i915_gem.c revision 1.14.2.7 1 /*
2 * Copyright 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric (at) anholt.net>
25 *
26 */
27
28 #ifdef __NetBSD__
29 #if 0 /* XXX uvmhist option? */
30 #include "opt_uvmhist.h"
31 #endif
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35
36 #include <uvm/uvm.h>
37 #include <uvm/uvm_extern.h>
38 #include <uvm/uvm_fault.h>
39 #include <uvm/uvm_page.h>
40 #include <uvm/uvm_pmap.h>
41 #include <uvm/uvm_prot.h>
42
43 #include <drm/bus_dma_hacks.h>
44 #endif
45
46 #include <drm/drmP.h>
47 #include <drm/drm_vma_manager.h>
48 #include <drm/i915_drm.h>
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "intel_drv.h"
52 #include <linux/shmem_fs.h>
53 #include <linux/slab.h>
54 #include <linux/swap.h>
55 #include <linux/pci.h>
56 #include <linux/dma-buf.h>
57 #include <linux/errno.h>
58 #include <linux/time.h>
59 #include <linux/err.h>
60 #include <linux/bitops.h>
61 #include <linux/printk.h>
62 #include <asm/param.h>
63 #include <asm/page.h>
64
65 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
66 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
67 bool force);
68 static __must_check int
69 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
70 bool readonly);
71
72 static void i915_gem_write_fence(struct drm_device *dev, int reg,
73 struct drm_i915_gem_object *obj);
74 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
75 struct drm_i915_fence_reg *fence,
76 bool enable);
77
78 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
79 struct shrink_control *sc);
80 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
81 struct shrink_control *sc);
82 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
83 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
84 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
85 static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
86
87 static bool cpu_cache_is_coherent(struct drm_device *dev,
88 enum i915_cache_level level)
89 {
90 return HAS_LLC(dev) || level != I915_CACHE_NONE;
91 }
92
93 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
94 {
95 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
96 return true;
97
98 return obj->pin_display;
99 }
100
101 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
102 {
103 if (obj->tiling_mode)
104 i915_gem_release_mmap(obj);
105
106 /* As we do not have an associated fence register, we will force
107 * a tiling change if we ever need to acquire one.
108 */
109 obj->fence_dirty = false;
110 obj->fence_reg = I915_FENCE_REG_NONE;
111 }
112
113 /* some bookkeeping */
114 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
115 size_t size)
116 {
117 spin_lock(&dev_priv->mm.object_stat_lock);
118 dev_priv->mm.object_count++;
119 dev_priv->mm.object_memory += size;
120 spin_unlock(&dev_priv->mm.object_stat_lock);
121 }
122
123 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
124 size_t size)
125 {
126 spin_lock(&dev_priv->mm.object_stat_lock);
127 dev_priv->mm.object_count--;
128 dev_priv->mm.object_memory -= size;
129 spin_unlock(&dev_priv->mm.object_stat_lock);
130 }
131
132 static int
133 i915_gem_wait_for_error(struct i915_gpu_error *error)
134 {
135 int ret;
136
137 #define EXIT_COND (!i915_reset_in_progress(error) || \
138 i915_terminally_wedged(error))
139 if (EXIT_COND)
140 return 0;
141
142 /*
143 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
144 * userspace. If it takes that long something really bad is going on and
145 * we should simply try to bail out and fail as gracefully as possible.
146 */
147 #ifdef __NetBSD__
148 spin_lock(&error->reset_lock);
149 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
150 10*HZ, EXIT_COND);
151 spin_unlock(&error->reset_lock);
152 #else
153 ret = wait_event_interruptible_timeout(error->reset_queue,
154 EXIT_COND,
155 10*HZ);
156 #endif
157 if (ret == 0) {
158 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
159 return -EIO;
160 } else if (ret < 0) {
161 return ret;
162 }
163 #undef EXIT_COND
164
165 return 0;
166 }
167
168 int i915_mutex_lock_interruptible(struct drm_device *dev)
169 {
170 struct drm_i915_private *dev_priv = dev->dev_private;
171 int ret;
172
173 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
174 if (ret)
175 return ret;
176
177 ret = mutex_lock_interruptible(&dev->struct_mutex);
178 if (ret)
179 return ret;
180
181 WARN_ON(i915_verify_lists(dev));
182 return 0;
183 }
184
185 static inline bool
186 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
187 {
188 return i915_gem_obj_bound_any(obj) && !obj->active;
189 }
190
191 int
192 i915_gem_init_ioctl(struct drm_device *dev, void *data,
193 struct drm_file *file)
194 {
195 struct drm_i915_private *dev_priv = dev->dev_private;
196 struct drm_i915_gem_init *args = data;
197
198 if (drm_core_check_feature(dev, DRIVER_MODESET))
199 return -ENODEV;
200
201 if (args->gtt_start >= args->gtt_end ||
202 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
203 return -EINVAL;
204
205 /* GEM with user mode setting was never supported on ilk and later. */
206 if (INTEL_INFO(dev)->gen >= 5)
207 return -ENODEV;
208
209 mutex_lock(&dev->struct_mutex);
210 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
211 args->gtt_end);
212 dev_priv->gtt.mappable_end = args->gtt_end;
213 mutex_unlock(&dev->struct_mutex);
214
215 return 0;
216 }
217
218 int
219 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
220 struct drm_file *file)
221 {
222 struct drm_i915_private *dev_priv = dev->dev_private;
223 struct drm_i915_gem_get_aperture *args = data;
224 struct drm_i915_gem_object *obj;
225 size_t pinned;
226
227 pinned = 0;
228 mutex_lock(&dev->struct_mutex);
229 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
230 if (i915_gem_obj_is_pinned(obj))
231 pinned += i915_gem_obj_ggtt_size(obj);
232 mutex_unlock(&dev->struct_mutex);
233
234 args->aper_size = dev_priv->gtt.base.total;
235 args->aper_available_size = args->aper_size - pinned;
236
237 return 0;
238 }
239
240 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
241 {
242 drm_dma_handle_t *phys = obj->phys_handle;
243
244 if (!phys)
245 return;
246
247 if (obj->madv == I915_MADV_WILLNEED) {
248 #ifdef __NetBSD__
249 const char *vaddr = phys->vaddr;
250 unsigned i;
251
252 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
253 struct pglist pages;
254 int error;
255
256 TAILQ_INIT(&pages);
257 error = uvm_obj_wirepages(obj->base.gemo_shm_uao,
258 i*PAGE_SIZE, (i+1)*PAGE_SIZE, &pages);
259 if (error)
260 continue;
261
262 struct vm_page *const vm_page = TAILQ_FIRST(&pages);
263 struct page *const page = container_of(vm_page,
264 struct page, p_vmp);
265 char *const dst = kmap_atomic(page);
266 (void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
267 drm_clflush_virt_range(dst, PAGE_SIZE);
268 kunmap_atomic(dst);
269
270 vm_page->flags &= ~PG_CLEAN;
271 /* XXX mark page accessed */
272 uvm_obj_unwirepages(obj->base.gemo_shm_uao,
273 i*PAGE_SIZE, (i+1)*PAGE_SIZE);
274 }
275 #else
276 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
277 char *vaddr = phys->vaddr;
278 int i;
279
280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281 struct page *page = shmem_read_mapping_page(mapping, i);
282 if (!IS_ERR(page)) {
283 char *dst = kmap_atomic(page);
284 memcpy(dst, vaddr, PAGE_SIZE);
285 drm_clflush_virt_range(dst, PAGE_SIZE);
286 kunmap_atomic(dst);
287
288 set_page_dirty(page);
289 mark_page_accessed(page);
290 page_cache_release(page);
291 }
292 vaddr += PAGE_SIZE;
293 }
294 #endif
295 i915_gem_chipset_flush(obj->base.dev);
296 }
297
298 #ifndef __NetBSD__
299 #ifdef CONFIG_X86
300 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
301 #endif
302 #endif
303 drm_pci_free(obj->base.dev, phys);
304 obj->phys_handle = NULL;
305 }
306
307 int
308 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
309 int align)
310 {
311 drm_dma_handle_t *phys;
312 #ifndef __NetBSD__
313 struct address_space *mapping;
314 #endif
315 char *vaddr;
316 int i;
317
318 if (obj->phys_handle) {
319 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
320 return -EBUSY;
321
322 return 0;
323 }
324
325 if (obj->madv != I915_MADV_WILLNEED)
326 return -EFAULT;
327
328 #ifdef __NetBSD__
329 if (obj->base.gemo_shm_uao == NULL)
330 return -EINVAL;
331 #else
332 if (obj->base.filp == NULL)
333 return -EINVAL;
334 #endif
335
336 /* create a new object */
337 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
338 if (!phys)
339 return -ENOMEM;
340
341 vaddr = phys->vaddr;
342 #ifndef __NetBSD__
343 #ifdef CONFIG_X86
344 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
345 #endif
346 mapping = file_inode(obj->base.filp)->i_mapping;
347 #endif
348 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
349 struct page *page;
350 char *src;
351
352 #ifdef __NetBSD__
353 struct pglist pages;
354 int ret;
355
356 TAILQ_INIT(&pages);
357
358 /* XXX errno NetBSD->Linux */
359 ret = -uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
360 (i+1)*PAGE_SIZE, &pages);
361 if (ret) {
362 drm_pci_free(obj->base.dev, phys);
363 return ret;
364 }
365 KASSERT(!TAILQ_EMPTY(&pages));
366 page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
367 #else
368 page = shmem_read_mapping_page(mapping, i);
369 if (IS_ERR(page)) {
370 #ifdef CONFIG_X86
371 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
372 #endif
373 drm_pci_free(obj->base.dev, phys);
374 return PTR_ERR(page);
375 }
376 #endif /* defined(__NetBSD__) */
377
378 src = kmap_atomic(page);
379 memcpy(vaddr, src, PAGE_SIZE);
380 kunmap_atomic(src);
381
382 #ifdef __NetBSD__
383 /* XXX mark page accessed */
384 uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
385 (i + 1)*PAGE_SIZE);
386 #else
387 mark_page_accessed(page);
388 page_cache_release(page);
389 #endif
390
391 vaddr += PAGE_SIZE;
392 }
393
394 obj->phys_handle = phys;
395 return 0;
396 }
397
398 static int
399 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
400 struct drm_i915_gem_pwrite *args,
401 struct drm_file *file_priv)
402 {
403 struct drm_device *dev = obj->base.dev;
404 void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
405 char __user *user_data = to_user_ptr(args->data_ptr);
406
407 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
408 unsigned long unwritten;
409
410 /* The physical object once assigned is fixed for the lifetime
411 * of the obj, so we can safely drop the lock and continue
412 * to access vaddr.
413 */
414 mutex_unlock(&dev->struct_mutex);
415 unwritten = copy_from_user(vaddr, user_data, args->size);
416 mutex_lock(&dev->struct_mutex);
417 if (unwritten)
418 return -EFAULT;
419 }
420
421 i915_gem_chipset_flush(dev);
422 return 0;
423 }
424
425 void *i915_gem_object_alloc(struct drm_device *dev)
426 {
427 struct drm_i915_private *dev_priv = dev->dev_private;
428 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
429 }
430
431 void i915_gem_object_free(struct drm_i915_gem_object *obj)
432 {
433 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
434 kmem_cache_free(dev_priv->slab, obj);
435 }
436
437 static int
438 i915_gem_create(struct drm_file *file,
439 struct drm_device *dev,
440 uint64_t size,
441 uint32_t *handle_p)
442 {
443 struct drm_i915_gem_object *obj;
444 int ret;
445 u32 handle;
446
447 size = roundup(size, PAGE_SIZE);
448 if (size == 0)
449 return -EINVAL;
450
451 /* Allocate the new object */
452 obj = i915_gem_alloc_object(dev, size);
453 if (obj == NULL)
454 return -ENOMEM;
455
456 ret = drm_gem_handle_create(file, &obj->base, &handle);
457 /* drop reference from allocate - handle holds it now */
458 drm_gem_object_unreference_unlocked(&obj->base);
459 if (ret)
460 return ret;
461
462 *handle_p = handle;
463 return 0;
464 }
465
466 int
467 i915_gem_dumb_create(struct drm_file *file,
468 struct drm_device *dev,
469 struct drm_mode_create_dumb *args)
470 {
471 /* have to work out size/pitch and return them */
472 #ifdef __NetBSD__ /* ALIGN means something else. */
473 args->pitch = round_up(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
474 #else
475 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
476 #endif
477 args->size = args->pitch * args->height;
478 return i915_gem_create(file, dev,
479 args->size, &args->handle);
480 }
481
482 /**
483 * Creates a new mm object and returns a handle to it.
484 */
485 int
486 i915_gem_create_ioctl(struct drm_device *dev, void *data,
487 struct drm_file *file)
488 {
489 struct drm_i915_gem_create *args = data;
490
491 return i915_gem_create(file, dev,
492 args->size, &args->handle);
493 }
494
495 static inline int
496 __copy_to_user_swizzled(char __user *cpu_vaddr,
497 const char *gpu_vaddr, int gpu_offset,
498 int length)
499 {
500 int ret, cpu_offset = 0;
501
502 while (length > 0) {
503 #ifdef __NetBSD__ /* XXX ALIGN means something else. */
504 int cacheline_end = round_up(gpu_offset + 1, 64);
505 #else
506 int cacheline_end = ALIGN(gpu_offset + 1, 64);
507 #endif
508 int this_length = min(cacheline_end - gpu_offset, length);
509 int swizzled_gpu_offset = gpu_offset ^ 64;
510
511 ret = __copy_to_user(cpu_vaddr + cpu_offset,
512 gpu_vaddr + swizzled_gpu_offset,
513 this_length);
514 if (ret)
515 return ret + length;
516
517 cpu_offset += this_length;
518 gpu_offset += this_length;
519 length -= this_length;
520 }
521
522 return 0;
523 }
524
525 static inline int
526 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
527 const char __user *cpu_vaddr,
528 int length)
529 {
530 int ret, cpu_offset = 0;
531
532 while (length > 0) {
533 #ifdef __NetBSD__ /* XXX ALIGN means something else. */
534 int cacheline_end = round_up(gpu_offset + 1, 64);
535 #else
536 int cacheline_end = ALIGN(gpu_offset + 1, 64);
537 #endif
538 int this_length = min(cacheline_end - gpu_offset, length);
539 int swizzled_gpu_offset = gpu_offset ^ 64;
540
541 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
542 cpu_vaddr + cpu_offset,
543 this_length);
544 if (ret)
545 return ret + length;
546
547 cpu_offset += this_length;
548 gpu_offset += this_length;
549 length -= this_length;
550 }
551
552 return 0;
553 }
554
555 /*
556 * Pins the specified object's pages and synchronizes the object with
557 * GPU accesses. Sets needs_clflush to non-zero if the caller should
558 * flush the object from the CPU cache.
559 */
560 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
561 int *needs_clflush)
562 {
563 int ret;
564
565 *needs_clflush = 0;
566
567 #ifdef __NetBSD__
568 if (obj->base.gemo_shm_uao == NULL)
569 return -EINVAL;
570 #else
571 if (!obj->base.filp)
572 return -EINVAL;
573 #endif
574
575 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
576 /* If we're not in the cpu read domain, set ourself into the gtt
577 * read domain and manually flush cachelines (if required). This
578 * optimizes for the case when the gpu will dirty the data
579 * anyway again before the next pread happens. */
580 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
581 obj->cache_level);
582 ret = i915_gem_object_wait_rendering(obj, true);
583 if (ret)
584 return ret;
585 }
586
587 ret = i915_gem_object_get_pages(obj);
588 if (ret)
589 return ret;
590
591 i915_gem_object_pin_pages(obj);
592
593 return ret;
594 }
595
596 /* Per-page copy function for the shmem pread fastpath.
597 * Flushes invalid cachelines before reading the target if
598 * needs_clflush is set. */
599 static int
600 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
601 char __user *user_data,
602 bool page_do_bit17_swizzling, bool needs_clflush)
603 {
604 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
605 return -EFAULT;
606 #else
607 char *vaddr;
608 int ret;
609
610 if (unlikely(page_do_bit17_swizzling))
611 return -EINVAL;
612
613 vaddr = kmap_atomic(page);
614 if (needs_clflush)
615 drm_clflush_virt_range(vaddr + shmem_page_offset,
616 page_length);
617 ret = __copy_to_user_inatomic(user_data,
618 vaddr + shmem_page_offset,
619 page_length);
620 kunmap_atomic(vaddr);
621
622 return ret ? -EFAULT : 0;
623 #endif
624 }
625
626 static void
627 shmem_clflush_swizzled_range(char *addr, unsigned long length,
628 bool swizzled)
629 {
630 if (unlikely(swizzled)) {
631 unsigned long start = (unsigned long) addr;
632 unsigned long end = (unsigned long) addr + length;
633
634 /* For swizzling simply ensure that we always flush both
635 * channels. Lame, but simple and it works. Swizzled
636 * pwrite/pread is far from a hotpath - current userspace
637 * doesn't use it at all. */
638 start = round_down(start, 128);
639 end = round_up(end, 128);
640
641 drm_clflush_virt_range((void *)start, end - start);
642 } else {
643 drm_clflush_virt_range(addr, length);
644 }
645
646 }
647
648 /* Only difference to the fast-path function is that this can handle bit17
649 * and uses non-atomic copy and kmap functions. */
650 static int
651 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
652 char __user *user_data,
653 bool page_do_bit17_swizzling, bool needs_clflush)
654 {
655 char *vaddr;
656 int ret;
657
658 vaddr = kmap(page);
659 if (needs_clflush)
660 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
661 page_length,
662 page_do_bit17_swizzling);
663
664 if (page_do_bit17_swizzling)
665 ret = __copy_to_user_swizzled(user_data,
666 vaddr, shmem_page_offset,
667 page_length);
668 else
669 ret = __copy_to_user(user_data,
670 vaddr + shmem_page_offset,
671 page_length);
672 kunmap(page);
673
674 return ret ? - EFAULT : 0;
675 }
676
677 static int
678 i915_gem_shmem_pread(struct drm_device *dev,
679 struct drm_i915_gem_object *obj,
680 struct drm_i915_gem_pread *args,
681 struct drm_file *file)
682 {
683 char __user *user_data;
684 ssize_t remain;
685 loff_t offset;
686 int shmem_page_offset, page_length, ret = 0;
687 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
688 #ifndef __NetBSD__ /* XXX */
689 int prefaulted = 0;
690 #endif
691 int needs_clflush = 0;
692 #ifndef __NetBSD__
693 struct sg_page_iter sg_iter;
694 #endif
695
696 user_data = to_user_ptr(args->data_ptr);
697 remain = args->size;
698
699 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
700
701 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
702 if (ret)
703 return ret;
704
705 offset = args->offset;
706
707 #ifdef __NetBSD__
708 while (0 < remain)
709 #else
710 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
711 offset >> PAGE_SHIFT)
712 #endif
713 {
714 #ifdef __NetBSD__
715 struct page *const page = i915_gem_object_get_page(obj,
716 atop(offset));
717 #else
718 struct page *page = sg_page_iter_page(&sg_iter);
719
720 if (remain <= 0)
721 break;
722 #endif
723
724 /* Operation in this page
725 *
726 * shmem_page_offset = offset within page in shmem file
727 * page_length = bytes to copy for this page
728 */
729 shmem_page_offset = offset_in_page(offset);
730 page_length = remain;
731 if ((shmem_page_offset + page_length) > PAGE_SIZE)
732 page_length = PAGE_SIZE - shmem_page_offset;
733
734 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
735 (page_to_phys(page) & (1 << 17)) != 0;
736
737 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
738 user_data, page_do_bit17_swizzling,
739 needs_clflush);
740 if (ret == 0)
741 goto next_page;
742
743 mutex_unlock(&dev->struct_mutex);
744 #ifndef __NetBSD__
745 if (likely(!i915.prefault_disable) && !prefaulted) {
746 ret = fault_in_multipages_writeable(user_data, remain);
747 /* Userspace is tricking us, but we've already clobbered
748 * its pages with the prefault and promised to write the
749 * data up to the first fault. Hence ignore any errors
750 * and just continue. */
751 (void)ret;
752 prefaulted = 1;
753 }
754 #endif
755 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
756 user_data, page_do_bit17_swizzling,
757 needs_clflush);
758
759 mutex_lock(&dev->struct_mutex);
760
761 if (ret)
762 goto out;
763
764 next_page:
765 remain -= page_length;
766 user_data += page_length;
767 offset += page_length;
768 }
769
770 out:
771 i915_gem_object_unpin_pages(obj);
772
773 return ret;
774 }
775
776 /**
777 * Reads data from the object referenced by handle.
778 *
779 * On error, the contents of *data are undefined.
780 */
781 int
782 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
783 struct drm_file *file)
784 {
785 struct drm_i915_gem_pread *args = data;
786 struct drm_gem_object *gobj;
787 struct drm_i915_gem_object *obj;
788 int ret = 0;
789
790 if (args->size == 0)
791 return 0;
792
793 if (!access_ok(VERIFY_WRITE,
794 to_user_ptr(args->data_ptr),
795 args->size))
796 return -EFAULT;
797
798 ret = i915_mutex_lock_interruptible(dev);
799 if (ret)
800 return ret;
801
802 gobj = drm_gem_object_lookup(dev, file, args->handle);
803 if (gobj == NULL) {
804 ret = -ENOENT;
805 goto unlock;
806 }
807 obj = to_intel_bo(gobj);
808
809 /* Bounds check source. */
810 if (args->offset > obj->base.size ||
811 args->size > obj->base.size - args->offset) {
812 ret = -EINVAL;
813 goto out;
814 }
815
816 /* prime objects have no backing filp to GEM pread/pwrite
817 * pages from.
818 */
819 #ifdef __NetBSD__
820 /* Also stolen objects. */
821 if (obj->base.gemo_shm_uao == NULL) {
822 ret = -EINVAL;
823 goto out;
824 }
825 #else
826 if (!obj->base.filp) {
827 ret = -EINVAL;
828 goto out;
829 }
830 #endif
831
832 trace_i915_gem_object_pread(obj, args->offset, args->size);
833
834 ret = i915_gem_shmem_pread(dev, obj, args, file);
835
836 out:
837 drm_gem_object_unreference(&obj->base);
838 unlock:
839 mutex_unlock(&dev->struct_mutex);
840 return ret;
841 }
842
843 /* This is the fast write path which cannot handle
844 * page faults in the source data
845 */
846
847 static inline int
848 fast_user_write(struct io_mapping *mapping,
849 loff_t page_base, int page_offset,
850 char __user *user_data,
851 int length)
852 {
853 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
854 return -EFAULT;
855 #else
856 void __iomem *vaddr_atomic;
857 void *vaddr;
858 unsigned long unwritten;
859
860 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
861 /* We can use the cpu mem copy function because this is X86. */
862 vaddr = (void __force*)vaddr_atomic + page_offset;
863 unwritten = __copy_from_user_inatomic_nocache(vaddr,
864 user_data, length);
865 io_mapping_unmap_atomic(vaddr_atomic);
866 return unwritten;
867 #endif
868 }
869
870 /**
871 * This is the fast pwrite path, where we copy the data directly from the
872 * user into the GTT, uncached.
873 */
874 static int
875 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
876 struct drm_i915_gem_object *obj,
877 struct drm_i915_gem_pwrite *args,
878 struct drm_file *file)
879 {
880 struct drm_i915_private *dev_priv = dev->dev_private;
881 ssize_t remain;
882 loff_t offset, page_base;
883 char __user *user_data;
884 int page_offset, page_length, ret;
885
886 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
887 if (ret)
888 goto out;
889
890 ret = i915_gem_object_set_to_gtt_domain(obj, true);
891 if (ret)
892 goto out_unpin;
893
894 ret = i915_gem_object_put_fence(obj);
895 if (ret)
896 goto out_unpin;
897
898 user_data = to_user_ptr(args->data_ptr);
899 remain = args->size;
900
901 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
902
903 while (remain > 0) {
904 /* Operation in this page
905 *
906 * page_base = page offset within aperture
907 * page_offset = offset within page
908 * page_length = bytes to copy for this page
909 */
910 page_base = offset & PAGE_MASK;
911 page_offset = offset_in_page(offset);
912 page_length = remain;
913 if ((page_offset + remain) > PAGE_SIZE)
914 page_length = PAGE_SIZE - page_offset;
915
916 /* If we get a fault while copying data, then (presumably) our
917 * source page isn't available. Return the error and we'll
918 * retry in the slow path.
919 */
920 if (fast_user_write(dev_priv->gtt.mappable, page_base,
921 page_offset, user_data, page_length)) {
922 ret = -EFAULT;
923 goto out_unpin;
924 }
925
926 remain -= page_length;
927 user_data += page_length;
928 offset += page_length;
929 }
930
931 out_unpin:
932 i915_gem_object_ggtt_unpin(obj);
933 out:
934 return ret;
935 }
936
937 /* Per-page copy function for the shmem pwrite fastpath.
938 * Flushes invalid cachelines before writing to the target if
939 * needs_clflush_before is set and flushes out any written cachelines after
940 * writing if needs_clflush is set. */
941 static int
942 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
943 char __user *user_data,
944 bool page_do_bit17_swizzling,
945 bool needs_clflush_before,
946 bool needs_clflush_after)
947 {
948 #ifdef __NetBSD__
949 return -EFAULT;
950 #else
951 char *vaddr;
952 int ret;
953
954 if (unlikely(page_do_bit17_swizzling))
955 return -EINVAL;
956
957 vaddr = kmap_atomic(page);
958 if (needs_clflush_before)
959 drm_clflush_virt_range(vaddr + shmem_page_offset,
960 page_length);
961 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
962 user_data, page_length);
963 if (needs_clflush_after)
964 drm_clflush_virt_range(vaddr + shmem_page_offset,
965 page_length);
966 kunmap_atomic(vaddr);
967
968 return ret ? -EFAULT : 0;
969 #endif
970 }
971
972 /* Only difference to the fast-path function is that this can handle bit17
973 * and uses non-atomic copy and kmap functions. */
974 static int
975 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
976 char __user *user_data,
977 bool page_do_bit17_swizzling,
978 bool needs_clflush_before,
979 bool needs_clflush_after)
980 {
981 char *vaddr;
982 int ret;
983
984 vaddr = kmap(page);
985 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
986 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
987 page_length,
988 page_do_bit17_swizzling);
989 if (page_do_bit17_swizzling)
990 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
991 user_data,
992 page_length);
993 else
994 ret = __copy_from_user(vaddr + shmem_page_offset,
995 user_data,
996 page_length);
997 if (needs_clflush_after)
998 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
999 page_length,
1000 page_do_bit17_swizzling);
1001 kunmap(page);
1002
1003 return ret ? -EFAULT : 0;
1004 }
1005
1006 static int
1007 i915_gem_shmem_pwrite(struct drm_device *dev,
1008 struct drm_i915_gem_object *obj,
1009 struct drm_i915_gem_pwrite *args,
1010 struct drm_file *file)
1011 {
1012 ssize_t remain;
1013 loff_t offset;
1014 char __user *user_data;
1015 int shmem_page_offset, page_length, ret = 0;
1016 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1017 int hit_slowpath = 0;
1018 int needs_clflush_after = 0;
1019 int needs_clflush_before = 0;
1020 #ifndef __NetBSD__
1021 struct sg_page_iter sg_iter;
1022 int flush_mask = boot_cpu_data.x86_clflush_size - 1;
1023 #else
1024 int flush_mask = cpu_info_primary.ci_cflush_lsize - 1;
1025 #endif
1026
1027 user_data = to_user_ptr(args->data_ptr);
1028 remain = args->size;
1029
1030 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1031
1032 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1033 /* If we're not in the cpu write domain, set ourself into the gtt
1034 * write domain and manually flush cachelines (if required). This
1035 * optimizes for the case when the gpu will use the data
1036 * right away and we therefore have to clflush anyway. */
1037 needs_clflush_after = cpu_write_needs_clflush(obj);
1038 ret = i915_gem_object_wait_rendering(obj, false);
1039 if (ret)
1040 return ret;
1041 }
1042 /* Same trick applies to invalidate partially written cachelines read
1043 * before writing. */
1044 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1045 needs_clflush_before =
1046 !cpu_cache_is_coherent(dev, obj->cache_level);
1047
1048 ret = i915_gem_object_get_pages(obj);
1049 if (ret)
1050 return ret;
1051
1052 i915_gem_object_pin_pages(obj);
1053
1054 offset = args->offset;
1055 obj->dirty = 1;
1056
1057 #ifdef __NetBSD__
1058 while (0 < remain)
1059 #else
1060 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1061 offset >> PAGE_SHIFT)
1062 #endif
1063 {
1064 #ifdef __NetBSD__
1065 struct page *const page = i915_gem_object_get_page(obj,
1066 atop(offset));
1067 #else
1068 struct page *page = sg_page_iter_page(&sg_iter);
1069 #endif
1070
1071 if (remain <= 0)
1072 break;
1073
1074 /* Operation in this page
1075 *
1076 * shmem_page_offset = offset within page in shmem file
1077 * page_length = bytes to copy for this page
1078 */
1079 shmem_page_offset = offset_in_page(offset);
1080
1081 page_length = remain;
1082 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1083 page_length = PAGE_SIZE - shmem_page_offset;
1084
1085 /* If we don't overwrite a cacheline completely we need to be
1086 * careful to have up-to-date data by first clflushing. Don't
1087 * overcomplicate things and flush the entire patch. */
1088 const int partial_cacheline_write = needs_clflush_before &&
1089 ((shmem_page_offset | page_length) & flush_mask);
1090
1091 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1092 (page_to_phys(page) & (1 << 17)) != 0;
1093
1094 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1095 user_data, page_do_bit17_swizzling,
1096 partial_cacheline_write,
1097 needs_clflush_after);
1098 if (ret == 0)
1099 goto next_page;
1100
1101 hit_slowpath = 1;
1102 mutex_unlock(&dev->struct_mutex);
1103 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1104 user_data, page_do_bit17_swizzling,
1105 partial_cacheline_write,
1106 needs_clflush_after);
1107
1108 mutex_lock(&dev->struct_mutex);
1109
1110 if (ret)
1111 goto out;
1112
1113 next_page:
1114 remain -= page_length;
1115 user_data += page_length;
1116 offset += page_length;
1117 }
1118
1119 out:
1120 i915_gem_object_unpin_pages(obj);
1121
1122 if (hit_slowpath) {
1123 /*
1124 * Fixup: Flush cpu caches in case we didn't flush the dirty
1125 * cachelines in-line while writing and the object moved
1126 * out of the cpu write domain while we've dropped the lock.
1127 */
1128 if (!needs_clflush_after &&
1129 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1130 if (i915_gem_clflush_object(obj, obj->pin_display))
1131 i915_gem_chipset_flush(dev);
1132 }
1133 }
1134
1135 if (needs_clflush_after)
1136 i915_gem_chipset_flush(dev);
1137
1138 return ret;
1139 }
1140
1141 /**
1142 * Writes data to the object referenced by handle.
1143 *
1144 * On error, the contents of the buffer that were to be modified are undefined.
1145 */
1146 int
1147 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1148 struct drm_file *file)
1149 {
1150 struct drm_i915_gem_pwrite *args = data;
1151 struct drm_gem_object *gobj;
1152 struct drm_i915_gem_object *obj;
1153 int ret;
1154
1155 if (args->size == 0)
1156 return 0;
1157
1158 if (!access_ok(VERIFY_READ,
1159 to_user_ptr(args->data_ptr),
1160 args->size))
1161 return -EFAULT;
1162
1163 #ifndef __NetBSD__ /* XXX prefault */
1164 if (likely(!i915.prefault_disable)) {
1165 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1166 args->size);
1167 if (ret)
1168 return -EFAULT;
1169 }
1170 #endif
1171
1172 ret = i915_mutex_lock_interruptible(dev);
1173 if (ret)
1174 return ret;
1175
1176 gobj = drm_gem_object_lookup(dev, file, args->handle);
1177 if (gobj == NULL) {
1178 ret = -ENOENT;
1179 goto unlock;
1180 }
1181 obj = to_intel_bo(gobj);
1182
1183 /* Bounds check destination. */
1184 if (args->offset > obj->base.size ||
1185 args->size > obj->base.size - args->offset) {
1186 ret = -EINVAL;
1187 goto out;
1188 }
1189
1190 /* prime objects have no backing filp to GEM pread/pwrite
1191 * pages from.
1192 */
1193 #ifdef __NetBSD__
1194 /* Also stolen objects. */
1195 if (obj->base.gemo_shm_uao == NULL) {
1196 ret = -EINVAL;
1197 goto out;
1198 }
1199 #else
1200 if (!obj->base.filp) {
1201 ret = -EINVAL;
1202 goto out;
1203 }
1204 #endif
1205
1206 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1207
1208 ret = -EFAULT;
1209 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1210 * it would end up going through the fenced access, and we'll get
1211 * different detiling behavior between reading and writing.
1212 * pread/pwrite currently are reading and writing from the CPU
1213 * perspective, requiring manual detiling by the client.
1214 */
1215 if (obj->phys_handle) {
1216 ret = i915_gem_phys_pwrite(obj, args, file);
1217 goto out;
1218 }
1219
1220 if (obj->tiling_mode == I915_TILING_NONE &&
1221 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1222 cpu_write_needs_clflush(obj)) {
1223 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1224 /* Note that the gtt paths might fail with non-page-backed user
1225 * pointers (e.g. gtt mappings when moving data between
1226 * textures). Fallback to the shmem path in that case. */
1227 }
1228
1229 if (ret == -EFAULT || ret == -ENOSPC)
1230 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1231
1232 out:
1233 drm_gem_object_unreference(&obj->base);
1234 unlock:
1235 mutex_unlock(&dev->struct_mutex);
1236 return ret;
1237 }
1238
1239 int
1240 i915_gem_check_wedge(struct i915_gpu_error *error,
1241 bool interruptible)
1242 {
1243 if (i915_reset_in_progress(error)) {
1244 /* Non-interruptible callers can't handle -EAGAIN, hence return
1245 * -EIO unconditionally for these. */
1246 if (!interruptible)
1247 return -EIO;
1248
1249 /* Recovery complete, but the reset failed ... */
1250 if (i915_terminally_wedged(error))
1251 return -EIO;
1252
1253 return -EAGAIN;
1254 }
1255
1256 return 0;
1257 }
1258
1259 /*
1260 * Compare seqno against outstanding lazy request. Emit a request if they are
1261 * equal.
1262 */
1263 static int
1264 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1265 {
1266 int ret;
1267
1268 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1269
1270 ret = 0;
1271 if (seqno == ring->outstanding_lazy_seqno)
1272 ret = i915_add_request(ring, NULL);
1273
1274 return ret;
1275 }
1276
1277 #ifndef __NetBSD__
1278 static void fake_irq(unsigned long data)
1279 {
1280 wake_up_process((struct task_struct *)data);
1281 }
1282 #endif
1283
1284 static bool missed_irq(struct drm_i915_private *dev_priv,
1285 struct intel_ring_buffer *ring)
1286 {
1287 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1288 }
1289
1290 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1291 {
1292 if (file_priv == NULL)
1293 return true;
1294
1295 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1296 }
1297
1298 /**
1299 * __wait_seqno - wait until execution of seqno has finished
1300 * @ring: the ring expected to report seqno
1301 * @seqno: duh!
1302 * @reset_counter: reset sequence associated with the given seqno
1303 * @interruptible: do an interruptible wait (normally yes)
1304 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1305 *
1306 * Note: It is of utmost importance that the passed in seqno and reset_counter
1307 * values have been read by the caller in an smp safe manner. Where read-side
1308 * locks are involved, it is sufficient to read the reset_counter before
1309 * unlocking the lock that protects the seqno. For lockless tricks, the
1310 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1311 * inserted.
1312 *
1313 * Returns 0 if the seqno was found within the alloted time. Else returns the
1314 * errno with remaining time filled in timeout argument.
1315 */
1316 #ifdef __NetBSD__
1317 static int
1318 __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, unsigned reset_counter,
1319 bool interruptible, struct timespec *timeout,
1320 struct drm_i915_file_private *file_priv)
1321 {
1322 struct drm_device *dev = ring->dev;
1323 struct drm_i915_private *dev_priv = dev->dev_private;
1324 bool irq_test_in_progress;
1325 struct timespec before, after;
1326 int ticks;
1327 bool wedged;
1328 int ret;
1329
1330 irq_test_in_progress = (dev_priv->gpu_error.test_irq_rings &
1331 intel_ring_flag(ring));
1332 __insn_barrier();
1333
1334 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1335 return 0;
1336
1337 if (timeout)
1338 ticks = mstohz(timespec_to_ns(timeout) / 1000000);
1339 else
1340 ticks = 1;
1341
1342 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1343 gen6_rps_boost(dev_priv);
1344 if (file_priv)
1345 mod_delayed_work(dev_priv->wq,
1346 &file_priv->mm.idle_work,
1347 msecs_to_jiffies(100));
1348 }
1349
1350 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1351 return -ENODEV;
1352
1353 nanotime(&before);
1354 spin_lock(&dev_priv->irq_lock);
1355 #define EXIT_COND \
1356 ((wedged = (reset_counter != \
1357 atomic_read(&dev_priv->gpu_error.reset_counter))) || \
1358 i915_seqno_passed(ring->get_seqno(ring, false), \
1359 seqno))
1360
1361 if (timeout) {
1362 /*
1363 * XXX This missed_irq business smells like unlocked
1364 * Linux waitqueue nonsense.
1365 */
1366 if (missed_irq(dev_priv, ring))
1367 ticks = 1;
1368 if (interruptible)
1369 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
1370 &dev_priv->irq_lock, ticks, EXIT_COND);
1371 else
1372 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
1373 &dev_priv->irq_lock, ticks, EXIT_COND);
1374 if (ret < 0) /* Failure: return negative error as is. */
1375 ;
1376 else if (ret == 0) /* Timed out: return -ETIME. */
1377 ret = -ETIME;
1378 else /* Succeeded (ret > 0): return 0. */
1379 ret = 0;
1380 } else {
1381 if (interruptible)
1382 DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
1383 &dev_priv->irq_lock, EXIT_COND);
1384 else
1385 DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
1386 &dev_priv->irq_lock, EXIT_COND);
1387 /* ret is negative on failure or zero on success. */
1388 }
1389 #undef EXIT_COND
1390 spin_unlock(&dev_priv->irq_lock);
1391 nanotime(&after);
1392
1393 if (!irq_test_in_progress)
1394 ring->irq_put(ring);
1395 if (timeout) {
1396 struct timespec slept;
1397
1398 /* Compute slept = after - before. */
1399 timespecsub(&after, &before, &slept);
1400
1401 /*
1402 * Return the time remaining, timeout - slept, if we
1403 * slept for less time than the timeout; or zero if we
1404 * timed out.
1405 */
1406 if (timespeccmp(&slept, timeout, <))
1407 timespecsub(timeout, &slept, timeout);
1408 else
1409 timespecclear(timeout);
1410 }
1411 if (wedged) { /* GPU reset while we were waiting. */
1412 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1413 interruptible);
1414 if (ret == 0)
1415 ret = -EAGAIN;
1416 }
1417 return ret;
1418 }
1419 #else
1420 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1421 unsigned reset_counter,
1422 bool interruptible,
1423 struct timespec *timeout,
1424 struct drm_i915_file_private *file_priv)
1425 {
1426 struct drm_device *dev = ring->dev;
1427 struct drm_i915_private *dev_priv = dev->dev_private;
1428 const bool irq_test_in_progress =
1429 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1430 struct timespec before, now;
1431 DEFINE_WAIT(wait);
1432 unsigned long timeout_expire;
1433 int ret;
1434
1435 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1436
1437 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1438 return 0;
1439
1440 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1441
1442 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1443 gen6_rps_boost(dev_priv);
1444 if (file_priv)
1445 mod_delayed_work(dev_priv->wq,
1446 &file_priv->mm.idle_work,
1447 msecs_to_jiffies(100));
1448 }
1449
1450 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1451 return -ENODEV;
1452
1453 /* Record current time in case interrupted by signal, or wedged */
1454 trace_i915_gem_request_wait_begin(ring, seqno);
1455 getrawmonotonic(&before);
1456 for (;;) {
1457 struct timer_list timer;
1458
1459 prepare_to_wait(&ring->irq_queue, &wait,
1460 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1461
1462 /* We need to check whether any gpu reset happened in between
1463 * the caller grabbing the seqno and now ... */
1464 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1465 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1466 * is truely gone. */
1467 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1468 if (ret == 0)
1469 ret = -EAGAIN;
1470 break;
1471 }
1472
1473 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1474 ret = 0;
1475 break;
1476 }
1477
1478 if (interruptible && signal_pending(current)) {
1479 ret = -ERESTARTSYS;
1480 break;
1481 }
1482
1483 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1484 ret = -ETIME;
1485 break;
1486 }
1487
1488 timer.function = NULL;
1489 if (timeout || missed_irq(dev_priv, ring)) {
1490 unsigned long expire;
1491
1492 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1493 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1494 mod_timer(&timer, expire);
1495 }
1496
1497 io_schedule();
1498
1499 if (timer.function) {
1500 del_singleshot_timer_sync(&timer);
1501 destroy_timer_on_stack(&timer);
1502 }
1503 }
1504 getrawmonotonic(&now);
1505 trace_i915_gem_request_wait_end(ring, seqno);
1506
1507 if (!irq_test_in_progress)
1508 ring->irq_put(ring);
1509
1510 finish_wait(&ring->irq_queue, &wait);
1511
1512 if (timeout) {
1513 struct timespec sleep_time = timespec_sub(now, before);
1514 *timeout = timespec_sub(*timeout, sleep_time);
1515 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1516 set_normalized_timespec(timeout, 0, 0);
1517 }
1518
1519 return ret;
1520 }
1521 #endif
1522
1523 /**
1524 * Waits for a sequence number to be signaled, and cleans up the
1525 * request and object lists appropriately for that event.
1526 */
1527 int
1528 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1529 {
1530 struct drm_device *dev = ring->dev;
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 bool interruptible = dev_priv->mm.interruptible;
1533 int ret;
1534
1535 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1536 BUG_ON(seqno == 0);
1537
1538 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1539 if (ret)
1540 return ret;
1541
1542 ret = i915_gem_check_olr(ring, seqno);
1543 if (ret)
1544 return ret;
1545
1546 return __wait_seqno(ring, seqno,
1547 atomic_read(&dev_priv->gpu_error.reset_counter),
1548 interruptible, NULL, NULL);
1549 }
1550
1551 static int
1552 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1553 struct intel_ring_buffer *ring)
1554 {
1555 i915_gem_retire_requests_ring(ring);
1556
1557 /* Manually manage the write flush as we may have not yet
1558 * retired the buffer.
1559 *
1560 * Note that the last_write_seqno is always the earlier of
1561 * the two (read/write) seqno, so if we haved successfully waited,
1562 * we know we have passed the last write.
1563 */
1564 obj->last_write_seqno = 0;
1565 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1566
1567 return 0;
1568 }
1569
1570 /**
1571 * Ensures that all rendering to the object has completed and the object is
1572 * safe to unbind from the GTT or access from the CPU.
1573 */
1574 static __must_check int
1575 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1576 bool readonly)
1577 {
1578 struct intel_ring_buffer *ring = obj->ring;
1579 u32 seqno;
1580 int ret;
1581
1582 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1583 if (seqno == 0)
1584 return 0;
1585
1586 ret = i915_wait_seqno(ring, seqno);
1587 if (ret)
1588 return ret;
1589
1590 return i915_gem_object_wait_rendering__tail(obj, ring);
1591 }
1592
1593 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1594 * as the object state may change during this call.
1595 */
1596 static __must_check int
1597 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1598 struct drm_i915_file_private *file_priv,
1599 bool readonly)
1600 {
1601 struct drm_device *dev = obj->base.dev;
1602 struct drm_i915_private *dev_priv = dev->dev_private;
1603 struct intel_ring_buffer *ring = obj->ring;
1604 unsigned reset_counter;
1605 u32 seqno;
1606 int ret;
1607
1608 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1609 BUG_ON(!dev_priv->mm.interruptible);
1610
1611 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1612 if (seqno == 0)
1613 return 0;
1614
1615 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1616 if (ret)
1617 return ret;
1618
1619 ret = i915_gem_check_olr(ring, seqno);
1620 if (ret)
1621 return ret;
1622
1623 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1624 mutex_unlock(&dev->struct_mutex);
1625 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1626 mutex_lock(&dev->struct_mutex);
1627 if (ret)
1628 return ret;
1629
1630 return i915_gem_object_wait_rendering__tail(obj, ring);
1631 }
1632
1633 /**
1634 * Called when user space prepares to use an object with the CPU, either
1635 * through the mmap ioctl's mapping or a GTT mapping.
1636 */
1637 int
1638 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1639 struct drm_file *file)
1640 {
1641 struct drm_i915_gem_set_domain *args = data;
1642 struct drm_gem_object *gobj;
1643 struct drm_i915_gem_object *obj;
1644 uint32_t read_domains = args->read_domains;
1645 uint32_t write_domain = args->write_domain;
1646 int ret;
1647
1648 /* Only handle setting domains to types used by the CPU. */
1649 if (write_domain & I915_GEM_GPU_DOMAINS)
1650 return -EINVAL;
1651
1652 if (read_domains & I915_GEM_GPU_DOMAINS)
1653 return -EINVAL;
1654
1655 /* Having something in the write domain implies it's in the read
1656 * domain, and only that read domain. Enforce that in the request.
1657 */
1658 if (write_domain != 0 && read_domains != write_domain)
1659 return -EINVAL;
1660
1661 ret = i915_mutex_lock_interruptible(dev);
1662 if (ret)
1663 return ret;
1664
1665 gobj = drm_gem_object_lookup(dev, file, args->handle);
1666 if (gobj == NULL) {
1667 ret = -ENOENT;
1668 goto unlock;
1669 }
1670 obj = to_intel_bo(gobj);
1671
1672 /* Try to flush the object off the GPU without holding the lock.
1673 * We will repeat the flush holding the lock in the normal manner
1674 * to catch cases where we are gazumped.
1675 */
1676 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1677 file->driver_priv,
1678 !write_domain);
1679 if (ret)
1680 goto unref;
1681
1682 if (read_domains & I915_GEM_DOMAIN_GTT) {
1683 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1684
1685 /* Silently promote "you're not bound, there was nothing to do"
1686 * to success, since the client was just asking us to
1687 * make sure everything was done.
1688 */
1689 if (ret == -EINVAL)
1690 ret = 0;
1691 } else {
1692 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1693 }
1694
1695 unref:
1696 drm_gem_object_unreference(&obj->base);
1697 unlock:
1698 mutex_unlock(&dev->struct_mutex);
1699 return ret;
1700 }
1701
1702 /**
1703 * Called when user space has done writes to this buffer
1704 */
1705 int
1706 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1707 struct drm_file *file)
1708 {
1709 struct drm_i915_gem_sw_finish *args = data;
1710 struct drm_gem_object *gobj;
1711 struct drm_i915_gem_object *obj;
1712 int ret = 0;
1713
1714 ret = i915_mutex_lock_interruptible(dev);
1715 if (ret)
1716 return ret;
1717
1718 gobj = drm_gem_object_lookup(dev, file, args->handle);
1719 if (gobj == NULL) {
1720 ret = -ENOENT;
1721 goto unlock;
1722 }
1723 obj = to_intel_bo(gobj);
1724
1725 /* Pinned buffers may be scanout, so flush the cache */
1726 if (obj->pin_display)
1727 i915_gem_object_flush_cpu_write_domain(obj, true);
1728
1729 drm_gem_object_unreference(&obj->base);
1730 unlock:
1731 mutex_unlock(&dev->struct_mutex);
1732 return ret;
1733 }
1734
1735 /**
1736 * Maps the contents of an object, returning the address it is mapped
1737 * into.
1738 *
1739 * While the mapping holds a reference on the contents of the object, it doesn't
1740 * imply a ref on the object itself.
1741 */
1742 int
1743 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1744 struct drm_file *file)
1745 {
1746 struct drm_i915_gem_mmap *args = data;
1747 struct drm_gem_object *obj;
1748 unsigned long addr;
1749 #ifdef __NetBSD__
1750 int ret;
1751 #endif
1752
1753 obj = drm_gem_object_lookup(dev, file, args->handle);
1754 if (obj == NULL)
1755 return -ENOENT;
1756
1757 /* prime objects have no backing filp to GEM mmap
1758 * pages from.
1759 */
1760 #ifdef __NetBSD__
1761 /* Also stolen objects (XXX can we get them here?) */
1762 if (obj->gemo_shm_uao == NULL) {
1763 drm_gem_object_unreference_unlocked(obj);
1764 return -EINVAL;
1765 }
1766 #else
1767 if (!obj->filp) {
1768 drm_gem_object_unreference_unlocked(obj);
1769 return -EINVAL;
1770 }
1771 #endif
1772
1773 #ifdef __NetBSD__
1774 addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
1775 (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
1776 /* XXX errno NetBSD->Linux */
1777 ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
1778 obj->gemo_shm_uao, args->offset, 0,
1779 UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
1780 (VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
1781 0));
1782 if (ret) {
1783 drm_gem_object_unreference_unlocked(obj);
1784 return ret;
1785 }
1786 uao_reference(obj->gemo_shm_uao);
1787 drm_gem_object_unreference_unlocked(obj);
1788 #else
1789 addr = vm_mmap(obj->filp, 0, args->size,
1790 PROT_READ | PROT_WRITE, MAP_SHARED,
1791 args->offset);
1792 drm_gem_object_unreference_unlocked(obj);
1793 if (IS_ERR((void *)addr))
1794 return addr;
1795 #endif
1796
1797 args->addr_ptr = (uint64_t) addr;
1798
1799 return 0;
1800 }
1801
1802 #ifdef __NetBSD__ /* XXX gem gtt fault */
1803 static int i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
1804 struct vm_page **, int, int, vm_prot_t, int, paddr_t);
1805
1806 int
1807 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1808 int npages, int centeridx, vm_prot_t access_type, int flags)
1809 {
1810 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1811 struct drm_gem_object *gem_obj =
1812 container_of(uobj, struct drm_gem_object, gemo_uvmobj);
1813 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
1814 struct drm_device *dev = obj->base.dev;
1815 struct drm_i915_private *dev_priv = dev->dev_private;
1816 voff_t byte_offset;
1817 pgoff_t page_offset;
1818 int ret = 0;
1819 bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
1820
1821 byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
1822 KASSERT(byte_offset <= obj->base.size);
1823 page_offset = (byte_offset >> PAGE_SHIFT);
1824
1825 intel_runtime_pm_get(dev_priv);
1826
1827 /* Thanks, uvm, but we don't need this lock. */
1828 mutex_exit(uobj->vmobjlock);
1829
1830 ret = i915_mutex_lock_interruptible(dev);
1831 if (ret)
1832 goto out;
1833
1834 trace_i915_gem_object_fault(obj, page_offset, true, write);
1835
1836 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1837 if (ret)
1838 goto unlock;
1839
1840 if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
1841 ret = -EINVAL;
1842 goto unlock;
1843 }
1844
1845 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1846 if (ret)
1847 goto unlock;
1848
1849 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850 if (ret)
1851 goto unpin;
1852
1853 ret = i915_gem_object_get_fence(obj);
1854 if (ret)
1855 goto unpin;
1856
1857 obj->fault_mappable = true;
1858
1859 /* XXX errno NetBSD->Linux */
1860 ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
1861 flags,
1862 (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
1863 unpin:
1864 i915_gem_object_ggtt_unpin(obj);
1865 unlock:
1866 mutex_unlock(&dev->struct_mutex);
1867 out:
1868 mutex_enter(uobj->vmobjlock);
1869 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
1870 if (ret == -ERESTART)
1871 uvm_wait("i915flt");
1872 /* XXX Deal with GPU hangs here... */
1873 intel_runtime_pm_put(dev_priv);
1874 /* XXX errno Linux->NetBSD */
1875 return -ret;
1876 }
1877
1878 /*
1879 * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
1880 *
1881 * XXX pmap_enter_default instead of pmap_enter because of a problem
1882 * with using weak aliases in kernel modules or something.
1883 */
1884 int pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
1885
1886 static int
1887 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1888 int npages, int centeridx, vm_prot_t access_type, int flags,
1889 paddr_t gtt_paddr)
1890 {
1891 struct vm_map_entry *entry = ufi->entry;
1892 vaddr_t curr_va;
1893 off_t curr_offset;
1894 paddr_t paddr;
1895 u_int mmapflags;
1896 int lcv, retval;
1897 vm_prot_t mapprot;
1898 UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
1899 UVMHIST_LOG(maphist," flags=%d", flags,0,0,0);
1900
1901 /*
1902 * we do not allow device mappings to be mapped copy-on-write
1903 * so we kill any attempt to do so here.
1904 */
1905
1906 if (UVM_ET_ISCOPYONWRITE(entry)) {
1907 UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
1908 entry->etype, 0,0,0);
1909 return(EIO);
1910 }
1911
1912 /*
1913 * now we must determine the offset in udv to use and the VA to
1914 * use for pmap_enter. note that we always use orig_map's pmap
1915 * for pmap_enter (even if we have a submap). since virtual
1916 * addresses in a submap must match the main map, this is ok.
1917 */
1918
1919 /* udv offset = (offset from start of entry) + entry's offset */
1920 curr_offset = entry->offset + (vaddr - entry->start);
1921 /* pmap va = vaddr (virtual address of pps[0]) */
1922 curr_va = vaddr;
1923
1924 /*
1925 * loop over the page range entering in as needed
1926 */
1927
1928 retval = 0;
1929 for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
1930 curr_va += PAGE_SIZE) {
1931 if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
1932 continue;
1933
1934 if (pps[lcv] == PGO_DONTCARE)
1935 continue;
1936
1937 paddr = (gtt_paddr + curr_offset);
1938 mmapflags = 0;
1939 mapprot = ufi->entry->protection;
1940 UVMHIST_LOG(maphist,
1941 " MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
1942 ufi->orig_map->pmap, curr_va, paddr, mapprot);
1943 if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
1944 PMAP_CANFAIL | mapprot | mmapflags) != 0) {
1945 /*
1946 * pmap_enter() didn't have the resource to
1947 * enter this mapping. Unlock everything,
1948 * wait for the pagedaemon to free up some
1949 * pages, and then tell uvm_fault() to start
1950 * the fault again.
1951 *
1952 * XXX Needs some rethinking for the PGO_ALLPAGES
1953 * XXX case.
1954 */
1955 pmap_update(ufi->orig_map->pmap); /* sync what we have so far */
1956 return (ERESTART);
1957 }
1958 }
1959
1960 pmap_update(ufi->orig_map->pmap);
1961 return (retval);
1962 }
1963 #else
1964 /**
1965 * i915_gem_fault - fault a page into the GTT
1966 * vma: VMA in question
1967 * vmf: fault info
1968 *
1969 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1970 * from userspace. The fault handler takes care of binding the object to
1971 * the GTT (if needed), allocating and programming a fence register (again,
1972 * only if needed based on whether the old reg is still valid or the object
1973 * is tiled) and inserting a new PTE into the faulting process.
1974 *
1975 * Note that the faulting process may involve evicting existing objects
1976 * from the GTT and/or fence registers to make room. So performance may
1977 * suffer if the GTT working set is large or there are few fence registers
1978 * left.
1979 */
1980 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1981 {
1982 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1983 struct drm_device *dev = obj->base.dev;
1984 struct drm_i915_private *dev_priv = dev->dev_private;
1985 pgoff_t page_offset;
1986 unsigned long pfn;
1987 int ret = 0;
1988 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1989
1990 intel_runtime_pm_get(dev_priv);
1991
1992 /* We don't use vmf->pgoff since that has the fake offset */
1993 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1994 PAGE_SHIFT;
1995
1996 ret = i915_mutex_lock_interruptible(dev);
1997 if (ret)
1998 goto out;
1999
2000 trace_i915_gem_object_fault(obj, page_offset, true, write);
2001
2002 /* Try to flush the object off the GPU first without holding the lock.
2003 * Upon reacquiring the lock, we will perform our sanity checks and then
2004 * repeat the flush holding the lock in the normal manner to catch cases
2005 * where we are gazumped.
2006 */
2007 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2008 if (ret)
2009 goto unlock;
2010
2011 /* Access to snoopable pages through the GTT is incoherent. */
2012 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2013 ret = -EINVAL;
2014 goto unlock;
2015 }
2016
2017 /* Now bind it into the GTT if needed */
2018 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
2019 if (ret)
2020 goto unlock;
2021
2022 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2023 if (ret)
2024 goto unpin;
2025
2026 ret = i915_gem_object_get_fence(obj);
2027 if (ret)
2028 goto unpin;
2029
2030 obj->fault_mappable = true;
2031
2032 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
2033 pfn >>= PAGE_SHIFT;
2034 pfn += page_offset;
2035
2036 /* Finally, remap it using the new GTT offset */
2037 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
2038 unpin:
2039 i915_gem_object_ggtt_unpin(obj);
2040 unlock:
2041 mutex_unlock(&dev->struct_mutex);
2042 out:
2043 switch (ret) {
2044 case -EIO:
2045 /* If this -EIO is due to a gpu hang, give the reset code a
2046 * chance to clean up the mess. Otherwise return the proper
2047 * SIGBUS. */
2048 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
2049 ret = VM_FAULT_SIGBUS;
2050 break;
2051 }
2052 case -EAGAIN:
2053 /*
2054 * EAGAIN means the gpu is hung and we'll wait for the error
2055 * handler to reset everything when re-faulting in
2056 * i915_mutex_lock_interruptible.
2057 */
2058 case 0:
2059 case -ERESTARTSYS:
2060 case -EINTR:
2061 case -EBUSY:
2062 /*
2063 * EBUSY is ok: this just means that another thread
2064 * already did the job.
2065 */
2066 ret = VM_FAULT_NOPAGE;
2067 break;
2068 case -ENOMEM:
2069 ret = VM_FAULT_OOM;
2070 break;
2071 case -ENOSPC:
2072 case -EFAULT:
2073 ret = VM_FAULT_SIGBUS;
2074 break;
2075 default:
2076 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2077 ret = VM_FAULT_SIGBUS;
2078 break;
2079 }
2080
2081 intel_runtime_pm_put(dev_priv);
2082 return ret;
2083 }
2084
2085 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2086 {
2087 struct i915_vma *vma;
2088
2089 /*
2090 * Only the global gtt is relevant for gtt memory mappings, so restrict
2091 * list traversal to objects bound into the global address space. Note
2092 * that the active list should be empty, but better safe than sorry.
2093 */
2094 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
2095 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
2096 i915_gem_release_mmap(vma->obj);
2097 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
2098 i915_gem_release_mmap(vma->obj);
2099 }
2100 #endif
2101
2102 /**
2103 * i915_gem_release_mmap - remove physical page mappings
2104 * @obj: obj in question
2105 *
2106 * Preserve the reservation of the mmapping with the DRM core code, but
2107 * relinquish ownership of the pages back to the system.
2108 *
2109 * It is vital that we remove the page mapping if we have mapped a tiled
2110 * object through the GTT and then lose the fence register due to
2111 * resource pressure. Similarly if the object has been moved out of the
2112 * aperture, than pages mapped into userspace must be revoked. Removing the
2113 * mapping will then trigger a page fault on the next user access, allowing
2114 * fixup by i915_gem_fault().
2115 */
2116 void
2117 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2118 {
2119 if (!obj->fault_mappable)
2120 return;
2121
2122 #ifdef __NetBSD__ /* XXX gem gtt fault */
2123 {
2124 struct vm_page *page;
2125
2126 mutex_enter(obj->base.gemo_shm_uao->vmobjlock);
2127 KASSERT(obj->pages != NULL);
2128 /* Force a fresh fault for each page. */
2129 /*
2130 * XXX OOPS! This doesn't actually do what we want.
2131 * This causes a fresh fault for access to the backing
2132 * pages -- but nothing accesses the backing pages
2133 * directly! What is actually entered into CPU page
2134 * table entries is aperture addresses which have been
2135 * programmed by the GTT to refer to those backing
2136 * pages.
2137 *
2138 * We need to clear those page table entries, but
2139 * there's no good way to do that at the moment: nobody
2140 * records for us a map from either uvm objects or
2141 * physical device addresses to a list of all virtual
2142 * pages where they have been mapped. pmap(9) records
2143 * a map only from physical RAM addresses to virtual
2144 * pages; it does nothing for physical device
2145 * addresses.
2146 */
2147 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
2148 pmap_page_protect(page, VM_PROT_NONE);
2149 mutex_exit(obj->base.gemo_shm_uao->vmobjlock);
2150 }
2151 #else
2152 drm_vma_node_unmap(&obj->base.vma_node,
2153 obj->base.dev->anon_inode->i_mapping);
2154 #endif
2155 obj->fault_mappable = false;
2156 }
2157
2158 uint32_t
2159 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2160 {
2161 uint32_t gtt_size;
2162
2163 if (INTEL_INFO(dev)->gen >= 4 ||
2164 tiling_mode == I915_TILING_NONE)
2165 return size;
2166
2167 /* Previous chips need a power-of-two fence region when tiling */
2168 if (INTEL_INFO(dev)->gen == 3)
2169 gtt_size = 1024*1024;
2170 else
2171 gtt_size = 512*1024;
2172
2173 while (gtt_size < size)
2174 gtt_size <<= 1;
2175
2176 return gtt_size;
2177 }
2178
2179 /**
2180 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2181 * @obj: object to check
2182 *
2183 * Return the required GTT alignment for an object, taking into account
2184 * potential fence register mapping.
2185 */
2186 uint32_t
2187 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2188 int tiling_mode, bool fenced)
2189 {
2190 /*
2191 * Minimum alignment is 4k (GTT page size), but might be greater
2192 * if a fence register is needed for the object.
2193 */
2194 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2195 tiling_mode == I915_TILING_NONE)
2196 return 4096;
2197
2198 /*
2199 * Previous chips need to be aligned to the size of the smallest
2200 * fence register that can contain the object.
2201 */
2202 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2203 }
2204
2205 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2206 {
2207 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2208 int ret;
2209
2210 if (drm_vma_node_has_offset(&obj->base.vma_node))
2211 return 0;
2212
2213 dev_priv->mm.shrinker_no_lock_stealing = true;
2214
2215 ret = drm_gem_create_mmap_offset(&obj->base);
2216 if (ret != -ENOSPC)
2217 goto out;
2218
2219 /* Badly fragmented mmap space? The only way we can recover
2220 * space is by destroying unwanted objects. We can't randomly release
2221 * mmap_offsets as userspace expects them to be persistent for the
2222 * lifetime of the objects. The closest we can is to release the
2223 * offsets on purgeable objects by truncating it and marking it purged,
2224 * which prevents userspace from ever using that object again.
2225 */
2226 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
2227 ret = drm_gem_create_mmap_offset(&obj->base);
2228 if (ret != -ENOSPC)
2229 goto out;
2230
2231 i915_gem_shrink_all(dev_priv);
2232 ret = drm_gem_create_mmap_offset(&obj->base);
2233 out:
2234 dev_priv->mm.shrinker_no_lock_stealing = false;
2235
2236 return ret;
2237 }
2238
2239 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2240 {
2241 drm_gem_free_mmap_offset(&obj->base);
2242 }
2243
2244 int
2245 i915_gem_mmap_gtt(struct drm_file *file,
2246 struct drm_device *dev,
2247 uint32_t handle,
2248 uint64_t *offset)
2249 {
2250 struct drm_i915_private *dev_priv = dev->dev_private;
2251 struct drm_gem_object *gobj;
2252 struct drm_i915_gem_object *obj;
2253 int ret;
2254
2255 ret = i915_mutex_lock_interruptible(dev);
2256 if (ret)
2257 return ret;
2258
2259 gobj = drm_gem_object_lookup(dev, file, handle);
2260 if (gobj == NULL) {
2261 ret = -ENOENT;
2262 goto unlock;
2263 }
2264 obj = to_intel_bo(gobj);
2265
2266 if (obj->base.size > dev_priv->gtt.mappable_end) {
2267 ret = -E2BIG;
2268 goto out;
2269 }
2270
2271 if (obj->madv != I915_MADV_WILLNEED) {
2272 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2273 ret = -EFAULT;
2274 goto out;
2275 }
2276
2277 ret = i915_gem_object_create_mmap_offset(obj);
2278 if (ret)
2279 goto out;
2280
2281 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2282
2283 out:
2284 drm_gem_object_unreference(&obj->base);
2285 unlock:
2286 mutex_unlock(&dev->struct_mutex);
2287 return ret;
2288 }
2289
2290 /**
2291 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2292 * @dev: DRM device
2293 * @data: GTT mapping ioctl data
2294 * @file: GEM object info
2295 *
2296 * Simply returns the fake offset to userspace so it can mmap it.
2297 * The mmap call will end up in drm_gem_mmap(), which will set things
2298 * up so we can get faults in the handler above.
2299 *
2300 * The fault handler will take care of binding the object into the GTT
2301 * (since it may have been evicted to make room for something), allocating
2302 * a fence register, and mapping the appropriate aperture address into
2303 * userspace.
2304 */
2305 int
2306 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2307 struct drm_file *file)
2308 {
2309 struct drm_i915_gem_mmap_gtt *args = data;
2310
2311 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2312 }
2313
2314 /* Immediately discard the backing storage */
2315 static void
2316 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2317 {
2318 #ifndef __NetBSD__
2319 struct inode *inode;
2320 #endif
2321
2322 i915_gem_object_free_mmap_offset(obj);
2323
2324 #ifdef __NetBSD__
2325 if (obj->base.gemo_shm_uao == NULL)
2326 return;
2327
2328 {
2329 struct uvm_object *const uobj = obj->base.gemo_shm_uao;
2330
2331 if (uobj != NULL) {
2332 /* XXX Calling pgo_put like this is bogus. */
2333 mutex_enter(uobj->vmobjlock);
2334 (*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
2335 (PGO_ALLPAGES | PGO_FREE));
2336 }
2337 }
2338 #else
2339 if (obj->base.filp == NULL)
2340 return;
2341
2342 /* Our goal here is to return as much of the memory as
2343 * is possible back to the system as we are called from OOM.
2344 * To do this we must instruct the shmfs to drop all of its
2345 * backing pages, *now*.
2346 */
2347 inode = file_inode(obj->base.filp);
2348 shmem_truncate_range(inode, 0, (loff_t)-1);
2349 #endif
2350
2351 obj->madv = __I915_MADV_PURGED;
2352 }
2353
2354 static inline int
2355 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
2356 {
2357 return obj->madv == I915_MADV_DONTNEED;
2358 }
2359
2360 #ifdef __NetBSD__
2361 static void
2362 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2363 {
2364 struct drm_device *const dev = obj->base.dev;
2365 struct vm_page *page;
2366 int ret;
2367
2368 /* XXX Cargo-culted from the Linux code. */
2369 BUG_ON(obj->madv == __I915_MADV_PURGED);
2370
2371 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2372 if (ret) {
2373 WARN_ON(ret != -EIO);
2374 i915_gem_clflush_object(obj, true);
2375 obj->base.read_domains = obj->base.write_domain =
2376 I915_GEM_DOMAIN_CPU;
2377 }
2378
2379 if (i915_gem_object_needs_bit17_swizzle(obj))
2380 i915_gem_object_save_bit_17_swizzle(obj);
2381
2382 if (obj->madv == I915_MADV_DONTNEED)
2383 obj->dirty = 0;
2384
2385 if (obj->dirty) {
2386 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
2387 page->flags &= ~PG_CLEAN;
2388 /* XXX mark page accessed */
2389 }
2390 }
2391
2392 bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
2393 bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2394 obj->base.size, obj->pages, obj->igo_nsegs);
2395
2396 kfree(obj->pages);
2397 }
2398 #else
2399 static void
2400 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2401 {
2402 struct sg_page_iter sg_iter;
2403 int ret;
2404
2405 BUG_ON(obj->madv == __I915_MADV_PURGED);
2406
2407 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2408 if (ret) {
2409 /* In the event of a disaster, abandon all caches and
2410 * hope for the best.
2411 */
2412 WARN_ON(ret != -EIO);
2413 i915_gem_clflush_object(obj, true);
2414 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2415 }
2416
2417 if (i915_gem_object_needs_bit17_swizzle(obj))
2418 i915_gem_object_save_bit_17_swizzle(obj);
2419
2420 if (obj->madv == I915_MADV_DONTNEED)
2421 obj->dirty = 0;
2422
2423 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2424 struct page *page = sg_page_iter_page(&sg_iter);
2425
2426 if (obj->dirty)
2427 set_page_dirty(page);
2428
2429 if (obj->madv == I915_MADV_WILLNEED)
2430 mark_page_accessed(page);
2431
2432 page_cache_release(page);
2433 }
2434 obj->dirty = 0;
2435
2436 sg_free_table(obj->pages);
2437 kfree(obj->pages);
2438 }
2439 #endif
2440
2441 int
2442 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2443 {
2444 const struct drm_i915_gem_object_ops *ops = obj->ops;
2445
2446 if (obj->pages == NULL)
2447 return 0;
2448
2449 if (obj->pages_pin_count)
2450 return -EBUSY;
2451
2452 BUG_ON(i915_gem_obj_bound_any(obj));
2453
2454 /* ->put_pages might need to allocate memory for the bit17 swizzle
2455 * array, hence protect them from being reaped by removing them from gtt
2456 * lists early. */
2457 list_del(&obj->global_list);
2458
2459 ops->put_pages(obj);
2460 obj->pages = NULL;
2461
2462 if (i915_gem_object_is_purgeable(obj))
2463 i915_gem_object_truncate(obj);
2464
2465 return 0;
2466 }
2467
2468 static unsigned long
2469 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
2470 bool purgeable_only)
2471 {
2472 struct list_head still_bound_list;
2473 struct drm_i915_gem_object *obj, *next;
2474 unsigned long count = 0;
2475
2476 list_for_each_entry_safe(obj, next,
2477 &dev_priv->mm.unbound_list,
2478 global_list) {
2479 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2480 i915_gem_object_put_pages(obj) == 0) {
2481 count += obj->base.size >> PAGE_SHIFT;
2482 if (count >= target)
2483 return count;
2484 }
2485 }
2486
2487 /*
2488 * As we may completely rewrite the bound list whilst unbinding
2489 * (due to retiring requests) we have to strictly process only
2490 * one element of the list at the time, and recheck the list
2491 * on every iteration.
2492 */
2493 INIT_LIST_HEAD(&still_bound_list);
2494 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
2495 struct i915_vma *vma, *v;
2496
2497 obj = list_first_entry(&dev_priv->mm.bound_list,
2498 typeof(*obj), global_list);
2499 list_move_tail(&obj->global_list, &still_bound_list);
2500
2501 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
2502 continue;
2503
2504 /*
2505 * Hold a reference whilst we unbind this object, as we may
2506 * end up waiting for and retiring requests. This might
2507 * release the final reference (held by the active list)
2508 * and result in the object being freed from under us.
2509 * in this object being freed.
2510 *
2511 * Note 1: Shrinking the bound list is special since only active
2512 * (and hence bound objects) can contain such limbo objects, so
2513 * we don't need special tricks for shrinking the unbound list.
2514 * The only other place where we have to be careful with active
2515 * objects suddenly disappearing due to retiring requests is the
2516 * eviction code.
2517 *
2518 * Note 2: Even though the bound list doesn't hold a reference
2519 * to the object we can safely grab one here: The final object
2520 * unreferencing and the bound_list are both protected by the
2521 * dev->struct_mutex and so we won't ever be able to observe an
2522 * object on the bound_list with a reference count equals 0.
2523 */
2524 drm_gem_object_reference(&obj->base);
2525
2526 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
2527 if (i915_vma_unbind(vma))
2528 break;
2529
2530 if (i915_gem_object_put_pages(obj) == 0)
2531 count += obj->base.size >> PAGE_SHIFT;
2532
2533 drm_gem_object_unreference(&obj->base);
2534 }
2535 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
2536
2537 return count;
2538 }
2539
2540 static unsigned long
2541 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2542 {
2543 return __i915_gem_shrink(dev_priv, target, true);
2544 }
2545
2546 static unsigned long
2547 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2548 {
2549 struct drm_i915_gem_object *obj, *next;
2550 long freed = 0;
2551
2552 i915_gem_evict_everything(dev_priv->dev);
2553
2554 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
2555 global_list) {
2556 if (i915_gem_object_put_pages(obj) == 0)
2557 freed += obj->base.size >> PAGE_SHIFT;
2558 }
2559 return freed;
2560 }
2561
2562 #ifdef __NetBSD__
2563 static int
2564 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2565 {
2566 struct drm_device *const dev = obj->base.dev;
2567 struct vm_page *page;
2568 int error;
2569
2570 /* XXX Cargo-culted from the Linux code. */
2571 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2572 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2573
2574 KASSERT(obj->pages == NULL);
2575 TAILQ_INIT(&obj->igo_pageq);
2576 obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
2577 sizeof(obj->pages[0]), GFP_KERNEL);
2578 if (obj->pages == NULL) {
2579 error = -ENOMEM;
2580 goto fail0;
2581 }
2582
2583 /* XXX errno NetBSD->Linux */
2584 error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
2585 0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
2586 (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
2587 if (error)
2588 /* XXX Try i915_gem_purge, i915_gem_shrink_all. */
2589 goto fail1;
2590 KASSERT(0 < obj->igo_nsegs);
2591 KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
2592
2593 /*
2594 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
2595 *
2596 * XXX This is wrong; we ought to pass this constraint to
2597 * bus_dmamem_wire_uvm_object instead.
2598 */
2599 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
2600 const uint64_t mask =
2601 (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
2602 0xffffffffULL : 0xffffffffffULL);
2603 if (VM_PAGE_TO_PHYS(page) & ~mask) {
2604 DRM_ERROR("GEM physical address exceeds %u bits"
2605 ": %"PRIxMAX"\n",
2606 popcount64(mask),
2607 (uintmax_t)VM_PAGE_TO_PHYS(page));
2608 error = -EIO;
2609 goto fail2;
2610 }
2611 }
2612
2613 /* XXX Should create the DMA map when creating the object. */
2614
2615 /* XXX errno NetBSD->Linux */
2616 error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
2617 PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
2618 if (error)
2619 goto fail2;
2620
2621 /* XXX Cargo-culted from the Linux code. */
2622 if (i915_gem_object_needs_bit17_swizzle(obj))
2623 i915_gem_object_do_bit_17_swizzle(obj);
2624
2625 /* Success! */
2626 return 0;
2627
2628 fail2: bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2629 obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
2630 fail1: kfree(obj->pages);
2631 obj->pages = NULL;
2632 fail0: KASSERT(error);
2633 return error;
2634 }
2635 #else
2636 static int
2637 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2638 {
2639 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2640 int page_count, i;
2641 struct address_space *mapping;
2642 struct sg_table *st;
2643 struct scatterlist *sg;
2644 struct sg_page_iter sg_iter;
2645 struct page *page;
2646 unsigned long last_pfn = 0; /* suppress gcc warning */
2647 gfp_t gfp;
2648
2649 /* Assert that the object is not currently in any GPU domain. As it
2650 * wasn't in the GTT, there shouldn't be any way it could have been in
2651 * a GPU cache
2652 */
2653 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2654 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2655
2656 st = kmalloc(sizeof(*st), GFP_KERNEL);
2657 if (st == NULL)
2658 return -ENOMEM;
2659
2660 page_count = obj->base.size / PAGE_SIZE;
2661 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2662 kfree(st);
2663 return -ENOMEM;
2664 }
2665
2666 /* Get the list of pages out of our struct file. They'll be pinned
2667 * at this point until we release them.
2668 *
2669 * Fail silently without starting the shrinker
2670 */
2671 mapping = file_inode(obj->base.filp)->i_mapping;
2672 gfp = mapping_gfp_mask(mapping);
2673 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2674 gfp &= ~(__GFP_IO | __GFP_WAIT);
2675 sg = st->sgl;
2676 st->nents = 0;
2677 for (i = 0; i < page_count; i++) {
2678 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2679 if (IS_ERR(page)) {
2680 i915_gem_purge(dev_priv, page_count);
2681 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2682 }
2683 if (IS_ERR(page)) {
2684 /* We've tried hard to allocate the memory by reaping
2685 * our own buffer, now let the real VM do its job and
2686 * go down in flames if truly OOM.
2687 */
2688 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2689 gfp |= __GFP_IO | __GFP_WAIT;
2690
2691 i915_gem_shrink_all(dev_priv);
2692 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2693 if (IS_ERR(page))
2694 goto err_pages;
2695
2696 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2697 gfp &= ~(__GFP_IO | __GFP_WAIT);
2698 }
2699 #ifdef CONFIG_SWIOTLB
2700 if (swiotlb_nr_tbl()) {
2701 st->nents++;
2702 sg_set_page(sg, page, PAGE_SIZE, 0);
2703 sg = sg_next(sg);
2704 continue;
2705 }
2706 #endif
2707 if (!i || page_to_pfn(page) != last_pfn + 1) {
2708 if (i)
2709 sg = sg_next(sg);
2710 st->nents++;
2711 sg_set_page(sg, page, PAGE_SIZE, 0);
2712 } else {
2713 sg->length += PAGE_SIZE;
2714 }
2715 last_pfn = page_to_pfn(page);
2716
2717 /* Check that the i965g/gm workaround works. */
2718 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2719 }
2720 #ifdef CONFIG_SWIOTLB
2721 if (!swiotlb_nr_tbl())
2722 #endif
2723 sg_mark_end(sg);
2724 obj->pages = st;
2725
2726 if (i915_gem_object_needs_bit17_swizzle(obj))
2727 i915_gem_object_do_bit_17_swizzle(obj);
2728
2729 return 0;
2730
2731 err_pages:
2732 sg_mark_end(sg);
2733 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2734 page_cache_release(sg_page_iter_page(&sg_iter));
2735 sg_free_table(st);
2736 kfree(st);
2737 return PTR_ERR(page);
2738 }
2739 #endif
2740
2741 /* Ensure that the associated pages are gathered from the backing storage
2742 * and pinned into our object. i915_gem_object_get_pages() may be called
2743 * multiple times before they are released by a single call to
2744 * i915_gem_object_put_pages() - once the pages are no longer referenced
2745 * either as a result of memory pressure (reaping pages under the shrinker)
2746 * or as the object is itself released.
2747 */
2748 int
2749 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2750 {
2751 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2752 const struct drm_i915_gem_object_ops *ops = obj->ops;
2753 int ret;
2754
2755 if (obj->pages)
2756 return 0;
2757
2758 if (obj->madv != I915_MADV_WILLNEED) {
2759 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2760 return -EFAULT;
2761 }
2762
2763 BUG_ON(obj->pages_pin_count);
2764
2765 ret = ops->get_pages(obj);
2766 if (ret)
2767 return ret;
2768
2769 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2770 return 0;
2771 }
2772
2773 static void
2774 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2775 struct intel_ring_buffer *ring)
2776 {
2777 struct drm_device *dev = obj->base.dev;
2778 struct drm_i915_private *dev_priv = dev->dev_private;
2779 u32 seqno = intel_ring_get_seqno(ring);
2780
2781 BUG_ON(ring == NULL);
2782 if (obj->ring != ring && obj->last_write_seqno) {
2783 /* Keep the seqno relative to the current ring */
2784 obj->last_write_seqno = seqno;
2785 }
2786 obj->ring = ring;
2787
2788 /* Add a reference if we're newly entering the active list. */
2789 if (!obj->active) {
2790 drm_gem_object_reference(&obj->base);
2791 obj->active = 1;
2792 }
2793
2794 list_move_tail(&obj->ring_list, &ring->active_list);
2795
2796 obj->last_read_seqno = seqno;
2797
2798 if (obj->fenced_gpu_access) {
2799 obj->last_fenced_seqno = seqno;
2800
2801 /* Bump MRU to take account of the delayed flush */
2802 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2803 struct drm_i915_fence_reg *reg;
2804
2805 reg = &dev_priv->fence_regs[obj->fence_reg];
2806 list_move_tail(®->lru_list,
2807 &dev_priv->mm.fence_list);
2808 }
2809 }
2810 }
2811
2812 void i915_vma_move_to_active(struct i915_vma *vma,
2813 struct intel_ring_buffer *ring)
2814 {
2815 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2816 return i915_gem_object_move_to_active(vma->obj, ring);
2817 }
2818
2819 static void
2820 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2821 {
2822 struct drm_device *dev = obj->base.dev;
2823 struct drm_i915_private *dev_priv = dev->dev_private;
2824 struct i915_address_space *vm;
2825 struct i915_vma *vma;
2826
2827 if ((obj->base.write_domain & I915_GEM_DOMAIN_GTT) != 0) {
2828 printk(KERN_ERR "%s: %p 0x%x flushing gtt\n", __func__, obj,
2829 obj->base.write_domain);
2830 i915_gem_object_flush_gtt_write_domain(obj);
2831 }
2832 if ((obj->base.write_domain & I915_GEM_DOMAIN_CPU) != 0) {
2833 printk(KERN_ERR "%s: %p 0x%x flushing cpu\n", __func__, obj,
2834 obj->base.write_domain);
2835 i915_gem_object_flush_cpu_write_domain(obj, false);
2836 }
2837 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2838 BUG_ON(!obj->active);
2839
2840 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2841 vma = i915_gem_obj_to_vma(obj, vm);
2842 if (vma && !list_empty(&vma->mm_list))
2843 list_move_tail(&vma->mm_list, &vm->inactive_list);
2844 }
2845
2846 list_del_init(&obj->ring_list);
2847 obj->ring = NULL;
2848
2849 obj->last_read_seqno = 0;
2850 obj->last_write_seqno = 0;
2851 obj->base.write_domain = 0;
2852
2853 obj->last_fenced_seqno = 0;
2854 obj->fenced_gpu_access = false;
2855
2856 obj->active = 0;
2857 drm_gem_object_unreference(&obj->base);
2858
2859 WARN_ON(i915_verify_lists(dev));
2860 }
2861
2862 static int
2863 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2864 {
2865 struct drm_i915_private *dev_priv = dev->dev_private;
2866 struct intel_ring_buffer *ring;
2867 int ret, i, j;
2868
2869 /* Carefully retire all requests without writing to the rings */
2870 for_each_ring(ring, dev_priv, i) {
2871 ret = intel_ring_idle(ring);
2872 if (ret)
2873 return ret;
2874 }
2875 i915_gem_retire_requests(dev);
2876
2877 /* Finally reset hw state */
2878 for_each_ring(ring, dev_priv, i) {
2879 intel_ring_init_seqno(ring, seqno);
2880
2881 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2882 ring->sync_seqno[j] = 0;
2883 }
2884
2885 return 0;
2886 }
2887
2888 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2889 {
2890 struct drm_i915_private *dev_priv = dev->dev_private;
2891 int ret;
2892
2893 if (seqno == 0)
2894 return -EINVAL;
2895
2896 /* HWS page needs to be set less than what we
2897 * will inject to ring
2898 */
2899 ret = i915_gem_init_seqno(dev, seqno - 1);
2900 if (ret)
2901 return ret;
2902
2903 /* Carefully set the last_seqno value so that wrap
2904 * detection still works
2905 */
2906 dev_priv->next_seqno = seqno;
2907 dev_priv->last_seqno = seqno - 1;
2908 if (dev_priv->last_seqno == 0)
2909 dev_priv->last_seqno--;
2910
2911 return 0;
2912 }
2913
2914 int
2915 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2916 {
2917 struct drm_i915_private *dev_priv = dev->dev_private;
2918
2919 /* reserve 0 for non-seqno */
2920 if (dev_priv->next_seqno == 0) {
2921 int ret = i915_gem_init_seqno(dev, 0);
2922 if (ret)
2923 return ret;
2924
2925 dev_priv->next_seqno = 1;
2926 }
2927
2928 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2929 return 0;
2930 }
2931
2932 int __i915_add_request(struct intel_ring_buffer *ring,
2933 struct drm_file *file,
2934 struct drm_i915_gem_object *obj,
2935 u32 *out_seqno)
2936 {
2937 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2938 struct drm_i915_gem_request *request;
2939 u32 request_ring_position, request_start;
2940 int ret;
2941
2942 request_start = intel_ring_get_tail(ring);
2943 /*
2944 * Emit any outstanding flushes - execbuf can fail to emit the flush
2945 * after having emitted the batchbuffer command. Hence we need to fix
2946 * things up similar to emitting the lazy request. The difference here
2947 * is that the flush _must_ happen before the next request, no matter
2948 * what.
2949 */
2950 ret = intel_ring_flush_all_caches(ring);
2951 if (ret)
2952 return ret;
2953
2954 request = ring->preallocated_lazy_request;
2955 if (WARN_ON(request == NULL))
2956 return -ENOMEM;
2957
2958 /* Record the position of the start of the request so that
2959 * should we detect the updated seqno part-way through the
2960 * GPU processing the request, we never over-estimate the
2961 * position of the head.
2962 */
2963 request_ring_position = intel_ring_get_tail(ring);
2964
2965 ret = ring->add_request(ring);
2966 if (ret)
2967 return ret;
2968
2969 request->seqno = intel_ring_get_seqno(ring);
2970 request->ring = ring;
2971 request->head = request_start;
2972 request->tail = request_ring_position;
2973
2974 /* Whilst this request exists, batch_obj will be on the
2975 * active_list, and so will hold the active reference. Only when this
2976 * request is retired will the the batch_obj be moved onto the
2977 * inactive_list and lose its active reference. Hence we do not need
2978 * to explicitly hold another reference here.
2979 */
2980 request->batch_obj = obj;
2981
2982 /* Hold a reference to the current context so that we can inspect
2983 * it later in case a hangcheck error event fires.
2984 */
2985 request->ctx = ring->last_context;
2986 if (request->ctx)
2987 i915_gem_context_reference(request->ctx);
2988
2989 request->emitted_jiffies = jiffies;
2990 list_add_tail(&request->list, &ring->request_list);
2991 request->file_priv = NULL;
2992
2993 if (file) {
2994 struct drm_i915_file_private *file_priv = file->driver_priv;
2995
2996 spin_lock(&file_priv->mm.lock);
2997 request->file_priv = file_priv;
2998 list_add_tail(&request->client_list,
2999 &file_priv->mm.request_list);
3000 spin_unlock(&file_priv->mm.lock);
3001 }
3002
3003 trace_i915_gem_request_add(ring, request->seqno);
3004 ring->outstanding_lazy_seqno = 0;
3005 ring->preallocated_lazy_request = NULL;
3006
3007 if (!dev_priv->ums.mm_suspended) {
3008 i915_queue_hangcheck(ring->dev);
3009
3010 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
3011 queue_delayed_work(dev_priv->wq,
3012 &dev_priv->mm.retire_work,
3013 round_jiffies_up_relative(HZ));
3014 intel_mark_busy(dev_priv->dev);
3015 }
3016
3017 if (out_seqno)
3018 *out_seqno = request->seqno;
3019 return 0;
3020 }
3021
3022 static inline void
3023 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
3024 {
3025 struct drm_i915_file_private *file_priv = request->file_priv;
3026
3027 if (!file_priv)
3028 return;
3029
3030 spin_lock(&file_priv->mm.lock);
3031 list_del(&request->client_list);
3032 request->file_priv = NULL;
3033 spin_unlock(&file_priv->mm.lock);
3034 }
3035
3036 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
3037 const struct i915_hw_context *ctx)
3038 {
3039 unsigned long elapsed;
3040
3041 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
3042
3043 if (ctx->hang_stats.banned)
3044 return true;
3045
3046 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
3047 if (!i915_gem_context_is_default(ctx)) {
3048 DRM_DEBUG("context hanging too fast, banning!\n");
3049 return true;
3050 } else if (dev_priv->gpu_error.stop_rings == 0) {
3051 DRM_ERROR("gpu hanging too fast, banning!\n");
3052 return true;
3053 }
3054 }
3055
3056 return false;
3057 }
3058
3059 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
3060 struct i915_hw_context *ctx,
3061 const bool guilty)
3062 {
3063 struct i915_ctx_hang_stats *hs;
3064
3065 if (WARN_ON(!ctx))
3066 return;
3067
3068 hs = &ctx->hang_stats;
3069
3070 if (guilty) {
3071 hs->banned = i915_context_is_banned(dev_priv, ctx);
3072 hs->batch_active++;
3073 hs->guilty_ts = get_seconds();
3074 } else {
3075 hs->batch_pending++;
3076 }
3077 }
3078
3079 static void i915_gem_free_request(struct drm_i915_gem_request *request)
3080 {
3081 list_del(&request->list);
3082 i915_gem_request_remove_from_client(request);
3083
3084 if (request->ctx)
3085 i915_gem_context_unreference(request->ctx);
3086
3087 kfree(request);
3088 }
3089
3090 struct drm_i915_gem_request *
3091 i915_gem_find_active_request(struct intel_ring_buffer *ring)
3092 {
3093 struct drm_i915_gem_request *request;
3094 u32 completed_seqno;
3095
3096 completed_seqno = ring->get_seqno(ring, false);
3097
3098 list_for_each_entry(request, &ring->request_list, list) {
3099 if (i915_seqno_passed(completed_seqno, request->seqno))
3100 continue;
3101
3102 return request;
3103 }
3104
3105 return NULL;
3106 }
3107
3108 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
3109 struct intel_ring_buffer *ring)
3110 {
3111 struct drm_i915_gem_request *request;
3112 bool ring_hung;
3113
3114 request = i915_gem_find_active_request(ring);
3115
3116 if (request == NULL)
3117 return;
3118
3119 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3120
3121 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3122
3123 list_for_each_entry_continue(request, &ring->request_list, list)
3124 i915_set_reset_status(dev_priv, request->ctx, false);
3125 }
3126
3127 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
3128 struct intel_ring_buffer *ring)
3129 {
3130 while (!list_empty(&ring->active_list)) {
3131 struct drm_i915_gem_object *obj;
3132
3133 obj = list_first_entry(&ring->active_list,
3134 struct drm_i915_gem_object,
3135 ring_list);
3136
3137 i915_gem_object_move_to_inactive(obj);
3138 }
3139
3140 /*
3141 * We must free the requests after all the corresponding objects have
3142 * been moved off active lists. Which is the same order as the normal
3143 * retire_requests function does. This is important if object hold
3144 * implicit references on things like e.g. ppgtt address spaces through
3145 * the request.
3146 */
3147 while (!list_empty(&ring->request_list)) {
3148 struct drm_i915_gem_request *request;
3149
3150 request = list_first_entry(&ring->request_list,
3151 struct drm_i915_gem_request,
3152 list);
3153
3154 i915_gem_free_request(request);
3155 }
3156 }
3157
3158 void i915_gem_restore_fences(struct drm_device *dev)
3159 {
3160 struct drm_i915_private *dev_priv = dev->dev_private;
3161 int i;
3162
3163 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3164 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
3165
3166 /*
3167 * Commit delayed tiling changes if we have an object still
3168 * attached to the fence, otherwise just clear the fence.
3169 */
3170 if (reg->obj) {
3171 i915_gem_object_update_fence(reg->obj, reg,
3172 reg->obj->tiling_mode);
3173 } else {
3174 i915_gem_write_fence(dev, i, NULL);
3175 }
3176 }
3177 }
3178
3179 void i915_gem_reset(struct drm_device *dev)
3180 {
3181 struct drm_i915_private *dev_priv = dev->dev_private;
3182 struct intel_ring_buffer *ring;
3183 int i;
3184
3185 /*
3186 * Before we free the objects from the requests, we need to inspect
3187 * them for finding the guilty party. As the requests only borrow
3188 * their reference to the objects, the inspection must be done first.
3189 */
3190 for_each_ring(ring, dev_priv, i)
3191 i915_gem_reset_ring_status(dev_priv, ring);
3192
3193 for_each_ring(ring, dev_priv, i)
3194 i915_gem_reset_ring_cleanup(dev_priv, ring);
3195
3196 i915_gem_cleanup_ringbuffer(dev);
3197
3198 i915_gem_context_reset(dev);
3199
3200 i915_gem_restore_fences(dev);
3201 }
3202
3203 /**
3204 * This function clears the request list as sequence numbers are passed.
3205 */
3206 static void
3207 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
3208 {
3209 uint32_t seqno;
3210
3211 if (list_empty(&ring->request_list))
3212 return;
3213
3214 WARN_ON(i915_verify_lists(ring->dev));
3215
3216 seqno = ring->get_seqno(ring, true);
3217
3218 /* Move any buffers on the active list that are no longer referenced
3219 * by the ringbuffer to the flushing/inactive lists as appropriate,
3220 * before we free the context associated with the requests.
3221 */
3222 while (!list_empty(&ring->active_list)) {
3223 struct drm_i915_gem_object *obj;
3224
3225 obj = list_first_entry(&ring->active_list,
3226 struct drm_i915_gem_object,
3227 ring_list);
3228
3229 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
3230 break;
3231
3232 i915_gem_object_move_to_inactive(obj);
3233 }
3234
3235
3236 while (!list_empty(&ring->request_list)) {
3237 struct drm_i915_gem_request *request;
3238
3239 request = list_first_entry(&ring->request_list,
3240 struct drm_i915_gem_request,
3241 list);
3242
3243 if (!i915_seqno_passed(seqno, request->seqno))
3244 break;
3245
3246 trace_i915_gem_request_retire(ring, request->seqno);
3247 /* We know the GPU must have read the request to have
3248 * sent us the seqno + interrupt, so use the position
3249 * of tail of the request to update the last known position
3250 * of the GPU head.
3251 */
3252 ring->last_retired_head = request->tail;
3253
3254 i915_gem_free_request(request);
3255 }
3256
3257 if (unlikely(ring->trace_irq_seqno &&
3258 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
3259 ring->irq_put(ring);
3260 ring->trace_irq_seqno = 0;
3261 }
3262
3263 WARN_ON(i915_verify_lists(ring->dev));
3264 }
3265
3266 bool
3267 i915_gem_retire_requests(struct drm_device *dev)
3268 {
3269 struct drm_i915_private *dev_priv = dev->dev_private;
3270 struct intel_ring_buffer *ring;
3271 bool idle = true;
3272 int i;
3273
3274 for_each_ring(ring, dev_priv, i) {
3275 i915_gem_retire_requests_ring(ring);
3276 idle &= list_empty(&ring->request_list);
3277 }
3278
3279 if (idle)
3280 mod_delayed_work(dev_priv->wq,
3281 &dev_priv->mm.idle_work,
3282 msecs_to_jiffies(100));
3283
3284 return idle;
3285 }
3286
3287 static void
3288 i915_gem_retire_work_handler(struct work_struct *work)
3289 {
3290 struct drm_i915_private *dev_priv =
3291 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3292 struct drm_device *dev = dev_priv->dev;
3293 bool idle;
3294
3295 /* Come back later if the device is busy... */
3296 idle = false;
3297 if (mutex_trylock(&dev->struct_mutex)) {
3298 idle = i915_gem_retire_requests(dev);
3299 mutex_unlock(&dev->struct_mutex);
3300 }
3301 if (!idle)
3302 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3303 round_jiffies_up_relative(HZ));
3304 }
3305
3306 static void
3307 i915_gem_idle_work_handler(struct work_struct *work)
3308 {
3309 struct drm_i915_private *dev_priv =
3310 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3311
3312 intel_mark_idle(dev_priv->dev);
3313 }
3314
3315 /**
3316 * Ensures that an object will eventually get non-busy by flushing any required
3317 * write domains, emitting any outstanding lazy request and retiring and
3318 * completed requests.
3319 */
3320 static int
3321 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3322 {
3323 int ret;
3324
3325 if (obj->active) {
3326 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
3327 if (ret)
3328 return ret;
3329
3330 i915_gem_retire_requests_ring(obj->ring);
3331 }
3332
3333 return 0;
3334 }
3335
3336 /**
3337 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3338 * @DRM_IOCTL_ARGS: standard ioctl arguments
3339 *
3340 * Returns 0 if successful, else an error is returned with the remaining time in
3341 * the timeout parameter.
3342 * -ETIME: object is still busy after timeout
3343 * -ERESTARTSYS: signal interrupted the wait
3344 * -ENONENT: object doesn't exist
3345 * Also possible, but rare:
3346 * -EAGAIN: GPU wedged
3347 * -ENOMEM: damn
3348 * -ENODEV: Internal IRQ fail
3349 * -E?: The add request failed
3350 *
3351 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3352 * non-zero timeout parameter the wait ioctl will wait for the given number of
3353 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3354 * without holding struct_mutex the object may become re-busied before this
3355 * function completes. A similar but shorter * race condition exists in the busy
3356 * ioctl
3357 */
3358 int
3359 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3360 {
3361 struct drm_i915_private *dev_priv = dev->dev_private;
3362 struct drm_i915_gem_wait *args = data;
3363 struct drm_gem_object *gobj;
3364 struct drm_i915_gem_object *obj;
3365 struct intel_ring_buffer *ring = NULL;
3366 struct timespec timeout_stack, *timeout = NULL;
3367 unsigned reset_counter;
3368 u32 seqno = 0;
3369 int ret = 0;
3370
3371 if (args->timeout_ns >= 0) {
3372 timeout_stack = ns_to_timespec(args->timeout_ns);
3373 timeout = &timeout_stack;
3374 }
3375
3376 ret = i915_mutex_lock_interruptible(dev);
3377 if (ret)
3378 return ret;
3379
3380 gobj = drm_gem_object_lookup(dev, file, args->bo_handle);
3381 if (gobj == NULL) {
3382 mutex_unlock(&dev->struct_mutex);
3383 return -ENOENT;
3384 }
3385 obj = to_intel_bo(gobj);
3386
3387 /* Need to make sure the object gets inactive eventually. */
3388 ret = i915_gem_object_flush_active(obj);
3389 if (ret)
3390 goto out;
3391
3392 if (obj->active) {
3393 seqno = obj->last_read_seqno;
3394 ring = obj->ring;
3395 }
3396
3397 if (seqno == 0)
3398 goto out;
3399
3400 /* Do this after OLR check to make sure we make forward progress polling
3401 * on this IOCTL with a 0 timeout (like busy ioctl)
3402 */
3403 if (!args->timeout_ns) {
3404 ret = -ETIME;
3405 goto out;
3406 }
3407
3408 drm_gem_object_unreference(&obj->base);
3409 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3410 mutex_unlock(&dev->struct_mutex);
3411
3412 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
3413 if (timeout)
3414 args->timeout_ns = timespec_to_ns(timeout);
3415 return ret;
3416
3417 out:
3418 drm_gem_object_unreference(&obj->base);
3419 mutex_unlock(&dev->struct_mutex);
3420 return ret;
3421 }
3422
3423 /**
3424 * i915_gem_object_sync - sync an object to a ring.
3425 *
3426 * @obj: object which may be in use on another ring.
3427 * @to: ring we wish to use the object on. May be NULL.
3428 *
3429 * This code is meant to abstract object synchronization with the GPU.
3430 * Calling with NULL implies synchronizing the object with the CPU
3431 * rather than a particular GPU ring.
3432 *
3433 * Returns 0 if successful, else propagates up the lower layer error.
3434 */
3435 int
3436 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3437 struct intel_ring_buffer *to)
3438 {
3439 struct intel_ring_buffer *from = obj->ring;
3440 u32 seqno;
3441 int ret, idx;
3442
3443 if (from == NULL || to == from)
3444 return 0;
3445
3446 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
3447 return i915_gem_object_wait_rendering(obj, false);
3448
3449 idx = intel_ring_sync_index(from, to);
3450
3451 seqno = obj->last_read_seqno;
3452 if (seqno <= from->sync_seqno[idx])
3453 return 0;
3454
3455 ret = i915_gem_check_olr(obj->ring, seqno);
3456 if (ret)
3457 return ret;
3458
3459 trace_i915_gem_ring_sync_to(from, to, seqno);
3460 ret = to->sync_to(to, from, seqno);
3461 if (!ret)
3462 /* We use last_read_seqno because sync_to()
3463 * might have just caused seqno wrap under
3464 * the radar.
3465 */
3466 from->sync_seqno[idx] = obj->last_read_seqno;
3467
3468 return ret;
3469 }
3470
3471 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3472 {
3473 u32 old_write_domain, old_read_domains;
3474
3475 /* Force a pagefault for domain tracking on next user access */
3476 i915_gem_release_mmap(obj);
3477
3478 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3479 return;
3480
3481 /* Wait for any direct GTT access to complete */
3482 mb();
3483
3484 old_read_domains = obj->base.read_domains;
3485 old_write_domain = obj->base.write_domain;
3486
3487 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3488 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3489
3490 trace_i915_gem_object_change_domain(obj,
3491 old_read_domains,
3492 old_write_domain);
3493 }
3494
3495 int i915_vma_unbind(struct i915_vma *vma)
3496 {
3497 struct drm_i915_gem_object *obj = vma->obj;
3498 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3499 int ret;
3500
3501 if (list_empty(&vma->vma_link))
3502 return 0;
3503
3504 if (!drm_mm_node_allocated(&vma->node)) {
3505 i915_gem_vma_destroy(vma);
3506 return 0;
3507 }
3508
3509 if (vma->pin_count)
3510 return -EBUSY;
3511
3512 BUG_ON(obj->pages == NULL);
3513
3514 ret = i915_gem_object_finish_gpu(obj);
3515 if (ret)
3516 return ret;
3517 /* Continue on if we fail due to EIO, the GPU is hung so we
3518 * should be safe and we need to cleanup or else we might
3519 * cause memory corruption through use-after-free.
3520 */
3521
3522 i915_gem_object_finish_gtt(obj);
3523
3524 /* release the fence reg _after_ flushing */
3525 ret = i915_gem_object_put_fence(obj);
3526 if (ret)
3527 return ret;
3528
3529 trace_i915_vma_unbind(vma);
3530
3531 vma->unbind_vma(vma);
3532
3533 i915_gem_gtt_finish_object(obj);
3534
3535 list_del_init(&vma->mm_list);
3536 /* Avoid an unnecessary call to unbind on rebind. */
3537 if (i915_is_ggtt(vma->vm))
3538 obj->map_and_fenceable = true;
3539
3540 drm_mm_remove_node(&vma->node);
3541 i915_gem_vma_destroy(vma);
3542
3543 /* Since the unbound list is global, only move to that list if
3544 * no more VMAs exist. */
3545 if (list_empty(&obj->vma_list))
3546 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3547
3548 /* And finally now the object is completely decoupled from this vma,
3549 * we can drop its hold on the backing storage and allow it to be
3550 * reaped by the shrinker.
3551 */
3552 i915_gem_object_unpin_pages(obj);
3553
3554 return 0;
3555 }
3556
3557 int i915_gpu_idle(struct drm_device *dev)
3558 {
3559 struct drm_i915_private *dev_priv = dev->dev_private;
3560 struct intel_ring_buffer *ring;
3561 int ret, i;
3562
3563 /* Flush everything onto the inactive list. */
3564 for_each_ring(ring, dev_priv, i) {
3565 ret = i915_switch_context(ring, ring->default_context);
3566 if (ret)
3567 return ret;
3568
3569 ret = intel_ring_idle(ring);
3570 if (ret)
3571 return ret;
3572 }
3573
3574 return 0;
3575 }
3576
3577 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3578 struct drm_i915_gem_object *obj)
3579 {
3580 struct drm_i915_private *dev_priv = dev->dev_private;
3581 int fence_reg;
3582 int fence_pitch_shift;
3583
3584 if (INTEL_INFO(dev)->gen >= 6) {
3585 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3586 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3587 } else {
3588 fence_reg = FENCE_REG_965_0;
3589 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3590 }
3591
3592 fence_reg += reg * 8;
3593
3594 /* To w/a incoherency with non-atomic 64-bit register updates,
3595 * we split the 64-bit update into two 32-bit writes. In order
3596 * for a partial fence not to be evaluated between writes, we
3597 * precede the update with write to turn off the fence register,
3598 * and only enable the fence as the last step.
3599 *
3600 * For extra levels of paranoia, we make sure each step lands
3601 * before applying the next step.
3602 */
3603 I915_WRITE(fence_reg, 0);
3604 POSTING_READ(fence_reg);
3605
3606 if (obj) {
3607 u32 size = i915_gem_obj_ggtt_size(obj);
3608 uint64_t val;
3609
3610 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3611 0xfffff000) << 32;
3612 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3613 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3614 if (obj->tiling_mode == I915_TILING_Y)
3615 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3616 val |= I965_FENCE_REG_VALID;
3617
3618 I915_WRITE(fence_reg + 4, val >> 32);
3619 POSTING_READ(fence_reg + 4);
3620
3621 I915_WRITE(fence_reg + 0, val);
3622 POSTING_READ(fence_reg);
3623 } else {
3624 I915_WRITE(fence_reg + 4, 0);
3625 POSTING_READ(fence_reg + 4);
3626 }
3627 }
3628
3629 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3630 struct drm_i915_gem_object *obj)
3631 {
3632 struct drm_i915_private *dev_priv = dev->dev_private;
3633 u32 val;
3634
3635 if (obj) {
3636 u32 size = i915_gem_obj_ggtt_size(obj);
3637 int pitch_val;
3638 int tile_width;
3639
3640 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3641 (size & -size) != size ||
3642 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3643 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3644 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3645
3646 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3647 tile_width = 128;
3648 else
3649 tile_width = 512;
3650
3651 /* Note: pitch better be a power of two tile widths */
3652 pitch_val = obj->stride / tile_width;
3653 pitch_val = ffs(pitch_val) - 1;
3654
3655 val = i915_gem_obj_ggtt_offset(obj);
3656 if (obj->tiling_mode == I915_TILING_Y)
3657 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3658 val |= I915_FENCE_SIZE_BITS(size);
3659 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3660 val |= I830_FENCE_REG_VALID;
3661 } else
3662 val = 0;
3663
3664 if (reg < 8)
3665 reg = FENCE_REG_830_0 + reg * 4;
3666 else
3667 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3668
3669 I915_WRITE(reg, val);
3670 POSTING_READ(reg);
3671 }
3672
3673 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3674 struct drm_i915_gem_object *obj)
3675 {
3676 struct drm_i915_private *dev_priv = dev->dev_private;
3677 uint32_t val;
3678
3679 if (obj) {
3680 u32 size = i915_gem_obj_ggtt_size(obj);
3681 uint32_t pitch_val;
3682
3683 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3684 (size & -size) != size ||
3685 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3686 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3687 i915_gem_obj_ggtt_offset(obj), size);
3688
3689 pitch_val = obj->stride / 128;
3690 pitch_val = ffs(pitch_val) - 1;
3691
3692 val = i915_gem_obj_ggtt_offset(obj);
3693 if (obj->tiling_mode == I915_TILING_Y)
3694 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3695 val |= I830_FENCE_SIZE_BITS(size);
3696 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3697 val |= I830_FENCE_REG_VALID;
3698 } else
3699 val = 0;
3700
3701 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3702 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3703 }
3704
3705 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3706 {
3707 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3708 }
3709
3710 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3711 struct drm_i915_gem_object *obj)
3712 {
3713 struct drm_i915_private *dev_priv = dev->dev_private;
3714
3715 /* Ensure that all CPU reads are completed before installing a fence
3716 * and all writes before removing the fence.
3717 */
3718 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3719 mb();
3720
3721 WARN(obj && (!obj->stride || !obj->tiling_mode),
3722 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3723 obj->stride, obj->tiling_mode);
3724
3725 switch (INTEL_INFO(dev)->gen) {
3726 case 8:
3727 case 7:
3728 case 6:
3729 case 5:
3730 case 4: i965_write_fence_reg(dev, reg, obj); break;
3731 case 3: i915_write_fence_reg(dev, reg, obj); break;
3732 case 2: i830_write_fence_reg(dev, reg, obj); break;
3733 default: BUG();
3734 }
3735
3736 /* And similarly be paranoid that no direct access to this region
3737 * is reordered to before the fence is installed.
3738 */
3739 if (i915_gem_object_needs_mb(obj))
3740 mb();
3741 }
3742
3743 static inline int fence_number(struct drm_i915_private *dev_priv,
3744 struct drm_i915_fence_reg *fence)
3745 {
3746 return fence - dev_priv->fence_regs;
3747 }
3748
3749 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3750 struct drm_i915_fence_reg *fence,
3751 bool enable)
3752 {
3753 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3754 int reg = fence_number(dev_priv, fence);
3755
3756 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3757
3758 if (enable) {
3759 obj->fence_reg = reg;
3760 fence->obj = obj;
3761 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3762 } else {
3763 obj->fence_reg = I915_FENCE_REG_NONE;
3764 fence->obj = NULL;
3765 list_del_init(&fence->lru_list);
3766 }
3767 obj->fence_dirty = false;
3768 }
3769
3770 static int
3771 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3772 {
3773 if (obj->last_fenced_seqno) {
3774 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3775 if (ret)
3776 return ret;
3777
3778 obj->last_fenced_seqno = 0;
3779 }
3780
3781 obj->fenced_gpu_access = false;
3782 return 0;
3783 }
3784
3785 int
3786 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3787 {
3788 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3789 struct drm_i915_fence_reg *fence;
3790 int ret;
3791
3792 ret = i915_gem_object_wait_fence(obj);
3793 if (ret)
3794 return ret;
3795
3796 if (obj->fence_reg == I915_FENCE_REG_NONE)
3797 return 0;
3798
3799 fence = &dev_priv->fence_regs[obj->fence_reg];
3800
3801 i915_gem_object_fence_lost(obj);
3802 i915_gem_object_update_fence(obj, fence, false);
3803
3804 return 0;
3805 }
3806
3807 static struct drm_i915_fence_reg *
3808 i915_find_fence_reg(struct drm_device *dev)
3809 {
3810 struct drm_i915_private *dev_priv = dev->dev_private;
3811 struct drm_i915_fence_reg *reg, *avail;
3812 int i;
3813
3814 /* First try to find a free reg */
3815 avail = NULL;
3816 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3817 reg = &dev_priv->fence_regs[i];
3818 if (!reg->obj)
3819 return reg;
3820
3821 if (!reg->pin_count)
3822 avail = reg;
3823 }
3824
3825 if (avail == NULL)
3826 goto deadlock;
3827
3828 /* None available, try to steal one or wait for a user to finish */
3829 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3830 if (reg->pin_count)
3831 continue;
3832
3833 return reg;
3834 }
3835
3836 deadlock:
3837 /* Wait for completion of pending flips which consume fences */
3838 if (intel_has_pending_fb_unpin(dev))
3839 return ERR_PTR(-EAGAIN);
3840
3841 return ERR_PTR(-EDEADLK);
3842 }
3843
3844 /**
3845 * i915_gem_object_get_fence - set up fencing for an object
3846 * @obj: object to map through a fence reg
3847 *
3848 * When mapping objects through the GTT, userspace wants to be able to write
3849 * to them without having to worry about swizzling if the object is tiled.
3850 * This function walks the fence regs looking for a free one for @obj,
3851 * stealing one if it can't find any.
3852 *
3853 * It then sets up the reg based on the object's properties: address, pitch
3854 * and tiling format.
3855 *
3856 * For an untiled surface, this removes any existing fence.
3857 */
3858 int
3859 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3860 {
3861 struct drm_device *dev = obj->base.dev;
3862 struct drm_i915_private *dev_priv = dev->dev_private;
3863 bool enable = obj->tiling_mode != I915_TILING_NONE;
3864 struct drm_i915_fence_reg *reg;
3865 int ret;
3866
3867 /* Have we updated the tiling parameters upon the object and so
3868 * will need to serialise the write to the associated fence register?
3869 */
3870 if (obj->fence_dirty) {
3871 ret = i915_gem_object_wait_fence(obj);
3872 if (ret)
3873 return ret;
3874 }
3875
3876 /* Just update our place in the LRU if our fence is getting reused. */
3877 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3878 reg = &dev_priv->fence_regs[obj->fence_reg];
3879 if (!obj->fence_dirty) {
3880 list_move_tail(®->lru_list,
3881 &dev_priv->mm.fence_list);
3882 return 0;
3883 }
3884 } else if (enable) {
3885 reg = i915_find_fence_reg(dev);
3886 if (IS_ERR(reg))
3887 return PTR_ERR(reg);
3888
3889 if (reg->obj) {
3890 struct drm_i915_gem_object *old = reg->obj;
3891
3892 ret = i915_gem_object_wait_fence(old);
3893 if (ret)
3894 return ret;
3895
3896 i915_gem_object_fence_lost(old);
3897 }
3898 } else
3899 return 0;
3900
3901 i915_gem_object_update_fence(obj, reg, enable);
3902
3903 return 0;
3904 }
3905
3906 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3907 struct drm_mm_node *gtt_space,
3908 unsigned long cache_level)
3909 {
3910 struct drm_mm_node *other;
3911
3912 /* On non-LLC machines we have to be careful when putting differing
3913 * types of snoopable memory together to avoid the prefetcher
3914 * crossing memory domains and dying.
3915 */
3916 if (HAS_LLC(dev))
3917 return true;
3918
3919 if (!drm_mm_node_allocated(gtt_space))
3920 return true;
3921
3922 if (list_empty(>t_space->node_list))
3923 return true;
3924
3925 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3926 if (other->allocated && !other->hole_follows && other->color != cache_level)
3927 return false;
3928
3929 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3930 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3931 return false;
3932
3933 return true;
3934 }
3935
3936 static void i915_gem_verify_gtt(struct drm_device *dev)
3937 {
3938 #if WATCH_GTT
3939 struct drm_i915_private *dev_priv = dev->dev_private;
3940 struct drm_i915_gem_object *obj;
3941 int err = 0;
3942
3943 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3944 if (obj->gtt_space == NULL) {
3945 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3946 err++;
3947 continue;
3948 }
3949
3950 if (obj->cache_level != obj->gtt_space->color) {
3951 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3952 i915_gem_obj_ggtt_offset(obj),
3953 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3954 obj->cache_level,
3955 obj->gtt_space->color);
3956 err++;
3957 continue;
3958 }
3959
3960 if (!i915_gem_valid_gtt_space(dev,
3961 obj->gtt_space,
3962 obj->cache_level)) {
3963 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3964 i915_gem_obj_ggtt_offset(obj),
3965 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3966 obj->cache_level);
3967 err++;
3968 continue;
3969 }
3970 }
3971
3972 WARN_ON(err);
3973 #endif
3974 }
3975
3976 /**
3977 * Finds free space in the GTT aperture and binds the object there.
3978 */
3979 static struct i915_vma *
3980 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3981 struct i915_address_space *vm,
3982 unsigned alignment,
3983 uint64_t flags)
3984 {
3985 struct drm_device *dev = obj->base.dev;
3986 struct drm_i915_private *dev_priv = dev->dev_private;
3987 u32 size, fence_size, fence_alignment, unfenced_alignment;
3988 unsigned long start =
3989 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3990 unsigned long end =
3991 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3992 struct i915_vma *vma;
3993 int ret;
3994
3995 fence_size = i915_gem_get_gtt_size(dev,
3996 obj->base.size,
3997 obj->tiling_mode);
3998 fence_alignment = i915_gem_get_gtt_alignment(dev,
3999 obj->base.size,
4000 obj->tiling_mode, true);
4001 unfenced_alignment =
4002 i915_gem_get_gtt_alignment(dev,
4003 obj->base.size,
4004 obj->tiling_mode, false);
4005
4006 if (alignment == 0)
4007 alignment = flags & PIN_MAPPABLE ? fence_alignment :
4008 unfenced_alignment;
4009 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
4010 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
4011 return ERR_PTR(-EINVAL);
4012 }
4013
4014 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
4015
4016 /* If the object is bigger than the entire aperture, reject it early
4017 * before evicting everything in a vain attempt to find space.
4018 */
4019 if (obj->base.size > end) {
4020 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
4021 obj->base.size,
4022 flags & PIN_MAPPABLE ? "mappable" : "total",
4023 end);
4024 return ERR_PTR(-E2BIG);
4025 }
4026
4027 ret = i915_gem_object_get_pages(obj);
4028 if (ret)
4029 return ERR_PTR(ret);
4030
4031 i915_gem_object_pin_pages(obj);
4032
4033 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
4034 if (IS_ERR(vma))
4035 goto err_unpin;
4036
4037 search_free:
4038 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
4039 size, alignment,
4040 obj->cache_level,
4041 start, end,
4042 DRM_MM_SEARCH_DEFAULT,
4043 DRM_MM_CREATE_DEFAULT);
4044 if (ret) {
4045 ret = i915_gem_evict_something(dev, vm, size, alignment,
4046 obj->cache_level,
4047 start, end,
4048 flags);
4049 if (ret == 0)
4050 goto search_free;
4051
4052 goto err_free_vma;
4053 }
4054 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
4055 obj->cache_level))) {
4056 ret = -EINVAL;
4057 goto err_remove_node;
4058 }
4059
4060 ret = i915_gem_gtt_prepare_object(obj);
4061 if (ret)
4062 goto err_remove_node;
4063
4064 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
4065 list_add_tail(&vma->mm_list, &vm->inactive_list);
4066
4067 if (i915_is_ggtt(vm)) {
4068 bool mappable, fenceable;
4069
4070 fenceable = (vma->node.size == fence_size &&
4071 (vma->node.start & (fence_alignment - 1)) == 0);
4072
4073 mappable = (vma->node.start + obj->base.size <=
4074 dev_priv->gtt.mappable_end);
4075
4076 obj->map_and_fenceable = mappable && fenceable;
4077 }
4078
4079 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4080
4081 trace_i915_vma_bind(vma, flags);
4082 vma->bind_vma(vma, obj->cache_level,
4083 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
4084
4085 i915_gem_verify_gtt(dev);
4086 return vma;
4087
4088 err_remove_node:
4089 drm_mm_remove_node(&vma->node);
4090 err_free_vma:
4091 i915_gem_vma_destroy(vma);
4092 vma = ERR_PTR(ret);
4093 err_unpin:
4094 i915_gem_object_unpin_pages(obj);
4095 return vma;
4096 }
4097
4098 bool
4099 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
4100 bool force)
4101 {
4102 /* If we don't have a page list set up, then we're not pinned
4103 * to GPU, and we can ignore the cache flush because it'll happen
4104 * again at bind time.
4105 */
4106 if (obj->pages == NULL)
4107 return false;
4108
4109 /*
4110 * Stolen memory is always coherent with the GPU as it is explicitly
4111 * marked as wc by the system, or the system is cache-coherent.
4112 */
4113 if (obj->stolen)
4114 return false;
4115
4116 /* If the GPU is snooping the contents of the CPU cache,
4117 * we do not need to manually clear the CPU cache lines. However,
4118 * the caches are only snooped when the render cache is
4119 * flushed/invalidated. As we always have to emit invalidations
4120 * and flushes when moving into and out of the RENDER domain, correct
4121 * snooping behaviour occurs naturally as the result of our domain
4122 * tracking.
4123 */
4124 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
4125 return false;
4126
4127 trace_i915_gem_object_clflush(obj);
4128 #ifdef __NetBSD__
4129 drm_clflush_pglist(&obj->igo_pageq);
4130 #else
4131 drm_clflush_sg(obj->pages);
4132 #endif
4133
4134 return true;
4135 }
4136
4137 /** Flushes the GTT write domain for the object if it's dirty. */
4138 static void
4139 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
4140 {
4141 uint32_t old_write_domain;
4142
4143 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
4144 return;
4145
4146 /* No actual flushing is required for the GTT write domain. Writes
4147 * to it immediately go to main memory as far as we know, so there's
4148 * no chipset flush. It also doesn't land in render cache.
4149 *
4150 * However, we do have to enforce the order so that all writes through
4151 * the GTT land before any writes to the device, such as updates to
4152 * the GATT itself.
4153 */
4154 wmb();
4155
4156 old_write_domain = obj->base.write_domain;
4157 obj->base.write_domain = 0;
4158
4159 trace_i915_gem_object_change_domain(obj,
4160 obj->base.read_domains,
4161 old_write_domain);
4162 }
4163
4164 /** Flushes the CPU write domain for the object if it's dirty. */
4165 static void
4166 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
4167 bool force)
4168 {
4169 uint32_t old_write_domain;
4170
4171 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4172 return;
4173
4174 if (i915_gem_clflush_object(obj, force))
4175 i915_gem_chipset_flush(obj->base.dev);
4176
4177 old_write_domain = obj->base.write_domain;
4178 obj->base.write_domain = 0;
4179
4180 trace_i915_gem_object_change_domain(obj,
4181 obj->base.read_domains,
4182 old_write_domain);
4183 }
4184
4185 /**
4186 * Moves a single object to the GTT read, and possibly write domain.
4187 *
4188 * This function returns when the move is complete, including waiting on
4189 * flushes to occur.
4190 */
4191 int
4192 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4193 {
4194 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4195 uint32_t old_write_domain, old_read_domains;
4196 int ret;
4197
4198 /* Not valid to be called on unbound objects. */
4199 if (!i915_gem_obj_bound_any(obj))
4200 return -EINVAL;
4201
4202 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4203 return 0;
4204
4205 ret = i915_gem_object_wait_rendering(obj, !write);
4206 if (ret)
4207 return ret;
4208
4209 i915_gem_object_flush_cpu_write_domain(obj, false);
4210
4211 /* Serialise direct access to this object with the barriers for
4212 * coherent writes from the GPU, by effectively invalidating the
4213 * GTT domain upon first access.
4214 */
4215 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4216 mb();
4217
4218 old_write_domain = obj->base.write_domain;
4219 old_read_domains = obj->base.read_domains;
4220
4221 /* It should now be out of any other write domains, and we can update
4222 * the domain values for our changes.
4223 */
4224 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4225 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4226 if (write) {
4227 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4228 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4229 obj->dirty = 1;
4230 }
4231
4232 trace_i915_gem_object_change_domain(obj,
4233 old_read_domains,
4234 old_write_domain);
4235
4236 /* And bump the LRU for this access */
4237 if (i915_gem_object_is_inactive(obj)) {
4238 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4239 if (vma)
4240 list_move_tail(&vma->mm_list,
4241 &dev_priv->gtt.base.inactive_list);
4242
4243 }
4244
4245 return 0;
4246 }
4247
4248 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4249 enum i915_cache_level cache_level)
4250 {
4251 struct drm_device *dev = obj->base.dev;
4252 struct i915_vma *vma, *next;
4253 int ret;
4254
4255 if (obj->cache_level == cache_level)
4256 return 0;
4257
4258 if (i915_gem_obj_is_pinned(obj)) {
4259 DRM_DEBUG("can not change the cache level of pinned objects\n");
4260 return -EBUSY;
4261 }
4262
4263 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4264 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
4265 ret = i915_vma_unbind(vma);
4266 if (ret)
4267 return ret;
4268 }
4269 }
4270
4271 if (i915_gem_obj_bound_any(obj)) {
4272 ret = i915_gem_object_finish_gpu(obj);
4273 if (ret)
4274 return ret;
4275
4276 i915_gem_object_finish_gtt(obj);
4277
4278 /* Before SandyBridge, you could not use tiling or fence
4279 * registers with snooped memory, so relinquish any fences
4280 * currently pointing to our region in the aperture.
4281 */
4282 if (INTEL_INFO(dev)->gen < 6) {
4283 ret = i915_gem_object_put_fence(obj);
4284 if (ret)
4285 return ret;
4286 }
4287
4288 list_for_each_entry(vma, &obj->vma_list, vma_link)
4289 if (drm_mm_node_allocated(&vma->node))
4290 vma->bind_vma(vma, cache_level,
4291 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
4292 }
4293
4294 list_for_each_entry(vma, &obj->vma_list, vma_link)
4295 vma->node.color = cache_level;
4296 obj->cache_level = cache_level;
4297
4298 if (cpu_write_needs_clflush(obj)) {
4299 u32 old_read_domains, old_write_domain;
4300
4301 /* If we're coming from LLC cached, then we haven't
4302 * actually been tracking whether the data is in the
4303 * CPU cache or not, since we only allow one bit set
4304 * in obj->write_domain and have been skipping the clflushes.
4305 * Just set it to the CPU cache for now.
4306 */
4307 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
4308
4309 old_read_domains = obj->base.read_domains;
4310 old_write_domain = obj->base.write_domain;
4311
4312 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4313 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4314
4315 trace_i915_gem_object_change_domain(obj,
4316 old_read_domains,
4317 old_write_domain);
4318 }
4319
4320 i915_gem_verify_gtt(dev);
4321 return 0;
4322 }
4323
4324 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4325 struct drm_file *file)
4326 {
4327 struct drm_i915_gem_caching *args = data;
4328 struct drm_gem_object *gobj;
4329 struct drm_i915_gem_object *obj;
4330 int ret;
4331
4332 ret = i915_mutex_lock_interruptible(dev);
4333 if (ret)
4334 return ret;
4335
4336 gobj = drm_gem_object_lookup(dev, file, args->handle);
4337 if (gobj == NULL) {
4338 ret = -ENOENT;
4339 goto unlock;
4340 }
4341 obj = to_intel_bo(gobj);
4342
4343 switch (obj->cache_level) {
4344 case I915_CACHE_LLC:
4345 case I915_CACHE_L3_LLC:
4346 args->caching = I915_CACHING_CACHED;
4347 break;
4348
4349 case I915_CACHE_WT:
4350 args->caching = I915_CACHING_DISPLAY;
4351 break;
4352
4353 default:
4354 args->caching = I915_CACHING_NONE;
4355 break;
4356 }
4357
4358 drm_gem_object_unreference(&obj->base);
4359 unlock:
4360 mutex_unlock(&dev->struct_mutex);
4361 return ret;
4362 }
4363
4364 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4365 struct drm_file *file)
4366 {
4367 struct drm_i915_gem_caching *args = data;
4368 struct drm_gem_object *gobj;
4369 struct drm_i915_gem_object *obj;
4370 enum i915_cache_level level;
4371 int ret;
4372
4373 switch (args->caching) {
4374 case I915_CACHING_NONE:
4375 level = I915_CACHE_NONE;
4376 break;
4377 case I915_CACHING_CACHED:
4378 level = I915_CACHE_LLC;
4379 break;
4380 case I915_CACHING_DISPLAY:
4381 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4382 break;
4383 default:
4384 return -EINVAL;
4385 }
4386
4387 ret = i915_mutex_lock_interruptible(dev);
4388 if (ret)
4389 return ret;
4390
4391 gobj = drm_gem_object_lookup(dev, file, args->handle);
4392 if (gobj == NULL) {
4393 ret = -ENOENT;
4394 goto unlock;
4395 }
4396 obj = to_intel_bo(gobj);
4397
4398 ret = i915_gem_object_set_cache_level(obj, level);
4399
4400 drm_gem_object_unreference(&obj->base);
4401 unlock:
4402 mutex_unlock(&dev->struct_mutex);
4403 return ret;
4404 }
4405
4406 static bool is_pin_display(struct drm_i915_gem_object *obj)
4407 {
4408 /* There are 3 sources that pin objects:
4409 * 1. The display engine (scanouts, sprites, cursors);
4410 * 2. Reservations for execbuffer;
4411 * 3. The user.
4412 *
4413 * We can ignore reservations as we hold the struct_mutex and
4414 * are only called outside of the reservation path. The user
4415 * can only increment pin_count once, and so if after
4416 * subtracting the potential reference by the user, any pin_count
4417 * remains, it must be due to another use by the display engine.
4418 */
4419 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
4420 }
4421
4422 /*
4423 * Prepare buffer for display plane (scanout, cursors, etc).
4424 * Can be called from an uninterruptible phase (modesetting) and allows
4425 * any flushes to be pipelined (for pageflips).
4426 */
4427 int
4428 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4429 u32 alignment,
4430 struct intel_ring_buffer *pipelined)
4431 {
4432 u32 old_read_domains, old_write_domain;
4433 int ret;
4434
4435 if (pipelined != obj->ring) {
4436 ret = i915_gem_object_sync(obj, pipelined);
4437 if (ret)
4438 return ret;
4439 }
4440
4441 /* Mark the pin_display early so that we account for the
4442 * display coherency whilst setting up the cache domains.
4443 */
4444 obj->pin_display = true;
4445
4446 /* The display engine is not coherent with the LLC cache on gen6. As
4447 * a result, we make sure that the pinning that is about to occur is
4448 * done with uncached PTEs. This is lowest common denominator for all
4449 * chipsets.
4450 *
4451 * However for gen6+, we could do better by using the GFDT bit instead
4452 * of uncaching, which would allow us to flush all the LLC-cached data
4453 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4454 */
4455 ret = i915_gem_object_set_cache_level(obj,
4456 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4457 if (ret)
4458 goto err_unpin_display;
4459
4460 /* As the user may map the buffer once pinned in the display plane
4461 * (e.g. libkms for the bootup splash), we have to ensure that we
4462 * always use map_and_fenceable for all scanout buffers.
4463 */
4464 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
4465 if (ret)
4466 goto err_unpin_display;
4467
4468 i915_gem_object_flush_cpu_write_domain(obj, true);
4469
4470 old_write_domain = obj->base.write_domain;
4471 old_read_domains = obj->base.read_domains;
4472
4473 /* It should now be out of any other write domains, and we can update
4474 * the domain values for our changes.
4475 */
4476 obj->base.write_domain = 0;
4477 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4478
4479 trace_i915_gem_object_change_domain(obj,
4480 old_read_domains,
4481 old_write_domain);
4482
4483 return 0;
4484
4485 err_unpin_display:
4486 obj->pin_display = is_pin_display(obj);
4487 return ret;
4488 }
4489
4490 void
4491 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4492 {
4493 i915_gem_object_ggtt_unpin(obj);
4494 obj->pin_display = is_pin_display(obj);
4495 }
4496
4497 int
4498 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4499 {
4500 int ret;
4501
4502 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4503 return 0;
4504
4505 ret = i915_gem_object_wait_rendering(obj, false);
4506 if (ret)
4507 return ret;
4508
4509 /* Ensure that we invalidate the GPU's caches and TLBs. */
4510 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4511 return 0;
4512 }
4513
4514 /**
4515 * Moves a single object to the CPU read, and possibly write domain.
4516 *
4517 * This function returns when the move is complete, including waiting on
4518 * flushes to occur.
4519 */
4520 int
4521 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4522 {
4523 uint32_t old_write_domain, old_read_domains;
4524 int ret;
4525
4526 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4527 return 0;
4528
4529 ret = i915_gem_object_wait_rendering(obj, !write);
4530 if (ret)
4531 return ret;
4532
4533 i915_gem_object_flush_gtt_write_domain(obj);
4534
4535 old_write_domain = obj->base.write_domain;
4536 old_read_domains = obj->base.read_domains;
4537
4538 /* Flush the CPU cache if it's still invalid. */
4539 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4540 i915_gem_clflush_object(obj, false);
4541
4542 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4543 }
4544
4545 /* It should now be out of any other write domains, and we can update
4546 * the domain values for our changes.
4547 */
4548 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4549
4550 /* If we're writing through the CPU, then the GPU read domains will
4551 * need to be invalidated at next use.
4552 */
4553 if (write) {
4554 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4555 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4556 }
4557
4558 trace_i915_gem_object_change_domain(obj,
4559 old_read_domains,
4560 old_write_domain);
4561
4562 return 0;
4563 }
4564
4565 /* Throttle our rendering by waiting until the ring has completed our requests
4566 * emitted over 20 msec ago.
4567 *
4568 * Note that if we were to use the current jiffies each time around the loop,
4569 * we wouldn't escape the function with any frames outstanding if the time to
4570 * render a frame was over 20ms.
4571 *
4572 * This should get us reasonable parallelism between CPU and GPU but also
4573 * relatively low latency when blocking on a particular request to finish.
4574 */
4575 static int
4576 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4577 {
4578 struct drm_i915_private *dev_priv = dev->dev_private;
4579 struct drm_i915_file_private *file_priv = file->driver_priv;
4580 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4581 struct drm_i915_gem_request *request;
4582 struct intel_ring_buffer *ring = NULL;
4583 unsigned reset_counter;
4584 u32 seqno = 0;
4585 int ret;
4586
4587 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4588 if (ret)
4589 return ret;
4590
4591 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4592 if (ret)
4593 return ret;
4594
4595 spin_lock(&file_priv->mm.lock);
4596 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4597 if (time_after_eq(request->emitted_jiffies, recent_enough))
4598 break;
4599
4600 ring = request->ring;
4601 seqno = request->seqno;
4602 }
4603 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4604 spin_unlock(&file_priv->mm.lock);
4605
4606 if (seqno == 0)
4607 return 0;
4608
4609 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4610 if (ret == 0)
4611 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4612
4613 return ret;
4614 }
4615
4616 static bool
4617 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4618 {
4619 struct drm_i915_gem_object *obj = vma->obj;
4620
4621 if (alignment &&
4622 vma->node.start & (alignment - 1))
4623 return true;
4624
4625 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4626 return true;
4627
4628 if (flags & PIN_OFFSET_BIAS &&
4629 vma->node.start < (flags & PIN_OFFSET_MASK))
4630 return true;
4631
4632 return false;
4633 }
4634
4635 int
4636 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4637 struct i915_address_space *vm,
4638 uint32_t alignment,
4639 uint64_t flags)
4640 {
4641 struct i915_vma *vma;
4642 int ret;
4643
4644 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4645 return -EINVAL;
4646
4647 vma = i915_gem_obj_to_vma(obj, vm);
4648 if (vma) {
4649 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4650 return -EBUSY;
4651
4652 if (i915_vma_misplaced(vma, alignment, flags)) {
4653 WARN(vma->pin_count,
4654 "bo is already pinned with incorrect alignment:"
4655 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4656 " obj->map_and_fenceable=%d\n",
4657 i915_gem_obj_offset(obj, vm), alignment,
4658 !!(flags & PIN_MAPPABLE),
4659 obj->map_and_fenceable);
4660 ret = i915_vma_unbind(vma);
4661 if (ret)
4662 return ret;
4663
4664 vma = NULL;
4665 }
4666 }
4667
4668 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4669 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4670 if (IS_ERR(vma))
4671 return PTR_ERR(vma);
4672 }
4673
4674 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4675 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4676
4677 vma->pin_count++;
4678 if (flags & PIN_MAPPABLE)
4679 obj->pin_mappable |= true;
4680
4681 return 0;
4682 }
4683
4684 void
4685 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4686 {
4687 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4688
4689 BUG_ON(!vma);
4690 BUG_ON(vma->pin_count == 0);
4691 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4692
4693 if (--vma->pin_count == 0)
4694 obj->pin_mappable = false;
4695 }
4696
4697 int
4698 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4699 struct drm_file *file)
4700 {
4701 struct drm_i915_gem_pin *args = data;
4702 struct drm_gem_object *gobj;
4703 struct drm_i915_gem_object *obj;
4704 int ret;
4705
4706 if (INTEL_INFO(dev)->gen >= 6)
4707 return -ENODEV;
4708
4709 ret = i915_mutex_lock_interruptible(dev);
4710 if (ret)
4711 return ret;
4712
4713 gobj = drm_gem_object_lookup(dev, file, args->handle);
4714 if (gobj == NULL) {
4715 ret = -ENOENT;
4716 goto unlock;
4717 }
4718 obj = to_intel_bo(gobj);
4719
4720 if (obj->madv != I915_MADV_WILLNEED) {
4721 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4722 ret = -EFAULT;
4723 goto out;
4724 }
4725
4726 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4727 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4728 args->handle);
4729 ret = -EINVAL;
4730 goto out;
4731 }
4732
4733 if (obj->user_pin_count == ULONG_MAX) {
4734 ret = -EBUSY;
4735 goto out;
4736 }
4737
4738 if (obj->user_pin_count == 0) {
4739 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4740 if (ret)
4741 goto out;
4742 }
4743
4744 obj->user_pin_count++;
4745 obj->pin_filp = file;
4746
4747 args->offset = i915_gem_obj_ggtt_offset(obj);
4748 out:
4749 drm_gem_object_unreference(&obj->base);
4750 unlock:
4751 mutex_unlock(&dev->struct_mutex);
4752 return ret;
4753 }
4754
4755 int
4756 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4757 struct drm_file *file)
4758 {
4759 struct drm_i915_gem_pin *args = data;
4760 struct drm_gem_object *gobj;
4761 struct drm_i915_gem_object *obj;
4762 int ret;
4763
4764 ret = i915_mutex_lock_interruptible(dev);
4765 if (ret)
4766 return ret;
4767
4768 gobj = drm_gem_object_lookup(dev, file, args->handle);
4769 if (gobj == NULL) {
4770 ret = -ENOENT;
4771 goto unlock;
4772 }
4773 obj = to_intel_bo(gobj);
4774
4775 if (obj->pin_filp != file) {
4776 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4777 args->handle);
4778 ret = -EINVAL;
4779 goto out;
4780 }
4781 obj->user_pin_count--;
4782 if (obj->user_pin_count == 0) {
4783 obj->pin_filp = NULL;
4784 i915_gem_object_ggtt_unpin(obj);
4785 }
4786
4787 out:
4788 drm_gem_object_unreference(&obj->base);
4789 unlock:
4790 mutex_unlock(&dev->struct_mutex);
4791 return ret;
4792 }
4793
4794 int
4795 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4796 struct drm_file *file)
4797 {
4798 struct drm_i915_gem_busy *args = data;
4799 struct drm_gem_object *gobj;
4800 struct drm_i915_gem_object *obj;
4801 int ret;
4802
4803 ret = i915_mutex_lock_interruptible(dev);
4804 if (ret)
4805 return ret;
4806
4807 gobj = drm_gem_object_lookup(dev, file, args->handle);
4808 if (gobj == NULL) {
4809 ret = -ENOENT;
4810 goto unlock;
4811 }
4812 obj = to_intel_bo(gobj);
4813
4814 /* Count all active objects as busy, even if they are currently not used
4815 * by the gpu. Users of this interface expect objects to eventually
4816 * become non-busy without any further actions, therefore emit any
4817 * necessary flushes here.
4818 */
4819 ret = i915_gem_object_flush_active(obj);
4820
4821 args->busy = obj->active;
4822 if (obj->ring) {
4823 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4824 args->busy |= intel_ring_flag(obj->ring) << 16;
4825 }
4826
4827 drm_gem_object_unreference(&obj->base);
4828 unlock:
4829 mutex_unlock(&dev->struct_mutex);
4830 return ret;
4831 }
4832
4833 int
4834 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4835 struct drm_file *file_priv)
4836 {
4837 return i915_gem_ring_throttle(dev, file_priv);
4838 }
4839
4840 int
4841 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4842 struct drm_file *file_priv)
4843 {
4844 struct drm_i915_gem_madvise *args = data;
4845 struct drm_gem_object *gobj;
4846 struct drm_i915_gem_object *obj;
4847 int ret;
4848
4849 switch (args->madv) {
4850 case I915_MADV_DONTNEED:
4851 case I915_MADV_WILLNEED:
4852 break;
4853 default:
4854 return -EINVAL;
4855 }
4856
4857 ret = i915_mutex_lock_interruptible(dev);
4858 if (ret)
4859 return ret;
4860
4861 gobj = drm_gem_object_lookup(dev, file_priv, args->handle);
4862 if (gobj == NULL) {
4863 ret = -ENOENT;
4864 goto unlock;
4865 }
4866 obj = to_intel_bo(gobj);
4867
4868 if (i915_gem_obj_is_pinned(obj)) {
4869 ret = -EINVAL;
4870 goto out;
4871 }
4872
4873 if (obj->madv != __I915_MADV_PURGED)
4874 obj->madv = args->madv;
4875
4876 /* if the object is no longer attached, discard its backing storage */
4877 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4878 i915_gem_object_truncate(obj);
4879
4880 args->retained = obj->madv != __I915_MADV_PURGED;
4881
4882 out:
4883 drm_gem_object_unreference(&obj->base);
4884 unlock:
4885 mutex_unlock(&dev->struct_mutex);
4886 return ret;
4887 }
4888
4889 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4890 const struct drm_i915_gem_object_ops *ops)
4891 {
4892 INIT_LIST_HEAD(&obj->global_list);
4893 INIT_LIST_HEAD(&obj->ring_list);
4894 INIT_LIST_HEAD(&obj->obj_exec_link);
4895 INIT_LIST_HEAD(&obj->vma_list);
4896
4897 obj->ops = ops;
4898
4899 obj->fence_reg = I915_FENCE_REG_NONE;
4900 obj->madv = I915_MADV_WILLNEED;
4901 /* Avoid an unnecessary call to unbind on the first bind. */
4902 obj->map_and_fenceable = true;
4903
4904 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4905 }
4906
4907 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4908 .get_pages = i915_gem_object_get_pages_gtt,
4909 .put_pages = i915_gem_object_put_pages_gtt,
4910 };
4911
4912 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4913 size_t size)
4914 {
4915 #ifdef __NetBSD__
4916 struct drm_i915_private *const dev_priv = dev->dev_private;
4917 #endif
4918 struct drm_i915_gem_object *obj;
4919 #ifndef __NetBSD__
4920 struct address_space *mapping;
4921 gfp_t mask;
4922 #endif
4923
4924 obj = i915_gem_object_alloc(dev);
4925 if (obj == NULL)
4926 return NULL;
4927
4928 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4929 i915_gem_object_free(obj);
4930 return NULL;
4931 }
4932
4933 #ifdef __NetBSD__
4934 uao_set_pgfl(obj->base.gemo_shm_uao, dev_priv->gtt.pgfl);
4935 #else
4936 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4937 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4938 /* 965gm cannot relocate objects above 4GiB. */
4939 mask &= ~__GFP_HIGHMEM;
4940 mask |= __GFP_DMA32;
4941 }
4942
4943 mapping = file_inode(obj->base.filp)->i_mapping;
4944 mapping_set_gfp_mask(mapping, mask);
4945 #endif
4946
4947 i915_gem_object_init(obj, &i915_gem_object_ops);
4948
4949 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4950 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4951
4952 if (HAS_LLC(dev)) {
4953 /* On some devices, we can have the GPU use the LLC (the CPU
4954 * cache) for about a 10% performance improvement
4955 * compared to uncached. Graphics requests other than
4956 * display scanout are coherent with the CPU in
4957 * accessing this cache. This means in this mode we
4958 * don't need to clflush on the CPU side, and on the
4959 * GPU side we only need to flush internal caches to
4960 * get data visible to the CPU.
4961 *
4962 * However, we maintain the display planes as UC, and so
4963 * need to rebind when first used as such.
4964 */
4965 obj->cache_level = I915_CACHE_LLC;
4966 } else
4967 obj->cache_level = I915_CACHE_NONE;
4968
4969 trace_i915_gem_object_create(obj);
4970
4971 return obj;
4972 }
4973
4974 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4975 {
4976 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4977 struct drm_device *dev = obj->base.dev;
4978 struct drm_i915_private *dev_priv = dev->dev_private;
4979 struct i915_vma *vma, *next;
4980
4981 intel_runtime_pm_get(dev_priv);
4982
4983 trace_i915_gem_object_destroy(obj);
4984
4985 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4986 int ret;
4987
4988 vma->pin_count = 0;
4989 ret = i915_vma_unbind(vma);
4990 if (WARN_ON(ret == -ERESTARTSYS)) {
4991 bool was_interruptible;
4992
4993 was_interruptible = dev_priv->mm.interruptible;
4994 dev_priv->mm.interruptible = false;
4995
4996 WARN_ON(i915_vma_unbind(vma));
4997
4998 dev_priv->mm.interruptible = was_interruptible;
4999 }
5000 }
5001
5002 i915_gem_object_detach_phys(obj);
5003
5004 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
5005 * before progressing. */
5006 if (obj->stolen)
5007 i915_gem_object_unpin_pages(obj);
5008
5009 if (WARN_ON(obj->pages_pin_count))
5010 obj->pages_pin_count = 0;
5011 i915_gem_object_put_pages(obj);
5012 i915_gem_object_free_mmap_offset(obj);
5013 i915_gem_object_release_stolen(obj);
5014
5015 BUG_ON(obj->pages);
5016
5017 #ifndef __NetBSD__ /* XXX drm prime */
5018 if (obj->base.import_attach)
5019 drm_prime_gem_destroy(&obj->base, NULL);
5020 #endif
5021
5022 drm_gem_object_release(&obj->base);
5023 i915_gem_info_remove_obj(dev_priv, obj->base.size);
5024
5025 kfree(obj->bit_17);
5026 i915_gem_object_free(obj);
5027
5028 intel_runtime_pm_put(dev_priv);
5029 }
5030
5031 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
5032 struct i915_address_space *vm)
5033 {
5034 struct i915_vma *vma;
5035 list_for_each_entry(vma, &obj->vma_list, vma_link)
5036 if (vma->vm == vm)
5037 return vma;
5038
5039 return NULL;
5040 }
5041
5042 void i915_gem_vma_destroy(struct i915_vma *vma)
5043 {
5044 WARN_ON(vma->node.allocated);
5045
5046 /* Keep the vma as a placeholder in the execbuffer reservation lists */
5047 if (!list_empty(&vma->exec_list))
5048 return;
5049
5050 list_del(&vma->vma_link);
5051
5052 kfree(vma);
5053 }
5054
5055 int
5056 i915_gem_suspend(struct drm_device *dev)
5057 {
5058 struct drm_i915_private *dev_priv = dev->dev_private;
5059 int ret = 0;
5060
5061 mutex_lock(&dev->struct_mutex);
5062 if (dev_priv->ums.mm_suspended)
5063 goto err;
5064
5065 ret = i915_gpu_idle(dev);
5066 if (ret)
5067 goto err;
5068
5069 i915_gem_retire_requests(dev);
5070
5071 /* Under UMS, be paranoid and evict. */
5072 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5073 i915_gem_evict_everything(dev);
5074
5075 i915_kernel_lost_context(dev);
5076 i915_gem_cleanup_ringbuffer(dev);
5077
5078 /* Hack! Don't let anybody do execbuf while we don't control the chip.
5079 * We need to replace this with a semaphore, or something.
5080 * And not confound ums.mm_suspended!
5081 */
5082 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
5083 DRIVER_MODESET);
5084 mutex_unlock(&dev->struct_mutex);
5085
5086 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
5087 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
5088 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
5089
5090 return 0;
5091
5092 err:
5093 mutex_unlock(&dev->struct_mutex);
5094 return ret;
5095 }
5096
5097 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
5098 {
5099 struct drm_device *dev = ring->dev;
5100 struct drm_i915_private *dev_priv = dev->dev_private;
5101 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
5102 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
5103 int i, ret;
5104
5105 if (!HAS_L3_DPF(dev) || !remap_info)
5106 return 0;
5107
5108 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
5109 if (ret)
5110 return ret;
5111
5112 /*
5113 * Note: We do not worry about the concurrent register cacheline hang
5114 * here because no other code should access these registers other than
5115 * at initialization time.
5116 */
5117 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
5118 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
5119 intel_ring_emit(ring, reg_base + i);
5120 intel_ring_emit(ring, remap_info[i/4]);
5121 }
5122
5123 intel_ring_advance(ring);
5124
5125 return ret;
5126 }
5127
5128 void i915_gem_init_swizzling(struct drm_device *dev)
5129 {
5130 struct drm_i915_private *dev_priv = dev->dev_private;
5131
5132 if (INTEL_INFO(dev)->gen < 5 ||
5133 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5134 return;
5135
5136 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5137 DISP_TILE_SURFACE_SWIZZLING);
5138
5139 if (IS_GEN5(dev))
5140 return;
5141
5142 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5143 if (IS_GEN6(dev))
5144 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5145 else if (IS_GEN7(dev))
5146 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5147 else if (IS_GEN8(dev))
5148 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5149 else
5150 BUG();
5151 }
5152
5153 static bool
5154 intel_enable_blt(struct drm_device *dev)
5155 {
5156 if (!HAS_BLT(dev))
5157 return false;
5158
5159 /* The blitter was dysfunctional on early prototypes */
5160 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
5161 DRM_INFO("BLT not supported on this pre-production hardware;"
5162 " graphics performance will be degraded.\n");
5163 return false;
5164 }
5165
5166 return true;
5167 }
5168
5169 static int i915_gem_init_rings(struct drm_device *dev)
5170 {
5171 struct drm_i915_private *dev_priv = dev->dev_private;
5172 int ret;
5173
5174 ret = intel_init_render_ring_buffer(dev);
5175 if (ret)
5176 return ret;
5177
5178 if (HAS_BSD(dev)) {
5179 ret = intel_init_bsd_ring_buffer(dev);
5180 if (ret)
5181 goto cleanup_render_ring;
5182 }
5183
5184 if (intel_enable_blt(dev)) {
5185 ret = intel_init_blt_ring_buffer(dev);
5186 if (ret)
5187 goto cleanup_bsd_ring;
5188 }
5189
5190 if (HAS_VEBOX(dev)) {
5191 ret = intel_init_vebox_ring_buffer(dev);
5192 if (ret)
5193 goto cleanup_blt_ring;
5194 }
5195
5196
5197 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
5198 if (ret)
5199 goto cleanup_vebox_ring;
5200
5201 return 0;
5202
5203 cleanup_vebox_ring:
5204 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5205 cleanup_blt_ring:
5206 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5207 cleanup_bsd_ring:
5208 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5209 cleanup_render_ring:
5210 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5211
5212 return ret;
5213 }
5214
5215 int
5216 i915_gem_init_hw(struct drm_device *dev)
5217 {
5218 struct drm_i915_private *dev_priv = dev->dev_private;
5219 int ret, i;
5220
5221 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5222 return -EIO;
5223
5224 if (dev_priv->ellc_size)
5225 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5226
5227 if (IS_HASWELL(dev))
5228 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5229 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5230
5231 if (HAS_PCH_NOP(dev)) {
5232 if (IS_IVYBRIDGE(dev)) {
5233 u32 temp = I915_READ(GEN7_MSG_CTL);
5234 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5235 I915_WRITE(GEN7_MSG_CTL, temp);
5236 } else if (INTEL_INFO(dev)->gen >= 7) {
5237 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5238 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5239 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5240 }
5241 }
5242
5243 i915_gem_init_swizzling(dev);
5244
5245 ret = i915_gem_init_rings(dev);
5246 if (ret)
5247 return ret;
5248
5249 for (i = 0; i < NUM_L3_SLICES(dev); i++)
5250 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
5251
5252 /*
5253 * XXX: Contexts should only be initialized once. Doing a switch to the
5254 * default context switch however is something we'd like to do after
5255 * reset or thaw (the latter may not actually be necessary for HW, but
5256 * goes with our code better). Context switching requires rings (for
5257 * the do_switch), but before enabling PPGTT. So don't move this.
5258 */
5259 ret = i915_gem_context_enable(dev_priv);
5260 if (ret) {
5261 DRM_ERROR("Context enable failed %d\n", ret);
5262 goto err_out;
5263 }
5264
5265 return 0;
5266
5267 err_out:
5268 i915_gem_cleanup_ringbuffer(dev);
5269 return ret;
5270 }
5271
5272 int i915_gem_init(struct drm_device *dev)
5273 {
5274 struct drm_i915_private *dev_priv = dev->dev_private;
5275 int ret;
5276
5277 mutex_lock(&dev->struct_mutex);
5278
5279 if (IS_VALLEYVIEW(dev)) {
5280 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5281 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
5282 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
5283 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5284 }
5285 i915_gem_init_global_gtt(dev);
5286
5287 ret = i915_gem_context_init(dev);
5288 if (ret) {
5289 mutex_unlock(&dev->struct_mutex);
5290 return ret;
5291 }
5292
5293 ret = i915_gem_init_hw(dev);
5294 mutex_unlock(&dev->struct_mutex);
5295 if (ret) {
5296 WARN_ON(dev_priv->mm.aliasing_ppgtt);
5297 i915_gem_context_fini(dev);
5298 drm_mm_takedown(&dev_priv->gtt.base.mm);
5299 return ret;
5300 }
5301
5302 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
5303 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5304 dev_priv->dri1.allow_batchbuffer = 1;
5305 return 0;
5306 }
5307
5308 void
5309 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5310 {
5311 struct drm_i915_private *dev_priv = dev->dev_private;
5312 struct intel_ring_buffer *ring;
5313 int i;
5314
5315 for_each_ring(ring, dev_priv, i)
5316 intel_cleanup_ring_buffer(ring);
5317 }
5318
5319 int
5320 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
5321 struct drm_file *file_priv)
5322 {
5323 struct drm_i915_private *dev_priv = dev->dev_private;
5324 int ret;
5325
5326 if (drm_core_check_feature(dev, DRIVER_MODESET))
5327 return 0;
5328
5329 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
5330 DRM_ERROR("Reenabling wedged hardware, good luck\n");
5331 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
5332 }
5333
5334 mutex_lock(&dev->struct_mutex);
5335 dev_priv->ums.mm_suspended = 0;
5336
5337 ret = i915_gem_init_hw(dev);
5338 if (ret != 0) {
5339 mutex_unlock(&dev->struct_mutex);
5340 return ret;
5341 }
5342
5343 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
5344 mutex_unlock(&dev->struct_mutex);
5345
5346 ret = drm_irq_install(dev);
5347 if (ret)
5348 goto cleanup_ringbuffer;
5349
5350 return 0;
5351
5352 cleanup_ringbuffer:
5353 mutex_lock(&dev->struct_mutex);
5354 i915_gem_cleanup_ringbuffer(dev);
5355 dev_priv->ums.mm_suspended = 1;
5356 mutex_unlock(&dev->struct_mutex);
5357
5358 return ret;
5359 }
5360
5361 int
5362 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
5363 struct drm_file *file_priv)
5364 {
5365 if (drm_core_check_feature(dev, DRIVER_MODESET))
5366 return 0;
5367
5368 drm_irq_uninstall(dev);
5369
5370 return i915_gem_suspend(dev);
5371 }
5372
5373 void
5374 i915_gem_lastclose(struct drm_device *dev)
5375 {
5376 int ret;
5377
5378 if (drm_core_check_feature(dev, DRIVER_MODESET))
5379 return;
5380
5381 ret = i915_gem_suspend(dev);
5382 if (ret)
5383 DRM_ERROR("failed to idle hardware: %d\n", ret);
5384 }
5385
5386 static void
5387 init_ring_lists(struct intel_ring_buffer *ring)
5388 {
5389 INIT_LIST_HEAD(&ring->active_list);
5390 INIT_LIST_HEAD(&ring->request_list);
5391 }
5392
5393 void i915_init_vm(struct drm_i915_private *dev_priv,
5394 struct i915_address_space *vm)
5395 {
5396 if (!i915_is_ggtt(vm))
5397 drm_mm_init(&vm->mm, vm->start, vm->total);
5398 vm->dev = dev_priv->dev;
5399 INIT_LIST_HEAD(&vm->active_list);
5400 INIT_LIST_HEAD(&vm->inactive_list);
5401 INIT_LIST_HEAD(&vm->global_link);
5402 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5403 }
5404
5405 void
5406 i915_gem_load(struct drm_device *dev)
5407 {
5408 struct drm_i915_private *dev_priv = dev->dev_private;
5409 int i;
5410
5411 dev_priv->slab =
5412 kmem_cache_create("i915_gem_object",
5413 sizeof(struct drm_i915_gem_object), 0,
5414 SLAB_HWCACHE_ALIGN,
5415 NULL);
5416
5417 INIT_LIST_HEAD(&dev_priv->vm_list);
5418 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5419
5420 INIT_LIST_HEAD(&dev_priv->context_list);
5421 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5422 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5423 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5424 for (i = 0; i < I915_NUM_RINGS; i++)
5425 init_ring_lists(&dev_priv->ring[i]);
5426 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5427 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5428 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5429 i915_gem_retire_work_handler);
5430 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5431 i915_gem_idle_work_handler);
5432 #ifdef __NetBSD__
5433 spin_lock_init(&dev_priv->gpu_error.reset_lock);
5434 DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
5435 #else
5436 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5437 #endif
5438
5439 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5440 if (IS_GEN3(dev)) {
5441 I915_WRITE(MI_ARB_STATE,
5442 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5443 }
5444
5445 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5446
5447 /* Old X drivers will take 0-2 for front, back, depth buffers */
5448 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5449 dev_priv->fence_reg_start = 3;
5450
5451 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5452 dev_priv->num_fence_regs = 32;
5453 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5454 dev_priv->num_fence_regs = 16;
5455 else
5456 dev_priv->num_fence_regs = 8;
5457
5458 /* Initialize fence registers to zero */
5459 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5460 i915_gem_restore_fences(dev);
5461
5462 i915_gem_detect_bit_6_swizzle(dev);
5463 #ifdef __NetBSD__
5464 DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
5465 spin_lock_init(&dev_priv->pending_flip_lock);
5466 #else
5467 init_waitqueue_head(&dev_priv->pending_flip_queue);
5468 #endif
5469
5470 dev_priv->mm.interruptible = true;
5471
5472 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
5473 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
5474 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
5475 register_shrinker(&dev_priv->mm.inactive_shrinker);
5476 }
5477
5478 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5479 {
5480 struct drm_i915_file_private *file_priv = file->driver_priv;
5481
5482 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5483
5484 /* Clean up our request list when the client is going away, so that
5485 * later retire_requests won't dereference our soon-to-be-gone
5486 * file_priv.
5487 */
5488 spin_lock(&file_priv->mm.lock);
5489 while (!list_empty(&file_priv->mm.request_list)) {
5490 struct drm_i915_gem_request *request;
5491
5492 request = list_first_entry(&file_priv->mm.request_list,
5493 struct drm_i915_gem_request,
5494 client_list);
5495 list_del(&request->client_list);
5496 request->file_priv = NULL;
5497 }
5498 spin_unlock(&file_priv->mm.lock);
5499 }
5500
5501 static void
5502 i915_gem_file_idle_work_handler(struct work_struct *work)
5503 {
5504 struct drm_i915_file_private *file_priv =
5505 container_of(work, typeof(*file_priv), mm.idle_work.work);
5506
5507 atomic_set(&file_priv->rps_wait_boost, false);
5508 }
5509
5510 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5511 {
5512 struct drm_i915_file_private *file_priv;
5513 int ret;
5514
5515 DRM_DEBUG_DRIVER("\n");
5516
5517 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5518 if (!file_priv)
5519 return -ENOMEM;
5520
5521 file->driver_priv = file_priv;
5522 file_priv->dev_priv = dev->dev_private;
5523 file_priv->file = file;
5524
5525 spin_lock_init(&file_priv->mm.lock);
5526 INIT_LIST_HEAD(&file_priv->mm.request_list);
5527 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5528 i915_gem_file_idle_work_handler);
5529
5530 ret = i915_gem_context_open(dev, file);
5531 if (ret)
5532 kfree(file_priv);
5533
5534 return ret;
5535 }
5536
5537 #ifndef __NetBSD__
5538 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5539 {
5540 if (!mutex_is_locked(mutex))
5541 return false;
5542
5543 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5544 return mutex->owner == task;
5545 #else
5546 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5547 return false;
5548 #endif
5549 }
5550 #endif
5551
5552 static unsigned long
5553 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
5554 {
5555 #ifdef __NetBSD__ /* XXX shrinkers */
5556 return 0;
5557 #else
5558 struct drm_i915_private *dev_priv =
5559 container_of(shrinker,
5560 struct drm_i915_private,
5561 mm.inactive_shrinker);
5562 struct drm_device *dev = dev_priv->dev;
5563 struct drm_i915_gem_object *obj;
5564 bool unlock = true;
5565 unsigned long count;
5566
5567 if (!mutex_trylock(&dev->struct_mutex)) {
5568 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5569 return 0;
5570
5571 if (dev_priv->mm.shrinker_no_lock_stealing)
5572 return 0;
5573
5574 unlock = false;
5575 }
5576
5577 count = 0;
5578 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5579 if (obj->pages_pin_count == 0)
5580 count += obj->base.size >> PAGE_SHIFT;
5581
5582 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5583 if (obj->active)
5584 continue;
5585
5586 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
5587 count += obj->base.size >> PAGE_SHIFT;
5588 }
5589
5590 if (unlock)
5591 mutex_unlock(&dev->struct_mutex);
5592
5593 return count;
5594 #endif
5595 }
5596
5597 /* All the new VM stuff */
5598 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5599 struct i915_address_space *vm)
5600 {
5601 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5602 struct i915_vma *vma;
5603
5604 if (!dev_priv->mm.aliasing_ppgtt ||
5605 vm == &dev_priv->mm.aliasing_ppgtt->base)
5606 vm = &dev_priv->gtt.base;
5607
5608 BUG_ON(list_empty(&o->vma_list));
5609 list_for_each_entry(vma, &o->vma_list, vma_link) {
5610 if (vma->vm == vm)
5611 return vma->node.start;
5612
5613 }
5614 return -1;
5615 }
5616
5617 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5618 struct i915_address_space *vm)
5619 {
5620 struct i915_vma *vma;
5621
5622 list_for_each_entry(vma, &o->vma_list, vma_link)
5623 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5624 return true;
5625
5626 return false;
5627 }
5628
5629 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5630 {
5631 struct i915_vma *vma;
5632
5633 list_for_each_entry(vma, &o->vma_list, vma_link)
5634 if (drm_mm_node_allocated(&vma->node))
5635 return true;
5636
5637 return false;
5638 }
5639
5640 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5641 struct i915_address_space *vm)
5642 {
5643 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5644 struct i915_vma *vma;
5645
5646 if (!dev_priv->mm.aliasing_ppgtt ||
5647 vm == &dev_priv->mm.aliasing_ppgtt->base)
5648 vm = &dev_priv->gtt.base;
5649
5650 BUG_ON(list_empty(&o->vma_list));
5651
5652 list_for_each_entry(vma, &o->vma_list, vma_link)
5653 if (vma->vm == vm)
5654 return vma->node.size;
5655
5656 return 0;
5657 }
5658
5659 static unsigned long
5660 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5661 {
5662 #ifdef __NetBSD__ /* XXX shrinkers */
5663 return 0;
5664 #else
5665 struct drm_i915_private *dev_priv =
5666 container_of(shrinker,
5667 struct drm_i915_private,
5668 mm.inactive_shrinker);
5669 struct drm_device *dev = dev_priv->dev;
5670 unsigned long freed;
5671 bool unlock = true;
5672
5673 if (!mutex_trylock(&dev->struct_mutex)) {
5674 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5675 return SHRINK_STOP;
5676
5677 if (dev_priv->mm.shrinker_no_lock_stealing)
5678 return SHRINK_STOP;
5679
5680 unlock = false;
5681 }
5682
5683 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5684 if (freed < sc->nr_to_scan)
5685 freed += __i915_gem_shrink(dev_priv,
5686 sc->nr_to_scan - freed,
5687 false);
5688 if (freed < sc->nr_to_scan)
5689 freed += i915_gem_shrink_all(dev_priv);
5690
5691 if (unlock)
5692 mutex_unlock(&dev->struct_mutex);
5693
5694 return freed;
5695 #endif
5696 }
5697
5698 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5699 {
5700 struct i915_vma *vma;
5701
5702 if (WARN_ON(list_empty(&obj->vma_list)))
5703 return NULL;
5704
5705 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5706 if (vma->vm != obj_to_ggtt(obj))
5707 return NULL;
5708
5709 return vma;
5710 }
5711