to the shmem path in that case. */
   1278 	}
   1279 
   1280 	if (ret == -EFAULT || ret == -ENOSPC)
   1281 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
   1282 
   1283 out:
   1284 	drm_gem_object_unreference(&obj->base);
   1285 unlock:
   1286 	mutex_unlock(&dev->struct_mutex);
   1287 	return ret;
   1288 }
   1289 
   1290 int
   1291 i915_gem_check_wedge(struct i915_gpu_error *error,
   1292 		     bool interruptible)
   1293 {
   1294 	if (i915_reset_in_progress(error)) {
   1295 		/* Non-interruptible callers can't handle -EAGAIN, hence return
   1296 		 * -EIO unconditionally for these. */
   1297 		if (!interruptible)
   1298 			return -EIO;
   1299 
   1300 		/* Recovery complete, but the reset failed ... */
   1301 		if (i915_terminally_wedged(error))
   1302 			return -EIO;
   1303 
   1304 		return -EAGAIN;
   1305 	}
   1306 
   1307 	return 0;
   1308 }
   1309 
   1310 /*
   1311  * Compare seqno against outstanding lazy request. Emit a request if they are
   1312  * equal.
   1313  */
   1314 static int
   1315 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
   1316 {
   1317 	int ret;
   1318 
   1319 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
   1320 
   1321 	ret = 0;
   1322 	if (seqno == ring->outstanding_lazy_seqno)
   1323 		ret = i915_add_request(ring, NULL);
   1324 
   1325 	return ret;
   1326 }
   1327 
   1328 #ifndef __NetBSD__
   1329 static void fake_irq(unsigned long data)
   1330 {
   1331 	wake_up_process((struct task_struct *)data);
   1332 }
   1333 #endif
   1334 
   1335 static bool missed_irq(struct drm_i915_private *dev_priv,
   1336 		       struct intel_ring_buffer *ring)
   1337 {
   1338 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
   1339 }
   1340 
   1341 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
   1342 {
   1343 	if (file_priv == NULL)
   1344 		return true;
   1345 
   1346 	return !atomic_xchg(&file_priv->rps_wait_boost, true);
   1347 }
   1348 
   1349 /**
   1350  * __wait_seqno - wait until execution of seqno has finished
   1351  * @ring: the ring expected to report seqno
   1352  * @seqno: duh!
   1353  * @reset_counter: reset sequence associated with the given seqno
   1354  * @interruptible: do an interruptible wait (normally yes)
   1355  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
   1356  *
   1357  * Note: It is of utmost importance that the passed in seqno and reset_counter
   1358  * values have been read by the caller in an smp safe manner. Where read-side
   1359  * locks are involved, it is sufficient to read the reset_counter before
   1360  * unlocking the lock that protects the seqno. For lockless tricks, the
   1361  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
   1362  * inserted.
   1363  *
   1364  * Returns 0 if the seqno was found within the alloted time. Else returns the
   1365  * errno with remaining time filled in timeout argument.
   1366  */
   1367 #ifdef __NetBSD__
   1368 static int
   1369 __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, unsigned reset_counter,
   1370     bool interruptible, struct timespec *timeout,
   1371     struct drm_i915_file_private *file_priv)
   1372 {
   1373 	struct drm_device *dev = ring->dev;
   1374 	struct drm_i915_private *dev_priv = dev->dev_private;
   1375 	bool irq_test_in_progress;
   1376 	struct timespec before, after;
   1377 	int ticks;
   1378 	bool wedged;
   1379 	int ret;
   1380 
   1381 	irq_test_in_progress = (dev_priv->gpu_error.test_irq_rings &
   1382 	    intel_ring_flag(ring));
   1383 	__insn_barrier();
   1384 
   1385 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
   1386 		return 0;
   1387 
   1388 	if (timeout)
   1389 		ticks = mstohz(timespec_to_ns(timeout) / 1000000);
   1390 
   1391 	if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
   1392 		gen6_rps_boost(dev_priv);
   1393 		if (file_priv)
   1394 			mod_delayed_work(dev_priv->wq,
   1395 					 &file_priv->mm.idle_work,
   1396 					 msecs_to_jiffies(100));
   1397 	}
   1398 
   1399 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
   1400 		return -ENODEV;
   1401 
   1402 	nanotime(&before);
   1403 	spin_lock(&dev_priv->irq_lock);
   1404 #define	EXIT_COND							      \
   1405 	(((reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))  \
   1406 	    ? wedged = true : false) ||					      \
   1407 	    i915_seqno_passed(ring->get_seqno(ring, false),		      \
   1408 		seqno))
   1409 
   1410 	if (timeout) {
   1411 		/*
   1412 		 * XXX This missed_irq business smells like unlocked
   1413 		 * Linux waitqueue nonsense.
   1414 		 */
   1415 		if (missed_irq(dev_priv, ring))
   1416 			ticks = 1;
   1417 		if (interruptible)
   1418 			DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
   1419 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1420 		else
   1421 			DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1422 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1423 	} else {
   1424 		if (interruptible)
   1425 			DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
   1426 			    &dev_priv->irq_lock, EXIT_COND);
   1427 		else
   1428 			DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1429 			    &dev_priv->irq_lock, EXIT_COND);
   1430 	}
   1431 #undef	EXIT_COND
   1432 	spin_unlock(&dev_priv->irq_lock);
   1433 	nanotime(&after);
   1434 
   1435 	if (!irq_test_in_progress)
   1436 		ring->irq_put(ring);
   1437 	if (timeout)
   1438 		timespecsub(&after, &before, timeout);
   1439 	return MAX(ret, 0);	/* ignore remaining ticks */
   1440 }
   1441 #else
   1442 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
   1443 			unsigned reset_counter,
   1444 			bool interruptible,
   1445 			struct timespec *timeout,
   1446 			struct drm_i915_file_private *file_priv)
   1447 {
   1448 	struct drm_device *dev = ring->dev;
   1449 	struct drm_i915_private *dev_priv = dev->dev_private;
   1450 	const bool irq_test_in_progress =
   1451 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
   1452 	struct timespec before, now;
   1453 	DEFINE_WAIT(wait);
   1454 	unsigned long timeout_expire;
   1455 	int ret;
   1456 
   1457 	WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
   1458 
   1459 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
   1460 		return 0;
   1461 
   1462 	timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
   1463 
   1464 	if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
   1465 		gen6_rps_boost(dev_priv);
   1466 		if (file_priv)
   1467 			mod_delayed_work(dev_priv->wq,
   1468 					 &file_priv->mm.idle_work,
   1469 					 msecs_to_jiffies(100));
   1470 	}
   1471 
   1472 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
   1473 		return -ENODEV;
   1474 
   1475 	/* Record current time in case interrupted by signal, or wedged */
   1476 	trace_i915_gem_request_wait_begin(ring, seqno);
   1477 	getrawmonotonic(&before);
   1478 	for (;;) {
   1479 		struct timer_list timer;
   1480 
   1481 		prepare_to_wait(&ring->irq_queue, &wait,
   1482 				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
   1483 
   1484 		/* We need to check whether any gpu reset happened in between
   1485 		 * the caller grabbing the seqno and now ... */
   1486 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
   1487 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
   1488 			 * is truely gone. */
   1489 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1490 			if (ret == 0)
   1491 				ret = -EAGAIN;
   1492 			break;
   1493 		}
   1494 
   1495 		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
   1496 			ret = 0;
   1497 			break;
   1498 		}
   1499 
   1500 		if (interruptible && signal_pending(current)) {
   1501 			ret = -ERESTARTSYS;
   1502 			break;
   1503 		}
   1504 
   1505 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
   1506 			ret = -ETIME;
   1507 			break;
   1508 		}
   1509 
   1510 		timer.function = NULL;
   1511 		if (timeout || missed_irq(dev_priv, ring)) {
   1512 			unsigned long expire;
   1513 
   1514 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
   1515 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
   1516 			mod_timer(&timer, expire);
   1517 		}
   1518 
   1519 		io_schedule();
   1520 
   1521 		if (timer.function) {
   1522 			del_singleshot_timer_sync(&timer);
   1523 			destroy_timer_on_stack(&timer);
   1524 		}
   1525 	}
   1526 	getrawmonotonic(&now);
   1527 	trace_i915_gem_request_wait_end(ring, seqno);
   1528 
   1529 	if (!irq_test_in_progress)
   1530 		ring->irq_put(ring);
   1531 
   1532 	finish_wait(&ring->irq_queue, &wait);
   1533 
   1534 	if (timeout) {
   1535 		struct timespec sleep_time = timespec_sub(now, before);
   1536 		*timeout = timespec_sub(*timeout, sleep_time);
   1537 		if (!timespec_valid(timeout)) /* i.e. negative time remains */
   1538 			set_normalized_timespec(timeout, 0, 0);
   1539 	}
   1540 
   1541 	return ret;
   1542 }
   1543 #endif
   1544 
   1545 /**
   1546  * Waits for a sequence number to be signaled, and cleans up the
   1547  * request and object lists appropriately for that event.
   1548  */
   1549 int
   1550 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
   1551 {
   1552 	struct drm_device *dev = ring->dev;
   1553 	struct drm_i915_private *dev_priv = dev->dev_private;
   1554 	bool interruptible = dev_priv->mm.interruptible;
   1555 	int ret;
   1556 
   1557 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1558 	BUG_ON(seqno == 0);
   1559 
   1560 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1561 	if (ret)
   1562 		return ret;
   1563 
   1564 	ret = i915_gem_check_olr(ring, seqno);
   1565 	if (ret)
   1566 		return ret;
   1567 
   1568 	return __wait_seqno(ring, seqno,
   1569 			    atomic_read(&dev_priv->gpu_error.reset_counter),
   1570 			    interruptible, NULL, NULL);
   1571 }
   1572 
   1573 static int
   1574 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
   1575 				     struct intel_ring_buffer *ring)
   1576 {
   1577 	i915_gem_retire_requests_ring(ring);
   1578 
   1579 	/* Manually manage the write flush as we may have not yet
   1580 	 * retired the buffer.
   1581 	 *
   1582 	 * Note that the last_write_seqno is always the earlier of
   1583 	 * the two (read/write) seqno, so if we haved successfully waited,
   1584 	 * we know we have passed the last write.
   1585 	 */
   1586 	obj->last_write_seqno = 0;
   1587 	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
   1588 
   1589 	return 0;
   1590 }
   1591 
   1592 /**
   1593  * Ensures that all rendering to the object has completed and the object is
   1594  * safe to unbind from the GTT or access from the CPU.
   1595  */
   1596 static __must_check int
   1597 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
   1598 			       bool readonly)
   1599 {
   1600 	struct intel_ring_buffer *ring = obj->ring;
   1601 	u32 seqno;
   1602 	int ret;
   1603 
   1604 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
   1605 	if (seqno == 0)
   1606 		return 0;
   1607 
   1608 	ret = i915_wait_seqno(ring, seqno);
   1609 	if (ret)
   1610 		return ret;
   1611 
   1612 	return i915_gem_object_wait_rendering__tail(obj, ring);
   1613 }
   1614 
   1615 /* A nonblocking variant of the above wait. This is a highly dangerous routine
   1616  * as the object state may change during this call.
   1617  */
   1618 static __must_check int
   1619 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
   1620 					    struct drm_i915_file_private *file_priv,
   1621 					    bool readonly)
   1622 {
   1623 	struct drm_device *dev = obj->base.dev;
   1624 	struct drm_i915_private *dev_priv = dev->dev_private;
   1625 	struct intel_ring_buffer *ring = obj->ring;
   1626 	unsigned reset_counter;
   1627 	u32 seqno;
   1628 	int ret;
   1629 
   1630 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1631 	BUG_ON(!dev_priv->mm.interruptible);
   1632 
   1633 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
   1634 	if (seqno == 0)
   1635 		return 0;
   1636 
   1637 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
   1638 	if (ret)
   1639 		return ret;
   1640 
   1641 	ret = i915_gem_check_olr(ring, seqno);
   1642 	if (ret)
   1643 		return ret;
   1644 
   1645 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   1646 	mutex_unlock(&dev->struct_mutex);
   1647 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
   1648 	mutex_lock(&dev->struct_mutex);
   1649 	if (ret)
   1650 		return ret;
   1651 
   1652 	return i915_gem_object_wait_rendering__tail(obj, ring);
   1653 }
   1654 
   1655 /**
   1656  * Called when user space prepares to use an object with the CPU, either
   1657  * through the mmap ioctl's mapping or a GTT mapping.
   1658  */
   1659 int
   1660 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
   1661 			  struct drm_file *file)
   1662 {
   1663 	struct drm_i915_gem_set_domain *args = data;
   1664 	struct drm_i915_gem_object *obj;
   1665 	uint32_t read_domains = args->read_domains;
   1666 	uint32_t write_domain = args->write_domain;
   1667 	int ret;
   1668 
   1669 	/* Only handle setting domains to types used by the CPU. */
   1670 	if (write_domain & I915_GEM_GPU_DOMAINS)
   1671 		return -EINVAL;
   1672 
   1673 	if (read_domains & I915_GEM_GPU_DOMAINS)
   1674 		return -EINVAL;
   1675 
   1676 	/* Having something in the write domain implies it's in the read
   1677 	 * domain, and only that read domain.  Enforce that in the request.
   1678 	 */
   1679 	if (write_domain != 0 && read_domains != write_domain)
   1680 		return -EINVAL;
   1681 
   1682 	ret = i915_mutex_lock_interruptible(dev);
   1683 	if (ret)
   1684 		return ret;
   1685 
   1686 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   1687 	if (&obj->base == NULL) {
   1688 		ret = -ENOENT;
   1689 		goto unlock;
   1690 	}
   1691 
   1692 	/* Try to flush the object off the GPU without holding the lock.
   1693 	 * We will repeat the flush holding the lock in the normal manner
   1694 	 * to catch cases where we are gazumped.
   1695 	 */
   1696 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
   1697 							  file->driver_priv,
   1698 							  !write_domain);
   1699 	if (ret)
   1700 		goto unref;
   1701 
   1702 	if (read_domains & I915_GEM_DOMAIN_GTT) {
   1703 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
   1704 
   1705 		/* Silently promote "you're not bound, there was nothing to do"
   1706 		 * to success, since the client was just asking us to
   1707 		 * make sure everything was done.
   1708 		 */
   1709 		if (ret == -EINVAL)
   1710 			ret = 0;
   1711 	} else {
   1712 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
   1713 	}
   1714 
   1715 unref:
   1716 	drm_gem_object_unreference(&obj->base);
   1717 unlock:
   1718 	mutex_unlock(&dev->struct_mutex);
   1719 	return ret;
   1720 }
   1721 
   1722 /**
   1723  * Called when user space has done writes to this buffer
   1724  */
   1725 int
   1726 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
   1727 			 struct drm_file *file)
   1728 {
   1729 	struct drm_i915_gem_sw_finish *args = data;
   1730 	struct drm_i915_gem_object *obj;
   1731 	int ret = 0;
   1732 
   1733 	ret = i915_mutex_lock_interruptible(dev);
   1734 	if (ret)
   1735 		return ret;
   1736 
   1737 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   1738 	if (&obj->base == NULL) {
   1739 		ret = -ENOENT;
   1740 		goto unlock;
   1741 	}
   1742 
   1743 	/* Pinned buffers may be scanout, so flush the cache */
   1744 	if (obj->pin_display)
   1745 		i915_gem_object_flush_cpu_write_domain(obj, true);
   1746 
   1747 	drm_gem_object_unreference(&obj->base);
   1748 unlock:
   1749 	mutex_unlock(&dev->struct_mutex);
   1750 	return ret;
   1751 }
   1752 
   1753 /**
   1754  * Maps the contents of an object, returning the address it is mapped
   1755  * into.
   1756  *
   1757  * While the mapping holds a reference on the contents of the object, it doesn't
   1758  * imply a ref on the object itself.
   1759  */
   1760 int
   1761 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
   1762 		    struct drm_file *file)
   1763 {
   1764 	struct drm_i915_gem_mmap *args = data;
   1765 	struct drm_gem_object *obj;
   1766 	unsigned long addr;
   1767 #ifdef __NetBSD__
   1768 	int ret;
   1769 #endif
   1770 
   1771 	obj = drm_gem_object_lookup(dev, file, args->handle);
   1772 	if (obj == NULL)
   1773 		return -ENOENT;
   1774 
   1775 	/* prime objects have no backing filp to GEM mmap
   1776 	 * pages from.
   1777 	 */
   1778 #ifdef __NetBSD__
   1779 	/* Also stolen objects (XXX can we get them here?)  */
   1780 	if (obj->gemo_shm_uao == NULL) {
   1781 		drm_gem_object_unreference_unlocked(obj);
   1782 		return -EINVAL;
   1783 	}
   1784 #else
   1785 	if (!obj->filp) {
   1786 		drm_gem_object_unreference_unlocked(obj);
   1787 		return -EINVAL;
   1788 	}
   1789 #endif
   1790 
   1791 #ifdef __NetBSD__
   1792 	addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
   1793 	    (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
   1794 	/* XXX errno NetBSD->Linux */
   1795 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
   1796 	    obj->gemo_shm_uao, args->offset, 0,
   1797 	    UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
   1798 		(VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
   1799 		0));
   1800 	if (ret) {
   1801 		drm_gem_object_unreference_unlocked(obj);
   1802 		return ret;
   1803 	}
   1804 	uao_reference(obj->gemo_shm_uao);
   1805 	drm_gem_object_unreference_unlocked(obj);
   1806 #else
   1807 	addr = vm_mmap(obj->filp, 0, args->size,
   1808 		       PROT_READ | PROT_WRITE, MAP_SHARED,
   1809 		       args->offset);
   1810 	drm_gem_object_unreference_unlocked(obj);
   1811 	if (IS_ERR((void *)addr))
   1812 		return addr;
   1813 #endif
   1814 
   1815 	args->addr_ptr = (uint64_t) addr;
   1816 
   1817 	return 0;
   1818 }
   1819 
   1820 #ifdef __NetBSD__		/* XXX gem gtt fault */
   1821 static int	i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
   1822 		    struct vm_page **, int, int, vm_prot_t, int, paddr_t);
   1823 
   1824 int
   1825 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   1826     int npages, int centeridx, vm_prot_t access_type, int flags)
   1827 {
   1828 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1829 	struct drm_gem_object *gem_obj =
   1830 	    container_of(uobj, struct drm_gem_object, gemo_uvmobj);
   1831 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   1832 	struct drm_device *dev = obj->base.dev;
   1833 	struct drm_i915_private *dev_priv = dev->dev_private;
   1834 	voff_t byte_offset;
   1835 	pgoff_t page_offset;
   1836 	int ret = 0;
   1837 	bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
   1838 
   1839 	byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
   1840 	KASSERT(byte_offset <= obj->base.size);
   1841 	page_offset = (byte_offset >> PAGE_SHIFT);
   1842 
   1843 	intel_runtime_pm_get(dev_priv);
   1844 
   1845 	ret = i915_mutex_lock_interruptible(dev);
   1846 	if (ret)
   1847 		goto out;
   1848 
   1849 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   1850 
   1851 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   1852 	if (ret)
   1853 		goto unlock;
   1854 
   1855 	if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
   1856 		ret = -EINVAL;
   1857 		goto unlock;
   1858 	}
   1859 
   1860 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
   1861 	if (ret)
   1862 		goto unlock;
   1863 
   1864 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   1865 	if (ret)
   1866 		goto unpin;
   1867 
   1868 	ret = i915_gem_object_get_fence(obj);
   1869 	if (ret)
   1870 		goto unpin;
   1871 
   1872 	obj->fault_mappable = true;
   1873 
   1874 	/* XXX errno NetBSD->Linux */
   1875 	ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
   1876 	    flags,
   1877 	    (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
   1878 unpin:
   1879 	i915_gem_object_ggtt_unpin(obj);
   1880 unlock:
   1881 	mutex_unlock(&dev->struct_mutex);
   1882 out:
   1883 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
   1884 	if (ret == -ERESTART)
   1885 		uvm_wait("i915flt");
   1886 	/* XXX Deal with GPU hangs here...  */
   1887 	intel_runtime_pm_put(dev_priv);
   1888 	/* XXX errno Linux->NetBSD */
   1889 	return -ret;
   1890 }
   1891 
   1892 /*
   1893  * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
   1894  *
   1895  * XXX pmap_enter_default instead of pmap_enter because of a problem
   1896  * with using weak aliases in kernel modules or something.
   1897  */
   1898 int	pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
   1899 
   1900 static int
   1901 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   1902     int npages, int centeridx, vm_prot_t access_type, int flags,
   1903     paddr_t gtt_paddr)
   1904 {
   1905 	struct vm_map_entry *entry = ufi->entry;
   1906 	vaddr_t curr_va;
   1907 	off_t curr_offset;
   1908 	paddr_t paddr;
   1909 	u_int mmapflags;
   1910 	int lcv, retval;
   1911 	vm_prot_t mapprot;
   1912 	UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
   1913 	UVMHIST_LOG(maphist,"  flags=%d", flags,0,0,0);
   1914 
   1915 	/*
   1916 	 * we do not allow device mappings to be mapped copy-on-write
   1917 	 * so we kill any attempt to do so here.
   1918 	 */
   1919 
   1920 	if (UVM_ET_ISCOPYONWRITE(entry)) {
   1921 		UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
   1922 		entry->etype, 0,0,0);
   1923 		return(EIO);
   1924 	}
   1925 
   1926 	/*
   1927 	 * now we must determine the offset in udv to use and the VA to
   1928 	 * use for pmap_enter.  note that we always use orig_map's pmap
   1929 	 * for pmap_enter (even if we have a submap).   since virtual
   1930 	 * addresses in a submap must match the main map, this is ok.
   1931 	 */
   1932 
   1933 	/* udv offset = (offset from start of entry) + entry's offset */
   1934 	curr_offset = entry->offset + (vaddr - entry->start);
   1935 	/* pmap va = vaddr (virtual address of pps[0]) */
   1936 	curr_va = vaddr;
   1937 
   1938 	/*
   1939 	 * loop over the page range entering in as needed
   1940 	 */
   1941 
   1942 	retval = 0;
   1943 	for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
   1944 	    curr_va += PAGE_SIZE) {
   1945 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
   1946 			continue;
   1947 
   1948 		if (pps[lcv] == PGO_DONTCARE)
   1949 			continue;
   1950 
   1951 		paddr = (gtt_paddr + curr_offset);
   1952 		mmapflags = 0;
   1953 		mapprot = ufi->entry->protection;
   1954 		UVMHIST_LOG(maphist,
   1955 		    "  MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
   1956 		    ufi->orig_map->pmap, curr_va, paddr, mapprot);
   1957 		if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
   1958 		    PMAP_CANFAIL | mapprot | mmapflags) != 0) {
   1959 			/*
   1960 			 * pmap_enter() didn't have the resource to
   1961 			 * enter this mapping.  Unlock everything,
   1962 			 * wait for the pagedaemon to free up some
   1963 			 * pages, and then tell uvm_fault() to start
   1964 			 * the fault again.
   1965 			 *
   1966 			 * XXX Needs some rethinking for the PGO_ALLPAGES
   1967 			 * XXX case.
   1968 			 */
   1969 			pmap_update(ufi->orig_map->pmap);	/* sync what we have so far */
   1970 			return (ERESTART);
   1971 		}
   1972 	}
   1973 
   1974 	pmap_update(ufi->orig_map->pmap);
   1975 	return (retval);
   1976 }
   1977 #else
   1978 /**
   1979  * i915_gem_fault - fault a page into the GTT
   1980  * vma: VMA in question
   1981  * vmf: fault info
   1982  *
   1983  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
   1984  * from userspace.  The fault handler takes care of binding the object to
   1985  * the GTT (if needed), allocating and programming a fence register (again,
   1986  * only if needed based on whether the old reg is still valid or the object
   1987  * is tiled) and inserting a new PTE into the faulting process.
   1988  *
   1989  * Note that the faulting process may involve evicting existing objects
   1990  * from the GTT and/or fence registers to make room.  So performance may
   1991  * suffer if the GTT working set is large or there are few fence registers
   1992  * left.
   1993  */
   1994 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
   1995 {
   1996 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
   1997 	struct drm_device *dev = obj->base.dev;
   1998 	struct drm_i915_private *dev_priv = dev->dev_private;
   1999 	pgoff_t page_offset;
   2000 	unsigned long pfn;
   2001 	int ret = 0;
   2002 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
   2003 
   2004 	intel_runtime_pm_get(dev_priv);
   2005 
   2006 	/* We don't use vmf->pgoff since that has the fake offset */
   2007 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
   2008 		PAGE_SHIFT;
   2009 
   2010 	ret = i915_mutex_lock_interruptible(dev);
   2011 	if (ret)
   2012 		goto out;
   2013 
   2014 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   2015 
   2016 	/* Try to flush the object off the GPU first without holding the lock.
   2017 	 * Upon reacquiring the lock, we will perform our sanity checks and then
   2018 	 * repeat the flush holding the lock in the normal manner to catch cases
   2019 	 * where we are gazumped.
   2020 	 */
   2021 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   2022 	if (ret)
   2023 		goto unlock;
   2024 
   2025 	/* Access to snoopable pages through the GTT is incoherent. */
   2026 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
   2027 		ret = -EINVAL;
   2028 		goto unlock;
   2029 	}
   2030 
   2031 	/* Now bind it into the GTT if needed */
   2032 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
   2033 	if (ret)
   2034 		goto unlock;
   2035 
   2036 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   2037 	if (ret)
   2038 		goto unpin;
   2039 
   2040 	ret = i915_gem_object_get_fence(obj);
   2041 	if (ret)
   2042 		goto unpin;
   2043 
   2044 	obj->fault_mappable = true;
   2045 
   2046 	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
   2047 	pfn >>= PAGE_SHIFT;
   2048 	pfn += page_offset;
   2049 
   2050 	/* Finally, remap it using the new GTT offset */
   2051 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
   2052 unpin:
   2053 	i915_gem_object_ggtt_unpin(obj);
   2054 unlock:
   2055 	mutex_unlock(&dev->struct_mutex);
   2056 out:
   2057 	switch (ret) {
   2058 	case -EIO:
   2059 		/* If this -EIO is due to a gpu hang, give the reset code a
   2060 		 * chance to clean up the mess. Otherwise return the proper
   2061 		 * SIGBUS. */
   2062 		if (i915_terminally_wedged(&dev_priv->gpu_error)) {
   2063 			ret = VM_FAULT_SIGBUS;
   2064 			break;
   2065 		}
   2066 	case -EAGAIN:
   2067 		/*
   2068 		 * EAGAIN means the gpu is hung and we'll wait for the error
   2069 		 * handler to reset everything when re-faulting in
   2070 		 * i915_mutex_lock_interruptible.
   2071 		 */
   2072 	case 0:
   2073 	case -ERESTARTSYS:
   2074 	case -EINTR:
   2075 	case -EBUSY:
   2076 		/*
   2077 		 * EBUSY is ok: this just means that another thread
   2078 		 * already did the job.
   2079 		 */
   2080 		ret = VM_FAULT_NOPAGE;
   2081 		break;
   2082 	case -ENOMEM:
   2083 		ret = VM_FAULT_OOM;
   2084 		break;
   2085 	case -ENOSPC:
   2086 	case -EFAULT:
   2087 		ret = VM_FAULT_SIGBUS;
   2088 		break;
   2089 	default:
   2090 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
   2091 		ret = VM_FAULT_SIGBUS;
   2092 		break;
   2093 	}
   2094 
   2095 	intel_runtime_pm_put(dev_priv);
   2096 	return ret;
   2097 }
   2098 
   2099 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
   2100 {
   2101 	struct i915_vma *vma;
   2102 
   2103 	/*
   2104 	 * Only the global gtt is relevant for gtt memory mappings, so restrict
   2105 	 * list traversal to objects bound into the global address space. Note
   2106 	 * that the active list should be empty, but better safe than sorry.
   2107 	 */
   2108 	WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
   2109 	list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
   2110 		i915_gem_release_mmap(vma->obj);
   2111 	list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
   2112 		i915_gem_release_mmap(vma->obj);
   2113 }
   2114 #endif
   2115 
   2116 /**
   2117  * i915_gem_release_mmap - remove physical page mappings
   2118  * @obj: obj in question
   2119  *
   2120  * Preserve the reservation of the mmapping with the DRM core code, but
   2121  * relinquish ownership of the pages back to the system.
   2122  *
   2123  * It is vital that we remove the page mapping if we have mapped a tiled
   2124  * object through the GTT and then lose the fence register due to
   2125  * resource pressure. Similarly if the object has been moved out of the
   2126  * aperture, than pages mapped into userspace must be revoked. Removing the
   2127  * mapping will then trigger a page fault on the next user access, allowing
   2128  * fixup by i915_gem_fault().
   2129  */
   2130 void
   2131 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
   2132 {
   2133 	if (!obj->fault_mappable)
   2134 		return;
   2135 
   2136 #ifdef __NetBSD__		/* XXX gem gtt fault */
   2137 	{
   2138 		struct vm_page *page;
   2139 
   2140 		mutex_enter(obj->base.gemo_shm_uao->vmobjlock);
   2141 		KASSERT(obj->pages != NULL);
   2142 		/* Force a fresh fault for each page.  */
   2143 		TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
   2144 			pmap_page_protect(page, VM_PROT_NONE);
   2145 		mutex_exit(obj->base.gemo_shm_uao->vmobjlock);
   2146 	}
   2147 #else
   2148 	drm_vma_node_unmap(&obj->base.vma_node,
   2149 			   obj->base.dev->anon_inode->i_mapping);
   2150 #endif
   2151 	obj->fault_mappable = false;
   2152 }
   2153 
   2154 uint32_t
   2155 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
   2156 {
   2157 	uint32_t gtt_size;
   2158 
   2159 	if (INTEL_INFO(dev)->gen >= 4 ||
   2160 	    tiling_mode == I915_TILING_NONE)
   2161 		return size;
   2162 
   2163 	/* Previous chips need a power-of-two fence region when tiling */
   2164 	if (INTEL_INFO(dev)->gen == 3)
   2165 		gtt_size = 1024*1024;
   2166 	else
   2167 		gtt_size = 512*1024;
   2168 
   2169 	while (gtt_size < size)
   2170 		gtt_size <<= 1;
   2171 
   2172 	return gtt_size;
   2173 }
   2174 
   2175 /**
   2176  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
   2177  * @obj: object to check
   2178  *
   2179  * Return the required GTT alignment for an object, taking into account
   2180  * potential fence register mapping.
   2181  */
   2182 uint32_t
   2183 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
   2184 			   int tiling_mode, bool fenced)
   2185 {
   2186 	/*
   2187 	 * Minimum alignment is 4k (GTT page size), but might be greater
   2188 	 * if a fence register is needed for the object.
   2189 	 */
   2190 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
   2191 	    tiling_mode == I915_TILING_NONE)
   2192 		return 4096;
   2193 
   2194 	/*
   2195 	 * Previous chips need to be aligned to the size of the smallest
   2196 	 * fence register that can contain the object.
   2197 	 */
   2198 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
   2199 }
   2200 
   2201 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
   2202 {
   2203 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2204 	int ret;
   2205 
   2206 	if (drm_vma_node_has_offset(&obj->base.vma_node))
   2207 		return 0;
   2208 
   2209 	dev_priv->mm.shrinker_no_lock_stealing = true;
   2210 
   2211 	ret = drm_gem_create_mmap_offset(&obj->base);
   2212 	if (ret != -ENOSPC)
   2213 		goto out;
   2214 
   2215 	/* Badly fragmented mmap space? The only way we can recover
   2216 	 * space is by destroying unwanted objects. We can't randomly release
   2217 	 * mmap_offsets as userspace expects them to be persistent for the
   2218 	 * lifetime of the objects. The closest we can is to release the
   2219 	 * offsets on purgeable objects by truncating it and marking it purged,
   2220 	 * which prevents userspace from ever using that object again.
   2221 	 */
   2222 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
   2223 	ret = drm_gem_create_mmap_offset(&obj->base);
   2224 	if (ret != -ENOSPC)
   2225 		goto out;
   2226 
   2227 	i915_gem_shrink_all(dev_priv);
   2228 	ret = drm_gem_create_mmap_offset(&obj->base);
   2229 out:
   2230 	dev_priv->mm.shrinker_no_lock_stealing = false;
   2231 
   2232 	return ret;
   2233 }
   2234 
   2235 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
   2236 {
   2237 	drm_gem_free_mmap_offset(&obj->base);
   2238 }
   2239 
   2240 int
   2241 i915_gem_mmap_gtt(struct drm_file *file,
   2242 		  struct drm_device *dev,
   2243 		  uint32_t handle,
   2244 		  uint64_t *offset)
   2245 {
   2246 	struct drm_i915_private *dev_priv = dev->dev_private;
   2247 	struct drm_i915_gem_object *obj;
   2248 	int ret;
   2249 
   2250 	ret = i915_mutex_lock_interruptible(dev);
   2251 	if (ret)
   2252 		return ret;
   2253 
   2254 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
   2255 	if (&obj->base == NULL) {
   2256 		ret = -ENOENT;
   2257 		goto unlock;
   2258 	}
   2259 
   2260 	if (obj->base.size > dev_priv->gtt.mappable_end) {
   2261 		ret = -E2BIG;
   2262 		goto out;
   2263 	}
   2264 
   2265 	if (obj->madv != I915_MADV_WILLNEED) {
   2266 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
   2267 		ret = -EFAULT;
   2268 		goto out;
   2269 	}
   2270 
   2271 	ret = i915_gem_object_create_mmap_offset(obj);
   2272 	if (ret)
   2273 		goto out;
   2274 
   2275 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
   2276 
   2277 out:
   2278 	drm_gem_object_unreference(&obj->base);
   2279 unlock:
   2280 	mutex_unlock(&dev->struct_mutex);
   2281 	return ret;
   2282 }
   2283 
   2284 /**
   2285  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
   2286  * @dev: DRM device
   2287  * @data: GTT mapping ioctl data
   2288  * @file: GEM object info
   2289  *
   2290  * Simply returns the fake offset to userspace so it can mmap it.
   2291  * The mmap call will end up in drm_gem_mmap(), which will set things
   2292  * up so we can get faults in the handler above.
   2293  *
   2294  * The fault handler will take care of binding the object into the GTT
   2295  * (since it may have been evicted to make room for something), allocating
   2296  * a fence register, and mapping the appropriate aperture address into
   2297  * userspace.
   2298  */
   2299 int
   2300 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
   2301 			struct drm_file *file)
   2302 {
   2303 	struct drm_i915_gem_mmap_gtt *args = data;
   2304 
   2305 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
   2306 }
   2307 
   2308 /* Immediately discard the backing storage */
   2309 static void
   2310 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
   2311 {
   2312 #ifndef __NetBSD__
   2313 	struct inode *inode;
   2314 #endif
   2315 
   2316 	i915_gem_object_free_mmap_offset(obj);
   2317 
   2318 #ifdef __NetBSD__
   2319 	if (obj->base.gemo_shm_uao == NULL)
   2320 		return;
   2321 
   2322 	{
   2323 		struct uvm_object *const uobj = obj->base.gemo_shm_uao;
   2324 
   2325 		if (uobj != NULL) {
   2326 			/* XXX Calling pgo_put like this is bogus.  */
   2327 			mutex_enter(uobj->vmobjlock);
   2328 			(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   2329 			    (PGO_ALLPAGES | PGO_FREE));
   2330 		}
   2331 	}
   2332 #else
   2333 	if (obj->base.filp == NULL)
   2334 		return;
   2335 
   2336 	/* Our goal here is to return as much of the memory as
   2337 	 * is possible back to the system as we are called from OOM.
   2338 	 * To do this we must instruct the shmfs to drop all of its
   2339 	 * backing pages, *now*.
   2340 	 */
   2341 	inode = file_inode(obj->base.filp);
   2342 	shmem_truncate_range(inode, 0, (loff_t)-1);
   2343 #endif
   2344 
   2345 	obj->madv = __I915_MADV_PURGED;
   2346 }
   2347 
   2348 static inline int
   2349 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
   2350 {
   2351 	return obj->madv == I915_MADV_DONTNEED;
   2352 }
   2353 
   2354 #ifdef __NetBSD__
   2355 static void
   2356 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2357 {
   2358 	struct drm_device *const dev = obj->base.dev;
   2359 	int ret;
   2360 
   2361 	/* XXX Cargo-culted from the Linux code.  */
   2362 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2363 
   2364 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2365 	if (ret) {
   2366 		WARN_ON(ret != -EIO);
   2367 		i915_gem_clflush_object(obj, true);
   2368 		obj->base.read_domains = obj->base.write_domain =
   2369 		    I915_GEM_DOMAIN_CPU;
   2370 	}
   2371 
   2372 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2373 		i915_gem_object_save_bit_17_swizzle(obj);
   2374 
   2375 	/* XXX Maintain dirty flag?  */
   2376 
   2377 	bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
   2378 	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
   2379 	    obj->base.size, obj->pages, obj->igo_nsegs);
   2380 
   2381 	kfree(obj->pages);
   2382 }
   2383 #else
   2384 static void
   2385 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2386 {
   2387 	struct sg_page_iter sg_iter;
   2388 	int ret;
   2389 
   2390 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2391 
   2392 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2393 	if (ret) {
   2394 		/* In the event of a disaster, abandon all caches and
   2395 		 * hope for the best.
   2396 		 */
   2397 		WARN_ON(ret != -EIO);
   2398 		i915_gem_clflush_object(obj, true);
   2399 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   2400 	}
   2401 
   2402 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2403 		i915_gem_object_save_bit_17_swizzle(obj);
   2404 
   2405 	if (obj->madv == I915_MADV_DONTNEED)
   2406 		obj->dirty = 0;
   2407 
   2408 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
   2409 		struct page *page = sg_page_iter_page(&sg_iter);
   2410 
   2411 		if (obj->dirty)
   2412 			set_page_dirty(page);
   2413 
   2414 		if (obj->madv == I915_MADV_WILLNEED)
   2415 			mark_page_accessed(page);
   2416 
   2417 		page_cache_release(page);
   2418 	}
   2419 	obj->dirty = 0;
   2420 
   2421 	sg_free_table(obj->pages);
   2422 	kfree(obj->pages);
   2423 }
   2424 #endif
   2425 
   2426 int
   2427 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
   2428 {
   2429 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2430 
   2431 	if (obj->pages == NULL)
   2432 		return 0;
   2433 
   2434 	if (obj->pages_pin_count)
   2435 		return -EBUSY;
   2436 
   2437 	BUG_ON(i915_gem_obj_bound_any(obj));
   2438 
   2439 	/* ->put_pages might need to allocate memory for the bit17 swizzle
   2440 	 * array, hence protect them from being reaped by removing them from gtt
   2441 	 * lists early. */
   2442 	list_del(&obj->global_list);
   2443 
   2444 	ops->put_pages(obj);
   2445 	obj->pages = NULL;
   2446 
   2447 	if (i915_gem_object_is_purgeable(obj))
   2448 		i915_gem_object_truncate(obj);
   2449 
   2450 	return 0;
   2451 }
   2452 
   2453 static unsigned long
   2454 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
   2455 		  bool purgeable_only)
   2456 {
   2457 	struct list_head still_bound_list;
   2458 	struct drm_i915_gem_object *obj, *next;
   2459 	unsigned long count = 0;
   2460 
   2461 	list_for_each_entry_safe(obj, next,
   2462 				 &dev_priv->mm.unbound_list,
   2463 				 global_list) {
   2464 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
   2465 		    i915_gem_object_put_pages(obj) == 0) {
   2466 			count += obj->base.size >> PAGE_SHIFT;
   2467 			if (count >= target)
   2468 				return count;
   2469 		}
   2470 	}
   2471 
   2472 	/*
   2473 	 * As we may completely rewrite the bound list whilst unbinding
   2474 	 * (due to retiring requests) we have to strictly process only
   2475 	 * one element of the list at the time, and recheck the list
   2476 	 * on every iteration.
   2477 	 */
   2478 	INIT_LIST_HEAD(&still_bound_list);
   2479 	while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
   2480 		struct i915_vma *vma, *v;
   2481 
   2482 		obj = list_first_entry(&dev_priv->mm.bound_list,
   2483 				       typeof(*obj), global_list);
   2484 		list_move_tail(&obj->global_list, &still_bound_list);
   2485 
   2486 		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
   2487 			continue;
   2488 
   2489 		/*
   2490 		 * Hold a reference whilst we unbind this object, as we may
   2491 		 * end up waiting for and retiring requests. This might
   2492 		 * release the final reference (held by the active list)
   2493 		 * and result in the object being freed from under us.
   2494 		 * in this object being freed.
   2495 		 *
   2496 		 * Note 1: Shrinking the bound list is special since only active
   2497 		 * (and hence bound objects) can contain such limbo objects, so
   2498 		 * we don't need special tricks for shrinking the unbound list.
   2499 		 * The only other place where we have to be careful with active
   2500 		 * objects suddenly disappearing due to retiring requests is the
   2501 		 * eviction code.
   2502 		 *
   2503 		 * Note 2: Even though the bound list doesn't hold a reference
   2504 		 * to the object we can safely grab one here: The final object
   2505 		 * unreferencing and the bound_list are both protected by the
   2506 		 * dev->struct_mutex and so we won't ever be able to observe an
   2507 		 * object on the bound_list with a reference count equals 0.
   2508 		 */
   2509 		drm_gem_object_reference(&obj->base);
   2510 
   2511 		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
   2512 			if (i915_vma_unbind(vma))
   2513 				break;
   2514 
   2515 		if (i915_gem_object_put_pages(obj) == 0)
   2516 			count += obj->base.size >> PAGE_SHIFT;
   2517 
   2518 		drm_gem_object_unreference(&obj->base);
   2519 	}
   2520 	list_splice(&still_bound_list, &dev_priv->mm.bound_list);
   2521 
   2522 	return count;
   2523 }
   2524 
   2525 static unsigned long
   2526 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
   2527 {
   2528 	return __i915_gem_shrink(dev_priv, target, true);
   2529 }
   2530 
   2531 static unsigned long
   2532 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
   2533 {
   2534 	struct drm_i915_gem_object *obj, *next;
   2535 	long freed = 0;
   2536 
   2537 	i915_gem_evict_everything(dev_priv->dev);
   2538 
   2539 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
   2540 				 global_list) {
   2541 		if (i915_gem_object_put_pages(obj) == 0)
   2542 			freed += obj->base.size >> PAGE_SHIFT;
   2543 	}
   2544 	return freed;
   2545 }
   2546 
   2547 #ifdef __NetBSD__
   2548 static int
   2549 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2550 {
   2551 	struct drm_device *const dev = obj->base.dev;
   2552 	struct vm_page *page;
   2553 	int error;
   2554 
   2555 	/* XXX Cargo-culted from the Linux code.  */
   2556 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2557 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2558 
   2559 	KASSERT(obj->pages == NULL);
   2560 	TAILQ_INIT(&obj->igo_pageq);
   2561 	obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
   2562 	    sizeof(obj->pages[0]), GFP_KERNEL);
   2563 	if (obj->pages == NULL) {
   2564 		error = -ENOMEM;
   2565 		goto fail0;
   2566 	}
   2567 
   2568 	/* XXX errno NetBSD->Linux */
   2569 	error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
   2570 	    0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
   2571 	    (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
   2572 	if (error)
   2573 		/* XXX Try i915_gem_purge, i915_gem_shrink_all.  */
   2574 		goto fail1;
   2575 	KASSERT(0 < obj->igo_nsegs);
   2576 	KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
   2577 
   2578 	/*
   2579 	 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
   2580 	 *
   2581 	 * XXX This is wrong; we ought to pass this constraint to
   2582 	 * bus_dmamem_wire_uvm_object instead.
   2583 	 */
   2584 	TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
   2585 		const uint64_t mask =
   2586 		    (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
   2587 			0xffffffffULL : 0xffffffffffULL);
   2588 		if (VM_PAGE_TO_PHYS(page) & ~mask) {
   2589 			DRM_ERROR("GEM physical address exceeds %u bits"
   2590 			    ": %"PRIxMAX"\n",
   2591 			    popcount64(mask),
   2592 			    (uintmax_t)VM_PAGE_TO_PHYS(page));
   2593 			error = -EIO;
   2594 			goto fail2;
   2595 		}
   2596 	}
   2597 
   2598 	/* XXX Should create the DMA map when creating the object.  */
   2599 
   2600 	/* XXX errno NetBSD->Linux */
   2601 	error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
   2602 	    PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
   2603 	if (error)
   2604 		goto fail2;
   2605 
   2606 	/* XXX Cargo-culted from the Linux code.  */
   2607 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2608 		i915_gem_object_do_bit_17_swizzle(obj);
   2609 
   2610 	/* Success!  */
   2611 	return 0;
   2612 
   2613 fail2:	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
   2614 	    obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
   2615 fail1:	kfree(obj->pages);
   2616 	obj->pages = NULL;
   2617 fail0:	KASSERT(error);
   2618 	return error;
   2619 }
   2620 #else
   2621 static int
   2622 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2623 {
   2624 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2625 	int page_count, i;
   2626 	struct address_space *mapping;
   2627 	struct sg_table *st;
   2628 	struct scatterlist *sg;
   2629 	struct sg_page_iter sg_iter;
   2630 	struct page *page;
   2631 	unsigned long last_pfn = 0;	/* suppress gcc warning */
   2632 	gfp_t gfp;
   2633 
   2634 	/* Assert that the object is not currently in any GPU domain. As it
   2635 	 * wasn't in the GTT, there shouldn't be any way it could have been in
   2636 	 * a GPU cache
   2637 	 */
   2638 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2639 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2640 
   2641 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   2642 	if (st == NULL)
   2643 		return -ENOMEM;
   2644 
   2645 	page_count = obj->base.size / PAGE_SIZE;
   2646 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
   2647 		kfree(st);
   2648 		return -ENOMEM;
   2649 	}
   2650 
   2651 	/* Get the list of pages out of our struct file.  They'll be pinned
   2652 	 * at this point until we release them.
   2653 	 *
   2654 	 * Fail silently without starting the shrinker
   2655 	 */
   2656 	mapping = file_inode(obj->base.filp)->i_mapping;
   2657 	gfp = mapping_gfp_mask(mapping);
   2658 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
   2659 	gfp &= ~(__GFP_IO | __GFP_WAIT);
   2660 	sg = st->sgl;
   2661 	st->nents = 0;
   2662 	for (i = 0; i < page_count; i++) {
   2663 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2664 		if (IS_ERR(page)) {
   2665 			i915_gem_purge(dev_priv, page_count);
   2666 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2667 		}
   2668 		if (IS_ERR(page)) {
   2669 			/* We've tried hard to allocate the memory by reaping
   2670 			 * our own buffer, now let the real VM do its job and
   2671 			 * go down in flames if truly OOM.
   2672 			 */
   2673 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
   2674 			gfp |= __GFP_IO | __GFP_WAIT;
   2675 
   2676 			i915_gem_shrink_all(dev_priv);
   2677 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2678 			if (IS_ERR(page))
   2679 				goto err_pages;
   2680 
   2681 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
   2682 			gfp &= ~(__GFP_IO | __GFP_WAIT);
   2683 		}
   2684 #ifdef CONFIG_SWIOTLB
   2685 		if (swiotlb_nr_tbl()) {
   2686 			st->nents++;
   2687 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2688 			sg = sg_next(sg);
   2689 			continue;
   2690 		}
   2691 #endif
   2692 		if (!i || page_to_pfn(page) != last_pfn + 1) {
   2693 			if (i)
   2694 				sg = sg_next(sg);
   2695 			st->nents++;
   2696 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2697 		} else {
   2698 			sg->length += PAGE_SIZE;
   2699 		}
   2700 		last_pfn = page_to_pfn(page);
   2701 
   2702 		/* Check that the i965g/gm workaround works. */
   2703 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
   2704 	}
   2705 #ifdef CONFIG_SWIOTLB
   2706 	if (!swiotlb_nr_tbl())
   2707 #endif
   2708 		sg_mark_end(sg);
   2709 	obj->pages = st;
   2710 
   2711 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2712 		i915_gem_object_do_bit_17_swizzle(obj);
   2713 
   2714 	return 0;
   2715 
   2716 err_pages:
   2717 	sg_mark_end(sg);
   2718 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
   2719 		page_cache_release(sg_page_iter_page(&sg_iter));
   2720 	sg_free_table(st);
   2721 	kfree(st);
   2722 	return PTR_ERR(page);
   2723 }
   2724 #endif
   2725 
   2726 /* Ensure that the associated pages are gathered from the backing storage
   2727  * and pinned into our object. i915_gem_object_get_pages() may be called
   2728  * multiple times before they are released by a single call to
   2729  * i915_gem_object_put_pages() - once the pages are no longer referenced
   2730  * either as a result of memory pressure (reaping pages under the shrinker)
   2731  * or as the object is itself released.
   2732  */
   2733 int
   2734 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
   2735 {
   2736 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2737 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2738 	int ret;
   2739 
   2740 	if (obj->pages)
   2741 		return 0;
   2742 
   2743 	if (obj->madv != I915_MADV_WILLNEED) {
   2744 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
   2745 		return -EFAULT;
   2746 	}
   2747 
   2748 	BUG_ON(obj->pages_pin_count);
   2749 
   2750 	ret = ops->get_pages(obj);
   2751 	if (ret)
   2752 		return ret;
   2753 
   2754 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   2755 	return 0;
   2756 }
   2757 
   2758 static void
   2759 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
   2760 			       struct intel_ring_buffer *ring)
   2761 {
   2762 	struct drm_device *dev = obj->base.dev;
   2763 	struct drm_i915_private *dev_priv = dev->dev_private;
   2764 	u32 seqno = intel_ring_get_seqno(ring);
   2765 
   2766 	BUG_ON(ring == NULL);
   2767 	if (obj->ring != ring && obj->last_write_seqno) {
   2768 		/* Keep the seqno relative to the current ring */
   2769 		obj->last_write_seqno = seqno;
   2770 	}
   2771 	obj->ring = ring;
   2772 
   2773 	/* Add a reference if we're newly entering the active list. */
   2774 	if (!obj->active) {
   2775 		drm_gem_object_reference(&obj->base);
   2776 		obj->active = 1;
   2777 	}
   2778 
   2779 	list_move_tail(&obj->ring_list, &ring->active_list);
   2780 
   2781 	obj->last_read_seqno = seqno;
   2782 
   2783 	if (obj->fenced_gpu_access) {
   2784 		obj->last_fenced_seqno = seqno;
   2785 
   2786 		/* Bump MRU to take account of the delayed flush */
   2787 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
   2788 			struct drm_i915_fence_reg *reg;
   2789 
   2790 			reg = &dev_priv->fence_regs[obj->fence_reg];
   2791 			list_move_tail(&reg->lru_list,
   2792 				       &dev_priv->mm.fence_list);
   2793 		}
   2794 	}
   2795 }
   2796 
   2797 void i915_vma_move_to_active(struct i915_vma *vma,
   2798 			     struct intel_ring_buffer *ring)
   2799 {
   2800 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
   2801 	return i915_gem_object_move_to_active(vma->obj, ring);
   2802 }
   2803 
   2804 static void
   2805 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
   2806 {
   2807 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2808 	struct i915_address_space *vm;
   2809 	struct i915_vma *vma;
   2810 
   2811 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
   2812 	BUG_ON(!obj->active);
   2813 
   2814 	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
   2815 		vma = i915_gem_obj_to_vma(obj, vm);
   2816 		if (vma && !list_empty(&vma->mm_list))
   2817 			list_move_tail(&vma->mm_list, &vm->inactive_list);
   2818 	}
   2819 
   2820 	list_del_init(&obj->ring_list);
   2821 	obj->ring = NULL;
   2822 
   2823 	obj->last_read_seqno = 0;
   2824 	obj->last_write_seqno = 0;
   2825 	obj->base.write_domain = 0;
   2826 
   2827 	obj->last_fenced_seqno = 0;
   2828 	obj->fenced_gpu_access = false;
   2829 
   2830 	obj->active = 0;
   2831 	drm_gem_object_unreference(&obj->base);
   2832 
   2833 	WARN_ON(i915_verify_lists(dev));
   2834 }
   2835 
   2836 static int
   2837 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
   2838 {
   2839 	struct drm_i915_private *dev_priv = dev->dev_private;
   2840 	struct intel_ring_buffer *ring;
   2841 	int ret, i, j;
   2842 
   2843 	/* Carefully retire all requests without writing to the rings */
   2844 	for_each_ring(ring, dev_priv, i) {
   2845 		ret = intel_ring_idle(ring);
   2846 		if (ret)
   2847 			return ret;
   2848 	}
   2849 	i915_gem_retire_requests(dev);
   2850 
   2851 	/* Finally reset hw state */
   2852 	for_each_ring(ring, dev_priv, i) {
   2853 		intel_ring_init_seqno(ring, seqno);
   2854 
   2855 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
   2856 			ring->sync_seqno[j] = 0;
   2857 	}
   2858 
   2859 	return 0;
   2860 }
   2861 
   2862 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
   2863 {
   2864 	struct drm_i915_private *dev_priv = dev->dev_private;
   2865 	int ret;
   2866 
   2867 	if (seqno == 0)
   2868 		return -EINVAL;
   2869 
   2870 	/* HWS page needs to be set less than what we
   2871 	 * will inject to ring
   2872 	 */
   2873 	ret = i915_gem_init_seqno(dev, seqno - 1);
   2874 	if (ret)
   2875 		return ret;
   2876 
   2877 	/* Carefully set the last_seqno value so that wrap
   2878 	 * detection still works
   2879 	 */
   2880 	dev_priv->next_seqno = seqno;
   2881 	dev_priv->last_seqno = seqno - 1;
   2882 	if (dev_priv->last_seqno == 0)
   2883 		dev_priv->last_seqno--;
   2884 
   2885 	return 0;
   2886 }
   2887 
   2888 int
   2889 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
   2890 {
   2891 	struct drm_i915_private *dev_priv = dev->dev_private;
   2892 
   2893 	/* reserve 0 for non-seqno */
   2894 	if (dev_priv->next_seqno == 0) {
   2895 		int ret = i915_gem_init_seqno(dev, 0);
   2896 		if (ret)
   2897 			return ret;
   2898 
   2899 		dev_priv->next_seqno = 1;
   2900 	}
   2901 
   2902 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
   2903 	return 0;
   2904 }
   2905 
   2906 int __i915_add_request(struct intel_ring_buffer *ring,
   2907 		       struct drm_file *file,
   2908 		       struct drm_i915_gem_object *obj,
   2909 		       u32 *out_seqno)
   2910 {
   2911 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
   2912 	struct drm_i915_gem_request *request;
   2913 	u32 request_ring_position, request_start;
   2914 	int ret;
   2915 
   2916 	request_start = intel_ring_get_tail(ring);
   2917 	/*
   2918 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
   2919 	 * after having emitted the batchbuffer command. Hence we need to fix
   2920 	 * things up similar to emitting the lazy request. The difference here
   2921 	 * is that the flush _must_ happen before the next request, no matter
   2922 	 * what.
   2923 	 */
   2924 	ret = intel_ring_flush_all_caches(ring);
   2925 	if (ret)
   2926 		return ret;
   2927 
   2928 	request = ring->preallocated_lazy_request;
   2929 	if (WARN_ON(request == NULL))
   2930 		return -ENOMEM;
   2931 
   2932 	/* Record the position of the start of the request so that
   2933 	 * should we detect the updated seqno part-way through the
   2934 	 * GPU processing the request, we never over-estimate the
   2935 	 * position of the head.
   2936 	 */
   2937 	request_ring_position = intel_ring_get_tail(ring);
   2938 
   2939 	ret = ring->add_request(ring);
   2940 	if (ret)
   2941 		return ret;
   2942 
   2943 	request->seqno = intel_ring_get_seqno(ring);
   2944 	request->ring = ring;
   2945 	request->head = request_start;
   2946 	request->tail = request_ring_position;
   2947 
   2948 	/* Whilst this request exists, batch_obj will be on the
   2949 	 * active_list, and so will hold the active reference. Only when this
   2950 	 * request is retired will the the batch_obj be moved onto the
   2951 	 * inactive_list and lose its active reference. Hence we do not need
   2952 	 * to explicitly hold another reference here.
   2953 	 */
   2954 	request->batch_obj = obj;
   2955 
   2956 	/* Hold a reference to the current context so that we can inspect
   2957 	 * it later in case a hangcheck error event fires.
   2958 	 */
   2959 	request->ctx = ring->last_context;
   2960 	if (request->ctx)
   2961 		i915_gem_context_reference(request->ctx);
   2962 
   2963 	request->emitted_jiffies = jiffies;
   2964 	list_add_tail(&request->list, &ring->request_list);
   2965 	request->file_priv = NULL;
   2966 
   2967 	if (file) {
   2968 		struct drm_i915_file_private *file_priv = file->driver_priv;
   2969 
   2970 		spin_lock(&file_priv->mm.lock);
   2971 		request->file_priv = file_priv;
   2972 		list_add_tail(&request->client_list,
   2973 			      &file_priv->mm.request_list);
   2974 		spin_unlock(&file_priv->mm.lock);
   2975 	}
   2976 
   2977 	trace_i915_gem_request_add(ring, request->seqno);
   2978 	ring->outstanding_lazy_seqno = 0;
   2979 	ring->preallocated_lazy_request = NULL;
   2980 
   2981 	if (!dev_priv->ums.mm_suspended) {
   2982 		i915_queue_hangcheck(ring->dev);
   2983 
   2984 		cancel_delayed_work_sync(&dev_priv->mm.idle_work);
   2985 		queue_delayed_work(dev_priv->wq,
   2986 				   &dev_priv->mm.retire_work,
   2987 				   round_jiffies_up_relative(HZ));
   2988 		intel_mark_busy(dev_priv->dev);
   2989 	}
   2990 
   2991 	if (out_seqno)
   2992 		*out_seqno = request->seqno;
   2993 	return 0;
   2994 }
   2995 
   2996 static inline void
   2997 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
   2998 {
   2999 	struct drm_i915_file_private *file_priv = request->file_priv;
   3000 
   3001 	if (!file_priv)
   3002 		return;
   3003 
   3004 	spin_lock(&file_priv->mm.lock);
   3005 	list_del(&request->client_list);
   3006 	request->file_priv = NULL;
   3007 	spin_unlock(&file_priv->mm.lock);
   3008 }
   3009 
   3010 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
   3011 				   const struct i915_hw_context *ctx)
   3012 {
   3013 	unsigned long elapsed;
   3014 
   3015 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
   3016 
   3017 	if (ctx->hang_stats.banned)
   3018 		return true;
   3019 
   3020 	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
   3021 		if (!i915_gem_context_is_default(ctx)) {
   3022 			DRM_DEBUG("context hanging too fast, banning!\n");
   3023 			return true;
   3024 		} else if (dev_priv->gpu_error.stop_rings == 0) {
   3025 			DRM_ERROR("gpu hanging too fast, banning!\n");
   3026 			return true;
   3027 		}
   3028 	}
   3029 
   3030 	return false;
   3031 }
   3032 
   3033 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
   3034 				  struct i915_hw_context *ctx,
   3035 				  const bool guilty)
   3036 {
   3037 	struct i915_ctx_hang_stats *hs;
   3038 
   3039 	if (WARN_ON(!ctx))
   3040 		return;
   3041 
   3042 	hs = &ctx->hang_stats;
   3043 
   3044 	if (guilty) {
   3045 		hs->banned = i915_context_is_banned(dev_priv, ctx);
   3046 		hs->batch_active++;
   3047 		hs->guilty_ts = get_seconds();
   3048 	} else {
   3049 		hs->batch_pending++;
   3050 	}
   3051 }
   3052 
   3053 static void i915_gem_free_request(struct drm_i915_gem_request *request)
   3054 {
   3055 	list_del(&request->list);
   3056 	i915_gem_request_remove_from_client(request);
   3057 
   3058 	if (request->ctx)
   3059 		i915_gem_context_unreference(request->ctx);
   3060 
   3061 	kfree(request);
   3062 }
   3063 
   3064 struct drm_i915_gem_request *
   3065 i915_gem_find_active_request(struct intel_ring_buffer *ring)
   3066 {
   3067 	struct drm_i915_gem_request *request;
   3068 	u32 completed_seqno;
   3069 
   3070 	completed_seqno = ring->get_seqno(ring, false);
   3071 
   3072 	list_for_each_entry(request, &ring->request_list, list) {
   3073 		if (i915_seqno_passed(completed_seqno, request->seqno))
   3074 			continue;
   3075 
   3076 		return request;
   3077 	}
   3078 
   3079 	return NULL;
   3080 }
   3081 
   3082 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
   3083 				       struct intel_ring_buffer *ring)
   3084 {
   3085 	struct drm_i915_gem_request *request;
   3086 	bool ring_hung;
   3087 
   3088 	request = i915_gem_find_active_request(ring);
   3089 
   3090 	if (request == NULL)
   3091 		return;
   3092 
   3093 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
   3094 
   3095 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
   3096 
   3097 	list_for_each_entry_continue(request, &ring->request_list, list)
   3098 		i915_set_reset_status(dev_priv, request->ctx, false);
   3099 }
   3100 
   3101 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
   3102 					struct intel_ring_buffer *ring)
   3103 {
   3104 	while (!list_empty(&ring->active_list)) {
   3105 		struct drm_i915_gem_object *obj;
   3106 
   3107 		obj = list_first_entry(&ring->active_list,
   3108 				       struct drm_i915_gem_object,
   3109 				       ring_list);
   3110 
   3111 		i915_gem_object_move_to_inactive(obj);
   3112 	}
   3113 
   3114 	/*
   3115 	 * We must free the requests after all the corresponding objects have
   3116 	 * been moved off active lists. Which is the same order as the normal
   3117 	 * retire_requests function does. This is important if object hold
   3118 	 * implicit references on things like e.g. ppgtt address spaces through
   3119 	 * the request.
   3120 	 */
   3121 	while (!list_empty(&ring->request_list)) {
   3122 		struct drm_i915_gem_request *request;
   3123 
   3124 		request = list_first_entry(&ring->request_list,
   3125 					   struct drm_i915_gem_request,
   3126 					   list);
   3127 
   3128 		i915_gem_free_request(request);
   3129 	}
   3130 }
   3131 
   3132 void i915_gem_restore_fences(struct drm_device *dev)
   3133 {
   3134 	struct drm_i915_private *dev_priv = dev->dev_private;
   3135 	int i;
   3136 
   3137 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
   3138 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
   3139 
   3140 		/*
   3141 		 * Commit delayed tiling changes if we have an object still
   3142 		 * attached to the fence, otherwise just clear the fence.
   3143 		 */
   3144 		if (reg->obj) {
   3145 			i915_gem_object_update_fence(reg->obj, reg,
   3146 						     reg->obj->tiling_mode);
   3147 		} else {
   3148 			i915_gem_write_fence(dev, i, NULL);
   3149 		}
   3150 	}
   3151 }
   3152 
   3153 void i915_gem_reset(struct drm_device *dev)
   3154 {
   3155 	struct drm_i915_private *dev_priv = dev->dev_private;
   3156 	struct intel_ring_buffer *ring;
   3157 	int i;
   3158 
   3159 	/*
   3160 	 * Before we free the objects from the requests, we need to inspect
   3161 	 * them for finding the guilty party. As the requests only borrow
   3162 	 * their reference to the objects, the inspection must be done first.
   3163 	 */
   3164 	for_each_ring(ring, dev_priv, i)
   3165 		i915_gem_reset_ring_status(dev_priv, ring);
   3166 
   3167 	for_each_ring(ring, dev_priv, i)
   3168 		i915_gem_reset_ring_cleanup(dev_priv, ring);
   3169 
   3170 	i915_gem_cleanup_ringbuffer(dev);
   3171 
   3172 	i915_gem_context_reset(dev);
   3173 
   3174 	i915_gem_restore_fences(dev);
   3175 }
   3176 
   3177 /**
   3178  * This function clears the request list as sequence numbers are passed.
   3179  */
   3180 static void
   3181 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
   3182 {
   3183 	uint32_t seqno;
   3184 
   3185 	if (list_empty(&ring->request_list))
   3186 		return;
   3187 
   3188 	WARN_ON(i915_verify_lists(ring->dev));
   3189 
   3190 	seqno = ring->get_seqno(ring, true);
   3191 
   3192 	/* Move any buffers on the active list that are no longer referenced
   3193 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
   3194 	 * before we free the context associated with the requests.
   3195 	 */
   3196 	while (!list_empty(&ring->active_list)) {
   3197 		struct drm_i915_gem_object *obj;
   3198 
   3199 		obj = list_first_entry(&ring->active_list,
   3200 				      struct drm_i915_gem_object,
   3201 				      ring_list);
   3202 
   3203 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
   3204 			break;
   3205 
   3206 		i915_gem_object_move_to_inactive(obj);
   3207 	}
   3208 
   3209 
   3210 	while (!list_empty(&ring->request_list)) {
   3211 		struct drm_i915_gem_request *request;
   3212 
   3213 		request = list_first_entry(&ring->request_list,
   3214 					   struct drm_i915_gem_request,
   3215 					   list);
   3216 
   3217 		if (!i915_seqno_passed(seqno, request->seqno))
   3218 			break;
   3219 
   3220 		trace_i915_gem_request_retire(ring, request->seqno);
   3221 		/* We know the GPU must have read the request to have
   3222 		 * sent us the seqno + interrupt, so use the position
   3223 		 * of tail of the request to update the last known position
   3224 		 * of the GPU head.
   3225 		 */
   3226 		ring->last_retired_head = request->tail;
   3227 
   3228 		i915_gem_free_request(request);
   3229 	}
   3230 
   3231 	if (unlikely(ring->trace_irq_seqno &&
   3232 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
   3233 		ring->irq_put(ring);
   3234 		ring->trace_irq_seqno = 0;
   3235 	}
   3236 
   3237 	WARN_ON(i915_verify_lists(ring->dev));
   3238 }
   3239 
   3240 bool
   3241 i915_gem_retire_requests(struct drm_device *dev)
   3242 {
   3243 	struct drm_i915_private *dev_priv = dev->dev_private;
   3244 	struct intel_ring_buffer *ring;
   3245 	bool idle = true;
   3246 	int i;
   3247 
   3248 	for_each_ring(ring, dev_priv, i) {
   3249 		i915_gem_retire_requests_ring(ring);
   3250 		idle &= list_empty(&ring->request_list);
   3251 	}
   3252 
   3253 	if (idle)
   3254 		mod_delayed_work(dev_priv->wq,
   3255 				   &dev_priv->mm.idle_work,
   3256 				   msecs_to_jiffies(100));
   3257 
   3258 	return idle;
   3259 }
   3260 
   3261 static void
   3262 i915_gem_retire_work_handler(struct work_struct *work)
   3263 {
   3264 	struct drm_i915_private *dev_priv =
   3265 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
   3266 	struct drm_device *dev = dev_priv->dev;
   3267 	bool idle;
   3268 
   3269 	/* Come back later if the device is busy... */
   3270 	idle = false;
   3271 	if (mutex_trylock(&dev->struct_mutex)) {
   3272 		idle = i915_gem_retire_requests(dev);
   3273 		mutex_unlock(&dev->struct_mutex);
   3274 	}
   3275 	if (!idle)
   3276 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
   3277 				   round_jiffies_up_relative(HZ));
   3278 }
   3279 
   3280 static void
   3281 i915_gem_idle_work_handler(struct work_struct *work)
   3282 {
   3283 	struct drm_i915_private *dev_priv =
   3284 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
   3285 
   3286 	intel_mark_idle(dev_priv->dev);
   3287 }
   3288 
   3289 /**
   3290  * Ensures that an object will eventually get non-busy by flushing any required
   3291  * write domains, emitting any outstanding lazy request and retiring and
   3292  * completed requests.
   3293  */
   3294 static int
   3295 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
   3296 {
   3297 	int ret;
   3298 
   3299 	if (obj->active) {
   3300 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
   3301 		if (ret)
   3302 			return ret;
   3303 
   3304 		i915_gem_retire_requests_ring(obj->ring);
   3305 	}
   3306 
   3307 	return 0;
   3308 }
   3309 
   3310 /**
   3311  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
   3312  * @DRM_IOCTL_ARGS: standard ioctl arguments
   3313  *
   3314  * Returns 0 if successful, else an error is returned with the remaining time in
   3315  * the timeout parameter.
   3316  *  -ETIME: object is still busy after timeout
   3317  *  -ERESTARTSYS: signal interrupted the wait
   3318  *  -ENONENT: object doesn't exist
   3319  * Also possible, but rare:
   3320  *  -EAGAIN: GPU wedged
   3321  *  -ENOMEM: damn
   3322  *  -ENODEV: Internal IRQ fail
   3323  *  -E?: The add request failed
   3324  *
   3325  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
   3326  * non-zero timeout parameter the wait ioctl will wait for the given number of
   3327  * nanoseconds on an object becoming unbusy. Since the wait itself does so
   3328  * without holding struct_mutex the object may become re-busied before this
   3329  * function completes. A similar but shorter * race condition exists in the busy
   3330  * ioctl
   3331  */
   3332 int
   3333 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
   3334 {
   3335 	struct drm_i915_private *dev_priv = dev->dev_private;
   3336 	struct drm_i915_gem_wait *args = data;
   3337 	struct drm_i915_gem_object *obj;
   3338 	struct intel_ring_buffer *ring = NULL;
   3339 	struct timespec timeout_stack, *timeout = NULL;
   3340 	unsigned reset_counter;
   3341 	u32 seqno = 0;
   3342 	int ret = 0;
   3343 
   3344 	if (args->timeout_ns >= 0) {
   3345 		timeout_stack = ns_to_timespec(args->timeout_ns);
   3346 		timeout = &timeout_stack;
   3347 	}
   3348 
   3349 	ret = i915_mutex_lock_interruptible(dev);
   3350 	if (ret)
   3351 		return ret;
   3352 
   3353 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
   3354 	if (&obj->base == NULL) {
   3355 		mutex_unlock(&dev->struct_mutex);
   3356 		return -ENOENT;
   3357 	}
   3358 
   3359 	/* Need to make sure the object gets inactive eventually. */
   3360 	ret = i915_gem_object_flush_active(obj);
   3361 	if (ret)
   3362 		goto out;
   3363 
   3364 	if (obj->active) {
   3365 		seqno = obj->last_read_seqno;
   3366 		ring = obj->ring;
   3367 	}
   3368 
   3369 	if (seqno == 0)
   3370 		 goto out;
   3371 
   3372 	/* Do this after OLR check to make sure we make forward progress polling
   3373 	 * on this IOCTL with a 0 timeout (like busy ioctl)
   3374 	 */
   3375 	if (!args->timeout_ns) {
   3376 		ret = -ETIME;
   3377 		goto out;
   3378 	}
   3379 
   3380 	drm_gem_object_unreference(&obj->base);
   3381 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   3382 	mutex_unlock(&dev->struct_mutex);
   3383 
   3384 	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
   3385 	if (timeout)
   3386 		args->timeout_ns = timespec_to_ns(timeout);
   3387 	return ret;
   3388 
   3389 out:
   3390 	drm_gem_object_unreference(&obj->base);
   3391 	mutex_unlock(&dev->struct_mutex);
   3392 	return ret;
   3393 }
   3394 
   3395 /**
   3396  * i915_gem_object_sync - sync an object to a ring.
   3397  *
   3398  * @obj: object which may be in use on another ring.
   3399  * @to: ring we wish to use the object on. May be NULL.
   3400  *
   3401  * This code is meant to abstract object synchronization with the GPU.
   3402  * Calling with NULL implies synchronizing the object with the CPU
   3403  * rather than a particular GPU ring.
   3404  *
   3405  * Returns 0 if successful, else propagates up the lower layer error.
   3406  */
   3407 int
   3408 i915_gem_object_sync(struct drm_i915_gem_object *obj,
   3409 		     struct intel_ring_buffer *to)
   3410 {
   3411 	struct intel_ring_buffer *from = obj->ring;
   3412 	u32 seqno;
   3413 	int ret, idx;
   3414 
   3415 	if (from == NULL || to == from)
   3416 		return 0;
   3417 
   3418 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
   3419 		return i915_gem_object_wait_rendering(obj, false);
   3420 
   3421 	idx = intel_ring_sync_index(from, to);
   3422 
   3423 	seqno = obj->last_read_seqno;
   3424 	if (seqno <= from->sync_seqno[idx])
   3425 		return 0;
   3426 
   3427 	ret = i915_gem_check_olr(obj->ring, seqno);
   3428 	if (ret)
   3429 		return ret;
   3430 
   3431 	trace_i915_gem_ring_sync_to(from, to, seqno);
   3432 	ret = to->sync_to(to, from, seqno);
   3433 	if (!ret)
   3434 		/* We use last_read_seqno because sync_to()
   3435 		 * might have just caused seqno wrap under
   3436 		 * the radar.
   3437 		 */
   3438 		from->sync_seqno[idx] = obj->last_read_seqno;
   3439 
   3440 	return ret;
   3441 }
   3442 
   3443 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
   3444 {
   3445 	u32 old_write_domain, old_read_domains;
   3446 
   3447 	/* Force a pagefault for domain tracking on next user access */
   3448 	i915_gem_release_mmap(obj);
   3449 
   3450 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   3451 		return;
   3452 
   3453 	/* Wait for any direct GTT access to complete */
   3454 	mb();
   3455 
   3456 	old_read_domains = obj->base.read_domains;
   3457 	old_write_domain = obj->base.write_domain;
   3458 
   3459 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
   3460 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
   3461 
   3462 	trace_i915_gem_object_change_domain(obj,
   3463 					    old_read_domains,
   3464 					    old_write_domain);
   3465 }
   3466 
   3467 int i915_vma_unbind(struct i915_vma *vma)
   3468 {
   3469 	struct drm_i915_gem_object *obj = vma->obj;
   3470 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3471 	int ret;
   3472 
   3473 	if (list_empty(&vma->vma_link))
   3474 		return 0;
   3475 
   3476 	if (!drm_mm_node_allocated(&vma->node)) {
   3477 		i915_gem_vma_destroy(vma);
   3478 		return 0;
   3479 	}
   3480 
   3481 	if (vma->pin_count)
   3482 		return -EBUSY;
   3483 
   3484 	BUG_ON(obj->pages == NULL);
   3485 
   3486 	ret = i915_gem_object_finish_gpu(obj);
   3487 	if (ret)
   3488 		return ret;
   3489 	/* Continue on if we fail due to EIO, the GPU is hung so we
   3490 	 * should be safe and we need to cleanup or else we might
   3491 	 * cause memory corruption through use-after-free.
   3492 	 */
   3493 
   3494 	i915_gem_object_finish_gtt(obj);
   3495 
   3496 	/* release the fence reg _after_ flushing */
   3497 	ret = i915_gem_object_put_fence(obj);
   3498 	if (ret)
   3499 		return ret;
   3500 
   3501 	trace_i915_vma_unbind(vma);
   3502 
   3503 	vma->unbind_vma(vma);
   3504 
   3505 	i915_gem_gtt_finish_object(obj);
   3506 
   3507 	list_del_init(&vma->mm_list);
   3508 	/* Avoid an unnecessary call to unbind on rebind. */
   3509 	if (i915_is_ggtt(vma->vm))
   3510 		obj->map_and_fenceable = true;
   3511 
   3512 	drm_mm_remove_node(&vma->node);
   3513 	i915_gem_vma_destroy(vma);
   3514 
   3515 	/* Since the unbound list is global, only move to that list if
   3516 	 * no more VMAs exist. */
   3517 	if (list_empty(&obj->vma_list))
   3518 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   3519 
   3520 	/* And finally now the object is completely decoupled from this vma,
   3521 	 * we can drop its hold on the backing storage and allow it to be
   3522 	 * reaped by the shrinker.
   3523 	 */
   3524 	i915_gem_object_unpin_pages(obj);
   3525 
   3526 	return 0;
   3527 }
   3528 
   3529 int i915_gpu_idle(struct drm_device *dev)
   3530 {
   3531 	struct drm_i915_private *dev_priv = dev->dev_private;
   3532 	struct intel_ring_buffer *ring;
   3533 	int ret, i;
   3534 
   3535 	/* Flush everything onto the inactive list. */
   3536 	for_each_ring(ring, dev_priv, i) {
   3537 		ret = i915_switch_context(ring, ring->default_context);
   3538 		if (ret)
   3539 			return ret;
   3540 
   3541 		ret = intel_ring_idle(ring);
   3542 		if (ret)
   3543 			return ret;
   3544 	}
   3545 
   3546 	return 0;
   3547 }
   3548 
   3549 static void i965_write_fence_reg(struct drm_device *dev, int reg,
   3550 				 struct drm_i915_gem_object *obj)
   3551 {
   3552 	struct drm_i915_private *dev_priv = dev->dev_private;
   3553 	int fence_reg;
   3554 	int fence_pitch_shift;
   3555 
   3556 	if (INTEL_INFO(dev)->gen >= 6) {
   3557 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
   3558 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
   3559 	} else {
   3560 		fence_reg = FENCE_REG_965_0;
   3561 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
   3562 	}
   3563 
   3564 	fence_reg += reg * 8;
   3565 
   3566 	/* To w/a incoherency with non-atomic 64-bit register updates,
   3567 	 * we split the 64-bit update into two 32-bit writes. In order
   3568 	 * for a partial fence not to be evaluated between writes, we
   3569 	 * precede the update with write to turn off the fence register,
   3570 	 * and only enable the fence as the last step.
   3571 	 *
   3572 	 * For extra levels of paranoia, we make sure each step lands
   3573 	 * before applying the next step.
   3574 	 */
   3575 	I915_WRITE(fence_reg, 0);
   3576 	POSTING_READ(fence_reg);
   3577 
   3578 	if (obj) {
   3579 		u32 size = i915_gem_obj_ggtt_size(obj);
   3580 		uint64_t val;
   3581 
   3582 		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
   3583 				 0xfffff000) << 32;
   3584 		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
   3585 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
   3586 		if (obj->tiling_mode == I915_TILING_Y)
   3587 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
   3588 		val |= I965_FENCE_REG_VALID;
   3589 
   3590 		I915_WRITE(fence_reg + 4, val >> 32);
   3591 		POSTING_READ(fence_reg + 4);
   3592 
   3593 		I915_WRITE(fence_reg + 0, val);
   3594 		POSTING_READ(fence_reg);
   3595 	} else {
   3596 		I915_WRITE(fence_reg + 4, 0);
   3597 		POSTING_READ(fence_reg + 4);
   3598 	}
   3599 }
   3600 
   3601 static void i915_write_fence_reg(struct drm_device *dev, int reg,
   3602 				 struct drm_i915_gem_object *obj)
   3603 {
   3604 	struct drm_i915_private *dev_priv = dev->dev_private;
   3605 	u32 val;
   3606 
   3607 	if (obj) {
   3608 		u32 size = i915_gem_obj_ggtt_size(obj);
   3609 		int pitch_val;
   3610 		int tile_width;
   3611 
   3612 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
   3613 		     (size & -size) != size ||
   3614 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
   3615 		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
   3616 		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
   3617 
   3618 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
   3619 			tile_width = 128;
   3620 		else
   3621 			tile_width = 512;
   3622 
   3623 		/* Note: pitch better be a power of two tile widths */
   3624 		pitch_val = obj->stride / tile_width;
   3625 		pitch_val = ffs(pitch_val) - 1;
   3626 
   3627 		val = i915_gem_obj_ggtt_offset(obj);
   3628 		if (obj->tiling_mode == I915_TILING_Y)
   3629 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
   3630 		val |= I915_FENCE_SIZE_BITS(size);
   3631 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
   3632 		val |= I830_FENCE_REG_VALID;
   3633 	} else
   3634 		val = 0;
   3635 
   3636 	if (reg < 8)
   3637 		reg = FENCE_REG_830_0 + reg * 4;
   3638 	else
   3639 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
   3640 
   3641 	I915_WRITE(reg, val);
   3642 	POSTING_READ(reg);
   3643 }
   3644 
   3645 static void i830_write_fence_reg(struct drm_device *dev, int reg,
   3646 				struct drm_i915_gem_object *obj)
   3647 {
   3648 	struct drm_i915_private *dev_priv = dev->dev_private;
   3649 	uint32_t val;
   3650 
   3651 	if (obj) {
   3652 		u32 size = i915_gem_obj_ggtt_size(obj);
   3653 		uint32_t pitch_val;
   3654 
   3655 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
   3656 		     (size & -size) != size ||
   3657 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
   3658 		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
   3659 		     i915_gem_obj_ggtt_offset(obj), size);
   3660 
   3661 		pitch_val = obj->stride / 128;
   3662 		pitch_val = ffs(pitch_val) - 1;
   3663 
   3664 		val = i915_gem_obj_ggtt_offset(obj);
   3665 		if (obj->tiling_mode == I915_TILING_Y)
   3666 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
   3667 		val |= I830_FENCE_SIZE_BITS(size);
   3668 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
   3669 		val |= I830_FENCE_REG_VALID;
   3670 	} else
   3671 		val = 0;
   3672 
   3673 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
   3674 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
   3675 }
   3676 
   3677 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
   3678 {
   3679 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
   3680 }
   3681 
   3682 static void i915_gem_write_fence(struct drm_device *dev, int reg,
   3683 				 struct drm_i915_gem_object *obj)
   3684 {
   3685 	struct drm_i915_private *dev_priv = dev->dev_private;
   3686 
   3687 	/* Ensure that all CPU reads are completed before installing a fence
   3688 	 * and all writes before removing the fence.
   3689 	 */
   3690 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
   3691 		mb();
   3692 
   3693 	WARN(obj && (!obj->stride || !obj->tiling_mode),
   3694 	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
   3695 	     obj->stride, obj->tiling_mode);
   3696 
   3697 	switch (INTEL_INFO(dev)->gen) {
   3698 	case 8:
   3699 	case 7:
   3700 	case 6:
   3701 	case 5:
   3702 	case 4: i965_write_fence_reg(dev, reg, obj); break;
   3703 	case 3: i915_write_fence_reg(dev, reg, obj); break;
   3704 	case 2: i830_write_fence_reg(dev, reg, obj); break;
   3705 	default: BUG();
   3706 	}
   3707 
   3708 	/* And similarly be paranoid that no direct access to this region
   3709 	 * is reordered to before the fence is installed.
   3710 	 */
   3711 	if (i915_gem_object_needs_mb(obj))
   3712 		mb();
   3713 }
   3714 
   3715 static inline int fence_number(struct drm_i915_private *dev_priv,
   3716 			       struct drm_i915_fence_reg *fence)
   3717 {
   3718 	return fence - dev_priv->fence_regs;
   3719 }
   3720 
   3721 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
   3722 					 struct drm_i915_fence_reg *fence,
   3723 					 bool enable)
   3724 {
   3725 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3726 	int reg = fence_number(dev_priv, fence);
   3727 
   3728 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
   3729 
   3730 	if (enable) {
   3731 		obj->fence_reg = reg;
   3732 		fence->obj = obj;
   3733 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
   3734 	} else {
   3735 		obj->fence_reg = I915_FENCE_REG_NONE;
   3736 		fence->obj = NULL;
   3737 		list_del_init(&fence->lru_list);
   3738 	}
   3739 	obj->fence_dirty = false;
   3740 }
   3741 
   3742 static int
   3743 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
   3744 {
   3745 	if (obj->last_fenced_seqno) {
   3746 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
   3747 		if (ret)
   3748 			return ret;
   3749 
   3750 		obj->last_fenced_seqno = 0;
   3751 	}
   3752 
   3753 	obj->fenced_gpu_access = false;
   3754 	return 0;
   3755 }
   3756 
   3757 int
   3758 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
   3759 {
   3760 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3761 	struct drm_i915_fence_reg *fence;
   3762 	int ret;
   3763 
   3764 	ret = i915_gem_object_wait_fence(obj);
   3765 	if (ret)
   3766 		return ret;
   3767 
   3768 	if (obj->fence_reg == I915_FENCE_REG_NONE)
   3769 		return 0;
   3770 
   3771 	fence = &dev_priv->fence_regs[obj->fence_reg];
   3772 
   3773 	i915_gem_object_fence_lost(obj);
   3774 	i915_gem_object_update_fence(obj, fence, false);
   3775 
   3776 	return 0;
   3777 }
   3778 
   3779 static struct drm_i915_fence_reg *
   3780 i915_find_fence_reg(struct drm_device *dev)
   3781 {
   3782 	struct drm_i915_private *dev_priv = dev->dev_private;
   3783 	struct drm_i915_fence_reg *reg, *avail;
   3784 	int i;
   3785 
   3786 	/* First try to find a free reg */
   3787 	avail = NULL;
   3788 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
   3789 		reg = &dev_priv->fence_regs[i];
   3790 		if (!reg->obj)
   3791 			return reg;
   3792 
   3793 		if (!reg->pin_count)
   3794 			avail = reg;
   3795 	}
   3796 
   3797 	if (avail == NULL)
   3798 		goto deadlock;
   3799 
   3800 	/* None available, try to steal one or wait for a user to finish */
   3801 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
   3802 		if (reg->pin_count)
   3803 			continue;
   3804 
   3805 		return reg;
   3806 	}
   3807 
   3808 deadlock:
   3809 	/* Wait for completion of pending flips which consume fences */
   3810 	if (intel_has_pending_fb_unpin(dev))
   3811 		return ERR_PTR(-EAGAIN);
   3812 
   3813 	return ERR_PTR(-EDEADLK);
   3814 }
   3815 
   3816 /**
   3817  * i915_gem_object_get_fence - set up fencing for an object
   3818  * @obj: object to map through a fence reg
   3819  *
   3820  * When mapping objects through the GTT, userspace wants to be able to write
   3821  * to them without having to worry about swizzling if the object is tiled.
   3822  * This function walks the fence regs looking for a free one for @obj,
   3823  * stealing one if it can't find any.
   3824  *
   3825  * It then sets up the reg based on the object's properties: address, pitch
   3826  * and tiling format.
   3827  *
   3828  * For an untiled surface, this removes any existing fence.
   3829  */
   3830 int
   3831 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
   3832 {
   3833 	struct drm_device *dev = obj->base.dev;
   3834 	struct drm_i915_private *dev_priv = dev->dev_private;
   3835 	bool enable = obj->tiling_mode != I915_TILING_NONE;
   3836 	struct drm_i915_fence_reg *reg;
   3837 	int ret;
   3838 
   3839 	/* Have we updated the tiling parameters upon the object and so
   3840 	 * will need to serialise the write to the associated fence register?
   3841 	 */
   3842 	if (obj->fence_dirty) {
   3843 		ret = i915_gem_object_wait_fence(obj);
   3844 		if (ret)
   3845 			return ret;
   3846 	}
   3847 
   3848 	/* Just update our place in the LRU if our fence is getting reused. */
   3849 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
   3850 		reg = &dev_priv->fence_regs[obj->fence_reg];
   3851 		if (!obj->fence_dirty) {
   3852 			list_move_tail(&reg->lru_list,
   3853 				       &dev_priv->mm.fence_list);
   3854 			return 0;
   3855 		}
   3856 	} else if (enable) {
   3857 		reg = i915_find_fence_reg(dev);
   3858 		if (IS_ERR(reg))
   3859 			return PTR_ERR(reg);
   3860 
   3861 		if (reg->obj) {
   3862 			struct drm_i915_gem_object *old = reg->obj;
   3863 
   3864 			ret = i915_gem_object_wait_fence(old);
   3865 			if (ret)
   3866 				return ret;
   3867 
   3868 			i915_gem_object_fence_lost(old);
   3869 		}
   3870 	} else
   3871 		return 0;
   3872 
   3873 	i915_gem_object_update_fence(obj, reg, enable);
   3874 
   3875 	return 0;
   3876 }
   3877 
   3878 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
   3879 				     struct drm_mm_node *gtt_space,
   3880 				     unsigned long cache_level)
   3881 {
   3882 	struct drm_mm_node *other;
   3883 
   3884 	/* On non-LLC machines we have to be careful when putting differing
   3885 	 * types of snoopable memory together to avoid the prefetcher
   3886 	 * crossing memory domains and dying.
   3887 	 */
   3888 	if (HAS_LLC(dev))
   3889 		return true;
   3890 
   3891 	if (!drm_mm_node_allocated(gtt_space))
   3892 		return true;
   3893 
   3894 	if (list_empty(&gtt_space->node_list))
   3895 		return true;
   3896 
   3897 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
   3898 	if (other->allocated && !other->hole_follows && other->color != cache_level)
   3899 		return false;
   3900 
   3901 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
   3902 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
   3903 		return false;
   3904 
   3905 	return true;
   3906 }
   3907 
   3908 static void i915_gem_verify_gtt(struct drm_device *dev)
   3909 {
   3910 #if WATCH_GTT
   3911 	struct drm_i915_private *dev_priv = dev->dev_private;
   3912 	struct drm_i915_gem_object *obj;
   3913 	int err = 0;
   3914 
   3915 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
   3916 		if (obj->gtt_space == NULL) {
   3917 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
   3918 			err++;
   3919 			continue;
   3920 		}
   3921 
   3922 		if (obj->cache_level != obj->gtt_space->color) {
   3923 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
   3924 			       i915_gem_obj_ggtt_offset(obj),
   3925 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
   3926 			       obj->cache_level,
   3927 			       obj->gtt_space->color);
   3928 			err++;
   3929 			continue;
   3930 		}
   3931 
   3932 		if (!i915_gem_valid_gtt_space(dev,
   3933 					      obj->gtt_space,
   3934 					      obj->cache_level)) {
   3935 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
   3936 			       i915_gem_obj_ggtt_offset(obj),
   3937 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
   3938 			       obj->cache_level);
   3939 			err++;
   3940 			continue;
   3941 		}
   3942 	}
   3943 
   3944 	WARN_ON(err);
   3945 #endif
   3946 }
   3947 
   3948 /**
   3949  * Finds free space in the GTT aperture and binds the object there.
   3950  */
   3951 static struct i915_vma *
   3952 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
   3953 			   struct i915_address_space *vm,
   3954 			   unsigned alignment,
   3955 			   uint64_t flags)
   3956 {
   3957 	struct drm_device *dev = obj->base.dev;
   3958 	struct drm_i915_private *dev_priv = dev->dev_private;
   3959 	u32 size, fence_size, fence_alignment, unfenced_alignment;
   3960 	unsigned long start =
   3961 		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
   3962 	unsigned long end =
   3963 		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
   3964 	struct i915_vma *vma;
   3965 	int ret;
   3966 
   3967 	fence_size = i915_gem_get_gtt_size(dev,
   3968 					   obj->base.size,
   3969 					   obj->tiling_mode);
   3970 	fence_alignment = i915_gem_get_gtt_alignment(dev,
   3971 						     obj->base.size,
   3972 						     obj->tiling_mode, true);
   3973 	unfenced_alignment =
   3974 		i915_gem_get_gtt_alignment(dev,
   3975 					   obj->base.size,
   3976 					   obj->tiling_mode, false);
   3977 
   3978 	if (alignment == 0)
   3979 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
   3980 						unfenced_alignment;
   3981 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
   3982 		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
   3983 		return ERR_PTR(-EINVAL);
   3984 	}
   3985 
   3986 	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
   3987 
   3988 	/* If the object is bigger than the entire aperture, reject it early
   3989 	 * before evicting everything in a vain attempt to find space.
   3990 	 */
   3991 	if (obj->base.size > end) {
   3992 		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
   3993 			  obj->base.size,
   3994 			  flags & PIN_MAPPABLE ? "mappable" : "total",
   3995 			  end);
   3996 		return ERR_PTR(-E2BIG);
   3997 	}
   3998 
   3999 	ret = i915_gem_object_get_pages(obj);
   4000 	if (ret)
   4001 		return ERR_PTR(ret);
   4002 
   4003 	i915_gem_object_pin_pages(obj);
   4004 
   4005 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
   4006 	if (IS_ERR(vma))
   4007 		goto err_unpin;
   4008 
   4009 search_free:
   4010 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
   4011 						  size, alignment,
   4012 						  obj->cache_level,
   4013 						  start, end,
   4014 						  DRM_MM_SEARCH_DEFAULT,
   4015 						  DRM_MM_CREATE_DEFAULT);
   4016 	if (ret) {
   4017 		ret = i915_gem_evict_something(dev, vm, size, alignment,
   4018 					       obj->cache_level,
   4019 					       start, end,
   4020 					       flags);
   4021 		if (ret == 0)
   4022 			goto search_free;
   4023 
   4024 		goto err_free_vma;
   4025 	}
   4026 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
   4027 					      obj->cache_level))) {
   4028 		ret = -EINVAL;
   4029 		goto err_remove_node;
   4030 	}
   4031 
   4032 	ret = i915_gem_gtt_prepare_object(obj);
   4033 	if (ret)
   4034 		goto err_remove_node;
   4035 
   4036 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
   4037 	list_add_tail(&vma->mm_list, &vm->inactive_list);
   4038 
   4039 	if (i915_is_ggtt(vm)) {
   4040 		bool mappable, fenceable;
   4041 
   4042 		fenceable = (vma->node.size == fence_size &&
   4043 			     (vma->node.start & (fence_alignment - 1)) == 0);
   4044 
   4045 		mappable = (vma->node.start + obj->base.size <=
   4046 			    dev_priv->gtt.mappable_end);
   4047 
   4048 		obj->map_and_fenceable = mappable && fenceable;
   4049 	}
   4050 
   4051 	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
   4052 
   4053 	trace_i915_vma_bind(vma, flags);
   4054 	vma->bind_vma(vma, obj->cache_level,
   4055 		      flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
   4056 
   4057 	i915_gem_verify_gtt(dev);
   4058 	return vma;
   4059 
   4060 err_remove_node:
   4061 	drm_mm_remove_node(&vma->node);
   4062 err_free_vma:
   4063 	i915_gem_vma_destroy(vma);
   4064 	vma = ERR_PTR(ret);
   4065 err_unpin:
   4066 	i915_gem_object_unpin_pages(obj);
   4067 	return vma;
   4068 }
   4069 
   4070 bool
   4071 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
   4072 			bool force)
   4073 {
   4074 	/* If we don't have a page list set up, then we're not pinned
   4075 	 * to GPU, and we can ignore the cache flush because it'll happen
   4076 	 * again at bind time.
   4077 	 */
   4078 	if (obj->pages == NULL)
   4079 		return false;
   4080 
   4081 	/*
   4082 	 * Stolen memory is always coherent with the GPU as it is explicitly
   4083 	 * marked as wc by the system, or the system is cache-coherent.
   4084 	 */
   4085 	if (obj->stolen)
   4086 		return false;
   4087 
   4088 	/* If the GPU is snooping the contents of the CPU cache,
   4089 	 * we do not need to manually clear the CPU cache lines.  However,
   4090 	 * the caches are only snooped when the render cache is
   4091 	 * flushed/invalidated.  As we always have to emit invalidations
   4092 	 * and flushes when moving into and out of the RENDER domain, correct
   4093 	 * snooping behaviour occurs naturally as the result of our domain
   4094 	 * tracking.
   4095 	 */
   4096 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
   4097 		return false;
   4098 
   4099 	trace_i915_gem_object_clflush(obj);
   4100 #ifdef __NetBSD__
   4101 	drm_clflush_pglist(&obj->igo_pageq);
   4102 #else
   4103 	drm_clflush_sg(obj->pages);
   4104 #endif
   4105 
   4106 	return true;
   4107 }
   4108 
   4109 /** Flushes the GTT write domain for the object if it's dirty. */
   4110 static void
   4111 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
   4112 {
   4113 	uint32_t old_write_domain;
   4114 
   4115 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
   4116 		return;
   4117 
   4118 	/* No actual flushing is required for the GTT write domain.  Writes
   4119 	 * to it immediately go to main memory as far as we know, so there's
   4120 	 * no chipset flush.  It also doesn't land in render cache.
   4121 	 *
   4122 	 * However, we do have to enforce the order so that all writes through
   4123 	 * the GTT land before any writes to the device, such as updates to
   4124 	 * the GATT itself.
   4125 	 */
   4126 	wmb();
   4127 
   4128 	old_write_domain = obj->base.write_domain;
   4129 	obj->base.write_domain = 0;
   4130 
   4131 	trace_i915_gem_object_change_domain(obj,
   4132 					    obj->base.read_domains,
   4133 					    old_write_domain);
   4134 }
   4135 
   4136 /** Flushes the CPU write domain for the object if it's dirty. */
   4137 static void
   4138 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
   4139 				       bool force)
   4140 {
   4141 	uint32_t old_write_domain;
   4142 
   4143 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
   4144 		return;
   4145 
   4146 	if (i915_gem_clflush_object(obj, force))
   4147 		i915_gem_chipset_flush(obj->base.dev);
   4148 
   4149 	old_write_domain = obj->base.write_domain;
   4150 	obj->base.write_domain = 0;
   4151 
   4152 	trace_i915_gem_object_change_domain(obj,
   4153 					    obj->base.read_domains,
   4154 					    old_write_domain);
   4155 }
   4156 
   4157 /**
   4158  * Moves a single object to the GTT read, and possibly write domain.
   4159  *
   4160  * This function returns when the move is complete, including waiting on
   4161  * flushes to occur.
   4162  */
   4163 int
   4164 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
   4165 {
   4166 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   4167 	uint32_t old_write_domain, old_read_domains;
   4168 	int ret;
   4169 
   4170 	/* Not valid to be called on unbound objects. */
   4171 	if (!i915_gem_obj_bound_any(obj))
   4172 		return -EINVAL;
   4173 
   4174 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
   4175 		return 0;
   4176 
   4177 	ret = i915_gem_object_wait_rendering(obj, !write);
   4178 	if (ret)
   4179 		return ret;
   4180 
   4181 	i915_gem_object_flush_cpu_write_domain(obj, false);
   4182 
   4183 	/* Serialise direct access to this object with the barriers for
   4184 	 * coherent writes from the GPU, by effectively invalidating the
   4185 	 * GTT domain upon first access.
   4186 	 */
   4187 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   4188 		mb();
   4189 
   4190 	old_write_domain = obj->base.write_domain;
   4191 	old_read_domains = obj->base.read_domains;
   4192 
   4193 	/* It should now be out of any other write domains, and we can update
   4194 	 * the domain values for our changes.
   4195 	 */
   4196 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
   4197 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4198 	if (write) {
   4199 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
   4200 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
   4201 		obj->dirty = 1;
   4202 	}
   4203 
   4204 	trace_i915_gem_object_change_domain(obj,
   4205 					    old_read_domains,
   4206 					    old_write_domain);
   4207 
   4208 	/* And bump the LRU for this access */
   4209 	if (i915_gem_object_is_inactive(obj)) {
   4210 		struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
   4211 		if (vma)
   4212 			list_move_tail(&vma->mm_list,
   4213 				       &dev_priv->gtt.base.inactive_list);
   4214 
   4215 	}
   4216 
   4217 	return 0;
   4218 }
   4219 
   4220 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
   4221 				    enum i915_cache_level cache_level)
   4222 {
   4223 	struct drm_device *dev = obj->base.dev;
   4224 	struct i915_vma *vma, *next;
   4225 	int ret;
   4226 
   4227 	if (obj->cache_level == cache_level)
   4228 		return 0;
   4229 
   4230 	if (i915_gem_obj_is_pinned(obj)) {
   4231 		DRM_DEBUG("can not change the cache level of pinned objects\n");
   4232 		return -EBUSY;
   4233 	}
   4234 
   4235 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   4236 		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
   4237 			ret = i915_vma_unbind(vma);
   4238 			if (ret)
   4239 				return ret;
   4240 		}
   4241 	}
   4242 
   4243 	if (i915_gem_obj_bound_any(obj)) {
   4244 		ret = i915_gem_object_finish_gpu(obj);
   4245 		if (ret)
   4246 			return ret;
   4247 
   4248 		i915_gem_object_finish_gtt(obj);
   4249 
   4250 		/* Before SandyBridge, you could not use tiling or fence
   4251 		 * registers with snooped memory, so relinquish any fences
   4252 		 * currently pointing to our region in the aperture.
   4253 		 */
   4254 		if (INTEL_INFO(dev)->gen < 6) {
   4255 			ret = i915_gem_object_put_fence(obj);
   4256 			if (ret)
   4257 				return ret;
   4258 		}
   4259 
   4260 		list_for_each_entry(vma, &obj->vma_list, vma_link)
   4261 			if (drm_mm_node_allocated(&vma->node))
   4262 				vma->bind_vma(vma, cache_level,
   4263 					      obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
   4264 	}
   4265 
   4266 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   4267 		vma->node.color = cache_level;
   4268 	obj->cache_level = cache_level;
   4269 
   4270 	if (cpu_write_needs_clflush(obj)) {
   4271 		u32 old_read_domains, old_write_domain;
   4272 
   4273 		/* If we're coming from LLC cached, then we haven't
   4274 		 * actually been tracking whether the data is in the
   4275 		 * CPU cache or not, since we only allow one bit set
   4276 		 * in obj->write_domain and have been skipping the clflushes.
   4277 		 * Just set it to the CPU cache for now.
   4278 		 */
   4279 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
   4280 
   4281 		old_read_domains = obj->base.read_domains;
   4282 		old_write_domain = obj->base.write_domain;
   4283 
   4284 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4285 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4286 
   4287 		trace_i915_gem_object_change_domain(obj,
   4288 						    old_read_domains,
   4289 						    old_write_domain);
   4290 	}
   4291 
   4292 	i915_gem_verify_gtt(dev);
   4293 	return 0;
   4294 }
   4295 
   4296 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
   4297 			       struct drm_file *file)
   4298 {
   4299 	struct drm_i915_gem_caching *args = data;
   4300 	struct drm_i915_gem_object *obj;
   4301 	int ret;
   4302 
   4303 	ret = i915_mutex_lock_interruptible(dev);
   4304 	if (ret)
   4305 		return ret;
   4306 
   4307 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   4308 	if (&obj->base == NULL) {
   4309 		ret = -ENOENT;
   4310 		goto unlock;
   4311 	}
   4312 
   4313 	switch (obj->cache_level) {
   4314 	case I915_CACHE_LLC:
   4315 	case I915_CACHE_L3_LLC:
   4316 		args->caching = I915_CACHING_CACHED;
   4317 		break;
   4318 
   4319 	case I915_CACHE_WT:
   4320 		args->caching = I915_CACHING_DISPLAY;
   4321 		break;
   4322 
   4323 	default:
   4324 		args->caching = I915_CACHING_NONE;
   4325 		break;
   4326 	}
   4327 
   4328 	drm_gem_object_unreference(&obj->base);
   4329 unlock:
   4330 	mutex_unlock(&dev->struct_mutex);
   4331 	return ret;
   4332 }
   4333 
   4334 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
   4335 			       struct drm_file *file)
   4336 {
   4337 	struct drm_i915_gem_caching *args = data;
   4338 	struct drm_i915_gem_object *obj;
   4339 	enum i915_cache_level level;
   4340 	int ret;
   4341 
   4342 	switch (args->caching) {
   4343 	case I915_CACHING_NONE:
   4344 		level = I915_CACHE_NONE;
   4345 		break;
   4346 	case I915_CACHING_CACHED:
   4347 		level = I915_CACHE_LLC;
   4348 		break;
   4349 	case I915_CACHING_DISPLAY:
   4350 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
   4351 		break;
   4352 	default:
   4353 		return -EINVAL;
   4354 	}
   4355 
   4356 	ret = i915_mutex_lock_interruptible(dev);
   4357 	if (ret)
   4358 		return ret;
   4359 
   4360 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   4361 	if (&obj->base == NULL) {
   4362 		ret = -ENOENT;
   4363 		goto unlock;
   4364 	}
   4365 
   4366 	ret = i915_gem_object_set_cache_level(obj, level);
   4367 
   4368 	drm_gem_object_unreference(&obj->base);
   4369 unlock:
   4370 	mutex_unlock(&dev->struct_mutex);
   4371 	return ret;
   4372 }
   4373 
   4374 static bool is_pin_display(struct drm_i915_gem_object *obj)
   4375 {
   4376 	/* There are 3 sources that pin objects:
   4377 	 *   1. The display engine (scanouts, sprites, cursors);
   4378 	 *   2. Reservations for execbuffer;
   4379 	 *   3. The user.
   4380 	 *
   4381 	 * We can ignore reservations as we hold the struct_mutex and
   4382 	 * are only called outside of the reservation path.  The user
   4383 	 * can only increment pin_count once, and so if after
   4384 	 * subtracting the potential reference by the user, any pin_count
   4385 	 * remains, it must be due to another use by the display engine.
   4386 	 */
   4387 	return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
   4388 }
   4389 
   4390 /*
   4391  * Prepare buffer for display plane (scanout, cursors, etc).
   4392  * Can be called from an uninterruptible phase (modesetting) and allows
   4393  * any flushes to be pipelined (for pageflips).
   4394  */
   4395 int
   4396 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
   4397 				     u32 alignment,
   4398 				     struct intel_ring_buffer *pipelined)
   4399 {
   4400 	u32 old_read_domains, old_write_domain;
   4401 	int ret;
   4402 
   4403 	if (pipelined != obj->ring) {
   4404 		ret = i915_gem_object_sync(obj, pipelined);
   4405 		if (ret)
   4406 			return ret;
   4407 	}
   4408 
   4409 	/* Mark the pin_display early so that we account for the
   4410 	 * display coherency whilst setting up the cache domains.
   4411 	 */
   4412 	obj->pin_display = true;
   4413 
   4414 	/* The display engine is not coherent with the LLC cache on gen6.  As
   4415 	 * a result, we make sure that the pinning that is about to occur is
   4416 	 * done with uncached PTEs. This is lowest common denominator for all
   4417 	 * chipsets.
   4418 	 *
   4419 	 * However for gen6+, we could do better by using the GFDT bit instead
   4420 	 * of uncaching, which would allow us to flush all the LLC-cached data
   4421 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
   4422 	 */
   4423 	ret = i915_gem_object_set_cache_level(obj,
   4424 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
   4425 	if (ret)
   4426 		goto err_unpin_display;
   4427 
   4428 	/* As the user may map the buffer once pinned in the display plane
   4429 	 * (e.g. libkms for the bootup splash), we have to ensure that we
   4430 	 * always use map_and_fenceable for all scanout buffers.
   4431 	 */
   4432 	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
   4433 	if (ret)
   4434 		goto err_unpin_display;
   4435 
   4436 	i915_gem_object_flush_cpu_write_domain(obj, true);
   4437 
   4438 	old_write_domain = obj->base.write_domain;
   4439 	old_read_domains = obj->base.read_domains;
   4440 
   4441 	/* It should now be out of any other write domains, and we can update
   4442 	 * the domain values for our changes.
   4443 	 */
   4444 	obj->base.write_domain = 0;
   4445 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4446 
   4447 	trace_i915_gem_object_change_domain(obj,
   4448 					    old_read_domains,
   4449 					    old_write_domain);
   4450 
   4451 	return 0;
   4452 
   4453 err_unpin_display:
   4454 	obj->pin_display = is_pin_display(obj);
   4455 	return ret;
   4456 }
   4457 
   4458 void
   4459 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
   4460 {
   4461 	i915_gem_object_ggtt_unpin(obj);
   4462 	obj->pin_display = is_pin_display(obj);
   4463 }
   4464 
   4465 int
   4466 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
   4467 {
   4468 	int ret;
   4469 
   4470 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
   4471 		return 0;
   4472 
   4473 	ret = i915_gem_object_wait_rendering(obj, false);
   4474 	if (ret)
   4475 		return ret;
   4476 
   4477 	/* Ensure that we invalidate the GPU's caches and TLBs. */
   4478 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
   4479 	return 0;
   4480 }
   4481 
   4482 /**
   4483  * Moves a single object to the CPU read, and possibly write domain.
   4484  *
   4485  * This function returns when the move is complete, including waiting on
   4486  * flushes to occur.
   4487  */
   4488 int
   4489 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
   4490 {
   4491 	uint32_t old_write_domain, old_read_domains;
   4492 	int ret;
   4493 
   4494 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
   4495 		return 0;
   4496 
   4497 	ret = i915_gem_object_wait_rendering(obj, !write);
   4498 	if (ret)
   4499 		return ret;
   4500 
   4501 	i915_gem_object_flush_gtt_write_domain(obj);
   4502 
   4503 	old_write_domain = obj->base.write_domain;
   4504 	old_read_domains = obj->base.read_domains;
   4505 
   4506 	/* Flush the CPU cache if it's still invalid. */
   4507 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
   4508 		i915_gem_clflush_object(obj, false);
   4509 
   4510 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
   4511 	}
   4512 
   4513 	/* It should now be out of any other write domains, and we can update
   4514 	 * the domain values for our changes.
   4515 	 */
   4516 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
   4517 
   4518 	/* If we're writing through the CPU, then the GPU read domains will
   4519 	 * need to be invalidated at next use.
   4520 	 */
   4521 	if (write) {
   4522 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4523 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4524 	}
   4525 
   4526 	trace_i915_gem_object_change_domain(obj,
   4527 					    old_read_domains,
   4528 					    old_write_domain);
   4529 
   4530 	return 0;
   4531 }
   4532 
   4533 /* Throttle our rendering by waiting until the ring has completed our requests
   4534  * emitted over 20 msec ago.
   4535  *
   4536  * Note that if we were to use the current jiffies each time around the loop,
   4537  * we wouldn't escape the function with any frames outstanding if the time to
   4538  * render a frame was over 20ms.
   4539  *
   4540  * This should get us reasonable parallelism between CPU and GPU but also
   4541  * relatively low latency when blocking on a particular request to finish.
   4542  */
   4543 static int
   4544 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
   4545 {
   4546 	struct drm_i915_private *dev_priv = dev->dev_private;
   4547 	struct drm_i915_file_private *file_priv = file->driver_priv;
   4548 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
   4549 	struct drm_i915_gem_request *request;
   4550 	struct intel_ring_buffer *ring = NULL;
   4551 	unsigned reset_counter;
   4552 	u32 seqno = 0;
   4553 	int ret;
   4554 
   4555 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
   4556 	if (ret)
   4557 		return ret;
   4558 
   4559 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
   4560 	if (ret)
   4561 		return ret;
   4562 
   4563 	spin_lock(&file_priv->mm.lock);
   4564 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
   4565 		if (time_after_eq(request->emitted_jiffies, recent_enough))
   4566 			break;
   4567 
   4568 		ring = request->ring;
   4569 		seqno = request->seqno;
   4570 	}
   4571 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   4572 	spin_unlock(&file_priv->mm.lock);
   4573 
   4574 	if (seqno == 0)
   4575 		return 0;
   4576 
   4577 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
   4578 	if (ret == 0)
   4579 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
   4580 
   4581 	return ret;
   4582 }
   4583 
   4584 static bool
   4585 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
   4586 {
   4587 	struct drm_i915_gem_object *obj = vma->obj;
   4588 
   4589 	if (alignment &&
   4590 	    vma->node.start & (alignment - 1))
   4591 		return true;
   4592 
   4593 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
   4594 		return true;
   4595 
   4596 	if (flags & PIN_OFFSET_BIAS &&
   4597 	    vma->node.start < (flags & PIN_OFFSET_MASK))
   4598 		return true;
   4599 
   4600 	return false;
   4601 }
   4602 
   4603 int
   4604 i915_gem_object_pin(struct drm_i915_gem_object *obj,
   4605 		    struct i915_address_space *vm,
   4606 		    uint32_t alignment,
   4607 		    uint64_t flags)
   4608 {
   4609 	struct i915_vma *vma;
   4610 	int ret;
   4611 
   4612 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
   4613 		return -EINVAL;
   4614 
   4615 	vma = i915_gem_obj_to_vma(obj, vm);
   4616 	if (vma) {
   4617 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
   4618 			return -EBUSY;
   4619 
   4620 		if (i915_vma_misplaced(vma, alignment, flags)) {
   4621 			WARN(vma->pin_count,
   4622 			     "bo is already pinned with incorrect alignment:"
   4623 			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
   4624 			     " obj->map_and_fenceable=%d\n",
   4625 			     i915_gem_obj_offset(obj, vm), alignment,
   4626 			     !!(flags & PIN_MAPPABLE),
   4627 			     obj->map_and_fenceable);
   4628 			ret = i915_vma_unbind(vma);
   4629 			if (ret)
   4630 				return ret;
   4631 
   4632 			vma = NULL;
   4633 		}
   4634 	}
   4635 
   4636 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
   4637 		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
   4638 		if (IS_ERR(vma))
   4639 			return PTR_ERR(vma);
   4640 	}
   4641 
   4642 	if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
   4643 		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
   4644 
   4645 	vma->pin_count++;
   4646 	if (flags & PIN_MAPPABLE)
   4647 		obj->pin_mappable |= true;
   4648 
   4649 	return 0;
   4650 }
   4651 
   4652 void
   4653 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
   4654 {
   4655 	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
   4656 
   4657 	BUG_ON(!vma);
   4658 	BUG_ON(vma->pin_count == 0);
   4659 	BUG_ON(!i915_gem_obj_ggtt_bound(obj));
   4660 
   4661 	if (--vma->pin_count == 0)
   4662 		obj->pin_mappable = false;
   4663 }
   4664 
   4665 int
   4666 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
   4667 		   struct drm_file *file)
   4668 {
   4669 	struct drm_i915_gem_pin *args = data;
   4670 	struct drm_i915_gem_object *obj;
   4671 	int ret;
   4672 
   4673 	if (INTEL_INFO(dev)->gen >= 6)
   4674 		return -ENODEV;
   4675 
   4676 	ret = i915_mutex_lock_interruptible(dev);
   4677 	if (ret)
   4678 		return ret;
   4679 
   4680 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   4681 	if (&obj->base == NULL) {
   4682 		ret = -ENOENT;
   4683 		goto unlock;
   4684 	}
   4685 
   4686 	if (obj->madv != I915_MADV_WILLNEED) {
   4687 		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
   4688 		ret = -EFAULT;
   4689 		goto out;
   4690 	}
   4691 
   4692 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
   4693 		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
   4694 			  args->handle);
   4695 		ret = -EINVAL;
   4696 		goto out;
   4697 	}
   4698 
   4699 	if (obj->user_pin_count == ULONG_MAX) {
   4700 		ret = -EBUSY;
   4701 		goto out;
   4702 	}
   4703 
   4704 	if (obj->user_pin_count == 0) {
   4705 		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
   4706 		if (ret)
   4707 			goto out;
   4708 	}
   4709 
   4710 	obj->user_pin_count++;
   4711 	obj->pin_filp = file;
   4712 
   4713 	args->offset = i915_gem_obj_ggtt_offset(obj);
   4714 out:
   4715 	drm_gem_object_unreference(&obj->base);
   4716 unlock:
   4717 	mutex_unlock(&dev->struct_mutex);
   4718 	return ret;
   4719 }
   4720 
   4721 int
   4722 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
   4723 		     struct drm_file *file)
   4724 {
   4725 	struct drm_i915_gem_pin *args = data;
   4726 	struct drm_i915_gem_object *obj;
   4727 	int ret;
   4728 
   4729 	ret = i915_mutex_lock_interruptible(dev);
   4730 	if (ret)
   4731 		return ret;
   4732 
   4733 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   4734 	if (&obj->base == NULL) {
   4735 		ret = -ENOENT;
   4736 		goto unlock;
   4737 	}
   4738 
   4739 	if (obj->pin_filp != file) {
   4740 		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
   4741 			  args->handle);
   4742 		ret = -EINVAL;
   4743 		goto out;
   4744 	}
   4745 	obj->user_pin_count--;
   4746 	if (obj->user_pin_count == 0) {
   4747 		obj->pin_filp = NULL;
   4748 		i915_gem_object_ggtt_unpin(obj);
   4749 	}
   4750 
   4751 out:
   4752 	drm_gem_object_unreference(&obj->base);
   4753 unlock:
   4754 	mutex_unlock(&dev->struct_mutex);
   4755 	return ret;
   4756 }
   4757 
   4758 int
   4759 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
   4760 		    struct drm_file *file)
   4761 {
   4762 	struct drm_i915_gem_busy *args = data;
   4763 	struct drm_i915_gem_object *obj;
   4764 	int ret;
   4765 
   4766 	ret = i915_mutex_lock_interruptible(dev);
   4767 	if (ret)
   4768 		return ret;
   4769 
   4770 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
   4771 	if (&obj->base == NULL) {
   4772 		ret = -ENOENT;
   4773 		goto unlock;
   4774 	}
   4775 
   4776 	/* Count all active objects as busy, even if they are currently not used
   4777 	 * by the gpu. Users of this interface expect objects to eventually
   4778 	 * become non-busy without any further actions, therefore emit any
   4779 	 * necessary flushes here.
   4780 	 */
   4781 	ret = i915_gem_object_flush_active(obj);
   4782 
   4783 	args->busy = obj->active;
   4784 	if (obj->ring) {
   4785 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
   4786 		args->busy |= intel_ring_flag(obj->ring) << 16;
   4787 	}
   4788 
   4789 	drm_gem_object_unreference(&obj->base);
   4790 unlock:
   4791 	mutex_unlock(&dev->struct_mutex);
   4792 	return ret;
   4793 }
   4794 
   4795 int
   4796 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
   4797 			struct drm_file *file_priv)
   4798 {
   4799 	return i915_gem_ring_throttle(dev, file_priv);
   4800 }
   4801 
   4802 int
   4803 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   4804 		       struct drm_file *file_priv)
   4805 {
   4806 	struct drm_i915_gem_madvise *args = data;
   4807 	struct drm_i915_gem_object *obj;
   4808 	int ret;
   4809 
   4810 	switch (args->madv) {
   4811 	case I915_MADV_DONTNEED:
   4812 	case I915_MADV_WILLNEED:
   4813 	    break;
   4814 	default:
   4815 	    return -EINVAL;
   4816 	}
   4817 
   4818 	ret = i915_mutex_lock_interruptible(dev);
   4819 	if (ret)
   4820 		return ret;
   4821 
   4822 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
   4823 	if (&obj->base == NULL) {
   4824 		ret = -ENOENT;
   4825 		goto unlock;
   4826 	}
   4827 
   4828 	if (i915_gem_obj_is_pinned(obj)) {
   4829 		ret = -EINVAL;
   4830 		goto out;
   4831 	}
   4832 
   4833 	if (obj->madv != __I915_MADV_PURGED)
   4834 		obj->madv = args->madv;
   4835 
   4836 	/* if the object is no longer attached, discard its backing storage */
   4837 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
   4838 		i915_gem_object_truncate(obj);
   4839 
   4840 	args->retained = obj->madv != __I915_MADV_PURGED;
   4841 
   4842 out:
   4843 	drm_gem_object_unreference(&obj->base);
   4844 unlock:
   4845 	mutex_unlock(&dev->struct_mutex);
   4846 	return ret;
   4847 }
   4848 
   4849 void i915_gem_object_init(struct drm_i915_gem_object *obj,
   4850 			  const struct drm_i915_gem_object_ops *ops)
   4851 {
   4852 	INIT_LIST_HEAD(&obj->global_list);
   4853 	INIT_LIST_HEAD(&obj->ring_list);
   4854 	INIT_LIST_HEAD(&obj->obj_exec_link);
   4855 	INIT_LIST_HEAD(&obj->vma_list);
   4856 
   4857 	obj->ops = ops;
   4858 
   4859 	obj->fence_reg = I915_FENCE_REG_NONE;
   4860 	obj->madv = I915_MADV_WILLNEED;
   4861 	/* Avoid an unnecessary call to unbind on the first bind. */
   4862 	obj->map_and_fenceable = true;
   4863 
   4864 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
   4865 }
   4866 
   4867 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
   4868 	.get_pages = i915_gem_object_get_pages_gtt,
   4869 	.put_pages = i915_gem_object_put_pages_gtt,
   4870 };
   4871 
   4872 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
   4873 						  size_t size)
   4874 {
   4875 #ifdef __NetBSD__
   4876 	struct drm_i915_private *const dev_priv = dev->dev_private;
   4877 #endif
   4878 	struct drm_i915_gem_object *obj;
   4879 #ifndef __NetBSD__
   4880 	struct address_space *mapping;
   4881 	gfp_t mask;
   4882 #endif
   4883 
   4884 	obj = i915_gem_object_alloc(dev);
   4885 	if (obj == NULL)
   4886 		return NULL;
   4887 
   4888 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
   4889 		i915_gem_object_free(obj);
   4890 		return NULL;
   4891 	}
   4892 
   4893 #ifdef __NetBSD__
   4894 	uao_set_pgfl(obj->base.gemo_shm_uao, dev_priv->gtt.pgfl);
   4895 #else
   4896 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
   4897 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
   4898 		/* 965gm cannot relocate objects above 4GiB. */
   4899 		mask &= ~__GFP_HIGHMEM;
   4900 		mask |= __GFP_DMA32;
   4901 	}
   4902 
   4903 	mapping = file_inode(obj->base.filp)->i_mapping;
   4904 	mapping_set_gfp_mask(mapping, mask);
   4905 #endif
   4906 
   4907 	i915_gem_object_init(obj, &i915_gem_object_ops);
   4908 
   4909 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4910 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4911 
   4912 	if (HAS_LLC(dev)) {
   4913 		/* On some devices, we can have the GPU use the LLC (the CPU
   4914 		 * cache) for about a 10% performance improvement
   4915 		 * compared to uncached.  Graphics requests other than
   4916 		 * display scanout are coherent with the CPU in
   4917 		 * accessing this cache.  This means in this mode we
   4918 		 * don't need to clflush on the CPU side, and on the
   4919 		 * GPU side we only need to flush internal caches to
   4920 		 * get data visible to the CPU.
   4921 		 *
   4922 		 * However, we maintain the display planes as UC, and so
   4923 		 * need to rebind when first used as such.
   4924 		 */
   4925 		obj->cache_level = I915_CACHE_LLC;
   4926 	} else
   4927 		obj->cache_level = I915_CACHE_NONE;
   4928 
   4929 	trace_i915_gem_object_create(obj);
   4930 
   4931 	return obj;
   4932 }
   4933 
   4934 void i915_gem_free_object(struct drm_gem_object *gem_obj)
   4935 {
   4936 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   4937 	struct drm_device *dev = obj->base.dev;
   4938 	struct drm_i915_private *dev_priv = dev->dev_private;
   4939 	struct i915_vma *vma, *next;
   4940 
   4941 	intel_runtime_pm_get(dev_priv);
   4942 
   4943 	trace_i915_gem_object_destroy(obj);
   4944 
   4945 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   4946 		int ret;
   4947 
   4948 		vma->pin_count = 0;
   4949 		ret = i915_vma_unbind(vma);
   4950 		if (WARN_ON(ret == -ERESTARTSYS)) {
   4951 			bool was_interruptible;
   4952 
   4953 			was_interruptible = dev_priv->mm.interruptible;
   4954 			dev_priv->mm.interruptible = false;
   4955 
   4956 			WARN_ON(i915_vma_unbind(vma));
   4957 
   4958 			dev_priv->mm.interruptible = was_interruptible;
   4959 		}
   4960 	}
   4961 
   4962 	i915_gem_object_detach_phys(obj);
   4963 
   4964 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
   4965 	 * before progressing. */
   4966 	if (obj->stolen)
   4967 		i915_gem_object_unpin_pages(obj);
   4968 
   4969 	if (WARN_ON(obj->pages_pin_count))
   4970 		obj->pages_pin_count = 0;
   4971 	i915_gem_object_put_pages(obj);
   4972 	i915_gem_object_free_mmap_offset(obj);
   4973 	i915_gem_object_release_stolen(obj);
   4974 
   4975 	BUG_ON(obj->pages);
   4976 
   4977 #ifndef __NetBSD__		/* XXX drm prime */
   4978 	if (obj->base.import_attach)
   4979 		drm_prime_gem_destroy(&obj->base, NULL);
   4980 #endif
   4981 
   4982 	drm_gem_object_release(&obj->base);
   4983 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
   4984 
   4985 	kfree(obj->bit_17);
   4986 	i915_gem_object_free(obj);
   4987 
   4988 	intel_runtime_pm_put(dev_priv);
   4989 }
   4990 
   4991 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
   4992 				     struct i915_address_space *vm)
   4993 {
   4994 	struct i915_vma *vma;
   4995 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   4996 		if (vma->vm == vm)
   4997 			return vma;
   4998 
   4999 	return NULL;
   5000 }
   5001 
   5002 void i915_gem_vma_destroy(struct i915_vma *vma)
   5003 {
   5004 	WARN_ON(vma->node.allocated);
   5005 
   5006 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
   5007 	if (!list_empty(&vma->exec_list))
   5008 		return;
   5009 
   5010 	list_del(&vma->vma_link);
   5011 
   5012 	kfree(vma);
   5013 }
   5014 
   5015 int
   5016 i915_gem_suspend(struct drm_device *dev)
   5017 {
   5018 	struct drm_i915_private *dev_priv = dev->dev_private;
   5019 	int ret = 0;
   5020 
   5021 	mutex_lock(&dev->struct_mutex);
   5022 	if (dev_priv->ums.mm_suspended)
   5023 		goto err;
   5024 
   5025 	ret = i915_gpu_idle(dev);
   5026 	if (ret)
   5027 		goto err;
   5028 
   5029 	i915_gem_retire_requests(dev);
   5030 
   5031 	/* Under UMS, be paranoid and evict. */
   5032 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   5033 		i915_gem_evict_everything(dev);
   5034 
   5035 	i915_kernel_lost_context(dev);
   5036 	i915_gem_cleanup_ringbuffer(dev);
   5037 
   5038 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
   5039 	 * We need to replace this with a semaphore, or something.
   5040 	 * And not confound ums.mm_suspended!
   5041 	 */
   5042 	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
   5043 							     DRIVER_MODESET);
   5044 	mutex_unlock(&dev->struct_mutex);
   5045 
   5046 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
   5047 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
   5048 	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
   5049 
   5050 	return 0;
   5051 
   5052 err:
   5053 	mutex_unlock(&dev->struct_mutex);
   5054 	return ret;
   5055 }
   5056 
   5057 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
   5058 {
   5059 	struct drm_device *dev = ring->dev;
   5060 	struct drm_i915_private *dev_priv = dev->dev_private;
   5061 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
   5062 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
   5063 	int i, ret;
   5064 
   5065 	if (!HAS_L3_DPF(dev) || !remap_info)
   5066 		return 0;
   5067 
   5068 	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
   5069 	if (ret)
   5070 		return ret;
   5071 
   5072 	/*
   5073 	 * Note: We do not worry about the concurrent register cacheline hang
   5074 	 * here because no other code should access these registers other than
   5075 	 * at initialization time.
   5076 	 */
   5077 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
   5078 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
   5079 		intel_ring_emit(ring, reg_base + i);
   5080 		intel_ring_emit(ring, remap_info[i/4]);
   5081 	}
   5082 
   5083 	intel_ring_advance(ring);
   5084 
   5085 	return ret;
   5086 }
   5087 
   5088 void i915_gem_init_swizzling(struct drm_device *dev)
   5089 {
   5090 	struct drm_i915_private *dev_priv = dev->dev_private;
   5091 
   5092 	if (INTEL_INFO(dev)->gen < 5 ||
   5093 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
   5094 		return;
   5095 
   5096 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
   5097 				 DISP_TILE_SURFACE_SWIZZLING);
   5098 
   5099 	if (IS_GEN5(dev))
   5100 		return;
   5101 
   5102 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
   5103 	if (IS_GEN6(dev))
   5104 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
   5105 	else if (IS_GEN7(dev))
   5106 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
   5107 	else if (IS_GEN8(dev))
   5108 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
   5109 	else
   5110 		BUG();
   5111 }
   5112 
   5113 static bool
   5114 intel_enable_blt(struct drm_device *dev)
   5115 {
   5116 	if (!HAS_BLT(dev))
   5117 		return false;
   5118 
   5119 	/* The blitter was dysfunctional on early prototypes */
   5120 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
   5121 		DRM_INFO("BLT not supported on this pre-production hardware;"
   5122 			 " graphics performance will be degraded.\n");
   5123 		return false;
   5124 	}
   5125 
   5126 	return true;
   5127 }
   5128 
   5129 static int i915_gem_init_rings(struct drm_device *dev)
   5130 {
   5131 	struct drm_i915_private *dev_priv = dev->dev_private;
   5132 	int ret;
   5133 
   5134 	ret = intel_init_render_ring_buffer(dev);
   5135 	if (ret)
   5136 		return ret;
   5137 
   5138 	if (HAS_BSD(dev)) {
   5139 		ret = intel_init_bsd_ring_buffer(dev);
   5140 		if (ret)
   5141 			goto cleanup_render_ring;
   5142 	}
   5143 
   5144 	if (intel_enable_blt(dev)) {
   5145 		ret = intel_init_blt_ring_buffer(dev);
   5146 		if (ret)
   5147 			goto cleanup_bsd_ring;
   5148 	}
   5149 
   5150 	if (HAS_VEBOX(dev)) {
   5151 		ret = intel_init_vebox_ring_buffer(dev);
   5152 		if (ret)
   5153 			goto cleanup_blt_ring;
   5154 	}
   5155 
   5156 
   5157 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
   5158 	if (ret)
   5159 		goto cleanup_vebox_ring;
   5160 
   5161 	return 0;
   5162 
   5163 cleanup_vebox_ring:
   5164 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
   5165 cleanup_blt_ring:
   5166 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
   5167 cleanup_bsd_ring:
   5168 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
   5169 cleanup_render_ring:
   5170 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
   5171 
   5172 	return ret;
   5173 }
   5174 
   5175 int
   5176 i915_gem_init_hw(struct drm_device *dev)
   5177 {
   5178 	struct drm_i915_private *dev_priv = dev->dev_private;
   5179 	int ret, i;
   5180 
   5181 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
   5182 		return -EIO;
   5183 
   5184 	if (dev_priv->ellc_size)
   5185 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
   5186 
   5187 	if (IS_HASWELL(dev))
   5188 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
   5189 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
   5190 
   5191 	if (HAS_PCH_NOP(dev)) {
   5192 		if (IS_IVYBRIDGE(dev)) {
   5193 			u32 temp = I915_READ(GEN7_MSG_CTL);
   5194 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
   5195 			I915_WRITE(GEN7_MSG_CTL, temp);
   5196 		} else if (INTEL_INFO(dev)->gen >= 7) {
   5197 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
   5198 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
   5199 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
   5200 		}
   5201 	}
   5202 
   5203 	i915_gem_init_swizzling(dev);
   5204 
   5205 	ret = i915_gem_init_rings(dev);
   5206 	if (ret)
   5207 		return ret;
   5208 
   5209 	for (i = 0; i < NUM_L3_SLICES(dev); i++)
   5210 		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
   5211 
   5212 	/*
   5213 	 * XXX: Contexts should only be initialized once. Doing a switch to the
   5214 	 * default context switch however is something we'd like to do after
   5215 	 * reset or thaw (the latter may not actually be necessary for HW, but
   5216 	 * goes with our code better). Context switching requires rings (for
   5217 	 * the do_switch), but before enabling PPGTT. So don't move this.
   5218 	 */
   5219 	ret = i915_gem_context_enable(dev_priv);
   5220 	if (ret) {
   5221 		DRM_ERROR("Context enable failed %d\n", ret);
   5222 		goto err_out;
   5223 	}
   5224 
   5225 	return 0;
   5226 
   5227 err_out:
   5228 	i915_gem_cleanup_ringbuffer(dev);
   5229 	return ret;
   5230 }
   5231 
   5232 int i915_gem_init(struct drm_device *dev)
   5233 {
   5234 	struct drm_i915_private *dev_priv = dev->dev_private;
   5235 	int ret;
   5236 
   5237 	mutex_lock(&dev->struct_mutex);
   5238 
   5239 	if (IS_VALLEYVIEW(dev)) {
   5240 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
   5241 		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
   5242 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
   5243 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
   5244 	}
   5245 	i915_gem_init_global_gtt(dev);
   5246 
   5247 	ret = i915_gem_context_init(dev);
   5248 	if (ret) {
   5249 		mutex_unlock(&dev->struct_mutex);
   5250 		return ret;
   5251 	}
   5252 
   5253 	ret = i915_gem_init_hw(dev);
   5254 	mutex_unlock(&dev->struct_mutex);
   5255 	if (ret) {
   5256 		WARN_ON(dev_priv->mm.aliasing_ppgtt);
   5257 		i915_gem_context_fini(dev);
   5258 		drm_mm_takedown(&dev_priv->gtt.base.mm);
   5259 		return ret;
   5260 	}
   5261 
   5262 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
   5263 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   5264 		dev_priv->dri1.allow_batchbuffer = 1;
   5265 	return 0;
   5266 }
   5267 
   5268 void
   5269 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
   5270 {
   5271 	struct drm_i915_private *dev_priv = dev->dev_private;
   5272 	struct intel_ring_buffer *ring;
   5273 	int i;
   5274 
   5275 	for_each_ring(ring, dev_priv, i)
   5276 		intel_cleanup_ring_buffer(ring);
   5277 }
   5278 
   5279 int
   5280 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
   5281 		       struct drm_file *file_priv)
   5282 {
   5283 	struct drm_i915_private *dev_priv = dev->dev_private;
   5284 	int ret;
   5285 
   5286 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   5287 		return 0;
   5288 
   5289 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
   5290 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
   5291 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
   5292 	}
   5293 
   5294 	mutex_lock(&dev->struct_mutex);
   5295 	dev_priv->ums.mm_suspended = 0;
   5296 
   5297 	ret = i915_gem_init_hw(dev);
   5298 	if (ret != 0) {
   5299 		mutex_unlock(&dev->struct_mutex);
   5300 		return ret;
   5301 	}
   5302 
   5303 	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
   5304 	mutex_unlock(&dev->struct_mutex);
   5305 
   5306 	ret = drm_irq_install(dev);
   5307 	if (ret)
   5308 		goto cleanup_ringbuffer;
   5309 
   5310 	return 0;
   5311 
   5312 cleanup_ringbuffer:
   5313 	mutex_lock(&dev->struct_mutex);
   5314 	i915_gem_cleanup_ringbuffer(dev);
   5315 	dev_priv->ums.mm_suspended = 1;
   5316 	mutex_unlock(&dev->struct_mutex);
   5317 
   5318 	return ret;
   5319 }
   5320 
   5321 int
   5322 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
   5323 		       struct drm_file *file_priv)
   5324 {
   5325 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   5326 		return 0;
   5327 
   5328 	drm_irq_uninstall(dev);
   5329 
   5330 	return i915_gem_suspend(dev);
   5331 }
   5332 
   5333 void
   5334 i915_gem_lastclose(struct drm_device *dev)
   5335 {
   5336 	int ret;
   5337 
   5338 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   5339 		return;
   5340 
   5341 	ret = i915_gem_suspend(dev);
   5342 	if (ret)
   5343 		DRM_ERROR("failed to idle hardware: %d\n", ret);
   5344 }
   5345 
   5346 static void
   5347 init_ring_lists(struct intel_ring_buffer *ring)
   5348 {
   5349 	INIT_LIST_HEAD(&ring->active_list);
   5350 	INIT_LIST_HEAD(&ring->request_list);
   5351 }
   5352 
   5353 void i915_init_vm(struct drm_i915_private *dev_priv,
   5354 		  struct i915_address_space *vm)
   5355 {
   5356 	if (!i915_is_ggtt(vm))
   5357 		drm_mm_init(&vm->mm, vm->start, vm->total);
   5358 	vm->dev = dev_priv->dev;
   5359 	INIT_LIST_HEAD(&vm->active_list);
   5360 	INIT_LIST_HEAD(&vm->inactive_list);
   5361 	INIT_LIST_HEAD(&vm->global_link);
   5362 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
   5363 }
   5364 
   5365 void
   5366 i915_gem_load(struct drm_device *dev)
   5367 {
   5368 	struct drm_i915_private *dev_priv = dev->dev_private;
   5369 	int i;
   5370 
   5371 	dev_priv->slab =
   5372 		kmem_cache_create("i915_gem_object",
   5373 				  sizeof(struct drm_i915_gem_object), 0,
   5374 				  SLAB_HWCACHE_ALIGN,
   5375 				  NULL);
   5376 
   5377 	INIT_LIST_HEAD(&dev_priv->vm_list);
   5378 	i915_init_vm(dev_priv, &dev_priv->gtt.base);
   5379 
   5380 	INIT_LIST_HEAD(&dev_priv->context_list);
   5381 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
   5382 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
   5383 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5384 	for (i = 0; i < I915_NUM_RINGS; i++)
   5385 		init_ring_lists(&dev_priv->ring[i]);
   5386 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
   5387 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
   5388 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
   5389 			  i915_gem_retire_work_handler);
   5390 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
   5391 			  i915_gem_idle_work_handler);
   5392 #ifdef __NetBSD__
   5393 	spin_lock_init(&dev_priv->gpu_error.reset_lock);
   5394 	DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
   5395 #else
   5396 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
   5397 #endif
   5398 
   5399 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
   5400 	if (IS_GEN3(dev)) {
   5401 		I915_WRITE(MI_ARB_STATE,
   5402 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
   5403 	}
   5404 
   5405 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
   5406 
   5407 	/* Old X drivers will take 0-2 for front, back, depth buffers */
   5408 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   5409 		dev_priv->fence_reg_start = 3;
   5410 
   5411 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
   5412 		dev_priv->num_fence_regs = 32;
   5413 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
   5414 		dev_priv->num_fence_regs = 16;
   5415 	else
   5416 		dev_priv->num_fence_regs = 8;
   5417 
   5418 	/* Initialize fence registers to zero */
   5419 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5420 	i915_gem_restore_fences(dev);
   5421 
   5422 	i915_gem_detect_bit_6_swizzle(dev);
   5423 #ifdef __NetBSD__
   5424 	DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
   5425 	spin_lock_init(&dev_priv->pending_flip_lock);
   5426 #else
   5427 	init_waitqueue_head(&dev_priv->pending_flip_queue);
   5428 #endif
   5429 
   5430 	dev_priv->mm.interruptible = true;
   5431 
   5432 	dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
   5433 	dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
   5434 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
   5435 	register_shrinker(&dev_priv->mm.inactive_shrinker);
   5436 }
   5437 
   5438 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   5439 {
   5440 	struct drm_i915_file_private *file_priv = file->driver_priv;
   5441 
   5442 	cancel_delayed_work_sync(&file_priv->mm.idle_work);
   5443 
   5444 	/* Clean up our request list when the client is going away, so that
   5445 	 * later retire_requests won't dereference our soon-to-be-gone
   5446 	 * file_priv.
   5447 	 */
   5448 	spin_lock(&file_priv->mm.lock);
   5449 	while (!list_empty(&file_priv->mm.request_list)) {
   5450 		struct drm_i915_gem_request *request;
   5451 
   5452 		request = list_first_entry(&file_priv->mm.request_list,
   5453 					   struct drm_i915_gem_request,
   5454 					   client_list);
   5455 		list_del(&request->client_list);
   5456 		request->file_priv = NULL;
   5457 	}
   5458 	spin_unlock(&file_priv->mm.lock);
   5459 }
   5460 
   5461 static void
   5462 i915_gem_file_idle_work_handler(struct work_struct *work)
   5463 {
   5464 	struct drm_i915_file_private *file_priv =
   5465 		container_of(work, typeof(*file_priv), mm.idle_work.work);
   5466 
   5467 	atomic_set(&file_priv->rps_wait_boost, false);
   5468 }
   5469 
   5470 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
   5471 {
   5472 	struct drm_i915_file_private *file_priv;
   5473 	int ret;
   5474 
   5475 	DRM_DEBUG_DRIVER("\n");
   5476 
   5477 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
   5478 	if (!file_priv)
   5479 		return -ENOMEM;
   5480 
   5481 	file->driver_priv = file_priv;
   5482 	file_priv->dev_priv = dev->dev_private;
   5483 	file_priv->file = file;
   5484 
   5485 	spin_lock_init(&file_priv->mm.lock);
   5486 	INIT_LIST_HEAD(&file_priv->mm.request_list);
   5487 	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
   5488 			  i915_gem_file_idle_work_handler);
   5489 
   5490 	ret = i915_gem_context_open(dev, file);
   5491 	if (ret)
   5492 		kfree(file_priv);
   5493 
   5494 	return ret;
   5495 }
   5496 
   5497 #ifndef __NetBSD__
   5498 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
   5499 {
   5500 	if (!mutex_is_locked(mutex))
   5501 		return false;
   5502 
   5503 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
   5504 	return mutex->owner == task;
   5505 #else
   5506 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
   5507 	return false;
   5508 #endif
   5509 }
   5510 #endif
   5511 
   5512 static unsigned long
   5513 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
   5514 {
   5515 #ifdef __NetBSD__		/* XXX shrinkers */
   5516 	return 0;
   5517 #else
   5518 	struct drm_i915_private *dev_priv =
   5519 		container_of(shrinker,
   5520 			     struct drm_i915_private,
   5521 			     mm.inactive_shrinker);
   5522 	struct drm_device *dev = dev_priv->dev;
   5523 	struct drm_i915_gem_object *obj;
   5524 	bool unlock = true;
   5525 	unsigned long count;
   5526 
   5527 	if (!mutex_trylock(&dev->struct_mutex)) {
   5528 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
   5529 			return 0;
   5530 
   5531 		if (dev_priv->mm.shrinker_no_lock_stealing)
   5532 			return 0;
   5533 
   5534 		unlock = false;
   5535 	}
   5536 
   5537 	count = 0;
   5538 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
   5539 		if (obj->pages_pin_count == 0)
   5540 			count += obj->base.size >> PAGE_SHIFT;
   5541 
   5542 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
   5543 		if (obj->active)
   5544 			continue;
   5545 
   5546 		if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
   5547 			count += obj->base.size >> PAGE_SHIFT;
   5548 	}
   5549 
   5550 	if (unlock)
   5551 		mutex_unlock(&dev->struct_mutex);
   5552 
   5553 	return count;
   5554 #endif
   5555 }
   5556 
   5557 /* All the new VM stuff */
   5558 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
   5559 				  struct i915_address_space *vm)
   5560 {
   5561 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5562 	struct i915_vma *vma;
   5563 
   5564 	if (!dev_priv->mm.aliasing_ppgtt ||
   5565 	    vm == &dev_priv->mm.aliasing_ppgtt->base)
   5566 		vm = &dev_priv->gtt.base;
   5567 
   5568 	BUG_ON(list_empty(&o->vma_list));
   5569 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5570 		if (vma->vm == vm)
   5571 			return vma->node.start;
   5572 
   5573 	}
   5574 	return -1;
   5575 }
   5576 
   5577 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
   5578 			struct i915_address_space *vm)
   5579 {
   5580 	struct i915_vma *vma;
   5581 
   5582 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5583 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
   5584 			return true;
   5585 
   5586 	return false;
   5587 }
   5588 
   5589 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
   5590 {
   5591 	struct i915_vma *vma;
   5592 
   5593 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5594 		if (drm_mm_node_allocated(&vma->node))
   5595 			return true;
   5596 
   5597 	return false;
   5598 }
   5599 
   5600 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
   5601 				struct i915_address_space *vm)
   5602 {
   5603 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5604 	struct i915_vma *vma;
   5605 
   5606 	if (!dev_priv->mm.aliasing_ppgtt ||
   5607 	    vm == &dev_priv->mm.aliasing_ppgtt->base)
   5608 		vm = &dev_priv->gtt.base;
   5609 
   5610 	BUG_ON(list_empty(&o->vma_list));
   5611 
   5612 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5613 		if (vma->vm == vm)
   5614 			return vma->node.size;
   5615 
   5616 	return 0;
   5617 }
   5618 
   5619 static unsigned long
   5620 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
   5621 {
   5622 #ifdef __NetBSD__		/* XXX shrinkers */
   5623 	return 0;
   5624 #else
   5625 	struct drm_i915_private *dev_priv =
   5626 		container_of(shrinker,
   5627 			     struct drm_i915_private,
   5628 			     mm.inactive_shrinker);
   5629 	struct drm_device *dev = dev_priv->dev;
   5630 	unsigned long freed;
   5631 	bool unlock = true;
   5632 
   5633 	if (!mutex_trylock(&dev->struct_mutex)) {
   5634 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
   5635 			return SHRINK_STOP;
   5636 
   5637 		if (dev_priv->mm.shrinker_no_lock_stealing)
   5638 			return SHRINK_STOP;
   5639 
   5640 		unlock = false;
   5641 	}
   5642 
   5643 	freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
   5644 	if (freed < sc->nr_to_scan)
   5645 		freed += __i915_gem_shrink(dev_priv,
   5646 					   sc->nr_to_scan - freed,
   5647 					   false);
   5648 	if (freed < sc->nr_to_scan)
   5649 		freed += i915_gem_shrink_all(dev_priv);
   5650 
   5651 	if (unlock)
   5652 		mutex_unlock(&dev->struct_mutex);
   5653 
   5654 	return freed;
   5655 #endif
   5656 }
   5657 
   5658 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
   5659 {
   5660 	struct i915_vma *vma;
   5661 
   5662 	if (WARN_ON(list_empty(&obj->vma_list)))
   5663 		return NULL;
   5664 
   5665 	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
   5666 	if (vma->vm != obj_to_ggtt(obj))
   5667 		return NULL;
   5668 
   5669 	return vma;
   5670 }
   5671