i915_gem.c revision 1.14 1 /*
2 * Copyright 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric (at) anholt.net>
25 *
26 */
27
28 #ifdef __NetBSD__
29 #if 0 /* XXX uvmhist option? */
30 #include "opt_uvmhist.h"
31 #endif
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35
36 #include <uvm/uvm.h>
37 #include <uvm/uvm_extern.h>
38 #include <uvm/uvm_fault.h>
39 #include <uvm/uvm_page.h>
40 #include <uvm/uvm_pmap.h>
41 #include <uvm/uvm_prot.h>
42
43 #include <drm/bus_dma_hacks.h>
44 #endif
45
46 #include <drm/drmP.h>
47 #include <drm/drm_vma_manager.h>
48 #include <drm/i915_drm.h>
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "intel_drv.h"
52 #include <linux/shmem_fs.h>
53 #include <linux/slab.h>
54 #include <linux/swap.h>
55 #include <linux/pci.h>
56 #include <linux/dma-buf.h>
57 #include <linux/errno.h>
58 #include <linux/time.h>
59 #include <linux/err.h>
60 #include <linux/bitops.h>
61 #include <asm/param.h>
62 #include <asm/page.h>
63
64 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
65 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
66 bool force);
67 static __must_check int
68 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
69 bool readonly);
70
71 static void i915_gem_write_fence(struct drm_device *dev, int reg,
72 struct drm_i915_gem_object *obj);
73 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
74 struct drm_i915_fence_reg *fence,
75 bool enable);
76
77 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
78 struct shrink_control *sc);
79 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
80 struct shrink_control *sc);
81 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
82 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
83 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
84 static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
85
86 static bool cpu_cache_is_coherent(struct drm_device *dev,
87 enum i915_cache_level level)
88 {
89 return HAS_LLC(dev) || level != I915_CACHE_NONE;
90 }
91
92 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
93 {
94 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
95 return true;
96
97 return obj->pin_display;
98 }
99
100 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
101 {
102 if (obj->tiling_mode)
103 i915_gem_release_mmap(obj);
104
105 /* As we do not have an associated fence register, we will force
106 * a tiling change if we ever need to acquire one.
107 */
108 obj->fence_dirty = false;
109 obj->fence_reg = I915_FENCE_REG_NONE;
110 }
111
112 /* some bookkeeping */
113 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
114 size_t size)
115 {
116 spin_lock(&dev_priv->mm.object_stat_lock);
117 dev_priv->mm.object_count++;
118 dev_priv->mm.object_memory += size;
119 spin_unlock(&dev_priv->mm.object_stat_lock);
120 }
121
122 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
123 size_t size)
124 {
125 spin_lock(&dev_priv->mm.object_stat_lock);
126 dev_priv->mm.object_count--;
127 dev_priv->mm.object_memory -= size;
128 spin_unlock(&dev_priv->mm.object_stat_lock);
129 }
130
131 static int
132 i915_gem_wait_for_error(struct i915_gpu_error *error)
133 {
134 int ret;
135
136 #define EXIT_COND (!i915_reset_in_progress(error) || \
137 i915_terminally_wedged(error))
138 if (EXIT_COND)
139 return 0;
140
141 /*
142 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
143 * userspace. If it takes that long something really bad is going on and
144 * we should simply try to bail out and fail as gracefully as possible.
145 */
146 #ifdef __NetBSD__
147 spin_lock(&error->reset_lock);
148 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
149 10*HZ, EXIT_COND);
150 spin_unlock(&error->reset_lock);
151 #else
152 ret = wait_event_interruptible_timeout(error->reset_queue,
153 EXIT_COND,
154 10*HZ);
155 #endif
156 if (ret == 0) {
157 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
158 return -EIO;
159 } else if (ret < 0) {
160 return ret;
161 }
162 #undef EXIT_COND
163
164 return 0;
165 }
166
167 int i915_mutex_lock_interruptible(struct drm_device *dev)
168 {
169 struct drm_i915_private *dev_priv = dev->dev_private;
170 int ret;
171
172 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
173 if (ret)
174 return ret;
175
176 ret = mutex_lock_interruptible(&dev->struct_mutex);
177 if (ret)
178 return ret;
179
180 WARN_ON(i915_verify_lists(dev));
181 return 0;
182 }
183
184 static inline bool
185 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
186 {
187 return i915_gem_obj_bound_any(obj) && !obj->active;
188 }
189
190 int
191 i915_gem_init_ioctl(struct drm_device *dev, void *data,
192 struct drm_file *file)
193 {
194 struct drm_i915_private *dev_priv = dev->dev_private;
195 struct drm_i915_gem_init *args = data;
196
197 if (drm_core_check_feature(dev, DRIVER_MODESET))
198 return -ENODEV;
199
200 if (args->gtt_start >= args->gtt_end ||
201 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
202 return -EINVAL;
203
204 /* GEM with user mode setting was never supported on ilk and later. */
205 if (INTEL_INFO(dev)->gen >= 5)
206 return -ENODEV;
207
208 mutex_lock(&dev->struct_mutex);
209 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
210 args->gtt_end);
211 dev_priv->gtt.mappable_end = args->gtt_end;
212 mutex_unlock(&dev->struct_mutex);
213
214 return 0;
215 }
216
217 int
218 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
219 struct drm_file *file)
220 {
221 struct drm_i915_private *dev_priv = dev->dev_private;
222 struct drm_i915_gem_get_aperture *args = data;
223 struct drm_i915_gem_object *obj;
224 size_t pinned;
225
226 pinned = 0;
227 mutex_lock(&dev->struct_mutex);
228 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
229 if (i915_gem_obj_is_pinned(obj))
230 pinned += i915_gem_obj_ggtt_size(obj);
231 mutex_unlock(&dev->struct_mutex);
232
233 args->aper_size = dev_priv->gtt.base.total;
234 args->aper_available_size = args->aper_size - pinned;
235
236 return 0;
237 }
238
239 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
240 {
241 drm_dma_handle_t *phys = obj->phys_handle;
242
243 if (!phys)
244 return;
245
246 if (obj->madv == I915_MADV_WILLNEED) {
247 #ifdef __NetBSD__
248 const char *vaddr = phys->vaddr;
249 unsigned i;
250
251 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
252 struct pglist pages;
253 int error;
254
255 TAILQ_INIT(&pages);
256 error = uvm_obj_wirepages(obj->base.gemo_shm_uao,
257 i*PAGE_SIZE, (i+1)*PAGE_SIZE, &pages);
258 if (error)
259 continue;
260
261 struct vm_page *const vm_page = TAILQ_FIRST(&pages);
262 struct page *const page = container_of(vm_page,
263 struct page, p_vmp);
264 char *const dst = kmap_atomic(page);
265 (void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
266 drm_clflush_virt_range(dst, PAGE_SIZE);
267 kunmap_atomic(dst);
268
269 vm_page->flags &= ~PG_CLEAN;
270 /* XXX mark page accessed */
271 uvm_obj_unwirepages(obj->base.gemo_shm_uao,
272 i*PAGE_SIZE, (i+1)*PAGE_SIZE);
273 }
274 #else
275 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
276 char *vaddr = phys->vaddr;
277 int i;
278
279 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
280 struct page *page = shmem_read_mapping_page(mapping, i);
281 if (!IS_ERR(page)) {
282 char *dst = kmap_atomic(page);
283 memcpy(dst, vaddr, PAGE_SIZE);
284 drm_clflush_virt_range(dst, PAGE_SIZE);
285 kunmap_atomic(dst);
286
287 set_page_dirty(page);
288 mark_page_accessed(page);
289 page_cache_release(page);
290 }
291 vaddr += PAGE_SIZE;
292 }
293 #endif
294 i915_gem_chipset_flush(obj->base.dev);
295 }
296
297 #ifndef __NetBSD__
298 #ifdef CONFIG_X86
299 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
300 #endif
301 #endif
302 drm_pci_free(obj->base.dev, phys);
303 obj->phys_handle = NULL;
304 }
305
306 int
307 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
308 int align)
309 {
310 drm_dma_handle_t *phys;
311 #ifndef __NetBSD__
312 struct address_space *mapping;
313 #endif
314 char *vaddr;
315 int i;
316
317 if (obj->phys_handle) {
318 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
319 return -EBUSY;
320
321 return 0;
322 }
323
324 if (obj->madv != I915_MADV_WILLNEED)
325 return -EFAULT;
326
327 #ifdef __NetBSD__
328 if (obj->base.gemo_shm_uao == NULL)
329 return -EINVAL;
330 #else
331 if (obj->base.filp == NULL)
332 return -EINVAL;
333 #endif
334
335 /* create a new object */
336 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
337 if (!phys)
338 return -ENOMEM;
339
340 vaddr = phys->vaddr;
341 #ifndef __NetBSD__
342 #ifdef CONFIG_X86
343 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
344 #endif
345 mapping = file_inode(obj->base.filp)->i_mapping;
346 #endif
347 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
348 struct page *page;
349 char *src;
350
351 #ifdef __NetBSD__
352 struct pglist pages;
353 int ret;
354
355 TAILQ_INIT(&pages);
356
357 /* XXX errno NetBSD->Linux */
358 ret = -uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
359 (i+1)*PAGE_SIZE, &pages);
360 if (ret) {
361 drm_pci_free(obj->base.dev, phys);
362 return ret;
363 }
364 KASSERT(!TAILQ_EMPTY(&pages));
365 page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
366 #else
367 page = shmem_read_mapping_page(mapping, i);
368 if (IS_ERR(page)) {
369 #ifdef CONFIG_X86
370 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
371 #endif
372 drm_pci_free(obj->base.dev, phys);
373 return PTR_ERR(page);
374 }
375 #endif /* defined(__NetBSD__) */
376
377 src = kmap_atomic(page);
378 memcpy(vaddr, src, PAGE_SIZE);
379 kunmap_atomic(src);
380
381 #ifndef __NetBSD__
382 mark_page_accessed(page);
383 page_cache_release(page);
384 #endif
385
386 vaddr += PAGE_SIZE;
387 }
388
389 obj->phys_handle = phys;
390 return 0;
391 }
392
393 static int
394 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
395 struct drm_i915_gem_pwrite *args,
396 struct drm_file *file_priv)
397 {
398 struct drm_device *dev = obj->base.dev;
399 void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
400 char __user *user_data = to_user_ptr(args->data_ptr);
401
402 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
403 unsigned long unwritten;
404
405 /* The physical object once assigned is fixed for the lifetime
406 * of the obj, so we can safely drop the lock and continue
407 * to access vaddr.
408 */
409 mutex_unlock(&dev->struct_mutex);
410 unwritten = copy_from_user(vaddr, user_data, args->size);
411 mutex_lock(&dev->struct_mutex);
412 if (unwritten)
413 return -EFAULT;
414 }
415
416 i915_gem_chipset_flush(dev);
417 return 0;
418 }
419
420 void *i915_gem_object_alloc(struct drm_device *dev)
421 {
422 struct drm_i915_private *dev_priv = dev->dev_private;
423 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
424 }
425
426 void i915_gem_object_free(struct drm_i915_gem_object *obj)
427 {
428 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
429 kmem_cache_free(dev_priv->slab, obj);
430 }
431
432 static int
433 i915_gem_create(struct drm_file *file,
434 struct drm_device *dev,
435 uint64_t size,
436 uint32_t *handle_p)
437 {
438 struct drm_i915_gem_object *obj;
439 int ret;
440 u32 handle;
441
442 size = roundup(size, PAGE_SIZE);
443 if (size == 0)
444 return -EINVAL;
445
446 /* Allocate the new object */
447 obj = i915_gem_alloc_object(dev, size);
448 if (obj == NULL)
449 return -ENOMEM;
450
451 ret = drm_gem_handle_create(file, &obj->base, &handle);
452 /* drop reference from allocate - handle holds it now */
453 drm_gem_object_unreference_unlocked(&obj->base);
454 if (ret)
455 return ret;
456
457 *handle_p = handle;
458 return 0;
459 }
460
461 int
462 i915_gem_dumb_create(struct drm_file *file,
463 struct drm_device *dev,
464 struct drm_mode_create_dumb *args)
465 {
466 /* have to work out size/pitch and return them */
467 #ifdef __NetBSD__ /* ALIGN means something else. */
468 args->pitch = round_up(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
469 #else
470 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
471 #endif
472 args->size = args->pitch * args->height;
473 return i915_gem_create(file, dev,
474 args->size, &args->handle);
475 }
476
477 /**
478 * Creates a new mm object and returns a handle to it.
479 */
480 int
481 i915_gem_create_ioctl(struct drm_device *dev, void *data,
482 struct drm_file *file)
483 {
484 struct drm_i915_gem_create *args = data;
485
486 return i915_gem_create(file, dev,
487 args->size, &args->handle);
488 }
489
490 static inline int
491 __copy_to_user_swizzled(char __user *cpu_vaddr,
492 const char *gpu_vaddr, int gpu_offset,
493 int length)
494 {
495 int ret, cpu_offset = 0;
496
497 while (length > 0) {
498 #ifdef __NetBSD__ /* XXX ALIGN means something else. */
499 int cacheline_end = round_up(gpu_offset + 1, 64);
500 #else
501 int cacheline_end = ALIGN(gpu_offset + 1, 64);
502 #endif
503 int this_length = min(cacheline_end - gpu_offset, length);
504 int swizzled_gpu_offset = gpu_offset ^ 64;
505
506 ret = __copy_to_user(cpu_vaddr + cpu_offset,
507 gpu_vaddr + swizzled_gpu_offset,
508 this_length);
509 if (ret)
510 return ret + length;
511
512 cpu_offset += this_length;
513 gpu_offset += this_length;
514 length -= this_length;
515 }
516
517 return 0;
518 }
519
520 static inline int
521 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
522 const char __user *cpu_vaddr,
523 int length)
524 {
525 int ret, cpu_offset = 0;
526
527 while (length > 0) {
528 #ifdef __NetBSD__ /* XXX ALIGN means something else. */
529 int cacheline_end = round_up(gpu_offset + 1, 64);
530 #else
531 int cacheline_end = ALIGN(gpu_offset + 1, 64);
532 #endif
533 int this_length = min(cacheline_end - gpu_offset, length);
534 int swizzled_gpu_offset = gpu_offset ^ 64;
535
536 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
537 cpu_vaddr + cpu_offset,
538 this_length);
539 if (ret)
540 return ret + length;
541
542 cpu_offset += this_length;
543 gpu_offset += this_length;
544 length -= this_length;
545 }
546
547 return 0;
548 }
549
550 /*
551 * Pins the specified object's pages and synchronizes the object with
552 * GPU accesses. Sets needs_clflush to non-zero if the caller should
553 * flush the object from the CPU cache.
554 */
555 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
556 int *needs_clflush)
557 {
558 int ret;
559
560 *needs_clflush = 0;
561
562 #ifdef __NetBSD__
563 if (obj->base.gemo_shm_uao == NULL)
564 return -EINVAL;
565 #else
566 if (!obj->base.filp)
567 return -EINVAL;
568 #endif
569
570 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
571 /* If we're not in the cpu read domain, set ourself into the gtt
572 * read domain and manually flush cachelines (if required). This
573 * optimizes for the case when the gpu will dirty the data
574 * anyway again before the next pread happens. */
575 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
576 obj->cache_level);
577 ret = i915_gem_object_wait_rendering(obj, true);
578 if (ret)
579 return ret;
580 }
581
582 ret = i915_gem_object_get_pages(obj);
583 if (ret)
584 return ret;
585
586 i915_gem_object_pin_pages(obj);
587
588 return ret;
589 }
590
591 /* Per-page copy function for the shmem pread fastpath.
592 * Flushes invalid cachelines before reading the target if
593 * needs_clflush is set. */
594 static int
595 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
596 char __user *user_data,
597 bool page_do_bit17_swizzling, bool needs_clflush)
598 {
599 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
600 return -EFAULT;
601 #else
602 char *vaddr;
603 int ret;
604
605 if (unlikely(page_do_bit17_swizzling))
606 return -EINVAL;
607
608 vaddr = kmap_atomic(page);
609 if (needs_clflush)
610 drm_clflush_virt_range(vaddr + shmem_page_offset,
611 page_length);
612 ret = __copy_to_user_inatomic(user_data,
613 vaddr + shmem_page_offset,
614 page_length);
615 kunmap_atomic(vaddr);
616
617 return ret ? -EFAULT : 0;
618 #endif
619 }
620
621 static void
622 shmem_clflush_swizzled_range(char *addr, unsigned long length,
623 bool swizzled)
624 {
625 if (unlikely(swizzled)) {
626 unsigned long start = (unsigned long) addr;
627 unsigned long end = (unsigned long) addr + length;
628
629 /* For swizzling simply ensure that we always flush both
630 * channels. Lame, but simple and it works. Swizzled
631 * pwrite/pread is far from a hotpath - current userspace
632 * doesn't use it at all. */
633 start = round_down(start, 128);
634 end = round_up(end, 128);
635
636 drm_clflush_virt_range((void *)start, end - start);
637 } else {
638 drm_clflush_virt_range(addr, length);
639 }
640
641 }
642
643 /* Only difference to the fast-path function is that this can handle bit17
644 * and uses non-atomic copy and kmap functions. */
645 static int
646 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
647 char __user *user_data,
648 bool page_do_bit17_swizzling, bool needs_clflush)
649 {
650 char *vaddr;
651 int ret;
652
653 vaddr = kmap(page);
654 if (needs_clflush)
655 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
656 page_length,
657 page_do_bit17_swizzling);
658
659 if (page_do_bit17_swizzling)
660 ret = __copy_to_user_swizzled(user_data,
661 vaddr, shmem_page_offset,
662 page_length);
663 else
664 ret = __copy_to_user(user_data,
665 vaddr + shmem_page_offset,
666 page_length);
667 kunmap(page);
668
669 return ret ? - EFAULT : 0;
670 }
671
672 static int
673 i915_gem_shmem_pread(struct drm_device *dev,
674 struct drm_i915_gem_object *obj,
675 struct drm_i915_gem_pread *args,
676 struct drm_file *file)
677 {
678 char __user *user_data;
679 ssize_t remain;
680 loff_t offset;
681 int shmem_page_offset, page_length, ret = 0;
682 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
683 #ifndef __NetBSD__ /* XXX */
684 int prefaulted = 0;
685 #endif
686 int needs_clflush = 0;
687 #ifndef __NetBSD__
688 struct sg_page_iter sg_iter;
689 #endif
690
691 user_data = to_user_ptr(args->data_ptr);
692 remain = args->size;
693
694 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
695
696 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
697 if (ret)
698 return ret;
699
700 offset = args->offset;
701
702 #ifdef __NetBSD__
703 /*
704 * XXX This is a big #ifdef with a lot of duplicated code, but
705 * factoring out the loop head -- which is all that
706 * substantially differs -- is probably more trouble than it's
707 * worth at the moment.
708 */
709 while (0 < remain) {
710 /* Get the next page. */
711 shmem_page_offset = offset_in_page(offset);
712 KASSERT(shmem_page_offset < PAGE_SIZE);
713 page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
714 struct page *const page = i915_gem_object_get_page(obj,
715 atop(offset));
716
717 /* Decide whether to swizzle bit 17. */
718 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
719 (page_to_phys(page) & (1 << 17)) != 0;
720
721 /* Try the fast path. */
722 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
723 user_data, page_do_bit17_swizzling, needs_clflush);
724 if (ret == 0)
725 goto next_page;
726
727 /* Fast path failed. Try the slow path. */
728 mutex_unlock(&dev->struct_mutex);
729 /* XXX prefault */
730 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
731 user_data, page_do_bit17_swizzling, needs_clflush);
732 mutex_lock(&dev->struct_mutex);
733 if (ret)
734 goto out;
735
736 next_page: KASSERT(page_length <= remain);
737 remain -= page_length;
738 user_data += page_length;
739 offset += page_length;
740 }
741 #else
742 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
743 offset >> PAGE_SHIFT) {
744 struct page *page = sg_page_iter_page(&sg_iter);
745
746 if (remain <= 0)
747 break;
748
749 /* Operation in this page
750 *
751 * shmem_page_offset = offset within page in shmem file
752 * page_length = bytes to copy for this page
753 */
754 shmem_page_offset = offset_in_page(offset);
755 page_length = remain;
756 if ((shmem_page_offset + page_length) > PAGE_SIZE)
757 page_length = PAGE_SIZE - shmem_page_offset;
758
759 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
760 (page_to_phys(page) & (1 << 17)) != 0;
761
762 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
763 user_data, page_do_bit17_swizzling,
764 needs_clflush);
765 if (ret == 0)
766 goto next_page;
767
768 mutex_unlock(&dev->struct_mutex);
769
770 if (likely(!i915.prefault_disable) && !prefaulted) {
771 ret = fault_in_multipages_writeable(user_data, remain);
772 /* Userspace is tricking us, but we've already clobbered
773 * its pages with the prefault and promised to write the
774 * data up to the first fault. Hence ignore any errors
775 * and just continue. */
776 (void)ret;
777 prefaulted = 1;
778 }
779
780 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
781 user_data, page_do_bit17_swizzling,
782 needs_clflush);
783
784 mutex_lock(&dev->struct_mutex);
785
786 if (ret)
787 goto out;
788
789 next_page:
790 remain -= page_length;
791 user_data += page_length;
792 offset += page_length;
793 }
794 #endif
795
796 out:
797 i915_gem_object_unpin_pages(obj);
798
799 return ret;
800 }
801
802 /**
803 * Reads data from the object referenced by handle.
804 *
805 * On error, the contents of *data are undefined.
806 */
807 int
808 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
809 struct drm_file *file)
810 {
811 struct drm_i915_gem_pread *args = data;
812 struct drm_i915_gem_object *obj;
813 int ret = 0;
814
815 if (args->size == 0)
816 return 0;
817
818 if (!access_ok(VERIFY_WRITE,
819 to_user_ptr(args->data_ptr),
820 args->size))
821 return -EFAULT;
822
823 ret = i915_mutex_lock_interruptible(dev);
824 if (ret)
825 return ret;
826
827 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
828 if (&obj->base == NULL) {
829 ret = -ENOENT;
830 goto unlock;
831 }
832
833 /* Bounds check source. */
834 if (args->offset > obj->base.size ||
835 args->size > obj->base.size - args->offset) {
836 ret = -EINVAL;
837 goto out;
838 }
839
840 /* prime objects have no backing filp to GEM pread/pwrite
841 * pages from.
842 */
843 #ifdef __NetBSD__
844 /* Also stolen objects. */
845 if (obj->base.gemo_shm_uao == NULL) {
846 ret = -EINVAL;
847 goto out;
848 }
849 #else
850 if (!obj->base.filp) {
851 ret = -EINVAL;
852 goto out;
853 }
854 #endif
855
856 trace_i915_gem_object_pread(obj, args->offset, args->size);
857
858 ret = i915_gem_shmem_pread(dev, obj, args, file);
859
860 out:
861 drm_gem_object_unreference(&obj->base);
862 unlock:
863 mutex_unlock(&dev->struct_mutex);
864 return ret;
865 }
866
867 /* This is the fast write path which cannot handle
868 * page faults in the source data
869 */
870
871 static inline int
872 fast_user_write(struct io_mapping *mapping,
873 loff_t page_base, int page_offset,
874 char __user *user_data,
875 int length)
876 {
877 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
878 return -EFAULT;
879 #else
880 void __iomem *vaddr_atomic;
881 void *vaddr;
882 unsigned long unwritten;
883
884 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
885 /* We can use the cpu mem copy function because this is X86. */
886 vaddr = (void __force*)vaddr_atomic + page_offset;
887 unwritten = __copy_from_user_inatomic_nocache(vaddr,
888 user_data, length);
889 io_mapping_unmap_atomic(vaddr_atomic);
890 return unwritten;
891 #endif
892 }
893
894 /**
895 * This is the fast pwrite path, where we copy the data directly from the
896 * user into the GTT, uncached.
897 */
898 static int
899 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
900 struct drm_i915_gem_object *obj,
901 struct drm_i915_gem_pwrite *args,
902 struct drm_file *file)
903 {
904 struct drm_i915_private *dev_priv = dev->dev_private;
905 ssize_t remain;
906 loff_t offset, page_base;
907 char __user *user_data;
908 int page_offset, page_length, ret;
909
910 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
911 if (ret)
912 goto out;
913
914 ret = i915_gem_object_set_to_gtt_domain(obj, true);
915 if (ret)
916 goto out_unpin;
917
918 ret = i915_gem_object_put_fence(obj);
919 if (ret)
920 goto out_unpin;
921
922 user_data = to_user_ptr(args->data_ptr);
923 remain = args->size;
924
925 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
926
927 while (remain > 0) {
928 /* Operation in this page
929 *
930 * page_base = page offset within aperture
931 * page_offset = offset within page
932 * page_length = bytes to copy for this page
933 */
934 page_base = offset & PAGE_MASK;
935 page_offset = offset_in_page(offset);
936 page_length = remain;
937 if ((page_offset + remain) > PAGE_SIZE)
938 page_length = PAGE_SIZE - page_offset;
939
940 /* If we get a fault while copying data, then (presumably) our
941 * source page isn't available. Return the error and we'll
942 * retry in the slow path.
943 */
944 if (fast_user_write(dev_priv->gtt.mappable, page_base,
945 page_offset, user_data, page_length)) {
946 ret = -EFAULT;
947 goto out_unpin;
948 }
949
950 remain -= page_length;
951 user_data += page_length;
952 offset += page_length;
953 }
954
955 out_unpin:
956 i915_gem_object_ggtt_unpin(obj);
957 out:
958 return ret;
959 }
960
961 /* Per-page copy function for the shmem pwrite fastpath.
962 * Flushes invalid cachelines before writing to the target if
963 * needs_clflush_before is set and flushes out any written cachelines after
964 * writing if needs_clflush is set. */
965 static int
966 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
967 char __user *user_data,
968 bool page_do_bit17_swizzling,
969 bool needs_clflush_before,
970 bool needs_clflush_after)
971 {
972 #ifdef __NetBSD__
973 return -EFAULT;
974 #else
975 char *vaddr;
976 int ret;
977
978 if (unlikely(page_do_bit17_swizzling))
979 return -EINVAL;
980
981 vaddr = kmap_atomic(page);
982 if (needs_clflush_before)
983 drm_clflush_virt_range(vaddr + shmem_page_offset,
984 page_length);
985 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
986 user_data, page_length);
987 if (needs_clflush_after)
988 drm_clflush_virt_range(vaddr + shmem_page_offset,
989 page_length);
990 kunmap_atomic(vaddr);
991
992 return ret ? -EFAULT : 0;
993 #endif
994 }
995
996 /* Only difference to the fast-path function is that this can handle bit17
997 * and uses non-atomic copy and kmap functions. */
998 static int
999 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1000 char __user *user_data,
1001 bool page_do_bit17_swizzling,
1002 bool needs_clflush_before,
1003 bool needs_clflush_after)
1004 {
1005 char *vaddr;
1006 int ret;
1007
1008 vaddr = kmap(page);
1009 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1010 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1011 page_length,
1012 page_do_bit17_swizzling);
1013 if (page_do_bit17_swizzling)
1014 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1015 user_data,
1016 page_length);
1017 else
1018 ret = __copy_from_user(vaddr + shmem_page_offset,
1019 user_data,
1020 page_length);
1021 if (needs_clflush_after)
1022 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1023 page_length,
1024 page_do_bit17_swizzling);
1025 kunmap(page);
1026
1027 return ret ? -EFAULT : 0;
1028 }
1029
1030 static int
1031 i915_gem_shmem_pwrite(struct drm_device *dev,
1032 struct drm_i915_gem_object *obj,
1033 struct drm_i915_gem_pwrite *args,
1034 struct drm_file *file)
1035 {
1036 ssize_t remain;
1037 loff_t offset;
1038 char __user *user_data;
1039 int shmem_page_offset, page_length, ret = 0;
1040 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1041 int hit_slowpath = 0;
1042 int needs_clflush_after = 0;
1043 int needs_clflush_before = 0;
1044 #ifndef __NetBSD__
1045 struct sg_page_iter sg_iter;
1046 #endif
1047
1048 user_data = to_user_ptr(args->data_ptr);
1049 remain = args->size;
1050
1051 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1052
1053 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1054 /* If we're not in the cpu write domain, set ourself into the gtt
1055 * write domain and manually flush cachelines (if required). This
1056 * optimizes for the case when the gpu will use the data
1057 * right away and we therefore have to clflush anyway. */
1058 needs_clflush_after = cpu_write_needs_clflush(obj);
1059 ret = i915_gem_object_wait_rendering(obj, false);
1060 if (ret)
1061 return ret;
1062 }
1063 /* Same trick applies to invalidate partially written cachelines read
1064 * before writing. */
1065 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1066 needs_clflush_before =
1067 !cpu_cache_is_coherent(dev, obj->cache_level);
1068
1069 ret = i915_gem_object_get_pages(obj);
1070 if (ret)
1071 return ret;
1072
1073 i915_gem_object_pin_pages(obj);
1074
1075 offset = args->offset;
1076 obj->dirty = 1;
1077
1078 #ifdef __NetBSD__
1079 while (0 < remain) {
1080 /* Get the next page. */
1081 shmem_page_offset = offset_in_page(offset);
1082 KASSERT(shmem_page_offset < PAGE_SIZE);
1083 page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
1084 struct page *const page = i915_gem_object_get_page(obj,
1085 atop(offset));
1086
1087 /* Decide whether to flush the cache or swizzle bit 17. */
1088 const bool partial_cacheline_write = needs_clflush_before &&
1089 ((shmem_page_offset | page_length)
1090 & (cpu_info_primary.ci_cflush_lsize - 1));
1091 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1092 (page_to_phys(page) & (1 << 17)) != 0;
1093
1094 /* Try the fast path. */
1095 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1096 user_data, page_do_bit17_swizzling,
1097 partial_cacheline_write, needs_clflush_after);
1098 if (ret == 0)
1099 goto next_page;
1100
1101 /* Fast path failed. Try the slow path. */
1102 hit_slowpath = 1;
1103 mutex_unlock(&dev->struct_mutex);
1104 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1105 user_data, page_do_bit17_swizzling,
1106 partial_cacheline_write, needs_clflush_after);
1107 mutex_lock(&dev->struct_mutex);
1108 if (ret)
1109 goto out;
1110
1111 next_page: KASSERT(page_length <= remain);
1112 remain -= page_length;
1113 user_data += page_length;
1114 offset += page_length;
1115 }
1116 #else
1117 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1118 offset >> PAGE_SHIFT) {
1119 struct page *page = sg_page_iter_page(&sg_iter);
1120 int partial_cacheline_write;
1121
1122 if (remain <= 0)
1123 break;
1124
1125 /* Operation in this page
1126 *
1127 * shmem_page_offset = offset within page in shmem file
1128 * page_length = bytes to copy for this page
1129 */
1130 shmem_page_offset = offset_in_page(offset);
1131
1132 page_length = remain;
1133 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1134 page_length = PAGE_SIZE - shmem_page_offset;
1135
1136 /* If we don't overwrite a cacheline completely we need to be
1137 * careful to have up-to-date data by first clflushing. Don't
1138 * overcomplicate things and flush the entire patch. */
1139 partial_cacheline_write = needs_clflush_before &&
1140 ((shmem_page_offset | page_length)
1141 & (boot_cpu_data.x86_clflush_size - 1));
1142
1143 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1144 (page_to_phys(page) & (1 << 17)) != 0;
1145
1146 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1147 user_data, page_do_bit17_swizzling,
1148 partial_cacheline_write,
1149 needs_clflush_after);
1150 if (ret == 0)
1151 goto next_page;
1152
1153 hit_slowpath = 1;
1154 mutex_unlock(&dev->struct_mutex);
1155 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1156 user_data, page_do_bit17_swizzling,
1157 partial_cacheline_write,
1158 needs_clflush_after);
1159
1160 mutex_lock(&dev->struct_mutex);
1161
1162 if (ret)
1163 goto out;
1164
1165 next_page:
1166 remain -= page_length;
1167 user_data += page_length;
1168 offset += page_length;
1169 }
1170 #endif
1171
1172 out:
1173 i915_gem_object_unpin_pages(obj);
1174
1175 if (hit_slowpath) {
1176 /*
1177 * Fixup: Flush cpu caches in case we didn't flush the dirty
1178 * cachelines in-line while writing and the object moved
1179 * out of the cpu write domain while we've dropped the lock.
1180 */
1181 if (!needs_clflush_after &&
1182 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1183 if (i915_gem_clflush_object(obj, obj->pin_display))
1184 i915_gem_chipset_flush(dev);
1185 }
1186 }
1187
1188 if (needs_clflush_after)
1189 i915_gem_chipset_flush(dev);
1190
1191 return ret;
1192 }
1193
1194 /**
1195 * Writes data to the object referenced by handle.
1196 *
1197 * On error, the contents of the buffer that were to be modified are undefined.
1198 */
1199 int
1200 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1201 struct drm_file *file)
1202 {
1203 struct drm_i915_gem_pwrite *args = data;
1204 struct drm_i915_gem_object *obj;
1205 int ret;
1206
1207 if (args->size == 0)
1208 return 0;
1209
1210 if (!access_ok(VERIFY_READ,
1211 to_user_ptr(args->data_ptr),
1212 args->size))
1213 return -EFAULT;
1214
1215 #ifndef __NetBSD__ /* XXX prefault */
1216 if (likely(!i915.prefault_disable)) {
1217 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1218 args->size);
1219 if (ret)
1220 return -EFAULT;
1221 }
1222 #endif
1223
1224 ret = i915_mutex_lock_interruptible(dev);
1225 if (ret)
1226 return ret;
1227
1228 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1229 if (&obj->base == NULL) {
1230 ret = -ENOENT;
1231 goto unlock;
1232 }
1233
1234 /* Bounds check destination. */
1235 if (args->offset > obj->base.size ||
1236 args->size > obj->base.size - args->offset) {
1237 ret = -EINVAL;
1238 goto out;
1239 }
1240
1241 /* prime objects have no backing filp to GEM pread/pwrite
1242 * pages from.
1243 */
1244 #ifdef __NetBSD__
1245 /* Also stolen objects. */
1246 if (obj->base.gemo_shm_uao == NULL) {
1247 ret = -EINVAL;
1248 goto out;
1249 }
1250 #else
1251 if (!obj->base.filp) {
1252 ret = -EINVAL;
1253 goto out;
1254 }
1255 #endif
1256
1257 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1258
1259 ret = -EFAULT;
1260 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1261 * it would end up going through the fenced access, and we'll get
1262 * different detiling behavior between reading and writing.
1263 * pread/pwrite currently are reading and writing from the CPU
1264 * perspective, requiring manual detiling by the client.
1265 */
1266 if (obj->phys_handle) {
1267 ret = i915_gem_phys_pwrite(obj, args, file);
1268 goto out;
1269 }
1270
1271 if (obj->tiling_mode == I915_TILING_NONE &&
1272 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1273 cpu_write_needs_clflush(obj)) {
1274 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1275 /* Note that the gtt paths might fail with non-page-backed user
1276 * pointers (e.g. gtt mappings when moving data between
1277 * textures). Fallback to the shmem path in that case. */
1278 }
1279
1280 if (ret == -EFAULT || ret == -ENOSPC)
1281 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1282
1283 out:
1284 drm_gem_object_unreference(&obj->base);
1285 unlock:
1286 mutex_unlock(&dev->struct_mutex);
1287 return ret;
1288 }
1289
1290 int
1291 i915_gem_check_wedge(struct i915_gpu_error *error,
1292 bool interruptible)
1293 {
1294 if (i915_reset_in_progress(error)) {
1295 /* Non-interruptible callers can't handle -EAGAIN, hence return
1296 * -EIO unconditionally for these. */
1297 if (!interruptible)
1298 return -EIO;
1299
1300 /* Recovery complete, but the reset failed ... */
1301 if (i915_terminally_wedged(error))
1302 return -EIO;
1303
1304 return -EAGAIN;
1305 }
1306
1307 return 0;
1308 }
1309
1310 /*
1311 * Compare seqno against outstanding lazy request. Emit a request if they are
1312 * equal.
1313 */
1314 static int
1315 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1316 {
1317 int ret;
1318
1319 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1320
1321 ret = 0;
1322 if (seqno == ring->outstanding_lazy_seqno)
1323 ret = i915_add_request(ring, NULL);
1324
1325 return ret;
1326 }
1327
1328 #ifndef __NetBSD__
1329 static void fake_irq(unsigned long data)
1330 {
1331 wake_up_process((struct task_struct *)data);
1332 }
1333 #endif
1334
1335 static bool missed_irq(struct drm_i915_private *dev_priv,
1336 struct intel_ring_buffer *ring)
1337 {
1338 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1339 }
1340
1341 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1342 {
1343 if (file_priv == NULL)
1344 return true;
1345
1346 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1347 }
1348
1349 /**
1350 * __wait_seqno - wait until execution of seqno has finished
1351 * @ring: the ring expected to report seqno
1352 * @seqno: duh!
1353 * @reset_counter: reset sequence associated with the given seqno
1354 * @interruptible: do an interruptible wait (normally yes)
1355 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1356 *
1357 * Note: It is of utmost importance that the passed in seqno and reset_counter
1358 * values have been read by the caller in an smp safe manner. Where read-side
1359 * locks are involved, it is sufficient to read the reset_counter before
1360 * unlocking the lock that protects the seqno. For lockless tricks, the
1361 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1362 * inserted.
1363 *
1364 * Returns 0 if the seqno was found within the alloted time. Else returns the
1365 * errno with remaining time filled in timeout argument.
1366 */
1367 #ifdef __NetBSD__
1368 static int
1369 __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, unsigned reset_counter,
1370 bool interruptible, struct timespec *timeout,
1371 struct drm_i915_file_private *file_priv)
1372 {
1373 struct drm_device *dev = ring->dev;
1374 struct drm_i915_private *dev_priv = dev->dev_private;
1375 bool irq_test_in_progress;
1376 struct timespec before, after;
1377 int ticks;
1378 bool wedged;
1379 int ret;
1380
1381 irq_test_in_progress = (dev_priv->gpu_error.test_irq_rings &
1382 intel_ring_flag(ring));
1383 __insn_barrier();
1384
1385 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1386 return 0;
1387
1388 if (timeout)
1389 ticks = mstohz(timespec_to_ns(timeout) / 1000000);
1390
1391 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1392 gen6_rps_boost(dev_priv);
1393 if (file_priv)
1394 mod_delayed_work(dev_priv->wq,
1395 &file_priv->mm.idle_work,
1396 msecs_to_jiffies(100));
1397 }
1398
1399 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1400 return -ENODEV;
1401
1402 nanotime(&before);
1403 spin_lock(&dev_priv->irq_lock);
1404 #define EXIT_COND \
1405 (((reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) \
1406 ? wedged = true : false) || \
1407 i915_seqno_passed(ring->get_seqno(ring, false), \
1408 seqno))
1409
1410 if (timeout) {
1411 /*
1412 * XXX This missed_irq business smells like unlocked
1413 * Linux waitqueue nonsense.
1414 */
1415 if (missed_irq(dev_priv, ring))
1416 ticks = 1;
1417 if (interruptible)
1418 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
1419 &dev_priv->irq_lock, ticks, EXIT_COND);
1420 else
1421 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
1422 &dev_priv->irq_lock, ticks, EXIT_COND);
1423 } else {
1424 if (interruptible)
1425 DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
1426 &dev_priv->irq_lock, EXIT_COND);
1427 else
1428 DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
1429 &dev_priv->irq_lock, EXIT_COND);
1430 }
1431 #undef EXIT_COND
1432 spin_unlock(&dev_priv->irq_lock);
1433 nanotime(&after);
1434
1435 if (!irq_test_in_progress)
1436 ring->irq_put(ring);
1437 if (timeout)
1438 timespecsub(&after, &before, timeout);
1439 return MAX(ret, 0); /* ignore remaining ticks */
1440 }
1441 #else
1442 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1443 unsigned reset_counter,
1444 bool interruptible,
1445 struct timespec *timeout,
1446 struct drm_i915_file_private *file_priv)
1447 {
1448 struct drm_device *dev = ring->dev;
1449 struct drm_i915_private *dev_priv = dev->dev_private;
1450 const bool irq_test_in_progress =
1451 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1452 struct timespec before, now;
1453 DEFINE_WAIT(wait);
1454 unsigned long timeout_expire;
1455 int ret;
1456
1457 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1458
1459 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1460 return 0;
1461
1462 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1463
1464 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1465 gen6_rps_boost(dev_priv);
1466 if (file_priv)
1467 mod_delayed_work(dev_priv->wq,
1468 &file_priv->mm.idle_work,
1469 msecs_to_jiffies(100));
1470 }
1471
1472 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1473 return -ENODEV;
1474
1475 /* Record current time in case interrupted by signal, or wedged */
1476 trace_i915_gem_request_wait_begin(ring, seqno);
1477 getrawmonotonic(&before);
1478 for (;;) {
1479 struct timer_list timer;
1480
1481 prepare_to_wait(&ring->irq_queue, &wait,
1482 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1483
1484 /* We need to check whether any gpu reset happened in between
1485 * the caller grabbing the seqno and now ... */
1486 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1487 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1488 * is truely gone. */
1489 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1490 if (ret == 0)
1491 ret = -EAGAIN;
1492 break;
1493 }
1494
1495 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1496 ret = 0;
1497 break;
1498 }
1499
1500 if (interruptible && signal_pending(current)) {
1501 ret = -ERESTARTSYS;
1502 break;
1503 }
1504
1505 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1506 ret = -ETIME;
1507 break;
1508 }
1509
1510 timer.function = NULL;
1511 if (timeout || missed_irq(dev_priv, ring)) {
1512 unsigned long expire;
1513
1514 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1515 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1516 mod_timer(&timer, expire);
1517 }
1518
1519 io_schedule();
1520
1521 if (timer.function) {
1522 del_singleshot_timer_sync(&timer);
1523 destroy_timer_on_stack(&timer);
1524 }
1525 }
1526 getrawmonotonic(&now);
1527 trace_i915_gem_request_wait_end(ring, seqno);
1528
1529 if (!irq_test_in_progress)
1530 ring->irq_put(ring);
1531
1532 finish_wait(&ring->irq_queue, &wait);
1533
1534 if (timeout) {
1535 struct timespec sleep_time = timespec_sub(now, before);
1536 *timeout = timespec_sub(*timeout, sleep_time);
1537 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1538 set_normalized_timespec(timeout, 0, 0);
1539 }
1540
1541 return ret;
1542 }
1543 #endif
1544
1545 /**
1546 * Waits for a sequence number to be signaled, and cleans up the
1547 * request and object lists appropriately for that event.
1548 */
1549 int
1550 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1551 {
1552 struct drm_device *dev = ring->dev;
1553 struct drm_i915_private *dev_priv = dev->dev_private;
1554 bool interruptible = dev_priv->mm.interruptible;
1555 int ret;
1556
1557 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1558 BUG_ON(seqno == 0);
1559
1560 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1561 if (ret)
1562 return ret;
1563
1564 ret = i915_gem_check_olr(ring, seqno);
1565 if (ret)
1566 return ret;
1567
1568 return __wait_seqno(ring, seqno,
1569 atomic_read(&dev_priv->gpu_error.reset_counter),
1570 interruptible, NULL, NULL);
1571 }
1572
1573 static int
1574 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1575 struct intel_ring_buffer *ring)
1576 {
1577 i915_gem_retire_requests_ring(ring);
1578
1579 /* Manually manage the write flush as we may have not yet
1580 * retired the buffer.
1581 *
1582 * Note that the last_write_seqno is always the earlier of
1583 * the two (read/write) seqno, so if we haved successfully waited,
1584 * we know we have passed the last write.
1585 */
1586 obj->last_write_seqno = 0;
1587 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1588
1589 return 0;
1590 }
1591
1592 /**
1593 * Ensures that all rendering to the object has completed and the object is
1594 * safe to unbind from the GTT or access from the CPU.
1595 */
1596 static __must_check int
1597 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1598 bool readonly)
1599 {
1600 struct intel_ring_buffer *ring = obj->ring;
1601 u32 seqno;
1602 int ret;
1603
1604 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1605 if (seqno == 0)
1606 return 0;
1607
1608 ret = i915_wait_seqno(ring, seqno);
1609 if (ret)
1610 return ret;
1611
1612 return i915_gem_object_wait_rendering__tail(obj, ring);
1613 }
1614
1615 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1616 * as the object state may change during this call.
1617 */
1618 static __must_check int
1619 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1620 struct drm_i915_file_private *file_priv,
1621 bool readonly)
1622 {
1623 struct drm_device *dev = obj->base.dev;
1624 struct drm_i915_private *dev_priv = dev->dev_private;
1625 struct intel_ring_buffer *ring = obj->ring;
1626 unsigned reset_counter;
1627 u32 seqno;
1628 int ret;
1629
1630 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1631 BUG_ON(!dev_priv->mm.interruptible);
1632
1633 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1634 if (seqno == 0)
1635 return 0;
1636
1637 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1638 if (ret)
1639 return ret;
1640
1641 ret = i915_gem_check_olr(ring, seqno);
1642 if (ret)
1643 return ret;
1644
1645 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1646 mutex_unlock(&dev->struct_mutex);
1647 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1648 mutex_lock(&dev->struct_mutex);
1649 if (ret)
1650 return ret;
1651
1652 return i915_gem_object_wait_rendering__tail(obj, ring);
1653 }
1654
1655 /**
1656 * Called when user space prepares to use an object with the CPU, either
1657 * through the mmap ioctl's mapping or a GTT mapping.
1658 */
1659 int
1660 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1661 struct drm_file *file)
1662 {
1663 struct drm_i915_gem_set_domain *args = data;
1664 struct drm_i915_gem_object *obj;
1665 uint32_t read_domains = args->read_domains;
1666 uint32_t write_domain = args->write_domain;
1667 int ret;
1668
1669 /* Only handle setting domains to types used by the CPU. */
1670 if (write_domain & I915_GEM_GPU_DOMAINS)
1671 return -EINVAL;
1672
1673 if (read_domains & I915_GEM_GPU_DOMAINS)
1674 return -EINVAL;
1675
1676 /* Having something in the write domain implies it's in the read
1677 * domain, and only that read domain. Enforce that in the request.
1678 */
1679 if (write_domain != 0 && read_domains != write_domain)
1680 return -EINVAL;
1681
1682 ret = i915_mutex_lock_interruptible(dev);
1683 if (ret)
1684 return ret;
1685
1686 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1687 if (&obj->base == NULL) {
1688 ret = -ENOENT;
1689 goto unlock;
1690 }
1691
1692 /* Try to flush the object off the GPU without holding the lock.
1693 * We will repeat the flush holding the lock in the normal manner
1694 * to catch cases where we are gazumped.
1695 */
1696 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1697 file->driver_priv,
1698 !write_domain);
1699 if (ret)
1700 goto unref;
1701
1702 if (read_domains & I915_GEM_DOMAIN_GTT) {
1703 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1704
1705 /* Silently promote "you're not bound, there was nothing to do"
1706 * to success, since the client was just asking us to
1707 * make sure everything was done.
1708 */
1709 if (ret == -EINVAL)
1710 ret = 0;
1711 } else {
1712 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1713 }
1714
1715 unref:
1716 drm_gem_object_unreference(&obj->base);
1717 unlock:
1718 mutex_unlock(&dev->struct_mutex);
1719 return ret;
1720 }
1721
1722 /**
1723 * Called when user space has done writes to this buffer
1724 */
1725 int
1726 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1727 struct drm_file *file)
1728 {
1729 struct drm_i915_gem_sw_finish *args = data;
1730 struct drm_i915_gem_object *obj;
1731 int ret = 0;
1732
1733 ret = i915_mutex_lock_interruptible(dev);
1734 if (ret)
1735 return ret;
1736
1737 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1738 if (&obj->base == NULL) {
1739 ret = -ENOENT;
1740 goto unlock;
1741 }
1742
1743 /* Pinned buffers may be scanout, so flush the cache */
1744 if (obj->pin_display)
1745 i915_gem_object_flush_cpu_write_domain(obj, true);
1746
1747 drm_gem_object_unreference(&obj->base);
1748 unlock:
1749 mutex_unlock(&dev->struct_mutex);
1750 return ret;
1751 }
1752
1753 /**
1754 * Maps the contents of an object, returning the address it is mapped
1755 * into.
1756 *
1757 * While the mapping holds a reference on the contents of the object, it doesn't
1758 * imply a ref on the object itself.
1759 */
1760 int
1761 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1762 struct drm_file *file)
1763 {
1764 struct drm_i915_gem_mmap *args = data;
1765 struct drm_gem_object *obj;
1766 unsigned long addr;
1767 #ifdef __NetBSD__
1768 int ret;
1769 #endif
1770
1771 obj = drm_gem_object_lookup(dev, file, args->handle);
1772 if (obj == NULL)
1773 return -ENOENT;
1774
1775 /* prime objects have no backing filp to GEM mmap
1776 * pages from.
1777 */
1778 #ifdef __NetBSD__
1779 /* Also stolen objects (XXX can we get them here?) */
1780 if (obj->gemo_shm_uao == NULL) {
1781 drm_gem_object_unreference_unlocked(obj);
1782 return -EINVAL;
1783 }
1784 #else
1785 if (!obj->filp) {
1786 drm_gem_object_unreference_unlocked(obj);
1787 return -EINVAL;
1788 }
1789 #endif
1790
1791 #ifdef __NetBSD__
1792 addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
1793 (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
1794 /* XXX errno NetBSD->Linux */
1795 ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
1796 obj->gemo_shm_uao, args->offset, 0,
1797 UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
1798 (VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
1799 0));
1800 if (ret) {
1801 drm_gem_object_unreference_unlocked(obj);
1802 return ret;
1803 }
1804 uao_reference(obj->gemo_shm_uao);
1805 drm_gem_object_unreference_unlocked(obj);
1806 #else
1807 addr = vm_mmap(obj->filp, 0, args->size,
1808 PROT_READ | PROT_WRITE, MAP_SHARED,
1809 args->offset);
1810 drm_gem_object_unreference_unlocked(obj);
1811 if (IS_ERR((void *)addr))
1812 return addr;
1813 #endif
1814
1815 args->addr_ptr = (uint64_t) addr;
1816
1817 return 0;
1818 }
1819
1820 #ifdef __NetBSD__ /* XXX gem gtt fault */
1821 static int i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
1822 struct vm_page **, int, int, vm_prot_t, int, paddr_t);
1823
1824 int
1825 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1826 int npages, int centeridx, vm_prot_t access_type, int flags)
1827 {
1828 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1829 struct drm_gem_object *gem_obj =
1830 container_of(uobj, struct drm_gem_object, gemo_uvmobj);
1831 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
1832 struct drm_device *dev = obj->base.dev;
1833 struct drm_i915_private *dev_priv = dev->dev_private;
1834 voff_t byte_offset;
1835 pgoff_t page_offset;
1836 int ret = 0;
1837 bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
1838
1839 byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
1840 KASSERT(byte_offset <= obj->base.size);
1841 page_offset = (byte_offset >> PAGE_SHIFT);
1842
1843 intel_runtime_pm_get(dev_priv);
1844
1845 ret = i915_mutex_lock_interruptible(dev);
1846 if (ret)
1847 goto out;
1848
1849 trace_i915_gem_object_fault(obj, page_offset, true, write);
1850
1851 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1852 if (ret)
1853 goto unlock;
1854
1855 if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
1856 ret = -EINVAL;
1857 goto unlock;
1858 }
1859
1860 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1861 if (ret)
1862 goto unlock;
1863
1864 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1865 if (ret)
1866 goto unpin;
1867
1868 ret = i915_gem_object_get_fence(obj);
1869 if (ret)
1870 goto unpin;
1871
1872 obj->fault_mappable = true;
1873
1874 /* XXX errno NetBSD->Linux */
1875 ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
1876 flags,
1877 (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
1878 unpin:
1879 i915_gem_object_ggtt_unpin(obj);
1880 unlock:
1881 mutex_unlock(&dev->struct_mutex);
1882 out:
1883 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
1884 if (ret == -ERESTART)
1885 uvm_wait("i915flt");
1886 /* XXX Deal with GPU hangs here... */
1887 intel_runtime_pm_put(dev_priv);
1888 /* XXX errno Linux->NetBSD */
1889 return -ret;
1890 }
1891
1892 /*
1893 * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
1894 *
1895 * XXX pmap_enter_default instead of pmap_enter because of a problem
1896 * with using weak aliases in kernel modules or something.
1897 */
1898 int pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
1899
1900 static int
1901 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1902 int npages, int centeridx, vm_prot_t access_type, int flags,
1903 paddr_t gtt_paddr)
1904 {
1905 struct vm_map_entry *entry = ufi->entry;
1906 vaddr_t curr_va;
1907 off_t curr_offset;
1908 paddr_t paddr;
1909 u_int mmapflags;
1910 int lcv, retval;
1911 vm_prot_t mapprot;
1912 UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
1913 UVMHIST_LOG(maphist," flags=%d", flags,0,0,0);
1914
1915 /*
1916 * we do not allow device mappings to be mapped copy-on-write
1917 * so we kill any attempt to do so here.
1918 */
1919
1920 if (UVM_ET_ISCOPYONWRITE(entry)) {
1921 UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
1922 entry->etype, 0,0,0);
1923 return(EIO);
1924 }
1925
1926 /*
1927 * now we must determine the offset in udv to use and the VA to
1928 * use for pmap_enter. note that we always use orig_map's pmap
1929 * for pmap_enter (even if we have a submap). since virtual
1930 * addresses in a submap must match the main map, this is ok.
1931 */
1932
1933 /* udv offset = (offset from start of entry) + entry's offset */
1934 curr_offset = entry->offset + (vaddr - entry->start);
1935 /* pmap va = vaddr (virtual address of pps[0]) */
1936 curr_va = vaddr;
1937
1938 /*
1939 * loop over the page range entering in as needed
1940 */
1941
1942 retval = 0;
1943 for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
1944 curr_va += PAGE_SIZE) {
1945 if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
1946 continue;
1947
1948 if (pps[lcv] == PGO_DONTCARE)
1949 continue;
1950
1951 paddr = (gtt_paddr + curr_offset);
1952 mmapflags = 0;
1953 mapprot = ufi->entry->protection;
1954 UVMHIST_LOG(maphist,
1955 " MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
1956 ufi->orig_map->pmap, curr_va, paddr, mapprot);
1957 if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
1958 PMAP_CANFAIL | mapprot | mmapflags) != 0) {
1959 /*
1960 * pmap_enter() didn't have the resource to
1961 * enter this mapping. Unlock everything,
1962 * wait for the pagedaemon to free up some
1963 * pages, and then tell uvm_fault() to start
1964 * the fault again.
1965 *
1966 * XXX Needs some rethinking for the PGO_ALLPAGES
1967 * XXX case.
1968 */
1969 pmap_update(ufi->orig_map->pmap); /* sync what we have so far */
1970 return (ERESTART);
1971 }
1972 }
1973
1974 pmap_update(ufi->orig_map->pmap);
1975 return (retval);
1976 }
1977 #else
1978 /**
1979 * i915_gem_fault - fault a page into the GTT
1980 * vma: VMA in question
1981 * vmf: fault info
1982 *
1983 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1984 * from userspace. The fault handler takes care of binding the object to
1985 * the GTT (if needed), allocating and programming a fence register (again,
1986 * only if needed based on whether the old reg is still valid or the object
1987 * is tiled) and inserting a new PTE into the faulting process.
1988 *
1989 * Note that the faulting process may involve evicting existing objects
1990 * from the GTT and/or fence registers to make room. So performance may
1991 * suffer if the GTT working set is large or there are few fence registers
1992 * left.
1993 */
1994 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1995 {
1996 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1997 struct drm_device *dev = obj->base.dev;
1998 struct drm_i915_private *dev_priv = dev->dev_private;
1999 pgoff_t page_offset;
2000 unsigned long pfn;
2001 int ret = 0;
2002 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2003
2004 intel_runtime_pm_get(dev_priv);
2005
2006 /* We don't use vmf->pgoff since that has the fake offset */
2007 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2008 PAGE_SHIFT;
2009
2010 ret = i915_mutex_lock_interruptible(dev);
2011 if (ret)
2012 goto out;
2013
2014 trace_i915_gem_object_fault(obj, page_offset, true, write);
2015
2016 /* Try to flush the object off the GPU first without holding the lock.
2017 * Upon reacquiring the lock, we will perform our sanity checks and then
2018 * repeat the flush holding the lock in the normal manner to catch cases
2019 * where we are gazumped.
2020 */
2021 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2022 if (ret)
2023 goto unlock;
2024
2025 /* Access to snoopable pages through the GTT is incoherent. */
2026 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2027 ret = -EINVAL;
2028 goto unlock;
2029 }
2030
2031 /* Now bind it into the GTT if needed */
2032 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
2033 if (ret)
2034 goto unlock;
2035
2036 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2037 if (ret)
2038 goto unpin;
2039
2040 ret = i915_gem_object_get_fence(obj);
2041 if (ret)
2042 goto unpin;
2043
2044 obj->fault_mappable = true;
2045
2046 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
2047 pfn >>= PAGE_SHIFT;
2048 pfn += page_offset;
2049
2050 /* Finally, remap it using the new GTT offset */
2051 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
2052 unpin:
2053 i915_gem_object_ggtt_unpin(obj);
2054 unlock:
2055 mutex_unlock(&dev->struct_mutex);
2056 out:
2057 switch (ret) {
2058 case -EIO:
2059 /* If this -EIO is due to a gpu hang, give the reset code a
2060 * chance to clean up the mess. Otherwise return the proper
2061 * SIGBUS. */
2062 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
2063 ret = VM_FAULT_SIGBUS;
2064 break;
2065 }
2066 case -EAGAIN:
2067 /*
2068 * EAGAIN means the gpu is hung and we'll wait for the error
2069 * handler to reset everything when re-faulting in
2070 * i915_mutex_lock_interruptible.
2071 */
2072 case 0:
2073 case -ERESTARTSYS:
2074 case -EINTR:
2075 case -EBUSY:
2076 /*
2077 * EBUSY is ok: this just means that another thread
2078 * already did the job.
2079 */
2080 ret = VM_FAULT_NOPAGE;
2081 break;
2082 case -ENOMEM:
2083 ret = VM_FAULT_OOM;
2084 break;
2085 case -ENOSPC:
2086 case -EFAULT:
2087 ret = VM_FAULT_SIGBUS;
2088 break;
2089 default:
2090 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2091 ret = VM_FAULT_SIGBUS;
2092 break;
2093 }
2094
2095 intel_runtime_pm_put(dev_priv);
2096 return ret;
2097 }
2098
2099 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2100 {
2101 struct i915_vma *vma;
2102
2103 /*
2104 * Only the global gtt is relevant for gtt memory mappings, so restrict
2105 * list traversal to objects bound into the global address space. Note
2106 * that the active list should be empty, but better safe than sorry.
2107 */
2108 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
2109 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
2110 i915_gem_release_mmap(vma->obj);
2111 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
2112 i915_gem_release_mmap(vma->obj);
2113 }
2114 #endif
2115
2116 /**
2117 * i915_gem_release_mmap - remove physical page mappings
2118 * @obj: obj in question
2119 *
2120 * Preserve the reservation of the mmapping with the DRM core code, but
2121 * relinquish ownership of the pages back to the system.
2122 *
2123 * It is vital that we remove the page mapping if we have mapped a tiled
2124 * object through the GTT and then lose the fence register due to
2125 * resource pressure. Similarly if the object has been moved out of the
2126 * aperture, than pages mapped into userspace must be revoked. Removing the
2127 * mapping will then trigger a page fault on the next user access, allowing
2128 * fixup by i915_gem_fault().
2129 */
2130 void
2131 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2132 {
2133 if (!obj->fault_mappable)
2134 return;
2135
2136 #ifdef __NetBSD__ /* XXX gem gtt fault */
2137 {
2138 struct vm_page *page;
2139
2140 mutex_enter(obj->base.gemo_shm_uao->vmobjlock);
2141 KASSERT(obj->pages != NULL);
2142 /* Force a fresh fault for each page. */
2143 /*
2144 * XXX OOPS! This doesn't actually do what we want.
2145 * This causes a fresh fault for access to the backing
2146 * pages -- but nothing accesses the backing pages
2147 * directly! What is actually entered into CPU page
2148 * table entries is aperture addresses which have been
2149 * programmed by the GTT to refer to those backing
2150 * pages.
2151 *
2152 * We need to clear those page table entries, but
2153 * there's no good way to do that at the moment: nobody
2154 * records for us a map from either uvm objects or
2155 * physical device addresses to a list of all virtual
2156 * pages where they have been mapped. pmap(9) records
2157 * a map only from physical RAM addresses to virtual
2158 * pages; it does nothing for physical device
2159 * addresses.
2160 */
2161 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
2162 pmap_page_protect(page, VM_PROT_NONE);
2163 mutex_exit(obj->base.gemo_shm_uao->vmobjlock);
2164 }
2165 #else
2166 drm_vma_node_unmap(&obj->base.vma_node,
2167 obj->base.dev->anon_inode->i_mapping);
2168 #endif
2169 obj->fault_mappable = false;
2170 }
2171
2172 uint32_t
2173 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2174 {
2175 uint32_t gtt_size;
2176
2177 if (INTEL_INFO(dev)->gen >= 4 ||
2178 tiling_mode == I915_TILING_NONE)
2179 return size;
2180
2181 /* Previous chips need a power-of-two fence region when tiling */
2182 if (INTEL_INFO(dev)->gen == 3)
2183 gtt_size = 1024*1024;
2184 else
2185 gtt_size = 512*1024;
2186
2187 while (gtt_size < size)
2188 gtt_size <<= 1;
2189
2190 return gtt_size;
2191 }
2192
2193 /**
2194 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2195 * @obj: object to check
2196 *
2197 * Return the required GTT alignment for an object, taking into account
2198 * potential fence register mapping.
2199 */
2200 uint32_t
2201 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2202 int tiling_mode, bool fenced)
2203 {
2204 /*
2205 * Minimum alignment is 4k (GTT page size), but might be greater
2206 * if a fence register is needed for the object.
2207 */
2208 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2209 tiling_mode == I915_TILING_NONE)
2210 return 4096;
2211
2212 /*
2213 * Previous chips need to be aligned to the size of the smallest
2214 * fence register that can contain the object.
2215 */
2216 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2217 }
2218
2219 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2220 {
2221 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2222 int ret;
2223
2224 if (drm_vma_node_has_offset(&obj->base.vma_node))
2225 return 0;
2226
2227 dev_priv->mm.shrinker_no_lock_stealing = true;
2228
2229 ret = drm_gem_create_mmap_offset(&obj->base);
2230 if (ret != -ENOSPC)
2231 goto out;
2232
2233 /* Badly fragmented mmap space? The only way we can recover
2234 * space is by destroying unwanted objects. We can't randomly release
2235 * mmap_offsets as userspace expects them to be persistent for the
2236 * lifetime of the objects. The closest we can is to release the
2237 * offsets on purgeable objects by truncating it and marking it purged,
2238 * which prevents userspace from ever using that object again.
2239 */
2240 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
2241 ret = drm_gem_create_mmap_offset(&obj->base);
2242 if (ret != -ENOSPC)
2243 goto out;
2244
2245 i915_gem_shrink_all(dev_priv);
2246 ret = drm_gem_create_mmap_offset(&obj->base);
2247 out:
2248 dev_priv->mm.shrinker_no_lock_stealing = false;
2249
2250 return ret;
2251 }
2252
2253 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2254 {
2255 drm_gem_free_mmap_offset(&obj->base);
2256 }
2257
2258 int
2259 i915_gem_mmap_gtt(struct drm_file *file,
2260 struct drm_device *dev,
2261 uint32_t handle,
2262 uint64_t *offset)
2263 {
2264 struct drm_i915_private *dev_priv = dev->dev_private;
2265 struct drm_i915_gem_object *obj;
2266 int ret;
2267
2268 ret = i915_mutex_lock_interruptible(dev);
2269 if (ret)
2270 return ret;
2271
2272 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2273 if (&obj->base == NULL) {
2274 ret = -ENOENT;
2275 goto unlock;
2276 }
2277
2278 if (obj->base.size > dev_priv->gtt.mappable_end) {
2279 ret = -E2BIG;
2280 goto out;
2281 }
2282
2283 if (obj->madv != I915_MADV_WILLNEED) {
2284 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2285 ret = -EFAULT;
2286 goto out;
2287 }
2288
2289 ret = i915_gem_object_create_mmap_offset(obj);
2290 if (ret)
2291 goto out;
2292
2293 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2294
2295 out:
2296 drm_gem_object_unreference(&obj->base);
2297 unlock:
2298 mutex_unlock(&dev->struct_mutex);
2299 return ret;
2300 }
2301
2302 /**
2303 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2304 * @dev: DRM device
2305 * @data: GTT mapping ioctl data
2306 * @file: GEM object info
2307 *
2308 * Simply returns the fake offset to userspace so it can mmap it.
2309 * The mmap call will end up in drm_gem_mmap(), which will set things
2310 * up so we can get faults in the handler above.
2311 *
2312 * The fault handler will take care of binding the object into the GTT
2313 * (since it may have been evicted to make room for something), allocating
2314 * a fence register, and mapping the appropriate aperture address into
2315 * userspace.
2316 */
2317 int
2318 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2319 struct drm_file *file)
2320 {
2321 struct drm_i915_gem_mmap_gtt *args = data;
2322
2323 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2324 }
2325
2326 /* Immediately discard the backing storage */
2327 static void
2328 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2329 {
2330 #ifndef __NetBSD__
2331 struct inode *inode;
2332 #endif
2333
2334 i915_gem_object_free_mmap_offset(obj);
2335
2336 #ifdef __NetBSD__
2337 if (obj->base.gemo_shm_uao == NULL)
2338 return;
2339
2340 {
2341 struct uvm_object *const uobj = obj->base.gemo_shm_uao;
2342
2343 if (uobj != NULL) {
2344 /* XXX Calling pgo_put like this is bogus. */
2345 mutex_enter(uobj->vmobjlock);
2346 (*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
2347 (PGO_ALLPAGES | PGO_FREE));
2348 }
2349 }
2350 #else
2351 if (obj->base.filp == NULL)
2352 return;
2353
2354 /* Our goal here is to return as much of the memory as
2355 * is possible back to the system as we are called from OOM.
2356 * To do this we must instruct the shmfs to drop all of its
2357 * backing pages, *now*.
2358 */
2359 inode = file_inode(obj->base.filp);
2360 shmem_truncate_range(inode, 0, (loff_t)-1);
2361 #endif
2362
2363 obj->madv = __I915_MADV_PURGED;
2364 }
2365
2366 static inline int
2367 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
2368 {
2369 return obj->madv == I915_MADV_DONTNEED;
2370 }
2371
2372 #ifdef __NetBSD__
2373 static void
2374 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2375 {
2376 struct drm_device *const dev = obj->base.dev;
2377 int ret;
2378
2379 /* XXX Cargo-culted from the Linux code. */
2380 BUG_ON(obj->madv == __I915_MADV_PURGED);
2381
2382 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2383 if (ret) {
2384 WARN_ON(ret != -EIO);
2385 i915_gem_clflush_object(obj, true);
2386 obj->base.read_domains = obj->base.write_domain =
2387 I915_GEM_DOMAIN_CPU;
2388 }
2389
2390 if (i915_gem_object_needs_bit17_swizzle(obj))
2391 i915_gem_object_save_bit_17_swizzle(obj);
2392
2393 /* XXX Maintain dirty flag? */
2394
2395 bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
2396 bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2397 obj->base.size, obj->pages, obj->igo_nsegs);
2398
2399 kfree(obj->pages);
2400 }
2401 #else
2402 static void
2403 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2404 {
2405 struct sg_page_iter sg_iter;
2406 int ret;
2407
2408 BUG_ON(obj->madv == __I915_MADV_PURGED);
2409
2410 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2411 if (ret) {
2412 /* In the event of a disaster, abandon all caches and
2413 * hope for the best.
2414 */
2415 WARN_ON(ret != -EIO);
2416 i915_gem_clflush_object(obj, true);
2417 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2418 }
2419
2420 if (i915_gem_object_needs_bit17_swizzle(obj))
2421 i915_gem_object_save_bit_17_swizzle(obj);
2422
2423 if (obj->madv == I915_MADV_DONTNEED)
2424 obj->dirty = 0;
2425
2426 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2427 struct page *page = sg_page_iter_page(&sg_iter);
2428
2429 if (obj->dirty)
2430 set_page_dirty(page);
2431
2432 if (obj->madv == I915_MADV_WILLNEED)
2433 mark_page_accessed(page);
2434
2435 page_cache_release(page);
2436 }
2437 obj->dirty = 0;
2438
2439 sg_free_table(obj->pages);
2440 kfree(obj->pages);
2441 }
2442 #endif
2443
2444 int
2445 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2446 {
2447 const struct drm_i915_gem_object_ops *ops = obj->ops;
2448
2449 if (obj->pages == NULL)
2450 return 0;
2451
2452 if (obj->pages_pin_count)
2453 return -EBUSY;
2454
2455 BUG_ON(i915_gem_obj_bound_any(obj));
2456
2457 /* ->put_pages might need to allocate memory for the bit17 swizzle
2458 * array, hence protect them from being reaped by removing them from gtt
2459 * lists early. */
2460 list_del(&obj->global_list);
2461
2462 ops->put_pages(obj);
2463 obj->pages = NULL;
2464
2465 if (i915_gem_object_is_purgeable(obj))
2466 i915_gem_object_truncate(obj);
2467
2468 return 0;
2469 }
2470
2471 static unsigned long
2472 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
2473 bool purgeable_only)
2474 {
2475 struct list_head still_bound_list;
2476 struct drm_i915_gem_object *obj, *next;
2477 unsigned long count = 0;
2478
2479 list_for_each_entry_safe(obj, next,
2480 &dev_priv->mm.unbound_list,
2481 global_list) {
2482 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2483 i915_gem_object_put_pages(obj) == 0) {
2484 count += obj->base.size >> PAGE_SHIFT;
2485 if (count >= target)
2486 return count;
2487 }
2488 }
2489
2490 /*
2491 * As we may completely rewrite the bound list whilst unbinding
2492 * (due to retiring requests) we have to strictly process only
2493 * one element of the list at the time, and recheck the list
2494 * on every iteration.
2495 */
2496 INIT_LIST_HEAD(&still_bound_list);
2497 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
2498 struct i915_vma *vma, *v;
2499
2500 obj = list_first_entry(&dev_priv->mm.bound_list,
2501 typeof(*obj), global_list);
2502 list_move_tail(&obj->global_list, &still_bound_list);
2503
2504 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
2505 continue;
2506
2507 /*
2508 * Hold a reference whilst we unbind this object, as we may
2509 * end up waiting for and retiring requests. This might
2510 * release the final reference (held by the active list)
2511 * and result in the object being freed from under us.
2512 * in this object being freed.
2513 *
2514 * Note 1: Shrinking the bound list is special since only active
2515 * (and hence bound objects) can contain such limbo objects, so
2516 * we don't need special tricks for shrinking the unbound list.
2517 * The only other place where we have to be careful with active
2518 * objects suddenly disappearing due to retiring requests is the
2519 * eviction code.
2520 *
2521 * Note 2: Even though the bound list doesn't hold a reference
2522 * to the object we can safely grab one here: The final object
2523 * unreferencing and the bound_list are both protected by the
2524 * dev->struct_mutex and so we won't ever be able to observe an
2525 * object on the bound_list with a reference count equals 0.
2526 */
2527 drm_gem_object_reference(&obj->base);
2528
2529 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
2530 if (i915_vma_unbind(vma))
2531 break;
2532
2533 if (i915_gem_object_put_pages(obj) == 0)
2534 count += obj->base.size >> PAGE_SHIFT;
2535
2536 drm_gem_object_unreference(&obj->base);
2537 }
2538 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
2539
2540 return count;
2541 }
2542
2543 static unsigned long
2544 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2545 {
2546 return __i915_gem_shrink(dev_priv, target, true);
2547 }
2548
2549 static unsigned long
2550 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2551 {
2552 struct drm_i915_gem_object *obj, *next;
2553 long freed = 0;
2554
2555 i915_gem_evict_everything(dev_priv->dev);
2556
2557 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
2558 global_list) {
2559 if (i915_gem_object_put_pages(obj) == 0)
2560 freed += obj->base.size >> PAGE_SHIFT;
2561 }
2562 return freed;
2563 }
2564
2565 #ifdef __NetBSD__
2566 static int
2567 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2568 {
2569 struct drm_device *const dev = obj->base.dev;
2570 struct vm_page *page;
2571 int error;
2572
2573 /* XXX Cargo-culted from the Linux code. */
2574 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2575 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2576
2577 KASSERT(obj->pages == NULL);
2578 TAILQ_INIT(&obj->igo_pageq);
2579 obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
2580 sizeof(obj->pages[0]), GFP_KERNEL);
2581 if (obj->pages == NULL) {
2582 error = -ENOMEM;
2583 goto fail0;
2584 }
2585
2586 /* XXX errno NetBSD->Linux */
2587 error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
2588 0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
2589 (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
2590 if (error)
2591 /* XXX Try i915_gem_purge, i915_gem_shrink_all. */
2592 goto fail1;
2593 KASSERT(0 < obj->igo_nsegs);
2594 KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
2595
2596 /*
2597 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
2598 *
2599 * XXX This is wrong; we ought to pass this constraint to
2600 * bus_dmamem_wire_uvm_object instead.
2601 */
2602 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
2603 const uint64_t mask =
2604 (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
2605 0xffffffffULL : 0xffffffffffULL);
2606 if (VM_PAGE_TO_PHYS(page) & ~mask) {
2607 DRM_ERROR("GEM physical address exceeds %u bits"
2608 ": %"PRIxMAX"\n",
2609 popcount64(mask),
2610 (uintmax_t)VM_PAGE_TO_PHYS(page));
2611 error = -EIO;
2612 goto fail2;
2613 }
2614 }
2615
2616 /* XXX Should create the DMA map when creating the object. */
2617
2618 /* XXX errno NetBSD->Linux */
2619 error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
2620 PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
2621 if (error)
2622 goto fail2;
2623
2624 /* XXX Cargo-culted from the Linux code. */
2625 if (i915_gem_object_needs_bit17_swizzle(obj))
2626 i915_gem_object_do_bit_17_swizzle(obj);
2627
2628 /* Success! */
2629 return 0;
2630
2631 fail2: bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2632 obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
2633 fail1: kfree(obj->pages);
2634 obj->pages = NULL;
2635 fail0: KASSERT(error);
2636 return error;
2637 }
2638 #else
2639 static int
2640 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2641 {
2642 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2643 int page_count, i;
2644 struct address_space *mapping;
2645 struct sg_table *st;
2646 struct scatterlist *sg;
2647 struct sg_page_iter sg_iter;
2648 struct page *page;
2649 unsigned long last_pfn = 0; /* suppress gcc warning */
2650 gfp_t gfp;
2651
2652 /* Assert that the object is not currently in any GPU domain. As it
2653 * wasn't in the GTT, there shouldn't be any way it could have been in
2654 * a GPU cache
2655 */
2656 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2657 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2658
2659 st = kmalloc(sizeof(*st), GFP_KERNEL);
2660 if (st == NULL)
2661 return -ENOMEM;
2662
2663 page_count = obj->base.size / PAGE_SIZE;
2664 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2665 kfree(st);
2666 return -ENOMEM;
2667 }
2668
2669 /* Get the list of pages out of our struct file. They'll be pinned
2670 * at this point until we release them.
2671 *
2672 * Fail silently without starting the shrinker
2673 */
2674 mapping = file_inode(obj->base.filp)->i_mapping;
2675 gfp = mapping_gfp_mask(mapping);
2676 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2677 gfp &= ~(__GFP_IO | __GFP_WAIT);
2678 sg = st->sgl;
2679 st->nents = 0;
2680 for (i = 0; i < page_count; i++) {
2681 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2682 if (IS_ERR(page)) {
2683 i915_gem_purge(dev_priv, page_count);
2684 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2685 }
2686 if (IS_ERR(page)) {
2687 /* We've tried hard to allocate the memory by reaping
2688 * our own buffer, now let the real VM do its job and
2689 * go down in flames if truly OOM.
2690 */
2691 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2692 gfp |= __GFP_IO | __GFP_WAIT;
2693
2694 i915_gem_shrink_all(dev_priv);
2695 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2696 if (IS_ERR(page))
2697 goto err_pages;
2698
2699 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2700 gfp &= ~(__GFP_IO | __GFP_WAIT);
2701 }
2702 #ifdef CONFIG_SWIOTLB
2703 if (swiotlb_nr_tbl()) {
2704 st->nents++;
2705 sg_set_page(sg, page, PAGE_SIZE, 0);
2706 sg = sg_next(sg);
2707 continue;
2708 }
2709 #endif
2710 if (!i || page_to_pfn(page) != last_pfn + 1) {
2711 if (i)
2712 sg = sg_next(sg);
2713 st->nents++;
2714 sg_set_page(sg, page, PAGE_SIZE, 0);
2715 } else {
2716 sg->length += PAGE_SIZE;
2717 }
2718 last_pfn = page_to_pfn(page);
2719
2720 /* Check that the i965g/gm workaround works. */
2721 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2722 }
2723 #ifdef CONFIG_SWIOTLB
2724 if (!swiotlb_nr_tbl())
2725 #endif
2726 sg_mark_end(sg);
2727 obj->pages = st;
2728
2729 if (i915_gem_object_needs_bit17_swizzle(obj))
2730 i915_gem_object_do_bit_17_swizzle(obj);
2731
2732 return 0;
2733
2734 err_pages:
2735 sg_mark_end(sg);
2736 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2737 page_cache_release(sg_page_iter_page(&sg_iter));
2738 sg_free_table(st);
2739 kfree(st);
2740 return PTR_ERR(page);
2741 }
2742 #endif
2743
2744 /* Ensure that the associated pages are gathered from the backing storage
2745 * and pinned into our object. i915_gem_object_get_pages() may be called
2746 * multiple times before they are released by a single call to
2747 * i915_gem_object_put_pages() - once the pages are no longer referenced
2748 * either as a result of memory pressure (reaping pages under the shrinker)
2749 * or as the object is itself released.
2750 */
2751 int
2752 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2753 {
2754 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2755 const struct drm_i915_gem_object_ops *ops = obj->ops;
2756 int ret;
2757
2758 if (obj->pages)
2759 return 0;
2760
2761 if (obj->madv != I915_MADV_WILLNEED) {
2762 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2763 return -EFAULT;
2764 }
2765
2766 BUG_ON(obj->pages_pin_count);
2767
2768 ret = ops->get_pages(obj);
2769 if (ret)
2770 return ret;
2771
2772 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2773 return 0;
2774 }
2775
2776 static void
2777 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2778 struct intel_ring_buffer *ring)
2779 {
2780 struct drm_device *dev = obj->base.dev;
2781 struct drm_i915_private *dev_priv = dev->dev_private;
2782 u32 seqno = intel_ring_get_seqno(ring);
2783
2784 BUG_ON(ring == NULL);
2785 if (obj->ring != ring && obj->last_write_seqno) {
2786 /* Keep the seqno relative to the current ring */
2787 obj->last_write_seqno = seqno;
2788 }
2789 obj->ring = ring;
2790
2791 /* Add a reference if we're newly entering the active list. */
2792 if (!obj->active) {
2793 drm_gem_object_reference(&obj->base);
2794 obj->active = 1;
2795 }
2796
2797 list_move_tail(&obj->ring_list, &ring->active_list);
2798
2799 obj->last_read_seqno = seqno;
2800
2801 if (obj->fenced_gpu_access) {
2802 obj->last_fenced_seqno = seqno;
2803
2804 /* Bump MRU to take account of the delayed flush */
2805 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2806 struct drm_i915_fence_reg *reg;
2807
2808 reg = &dev_priv->fence_regs[obj->fence_reg];
2809 list_move_tail(®->lru_list,
2810 &dev_priv->mm.fence_list);
2811 }
2812 }
2813 }
2814
2815 void i915_vma_move_to_active(struct i915_vma *vma,
2816 struct intel_ring_buffer *ring)
2817 {
2818 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2819 return i915_gem_object_move_to_active(vma->obj, ring);
2820 }
2821
2822 static void
2823 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2824 {
2825 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2826 struct i915_address_space *vm;
2827 struct i915_vma *vma;
2828
2829 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2830 BUG_ON(!obj->active);
2831
2832 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2833 vma = i915_gem_obj_to_vma(obj, vm);
2834 if (vma && !list_empty(&vma->mm_list))
2835 list_move_tail(&vma->mm_list, &vm->inactive_list);
2836 }
2837
2838 list_del_init(&obj->ring_list);
2839 obj->ring = NULL;
2840
2841 obj->last_read_seqno = 0;
2842 obj->last_write_seqno = 0;
2843 obj->base.write_domain = 0;
2844
2845 obj->last_fenced_seqno = 0;
2846 obj->fenced_gpu_access = false;
2847
2848 obj->active = 0;
2849 drm_gem_object_unreference(&obj->base);
2850
2851 WARN_ON(i915_verify_lists(dev));
2852 }
2853
2854 static int
2855 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2856 {
2857 struct drm_i915_private *dev_priv = dev->dev_private;
2858 struct intel_ring_buffer *ring;
2859 int ret, i, j;
2860
2861 /* Carefully retire all requests without writing to the rings */
2862 for_each_ring(ring, dev_priv, i) {
2863 ret = intel_ring_idle(ring);
2864 if (ret)
2865 return ret;
2866 }
2867 i915_gem_retire_requests(dev);
2868
2869 /* Finally reset hw state */
2870 for_each_ring(ring, dev_priv, i) {
2871 intel_ring_init_seqno(ring, seqno);
2872
2873 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2874 ring->sync_seqno[j] = 0;
2875 }
2876
2877 return 0;
2878 }
2879
2880 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2881 {
2882 struct drm_i915_private *dev_priv = dev->dev_private;
2883 int ret;
2884
2885 if (seqno == 0)
2886 return -EINVAL;
2887
2888 /* HWS page needs to be set less than what we
2889 * will inject to ring
2890 */
2891 ret = i915_gem_init_seqno(dev, seqno - 1);
2892 if (ret)
2893 return ret;
2894
2895 /* Carefully set the last_seqno value so that wrap
2896 * detection still works
2897 */
2898 dev_priv->next_seqno = seqno;
2899 dev_priv->last_seqno = seqno - 1;
2900 if (dev_priv->last_seqno == 0)
2901 dev_priv->last_seqno--;
2902
2903 return 0;
2904 }
2905
2906 int
2907 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2908 {
2909 struct drm_i915_private *dev_priv = dev->dev_private;
2910
2911 /* reserve 0 for non-seqno */
2912 if (dev_priv->next_seqno == 0) {
2913 int ret = i915_gem_init_seqno(dev, 0);
2914 if (ret)
2915 return ret;
2916
2917 dev_priv->next_seqno = 1;
2918 }
2919
2920 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2921 return 0;
2922 }
2923
2924 int __i915_add_request(struct intel_ring_buffer *ring,
2925 struct drm_file *file,
2926 struct drm_i915_gem_object *obj,
2927 u32 *out_seqno)
2928 {
2929 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2930 struct drm_i915_gem_request *request;
2931 u32 request_ring_position, request_start;
2932 int ret;
2933
2934 request_start = intel_ring_get_tail(ring);
2935 /*
2936 * Emit any outstanding flushes - execbuf can fail to emit the flush
2937 * after having emitted the batchbuffer command. Hence we need to fix
2938 * things up similar to emitting the lazy request. The difference here
2939 * is that the flush _must_ happen before the next request, no matter
2940 * what.
2941 */
2942 ret = intel_ring_flush_all_caches(ring);
2943 if (ret)
2944 return ret;
2945
2946 request = ring->preallocated_lazy_request;
2947 if (WARN_ON(request == NULL))
2948 return -ENOMEM;
2949
2950 /* Record the position of the start of the request so that
2951 * should we detect the updated seqno part-way through the
2952 * GPU processing the request, we never over-estimate the
2953 * position of the head.
2954 */
2955 request_ring_position = intel_ring_get_tail(ring);
2956
2957 ret = ring->add_request(ring);
2958 if (ret)
2959 return ret;
2960
2961 request->seqno = intel_ring_get_seqno(ring);
2962 request->ring = ring;
2963 request->head = request_start;
2964 request->tail = request_ring_position;
2965
2966 /* Whilst this request exists, batch_obj will be on the
2967 * active_list, and so will hold the active reference. Only when this
2968 * request is retired will the the batch_obj be moved onto the
2969 * inactive_list and lose its active reference. Hence we do not need
2970 * to explicitly hold another reference here.
2971 */
2972 request->batch_obj = obj;
2973
2974 /* Hold a reference to the current context so that we can inspect
2975 * it later in case a hangcheck error event fires.
2976 */
2977 request->ctx = ring->last_context;
2978 if (request->ctx)
2979 i915_gem_context_reference(request->ctx);
2980
2981 request->emitted_jiffies = jiffies;
2982 list_add_tail(&request->list, &ring->request_list);
2983 request->file_priv = NULL;
2984
2985 if (file) {
2986 struct drm_i915_file_private *file_priv = file->driver_priv;
2987
2988 spin_lock(&file_priv->mm.lock);
2989 request->file_priv = file_priv;
2990 list_add_tail(&request->client_list,
2991 &file_priv->mm.request_list);
2992 spin_unlock(&file_priv->mm.lock);
2993 }
2994
2995 trace_i915_gem_request_add(ring, request->seqno);
2996 ring->outstanding_lazy_seqno = 0;
2997 ring->preallocated_lazy_request = NULL;
2998
2999 if (!dev_priv->ums.mm_suspended) {
3000 i915_queue_hangcheck(ring->dev);
3001
3002 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
3003 queue_delayed_work(dev_priv->wq,
3004 &dev_priv->mm.retire_work,
3005 round_jiffies_up_relative(HZ));
3006 intel_mark_busy(dev_priv->dev);
3007 }
3008
3009 if (out_seqno)
3010 *out_seqno = request->seqno;
3011 return 0;
3012 }
3013
3014 static inline void
3015 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
3016 {
3017 struct drm_i915_file_private *file_priv = request->file_priv;
3018
3019 if (!file_priv)
3020 return;
3021
3022 spin_lock(&file_priv->mm.lock);
3023 list_del(&request->client_list);
3024 request->file_priv = NULL;
3025 spin_unlock(&file_priv->mm.lock);
3026 }
3027
3028 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
3029 const struct i915_hw_context *ctx)
3030 {
3031 unsigned long elapsed;
3032
3033 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
3034
3035 if (ctx->hang_stats.banned)
3036 return true;
3037
3038 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
3039 if (!i915_gem_context_is_default(ctx)) {
3040 DRM_DEBUG("context hanging too fast, banning!\n");
3041 return true;
3042 } else if (dev_priv->gpu_error.stop_rings == 0) {
3043 DRM_ERROR("gpu hanging too fast, banning!\n");
3044 return true;
3045 }
3046 }
3047
3048 return false;
3049 }
3050
3051 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
3052 struct i915_hw_context *ctx,
3053 const bool guilty)
3054 {
3055 struct i915_ctx_hang_stats *hs;
3056
3057 if (WARN_ON(!ctx))
3058 return;
3059
3060 hs = &ctx->hang_stats;
3061
3062 if (guilty) {
3063 hs->banned = i915_context_is_banned(dev_priv, ctx);
3064 hs->batch_active++;
3065 hs->guilty_ts = get_seconds();
3066 } else {
3067 hs->batch_pending++;
3068 }
3069 }
3070
3071 static void i915_gem_free_request(struct drm_i915_gem_request *request)
3072 {
3073 list_del(&request->list);
3074 i915_gem_request_remove_from_client(request);
3075
3076 if (request->ctx)
3077 i915_gem_context_unreference(request->ctx);
3078
3079 kfree(request);
3080 }
3081
3082 struct drm_i915_gem_request *
3083 i915_gem_find_active_request(struct intel_ring_buffer *ring)
3084 {
3085 struct drm_i915_gem_request *request;
3086 u32 completed_seqno;
3087
3088 completed_seqno = ring->get_seqno(ring, false);
3089
3090 list_for_each_entry(request, &ring->request_list, list) {
3091 if (i915_seqno_passed(completed_seqno, request->seqno))
3092 continue;
3093
3094 return request;
3095 }
3096
3097 return NULL;
3098 }
3099
3100 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
3101 struct intel_ring_buffer *ring)
3102 {
3103 struct drm_i915_gem_request *request;
3104 bool ring_hung;
3105
3106 request = i915_gem_find_active_request(ring);
3107
3108 if (request == NULL)
3109 return;
3110
3111 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3112
3113 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3114
3115 list_for_each_entry_continue(request, &ring->request_list, list)
3116 i915_set_reset_status(dev_priv, request->ctx, false);
3117 }
3118
3119 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
3120 struct intel_ring_buffer *ring)
3121 {
3122 while (!list_empty(&ring->active_list)) {
3123 struct drm_i915_gem_object *obj;
3124
3125 obj = list_first_entry(&ring->active_list,
3126 struct drm_i915_gem_object,
3127 ring_list);
3128
3129 i915_gem_object_move_to_inactive(obj);
3130 }
3131
3132 /*
3133 * We must free the requests after all the corresponding objects have
3134 * been moved off active lists. Which is the same order as the normal
3135 * retire_requests function does. This is important if object hold
3136 * implicit references on things like e.g. ppgtt address spaces through
3137 * the request.
3138 */
3139 while (!list_empty(&ring->request_list)) {
3140 struct drm_i915_gem_request *request;
3141
3142 request = list_first_entry(&ring->request_list,
3143 struct drm_i915_gem_request,
3144 list);
3145
3146 i915_gem_free_request(request);
3147 }
3148 }
3149
3150 void i915_gem_restore_fences(struct drm_device *dev)
3151 {
3152 struct drm_i915_private *dev_priv = dev->dev_private;
3153 int i;
3154
3155 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3156 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
3157
3158 /*
3159 * Commit delayed tiling changes if we have an object still
3160 * attached to the fence, otherwise just clear the fence.
3161 */
3162 if (reg->obj) {
3163 i915_gem_object_update_fence(reg->obj, reg,
3164 reg->obj->tiling_mode);
3165 } else {
3166 i915_gem_write_fence(dev, i, NULL);
3167 }
3168 }
3169 }
3170
3171 void i915_gem_reset(struct drm_device *dev)
3172 {
3173 struct drm_i915_private *dev_priv = dev->dev_private;
3174 struct intel_ring_buffer *ring;
3175 int i;
3176
3177 /*
3178 * Before we free the objects from the requests, we need to inspect
3179 * them for finding the guilty party. As the requests only borrow
3180 * their reference to the objects, the inspection must be done first.
3181 */
3182 for_each_ring(ring, dev_priv, i)
3183 i915_gem_reset_ring_status(dev_priv, ring);
3184
3185 for_each_ring(ring, dev_priv, i)
3186 i915_gem_reset_ring_cleanup(dev_priv, ring);
3187
3188 i915_gem_cleanup_ringbuffer(dev);
3189
3190 i915_gem_context_reset(dev);
3191
3192 i915_gem_restore_fences(dev);
3193 }
3194
3195 /**
3196 * This function clears the request list as sequence numbers are passed.
3197 */
3198 static void
3199 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
3200 {
3201 uint32_t seqno;
3202
3203 if (list_empty(&ring->request_list))
3204 return;
3205
3206 WARN_ON(i915_verify_lists(ring->dev));
3207
3208 seqno = ring->get_seqno(ring, true);
3209
3210 /* Move any buffers on the active list that are no longer referenced
3211 * by the ringbuffer to the flushing/inactive lists as appropriate,
3212 * before we free the context associated with the requests.
3213 */
3214 while (!list_empty(&ring->active_list)) {
3215 struct drm_i915_gem_object *obj;
3216
3217 obj = list_first_entry(&ring->active_list,
3218 struct drm_i915_gem_object,
3219 ring_list);
3220
3221 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
3222 break;
3223
3224 i915_gem_object_move_to_inactive(obj);
3225 }
3226
3227
3228 while (!list_empty(&ring->request_list)) {
3229 struct drm_i915_gem_request *request;
3230
3231 request = list_first_entry(&ring->request_list,
3232 struct drm_i915_gem_request,
3233 list);
3234
3235 if (!i915_seqno_passed(seqno, request->seqno))
3236 break;
3237
3238 trace_i915_gem_request_retire(ring, request->seqno);
3239 /* We know the GPU must have read the request to have
3240 * sent us the seqno + interrupt, so use the position
3241 * of tail of the request to update the last known position
3242 * of the GPU head.
3243 */
3244 ring->last_retired_head = request->tail;
3245
3246 i915_gem_free_request(request);
3247 }
3248
3249 if (unlikely(ring->trace_irq_seqno &&
3250 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
3251 ring->irq_put(ring);
3252 ring->trace_irq_seqno = 0;
3253 }
3254
3255 WARN_ON(i915_verify_lists(ring->dev));
3256 }
3257
3258 bool
3259 i915_gem_retire_requests(struct drm_device *dev)
3260 {
3261 struct drm_i915_private *dev_priv = dev->dev_private;
3262 struct intel_ring_buffer *ring;
3263 bool idle = true;
3264 int i;
3265
3266 for_each_ring(ring, dev_priv, i) {
3267 i915_gem_retire_requests_ring(ring);
3268 idle &= list_empty(&ring->request_list);
3269 }
3270
3271 if (idle)
3272 mod_delayed_work(dev_priv->wq,
3273 &dev_priv->mm.idle_work,
3274 msecs_to_jiffies(100));
3275
3276 return idle;
3277 }
3278
3279 static void
3280 i915_gem_retire_work_handler(struct work_struct *work)
3281 {
3282 struct drm_i915_private *dev_priv =
3283 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3284 struct drm_device *dev = dev_priv->dev;
3285 bool idle;
3286
3287 /* Come back later if the device is busy... */
3288 idle = false;
3289 if (mutex_trylock(&dev->struct_mutex)) {
3290 idle = i915_gem_retire_requests(dev);
3291 mutex_unlock(&dev->struct_mutex);
3292 }
3293 if (!idle)
3294 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3295 round_jiffies_up_relative(HZ));
3296 }
3297
3298 static void
3299 i915_gem_idle_work_handler(struct work_struct *work)
3300 {
3301 struct drm_i915_private *dev_priv =
3302 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3303
3304 intel_mark_idle(dev_priv->dev);
3305 }
3306
3307 /**
3308 * Ensures that an object will eventually get non-busy by flushing any required
3309 * write domains, emitting any outstanding lazy request and retiring and
3310 * completed requests.
3311 */
3312 static int
3313 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3314 {
3315 int ret;
3316
3317 if (obj->active) {
3318 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
3319 if (ret)
3320 return ret;
3321
3322 i915_gem_retire_requests_ring(obj->ring);
3323 }
3324
3325 return 0;
3326 }
3327
3328 /**
3329 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3330 * @DRM_IOCTL_ARGS: standard ioctl arguments
3331 *
3332 * Returns 0 if successful, else an error is returned with the remaining time in
3333 * the timeout parameter.
3334 * -ETIME: object is still busy after timeout
3335 * -ERESTARTSYS: signal interrupted the wait
3336 * -ENONENT: object doesn't exist
3337 * Also possible, but rare:
3338 * -EAGAIN: GPU wedged
3339 * -ENOMEM: damn
3340 * -ENODEV: Internal IRQ fail
3341 * -E?: The add request failed
3342 *
3343 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3344 * non-zero timeout parameter the wait ioctl will wait for the given number of
3345 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3346 * without holding struct_mutex the object may become re-busied before this
3347 * function completes. A similar but shorter * race condition exists in the busy
3348 * ioctl
3349 */
3350 int
3351 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3352 {
3353 struct drm_i915_private *dev_priv = dev->dev_private;
3354 struct drm_i915_gem_wait *args = data;
3355 struct drm_i915_gem_object *obj;
3356 struct intel_ring_buffer *ring = NULL;
3357 struct timespec timeout_stack, *timeout = NULL;
3358 unsigned reset_counter;
3359 u32 seqno = 0;
3360 int ret = 0;
3361
3362 if (args->timeout_ns >= 0) {
3363 timeout_stack = ns_to_timespec(args->timeout_ns);
3364 timeout = &timeout_stack;
3365 }
3366
3367 ret = i915_mutex_lock_interruptible(dev);
3368 if (ret)
3369 return ret;
3370
3371 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3372 if (&obj->base == NULL) {
3373 mutex_unlock(&dev->struct_mutex);
3374 return -ENOENT;
3375 }
3376
3377 /* Need to make sure the object gets inactive eventually. */
3378 ret = i915_gem_object_flush_active(obj);
3379 if (ret)
3380 goto out;
3381
3382 if (obj->active) {
3383 seqno = obj->last_read_seqno;
3384 ring = obj->ring;
3385 }
3386
3387 if (seqno == 0)
3388 goto out;
3389
3390 /* Do this after OLR check to make sure we make forward progress polling
3391 * on this IOCTL with a 0 timeout (like busy ioctl)
3392 */
3393 if (!args->timeout_ns) {
3394 ret = -ETIME;
3395 goto out;
3396 }
3397
3398 drm_gem_object_unreference(&obj->base);
3399 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3400 mutex_unlock(&dev->struct_mutex);
3401
3402 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
3403 if (timeout)
3404 args->timeout_ns = timespec_to_ns(timeout);
3405 return ret;
3406
3407 out:
3408 drm_gem_object_unreference(&obj->base);
3409 mutex_unlock(&dev->struct_mutex);
3410 return ret;
3411 }
3412
3413 /**
3414 * i915_gem_object_sync - sync an object to a ring.
3415 *
3416 * @obj: object which may be in use on another ring.
3417 * @to: ring we wish to use the object on. May be NULL.
3418 *
3419 * This code is meant to abstract object synchronization with the GPU.
3420 * Calling with NULL implies synchronizing the object with the CPU
3421 * rather than a particular GPU ring.
3422 *
3423 * Returns 0 if successful, else propagates up the lower layer error.
3424 */
3425 int
3426 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3427 struct intel_ring_buffer *to)
3428 {
3429 struct intel_ring_buffer *from = obj->ring;
3430 u32 seqno;
3431 int ret, idx;
3432
3433 if (from == NULL || to == from)
3434 return 0;
3435
3436 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
3437 return i915_gem_object_wait_rendering(obj, false);
3438
3439 idx = intel_ring_sync_index(from, to);
3440
3441 seqno = obj->last_read_seqno;
3442 if (seqno <= from->sync_seqno[idx])
3443 return 0;
3444
3445 ret = i915_gem_check_olr(obj->ring, seqno);
3446 if (ret)
3447 return ret;
3448
3449 trace_i915_gem_ring_sync_to(from, to, seqno);
3450 ret = to->sync_to(to, from, seqno);
3451 if (!ret)
3452 /* We use last_read_seqno because sync_to()
3453 * might have just caused seqno wrap under
3454 * the radar.
3455 */
3456 from->sync_seqno[idx] = obj->last_read_seqno;
3457
3458 return ret;
3459 }
3460
3461 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3462 {
3463 u32 old_write_domain, old_read_domains;
3464
3465 /* Force a pagefault for domain tracking on next user access */
3466 i915_gem_release_mmap(obj);
3467
3468 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3469 return;
3470
3471 /* Wait for any direct GTT access to complete */
3472 mb();
3473
3474 old_read_domains = obj->base.read_domains;
3475 old_write_domain = obj->base.write_domain;
3476
3477 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3478 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3479
3480 trace_i915_gem_object_change_domain(obj,
3481 old_read_domains,
3482 old_write_domain);
3483 }
3484
3485 int i915_vma_unbind(struct i915_vma *vma)
3486 {
3487 struct drm_i915_gem_object *obj = vma->obj;
3488 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3489 int ret;
3490
3491 if (list_empty(&vma->vma_link))
3492 return 0;
3493
3494 if (!drm_mm_node_allocated(&vma->node)) {
3495 i915_gem_vma_destroy(vma);
3496 return 0;
3497 }
3498
3499 if (vma->pin_count)
3500 return -EBUSY;
3501
3502 BUG_ON(obj->pages == NULL);
3503
3504 ret = i915_gem_object_finish_gpu(obj);
3505 if (ret)
3506 return ret;
3507 /* Continue on if we fail due to EIO, the GPU is hung so we
3508 * should be safe and we need to cleanup or else we might
3509 * cause memory corruption through use-after-free.
3510 */
3511
3512 i915_gem_object_finish_gtt(obj);
3513
3514 /* release the fence reg _after_ flushing */
3515 ret = i915_gem_object_put_fence(obj);
3516 if (ret)
3517 return ret;
3518
3519 trace_i915_vma_unbind(vma);
3520
3521 vma->unbind_vma(vma);
3522
3523 i915_gem_gtt_finish_object(obj);
3524
3525 list_del_init(&vma->mm_list);
3526 /* Avoid an unnecessary call to unbind on rebind. */
3527 if (i915_is_ggtt(vma->vm))
3528 obj->map_and_fenceable = true;
3529
3530 drm_mm_remove_node(&vma->node);
3531 i915_gem_vma_destroy(vma);
3532
3533 /* Since the unbound list is global, only move to that list if
3534 * no more VMAs exist. */
3535 if (list_empty(&obj->vma_list))
3536 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3537
3538 /* And finally now the object is completely decoupled from this vma,
3539 * we can drop its hold on the backing storage and allow it to be
3540 * reaped by the shrinker.
3541 */
3542 i915_gem_object_unpin_pages(obj);
3543
3544 return 0;
3545 }
3546
3547 int i915_gpu_idle(struct drm_device *dev)
3548 {
3549 struct drm_i915_private *dev_priv = dev->dev_private;
3550 struct intel_ring_buffer *ring;
3551 int ret, i;
3552
3553 /* Flush everything onto the inactive list. */
3554 for_each_ring(ring, dev_priv, i) {
3555 ret = i915_switch_context(ring, ring->default_context);
3556 if (ret)
3557 return ret;
3558
3559 ret = intel_ring_idle(ring);
3560 if (ret)
3561 return ret;
3562 }
3563
3564 return 0;
3565 }
3566
3567 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3568 struct drm_i915_gem_object *obj)
3569 {
3570 struct drm_i915_private *dev_priv = dev->dev_private;
3571 int fence_reg;
3572 int fence_pitch_shift;
3573
3574 if (INTEL_INFO(dev)->gen >= 6) {
3575 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3576 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3577 } else {
3578 fence_reg = FENCE_REG_965_0;
3579 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3580 }
3581
3582 fence_reg += reg * 8;
3583
3584 /* To w/a incoherency with non-atomic 64-bit register updates,
3585 * we split the 64-bit update into two 32-bit writes. In order
3586 * for a partial fence not to be evaluated between writes, we
3587 * precede the update with write to turn off the fence register,
3588 * and only enable the fence as the last step.
3589 *
3590 * For extra levels of paranoia, we make sure each step lands
3591 * before applying the next step.
3592 */
3593 I915_WRITE(fence_reg, 0);
3594 POSTING_READ(fence_reg);
3595
3596 if (obj) {
3597 u32 size = i915_gem_obj_ggtt_size(obj);
3598 uint64_t val;
3599
3600 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3601 0xfffff000) << 32;
3602 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3603 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3604 if (obj->tiling_mode == I915_TILING_Y)
3605 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3606 val |= I965_FENCE_REG_VALID;
3607
3608 I915_WRITE(fence_reg + 4, val >> 32);
3609 POSTING_READ(fence_reg + 4);
3610
3611 I915_WRITE(fence_reg + 0, val);
3612 POSTING_READ(fence_reg);
3613 } else {
3614 I915_WRITE(fence_reg + 4, 0);
3615 POSTING_READ(fence_reg + 4);
3616 }
3617 }
3618
3619 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3620 struct drm_i915_gem_object *obj)
3621 {
3622 struct drm_i915_private *dev_priv = dev->dev_private;
3623 u32 val;
3624
3625 if (obj) {
3626 u32 size = i915_gem_obj_ggtt_size(obj);
3627 int pitch_val;
3628 int tile_width;
3629
3630 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3631 (size & -size) != size ||
3632 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3633 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3634 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3635
3636 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3637 tile_width = 128;
3638 else
3639 tile_width = 512;
3640
3641 /* Note: pitch better be a power of two tile widths */
3642 pitch_val = obj->stride / tile_width;
3643 pitch_val = ffs(pitch_val) - 1;
3644
3645 val = i915_gem_obj_ggtt_offset(obj);
3646 if (obj->tiling_mode == I915_TILING_Y)
3647 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3648 val |= I915_FENCE_SIZE_BITS(size);
3649 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3650 val |= I830_FENCE_REG_VALID;
3651 } else
3652 val = 0;
3653
3654 if (reg < 8)
3655 reg = FENCE_REG_830_0 + reg * 4;
3656 else
3657 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3658
3659 I915_WRITE(reg, val);
3660 POSTING_READ(reg);
3661 }
3662
3663 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3664 struct drm_i915_gem_object *obj)
3665 {
3666 struct drm_i915_private *dev_priv = dev->dev_private;
3667 uint32_t val;
3668
3669 if (obj) {
3670 u32 size = i915_gem_obj_ggtt_size(obj);
3671 uint32_t pitch_val;
3672
3673 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3674 (size & -size) != size ||
3675 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3676 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3677 i915_gem_obj_ggtt_offset(obj), size);
3678
3679 pitch_val = obj->stride / 128;
3680 pitch_val = ffs(pitch_val) - 1;
3681
3682 val = i915_gem_obj_ggtt_offset(obj);
3683 if (obj->tiling_mode == I915_TILING_Y)
3684 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3685 val |= I830_FENCE_SIZE_BITS(size);
3686 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3687 val |= I830_FENCE_REG_VALID;
3688 } else
3689 val = 0;
3690
3691 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3692 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3693 }
3694
3695 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3696 {
3697 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3698 }
3699
3700 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3701 struct drm_i915_gem_object *obj)
3702 {
3703 struct drm_i915_private *dev_priv = dev->dev_private;
3704
3705 /* Ensure that all CPU reads are completed before installing a fence
3706 * and all writes before removing the fence.
3707 */
3708 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3709 mb();
3710
3711 WARN(obj && (!obj->stride || !obj->tiling_mode),
3712 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3713 obj->stride, obj->tiling_mode);
3714
3715 switch (INTEL_INFO(dev)->gen) {
3716 case 8:
3717 case 7:
3718 case 6:
3719 case 5:
3720 case 4: i965_write_fence_reg(dev, reg, obj); break;
3721 case 3: i915_write_fence_reg(dev, reg, obj); break;
3722 case 2: i830_write_fence_reg(dev, reg, obj); break;
3723 default: BUG();
3724 }
3725
3726 /* And similarly be paranoid that no direct access to this region
3727 * is reordered to before the fence is installed.
3728 */
3729 if (i915_gem_object_needs_mb(obj))
3730 mb();
3731 }
3732
3733 static inline int fence_number(struct drm_i915_private *dev_priv,
3734 struct drm_i915_fence_reg *fence)
3735 {
3736 return fence - dev_priv->fence_regs;
3737 }
3738
3739 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3740 struct drm_i915_fence_reg *fence,
3741 bool enable)
3742 {
3743 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3744 int reg = fence_number(dev_priv, fence);
3745
3746 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3747
3748 if (enable) {
3749 obj->fence_reg = reg;
3750 fence->obj = obj;
3751 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3752 } else {
3753 obj->fence_reg = I915_FENCE_REG_NONE;
3754 fence->obj = NULL;
3755 list_del_init(&fence->lru_list);
3756 }
3757 obj->fence_dirty = false;
3758 }
3759
3760 static int
3761 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3762 {
3763 if (obj->last_fenced_seqno) {
3764 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3765 if (ret)
3766 return ret;
3767
3768 obj->last_fenced_seqno = 0;
3769 }
3770
3771 obj->fenced_gpu_access = false;
3772 return 0;
3773 }
3774
3775 int
3776 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3777 {
3778 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3779 struct drm_i915_fence_reg *fence;
3780 int ret;
3781
3782 ret = i915_gem_object_wait_fence(obj);
3783 if (ret)
3784 return ret;
3785
3786 if (obj->fence_reg == I915_FENCE_REG_NONE)
3787 return 0;
3788
3789 fence = &dev_priv->fence_regs[obj->fence_reg];
3790
3791 i915_gem_object_fence_lost(obj);
3792 i915_gem_object_update_fence(obj, fence, false);
3793
3794 return 0;
3795 }
3796
3797 static struct drm_i915_fence_reg *
3798 i915_find_fence_reg(struct drm_device *dev)
3799 {
3800 struct drm_i915_private *dev_priv = dev->dev_private;
3801 struct drm_i915_fence_reg *reg, *avail;
3802 int i;
3803
3804 /* First try to find a free reg */
3805 avail = NULL;
3806 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3807 reg = &dev_priv->fence_regs[i];
3808 if (!reg->obj)
3809 return reg;
3810
3811 if (!reg->pin_count)
3812 avail = reg;
3813 }
3814
3815 if (avail == NULL)
3816 goto deadlock;
3817
3818 /* None available, try to steal one or wait for a user to finish */
3819 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3820 if (reg->pin_count)
3821 continue;
3822
3823 return reg;
3824 }
3825
3826 deadlock:
3827 /* Wait for completion of pending flips which consume fences */
3828 if (intel_has_pending_fb_unpin(dev))
3829 return ERR_PTR(-EAGAIN);
3830
3831 return ERR_PTR(-EDEADLK);
3832 }
3833
3834 /**
3835 * i915_gem_object_get_fence - set up fencing for an object
3836 * @obj: object to map through a fence reg
3837 *
3838 * When mapping objects through the GTT, userspace wants to be able to write
3839 * to them without having to worry about swizzling if the object is tiled.
3840 * This function walks the fence regs looking for a free one for @obj,
3841 * stealing one if it can't find any.
3842 *
3843 * It then sets up the reg based on the object's properties: address, pitch
3844 * and tiling format.
3845 *
3846 * For an untiled surface, this removes any existing fence.
3847 */
3848 int
3849 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3850 {
3851 struct drm_device *dev = obj->base.dev;
3852 struct drm_i915_private *dev_priv = dev->dev_private;
3853 bool enable = obj->tiling_mode != I915_TILING_NONE;
3854 struct drm_i915_fence_reg *reg;
3855 int ret;
3856
3857 /* Have we updated the tiling parameters upon the object and so
3858 * will need to serialise the write to the associated fence register?
3859 */
3860 if (obj->fence_dirty) {
3861 ret = i915_gem_object_wait_fence(obj);
3862 if (ret)
3863 return ret;
3864 }
3865
3866 /* Just update our place in the LRU if our fence is getting reused. */
3867 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3868 reg = &dev_priv->fence_regs[obj->fence_reg];
3869 if (!obj->fence_dirty) {
3870 list_move_tail(®->lru_list,
3871 &dev_priv->mm.fence_list);
3872 return 0;
3873 }
3874 } else if (enable) {
3875 reg = i915_find_fence_reg(dev);
3876 if (IS_ERR(reg))
3877 return PTR_ERR(reg);
3878
3879 if (reg->obj) {
3880 struct drm_i915_gem_object *old = reg->obj;
3881
3882 ret = i915_gem_object_wait_fence(old);
3883 if (ret)
3884 return ret;
3885
3886 i915_gem_object_fence_lost(old);
3887 }
3888 } else
3889 return 0;
3890
3891 i915_gem_object_update_fence(obj, reg, enable);
3892
3893 return 0;
3894 }
3895
3896 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3897 struct drm_mm_node *gtt_space,
3898 unsigned long cache_level)
3899 {
3900 struct drm_mm_node *other;
3901
3902 /* On non-LLC machines we have to be careful when putting differing
3903 * types of snoopable memory together to avoid the prefetcher
3904 * crossing memory domains and dying.
3905 */
3906 if (HAS_LLC(dev))
3907 return true;
3908
3909 if (!drm_mm_node_allocated(gtt_space))
3910 return true;
3911
3912 if (list_empty(>t_space->node_list))
3913 return true;
3914
3915 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3916 if (other->allocated && !other->hole_follows && other->color != cache_level)
3917 return false;
3918
3919 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3920 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3921 return false;
3922
3923 return true;
3924 }
3925
3926 static void i915_gem_verify_gtt(struct drm_device *dev)
3927 {
3928 #if WATCH_GTT
3929 struct drm_i915_private *dev_priv = dev->dev_private;
3930 struct drm_i915_gem_object *obj;
3931 int err = 0;
3932
3933 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3934 if (obj->gtt_space == NULL) {
3935 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3936 err++;
3937 continue;
3938 }
3939
3940 if (obj->cache_level != obj->gtt_space->color) {
3941 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3942 i915_gem_obj_ggtt_offset(obj),
3943 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3944 obj->cache_level,
3945 obj->gtt_space->color);
3946 err++;
3947 continue;
3948 }
3949
3950 if (!i915_gem_valid_gtt_space(dev,
3951 obj->gtt_space,
3952 obj->cache_level)) {
3953 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3954 i915_gem_obj_ggtt_offset(obj),
3955 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3956 obj->cache_level);
3957 err++;
3958 continue;
3959 }
3960 }
3961
3962 WARN_ON(err);
3963 #endif
3964 }
3965
3966 /**
3967 * Finds free space in the GTT aperture and binds the object there.
3968 */
3969 static struct i915_vma *
3970 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3971 struct i915_address_space *vm,
3972 unsigned alignment,
3973 uint64_t flags)
3974 {
3975 struct drm_device *dev = obj->base.dev;
3976 struct drm_i915_private *dev_priv = dev->dev_private;
3977 u32 size, fence_size, fence_alignment, unfenced_alignment;
3978 unsigned long start =
3979 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3980 unsigned long end =
3981 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3982 struct i915_vma *vma;
3983 int ret;
3984
3985 fence_size = i915_gem_get_gtt_size(dev,
3986 obj->base.size,
3987 obj->tiling_mode);
3988 fence_alignment = i915_gem_get_gtt_alignment(dev,
3989 obj->base.size,
3990 obj->tiling_mode, true);
3991 unfenced_alignment =
3992 i915_gem_get_gtt_alignment(dev,
3993 obj->base.size,
3994 obj->tiling_mode, false);
3995
3996 if (alignment == 0)
3997 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3998 unfenced_alignment;
3999 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
4000 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
4001 return ERR_PTR(-EINVAL);
4002 }
4003
4004 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
4005
4006 /* If the object is bigger than the entire aperture, reject it early
4007 * before evicting everything in a vain attempt to find space.
4008 */
4009 if (obj->base.size > end) {
4010 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
4011 obj->base.size,
4012 flags & PIN_MAPPABLE ? "mappable" : "total",
4013 end);
4014 return ERR_PTR(-E2BIG);
4015 }
4016
4017 ret = i915_gem_object_get_pages(obj);
4018 if (ret)
4019 return ERR_PTR(ret);
4020
4021 i915_gem_object_pin_pages(obj);
4022
4023 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
4024 if (IS_ERR(vma))
4025 goto err_unpin;
4026
4027 search_free:
4028 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
4029 size, alignment,
4030 obj->cache_level,
4031 start, end,
4032 DRM_MM_SEARCH_DEFAULT,
4033 DRM_MM_CREATE_DEFAULT);
4034 if (ret) {
4035 ret = i915_gem_evict_something(dev, vm, size, alignment,
4036 obj->cache_level,
4037 start, end,
4038 flags);
4039 if (ret == 0)
4040 goto search_free;
4041
4042 goto err_free_vma;
4043 }
4044 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
4045 obj->cache_level))) {
4046 ret = -EINVAL;
4047 goto err_remove_node;
4048 }
4049
4050 ret = i915_gem_gtt_prepare_object(obj);
4051 if (ret)
4052 goto err_remove_node;
4053
4054 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
4055 list_add_tail(&vma->mm_list, &vm->inactive_list);
4056
4057 if (i915_is_ggtt(vm)) {
4058 bool mappable, fenceable;
4059
4060 fenceable = (vma->node.size == fence_size &&
4061 (vma->node.start & (fence_alignment - 1)) == 0);
4062
4063 mappable = (vma->node.start + obj->base.size <=
4064 dev_priv->gtt.mappable_end);
4065
4066 obj->map_and_fenceable = mappable && fenceable;
4067 }
4068
4069 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4070
4071 trace_i915_vma_bind(vma, flags);
4072 vma->bind_vma(vma, obj->cache_level,
4073 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
4074
4075 i915_gem_verify_gtt(dev);
4076 return vma;
4077
4078 err_remove_node:
4079 drm_mm_remove_node(&vma->node);
4080 err_free_vma:
4081 i915_gem_vma_destroy(vma);
4082 vma = ERR_PTR(ret);
4083 err_unpin:
4084 i915_gem_object_unpin_pages(obj);
4085 return vma;
4086 }
4087
4088 bool
4089 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
4090 bool force)
4091 {
4092 /* If we don't have a page list set up, then we're not pinned
4093 * to GPU, and we can ignore the cache flush because it'll happen
4094 * again at bind time.
4095 */
4096 if (obj->pages == NULL)
4097 return false;
4098
4099 /*
4100 * Stolen memory is always coherent with the GPU as it is explicitly
4101 * marked as wc by the system, or the system is cache-coherent.
4102 */
4103 if (obj->stolen)
4104 return false;
4105
4106 /* If the GPU is snooping the contents of the CPU cache,
4107 * we do not need to manually clear the CPU cache lines. However,
4108 * the caches are only snooped when the render cache is
4109 * flushed/invalidated. As we always have to emit invalidations
4110 * and flushes when moving into and out of the RENDER domain, correct
4111 * snooping behaviour occurs naturally as the result of our domain
4112 * tracking.
4113 */
4114 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
4115 return false;
4116
4117 trace_i915_gem_object_clflush(obj);
4118 #ifdef __NetBSD__
4119 drm_clflush_pglist(&obj->igo_pageq);
4120 #else
4121 drm_clflush_sg(obj->pages);
4122 #endif
4123
4124 return true;
4125 }
4126
4127 /** Flushes the GTT write domain for the object if it's dirty. */
4128 static void
4129 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
4130 {
4131 uint32_t old_write_domain;
4132
4133 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
4134 return;
4135
4136 /* No actual flushing is required for the GTT write domain. Writes
4137 * to it immediately go to main memory as far as we know, so there's
4138 * no chipset flush. It also doesn't land in render cache.
4139 *
4140 * However, we do have to enforce the order so that all writes through
4141 * the GTT land before any writes to the device, such as updates to
4142 * the GATT itself.
4143 */
4144 wmb();
4145
4146 old_write_domain = obj->base.write_domain;
4147 obj->base.write_domain = 0;
4148
4149 trace_i915_gem_object_change_domain(obj,
4150 obj->base.read_domains,
4151 old_write_domain);
4152 }
4153
4154 /** Flushes the CPU write domain for the object if it's dirty. */
4155 static void
4156 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
4157 bool force)
4158 {
4159 uint32_t old_write_domain;
4160
4161 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4162 return;
4163
4164 if (i915_gem_clflush_object(obj, force))
4165 i915_gem_chipset_flush(obj->base.dev);
4166
4167 old_write_domain = obj->base.write_domain;
4168 obj->base.write_domain = 0;
4169
4170 trace_i915_gem_object_change_domain(obj,
4171 obj->base.read_domains,
4172 old_write_domain);
4173 }
4174
4175 /**
4176 * Moves a single object to the GTT read, and possibly write domain.
4177 *
4178 * This function returns when the move is complete, including waiting on
4179 * flushes to occur.
4180 */
4181 int
4182 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4183 {
4184 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4185 uint32_t old_write_domain, old_read_domains;
4186 int ret;
4187
4188 /* Not valid to be called on unbound objects. */
4189 if (!i915_gem_obj_bound_any(obj))
4190 return -EINVAL;
4191
4192 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4193 return 0;
4194
4195 ret = i915_gem_object_wait_rendering(obj, !write);
4196 if (ret)
4197 return ret;
4198
4199 i915_gem_object_flush_cpu_write_domain(obj, false);
4200
4201 /* Serialise direct access to this object with the barriers for
4202 * coherent writes from the GPU, by effectively invalidating the
4203 * GTT domain upon first access.
4204 */
4205 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4206 mb();
4207
4208 old_write_domain = obj->base.write_domain;
4209 old_read_domains = obj->base.read_domains;
4210
4211 /* It should now be out of any other write domains, and we can update
4212 * the domain values for our changes.
4213 */
4214 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4215 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4216 if (write) {
4217 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4218 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4219 obj->dirty = 1;
4220 }
4221
4222 trace_i915_gem_object_change_domain(obj,
4223 old_read_domains,
4224 old_write_domain);
4225
4226 /* And bump the LRU for this access */
4227 if (i915_gem_object_is_inactive(obj)) {
4228 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4229 if (vma)
4230 list_move_tail(&vma->mm_list,
4231 &dev_priv->gtt.base.inactive_list);
4232
4233 }
4234
4235 return 0;
4236 }
4237
4238 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4239 enum i915_cache_level cache_level)
4240 {
4241 struct drm_device *dev = obj->base.dev;
4242 struct i915_vma *vma, *next;
4243 int ret;
4244
4245 if (obj->cache_level == cache_level)
4246 return 0;
4247
4248 if (i915_gem_obj_is_pinned(obj)) {
4249 DRM_DEBUG("can not change the cache level of pinned objects\n");
4250 return -EBUSY;
4251 }
4252
4253 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4254 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
4255 ret = i915_vma_unbind(vma);
4256 if (ret)
4257 return ret;
4258 }
4259 }
4260
4261 if (i915_gem_obj_bound_any(obj)) {
4262 ret = i915_gem_object_finish_gpu(obj);
4263 if (ret)
4264 return ret;
4265
4266 i915_gem_object_finish_gtt(obj);
4267
4268 /* Before SandyBridge, you could not use tiling or fence
4269 * registers with snooped memory, so relinquish any fences
4270 * currently pointing to our region in the aperture.
4271 */
4272 if (INTEL_INFO(dev)->gen < 6) {
4273 ret = i915_gem_object_put_fence(obj);
4274 if (ret)
4275 return ret;
4276 }
4277
4278 list_for_each_entry(vma, &obj->vma_list, vma_link)
4279 if (drm_mm_node_allocated(&vma->node))
4280 vma->bind_vma(vma, cache_level,
4281 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
4282 }
4283
4284 list_for_each_entry(vma, &obj->vma_list, vma_link)
4285 vma->node.color = cache_level;
4286 obj->cache_level = cache_level;
4287
4288 if (cpu_write_needs_clflush(obj)) {
4289 u32 old_read_domains, old_write_domain;
4290
4291 /* If we're coming from LLC cached, then we haven't
4292 * actually been tracking whether the data is in the
4293 * CPU cache or not, since we only allow one bit set
4294 * in obj->write_domain and have been skipping the clflushes.
4295 * Just set it to the CPU cache for now.
4296 */
4297 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
4298
4299 old_read_domains = obj->base.read_domains;
4300 old_write_domain = obj->base.write_domain;
4301
4302 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4303 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4304
4305 trace_i915_gem_object_change_domain(obj,
4306 old_read_domains,
4307 old_write_domain);
4308 }
4309
4310 i915_gem_verify_gtt(dev);
4311 return 0;
4312 }
4313
4314 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4315 struct drm_file *file)
4316 {
4317 struct drm_i915_gem_caching *args = data;
4318 struct drm_i915_gem_object *obj;
4319 int ret;
4320
4321 ret = i915_mutex_lock_interruptible(dev);
4322 if (ret)
4323 return ret;
4324
4325 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4326 if (&obj->base == NULL) {
4327 ret = -ENOENT;
4328 goto unlock;
4329 }
4330
4331 switch (obj->cache_level) {
4332 case I915_CACHE_LLC:
4333 case I915_CACHE_L3_LLC:
4334 args->caching = I915_CACHING_CACHED;
4335 break;
4336
4337 case I915_CACHE_WT:
4338 args->caching = I915_CACHING_DISPLAY;
4339 break;
4340
4341 default:
4342 args->caching = I915_CACHING_NONE;
4343 break;
4344 }
4345
4346 drm_gem_object_unreference(&obj->base);
4347 unlock:
4348 mutex_unlock(&dev->struct_mutex);
4349 return ret;
4350 }
4351
4352 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4353 struct drm_file *file)
4354 {
4355 struct drm_i915_gem_caching *args = data;
4356 struct drm_i915_gem_object *obj;
4357 enum i915_cache_level level;
4358 int ret;
4359
4360 switch (args->caching) {
4361 case I915_CACHING_NONE:
4362 level = I915_CACHE_NONE;
4363 break;
4364 case I915_CACHING_CACHED:
4365 level = I915_CACHE_LLC;
4366 break;
4367 case I915_CACHING_DISPLAY:
4368 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4369 break;
4370 default:
4371 return -EINVAL;
4372 }
4373
4374 ret = i915_mutex_lock_interruptible(dev);
4375 if (ret)
4376 return ret;
4377
4378 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4379 if (&obj->base == NULL) {
4380 ret = -ENOENT;
4381 goto unlock;
4382 }
4383
4384 ret = i915_gem_object_set_cache_level(obj, level);
4385
4386 drm_gem_object_unreference(&obj->base);
4387 unlock:
4388 mutex_unlock(&dev->struct_mutex);
4389 return ret;
4390 }
4391
4392 static bool is_pin_display(struct drm_i915_gem_object *obj)
4393 {
4394 /* There are 3 sources that pin objects:
4395 * 1. The display engine (scanouts, sprites, cursors);
4396 * 2. Reservations for execbuffer;
4397 * 3. The user.
4398 *
4399 * We can ignore reservations as we hold the struct_mutex and
4400 * are only called outside of the reservation path. The user
4401 * can only increment pin_count once, and so if after
4402 * subtracting the potential reference by the user, any pin_count
4403 * remains, it must be due to another use by the display engine.
4404 */
4405 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
4406 }
4407
4408 /*
4409 * Prepare buffer for display plane (scanout, cursors, etc).
4410 * Can be called from an uninterruptible phase (modesetting) and allows
4411 * any flushes to be pipelined (for pageflips).
4412 */
4413 int
4414 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4415 u32 alignment,
4416 struct intel_ring_buffer *pipelined)
4417 {
4418 u32 old_read_domains, old_write_domain;
4419 int ret;
4420
4421 if (pipelined != obj->ring) {
4422 ret = i915_gem_object_sync(obj, pipelined);
4423 if (ret)
4424 return ret;
4425 }
4426
4427 /* Mark the pin_display early so that we account for the
4428 * display coherency whilst setting up the cache domains.
4429 */
4430 obj->pin_display = true;
4431
4432 /* The display engine is not coherent with the LLC cache on gen6. As
4433 * a result, we make sure that the pinning that is about to occur is
4434 * done with uncached PTEs. This is lowest common denominator for all
4435 * chipsets.
4436 *
4437 * However for gen6+, we could do better by using the GFDT bit instead
4438 * of uncaching, which would allow us to flush all the LLC-cached data
4439 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4440 */
4441 ret = i915_gem_object_set_cache_level(obj,
4442 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4443 if (ret)
4444 goto err_unpin_display;
4445
4446 /* As the user may map the buffer once pinned in the display plane
4447 * (e.g. libkms for the bootup splash), we have to ensure that we
4448 * always use map_and_fenceable for all scanout buffers.
4449 */
4450 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
4451 if (ret)
4452 goto err_unpin_display;
4453
4454 i915_gem_object_flush_cpu_write_domain(obj, true);
4455
4456 old_write_domain = obj->base.write_domain;
4457 old_read_domains = obj->base.read_domains;
4458
4459 /* It should now be out of any other write domains, and we can update
4460 * the domain values for our changes.
4461 */
4462 obj->base.write_domain = 0;
4463 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4464
4465 trace_i915_gem_object_change_domain(obj,
4466 old_read_domains,
4467 old_write_domain);
4468
4469 return 0;
4470
4471 err_unpin_display:
4472 obj->pin_display = is_pin_display(obj);
4473 return ret;
4474 }
4475
4476 void
4477 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4478 {
4479 i915_gem_object_ggtt_unpin(obj);
4480 obj->pin_display = is_pin_display(obj);
4481 }
4482
4483 int
4484 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4485 {
4486 int ret;
4487
4488 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4489 return 0;
4490
4491 ret = i915_gem_object_wait_rendering(obj, false);
4492 if (ret)
4493 return ret;
4494
4495 /* Ensure that we invalidate the GPU's caches and TLBs. */
4496 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4497 return 0;
4498 }
4499
4500 /**
4501 * Moves a single object to the CPU read, and possibly write domain.
4502 *
4503 * This function returns when the move is complete, including waiting on
4504 * flushes to occur.
4505 */
4506 int
4507 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4508 {
4509 uint32_t old_write_domain, old_read_domains;
4510 int ret;
4511
4512 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4513 return 0;
4514
4515 ret = i915_gem_object_wait_rendering(obj, !write);
4516 if (ret)
4517 return ret;
4518
4519 i915_gem_object_flush_gtt_write_domain(obj);
4520
4521 old_write_domain = obj->base.write_domain;
4522 old_read_domains = obj->base.read_domains;
4523
4524 /* Flush the CPU cache if it's still invalid. */
4525 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4526 i915_gem_clflush_object(obj, false);
4527
4528 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4529 }
4530
4531 /* It should now be out of any other write domains, and we can update
4532 * the domain values for our changes.
4533 */
4534 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4535
4536 /* If we're writing through the CPU, then the GPU read domains will
4537 * need to be invalidated at next use.
4538 */
4539 if (write) {
4540 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4541 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4542 }
4543
4544 trace_i915_gem_object_change_domain(obj,
4545 old_read_domains,
4546 old_write_domain);
4547
4548 return 0;
4549 }
4550
4551 /* Throttle our rendering by waiting until the ring has completed our requests
4552 * emitted over 20 msec ago.
4553 *
4554 * Note that if we were to use the current jiffies each time around the loop,
4555 * we wouldn't escape the function with any frames outstanding if the time to
4556 * render a frame was over 20ms.
4557 *
4558 * This should get us reasonable parallelism between CPU and GPU but also
4559 * relatively low latency when blocking on a particular request to finish.
4560 */
4561 static int
4562 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4563 {
4564 struct drm_i915_private *dev_priv = dev->dev_private;
4565 struct drm_i915_file_private *file_priv = file->driver_priv;
4566 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4567 struct drm_i915_gem_request *request;
4568 struct intel_ring_buffer *ring = NULL;
4569 unsigned reset_counter;
4570 u32 seqno = 0;
4571 int ret;
4572
4573 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4574 if (ret)
4575 return ret;
4576
4577 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4578 if (ret)
4579 return ret;
4580
4581 spin_lock(&file_priv->mm.lock);
4582 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4583 if (time_after_eq(request->emitted_jiffies, recent_enough))
4584 break;
4585
4586 ring = request->ring;
4587 seqno = request->seqno;
4588 }
4589 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4590 spin_unlock(&file_priv->mm.lock);
4591
4592 if (seqno == 0)
4593 return 0;
4594
4595 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4596 if (ret == 0)
4597 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4598
4599 return ret;
4600 }
4601
4602 static bool
4603 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4604 {
4605 struct drm_i915_gem_object *obj = vma->obj;
4606
4607 if (alignment &&
4608 vma->node.start & (alignment - 1))
4609 return true;
4610
4611 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4612 return true;
4613
4614 if (flags & PIN_OFFSET_BIAS &&
4615 vma->node.start < (flags & PIN_OFFSET_MASK))
4616 return true;
4617
4618 return false;
4619 }
4620
4621 int
4622 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4623 struct i915_address_space *vm,
4624 uint32_t alignment,
4625 uint64_t flags)
4626 {
4627 struct i915_vma *vma;
4628 int ret;
4629
4630 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4631 return -EINVAL;
4632
4633 vma = i915_gem_obj_to_vma(obj, vm);
4634 if (vma) {
4635 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4636 return -EBUSY;
4637
4638 if (i915_vma_misplaced(vma, alignment, flags)) {
4639 WARN(vma->pin_count,
4640 "bo is already pinned with incorrect alignment:"
4641 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4642 " obj->map_and_fenceable=%d\n",
4643 i915_gem_obj_offset(obj, vm), alignment,
4644 !!(flags & PIN_MAPPABLE),
4645 obj->map_and_fenceable);
4646 ret = i915_vma_unbind(vma);
4647 if (ret)
4648 return ret;
4649
4650 vma = NULL;
4651 }
4652 }
4653
4654 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4655 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4656 if (IS_ERR(vma))
4657 return PTR_ERR(vma);
4658 }
4659
4660 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4661 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4662
4663 vma->pin_count++;
4664 if (flags & PIN_MAPPABLE)
4665 obj->pin_mappable |= true;
4666
4667 return 0;
4668 }
4669
4670 void
4671 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4672 {
4673 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4674
4675 BUG_ON(!vma);
4676 BUG_ON(vma->pin_count == 0);
4677 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4678
4679 if (--vma->pin_count == 0)
4680 obj->pin_mappable = false;
4681 }
4682
4683 int
4684 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4685 struct drm_file *file)
4686 {
4687 struct drm_i915_gem_pin *args = data;
4688 struct drm_i915_gem_object *obj;
4689 int ret;
4690
4691 if (INTEL_INFO(dev)->gen >= 6)
4692 return -ENODEV;
4693
4694 ret = i915_mutex_lock_interruptible(dev);
4695 if (ret)
4696 return ret;
4697
4698 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4699 if (&obj->base == NULL) {
4700 ret = -ENOENT;
4701 goto unlock;
4702 }
4703
4704 if (obj->madv != I915_MADV_WILLNEED) {
4705 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4706 ret = -EFAULT;
4707 goto out;
4708 }
4709
4710 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4711 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4712 args->handle);
4713 ret = -EINVAL;
4714 goto out;
4715 }
4716
4717 if (obj->user_pin_count == ULONG_MAX) {
4718 ret = -EBUSY;
4719 goto out;
4720 }
4721
4722 if (obj->user_pin_count == 0) {
4723 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4724 if (ret)
4725 goto out;
4726 }
4727
4728 obj->user_pin_count++;
4729 obj->pin_filp = file;
4730
4731 args->offset = i915_gem_obj_ggtt_offset(obj);
4732 out:
4733 drm_gem_object_unreference(&obj->base);
4734 unlock:
4735 mutex_unlock(&dev->struct_mutex);
4736 return ret;
4737 }
4738
4739 int
4740 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4741 struct drm_file *file)
4742 {
4743 struct drm_i915_gem_pin *args = data;
4744 struct drm_i915_gem_object *obj;
4745 int ret;
4746
4747 ret = i915_mutex_lock_interruptible(dev);
4748 if (ret)
4749 return ret;
4750
4751 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4752 if (&obj->base == NULL) {
4753 ret = -ENOENT;
4754 goto unlock;
4755 }
4756
4757 if (obj->pin_filp != file) {
4758 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4759 args->handle);
4760 ret = -EINVAL;
4761 goto out;
4762 }
4763 obj->user_pin_count--;
4764 if (obj->user_pin_count == 0) {
4765 obj->pin_filp = NULL;
4766 i915_gem_object_ggtt_unpin(obj);
4767 }
4768
4769 out:
4770 drm_gem_object_unreference(&obj->base);
4771 unlock:
4772 mutex_unlock(&dev->struct_mutex);
4773 return ret;
4774 }
4775
4776 int
4777 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4778 struct drm_file *file)
4779 {
4780 struct drm_i915_gem_busy *args = data;
4781 struct drm_i915_gem_object *obj;
4782 int ret;
4783
4784 ret = i915_mutex_lock_interruptible(dev);
4785 if (ret)
4786 return ret;
4787
4788 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4789 if (&obj->base == NULL) {
4790 ret = -ENOENT;
4791 goto unlock;
4792 }
4793
4794 /* Count all active objects as busy, even if they are currently not used
4795 * by the gpu. Users of this interface expect objects to eventually
4796 * become non-busy without any further actions, therefore emit any
4797 * necessary flushes here.
4798 */
4799 ret = i915_gem_object_flush_active(obj);
4800
4801 args->busy = obj->active;
4802 if (obj->ring) {
4803 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4804 args->busy |= intel_ring_flag(obj->ring) << 16;
4805 }
4806
4807 drm_gem_object_unreference(&obj->base);
4808 unlock:
4809 mutex_unlock(&dev->struct_mutex);
4810 return ret;
4811 }
4812
4813 int
4814 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4815 struct drm_file *file_priv)
4816 {
4817 return i915_gem_ring_throttle(dev, file_priv);
4818 }
4819
4820 int
4821 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4822 struct drm_file *file_priv)
4823 {
4824 struct drm_i915_gem_madvise *args = data;
4825 struct drm_i915_gem_object *obj;
4826 int ret;
4827
4828 switch (args->madv) {
4829 case I915_MADV_DONTNEED:
4830 case I915_MADV_WILLNEED:
4831 break;
4832 default:
4833 return -EINVAL;
4834 }
4835
4836 ret = i915_mutex_lock_interruptible(dev);
4837 if (ret)
4838 return ret;
4839
4840 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4841 if (&obj->base == NULL) {
4842 ret = -ENOENT;
4843 goto unlock;
4844 }
4845
4846 if (i915_gem_obj_is_pinned(obj)) {
4847 ret = -EINVAL;
4848 goto out;
4849 }
4850
4851 if (obj->madv != __I915_MADV_PURGED)
4852 obj->madv = args->madv;
4853
4854 /* if the object is no longer attached, discard its backing storage */
4855 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4856 i915_gem_object_truncate(obj);
4857
4858 args->retained = obj->madv != __I915_MADV_PURGED;
4859
4860 out:
4861 drm_gem_object_unreference(&obj->base);
4862 unlock:
4863 mutex_unlock(&dev->struct_mutex);
4864 return ret;
4865 }
4866
4867 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4868 const struct drm_i915_gem_object_ops *ops)
4869 {
4870 INIT_LIST_HEAD(&obj->global_list);
4871 INIT_LIST_HEAD(&obj->ring_list);
4872 INIT_LIST_HEAD(&obj->obj_exec_link);
4873 INIT_LIST_HEAD(&obj->vma_list);
4874
4875 obj->ops = ops;
4876
4877 obj->fence_reg = I915_FENCE_REG_NONE;
4878 obj->madv = I915_MADV_WILLNEED;
4879 /* Avoid an unnecessary call to unbind on the first bind. */
4880 obj->map_and_fenceable = true;
4881
4882 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4883 }
4884
4885 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4886 .get_pages = i915_gem_object_get_pages_gtt,
4887 .put_pages = i915_gem_object_put_pages_gtt,
4888 };
4889
4890 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4891 size_t size)
4892 {
4893 #ifdef __NetBSD__
4894 struct drm_i915_private *const dev_priv = dev->dev_private;
4895 #endif
4896 struct drm_i915_gem_object *obj;
4897 #ifndef __NetBSD__
4898 struct address_space *mapping;
4899 gfp_t mask;
4900 #endif
4901
4902 obj = i915_gem_object_alloc(dev);
4903 if (obj == NULL)
4904 return NULL;
4905
4906 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4907 i915_gem_object_free(obj);
4908 return NULL;
4909 }
4910
4911 #ifdef __NetBSD__
4912 uao_set_pgfl(obj->base.gemo_shm_uao, dev_priv->gtt.pgfl);
4913 #else
4914 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4915 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4916 /* 965gm cannot relocate objects above 4GiB. */
4917 mask &= ~__GFP_HIGHMEM;
4918 mask |= __GFP_DMA32;
4919 }
4920
4921 mapping = file_inode(obj->base.filp)->i_mapping;
4922 mapping_set_gfp_mask(mapping, mask);
4923 #endif
4924
4925 i915_gem_object_init(obj, &i915_gem_object_ops);
4926
4927 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4928 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4929
4930 if (HAS_LLC(dev)) {
4931 /* On some devices, we can have the GPU use the LLC (the CPU
4932 * cache) for about a 10% performance improvement
4933 * compared to uncached. Graphics requests other than
4934 * display scanout are coherent with the CPU in
4935 * accessing this cache. This means in this mode we
4936 * don't need to clflush on the CPU side, and on the
4937 * GPU side we only need to flush internal caches to
4938 * get data visible to the CPU.
4939 *
4940 * However, we maintain the display planes as UC, and so
4941 * need to rebind when first used as such.
4942 */
4943 obj->cache_level = I915_CACHE_LLC;
4944 } else
4945 obj->cache_level = I915_CACHE_NONE;
4946
4947 trace_i915_gem_object_create(obj);
4948
4949 return obj;
4950 }
4951
4952 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4953 {
4954 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4955 struct drm_device *dev = obj->base.dev;
4956 struct drm_i915_private *dev_priv = dev->dev_private;
4957 struct i915_vma *vma, *next;
4958
4959 intel_runtime_pm_get(dev_priv);
4960
4961 trace_i915_gem_object_destroy(obj);
4962
4963 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4964 int ret;
4965
4966 vma->pin_count = 0;
4967 ret = i915_vma_unbind(vma);
4968 if (WARN_ON(ret == -ERESTARTSYS)) {
4969 bool was_interruptible;
4970
4971 was_interruptible = dev_priv->mm.interruptible;
4972 dev_priv->mm.interruptible = false;
4973
4974 WARN_ON(i915_vma_unbind(vma));
4975
4976 dev_priv->mm.interruptible = was_interruptible;
4977 }
4978 }
4979
4980 i915_gem_object_detach_phys(obj);
4981
4982 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4983 * before progressing. */
4984 if (obj->stolen)
4985 i915_gem_object_unpin_pages(obj);
4986
4987 if (WARN_ON(obj->pages_pin_count))
4988 obj->pages_pin_count = 0;
4989 i915_gem_object_put_pages(obj);
4990 i915_gem_object_free_mmap_offset(obj);
4991 i915_gem_object_release_stolen(obj);
4992
4993 BUG_ON(obj->pages);
4994
4995 #ifndef __NetBSD__ /* XXX drm prime */
4996 if (obj->base.import_attach)
4997 drm_prime_gem_destroy(&obj->base, NULL);
4998 #endif
4999
5000 drm_gem_object_release(&obj->base);
5001 i915_gem_info_remove_obj(dev_priv, obj->base.size);
5002
5003 kfree(obj->bit_17);
5004 i915_gem_object_free(obj);
5005
5006 intel_runtime_pm_put(dev_priv);
5007 }
5008
5009 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
5010 struct i915_address_space *vm)
5011 {
5012 struct i915_vma *vma;
5013 list_for_each_entry(vma, &obj->vma_list, vma_link)
5014 if (vma->vm == vm)
5015 return vma;
5016
5017 return NULL;
5018 }
5019
5020 void i915_gem_vma_destroy(struct i915_vma *vma)
5021 {
5022 WARN_ON(vma->node.allocated);
5023
5024 /* Keep the vma as a placeholder in the execbuffer reservation lists */
5025 if (!list_empty(&vma->exec_list))
5026 return;
5027
5028 list_del(&vma->vma_link);
5029
5030 kfree(vma);
5031 }
5032
5033 int
5034 i915_gem_suspend(struct drm_device *dev)
5035 {
5036 struct drm_i915_private *dev_priv = dev->dev_private;
5037 int ret = 0;
5038
5039 mutex_lock(&dev->struct_mutex);
5040 if (dev_priv->ums.mm_suspended)
5041 goto err;
5042
5043 ret = i915_gpu_idle(dev);
5044 if (ret)
5045 goto err;
5046
5047 i915_gem_retire_requests(dev);
5048
5049 /* Under UMS, be paranoid and evict. */
5050 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5051 i915_gem_evict_everything(dev);
5052
5053 i915_kernel_lost_context(dev);
5054 i915_gem_cleanup_ringbuffer(dev);
5055
5056 /* Hack! Don't let anybody do execbuf while we don't control the chip.
5057 * We need to replace this with a semaphore, or something.
5058 * And not confound ums.mm_suspended!
5059 */
5060 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
5061 DRIVER_MODESET);
5062 mutex_unlock(&dev->struct_mutex);
5063
5064 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
5065 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
5066 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
5067
5068 return 0;
5069
5070 err:
5071 mutex_unlock(&dev->struct_mutex);
5072 return ret;
5073 }
5074
5075 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
5076 {
5077 struct drm_device *dev = ring->dev;
5078 struct drm_i915_private *dev_priv = dev->dev_private;
5079 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
5080 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
5081 int i, ret;
5082
5083 if (!HAS_L3_DPF(dev) || !remap_info)
5084 return 0;
5085
5086 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
5087 if (ret)
5088 return ret;
5089
5090 /*
5091 * Note: We do not worry about the concurrent register cacheline hang
5092 * here because no other code should access these registers other than
5093 * at initialization time.
5094 */
5095 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
5096 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
5097 intel_ring_emit(ring, reg_base + i);
5098 intel_ring_emit(ring, remap_info[i/4]);
5099 }
5100
5101 intel_ring_advance(ring);
5102
5103 return ret;
5104 }
5105
5106 void i915_gem_init_swizzling(struct drm_device *dev)
5107 {
5108 struct drm_i915_private *dev_priv = dev->dev_private;
5109
5110 if (INTEL_INFO(dev)->gen < 5 ||
5111 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5112 return;
5113
5114 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5115 DISP_TILE_SURFACE_SWIZZLING);
5116
5117 if (IS_GEN5(dev))
5118 return;
5119
5120 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5121 if (IS_GEN6(dev))
5122 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5123 else if (IS_GEN7(dev))
5124 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5125 else if (IS_GEN8(dev))
5126 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5127 else
5128 BUG();
5129 }
5130
5131 static bool
5132 intel_enable_blt(struct drm_device *dev)
5133 {
5134 if (!HAS_BLT(dev))
5135 return false;
5136
5137 /* The blitter was dysfunctional on early prototypes */
5138 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
5139 DRM_INFO("BLT not supported on this pre-production hardware;"
5140 " graphics performance will be degraded.\n");
5141 return false;
5142 }
5143
5144 return true;
5145 }
5146
5147 static int i915_gem_init_rings(struct drm_device *dev)
5148 {
5149 struct drm_i915_private *dev_priv = dev->dev_private;
5150 int ret;
5151
5152 ret = intel_init_render_ring_buffer(dev);
5153 if (ret)
5154 return ret;
5155
5156 if (HAS_BSD(dev)) {
5157 ret = intel_init_bsd_ring_buffer(dev);
5158 if (ret)
5159 goto cleanup_render_ring;
5160 }
5161
5162 if (intel_enable_blt(dev)) {
5163 ret = intel_init_blt_ring_buffer(dev);
5164 if (ret)
5165 goto cleanup_bsd_ring;
5166 }
5167
5168 if (HAS_VEBOX(dev)) {
5169 ret = intel_init_vebox_ring_buffer(dev);
5170 if (ret)
5171 goto cleanup_blt_ring;
5172 }
5173
5174
5175 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
5176 if (ret)
5177 goto cleanup_vebox_ring;
5178
5179 return 0;
5180
5181 cleanup_vebox_ring:
5182 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5183 cleanup_blt_ring:
5184 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5185 cleanup_bsd_ring:
5186 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5187 cleanup_render_ring:
5188 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5189
5190 return ret;
5191 }
5192
5193 int
5194 i915_gem_init_hw(struct drm_device *dev)
5195 {
5196 struct drm_i915_private *dev_priv = dev->dev_private;
5197 int ret, i;
5198
5199 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5200 return -EIO;
5201
5202 if (dev_priv->ellc_size)
5203 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5204
5205 if (IS_HASWELL(dev))
5206 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5207 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5208
5209 if (HAS_PCH_NOP(dev)) {
5210 if (IS_IVYBRIDGE(dev)) {
5211 u32 temp = I915_READ(GEN7_MSG_CTL);
5212 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5213 I915_WRITE(GEN7_MSG_CTL, temp);
5214 } else if (INTEL_INFO(dev)->gen >= 7) {
5215 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5216 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5217 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5218 }
5219 }
5220
5221 i915_gem_init_swizzling(dev);
5222
5223 ret = i915_gem_init_rings(dev);
5224 if (ret)
5225 return ret;
5226
5227 for (i = 0; i < NUM_L3_SLICES(dev); i++)
5228 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
5229
5230 /*
5231 * XXX: Contexts should only be initialized once. Doing a switch to the
5232 * default context switch however is something we'd like to do after
5233 * reset or thaw (the latter may not actually be necessary for HW, but
5234 * goes with our code better). Context switching requires rings (for
5235 * the do_switch), but before enabling PPGTT. So don't move this.
5236 */
5237 ret = i915_gem_context_enable(dev_priv);
5238 if (ret) {
5239 DRM_ERROR("Context enable failed %d\n", ret);
5240 goto err_out;
5241 }
5242
5243 return 0;
5244
5245 err_out:
5246 i915_gem_cleanup_ringbuffer(dev);
5247 return ret;
5248 }
5249
5250 int i915_gem_init(struct drm_device *dev)
5251 {
5252 struct drm_i915_private *dev_priv = dev->dev_private;
5253 int ret;
5254
5255 mutex_lock(&dev->struct_mutex);
5256
5257 if (IS_VALLEYVIEW(dev)) {
5258 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5259 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
5260 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
5261 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5262 }
5263 i915_gem_init_global_gtt(dev);
5264
5265 ret = i915_gem_context_init(dev);
5266 if (ret) {
5267 mutex_unlock(&dev->struct_mutex);
5268 return ret;
5269 }
5270
5271 ret = i915_gem_init_hw(dev);
5272 mutex_unlock(&dev->struct_mutex);
5273 if (ret) {
5274 WARN_ON(dev_priv->mm.aliasing_ppgtt);
5275 i915_gem_context_fini(dev);
5276 drm_mm_takedown(&dev_priv->gtt.base.mm);
5277 return ret;
5278 }
5279
5280 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
5281 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5282 dev_priv->dri1.allow_batchbuffer = 1;
5283 return 0;
5284 }
5285
5286 void
5287 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5288 {
5289 struct drm_i915_private *dev_priv = dev->dev_private;
5290 struct intel_ring_buffer *ring;
5291 int i;
5292
5293 for_each_ring(ring, dev_priv, i)
5294 intel_cleanup_ring_buffer(ring);
5295 }
5296
5297 int
5298 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
5299 struct drm_file *file_priv)
5300 {
5301 struct drm_i915_private *dev_priv = dev->dev_private;
5302 int ret;
5303
5304 if (drm_core_check_feature(dev, DRIVER_MODESET))
5305 return 0;
5306
5307 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
5308 DRM_ERROR("Reenabling wedged hardware, good luck\n");
5309 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
5310 }
5311
5312 mutex_lock(&dev->struct_mutex);
5313 dev_priv->ums.mm_suspended = 0;
5314
5315 ret = i915_gem_init_hw(dev);
5316 if (ret != 0) {
5317 mutex_unlock(&dev->struct_mutex);
5318 return ret;
5319 }
5320
5321 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
5322 mutex_unlock(&dev->struct_mutex);
5323
5324 ret = drm_irq_install(dev);
5325 if (ret)
5326 goto cleanup_ringbuffer;
5327
5328 return 0;
5329
5330 cleanup_ringbuffer:
5331 mutex_lock(&dev->struct_mutex);
5332 i915_gem_cleanup_ringbuffer(dev);
5333 dev_priv->ums.mm_suspended = 1;
5334 mutex_unlock(&dev->struct_mutex);
5335
5336 return ret;
5337 }
5338
5339 int
5340 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
5341 struct drm_file *file_priv)
5342 {
5343 if (drm_core_check_feature(dev, DRIVER_MODESET))
5344 return 0;
5345
5346 drm_irq_uninstall(dev);
5347
5348 return i915_gem_suspend(dev);
5349 }
5350
5351 void
5352 i915_gem_lastclose(struct drm_device *dev)
5353 {
5354 int ret;
5355
5356 if (drm_core_check_feature(dev, DRIVER_MODESET))
5357 return;
5358
5359 ret = i915_gem_suspend(dev);
5360 if (ret)
5361 DRM_ERROR("failed to idle hardware: %d\n", ret);
5362 }
5363
5364 static void
5365 init_ring_lists(struct intel_ring_buffer *ring)
5366 {
5367 INIT_LIST_HEAD(&ring->active_list);
5368 INIT_LIST_HEAD(&ring->request_list);
5369 }
5370
5371 void i915_init_vm(struct drm_i915_private *dev_priv,
5372 struct i915_address_space *vm)
5373 {
5374 if (!i915_is_ggtt(vm))
5375 drm_mm_init(&vm->mm, vm->start, vm->total);
5376 vm->dev = dev_priv->dev;
5377 INIT_LIST_HEAD(&vm->active_list);
5378 INIT_LIST_HEAD(&vm->inactive_list);
5379 INIT_LIST_HEAD(&vm->global_link);
5380 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5381 }
5382
5383 void
5384 i915_gem_load(struct drm_device *dev)
5385 {
5386 struct drm_i915_private *dev_priv = dev->dev_private;
5387 int i;
5388
5389 dev_priv->slab =
5390 kmem_cache_create("i915_gem_object",
5391 sizeof(struct drm_i915_gem_object), 0,
5392 SLAB_HWCACHE_ALIGN,
5393 NULL);
5394
5395 INIT_LIST_HEAD(&dev_priv->vm_list);
5396 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5397
5398 INIT_LIST_HEAD(&dev_priv->context_list);
5399 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5400 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5401 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5402 for (i = 0; i < I915_NUM_RINGS; i++)
5403 init_ring_lists(&dev_priv->ring[i]);
5404 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5405 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5406 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5407 i915_gem_retire_work_handler);
5408 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5409 i915_gem_idle_work_handler);
5410 #ifdef __NetBSD__
5411 spin_lock_init(&dev_priv->gpu_error.reset_lock);
5412 DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
5413 #else
5414 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5415 #endif
5416
5417 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5418 if (IS_GEN3(dev)) {
5419 I915_WRITE(MI_ARB_STATE,
5420 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5421 }
5422
5423 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5424
5425 /* Old X drivers will take 0-2 for front, back, depth buffers */
5426 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5427 dev_priv->fence_reg_start = 3;
5428
5429 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5430 dev_priv->num_fence_regs = 32;
5431 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5432 dev_priv->num_fence_regs = 16;
5433 else
5434 dev_priv->num_fence_regs = 8;
5435
5436 /* Initialize fence registers to zero */
5437 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5438 i915_gem_restore_fences(dev);
5439
5440 i915_gem_detect_bit_6_swizzle(dev);
5441 #ifdef __NetBSD__
5442 DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
5443 spin_lock_init(&dev_priv->pending_flip_lock);
5444 #else
5445 init_waitqueue_head(&dev_priv->pending_flip_queue);
5446 #endif
5447
5448 dev_priv->mm.interruptible = true;
5449
5450 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
5451 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
5452 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
5453 register_shrinker(&dev_priv->mm.inactive_shrinker);
5454 }
5455
5456 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5457 {
5458 struct drm_i915_file_private *file_priv = file->driver_priv;
5459
5460 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5461
5462 /* Clean up our request list when the client is going away, so that
5463 * later retire_requests won't dereference our soon-to-be-gone
5464 * file_priv.
5465 */
5466 spin_lock(&file_priv->mm.lock);
5467 while (!list_empty(&file_priv->mm.request_list)) {
5468 struct drm_i915_gem_request *request;
5469
5470 request = list_first_entry(&file_priv->mm.request_list,
5471 struct drm_i915_gem_request,
5472 client_list);
5473 list_del(&request->client_list);
5474 request->file_priv = NULL;
5475 }
5476 spin_unlock(&file_priv->mm.lock);
5477 }
5478
5479 static void
5480 i915_gem_file_idle_work_handler(struct work_struct *work)
5481 {
5482 struct drm_i915_file_private *file_priv =
5483 container_of(work, typeof(*file_priv), mm.idle_work.work);
5484
5485 atomic_set(&file_priv->rps_wait_boost, false);
5486 }
5487
5488 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5489 {
5490 struct drm_i915_file_private *file_priv;
5491 int ret;
5492
5493 DRM_DEBUG_DRIVER("\n");
5494
5495 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5496 if (!file_priv)
5497 return -ENOMEM;
5498
5499 file->driver_priv = file_priv;
5500 file_priv->dev_priv = dev->dev_private;
5501 file_priv->file = file;
5502
5503 spin_lock_init(&file_priv->mm.lock);
5504 INIT_LIST_HEAD(&file_priv->mm.request_list);
5505 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5506 i915_gem_file_idle_work_handler);
5507
5508 ret = i915_gem_context_open(dev, file);
5509 if (ret)
5510 kfree(file_priv);
5511
5512 return ret;
5513 }
5514
5515 #ifndef __NetBSD__
5516 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5517 {
5518 if (!mutex_is_locked(mutex))
5519 return false;
5520
5521 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5522 return mutex->owner == task;
5523 #else
5524 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5525 return false;
5526 #endif
5527 }
5528 #endif
5529
5530 static unsigned long
5531 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
5532 {
5533 #ifdef __NetBSD__ /* XXX shrinkers */
5534 return 0;
5535 #else
5536 struct drm_i915_private *dev_priv =
5537 container_of(shrinker,
5538 struct drm_i915_private,
5539 mm.inactive_shrinker);
5540 struct drm_device *dev = dev_priv->dev;
5541 struct drm_i915_gem_object *obj;
5542 bool unlock = true;
5543 unsigned long count;
5544
5545 if (!mutex_trylock(&dev->struct_mutex)) {
5546 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5547 return 0;
5548
5549 if (dev_priv->mm.shrinker_no_lock_stealing)
5550 return 0;
5551
5552 unlock = false;
5553 }
5554
5555 count = 0;
5556 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5557 if (obj->pages_pin_count == 0)
5558 count += obj->base.size >> PAGE_SHIFT;
5559
5560 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5561 if (obj->active)
5562 continue;
5563
5564 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
5565 count += obj->base.size >> PAGE_SHIFT;
5566 }
5567
5568 if (unlock)
5569 mutex_unlock(&dev->struct_mutex);
5570
5571 return count;
5572 #endif
5573 }
5574
5575 /* All the new VM stuff */
5576 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5577 struct i915_address_space *vm)
5578 {
5579 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5580 struct i915_vma *vma;
5581
5582 if (!dev_priv->mm.aliasing_ppgtt ||
5583 vm == &dev_priv->mm.aliasing_ppgtt->base)
5584 vm = &dev_priv->gtt.base;
5585
5586 BUG_ON(list_empty(&o->vma_list));
5587 list_for_each_entry(vma, &o->vma_list, vma_link) {
5588 if (vma->vm == vm)
5589 return vma->node.start;
5590
5591 }
5592 return -1;
5593 }
5594
5595 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5596 struct i915_address_space *vm)
5597 {
5598 struct i915_vma *vma;
5599
5600 list_for_each_entry(vma, &o->vma_list, vma_link)
5601 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5602 return true;
5603
5604 return false;
5605 }
5606
5607 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5608 {
5609 struct i915_vma *vma;
5610
5611 list_for_each_entry(vma, &o->vma_list, vma_link)
5612 if (drm_mm_node_allocated(&vma->node))
5613 return true;
5614
5615 return false;
5616 }
5617
5618 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5619 struct i915_address_space *vm)
5620 {
5621 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5622 struct i915_vma *vma;
5623
5624 if (!dev_priv->mm.aliasing_ppgtt ||
5625 vm == &dev_priv->mm.aliasing_ppgtt->base)
5626 vm = &dev_priv->gtt.base;
5627
5628 BUG_ON(list_empty(&o->vma_list));
5629
5630 list_for_each_entry(vma, &o->vma_list, vma_link)
5631 if (vma->vm == vm)
5632 return vma->node.size;
5633
5634 return 0;
5635 }
5636
5637 static unsigned long
5638 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5639 {
5640 #ifdef __NetBSD__ /* XXX shrinkers */
5641 return 0;
5642 #else
5643 struct drm_i915_private *dev_priv =
5644 container_of(shrinker,
5645 struct drm_i915_private,
5646 mm.inactive_shrinker);
5647 struct drm_device *dev = dev_priv->dev;
5648 unsigned long freed;
5649 bool unlock = true;
5650
5651 if (!mutex_trylock(&dev->struct_mutex)) {
5652 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5653 return SHRINK_STOP;
5654
5655 if (dev_priv->mm.shrinker_no_lock_stealing)
5656 return SHRINK_STOP;
5657
5658 unlock = false;
5659 }
5660
5661 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5662 if (freed < sc->nr_to_scan)
5663 freed += __i915_gem_shrink(dev_priv,
5664 sc->nr_to_scan - freed,
5665 false);
5666 if (freed < sc->nr_to_scan)
5667 freed += i915_gem_shrink_all(dev_priv);
5668
5669 if (unlock)
5670 mutex_unlock(&dev->struct_mutex);
5671
5672 return freed;
5673 #endif
5674 }
5675
5676 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5677 {
5678 struct i915_vma *vma;
5679
5680 if (WARN_ON(list_empty(&obj->vma_list)))
5681 return NULL;
5682
5683 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5684 if (vma->vm != obj_to_ggtt(obj))
5685 return NULL;
5686
5687 return vma;
5688 }
5689