i915_gem.c revision 1.16 1 /*
2 * Copyright 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric (at) anholt.net>
25 *
26 */
27
28 #ifdef __NetBSD__
29 #if 0 /* XXX uvmhist option? */
30 #include "opt_uvmhist.h"
31 #endif
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35
36 #include <uvm/uvm.h>
37 #include <uvm/uvm_extern.h>
38 #include <uvm/uvm_fault.h>
39 #include <uvm/uvm_page.h>
40 #include <uvm/uvm_pmap.h>
41 #include <uvm/uvm_prot.h>
42
43 #include <drm/bus_dma_hacks.h>
44 #endif
45
46 #include <drm/drmP.h>
47 #include <drm/drm_vma_manager.h>
48 #include <drm/i915_drm.h>
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "intel_drv.h"
52 #include <linux/shmem_fs.h>
53 #include <linux/slab.h>
54 #include <linux/swap.h>
55 #include <linux/pci.h>
56 #include <linux/dma-buf.h>
57 #include <linux/errno.h>
58 #include <linux/time.h>
59 #include <linux/err.h>
60 #include <linux/bitops.h>
61 #include <asm/param.h>
62 #include <asm/page.h>
63
64 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
65 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
66 bool force);
67 static __must_check int
68 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
69 bool readonly);
70
71 static void i915_gem_write_fence(struct drm_device *dev, int reg,
72 struct drm_i915_gem_object *obj);
73 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
74 struct drm_i915_fence_reg *fence,
75 bool enable);
76
77 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
78 struct shrink_control *sc);
79 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
80 struct shrink_control *sc);
81 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
82 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
83 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
84 static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
85
86 static bool cpu_cache_is_coherent(struct drm_device *dev,
87 enum i915_cache_level level)
88 {
89 return HAS_LLC(dev) || level != I915_CACHE_NONE;
90 }
91
92 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
93 {
94 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
95 return true;
96
97 return obj->pin_display;
98 }
99
100 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
101 {
102 if (obj->tiling_mode)
103 i915_gem_release_mmap(obj);
104
105 /* As we do not have an associated fence register, we will force
106 * a tiling change if we ever need to acquire one.
107 */
108 obj->fence_dirty = false;
109 obj->fence_reg = I915_FENCE_REG_NONE;
110 }
111
112 /* some bookkeeping */
113 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
114 size_t size)
115 {
116 spin_lock(&dev_priv->mm.object_stat_lock);
117 dev_priv->mm.object_count++;
118 dev_priv->mm.object_memory += size;
119 spin_unlock(&dev_priv->mm.object_stat_lock);
120 }
121
122 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
123 size_t size)
124 {
125 spin_lock(&dev_priv->mm.object_stat_lock);
126 dev_priv->mm.object_count--;
127 dev_priv->mm.object_memory -= size;
128 spin_unlock(&dev_priv->mm.object_stat_lock);
129 }
130
131 static int
132 i915_gem_wait_for_error(struct i915_gpu_error *error)
133 {
134 int ret;
135
136 #define EXIT_COND (!i915_reset_in_progress(error) || \
137 i915_terminally_wedged(error))
138 if (EXIT_COND)
139 return 0;
140
141 /*
142 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
143 * userspace. If it takes that long something really bad is going on and
144 * we should simply try to bail out and fail as gracefully as possible.
145 */
146 #ifdef __NetBSD__
147 spin_lock(&error->reset_lock);
148 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
149 10*HZ, EXIT_COND);
150 spin_unlock(&error->reset_lock);
151 #else
152 ret = wait_event_interruptible_timeout(error->reset_queue,
153 EXIT_COND,
154 10*HZ);
155 #endif
156 if (ret == 0) {
157 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
158 return -EIO;
159 } else if (ret < 0) {
160 return ret;
161 }
162 #undef EXIT_COND
163
164 return 0;
165 }
166
167 int i915_mutex_lock_interruptible(struct drm_device *dev)
168 {
169 struct drm_i915_private *dev_priv = dev->dev_private;
170 int ret;
171
172 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
173 if (ret)
174 return ret;
175
176 ret = mutex_lock_interruptible(&dev->struct_mutex);
177 if (ret)
178 return ret;
179
180 WARN_ON(i915_verify_lists(dev));
181 return 0;
182 }
183
184 static inline bool
185 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
186 {
187 return i915_gem_obj_bound_any(obj) && !obj->active;
188 }
189
190 int
191 i915_gem_init_ioctl(struct drm_device *dev, void *data,
192 struct drm_file *file)
193 {
194 struct drm_i915_private *dev_priv = dev->dev_private;
195 struct drm_i915_gem_init *args = data;
196
197 if (drm_core_check_feature(dev, DRIVER_MODESET))
198 return -ENODEV;
199
200 if (args->gtt_start >= args->gtt_end ||
201 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
202 return -EINVAL;
203
204 /* GEM with user mode setting was never supported on ilk and later. */
205 if (INTEL_INFO(dev)->gen >= 5)
206 return -ENODEV;
207
208 mutex_lock(&dev->struct_mutex);
209 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
210 args->gtt_end);
211 dev_priv->gtt.mappable_end = args->gtt_end;
212 mutex_unlock(&dev->struct_mutex);
213
214 return 0;
215 }
216
217 int
218 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
219 struct drm_file *file)
220 {
221 struct drm_i915_private *dev_priv = dev->dev_private;
222 struct drm_i915_gem_get_aperture *args = data;
223 struct drm_i915_gem_object *obj;
224 size_t pinned;
225
226 pinned = 0;
227 mutex_lock(&dev->struct_mutex);
228 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
229 if (i915_gem_obj_is_pinned(obj))
230 pinned += i915_gem_obj_ggtt_size(obj);
231 mutex_unlock(&dev->struct_mutex);
232
233 args->aper_size = dev_priv->gtt.base.total;
234 args->aper_available_size = args->aper_size - pinned;
235
236 return 0;
237 }
238
239 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
240 {
241 drm_dma_handle_t *phys = obj->phys_handle;
242
243 if (!phys)
244 return;
245
246 if (obj->madv == I915_MADV_WILLNEED) {
247 #ifdef __NetBSD__
248 const char *vaddr = phys->vaddr;
249 unsigned i;
250
251 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
252 struct pglist pages;
253 int error;
254
255 TAILQ_INIT(&pages);
256 error = uvm_obj_wirepages(obj->base.gemo_shm_uao,
257 i*PAGE_SIZE, (i+1)*PAGE_SIZE, &pages);
258 if (error)
259 continue;
260
261 struct vm_page *const vm_page = TAILQ_FIRST(&pages);
262 struct page *const page = container_of(vm_page,
263 struct page, p_vmp);
264 char *const dst = kmap_atomic(page);
265 (void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
266 drm_clflush_virt_range(dst, PAGE_SIZE);
267 kunmap_atomic(dst);
268
269 vm_page->flags &= ~PG_CLEAN;
270 /* XXX mark page accessed */
271 uvm_obj_unwirepages(obj->base.gemo_shm_uao,
272 i*PAGE_SIZE, (i+1)*PAGE_SIZE);
273 }
274 #else
275 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
276 char *vaddr = phys->vaddr;
277 int i;
278
279 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
280 struct page *page = shmem_read_mapping_page(mapping, i);
281 if (!IS_ERR(page)) {
282 char *dst = kmap_atomic(page);
283 memcpy(dst, vaddr, PAGE_SIZE);
284 drm_clflush_virt_range(dst, PAGE_SIZE);
285 kunmap_atomic(dst);
286
287 set_page_dirty(page);
288 mark_page_accessed(page);
289 page_cache_release(page);
290 }
291 vaddr += PAGE_SIZE;
292 }
293 #endif
294 i915_gem_chipset_flush(obj->base.dev);
295 }
296
297 #ifndef __NetBSD__
298 #ifdef CONFIG_X86
299 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
300 #endif
301 #endif
302 drm_pci_free(obj->base.dev, phys);
303 obj->phys_handle = NULL;
304 }
305
306 int
307 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
308 int align)
309 {
310 drm_dma_handle_t *phys;
311 #ifndef __NetBSD__
312 struct address_space *mapping;
313 #endif
314 char *vaddr;
315 int i;
316
317 if (obj->phys_handle) {
318 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
319 return -EBUSY;
320
321 return 0;
322 }
323
324 if (obj->madv != I915_MADV_WILLNEED)
325 return -EFAULT;
326
327 #ifdef __NetBSD__
328 if (obj->base.gemo_shm_uao == NULL)
329 return -EINVAL;
330 #else
331 if (obj->base.filp == NULL)
332 return -EINVAL;
333 #endif
334
335 /* create a new object */
336 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
337 if (!phys)
338 return -ENOMEM;
339
340 vaddr = phys->vaddr;
341 #ifndef __NetBSD__
342 #ifdef CONFIG_X86
343 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
344 #endif
345 mapping = file_inode(obj->base.filp)->i_mapping;
346 #endif
347 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
348 struct page *page;
349 char *src;
350
351 #ifdef __NetBSD__
352 struct pglist pages;
353 int ret;
354
355 TAILQ_INIT(&pages);
356
357 /* XXX errno NetBSD->Linux */
358 ret = -uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
359 (i+1)*PAGE_SIZE, &pages);
360 if (ret) {
361 drm_pci_free(obj->base.dev, phys);
362 return ret;
363 }
364 KASSERT(!TAILQ_EMPTY(&pages));
365 page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
366 #else
367 page = shmem_read_mapping_page(mapping, i);
368 if (IS_ERR(page)) {
369 #ifdef CONFIG_X86
370 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
371 #endif
372 drm_pci_free(obj->base.dev, phys);
373 return PTR_ERR(page);
374 }
375 #endif /* defined(__NetBSD__) */
376
377 src = kmap_atomic(page);
378 memcpy(vaddr, src, PAGE_SIZE);
379 kunmap_atomic(src);
380
381 #ifndef __NetBSD__
382 mark_page_accessed(page);
383 page_cache_release(page);
384 #endif
385
386 vaddr += PAGE_SIZE;
387 }
388
389 obj->phys_handle = phys;
390 return 0;
391 }
392
393 static int
394 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
395 struct drm_i915_gem_pwrite *args,
396 struct drm_file *file_priv)
397 {
398 struct drm_device *dev = obj->base.dev;
399 void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
400 char __user *user_data = to_user_ptr(args->data_ptr);
401
402 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
403 unsigned long unwritten;
404
405 /* The physical object once assigned is fixed for the lifetime
406 * of the obj, so we can safely drop the lock and continue
407 * to access vaddr.
408 */
409 mutex_unlock(&dev->struct_mutex);
410 unwritten = copy_from_user(vaddr, user_data, args->size);
411 mutex_lock(&dev->struct_mutex);
412 if (unwritten)
413 return -EFAULT;
414 }
415
416 i915_gem_chipset_flush(dev);
417 return 0;
418 }
419
420 void *i915_gem_object_alloc(struct drm_device *dev)
421 {
422 struct drm_i915_private *dev_priv = dev->dev_private;
423 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
424 }
425
426 void i915_gem_object_free(struct drm_i915_gem_object *obj)
427 {
428 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
429 kmem_cache_free(dev_priv->slab, obj);
430 }
431
432 static int
433 i915_gem_create(struct drm_file *file,
434 struct drm_device *dev,
435 uint64_t size,
436 uint32_t *handle_p)
437 {
438 struct drm_i915_gem_object *obj;
439 int ret;
440 u32 handle;
441
442 size = roundup(size, PAGE_SIZE);
443 if (size == 0)
444 return -EINVAL;
445
446 /* Allocate the new object */
447 obj = i915_gem_alloc_object(dev, size);
448 if (obj == NULL)
449 return -ENOMEM;
450
451 ret = drm_gem_handle_create(file, &obj->base, &handle);
452 /* drop reference from allocate - handle holds it now */
453 drm_gem_object_unreference_unlocked(&obj->base);
454 if (ret)
455 return ret;
456
457 *handle_p = handle;
458 return 0;
459 }
460
461 int
462 i915_gem_dumb_create(struct drm_file *file,
463 struct drm_device *dev,
464 struct drm_mode_create_dumb *args)
465 {
466 /* have to work out size/pitch and return them */
467 #ifdef __NetBSD__ /* ALIGN means something else. */
468 args->pitch = round_up(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
469 #else
470 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
471 #endif
472 args->size = args->pitch * args->height;
473 return i915_gem_create(file, dev,
474 args->size, &args->handle);
475 }
476
477 /**
478 * Creates a new mm object and returns a handle to it.
479 */
480 int
481 i915_gem_create_ioctl(struct drm_device *dev, void *data,
482 struct drm_file *file)
483 {
484 struct drm_i915_gem_create *args = data;
485
486 return i915_gem_create(file, dev,
487 args->size, &args->handle);
488 }
489
490 static inline int
491 __copy_to_user_swizzled(char __user *cpu_vaddr,
492 const char *gpu_vaddr, int gpu_offset,
493 int length)
494 {
495 int ret, cpu_offset = 0;
496
497 while (length > 0) {
498 #ifdef __NetBSD__ /* XXX ALIGN means something else. */
499 int cacheline_end = round_up(gpu_offset + 1, 64);
500 #else
501 int cacheline_end = ALIGN(gpu_offset + 1, 64);
502 #endif
503 int this_length = min(cacheline_end - gpu_offset, length);
504 int swizzled_gpu_offset = gpu_offset ^ 64;
505
506 ret = __copy_to_user(cpu_vaddr + cpu_offset,
507 gpu_vaddr + swizzled_gpu_offset,
508 this_length);
509 if (ret)
510 return ret + length;
511
512 cpu_offset += this_length;
513 gpu_offset += this_length;
514 length -= this_length;
515 }
516
517 return 0;
518 }
519
520 static inline int
521 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
522 const char __user *cpu_vaddr,
523 int length)
524 {
525 int ret, cpu_offset = 0;
526
527 while (length > 0) {
528 #ifdef __NetBSD__ /* XXX ALIGN means something else. */
529 int cacheline_end = round_up(gpu_offset + 1, 64);
530 #else
531 int cacheline_end = ALIGN(gpu_offset + 1, 64);
532 #endif
533 int this_length = min(cacheline_end - gpu_offset, length);
534 int swizzled_gpu_offset = gpu_offset ^ 64;
535
536 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
537 cpu_vaddr + cpu_offset,
538 this_length);
539 if (ret)
540 return ret + length;
541
542 cpu_offset += this_length;
543 gpu_offset += this_length;
544 length -= this_length;
545 }
546
547 return 0;
548 }
549
550 /*
551 * Pins the specified object's pages and synchronizes the object with
552 * GPU accesses. Sets needs_clflush to non-zero if the caller should
553 * flush the object from the CPU cache.
554 */
555 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
556 int *needs_clflush)
557 {
558 int ret;
559
560 *needs_clflush = 0;
561
562 #ifdef __NetBSD__
563 if (obj->base.gemo_shm_uao == NULL)
564 return -EINVAL;
565 #else
566 if (!obj->base.filp)
567 return -EINVAL;
568 #endif
569
570 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
571 /* If we're not in the cpu read domain, set ourself into the gtt
572 * read domain and manually flush cachelines (if required). This
573 * optimizes for the case when the gpu will dirty the data
574 * anyway again before the next pread happens. */
575 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
576 obj->cache_level);
577 ret = i915_gem_object_wait_rendering(obj, true);
578 if (ret)
579 return ret;
580 }
581
582 ret = i915_gem_object_get_pages(obj);
583 if (ret)
584 return ret;
585
586 i915_gem_object_pin_pages(obj);
587
588 return ret;
589 }
590
591 /* Per-page copy function for the shmem pread fastpath.
592 * Flushes invalid cachelines before reading the target if
593 * needs_clflush is set. */
594 static int
595 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
596 char __user *user_data,
597 bool page_do_bit17_swizzling, bool needs_clflush)
598 {
599 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
600 return -EFAULT;
601 #else
602 char *vaddr;
603 int ret;
604
605 if (unlikely(page_do_bit17_swizzling))
606 return -EINVAL;
607
608 vaddr = kmap_atomic(page);
609 if (needs_clflush)
610 drm_clflush_virt_range(vaddr + shmem_page_offset,
611 page_length);
612 ret = __copy_to_user_inatomic(user_data,
613 vaddr + shmem_page_offset,
614 page_length);
615 kunmap_atomic(vaddr);
616
617 return ret ? -EFAULT : 0;
618 #endif
619 }
620
621 static void
622 shmem_clflush_swizzled_range(char *addr, unsigned long length,
623 bool swizzled)
624 {
625 if (unlikely(swizzled)) {
626 unsigned long start = (unsigned long) addr;
627 unsigned long end = (unsigned long) addr + length;
628
629 /* For swizzling simply ensure that we always flush both
630 * channels. Lame, but simple and it works. Swizzled
631 * pwrite/pread is far from a hotpath - current userspace
632 * doesn't use it at all. */
633 start = round_down(start, 128);
634 end = round_up(end, 128);
635
636 drm_clflush_virt_range((void *)start, end - start);
637 } else {
638 drm_clflush_virt_range(addr, length);
639 }
640
641 }
642
643 /* Only difference to the fast-path function is that this can handle bit17
644 * and uses non-atomic copy and kmap functions. */
645 static int
646 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
647 char __user *user_data,
648 bool page_do_bit17_swizzling, bool needs_clflush)
649 {
650 char *vaddr;
651 int ret;
652
653 vaddr = kmap(page);
654 if (needs_clflush)
655 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
656 page_length,
657 page_do_bit17_swizzling);
658
659 if (page_do_bit17_swizzling)
660 ret = __copy_to_user_swizzled(user_data,
661 vaddr, shmem_page_offset,
662 page_length);
663 else
664 ret = __copy_to_user(user_data,
665 vaddr + shmem_page_offset,
666 page_length);
667 kunmap(page);
668
669 return ret ? - EFAULT : 0;
670 }
671
672 static int
673 i915_gem_shmem_pread(struct drm_device *dev,
674 struct drm_i915_gem_object *obj,
675 struct drm_i915_gem_pread *args,
676 struct drm_file *file)
677 {
678 char __user *user_data;
679 ssize_t remain;
680 loff_t offset;
681 int shmem_page_offset, page_length, ret = 0;
682 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
683 #ifndef __NetBSD__ /* XXX */
684 int prefaulted = 0;
685 #endif
686 int needs_clflush = 0;
687 #ifndef __NetBSD__
688 struct sg_page_iter sg_iter;
689 #endif
690
691 user_data = to_user_ptr(args->data_ptr);
692 remain = args->size;
693
694 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
695
696 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
697 if (ret)
698 return ret;
699
700 offset = args->offset;
701
702 #ifdef __NetBSD__
703 /*
704 * XXX This is a big #ifdef with a lot of duplicated code, but
705 * factoring out the loop head -- which is all that
706 * substantially differs -- is probably more trouble than it's
707 * worth at the moment.
708 */
709 while (0 < remain) {
710 /* Get the next page. */
711 shmem_page_offset = offset_in_page(offset);
712 KASSERT(shmem_page_offset < PAGE_SIZE);
713 page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
714 struct page *const page = i915_gem_object_get_page(obj,
715 atop(offset));
716
717 /* Decide whether to swizzle bit 17. */
718 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
719 (page_to_phys(page) & (1 << 17)) != 0;
720
721 /* Try the fast path. */
722 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
723 user_data, page_do_bit17_swizzling, needs_clflush);
724 if (ret == 0)
725 goto next_page;
726
727 /* Fast path failed. Try the slow path. */
728 mutex_unlock(&dev->struct_mutex);
729 /* XXX prefault */
730 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
731 user_data, page_do_bit17_swizzling, needs_clflush);
732 mutex_lock(&dev->struct_mutex);
733 if (ret)
734 goto out;
735
736 next_page: KASSERT(page_length <= remain);
737 remain -= page_length;
738 user_data += page_length;
739 offset += page_length;
740 }
741 #else
742 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
743 offset >> PAGE_SHIFT) {
744 struct page *page = sg_page_iter_page(&sg_iter);
745
746 if (remain <= 0)
747 break;
748
749 /* Operation in this page
750 *
751 * shmem_page_offset = offset within page in shmem file
752 * page_length = bytes to copy for this page
753 */
754 shmem_page_offset = offset_in_page(offset);
755 page_length = remain;
756 if ((shmem_page_offset + page_length) > PAGE_SIZE)
757 page_length = PAGE_SIZE - shmem_page_offset;
758
759 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
760 (page_to_phys(page) & (1 << 17)) != 0;
761
762 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
763 user_data, page_do_bit17_swizzling,
764 needs_clflush);
765 if (ret == 0)
766 goto next_page;
767
768 mutex_unlock(&dev->struct_mutex);
769
770 if (likely(!i915.prefault_disable) && !prefaulted) {
771 ret = fault_in_multipages_writeable(user_data, remain);
772 /* Userspace is tricking us, but we've already clobbered
773 * its pages with the prefault and promised to write the
774 * data up to the first fault. Hence ignore any errors
775 * and just continue. */
776 (void)ret;
777 prefaulted = 1;
778 }
779
780 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
781 user_data, page_do_bit17_swizzling,
782 needs_clflush);
783
784 mutex_lock(&dev->struct_mutex);
785
786 if (ret)
787 goto out;
788
789 next_page:
790 remain -= page_length;
791 user_data += page_length;
792 offset += page_length;
793 }
794 #endif
795
796 out:
797 i915_gem_object_unpin_pages(obj);
798
799 return ret;
800 }
801
802 /**
803 * Reads data from the object referenced by handle.
804 *
805 * On error, the contents of *data are undefined.
806 */
807 int
808 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
809 struct drm_file *file)
810 {
811 struct drm_i915_gem_pread *args = data;
812 struct drm_gem_object *gobj;
813 struct drm_i915_gem_object *obj;
814 int ret = 0;
815
816 if (args->size == 0)
817 return 0;
818
819 if (!access_ok(VERIFY_WRITE,
820 to_user_ptr(args->data_ptr),
821 args->size))
822 return -EFAULT;
823
824 ret = i915_mutex_lock_interruptible(dev);
825 if (ret)
826 return ret;
827
828 gobj = drm_gem_object_lookup(dev, file, args->handle);
829 if (gobj == NULL) {
830 ret = -ENOENT;
831 goto unlock;
832 }
833 obj = to_intel_bo(gobj);
834
835 /* Bounds check source. */
836 if (args->offset > obj->base.size ||
837 args->size > obj->base.size - args->offset) {
838 ret = -EINVAL;
839 goto out;
840 }
841
842 /* prime objects have no backing filp to GEM pread/pwrite
843 * pages from.
844 */
845 #ifdef __NetBSD__
846 /* Also stolen objects. */
847 if (obj->base.gemo_shm_uao == NULL) {
848 ret = -EINVAL;
849 goto out;
850 }
851 #else
852 if (!obj->base.filp) {
853 ret = -EINVAL;
854 goto out;
855 }
856 #endif
857
858 trace_i915_gem_object_pread(obj, args->offset, args->size);
859
860 ret = i915_gem_shmem_pread(dev, obj, args, file);
861
862 out:
863 drm_gem_object_unreference(&obj->base);
864 unlock:
865 mutex_unlock(&dev->struct_mutex);
866 return ret;
867 }
868
869 /* This is the fast write path which cannot handle
870 * page faults in the source data
871 */
872
873 static inline int
874 fast_user_write(struct io_mapping *mapping,
875 loff_t page_base, int page_offset,
876 char __user *user_data,
877 int length)
878 {
879 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
880 return -EFAULT;
881 #else
882 void __iomem *vaddr_atomic;
883 void *vaddr;
884 unsigned long unwritten;
885
886 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
887 /* We can use the cpu mem copy function because this is X86. */
888 vaddr = (void __force*)vaddr_atomic + page_offset;
889 unwritten = __copy_from_user_inatomic_nocache(vaddr,
890 user_data, length);
891 io_mapping_unmap_atomic(vaddr_atomic);
892 return unwritten;
893 #endif
894 }
895
896 /**
897 * This is the fast pwrite path, where we copy the data directly from the
898 * user into the GTT, uncached.
899 */
900 static int
901 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
902 struct drm_i915_gem_object *obj,
903 struct drm_i915_gem_pwrite *args,
904 struct drm_file *file)
905 {
906 struct drm_i915_private *dev_priv = dev->dev_private;
907 ssize_t remain;
908 loff_t offset, page_base;
909 char __user *user_data;
910 int page_offset, page_length, ret;
911
912 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
913 if (ret)
914 goto out;
915
916 ret = i915_gem_object_set_to_gtt_domain(obj, true);
917 if (ret)
918 goto out_unpin;
919
920 ret = i915_gem_object_put_fence(obj);
921 if (ret)
922 goto out_unpin;
923
924 user_data = to_user_ptr(args->data_ptr);
925 remain = args->size;
926
927 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
928
929 while (remain > 0) {
930 /* Operation in this page
931 *
932 * page_base = page offset within aperture
933 * page_offset = offset within page
934 * page_length = bytes to copy for this page
935 */
936 page_base = offset & PAGE_MASK;
937 page_offset = offset_in_page(offset);
938 page_length = remain;
939 if ((page_offset + remain) > PAGE_SIZE)
940 page_length = PAGE_SIZE - page_offset;
941
942 /* If we get a fault while copying data, then (presumably) our
943 * source page isn't available. Return the error and we'll
944 * retry in the slow path.
945 */
946 if (fast_user_write(dev_priv->gtt.mappable, page_base,
947 page_offset, user_data, page_length)) {
948 ret = -EFAULT;
949 goto out_unpin;
950 }
951
952 remain -= page_length;
953 user_data += page_length;
954 offset += page_length;
955 }
956
957 out_unpin:
958 i915_gem_object_ggtt_unpin(obj);
959 out:
960 return ret;
961 }
962
963 /* Per-page copy function for the shmem pwrite fastpath.
964 * Flushes invalid cachelines before writing to the target if
965 * needs_clflush_before is set and flushes out any written cachelines after
966 * writing if needs_clflush is set. */
967 static int
968 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
969 char __user *user_data,
970 bool page_do_bit17_swizzling,
971 bool needs_clflush_before,
972 bool needs_clflush_after)
973 {
974 #ifdef __NetBSD__
975 return -EFAULT;
976 #else
977 char *vaddr;
978 int ret;
979
980 if (unlikely(page_do_bit17_swizzling))
981 return -EINVAL;
982
983 vaddr = kmap_atomic(page);
984 if (needs_clflush_before)
985 drm_clflush_virt_range(vaddr + shmem_page_offset,
986 page_length);
987 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
988 user_data, page_length);
989 if (needs_clflush_after)
990 drm_clflush_virt_range(vaddr + shmem_page_offset,
991 page_length);
992 kunmap_atomic(vaddr);
993
994 return ret ? -EFAULT : 0;
995 #endif
996 }
997
998 /* Only difference to the fast-path function is that this can handle bit17
999 * and uses non-atomic copy and kmap functions. */
1000 static int
1001 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1002 char __user *user_data,
1003 bool page_do_bit17_swizzling,
1004 bool needs_clflush_before,
1005 bool needs_clflush_after)
1006 {
1007 char *vaddr;
1008 int ret;
1009
1010 vaddr = kmap(page);
1011 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1012 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1013 page_length,
1014 page_do_bit17_swizzling);
1015 if (page_do_bit17_swizzling)
1016 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1017 user_data,
1018 page_length);
1019 else
1020 ret = __copy_from_user(vaddr + shmem_page_offset,
1021 user_data,
1022 page_length);
1023 if (needs_clflush_after)
1024 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1025 page_length,
1026 page_do_bit17_swizzling);
1027 kunmap(page);
1028
1029 return ret ? -EFAULT : 0;
1030 }
1031
1032 static int
1033 i915_gem_shmem_pwrite(struct drm_device *dev,
1034 struct drm_i915_gem_object *obj,
1035 struct drm_i915_gem_pwrite *args,
1036 struct drm_file *file)
1037 {
1038 ssize_t remain;
1039 loff_t offset;
1040 char __user *user_data;
1041 int shmem_page_offset, page_length, ret = 0;
1042 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1043 int hit_slowpath = 0;
1044 int needs_clflush_after = 0;
1045 int needs_clflush_before = 0;
1046 #ifndef __NetBSD__
1047 struct sg_page_iter sg_iter;
1048 #endif
1049
1050 user_data = to_user_ptr(args->data_ptr);
1051 remain = args->size;
1052
1053 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1054
1055 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1056 /* If we're not in the cpu write domain, set ourself into the gtt
1057 * write domain and manually flush cachelines (if required). This
1058 * optimizes for the case when the gpu will use the data
1059 * right away and we therefore have to clflush anyway. */
1060 needs_clflush_after = cpu_write_needs_clflush(obj);
1061 ret = i915_gem_object_wait_rendering(obj, false);
1062 if (ret)
1063 return ret;
1064 }
1065 /* Same trick applies to invalidate partially written cachelines read
1066 * before writing. */
1067 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1068 needs_clflush_before =
1069 !cpu_cache_is_coherent(dev, obj->cache_level);
1070
1071 ret = i915_gem_object_get_pages(obj);
1072 if (ret)
1073 return ret;
1074
1075 i915_gem_object_pin_pages(obj);
1076
1077 offset = args->offset;
1078 obj->dirty = 1;
1079
1080 #ifdef __NetBSD__
1081 while (0 < remain) {
1082 /* Get the next page. */
1083 shmem_page_offset = offset_in_page(offset);
1084 KASSERT(shmem_page_offset < PAGE_SIZE);
1085 page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
1086 struct page *const page = i915_gem_object_get_page(obj,
1087 atop(offset));
1088
1089 /* Decide whether to flush the cache or swizzle bit 17. */
1090 const bool partial_cacheline_write = needs_clflush_before &&
1091 ((shmem_page_offset | page_length)
1092 & (cpu_info_primary.ci_cflush_lsize - 1));
1093 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1094 (page_to_phys(page) & (1 << 17)) != 0;
1095
1096 /* Try the fast path. */
1097 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1098 user_data, page_do_bit17_swizzling,
1099 partial_cacheline_write, needs_clflush_after);
1100 if (ret == 0)
1101 goto next_page;
1102
1103 /* Fast path failed. Try the slow path. */
1104 hit_slowpath = 1;
1105 mutex_unlock(&dev->struct_mutex);
1106 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1107 user_data, page_do_bit17_swizzling,
1108 partial_cacheline_write, needs_clflush_after);
1109 mutex_lock(&dev->struct_mutex);
1110 if (ret)
1111 goto out;
1112
1113 next_page: KASSERT(page_length <= remain);
1114 remain -= page_length;
1115 user_data += page_length;
1116 offset += page_length;
1117 }
1118 #else
1119 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1120 offset >> PAGE_SHIFT) {
1121 struct page *page = sg_page_iter_page(&sg_iter);
1122 int partial_cacheline_write;
1123
1124 if (remain <= 0)
1125 break;
1126
1127 /* Operation in this page
1128 *
1129 * shmem_page_offset = offset within page in shmem file
1130 * page_length = bytes to copy for this page
1131 */
1132 shmem_page_offset = offset_in_page(offset);
1133
1134 page_length = remain;
1135 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1136 page_length = PAGE_SIZE - shmem_page_offset;
1137
1138 /* If we don't overwrite a cacheline completely we need to be
1139 * careful to have up-to-date data by first clflushing. Don't
1140 * overcomplicate things and flush the entire patch. */
1141 partial_cacheline_write = needs_clflush_before &&
1142 ((shmem_page_offset | page_length)
1143 & (boot_cpu_data.x86_clflush_size - 1));
1144
1145 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1146 (page_to_phys(page) & (1 << 17)) != 0;
1147
1148 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1149 user_data, page_do_bit17_swizzling,
1150 partial_cacheline_write,
1151 needs_clflush_after);
1152 if (ret == 0)
1153 goto next_page;
1154
1155 hit_slowpath = 1;
1156 mutex_unlock(&dev->struct_mutex);
1157 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1158 user_data, page_do_bit17_swizzling,
1159 partial_cacheline_write,
1160 needs_clflush_after);
1161
1162 mutex_lock(&dev->struct_mutex);
1163
1164 if (ret)
1165 goto out;
1166
1167 next_page:
1168 remain -= page_length;
1169 user_data += page_length;
1170 offset += page_length;
1171 }
1172 #endif
1173
1174 out:
1175 i915_gem_object_unpin_pages(obj);
1176
1177 if (hit_slowpath) {
1178 /*
1179 * Fixup: Flush cpu caches in case we didn't flush the dirty
1180 * cachelines in-line while writing and the object moved
1181 * out of the cpu write domain while we've dropped the lock.
1182 */
1183 if (!needs_clflush_after &&
1184 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1185 if (i915_gem_clflush_object(obj, obj->pin_display))
1186 i915_gem_chipset_flush(dev);
1187 }
1188 }
1189
1190 if (needs_clflush_after)
1191 i915_gem_chipset_flush(dev);
1192
1193 return ret;
1194 }
1195
1196 /**
1197 * Writes data to the object referenced by handle.
1198 *
1199 * On error, the contents of the buffer that were to be modified are undefined.
1200 */
1201 int
1202 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1203 struct drm_file *file)
1204 {
1205 struct drm_i915_gem_pwrite *args = data;
1206 struct drm_gem_object *gobj;
1207 struct drm_i915_gem_object *obj;
1208 int ret;
1209
1210 if (args->size == 0)
1211 return 0;
1212
1213 if (!access_ok(VERIFY_READ,
1214 to_user_ptr(args->data_ptr),
1215 args->size))
1216 return -EFAULT;
1217
1218 #ifndef __NetBSD__ /* XXX prefault */
1219 if (likely(!i915.prefault_disable)) {
1220 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1221 args->size);
1222 if (ret)
1223 return -EFAULT;
1224 }
1225 #endif
1226
1227 ret = i915_mutex_lock_interruptible(dev);
1228 if (ret)
1229 return ret;
1230
1231 gobj = drm_gem_object_lookup(dev, file, args->handle);
1232 if (gobj == NULL) {
1233 ret = -ENOENT;
1234 goto unlock;
1235 }
1236 obj = to_intel_bo(gobj);
1237
1238 /* Bounds check destination. */
1239 if (args->offset > obj->base.size ||
1240 args->size > obj->base.size - args->offset) {
1241 ret = -EINVAL;
1242 goto out;
1243 }
1244
1245 /* prime objects have no backing filp to GEM pread/pwrite
1246 * pages from.
1247 */
1248 #ifdef __NetBSD__
1249 /* Also stolen objects. */
1250 if (obj->base.gemo_shm_uao == NULL) {
1251 ret = -EINVAL;
1252 goto out;
1253 }
1254 #else
1255 if (!obj->base.filp) {
1256 ret = -EINVAL;
1257 goto out;
1258 }
1259 #endif
1260
1261 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1262
1263 ret = -EFAULT;
1264 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1265 * it would end up going through the fenced access, and we'll get
1266 * different detiling behavior between reading and writing.
1267 * pread/pwrite currently are reading and writing from the CPU
1268 * perspective, requiring manual detiling by the client.
1269 */
1270 if (obj->phys_handle) {
1271 ret = i915_gem_phys_pwrite(obj, args, file);
1272 goto out;
1273 }
1274
1275 if (obj->tiling_mode == I915_TILING_NONE &&
1276 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1277 cpu_write_needs_clflush(obj)) {
1278 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1279 /* Note that the gtt paths might fail with non-page-backed user
1280 * pointers (e.g. gtt mappings when moving data between
1281 * textures). Fallback to the shmem path in that case. */
1282 }
1283
1284 if (ret == -EFAULT || ret == -ENOSPC)
1285 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1286
1287 out:
1288 drm_gem_object_unreference(&obj->base);
1289 unlock:
1290 mutex_unlock(&dev->struct_mutex);
1291 return ret;
1292 }
1293
1294 int
1295 i915_gem_check_wedge(struct i915_gpu_error *error,
1296 bool interruptible)
1297 {
1298 if (i915_reset_in_progress(error)) {
1299 /* Non-interruptible callers can't handle -EAGAIN, hence return
1300 * -EIO unconditionally for these. */
1301 if (!interruptible)
1302 return -EIO;
1303
1304 /* Recovery complete, but the reset failed ... */
1305 if (i915_terminally_wedged(error))
1306 return -EIO;
1307
1308 return -EAGAIN;
1309 }
1310
1311 return 0;
1312 }
1313
1314 /*
1315 * Compare seqno against outstanding lazy request. Emit a request if they are
1316 * equal.
1317 */
1318 static int
1319 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1320 {
1321 int ret;
1322
1323 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1324
1325 ret = 0;
1326 if (seqno == ring->outstanding_lazy_seqno)
1327 ret = i915_add_request(ring, NULL);
1328
1329 return ret;
1330 }
1331
1332 #ifndef __NetBSD__
1333 static void fake_irq(unsigned long data)
1334 {
1335 wake_up_process((struct task_struct *)data);
1336 }
1337 #endif
1338
1339 static bool missed_irq(struct drm_i915_private *dev_priv,
1340 struct intel_ring_buffer *ring)
1341 {
1342 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1343 }
1344
1345 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1346 {
1347 if (file_priv == NULL)
1348 return true;
1349
1350 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1351 }
1352
1353 /**
1354 * __wait_seqno - wait until execution of seqno has finished
1355 * @ring: the ring expected to report seqno
1356 * @seqno: duh!
1357 * @reset_counter: reset sequence associated with the given seqno
1358 * @interruptible: do an interruptible wait (normally yes)
1359 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1360 *
1361 * Note: It is of utmost importance that the passed in seqno and reset_counter
1362 * values have been read by the caller in an smp safe manner. Where read-side
1363 * locks are involved, it is sufficient to read the reset_counter before
1364 * unlocking the lock that protects the seqno. For lockless tricks, the
1365 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1366 * inserted.
1367 *
1368 * Returns 0 if the seqno was found within the alloted time. Else returns the
1369 * errno with remaining time filled in timeout argument.
1370 */
1371 #ifdef __NetBSD__
1372 static int
1373 __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, unsigned reset_counter,
1374 bool interruptible, struct timespec *timeout,
1375 struct drm_i915_file_private *file_priv)
1376 {
1377 struct drm_device *dev = ring->dev;
1378 struct drm_i915_private *dev_priv = dev->dev_private;
1379 bool irq_test_in_progress;
1380 struct timespec before, after;
1381 int ticks;
1382 bool wedged;
1383 int ret;
1384
1385 irq_test_in_progress = (dev_priv->gpu_error.test_irq_rings &
1386 intel_ring_flag(ring));
1387 __insn_barrier();
1388
1389 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1390 return 0;
1391
1392 if (timeout)
1393 ticks = mstohz(timespec_to_ns(timeout) / 1000000);
1394
1395 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1396 gen6_rps_boost(dev_priv);
1397 if (file_priv)
1398 mod_delayed_work(dev_priv->wq,
1399 &file_priv->mm.idle_work,
1400 msecs_to_jiffies(100));
1401 }
1402
1403 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1404 return -ENODEV;
1405
1406 nanotime(&before);
1407 spin_lock(&dev_priv->irq_lock);
1408 #define EXIT_COND \
1409 (((reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) \
1410 ? wedged = true : false) || \
1411 i915_seqno_passed(ring->get_seqno(ring, false), \
1412 seqno))
1413
1414 if (timeout) {
1415 /*
1416 * XXX This missed_irq business smells like unlocked
1417 * Linux waitqueue nonsense.
1418 */
1419 if (missed_irq(dev_priv, ring))
1420 ticks = 1;
1421 if (interruptible)
1422 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
1423 &dev_priv->irq_lock, ticks, EXIT_COND);
1424 else
1425 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
1426 &dev_priv->irq_lock, ticks, EXIT_COND);
1427 } else {
1428 if (interruptible)
1429 DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
1430 &dev_priv->irq_lock, EXIT_COND);
1431 else
1432 DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
1433 &dev_priv->irq_lock, EXIT_COND);
1434 }
1435 #undef EXIT_COND
1436 spin_unlock(&dev_priv->irq_lock);
1437 nanotime(&after);
1438
1439 if (!irq_test_in_progress)
1440 ring->irq_put(ring);
1441 if (timeout)
1442 timespecsub(&after, &before, timeout);
1443 return MAX(ret, 0); /* ignore remaining ticks */
1444 }
1445 #else
1446 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1447 unsigned reset_counter,
1448 bool interruptible,
1449 struct timespec *timeout,
1450 struct drm_i915_file_private *file_priv)
1451 {
1452 struct drm_device *dev = ring->dev;
1453 struct drm_i915_private *dev_priv = dev->dev_private;
1454 const bool irq_test_in_progress =
1455 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1456 struct timespec before, now;
1457 DEFINE_WAIT(wait);
1458 unsigned long timeout_expire;
1459 int ret;
1460
1461 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1462
1463 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1464 return 0;
1465
1466 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1467
1468 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1469 gen6_rps_boost(dev_priv);
1470 if (file_priv)
1471 mod_delayed_work(dev_priv->wq,
1472 &file_priv->mm.idle_work,
1473 msecs_to_jiffies(100));
1474 }
1475
1476 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1477 return -ENODEV;
1478
1479 /* Record current time in case interrupted by signal, or wedged */
1480 trace_i915_gem_request_wait_begin(ring, seqno);
1481 getrawmonotonic(&before);
1482 for (;;) {
1483 struct timer_list timer;
1484
1485 prepare_to_wait(&ring->irq_queue, &wait,
1486 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1487
1488 /* We need to check whether any gpu reset happened in between
1489 * the caller grabbing the seqno and now ... */
1490 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1491 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1492 * is truely gone. */
1493 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1494 if (ret == 0)
1495 ret = -EAGAIN;
1496 break;
1497 }
1498
1499 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1500 ret = 0;
1501 break;
1502 }
1503
1504 if (interruptible && signal_pending(current)) {
1505 ret = -ERESTARTSYS;
1506 break;
1507 }
1508
1509 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1510 ret = -ETIME;
1511 break;
1512 }
1513
1514 timer.function = NULL;
1515 if (timeout || missed_irq(dev_priv, ring)) {
1516 unsigned long expire;
1517
1518 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1519 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1520 mod_timer(&timer, expire);
1521 }
1522
1523 io_schedule();
1524
1525 if (timer.function) {
1526 del_singleshot_timer_sync(&timer);
1527 destroy_timer_on_stack(&timer);
1528 }
1529 }
1530 getrawmonotonic(&now);
1531 trace_i915_gem_request_wait_end(ring, seqno);
1532
1533 if (!irq_test_in_progress)
1534 ring->irq_put(ring);
1535
1536 finish_wait(&ring->irq_queue, &wait);
1537
1538 if (timeout) {
1539 struct timespec sleep_time = timespec_sub(now, before);
1540 *timeout = timespec_sub(*timeout, sleep_time);
1541 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1542 set_normalized_timespec(timeout, 0, 0);
1543 }
1544
1545 return ret;
1546 }
1547 #endif
1548
1549 /**
1550 * Waits for a sequence number to be signaled, and cleans up the
1551 * request and object lists appropriately for that event.
1552 */
1553 int
1554 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1555 {
1556 struct drm_device *dev = ring->dev;
1557 struct drm_i915_private *dev_priv = dev->dev_private;
1558 bool interruptible = dev_priv->mm.interruptible;
1559 int ret;
1560
1561 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1562 BUG_ON(seqno == 0);
1563
1564 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1565 if (ret)
1566 return ret;
1567
1568 ret = i915_gem_check_olr(ring, seqno);
1569 if (ret)
1570 return ret;
1571
1572 return __wait_seqno(ring, seqno,
1573 atomic_read(&dev_priv->gpu_error.reset_counter),
1574 interruptible, NULL, NULL);
1575 }
1576
1577 static int
1578 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1579 struct intel_ring_buffer *ring)
1580 {
1581 i915_gem_retire_requests_ring(ring);
1582
1583 /* Manually manage the write flush as we may have not yet
1584 * retired the buffer.
1585 *
1586 * Note that the last_write_seqno is always the earlier of
1587 * the two (read/write) seqno, so if we haved successfully waited,
1588 * we know we have passed the last write.
1589 */
1590 obj->last_write_seqno = 0;
1591 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1592
1593 return 0;
1594 }
1595
1596 /**
1597 * Ensures that all rendering to the object has completed and the object is
1598 * safe to unbind from the GTT or access from the CPU.
1599 */
1600 static __must_check int
1601 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1602 bool readonly)
1603 {
1604 struct intel_ring_buffer *ring = obj->ring;
1605 u32 seqno;
1606 int ret;
1607
1608 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1609 if (seqno == 0)
1610 return 0;
1611
1612 ret = i915_wait_seqno(ring, seqno);
1613 if (ret)
1614 return ret;
1615
1616 return i915_gem_object_wait_rendering__tail(obj, ring);
1617 }
1618
1619 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1620 * as the object state may change during this call.
1621 */
1622 static __must_check int
1623 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1624 struct drm_i915_file_private *file_priv,
1625 bool readonly)
1626 {
1627 struct drm_device *dev = obj->base.dev;
1628 struct drm_i915_private *dev_priv = dev->dev_private;
1629 struct intel_ring_buffer *ring = obj->ring;
1630 unsigned reset_counter;
1631 u32 seqno;
1632 int ret;
1633
1634 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1635 BUG_ON(!dev_priv->mm.interruptible);
1636
1637 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1638 if (seqno == 0)
1639 return 0;
1640
1641 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1642 if (ret)
1643 return ret;
1644
1645 ret = i915_gem_check_olr(ring, seqno);
1646 if (ret)
1647 return ret;
1648
1649 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1650 mutex_unlock(&dev->struct_mutex);
1651 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1652 mutex_lock(&dev->struct_mutex);
1653 if (ret)
1654 return ret;
1655
1656 return i915_gem_object_wait_rendering__tail(obj, ring);
1657 }
1658
1659 /**
1660 * Called when user space prepares to use an object with the CPU, either
1661 * through the mmap ioctl's mapping or a GTT mapping.
1662 */
1663 int
1664 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1665 struct drm_file *file)
1666 {
1667 struct drm_i915_gem_set_domain *args = data;
1668 struct drm_gem_object *gobj;
1669 struct drm_i915_gem_object *obj;
1670 uint32_t read_domains = args->read_domains;
1671 uint32_t write_domain = args->write_domain;
1672 int ret;
1673
1674 /* Only handle setting domains to types used by the CPU. */
1675 if (write_domain & I915_GEM_GPU_DOMAINS)
1676 return -EINVAL;
1677
1678 if (read_domains & I915_GEM_GPU_DOMAINS)
1679 return -EINVAL;
1680
1681 /* Having something in the write domain implies it's in the read
1682 * domain, and only that read domain. Enforce that in the request.
1683 */
1684 if (write_domain != 0 && read_domains != write_domain)
1685 return -EINVAL;
1686
1687 ret = i915_mutex_lock_interruptible(dev);
1688 if (ret)
1689 return ret;
1690
1691 gobj = drm_gem_object_lookup(dev, file, args->handle);
1692 if (gobj == NULL) {
1693 ret = -ENOENT;
1694 goto unlock;
1695 }
1696 obj = to_intel_bo(gobj);
1697
1698 /* Try to flush the object off the GPU without holding the lock.
1699 * We will repeat the flush holding the lock in the normal manner
1700 * to catch cases where we are gazumped.
1701 */
1702 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1703 file->driver_priv,
1704 !write_domain);
1705 if (ret)
1706 goto unref;
1707
1708 if (read_domains & I915_GEM_DOMAIN_GTT) {
1709 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1710
1711 /* Silently promote "you're not bound, there was nothing to do"
1712 * to success, since the client was just asking us to
1713 * make sure everything was done.
1714 */
1715 if (ret == -EINVAL)
1716 ret = 0;
1717 } else {
1718 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1719 }
1720
1721 unref:
1722 drm_gem_object_unreference(&obj->base);
1723 unlock:
1724 mutex_unlock(&dev->struct_mutex);
1725 return ret;
1726 }
1727
1728 /**
1729 * Called when user space has done writes to this buffer
1730 */
1731 int
1732 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1733 struct drm_file *file)
1734 {
1735 struct drm_i915_gem_sw_finish *args = data;
1736 struct drm_gem_object *gobj;
1737 struct drm_i915_gem_object *obj;
1738 int ret = 0;
1739
1740 ret = i915_mutex_lock_interruptible(dev);
1741 if (ret)
1742 return ret;
1743
1744 gobj = drm_gem_object_lookup(dev, file, args->handle);
1745 if (gobj == NULL) {
1746 ret = -ENOENT;
1747 goto unlock;
1748 }
1749 obj = to_intel_bo(gobj);
1750
1751 /* Pinned buffers may be scanout, so flush the cache */
1752 if (obj->pin_display)
1753 i915_gem_object_flush_cpu_write_domain(obj, true);
1754
1755 drm_gem_object_unreference(&obj->base);
1756 unlock:
1757 mutex_unlock(&dev->struct_mutex);
1758 return ret;
1759 }
1760
1761 /**
1762 * Maps the contents of an object, returning the address it is mapped
1763 * into.
1764 *
1765 * While the mapping holds a reference on the contents of the object, it doesn't
1766 * imply a ref on the object itself.
1767 */
1768 int
1769 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1770 struct drm_file *file)
1771 {
1772 struct drm_i915_gem_mmap *args = data;
1773 struct drm_gem_object *obj;
1774 unsigned long addr;
1775 #ifdef __NetBSD__
1776 int ret;
1777 #endif
1778
1779 obj = drm_gem_object_lookup(dev, file, args->handle);
1780 if (obj == NULL)
1781 return -ENOENT;
1782
1783 /* prime objects have no backing filp to GEM mmap
1784 * pages from.
1785 */
1786 #ifdef __NetBSD__
1787 /* Also stolen objects (XXX can we get them here?) */
1788 if (obj->gemo_shm_uao == NULL) {
1789 drm_gem_object_unreference_unlocked(obj);
1790 return -EINVAL;
1791 }
1792 #else
1793 if (!obj->filp) {
1794 drm_gem_object_unreference_unlocked(obj);
1795 return -EINVAL;
1796 }
1797 #endif
1798
1799 #ifdef __NetBSD__
1800 addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
1801 (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
1802 /* XXX errno NetBSD->Linux */
1803 ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
1804 obj->gemo_shm_uao, args->offset, 0,
1805 UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
1806 (VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
1807 0));
1808 if (ret) {
1809 drm_gem_object_unreference_unlocked(obj);
1810 return ret;
1811 }
1812 uao_reference(obj->gemo_shm_uao);
1813 drm_gem_object_unreference_unlocked(obj);
1814 #else
1815 addr = vm_mmap(obj->filp, 0, args->size,
1816 PROT_READ | PROT_WRITE, MAP_SHARED,
1817 args->offset);
1818 drm_gem_object_unreference_unlocked(obj);
1819 if (IS_ERR((void *)addr))
1820 return addr;
1821 #endif
1822
1823 args->addr_ptr = (uint64_t) addr;
1824
1825 return 0;
1826 }
1827
1828 #ifdef __NetBSD__ /* XXX gem gtt fault */
1829 static int i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
1830 struct vm_page **, int, int, vm_prot_t, int, paddr_t);
1831
1832 int
1833 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1834 int npages, int centeridx, vm_prot_t access_type, int flags)
1835 {
1836 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1837 struct drm_gem_object *gem_obj =
1838 container_of(uobj, struct drm_gem_object, gemo_uvmobj);
1839 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
1840 struct drm_device *dev = obj->base.dev;
1841 struct drm_i915_private *dev_priv = dev->dev_private;
1842 voff_t byte_offset;
1843 pgoff_t page_offset;
1844 int ret = 0;
1845 bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
1846
1847 byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
1848 KASSERT(byte_offset <= obj->base.size);
1849 page_offset = (byte_offset >> PAGE_SHIFT);
1850
1851 intel_runtime_pm_get(dev_priv);
1852
1853 /* Thanks, uvm, but we don't need this lock. */
1854 mutex_exit(uobj->vmobjlock);
1855
1856 ret = i915_mutex_lock_interruptible(dev);
1857 if (ret)
1858 goto out;
1859
1860 trace_i915_gem_object_fault(obj, page_offset, true, write);
1861
1862 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1863 if (ret)
1864 goto unlock;
1865
1866 if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
1867 ret = -EINVAL;
1868 goto unlock;
1869 }
1870
1871 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1872 if (ret)
1873 goto unlock;
1874
1875 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1876 if (ret)
1877 goto unpin;
1878
1879 ret = i915_gem_object_get_fence(obj);
1880 if (ret)
1881 goto unpin;
1882
1883 obj->fault_mappable = true;
1884
1885 /* XXX errno NetBSD->Linux */
1886 ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
1887 flags,
1888 (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
1889 unpin:
1890 i915_gem_object_ggtt_unpin(obj);
1891 unlock:
1892 mutex_unlock(&dev->struct_mutex);
1893 out:
1894 mutex_enter(uobj->vmobjlock);
1895 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
1896 if (ret == -ERESTART)
1897 uvm_wait("i915flt");
1898 /* XXX Deal with GPU hangs here... */
1899 intel_runtime_pm_put(dev_priv);
1900 /* XXX errno Linux->NetBSD */
1901 return -ret;
1902 }
1903
1904 /*
1905 * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
1906 *
1907 * XXX pmap_enter_default instead of pmap_enter because of a problem
1908 * with using weak aliases in kernel modules or something.
1909 */
1910 int pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
1911
1912 static int
1913 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1914 int npages, int centeridx, vm_prot_t access_type, int flags,
1915 paddr_t gtt_paddr)
1916 {
1917 struct vm_map_entry *entry = ufi->entry;
1918 vaddr_t curr_va;
1919 off_t curr_offset;
1920 paddr_t paddr;
1921 u_int mmapflags;
1922 int lcv, retval;
1923 vm_prot_t mapprot;
1924 UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
1925 UVMHIST_LOG(maphist," flags=%d", flags,0,0,0);
1926
1927 /*
1928 * we do not allow device mappings to be mapped copy-on-write
1929 * so we kill any attempt to do so here.
1930 */
1931
1932 if (UVM_ET_ISCOPYONWRITE(entry)) {
1933 UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
1934 entry->etype, 0,0,0);
1935 return(EIO);
1936 }
1937
1938 /*
1939 * now we must determine the offset in udv to use and the VA to
1940 * use for pmap_enter. note that we always use orig_map's pmap
1941 * for pmap_enter (even if we have a submap). since virtual
1942 * addresses in a submap must match the main map, this is ok.
1943 */
1944
1945 /* udv offset = (offset from start of entry) + entry's offset */
1946 curr_offset = entry->offset + (vaddr - entry->start);
1947 /* pmap va = vaddr (virtual address of pps[0]) */
1948 curr_va = vaddr;
1949
1950 /*
1951 * loop over the page range entering in as needed
1952 */
1953
1954 retval = 0;
1955 for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
1956 curr_va += PAGE_SIZE) {
1957 if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
1958 continue;
1959
1960 if (pps[lcv] == PGO_DONTCARE)
1961 continue;
1962
1963 paddr = (gtt_paddr + curr_offset);
1964 mmapflags = 0;
1965 mapprot = ufi->entry->protection;
1966 UVMHIST_LOG(maphist,
1967 " MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
1968 ufi->orig_map->pmap, curr_va, paddr, mapprot);
1969 if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
1970 PMAP_CANFAIL | mapprot | mmapflags) != 0) {
1971 /*
1972 * pmap_enter() didn't have the resource to
1973 * enter this mapping. Unlock everything,
1974 * wait for the pagedaemon to free up some
1975 * pages, and then tell uvm_fault() to start
1976 * the fault again.
1977 *
1978 * XXX Needs some rethinking for the PGO_ALLPAGES
1979 * XXX case.
1980 */
1981 pmap_update(ufi->orig_map->pmap); /* sync what we have so far */
1982 return (ERESTART);
1983 }
1984 }
1985
1986 pmap_update(ufi->orig_map->pmap);
1987 return (retval);
1988 }
1989 #else
1990 /**
1991 * i915_gem_fault - fault a page into the GTT
1992 * vma: VMA in question
1993 * vmf: fault info
1994 *
1995 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1996 * from userspace. The fault handler takes care of binding the object to
1997 * the GTT (if needed), allocating and programming a fence register (again,
1998 * only if needed based on whether the old reg is still valid or the object
1999 * is tiled) and inserting a new PTE into the faulting process.
2000 *
2001 * Note that the faulting process may involve evicting existing objects
2002 * from the GTT and/or fence registers to make room. So performance may
2003 * suffer if the GTT working set is large or there are few fence registers
2004 * left.
2005 */
2006 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2007 {
2008 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2009 struct drm_device *dev = obj->base.dev;
2010 struct drm_i915_private *dev_priv = dev->dev_private;
2011 pgoff_t page_offset;
2012 unsigned long pfn;
2013 int ret = 0;
2014 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2015
2016 intel_runtime_pm_get(dev_priv);
2017
2018 /* We don't use vmf->pgoff since that has the fake offset */
2019 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2020 PAGE_SHIFT;
2021
2022 ret = i915_mutex_lock_interruptible(dev);
2023 if (ret)
2024 goto out;
2025
2026 trace_i915_gem_object_fault(obj, page_offset, true, write);
2027
2028 /* Try to flush the object off the GPU first without holding the lock.
2029 * Upon reacquiring the lock, we will perform our sanity checks and then
2030 * repeat the flush holding the lock in the normal manner to catch cases
2031 * where we are gazumped.
2032 */
2033 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2034 if (ret)
2035 goto unlock;
2036
2037 /* Access to snoopable pages through the GTT is incoherent. */
2038 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2039 ret = -EINVAL;
2040 goto unlock;
2041 }
2042
2043 /* Now bind it into the GTT if needed */
2044 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
2045 if (ret)
2046 goto unlock;
2047
2048 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2049 if (ret)
2050 goto unpin;
2051
2052 ret = i915_gem_object_get_fence(obj);
2053 if (ret)
2054 goto unpin;
2055
2056 obj->fault_mappable = true;
2057
2058 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
2059 pfn >>= PAGE_SHIFT;
2060 pfn += page_offset;
2061
2062 /* Finally, remap it using the new GTT offset */
2063 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
2064 unpin:
2065 i915_gem_object_ggtt_unpin(obj);
2066 unlock:
2067 mutex_unlock(&dev->struct_mutex);
2068 out:
2069 switch (ret) {
2070 case -EIO:
2071 /* If this -EIO is due to a gpu hang, give the reset code a
2072 * chance to clean up the mess. Otherwise return the proper
2073 * SIGBUS. */
2074 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
2075 ret = VM_FAULT_SIGBUS;
2076 break;
2077 }
2078 case -EAGAIN:
2079 /*
2080 * EAGAIN means the gpu is hung and we'll wait for the error
2081 * handler to reset everything when re-faulting in
2082 * i915_mutex_lock_interruptible.
2083 */
2084 case 0:
2085 case -ERESTARTSYS:
2086 case -EINTR:
2087 case -EBUSY:
2088 /*
2089 * EBUSY is ok: this just means that another thread
2090 * already did the job.
2091 */
2092 ret = VM_FAULT_NOPAGE;
2093 break;
2094 case -ENOMEM:
2095 ret = VM_FAULT_OOM;
2096 break;
2097 case -ENOSPC:
2098 case -EFAULT:
2099 ret = VM_FAULT_SIGBUS;
2100 break;
2101 default:
2102 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2103 ret = VM_FAULT_SIGBUS;
2104 break;
2105 }
2106
2107 intel_runtime_pm_put(dev_priv);
2108 return ret;
2109 }
2110
2111 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2112 {
2113 struct i915_vma *vma;
2114
2115 /*
2116 * Only the global gtt is relevant for gtt memory mappings, so restrict
2117 * list traversal to objects bound into the global address space. Note
2118 * that the active list should be empty, but better safe than sorry.
2119 */
2120 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
2121 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
2122 i915_gem_release_mmap(vma->obj);
2123 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
2124 i915_gem_release_mmap(vma->obj);
2125 }
2126 #endif
2127
2128 /**
2129 * i915_gem_release_mmap - remove physical page mappings
2130 * @obj: obj in question
2131 *
2132 * Preserve the reservation of the mmapping with the DRM core code, but
2133 * relinquish ownership of the pages back to the system.
2134 *
2135 * It is vital that we remove the page mapping if we have mapped a tiled
2136 * object through the GTT and then lose the fence register due to
2137 * resource pressure. Similarly if the object has been moved out of the
2138 * aperture, than pages mapped into userspace must be revoked. Removing the
2139 * mapping will then trigger a page fault on the next user access, allowing
2140 * fixup by i915_gem_fault().
2141 */
2142 void
2143 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2144 {
2145 if (!obj->fault_mappable)
2146 return;
2147
2148 #ifdef __NetBSD__ /* XXX gem gtt fault */
2149 {
2150 struct vm_page *page;
2151
2152 mutex_enter(obj->base.gemo_shm_uao->vmobjlock);
2153 KASSERT(obj->pages != NULL);
2154 /* Force a fresh fault for each page. */
2155 /*
2156 * XXX OOPS! This doesn't actually do what we want.
2157 * This causes a fresh fault for access to the backing
2158 * pages -- but nothing accesses the backing pages
2159 * directly! What is actually entered into CPU page
2160 * table entries is aperture addresses which have been
2161 * programmed by the GTT to refer to those backing
2162 * pages.
2163 *
2164 * We need to clear those page table entries, but
2165 * there's no good way to do that at the moment: nobody
2166 * records for us a map from either uvm objects or
2167 * physical device addresses to a list of all virtual
2168 * pages where they have been mapped. pmap(9) records
2169 * a map only from physical RAM addresses to virtual
2170 * pages; it does nothing for physical device
2171 * addresses.
2172 */
2173 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
2174 pmap_page_protect(page, VM_PROT_NONE);
2175 mutex_exit(obj->base.gemo_shm_uao->vmobjlock);
2176 }
2177 #else
2178 drm_vma_node_unmap(&obj->base.vma_node,
2179 obj->base.dev->anon_inode->i_mapping);
2180 #endif
2181 obj->fault_mappable = false;
2182 }
2183
2184 uint32_t
2185 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2186 {
2187 uint32_t gtt_size;
2188
2189 if (INTEL_INFO(dev)->gen >= 4 ||
2190 tiling_mode == I915_TILING_NONE)
2191 return size;
2192
2193 /* Previous chips need a power-of-two fence region when tiling */
2194 if (INTEL_INFO(dev)->gen == 3)
2195 gtt_size = 1024*1024;
2196 else
2197 gtt_size = 512*1024;
2198
2199 while (gtt_size < size)
2200 gtt_size <<= 1;
2201
2202 return gtt_size;
2203 }
2204
2205 /**
2206 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2207 * @obj: object to check
2208 *
2209 * Return the required GTT alignment for an object, taking into account
2210 * potential fence register mapping.
2211 */
2212 uint32_t
2213 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2214 int tiling_mode, bool fenced)
2215 {
2216 /*
2217 * Minimum alignment is 4k (GTT page size), but might be greater
2218 * if a fence register is needed for the object.
2219 */
2220 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2221 tiling_mode == I915_TILING_NONE)
2222 return 4096;
2223
2224 /*
2225 * Previous chips need to be aligned to the size of the smallest
2226 * fence register that can contain the object.
2227 */
2228 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2229 }
2230
2231 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2232 {
2233 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2234 int ret;
2235
2236 if (drm_vma_node_has_offset(&obj->base.vma_node))
2237 return 0;
2238
2239 dev_priv->mm.shrinker_no_lock_stealing = true;
2240
2241 ret = drm_gem_create_mmap_offset(&obj->base);
2242 if (ret != -ENOSPC)
2243 goto out;
2244
2245 /* Badly fragmented mmap space? The only way we can recover
2246 * space is by destroying unwanted objects. We can't randomly release
2247 * mmap_offsets as userspace expects them to be persistent for the
2248 * lifetime of the objects. The closest we can is to release the
2249 * offsets on purgeable objects by truncating it and marking it purged,
2250 * which prevents userspace from ever using that object again.
2251 */
2252 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
2253 ret = drm_gem_create_mmap_offset(&obj->base);
2254 if (ret != -ENOSPC)
2255 goto out;
2256
2257 i915_gem_shrink_all(dev_priv);
2258 ret = drm_gem_create_mmap_offset(&obj->base);
2259 out:
2260 dev_priv->mm.shrinker_no_lock_stealing = false;
2261
2262 return ret;
2263 }
2264
2265 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2266 {
2267 drm_gem_free_mmap_offset(&obj->base);
2268 }
2269
2270 int
2271 i915_gem_mmap_gtt(struct drm_file *file,
2272 struct drm_device *dev,
2273 uint32_t handle,
2274 uint64_t *offset)
2275 {
2276 struct drm_i915_private *dev_priv = dev->dev_private;
2277 struct drm_gem_object *gobj;
2278 struct drm_i915_gem_object *obj;
2279 int ret;
2280
2281 ret = i915_mutex_lock_interruptible(dev);
2282 if (ret)
2283 return ret;
2284
2285 gobj = drm_gem_object_lookup(dev, file, handle);
2286 if (gobj == NULL) {
2287 ret = -ENOENT;
2288 goto unlock;
2289 }
2290 obj = to_intel_bo(gobj);
2291
2292 if (obj->base.size > dev_priv->gtt.mappable_end) {
2293 ret = -E2BIG;
2294 goto out;
2295 }
2296
2297 if (obj->madv != I915_MADV_WILLNEED) {
2298 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2299 ret = -EFAULT;
2300 goto out;
2301 }
2302
2303 ret = i915_gem_object_create_mmap_offset(obj);
2304 if (ret)
2305 goto out;
2306
2307 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2308
2309 out:
2310 drm_gem_object_unreference(&obj->base);
2311 unlock:
2312 mutex_unlock(&dev->struct_mutex);
2313 return ret;
2314 }
2315
2316 /**
2317 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2318 * @dev: DRM device
2319 * @data: GTT mapping ioctl data
2320 * @file: GEM object info
2321 *
2322 * Simply returns the fake offset to userspace so it can mmap it.
2323 * The mmap call will end up in drm_gem_mmap(), which will set things
2324 * up so we can get faults in the handler above.
2325 *
2326 * The fault handler will take care of binding the object into the GTT
2327 * (since it may have been evicted to make room for something), allocating
2328 * a fence register, and mapping the appropriate aperture address into
2329 * userspace.
2330 */
2331 int
2332 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2333 struct drm_file *file)
2334 {
2335 struct drm_i915_gem_mmap_gtt *args = data;
2336
2337 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2338 }
2339
2340 /* Immediately discard the backing storage */
2341 static void
2342 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2343 {
2344 #ifndef __NetBSD__
2345 struct inode *inode;
2346 #endif
2347
2348 i915_gem_object_free_mmap_offset(obj);
2349
2350 #ifdef __NetBSD__
2351 if (obj->base.gemo_shm_uao == NULL)
2352 return;
2353
2354 {
2355 struct uvm_object *const uobj = obj->base.gemo_shm_uao;
2356
2357 if (uobj != NULL) {
2358 /* XXX Calling pgo_put like this is bogus. */
2359 mutex_enter(uobj->vmobjlock);
2360 (*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
2361 (PGO_ALLPAGES | PGO_FREE));
2362 }
2363 }
2364 #else
2365 if (obj->base.filp == NULL)
2366 return;
2367
2368 /* Our goal here is to return as much of the memory as
2369 * is possible back to the system as we are called from OOM.
2370 * To do this we must instruct the shmfs to drop all of its
2371 * backing pages, *now*.
2372 */
2373 inode = file_inode(obj->base.filp);
2374 shmem_truncate_range(inode, 0, (loff_t)-1);
2375 #endif
2376
2377 obj->madv = __I915_MADV_PURGED;
2378 }
2379
2380 static inline int
2381 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
2382 {
2383 return obj->madv == I915_MADV_DONTNEED;
2384 }
2385
2386 #ifdef __NetBSD__
2387 static void
2388 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2389 {
2390 struct drm_device *const dev = obj->base.dev;
2391 int ret;
2392
2393 /* XXX Cargo-culted from the Linux code. */
2394 BUG_ON(obj->madv == __I915_MADV_PURGED);
2395
2396 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2397 if (ret) {
2398 WARN_ON(ret != -EIO);
2399 i915_gem_clflush_object(obj, true);
2400 obj->base.read_domains = obj->base.write_domain =
2401 I915_GEM_DOMAIN_CPU;
2402 }
2403
2404 if (i915_gem_object_needs_bit17_swizzle(obj))
2405 i915_gem_object_save_bit_17_swizzle(obj);
2406
2407 /* XXX Maintain dirty flag? */
2408
2409 bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
2410 bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2411 obj->base.size, obj->pages, obj->igo_nsegs);
2412
2413 kfree(obj->pages);
2414 }
2415 #else
2416 static void
2417 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2418 {
2419 struct sg_page_iter sg_iter;
2420 int ret;
2421
2422 BUG_ON(obj->madv == __I915_MADV_PURGED);
2423
2424 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2425 if (ret) {
2426 /* In the event of a disaster, abandon all caches and
2427 * hope for the best.
2428 */
2429 WARN_ON(ret != -EIO);
2430 i915_gem_clflush_object(obj, true);
2431 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2432 }
2433
2434 if (i915_gem_object_needs_bit17_swizzle(obj))
2435 i915_gem_object_save_bit_17_swizzle(obj);
2436
2437 if (obj->madv == I915_MADV_DONTNEED)
2438 obj->dirty = 0;
2439
2440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2441 struct page *page = sg_page_iter_page(&sg_iter);
2442
2443 if (obj->dirty)
2444 set_page_dirty(page);
2445
2446 if (obj->madv == I915_MADV_WILLNEED)
2447 mark_page_accessed(page);
2448
2449 page_cache_release(page);
2450 }
2451 obj->dirty = 0;
2452
2453 sg_free_table(obj->pages);
2454 kfree(obj->pages);
2455 }
2456 #endif
2457
2458 int
2459 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2460 {
2461 const struct drm_i915_gem_object_ops *ops = obj->ops;
2462
2463 if (obj->pages == NULL)
2464 return 0;
2465
2466 if (obj->pages_pin_count)
2467 return -EBUSY;
2468
2469 BUG_ON(i915_gem_obj_bound_any(obj));
2470
2471 /* ->put_pages might need to allocate memory for the bit17 swizzle
2472 * array, hence protect them from being reaped by removing them from gtt
2473 * lists early. */
2474 list_del(&obj->global_list);
2475
2476 ops->put_pages(obj);
2477 obj->pages = NULL;
2478
2479 if (i915_gem_object_is_purgeable(obj))
2480 i915_gem_object_truncate(obj);
2481
2482 return 0;
2483 }
2484
2485 static unsigned long
2486 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
2487 bool purgeable_only)
2488 {
2489 struct list_head still_bound_list;
2490 struct drm_i915_gem_object *obj, *next;
2491 unsigned long count = 0;
2492
2493 list_for_each_entry_safe(obj, next,
2494 &dev_priv->mm.unbound_list,
2495 global_list) {
2496 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2497 i915_gem_object_put_pages(obj) == 0) {
2498 count += obj->base.size >> PAGE_SHIFT;
2499 if (count >= target)
2500 return count;
2501 }
2502 }
2503
2504 /*
2505 * As we may completely rewrite the bound list whilst unbinding
2506 * (due to retiring requests) we have to strictly process only
2507 * one element of the list at the time, and recheck the list
2508 * on every iteration.
2509 */
2510 INIT_LIST_HEAD(&still_bound_list);
2511 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
2512 struct i915_vma *vma, *v;
2513
2514 obj = list_first_entry(&dev_priv->mm.bound_list,
2515 typeof(*obj), global_list);
2516 list_move_tail(&obj->global_list, &still_bound_list);
2517
2518 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
2519 continue;
2520
2521 /*
2522 * Hold a reference whilst we unbind this object, as we may
2523 * end up waiting for and retiring requests. This might
2524 * release the final reference (held by the active list)
2525 * and result in the object being freed from under us.
2526 * in this object being freed.
2527 *
2528 * Note 1: Shrinking the bound list is special since only active
2529 * (and hence bound objects) can contain such limbo objects, so
2530 * we don't need special tricks for shrinking the unbound list.
2531 * The only other place where we have to be careful with active
2532 * objects suddenly disappearing due to retiring requests is the
2533 * eviction code.
2534 *
2535 * Note 2: Even though the bound list doesn't hold a reference
2536 * to the object we can safely grab one here: The final object
2537 * unreferencing and the bound_list are both protected by the
2538 * dev->struct_mutex and so we won't ever be able to observe an
2539 * object on the bound_list with a reference count equals 0.
2540 */
2541 drm_gem_object_reference(&obj->base);
2542
2543 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
2544 if (i915_vma_unbind(vma))
2545 break;
2546
2547 if (i915_gem_object_put_pages(obj) == 0)
2548 count += obj->base.size >> PAGE_SHIFT;
2549
2550 drm_gem_object_unreference(&obj->base);
2551 }
2552 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
2553
2554 return count;
2555 }
2556
2557 static unsigned long
2558 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2559 {
2560 return __i915_gem_shrink(dev_priv, target, true);
2561 }
2562
2563 static unsigned long
2564 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2565 {
2566 struct drm_i915_gem_object *obj, *next;
2567 long freed = 0;
2568
2569 i915_gem_evict_everything(dev_priv->dev);
2570
2571 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
2572 global_list) {
2573 if (i915_gem_object_put_pages(obj) == 0)
2574 freed += obj->base.size >> PAGE_SHIFT;
2575 }
2576 return freed;
2577 }
2578
2579 #ifdef __NetBSD__
2580 static int
2581 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2582 {
2583 struct drm_device *const dev = obj->base.dev;
2584 struct vm_page *page;
2585 int error;
2586
2587 /* XXX Cargo-culted from the Linux code. */
2588 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2589 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2590
2591 KASSERT(obj->pages == NULL);
2592 TAILQ_INIT(&obj->igo_pageq);
2593 obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
2594 sizeof(obj->pages[0]), GFP_KERNEL);
2595 if (obj->pages == NULL) {
2596 error = -ENOMEM;
2597 goto fail0;
2598 }
2599
2600 /* XXX errno NetBSD->Linux */
2601 error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
2602 0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
2603 (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
2604 if (error)
2605 /* XXX Try i915_gem_purge, i915_gem_shrink_all. */
2606 goto fail1;
2607 KASSERT(0 < obj->igo_nsegs);
2608 KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
2609
2610 /*
2611 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
2612 *
2613 * XXX This is wrong; we ought to pass this constraint to
2614 * bus_dmamem_wire_uvm_object instead.
2615 */
2616 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
2617 const uint64_t mask =
2618 (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
2619 0xffffffffULL : 0xffffffffffULL);
2620 if (VM_PAGE_TO_PHYS(page) & ~mask) {
2621 DRM_ERROR("GEM physical address exceeds %u bits"
2622 ": %"PRIxMAX"\n",
2623 popcount64(mask),
2624 (uintmax_t)VM_PAGE_TO_PHYS(page));
2625 error = -EIO;
2626 goto fail2;
2627 }
2628 }
2629
2630 /* XXX Should create the DMA map when creating the object. */
2631
2632 /* XXX errno NetBSD->Linux */
2633 error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
2634 PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
2635 if (error)
2636 goto fail2;
2637
2638 /* XXX Cargo-culted from the Linux code. */
2639 if (i915_gem_object_needs_bit17_swizzle(obj))
2640 i915_gem_object_do_bit_17_swizzle(obj);
2641
2642 /* Success! */
2643 return 0;
2644
2645 fail2: bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2646 obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
2647 fail1: kfree(obj->pages);
2648 obj->pages = NULL;
2649 fail0: KASSERT(error);
2650 return error;
2651 }
2652 #else
2653 static int
2654 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2655 {
2656 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2657 int page_count, i;
2658 struct address_space *mapping;
2659 struct sg_table *st;
2660 struct scatterlist *sg;
2661 struct sg_page_iter sg_iter;
2662 struct page *page;
2663 unsigned long last_pfn = 0; /* suppress gcc warning */
2664 gfp_t gfp;
2665
2666 /* Assert that the object is not currently in any GPU domain. As it
2667 * wasn't in the GTT, there shouldn't be any way it could have been in
2668 * a GPU cache
2669 */
2670 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2671 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2672
2673 st = kmalloc(sizeof(*st), GFP_KERNEL);
2674 if (st == NULL)
2675 return -ENOMEM;
2676
2677 page_count = obj->base.size / PAGE_SIZE;
2678 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2679 kfree(st);
2680 return -ENOMEM;
2681 }
2682
2683 /* Get the list of pages out of our struct file. They'll be pinned
2684 * at this point until we release them.
2685 *
2686 * Fail silently without starting the shrinker
2687 */
2688 mapping = file_inode(obj->base.filp)->i_mapping;
2689 gfp = mapping_gfp_mask(mapping);
2690 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2691 gfp &= ~(__GFP_IO | __GFP_WAIT);
2692 sg = st->sgl;
2693 st->nents = 0;
2694 for (i = 0; i < page_count; i++) {
2695 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2696 if (IS_ERR(page)) {
2697 i915_gem_purge(dev_priv, page_count);
2698 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2699 }
2700 if (IS_ERR(page)) {
2701 /* We've tried hard to allocate the memory by reaping
2702 * our own buffer, now let the real VM do its job and
2703 * go down in flames if truly OOM.
2704 */
2705 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2706 gfp |= __GFP_IO | __GFP_WAIT;
2707
2708 i915_gem_shrink_all(dev_priv);
2709 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2710 if (IS_ERR(page))
2711 goto err_pages;
2712
2713 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2714 gfp &= ~(__GFP_IO | __GFP_WAIT);
2715 }
2716 #ifdef CONFIG_SWIOTLB
2717 if (swiotlb_nr_tbl()) {
2718 st->nents++;
2719 sg_set_page(sg, page, PAGE_SIZE, 0);
2720 sg = sg_next(sg);
2721 continue;
2722 }
2723 #endif
2724 if (!i || page_to_pfn(page) != last_pfn + 1) {
2725 if (i)
2726 sg = sg_next(sg);
2727 st->nents++;
2728 sg_set_page(sg, page, PAGE_SIZE, 0);
2729 } else {
2730 sg->length += PAGE_SIZE;
2731 }
2732 last_pfn = page_to_pfn(page);
2733
2734 /* Check that the i965g/gm workaround works. */
2735 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2736 }
2737 #ifdef CONFIG_SWIOTLB
2738 if (!swiotlb_nr_tbl())
2739 #endif
2740 sg_mark_end(sg);
2741 obj->pages = st;
2742
2743 if (i915_gem_object_needs_bit17_swizzle(obj))
2744 i915_gem_object_do_bit_17_swizzle(obj);
2745
2746 return 0;
2747
2748 err_pages:
2749 sg_mark_end(sg);
2750 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2751 page_cache_release(sg_page_iter_page(&sg_iter));
2752 sg_free_table(st);
2753 kfree(st);
2754 return PTR_ERR(page);
2755 }
2756 #endif
2757
2758 /* Ensure that the associated pages are gathered from the backing storage
2759 * and pinned into our object. i915_gem_object_get_pages() may be called
2760 * multiple times before they are released by a single call to
2761 * i915_gem_object_put_pages() - once the pages are no longer referenced
2762 * either as a result of memory pressure (reaping pages under the shrinker)
2763 * or as the object is itself released.
2764 */
2765 int
2766 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2767 {
2768 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2769 const struct drm_i915_gem_object_ops *ops = obj->ops;
2770 int ret;
2771
2772 if (obj->pages)
2773 return 0;
2774
2775 if (obj->madv != I915_MADV_WILLNEED) {
2776 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2777 return -EFAULT;
2778 }
2779
2780 BUG_ON(obj->pages_pin_count);
2781
2782 ret = ops->get_pages(obj);
2783 if (ret)
2784 return ret;
2785
2786 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2787 return 0;
2788 }
2789
2790 static void
2791 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2792 struct intel_ring_buffer *ring)
2793 {
2794 struct drm_device *dev = obj->base.dev;
2795 struct drm_i915_private *dev_priv = dev->dev_private;
2796 u32 seqno = intel_ring_get_seqno(ring);
2797
2798 BUG_ON(ring == NULL);
2799 if (obj->ring != ring && obj->last_write_seqno) {
2800 /* Keep the seqno relative to the current ring */
2801 obj->last_write_seqno = seqno;
2802 }
2803 obj->ring = ring;
2804
2805 /* Add a reference if we're newly entering the active list. */
2806 if (!obj->active) {
2807 drm_gem_object_reference(&obj->base);
2808 obj->active = 1;
2809 }
2810
2811 list_move_tail(&obj->ring_list, &ring->active_list);
2812
2813 obj->last_read_seqno = seqno;
2814
2815 if (obj->fenced_gpu_access) {
2816 obj->last_fenced_seqno = seqno;
2817
2818 /* Bump MRU to take account of the delayed flush */
2819 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2820 struct drm_i915_fence_reg *reg;
2821
2822 reg = &dev_priv->fence_regs[obj->fence_reg];
2823 list_move_tail(®->lru_list,
2824 &dev_priv->mm.fence_list);
2825 }
2826 }
2827 }
2828
2829 void i915_vma_move_to_active(struct i915_vma *vma,
2830 struct intel_ring_buffer *ring)
2831 {
2832 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2833 return i915_gem_object_move_to_active(vma->obj, ring);
2834 }
2835
2836 static void
2837 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2838 {
2839 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2840 struct i915_address_space *vm;
2841 struct i915_vma *vma;
2842
2843 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2844 BUG_ON(!obj->active);
2845
2846 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2847 vma = i915_gem_obj_to_vma(obj, vm);
2848 if (vma && !list_empty(&vma->mm_list))
2849 list_move_tail(&vma->mm_list, &vm->inactive_list);
2850 }
2851
2852 list_del_init(&obj->ring_list);
2853 obj->ring = NULL;
2854
2855 obj->last_read_seqno = 0;
2856 obj->last_write_seqno = 0;
2857 obj->base.write_domain = 0;
2858
2859 obj->last_fenced_seqno = 0;
2860 obj->fenced_gpu_access = false;
2861
2862 obj->active = 0;
2863 drm_gem_object_unreference(&obj->base);
2864
2865 WARN_ON(i915_verify_lists(dev));
2866 }
2867
2868 static int
2869 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2870 {
2871 struct drm_i915_private *dev_priv = dev->dev_private;
2872 struct intel_ring_buffer *ring;
2873 int ret, i, j;
2874
2875 /* Carefully retire all requests without writing to the rings */
2876 for_each_ring(ring, dev_priv, i) {
2877 ret = intel_ring_idle(ring);
2878 if (ret)
2879 return ret;
2880 }
2881 i915_gem_retire_requests(dev);
2882
2883 /* Finally reset hw state */
2884 for_each_ring(ring, dev_priv, i) {
2885 intel_ring_init_seqno(ring, seqno);
2886
2887 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2888 ring->sync_seqno[j] = 0;
2889 }
2890
2891 return 0;
2892 }
2893
2894 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2895 {
2896 struct drm_i915_private *dev_priv = dev->dev_private;
2897 int ret;
2898
2899 if (seqno == 0)
2900 return -EINVAL;
2901
2902 /* HWS page needs to be set less than what we
2903 * will inject to ring
2904 */
2905 ret = i915_gem_init_seqno(dev, seqno - 1);
2906 if (ret)
2907 return ret;
2908
2909 /* Carefully set the last_seqno value so that wrap
2910 * detection still works
2911 */
2912 dev_priv->next_seqno = seqno;
2913 dev_priv->last_seqno = seqno - 1;
2914 if (dev_priv->last_seqno == 0)
2915 dev_priv->last_seqno--;
2916
2917 return 0;
2918 }
2919
2920 int
2921 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2922 {
2923 struct drm_i915_private *dev_priv = dev->dev_private;
2924
2925 /* reserve 0 for non-seqno */
2926 if (dev_priv->next_seqno == 0) {
2927 int ret = i915_gem_init_seqno(dev, 0);
2928 if (ret)
2929 return ret;
2930
2931 dev_priv->next_seqno = 1;
2932 }
2933
2934 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2935 return 0;
2936 }
2937
2938 int __i915_add_request(struct intel_ring_buffer *ring,
2939 struct drm_file *file,
2940 struct drm_i915_gem_object *obj,
2941 u32 *out_seqno)
2942 {
2943 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2944 struct drm_i915_gem_request *request;
2945 u32 request_ring_position, request_start;
2946 int ret;
2947
2948 request_start = intel_ring_get_tail(ring);
2949 /*
2950 * Emit any outstanding flushes - execbuf can fail to emit the flush
2951 * after having emitted the batchbuffer command. Hence we need to fix
2952 * things up similar to emitting the lazy request. The difference here
2953 * is that the flush _must_ happen before the next request, no matter
2954 * what.
2955 */
2956 ret = intel_ring_flush_all_caches(ring);
2957 if (ret)
2958 return ret;
2959
2960 request = ring->preallocated_lazy_request;
2961 if (WARN_ON(request == NULL))
2962 return -ENOMEM;
2963
2964 /* Record the position of the start of the request so that
2965 * should we detect the updated seqno part-way through the
2966 * GPU processing the request, we never over-estimate the
2967 * position of the head.
2968 */
2969 request_ring_position = intel_ring_get_tail(ring);
2970
2971 ret = ring->add_request(ring);
2972 if (ret)
2973 return ret;
2974
2975 request->seqno = intel_ring_get_seqno(ring);
2976 request->ring = ring;
2977 request->head = request_start;
2978 request->tail = request_ring_position;
2979
2980 /* Whilst this request exists, batch_obj will be on the
2981 * active_list, and so will hold the active reference. Only when this
2982 * request is retired will the the batch_obj be moved onto the
2983 * inactive_list and lose its active reference. Hence we do not need
2984 * to explicitly hold another reference here.
2985 */
2986 request->batch_obj = obj;
2987
2988 /* Hold a reference to the current context so that we can inspect
2989 * it later in case a hangcheck error event fires.
2990 */
2991 request->ctx = ring->last_context;
2992 if (request->ctx)
2993 i915_gem_context_reference(request->ctx);
2994
2995 request->emitted_jiffies = jiffies;
2996 list_add_tail(&request->list, &ring->request_list);
2997 request->file_priv = NULL;
2998
2999 if (file) {
3000 struct drm_i915_file_private *file_priv = file->driver_priv;
3001
3002 spin_lock(&file_priv->mm.lock);
3003 request->file_priv = file_priv;
3004 list_add_tail(&request->client_list,
3005 &file_priv->mm.request_list);
3006 spin_unlock(&file_priv->mm.lock);
3007 }
3008
3009 trace_i915_gem_request_add(ring, request->seqno);
3010 ring->outstanding_lazy_seqno = 0;
3011 ring->preallocated_lazy_request = NULL;
3012
3013 if (!dev_priv->ums.mm_suspended) {
3014 i915_queue_hangcheck(ring->dev);
3015
3016 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
3017 queue_delayed_work(dev_priv->wq,
3018 &dev_priv->mm.retire_work,
3019 round_jiffies_up_relative(HZ));
3020 intel_mark_busy(dev_priv->dev);
3021 }
3022
3023 if (out_seqno)
3024 *out_seqno = request->seqno;
3025 return 0;
3026 }
3027
3028 static inline void
3029 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
3030 {
3031 struct drm_i915_file_private *file_priv = request->file_priv;
3032
3033 if (!file_priv)
3034 return;
3035
3036 spin_lock(&file_priv->mm.lock);
3037 list_del(&request->client_list);
3038 request->file_priv = NULL;
3039 spin_unlock(&file_priv->mm.lock);
3040 }
3041
3042 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
3043 const struct i915_hw_context *ctx)
3044 {
3045 unsigned long elapsed;
3046
3047 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
3048
3049 if (ctx->hang_stats.banned)
3050 return true;
3051
3052 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
3053 if (!i915_gem_context_is_default(ctx)) {
3054 DRM_DEBUG("context hanging too fast, banning!\n");
3055 return true;
3056 } else if (dev_priv->gpu_error.stop_rings == 0) {
3057 DRM_ERROR("gpu hanging too fast, banning!\n");
3058 return true;
3059 }
3060 }
3061
3062 return false;
3063 }
3064
3065 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
3066 struct i915_hw_context *ctx,
3067 const bool guilty)
3068 {
3069 struct i915_ctx_hang_stats *hs;
3070
3071 if (WARN_ON(!ctx))
3072 return;
3073
3074 hs = &ctx->hang_stats;
3075
3076 if (guilty) {
3077 hs->banned = i915_context_is_banned(dev_priv, ctx);
3078 hs->batch_active++;
3079 hs->guilty_ts = get_seconds();
3080 } else {
3081 hs->batch_pending++;
3082 }
3083 }
3084
3085 static void i915_gem_free_request(struct drm_i915_gem_request *request)
3086 {
3087 list_del(&request->list);
3088 i915_gem_request_remove_from_client(request);
3089
3090 if (request->ctx)
3091 i915_gem_context_unreference(request->ctx);
3092
3093 kfree(request);
3094 }
3095
3096 struct drm_i915_gem_request *
3097 i915_gem_find_active_request(struct intel_ring_buffer *ring)
3098 {
3099 struct drm_i915_gem_request *request;
3100 u32 completed_seqno;
3101
3102 completed_seqno = ring->get_seqno(ring, false);
3103
3104 list_for_each_entry(request, &ring->request_list, list) {
3105 if (i915_seqno_passed(completed_seqno, request->seqno))
3106 continue;
3107
3108 return request;
3109 }
3110
3111 return NULL;
3112 }
3113
3114 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
3115 struct intel_ring_buffer *ring)
3116 {
3117 struct drm_i915_gem_request *request;
3118 bool ring_hung;
3119
3120 request = i915_gem_find_active_request(ring);
3121
3122 if (request == NULL)
3123 return;
3124
3125 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3126
3127 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3128
3129 list_for_each_entry_continue(request, &ring->request_list, list)
3130 i915_set_reset_status(dev_priv, request->ctx, false);
3131 }
3132
3133 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
3134 struct intel_ring_buffer *ring)
3135 {
3136 while (!list_empty(&ring->active_list)) {
3137 struct drm_i915_gem_object *obj;
3138
3139 obj = list_first_entry(&ring->active_list,
3140 struct drm_i915_gem_object,
3141 ring_list);
3142
3143 i915_gem_object_move_to_inactive(obj);
3144 }
3145
3146 /*
3147 * We must free the requests after all the corresponding objects have
3148 * been moved off active lists. Which is the same order as the normal
3149 * retire_requests function does. This is important if object hold
3150 * implicit references on things like e.g. ppgtt address spaces through
3151 * the request.
3152 */
3153 while (!list_empty(&ring->request_list)) {
3154 struct drm_i915_gem_request *request;
3155
3156 request = list_first_entry(&ring->request_list,
3157 struct drm_i915_gem_request,
3158 list);
3159
3160 i915_gem_free_request(request);
3161 }
3162 }
3163
3164 void i915_gem_restore_fences(struct drm_device *dev)
3165 {
3166 struct drm_i915_private *dev_priv = dev->dev_private;
3167 int i;
3168
3169 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3170 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
3171
3172 /*
3173 * Commit delayed tiling changes if we have an object still
3174 * attached to the fence, otherwise just clear the fence.
3175 */
3176 if (reg->obj) {
3177 i915_gem_object_update_fence(reg->obj, reg,
3178 reg->obj->tiling_mode);
3179 } else {
3180 i915_gem_write_fence(dev, i, NULL);
3181 }
3182 }
3183 }
3184
3185 void i915_gem_reset(struct drm_device *dev)
3186 {
3187 struct drm_i915_private *dev_priv = dev->dev_private;
3188 struct intel_ring_buffer *ring;
3189 int i;
3190
3191 /*
3192 * Before we free the objects from the requests, we need to inspect
3193 * them for finding the guilty party. As the requests only borrow
3194 * their reference to the objects, the inspection must be done first.
3195 */
3196 for_each_ring(ring, dev_priv, i)
3197 i915_gem_reset_ring_status(dev_priv, ring);
3198
3199 for_each_ring(ring, dev_priv, i)
3200 i915_gem_reset_ring_cleanup(dev_priv, ring);
3201
3202 i915_gem_cleanup_ringbuffer(dev);
3203
3204 i915_gem_context_reset(dev);
3205
3206 i915_gem_restore_fences(dev);
3207 }
3208
3209 /**
3210 * This function clears the request list as sequence numbers are passed.
3211 */
3212 static void
3213 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
3214 {
3215 uint32_t seqno;
3216
3217 if (list_empty(&ring->request_list))
3218 return;
3219
3220 WARN_ON(i915_verify_lists(ring->dev));
3221
3222 seqno = ring->get_seqno(ring, true);
3223
3224 /* Move any buffers on the active list that are no longer referenced
3225 * by the ringbuffer to the flushing/inactive lists as appropriate,
3226 * before we free the context associated with the requests.
3227 */
3228 while (!list_empty(&ring->active_list)) {
3229 struct drm_i915_gem_object *obj;
3230
3231 obj = list_first_entry(&ring->active_list,
3232 struct drm_i915_gem_object,
3233 ring_list);
3234
3235 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
3236 break;
3237
3238 i915_gem_object_move_to_inactive(obj);
3239 }
3240
3241
3242 while (!list_empty(&ring->request_list)) {
3243 struct drm_i915_gem_request *request;
3244
3245 request = list_first_entry(&ring->request_list,
3246 struct drm_i915_gem_request,
3247 list);
3248
3249 if (!i915_seqno_passed(seqno, request->seqno))
3250 break;
3251
3252 trace_i915_gem_request_retire(ring, request->seqno);
3253 /* We know the GPU must have read the request to have
3254 * sent us the seqno + interrupt, so use the position
3255 * of tail of the request to update the last known position
3256 * of the GPU head.
3257 */
3258 ring->last_retired_head = request->tail;
3259
3260 i915_gem_free_request(request);
3261 }
3262
3263 if (unlikely(ring->trace_irq_seqno &&
3264 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
3265 ring->irq_put(ring);
3266 ring->trace_irq_seqno = 0;
3267 }
3268
3269 WARN_ON(i915_verify_lists(ring->dev));
3270 }
3271
3272 bool
3273 i915_gem_retire_requests(struct drm_device *dev)
3274 {
3275 struct drm_i915_private *dev_priv = dev->dev_private;
3276 struct intel_ring_buffer *ring;
3277 bool idle = true;
3278 int i;
3279
3280 for_each_ring(ring, dev_priv, i) {
3281 i915_gem_retire_requests_ring(ring);
3282 idle &= list_empty(&ring->request_list);
3283 }
3284
3285 if (idle)
3286 mod_delayed_work(dev_priv->wq,
3287 &dev_priv->mm.idle_work,
3288 msecs_to_jiffies(100));
3289
3290 return idle;
3291 }
3292
3293 static void
3294 i915_gem_retire_work_handler(struct work_struct *work)
3295 {
3296 struct drm_i915_private *dev_priv =
3297 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3298 struct drm_device *dev = dev_priv->dev;
3299 bool idle;
3300
3301 /* Come back later if the device is busy... */
3302 idle = false;
3303 if (mutex_trylock(&dev->struct_mutex)) {
3304 idle = i915_gem_retire_requests(dev);
3305 mutex_unlock(&dev->struct_mutex);
3306 }
3307 if (!idle)
3308 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3309 round_jiffies_up_relative(HZ));
3310 }
3311
3312 static void
3313 i915_gem_idle_work_handler(struct work_struct *work)
3314 {
3315 struct drm_i915_private *dev_priv =
3316 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3317
3318 intel_mark_idle(dev_priv->dev);
3319 }
3320
3321 /**
3322 * Ensures that an object will eventually get non-busy by flushing any required
3323 * write domains, emitting any outstanding lazy request and retiring and
3324 * completed requests.
3325 */
3326 static int
3327 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3328 {
3329 int ret;
3330
3331 if (obj->active) {
3332 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
3333 if (ret)
3334 return ret;
3335
3336 i915_gem_retire_requests_ring(obj->ring);
3337 }
3338
3339 return 0;
3340 }
3341
3342 /**
3343 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3344 * @DRM_IOCTL_ARGS: standard ioctl arguments
3345 *
3346 * Returns 0 if successful, else an error is returned with the remaining time in
3347 * the timeout parameter.
3348 * -ETIME: object is still busy after timeout
3349 * -ERESTARTSYS: signal interrupted the wait
3350 * -ENONENT: object doesn't exist
3351 * Also possible, but rare:
3352 * -EAGAIN: GPU wedged
3353 * -ENOMEM: damn
3354 * -ENODEV: Internal IRQ fail
3355 * -E?: The add request failed
3356 *
3357 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3358 * non-zero timeout parameter the wait ioctl will wait for the given number of
3359 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3360 * without holding struct_mutex the object may become re-busied before this
3361 * function completes. A similar but shorter * race condition exists in the busy
3362 * ioctl
3363 */
3364 int
3365 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3366 {
3367 struct drm_i915_private *dev_priv = dev->dev_private;
3368 struct drm_i915_gem_wait *args = data;
3369 struct drm_gem_object *gobj;
3370 struct drm_i915_gem_object *obj;
3371 struct intel_ring_buffer *ring = NULL;
3372 struct timespec timeout_stack, *timeout = NULL;
3373 unsigned reset_counter;
3374 u32 seqno = 0;
3375 int ret = 0;
3376
3377 if (args->timeout_ns >= 0) {
3378 timeout_stack = ns_to_timespec(args->timeout_ns);
3379 timeout = &timeout_stack;
3380 }
3381
3382 ret = i915_mutex_lock_interruptible(dev);
3383 if (ret)
3384 return ret;
3385
3386 gobj = drm_gem_object_lookup(dev, file, args->bo_handle);
3387 if (gobj == NULL) {
3388 mutex_unlock(&dev->struct_mutex);
3389 return -ENOENT;
3390 }
3391 obj = to_intel_bo(gobj);
3392
3393 /* Need to make sure the object gets inactive eventually. */
3394 ret = i915_gem_object_flush_active(obj);
3395 if (ret)
3396 goto out;
3397
3398 if (obj->active) {
3399 seqno = obj->last_read_seqno;
3400 ring = obj->ring;
3401 }
3402
3403 if (seqno == 0)
3404 goto out;
3405
3406 /* Do this after OLR check to make sure we make forward progress polling
3407 * on this IOCTL with a 0 timeout (like busy ioctl)
3408 */
3409 if (!args->timeout_ns) {
3410 ret = -ETIME;
3411 goto out;
3412 }
3413
3414 drm_gem_object_unreference(&obj->base);
3415 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3416 mutex_unlock(&dev->struct_mutex);
3417
3418 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
3419 if (timeout)
3420 args->timeout_ns = timespec_to_ns(timeout);
3421 return ret;
3422
3423 out:
3424 drm_gem_object_unreference(&obj->base);
3425 mutex_unlock(&dev->struct_mutex);
3426 return ret;
3427 }
3428
3429 /**
3430 * i915_gem_object_sync - sync an object to a ring.
3431 *
3432 * @obj: object which may be in use on another ring.
3433 * @to: ring we wish to use the object on. May be NULL.
3434 *
3435 * This code is meant to abstract object synchronization with the GPU.
3436 * Calling with NULL implies synchronizing the object with the CPU
3437 * rather than a particular GPU ring.
3438 *
3439 * Returns 0 if successful, else propagates up the lower layer error.
3440 */
3441 int
3442 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3443 struct intel_ring_buffer *to)
3444 {
3445 struct intel_ring_buffer *from = obj->ring;
3446 u32 seqno;
3447 int ret, idx;
3448
3449 if (from == NULL || to == from)
3450 return 0;
3451
3452 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
3453 return i915_gem_object_wait_rendering(obj, false);
3454
3455 idx = intel_ring_sync_index(from, to);
3456
3457 seqno = obj->last_read_seqno;
3458 if (seqno <= from->sync_seqno[idx])
3459 return 0;
3460
3461 ret = i915_gem_check_olr(obj->ring, seqno);
3462 if (ret)
3463 return ret;
3464
3465 trace_i915_gem_ring_sync_to(from, to, seqno);
3466 ret = to->sync_to(to, from, seqno);
3467 if (!ret)
3468 /* We use last_read_seqno because sync_to()
3469 * might have just caused seqno wrap under
3470 * the radar.
3471 */
3472 from->sync_seqno[idx] = obj->last_read_seqno;
3473
3474 return ret;
3475 }
3476
3477 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3478 {
3479 u32 old_write_domain, old_read_domains;
3480
3481 /* Force a pagefault for domain tracking on next user access */
3482 i915_gem_release_mmap(obj);
3483
3484 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3485 return;
3486
3487 /* Wait for any direct GTT access to complete */
3488 mb();
3489
3490 old_read_domains = obj->base.read_domains;
3491 old_write_domain = obj->base.write_domain;
3492
3493 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3494 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3495
3496 trace_i915_gem_object_change_domain(obj,
3497 old_read_domains,
3498 old_write_domain);
3499 }
3500
3501 int i915_vma_unbind(struct i915_vma *vma)
3502 {
3503 struct drm_i915_gem_object *obj = vma->obj;
3504 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3505 int ret;
3506
3507 if (list_empty(&vma->vma_link))
3508 return 0;
3509
3510 if (!drm_mm_node_allocated(&vma->node)) {
3511 i915_gem_vma_destroy(vma);
3512 return 0;
3513 }
3514
3515 if (vma->pin_count)
3516 return -EBUSY;
3517
3518 BUG_ON(obj->pages == NULL);
3519
3520 ret = i915_gem_object_finish_gpu(obj);
3521 if (ret)
3522 return ret;
3523 /* Continue on if we fail due to EIO, the GPU is hung so we
3524 * should be safe and we need to cleanup or else we might
3525 * cause memory corruption through use-after-free.
3526 */
3527
3528 i915_gem_object_finish_gtt(obj);
3529
3530 /* release the fence reg _after_ flushing */
3531 ret = i915_gem_object_put_fence(obj);
3532 if (ret)
3533 return ret;
3534
3535 trace_i915_vma_unbind(vma);
3536
3537 vma->unbind_vma(vma);
3538
3539 i915_gem_gtt_finish_object(obj);
3540
3541 list_del_init(&vma->mm_list);
3542 /* Avoid an unnecessary call to unbind on rebind. */
3543 if (i915_is_ggtt(vma->vm))
3544 obj->map_and_fenceable = true;
3545
3546 drm_mm_remove_node(&vma->node);
3547 i915_gem_vma_destroy(vma);
3548
3549 /* Since the unbound list is global, only move to that list if
3550 * no more VMAs exist. */
3551 if (list_empty(&obj->vma_list))
3552 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3553
3554 /* And finally now the object is completely decoupled from this vma,
3555 * we can drop its hold on the backing storage and allow it to be
3556 * reaped by the shrinker.
3557 */
3558 i915_gem_object_unpin_pages(obj);
3559
3560 return 0;
3561 }
3562
3563 int i915_gpu_idle(struct drm_device *dev)
3564 {
3565 struct drm_i915_private *dev_priv = dev->dev_private;
3566 struct intel_ring_buffer *ring;
3567 int ret, i;
3568
3569 /* Flush everything onto the inactive list. */
3570 for_each_ring(ring, dev_priv, i) {
3571 ret = i915_switch_context(ring, ring->default_context);
3572 if (ret)
3573 return ret;
3574
3575 ret = intel_ring_idle(ring);
3576 if (ret)
3577 return ret;
3578 }
3579
3580 return 0;
3581 }
3582
3583 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3584 struct drm_i915_gem_object *obj)
3585 {
3586 struct drm_i915_private *dev_priv = dev->dev_private;
3587 int fence_reg;
3588 int fence_pitch_shift;
3589
3590 if (INTEL_INFO(dev)->gen >= 6) {
3591 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3592 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3593 } else {
3594 fence_reg = FENCE_REG_965_0;
3595 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3596 }
3597
3598 fence_reg += reg * 8;
3599
3600 /* To w/a incoherency with non-atomic 64-bit register updates,
3601 * we split the 64-bit update into two 32-bit writes. In order
3602 * for a partial fence not to be evaluated between writes, we
3603 * precede the update with write to turn off the fence register,
3604 * and only enable the fence as the last step.
3605 *
3606 * For extra levels of paranoia, we make sure each step lands
3607 * before applying the next step.
3608 */
3609 I915_WRITE(fence_reg, 0);
3610 POSTING_READ(fence_reg);
3611
3612 if (obj) {
3613 u32 size = i915_gem_obj_ggtt_size(obj);
3614 uint64_t val;
3615
3616 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3617 0xfffff000) << 32;
3618 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3619 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3620 if (obj->tiling_mode == I915_TILING_Y)
3621 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3622 val |= I965_FENCE_REG_VALID;
3623
3624 I915_WRITE(fence_reg + 4, val >> 32);
3625 POSTING_READ(fence_reg + 4);
3626
3627 I915_WRITE(fence_reg + 0, val);
3628 POSTING_READ(fence_reg);
3629 } else {
3630 I915_WRITE(fence_reg + 4, 0);
3631 POSTING_READ(fence_reg + 4);
3632 }
3633 }
3634
3635 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3636 struct drm_i915_gem_object *obj)
3637 {
3638 struct drm_i915_private *dev_priv = dev->dev_private;
3639 u32 val;
3640
3641 if (obj) {
3642 u32 size = i915_gem_obj_ggtt_size(obj);
3643 int pitch_val;
3644 int tile_width;
3645
3646 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3647 (size & -size) != size ||
3648 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3649 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3650 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3651
3652 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3653 tile_width = 128;
3654 else
3655 tile_width = 512;
3656
3657 /* Note: pitch better be a power of two tile widths */
3658 pitch_val = obj->stride / tile_width;
3659 pitch_val = ffs(pitch_val) - 1;
3660
3661 val = i915_gem_obj_ggtt_offset(obj);
3662 if (obj->tiling_mode == I915_TILING_Y)
3663 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3664 val |= I915_FENCE_SIZE_BITS(size);
3665 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3666 val |= I830_FENCE_REG_VALID;
3667 } else
3668 val = 0;
3669
3670 if (reg < 8)
3671 reg = FENCE_REG_830_0 + reg * 4;
3672 else
3673 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3674
3675 I915_WRITE(reg, val);
3676 POSTING_READ(reg);
3677 }
3678
3679 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3680 struct drm_i915_gem_object *obj)
3681 {
3682 struct drm_i915_private *dev_priv = dev->dev_private;
3683 uint32_t val;
3684
3685 if (obj) {
3686 u32 size = i915_gem_obj_ggtt_size(obj);
3687 uint32_t pitch_val;
3688
3689 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3690 (size & -size) != size ||
3691 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3692 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3693 i915_gem_obj_ggtt_offset(obj), size);
3694
3695 pitch_val = obj->stride / 128;
3696 pitch_val = ffs(pitch_val) - 1;
3697
3698 val = i915_gem_obj_ggtt_offset(obj);
3699 if (obj->tiling_mode == I915_TILING_Y)
3700 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3701 val |= I830_FENCE_SIZE_BITS(size);
3702 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3703 val |= I830_FENCE_REG_VALID;
3704 } else
3705 val = 0;
3706
3707 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3708 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3709 }
3710
3711 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3712 {
3713 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3714 }
3715
3716 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3717 struct drm_i915_gem_object *obj)
3718 {
3719 struct drm_i915_private *dev_priv = dev->dev_private;
3720
3721 /* Ensure that all CPU reads are completed before installing a fence
3722 * and all writes before removing the fence.
3723 */
3724 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3725 mb();
3726
3727 WARN(obj && (!obj->stride || !obj->tiling_mode),
3728 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3729 obj->stride, obj->tiling_mode);
3730
3731 switch (INTEL_INFO(dev)->gen) {
3732 case 8:
3733 case 7:
3734 case 6:
3735 case 5:
3736 case 4: i965_write_fence_reg(dev, reg, obj); break;
3737 case 3: i915_write_fence_reg(dev, reg, obj); break;
3738 case 2: i830_write_fence_reg(dev, reg, obj); break;
3739 default: BUG();
3740 }
3741
3742 /* And similarly be paranoid that no direct access to this region
3743 * is reordered to before the fence is installed.
3744 */
3745 if (i915_gem_object_needs_mb(obj))
3746 mb();
3747 }
3748
3749 static inline int fence_number(struct drm_i915_private *dev_priv,
3750 struct drm_i915_fence_reg *fence)
3751 {
3752 return fence - dev_priv->fence_regs;
3753 }
3754
3755 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3756 struct drm_i915_fence_reg *fence,
3757 bool enable)
3758 {
3759 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3760 int reg = fence_number(dev_priv, fence);
3761
3762 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3763
3764 if (enable) {
3765 obj->fence_reg = reg;
3766 fence->obj = obj;
3767 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3768 } else {
3769 obj->fence_reg = I915_FENCE_REG_NONE;
3770 fence->obj = NULL;
3771 list_del_init(&fence->lru_list);
3772 }
3773 obj->fence_dirty = false;
3774 }
3775
3776 static int
3777 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3778 {
3779 if (obj->last_fenced_seqno) {
3780 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3781 if (ret)
3782 return ret;
3783
3784 obj->last_fenced_seqno = 0;
3785 }
3786
3787 obj->fenced_gpu_access = false;
3788 return 0;
3789 }
3790
3791 int
3792 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3793 {
3794 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3795 struct drm_i915_fence_reg *fence;
3796 int ret;
3797
3798 ret = i915_gem_object_wait_fence(obj);
3799 if (ret)
3800 return ret;
3801
3802 if (obj->fence_reg == I915_FENCE_REG_NONE)
3803 return 0;
3804
3805 fence = &dev_priv->fence_regs[obj->fence_reg];
3806
3807 i915_gem_object_fence_lost(obj);
3808 i915_gem_object_update_fence(obj, fence, false);
3809
3810 return 0;
3811 }
3812
3813 static struct drm_i915_fence_reg *
3814 i915_find_fence_reg(struct drm_device *dev)
3815 {
3816 struct drm_i915_private *dev_priv = dev->dev_private;
3817 struct drm_i915_fence_reg *reg, *avail;
3818 int i;
3819
3820 /* First try to find a free reg */
3821 avail = NULL;
3822 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3823 reg = &dev_priv->fence_regs[i];
3824 if (!reg->obj)
3825 return reg;
3826
3827 if (!reg->pin_count)
3828 avail = reg;
3829 }
3830
3831 if (avail == NULL)
3832 goto deadlock;
3833
3834 /* None available, try to steal one or wait for a user to finish */
3835 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3836 if (reg->pin_count)
3837 continue;
3838
3839 return reg;
3840 }
3841
3842 deadlock:
3843 /* Wait for completion of pending flips which consume fences */
3844 if (intel_has_pending_fb_unpin(dev))
3845 return ERR_PTR(-EAGAIN);
3846
3847 return ERR_PTR(-EDEADLK);
3848 }
3849
3850 /**
3851 * i915_gem_object_get_fence - set up fencing for an object
3852 * @obj: object to map through a fence reg
3853 *
3854 * When mapping objects through the GTT, userspace wants to be able to write
3855 * to them without having to worry about swizzling if the object is tiled.
3856 * This function walks the fence regs looking for a free one for @obj,
3857 * stealing one if it can't find any.
3858 *
3859 * It then sets up the reg based on the object's properties: address, pitch
3860 * and tiling format.
3861 *
3862 * For an untiled surface, this removes any existing fence.
3863 */
3864 int
3865 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3866 {
3867 struct drm_device *dev = obj->base.dev;
3868 struct drm_i915_private *dev_priv = dev->dev_private;
3869 bool enable = obj->tiling_mode != I915_TILING_NONE;
3870 struct drm_i915_fence_reg *reg;
3871 int ret;
3872
3873 /* Have we updated the tiling parameters upon the object and so
3874 * will need to serialise the write to the associated fence register?
3875 */
3876 if (obj->fence_dirty) {
3877 ret = i915_gem_object_wait_fence(obj);
3878 if (ret)
3879 return ret;
3880 }
3881
3882 /* Just update our place in the LRU if our fence is getting reused. */
3883 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3884 reg = &dev_priv->fence_regs[obj->fence_reg];
3885 if (!obj->fence_dirty) {
3886 list_move_tail(®->lru_list,
3887 &dev_priv->mm.fence_list);
3888 return 0;
3889 }
3890 } else if (enable) {
3891 reg = i915_find_fence_reg(dev);
3892 if (IS_ERR(reg))
3893 return PTR_ERR(reg);
3894
3895 if (reg->obj) {
3896 struct drm_i915_gem_object *old = reg->obj;
3897
3898 ret = i915_gem_object_wait_fence(old);
3899 if (ret)
3900 return ret;
3901
3902 i915_gem_object_fence_lost(old);
3903 }
3904 } else
3905 return 0;
3906
3907 i915_gem_object_update_fence(obj, reg, enable);
3908
3909 return 0;
3910 }
3911
3912 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3913 struct drm_mm_node *gtt_space,
3914 unsigned long cache_level)
3915 {
3916 struct drm_mm_node *other;
3917
3918 /* On non-LLC machines we have to be careful when putting differing
3919 * types of snoopable memory together to avoid the prefetcher
3920 * crossing memory domains and dying.
3921 */
3922 if (HAS_LLC(dev))
3923 return true;
3924
3925 if (!drm_mm_node_allocated(gtt_space))
3926 return true;
3927
3928 if (list_empty(>t_space->node_list))
3929 return true;
3930
3931 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3932 if (other->allocated && !other->hole_follows && other->color != cache_level)
3933 return false;
3934
3935 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3936 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3937 return false;
3938
3939 return true;
3940 }
3941
3942 static void i915_gem_verify_gtt(struct drm_device *dev)
3943 {
3944 #if WATCH_GTT
3945 struct drm_i915_private *dev_priv = dev->dev_private;
3946 struct drm_i915_gem_object *obj;
3947 int err = 0;
3948
3949 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3950 if (obj->gtt_space == NULL) {
3951 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3952 err++;
3953 continue;
3954 }
3955
3956 if (obj->cache_level != obj->gtt_space->color) {
3957 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3958 i915_gem_obj_ggtt_offset(obj),
3959 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3960 obj->cache_level,
3961 obj->gtt_space->color);
3962 err++;
3963 continue;
3964 }
3965
3966 if (!i915_gem_valid_gtt_space(dev,
3967 obj->gtt_space,
3968 obj->cache_level)) {
3969 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3970 i915_gem_obj_ggtt_offset(obj),
3971 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3972 obj->cache_level);
3973 err++;
3974 continue;
3975 }
3976 }
3977
3978 WARN_ON(err);
3979 #endif
3980 }
3981
3982 /**
3983 * Finds free space in the GTT aperture and binds the object there.
3984 */
3985 static struct i915_vma *
3986 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3987 struct i915_address_space *vm,
3988 unsigned alignment,
3989 uint64_t flags)
3990 {
3991 struct drm_device *dev = obj->base.dev;
3992 struct drm_i915_private *dev_priv = dev->dev_private;
3993 u32 size, fence_size, fence_alignment, unfenced_alignment;
3994 unsigned long start =
3995 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3996 unsigned long end =
3997 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3998 struct i915_vma *vma;
3999 int ret;
4000
4001 fence_size = i915_gem_get_gtt_size(dev,
4002 obj->base.size,
4003 obj->tiling_mode);
4004 fence_alignment = i915_gem_get_gtt_alignment(dev,
4005 obj->base.size,
4006 obj->tiling_mode, true);
4007 unfenced_alignment =
4008 i915_gem_get_gtt_alignment(dev,
4009 obj->base.size,
4010 obj->tiling_mode, false);
4011
4012 if (alignment == 0)
4013 alignment = flags & PIN_MAPPABLE ? fence_alignment :
4014 unfenced_alignment;
4015 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
4016 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
4017 return ERR_PTR(-EINVAL);
4018 }
4019
4020 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
4021
4022 /* If the object is bigger than the entire aperture, reject it early
4023 * before evicting everything in a vain attempt to find space.
4024 */
4025 if (obj->base.size > end) {
4026 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
4027 obj->base.size,
4028 flags & PIN_MAPPABLE ? "mappable" : "total",
4029 end);
4030 return ERR_PTR(-E2BIG);
4031 }
4032
4033 ret = i915_gem_object_get_pages(obj);
4034 if (ret)
4035 return ERR_PTR(ret);
4036
4037 i915_gem_object_pin_pages(obj);
4038
4039 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
4040 if (IS_ERR(vma))
4041 goto err_unpin;
4042
4043 search_free:
4044 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
4045 size, alignment,
4046 obj->cache_level,
4047 start, end,
4048 DRM_MM_SEARCH_DEFAULT,
4049 DRM_MM_CREATE_DEFAULT);
4050 if (ret) {
4051 ret = i915_gem_evict_something(dev, vm, size, alignment,
4052 obj->cache_level,
4053 start, end,
4054 flags);
4055 if (ret == 0)
4056 goto search_free;
4057
4058 goto err_free_vma;
4059 }
4060 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
4061 obj->cache_level))) {
4062 ret = -EINVAL;
4063 goto err_remove_node;
4064 }
4065
4066 ret = i915_gem_gtt_prepare_object(obj);
4067 if (ret)
4068 goto err_remove_node;
4069
4070 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
4071 list_add_tail(&vma->mm_list, &vm->inactive_list);
4072
4073 if (i915_is_ggtt(vm)) {
4074 bool mappable, fenceable;
4075
4076 fenceable = (vma->node.size == fence_size &&
4077 (vma->node.start & (fence_alignment - 1)) == 0);
4078
4079 mappable = (vma->node.start + obj->base.size <=
4080 dev_priv->gtt.mappable_end);
4081
4082 obj->map_and_fenceable = mappable && fenceable;
4083 }
4084
4085 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4086
4087 trace_i915_vma_bind(vma, flags);
4088 vma->bind_vma(vma, obj->cache_level,
4089 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
4090
4091 i915_gem_verify_gtt(dev);
4092 return vma;
4093
4094 err_remove_node:
4095 drm_mm_remove_node(&vma->node);
4096 err_free_vma:
4097 i915_gem_vma_destroy(vma);
4098 vma = ERR_PTR(ret);
4099 err_unpin:
4100 i915_gem_object_unpin_pages(obj);
4101 return vma;
4102 }
4103
4104 bool
4105 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
4106 bool force)
4107 {
4108 /* If we don't have a page list set up, then we're not pinned
4109 * to GPU, and we can ignore the cache flush because it'll happen
4110 * again at bind time.
4111 */
4112 if (obj->pages == NULL)
4113 return false;
4114
4115 /*
4116 * Stolen memory is always coherent with the GPU as it is explicitly
4117 * marked as wc by the system, or the system is cache-coherent.
4118 */
4119 if (obj->stolen)
4120 return false;
4121
4122 /* If the GPU is snooping the contents of the CPU cache,
4123 * we do not need to manually clear the CPU cache lines. However,
4124 * the caches are only snooped when the render cache is
4125 * flushed/invalidated. As we always have to emit invalidations
4126 * and flushes when moving into and out of the RENDER domain, correct
4127 * snooping behaviour occurs naturally as the result of our domain
4128 * tracking.
4129 */
4130 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
4131 return false;
4132
4133 trace_i915_gem_object_clflush(obj);
4134 #ifdef __NetBSD__
4135 drm_clflush_pglist(&obj->igo_pageq);
4136 #else
4137 drm_clflush_sg(obj->pages);
4138 #endif
4139
4140 return true;
4141 }
4142
4143 /** Flushes the GTT write domain for the object if it's dirty. */
4144 static void
4145 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
4146 {
4147 uint32_t old_write_domain;
4148
4149 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
4150 return;
4151
4152 /* No actual flushing is required for the GTT write domain. Writes
4153 * to it immediately go to main memory as far as we know, so there's
4154 * no chipset flush. It also doesn't land in render cache.
4155 *
4156 * However, we do have to enforce the order so that all writes through
4157 * the GTT land before any writes to the device, such as updates to
4158 * the GATT itself.
4159 */
4160 wmb();
4161
4162 old_write_domain = obj->base.write_domain;
4163 obj->base.write_domain = 0;
4164
4165 trace_i915_gem_object_change_domain(obj,
4166 obj->base.read_domains,
4167 old_write_domain);
4168 }
4169
4170 /** Flushes the CPU write domain for the object if it's dirty. */
4171 static void
4172 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
4173 bool force)
4174 {
4175 uint32_t old_write_domain;
4176
4177 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4178 return;
4179
4180 if (i915_gem_clflush_object(obj, force))
4181 i915_gem_chipset_flush(obj->base.dev);
4182
4183 old_write_domain = obj->base.write_domain;
4184 obj->base.write_domain = 0;
4185
4186 trace_i915_gem_object_change_domain(obj,
4187 obj->base.read_domains,
4188 old_write_domain);
4189 }
4190
4191 /**
4192 * Moves a single object to the GTT read, and possibly write domain.
4193 *
4194 * This function returns when the move is complete, including waiting on
4195 * flushes to occur.
4196 */
4197 int
4198 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4199 {
4200 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4201 uint32_t old_write_domain, old_read_domains;
4202 int ret;
4203
4204 /* Not valid to be called on unbound objects. */
4205 if (!i915_gem_obj_bound_any(obj))
4206 return -EINVAL;
4207
4208 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4209 return 0;
4210
4211 ret = i915_gem_object_wait_rendering(obj, !write);
4212 if (ret)
4213 return ret;
4214
4215 i915_gem_object_flush_cpu_write_domain(obj, false);
4216
4217 /* Serialise direct access to this object with the barriers for
4218 * coherent writes from the GPU, by effectively invalidating the
4219 * GTT domain upon first access.
4220 */
4221 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4222 mb();
4223
4224 old_write_domain = obj->base.write_domain;
4225 old_read_domains = obj->base.read_domains;
4226
4227 /* It should now be out of any other write domains, and we can update
4228 * the domain values for our changes.
4229 */
4230 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4231 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4232 if (write) {
4233 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4234 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4235 obj->dirty = 1;
4236 }
4237
4238 trace_i915_gem_object_change_domain(obj,
4239 old_read_domains,
4240 old_write_domain);
4241
4242 /* And bump the LRU for this access */
4243 if (i915_gem_object_is_inactive(obj)) {
4244 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4245 if (vma)
4246 list_move_tail(&vma->mm_list,
4247 &dev_priv->gtt.base.inactive_list);
4248
4249 }
4250
4251 return 0;
4252 }
4253
4254 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4255 enum i915_cache_level cache_level)
4256 {
4257 struct drm_device *dev = obj->base.dev;
4258 struct i915_vma *vma, *next;
4259 int ret;
4260
4261 if (obj->cache_level == cache_level)
4262 return 0;
4263
4264 if (i915_gem_obj_is_pinned(obj)) {
4265 DRM_DEBUG("can not change the cache level of pinned objects\n");
4266 return -EBUSY;
4267 }
4268
4269 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4270 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
4271 ret = i915_vma_unbind(vma);
4272 if (ret)
4273 return ret;
4274 }
4275 }
4276
4277 if (i915_gem_obj_bound_any(obj)) {
4278 ret = i915_gem_object_finish_gpu(obj);
4279 if (ret)
4280 return ret;
4281
4282 i915_gem_object_finish_gtt(obj);
4283
4284 /* Before SandyBridge, you could not use tiling or fence
4285 * registers with snooped memory, so relinquish any fences
4286 * currently pointing to our region in the aperture.
4287 */
4288 if (INTEL_INFO(dev)->gen < 6) {
4289 ret = i915_gem_object_put_fence(obj);
4290 if (ret)
4291 return ret;
4292 }
4293
4294 list_for_each_entry(vma, &obj->vma_list, vma_link)
4295 if (drm_mm_node_allocated(&vma->node))
4296 vma->bind_vma(vma, cache_level,
4297 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
4298 }
4299
4300 list_for_each_entry(vma, &obj->vma_list, vma_link)
4301 vma->node.color = cache_level;
4302 obj->cache_level = cache_level;
4303
4304 if (cpu_write_needs_clflush(obj)) {
4305 u32 old_read_domains, old_write_domain;
4306
4307 /* If we're coming from LLC cached, then we haven't
4308 * actually been tracking whether the data is in the
4309 * CPU cache or not, since we only allow one bit set
4310 * in obj->write_domain and have been skipping the clflushes.
4311 * Just set it to the CPU cache for now.
4312 */
4313 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
4314
4315 old_read_domains = obj->base.read_domains;
4316 old_write_domain = obj->base.write_domain;
4317
4318 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4319 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4320
4321 trace_i915_gem_object_change_domain(obj,
4322 old_read_domains,
4323 old_write_domain);
4324 }
4325
4326 i915_gem_verify_gtt(dev);
4327 return 0;
4328 }
4329
4330 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4331 struct drm_file *file)
4332 {
4333 struct drm_i915_gem_caching *args = data;
4334 struct drm_gem_object *gobj;
4335 struct drm_i915_gem_object *obj;
4336 int ret;
4337
4338 ret = i915_mutex_lock_interruptible(dev);
4339 if (ret)
4340 return ret;
4341
4342 gobj = drm_gem_object_lookup(dev, file, args->handle);
4343 if (gobj == NULL) {
4344 ret = -ENOENT;
4345 goto unlock;
4346 }
4347 obj = to_intel_bo(gobj);
4348
4349 switch (obj->cache_level) {
4350 case I915_CACHE_LLC:
4351 case I915_CACHE_L3_LLC:
4352 args->caching = I915_CACHING_CACHED;
4353 break;
4354
4355 case I915_CACHE_WT:
4356 args->caching = I915_CACHING_DISPLAY;
4357 break;
4358
4359 default:
4360 args->caching = I915_CACHING_NONE;
4361 break;
4362 }
4363
4364 drm_gem_object_unreference(&obj->base);
4365 unlock:
4366 mutex_unlock(&dev->struct_mutex);
4367 return ret;
4368 }
4369
4370 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4371 struct drm_file *file)
4372 {
4373 struct drm_i915_gem_caching *args = data;
4374 struct drm_gem_object *gobj;
4375 struct drm_i915_gem_object *obj;
4376 enum i915_cache_level level;
4377 int ret;
4378
4379 switch (args->caching) {
4380 case I915_CACHING_NONE:
4381 level = I915_CACHE_NONE;
4382 break;
4383 case I915_CACHING_CACHED:
4384 level = I915_CACHE_LLC;
4385 break;
4386 case I915_CACHING_DISPLAY:
4387 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4388 break;
4389 default:
4390 return -EINVAL;
4391 }
4392
4393 ret = i915_mutex_lock_interruptible(dev);
4394 if (ret)
4395 return ret;
4396
4397 gobj = drm_gem_object_lookup(dev, file, args->handle);
4398 if (gobj == NULL) {
4399 ret = -ENOENT;
4400 goto unlock;
4401 }
4402 obj = to_intel_bo(gobj);
4403
4404 ret = i915_gem_object_set_cache_level(obj, level);
4405
4406 drm_gem_object_unreference(&obj->base);
4407 unlock:
4408 mutex_unlock(&dev->struct_mutex);
4409 return ret;
4410 }
4411
4412 static bool is_pin_display(struct drm_i915_gem_object *obj)
4413 {
4414 /* There are 3 sources that pin objects:
4415 * 1. The display engine (scanouts, sprites, cursors);
4416 * 2. Reservations for execbuffer;
4417 * 3. The user.
4418 *
4419 * We can ignore reservations as we hold the struct_mutex and
4420 * are only called outside of the reservation path. The user
4421 * can only increment pin_count once, and so if after
4422 * subtracting the potential reference by the user, any pin_count
4423 * remains, it must be due to another use by the display engine.
4424 */
4425 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
4426 }
4427
4428 /*
4429 * Prepare buffer for display plane (scanout, cursors, etc).
4430 * Can be called from an uninterruptible phase (modesetting) and allows
4431 * any flushes to be pipelined (for pageflips).
4432 */
4433 int
4434 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4435 u32 alignment,
4436 struct intel_ring_buffer *pipelined)
4437 {
4438 u32 old_read_domains, old_write_domain;
4439 int ret;
4440
4441 if (pipelined != obj->ring) {
4442 ret = i915_gem_object_sync(obj, pipelined);
4443 if (ret)
4444 return ret;
4445 }
4446
4447 /* Mark the pin_display early so that we account for the
4448 * display coherency whilst setting up the cache domains.
4449 */
4450 obj->pin_display = true;
4451
4452 /* The display engine is not coherent with the LLC cache on gen6. As
4453 * a result, we make sure that the pinning that is about to occur is
4454 * done with uncached PTEs. This is lowest common denominator for all
4455 * chipsets.
4456 *
4457 * However for gen6+, we could do better by using the GFDT bit instead
4458 * of uncaching, which would allow us to flush all the LLC-cached data
4459 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4460 */
4461 ret = i915_gem_object_set_cache_level(obj,
4462 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4463 if (ret)
4464 goto err_unpin_display;
4465
4466 /* As the user may map the buffer once pinned in the display plane
4467 * (e.g. libkms for the bootup splash), we have to ensure that we
4468 * always use map_and_fenceable for all scanout buffers.
4469 */
4470 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
4471 if (ret)
4472 goto err_unpin_display;
4473
4474 i915_gem_object_flush_cpu_write_domain(obj, true);
4475
4476 old_write_domain = obj->base.write_domain;
4477 old_read_domains = obj->base.read_domains;
4478
4479 /* It should now be out of any other write domains, and we can update
4480 * the domain values for our changes.
4481 */
4482 obj->base.write_domain = 0;
4483 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4484
4485 trace_i915_gem_object_change_domain(obj,
4486 old_read_domains,
4487 old_write_domain);
4488
4489 return 0;
4490
4491 err_unpin_display:
4492 obj->pin_display = is_pin_display(obj);
4493 return ret;
4494 }
4495
4496 void
4497 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4498 {
4499 i915_gem_object_ggtt_unpin(obj);
4500 obj->pin_display = is_pin_display(obj);
4501 }
4502
4503 int
4504 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4505 {
4506 int ret;
4507
4508 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4509 return 0;
4510
4511 ret = i915_gem_object_wait_rendering(obj, false);
4512 if (ret)
4513 return ret;
4514
4515 /* Ensure that we invalidate the GPU's caches and TLBs. */
4516 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4517 return 0;
4518 }
4519
4520 /**
4521 * Moves a single object to the CPU read, and possibly write domain.
4522 *
4523 * This function returns when the move is complete, including waiting on
4524 * flushes to occur.
4525 */
4526 int
4527 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4528 {
4529 uint32_t old_write_domain, old_read_domains;
4530 int ret;
4531
4532 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4533 return 0;
4534
4535 ret = i915_gem_object_wait_rendering(obj, !write);
4536 if (ret)
4537 return ret;
4538
4539 i915_gem_object_flush_gtt_write_domain(obj);
4540
4541 old_write_domain = obj->base.write_domain;
4542 old_read_domains = obj->base.read_domains;
4543
4544 /* Flush the CPU cache if it's still invalid. */
4545 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4546 i915_gem_clflush_object(obj, false);
4547
4548 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4549 }
4550
4551 /* It should now be out of any other write domains, and we can update
4552 * the domain values for our changes.
4553 */
4554 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4555
4556 /* If we're writing through the CPU, then the GPU read domains will
4557 * need to be invalidated at next use.
4558 */
4559 if (write) {
4560 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4561 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4562 }
4563
4564 trace_i915_gem_object_change_domain(obj,
4565 old_read_domains,
4566 old_write_domain);
4567
4568 return 0;
4569 }
4570
4571 /* Throttle our rendering by waiting until the ring has completed our requests
4572 * emitted over 20 msec ago.
4573 *
4574 * Note that if we were to use the current jiffies each time around the loop,
4575 * we wouldn't escape the function with any frames outstanding if the time to
4576 * render a frame was over 20ms.
4577 *
4578 * This should get us reasonable parallelism between CPU and GPU but also
4579 * relatively low latency when blocking on a particular request to finish.
4580 */
4581 static int
4582 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4583 {
4584 struct drm_i915_private *dev_priv = dev->dev_private;
4585 struct drm_i915_file_private *file_priv = file->driver_priv;
4586 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4587 struct drm_i915_gem_request *request;
4588 struct intel_ring_buffer *ring = NULL;
4589 unsigned reset_counter;
4590 u32 seqno = 0;
4591 int ret;
4592
4593 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4594 if (ret)
4595 return ret;
4596
4597 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4598 if (ret)
4599 return ret;
4600
4601 spin_lock(&file_priv->mm.lock);
4602 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4603 if (time_after_eq(request->emitted_jiffies, recent_enough))
4604 break;
4605
4606 ring = request->ring;
4607 seqno = request->seqno;
4608 }
4609 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4610 spin_unlock(&file_priv->mm.lock);
4611
4612 if (seqno == 0)
4613 return 0;
4614
4615 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4616 if (ret == 0)
4617 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4618
4619 return ret;
4620 }
4621
4622 static bool
4623 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4624 {
4625 struct drm_i915_gem_object *obj = vma->obj;
4626
4627 if (alignment &&
4628 vma->node.start & (alignment - 1))
4629 return true;
4630
4631 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4632 return true;
4633
4634 if (flags & PIN_OFFSET_BIAS &&
4635 vma->node.start < (flags & PIN_OFFSET_MASK))
4636 return true;
4637
4638 return false;
4639 }
4640
4641 int
4642 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4643 struct i915_address_space *vm,
4644 uint32_t alignment,
4645 uint64_t flags)
4646 {
4647 struct i915_vma *vma;
4648 int ret;
4649
4650 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4651 return -EINVAL;
4652
4653 vma = i915_gem_obj_to_vma(obj, vm);
4654 if (vma) {
4655 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4656 return -EBUSY;
4657
4658 if (i915_vma_misplaced(vma, alignment, flags)) {
4659 WARN(vma->pin_count,
4660 "bo is already pinned with incorrect alignment:"
4661 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4662 " obj->map_and_fenceable=%d\n",
4663 i915_gem_obj_offset(obj, vm), alignment,
4664 !!(flags & PIN_MAPPABLE),
4665 obj->map_and_fenceable);
4666 ret = i915_vma_unbind(vma);
4667 if (ret)
4668 return ret;
4669
4670 vma = NULL;
4671 }
4672 }
4673
4674 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4675 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4676 if (IS_ERR(vma))
4677 return PTR_ERR(vma);
4678 }
4679
4680 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4681 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4682
4683 vma->pin_count++;
4684 if (flags & PIN_MAPPABLE)
4685 obj->pin_mappable |= true;
4686
4687 return 0;
4688 }
4689
4690 void
4691 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4692 {
4693 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4694
4695 BUG_ON(!vma);
4696 BUG_ON(vma->pin_count == 0);
4697 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4698
4699 if (--vma->pin_count == 0)
4700 obj->pin_mappable = false;
4701 }
4702
4703 int
4704 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4705 struct drm_file *file)
4706 {
4707 struct drm_i915_gem_pin *args = data;
4708 struct drm_gem_object *gobj;
4709 struct drm_i915_gem_object *obj;
4710 int ret;
4711
4712 if (INTEL_INFO(dev)->gen >= 6)
4713 return -ENODEV;
4714
4715 ret = i915_mutex_lock_interruptible(dev);
4716 if (ret)
4717 return ret;
4718
4719 gobj = drm_gem_object_lookup(dev, file, args->handle);
4720 if (gobj == NULL) {
4721 ret = -ENOENT;
4722 goto unlock;
4723 }
4724 obj = to_intel_bo(gobj);
4725
4726 if (obj->madv != I915_MADV_WILLNEED) {
4727 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4728 ret = -EFAULT;
4729 goto out;
4730 }
4731
4732 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4733 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4734 args->handle);
4735 ret = -EINVAL;
4736 goto out;
4737 }
4738
4739 if (obj->user_pin_count == ULONG_MAX) {
4740 ret = -EBUSY;
4741 goto out;
4742 }
4743
4744 if (obj->user_pin_count == 0) {
4745 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4746 if (ret)
4747 goto out;
4748 }
4749
4750 obj->user_pin_count++;
4751 obj->pin_filp = file;
4752
4753 args->offset = i915_gem_obj_ggtt_offset(obj);
4754 out:
4755 drm_gem_object_unreference(&obj->base);
4756 unlock:
4757 mutex_unlock(&dev->struct_mutex);
4758 return ret;
4759 }
4760
4761 int
4762 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4763 struct drm_file *file)
4764 {
4765 struct drm_i915_gem_pin *args = data;
4766 struct drm_gem_object *gobj;
4767 struct drm_i915_gem_object *obj;
4768 int ret;
4769
4770 ret = i915_mutex_lock_interruptible(dev);
4771 if (ret)
4772 return ret;
4773
4774 gobj = drm_gem_object_lookup(dev, file, args->handle);
4775 if (gobj == NULL) {
4776 ret = -ENOENT;
4777 goto unlock;
4778 }
4779 obj = to_intel_bo(gobj);
4780
4781 if (obj->pin_filp != file) {
4782 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4783 args->handle);
4784 ret = -EINVAL;
4785 goto out;
4786 }
4787 obj->user_pin_count--;
4788 if (obj->user_pin_count == 0) {
4789 obj->pin_filp = NULL;
4790 i915_gem_object_ggtt_unpin(obj);
4791 }
4792
4793 out:
4794 drm_gem_object_unreference(&obj->base);
4795 unlock:
4796 mutex_unlock(&dev->struct_mutex);
4797 return ret;
4798 }
4799
4800 int
4801 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4802 struct drm_file *file)
4803 {
4804 struct drm_i915_gem_busy *args = data;
4805 struct drm_gem_object *gobj;
4806 struct drm_i915_gem_object *obj;
4807 int ret;
4808
4809 ret = i915_mutex_lock_interruptible(dev);
4810 if (ret)
4811 return ret;
4812
4813 gobj = drm_gem_object_lookup(dev, file, args->handle);
4814 if (gobj == NULL) {
4815 ret = -ENOENT;
4816 goto unlock;
4817 }
4818 obj = to_intel_bo(gobj);
4819
4820 /* Count all active objects as busy, even if they are currently not used
4821 * by the gpu. Users of this interface expect objects to eventually
4822 * become non-busy without any further actions, therefore emit any
4823 * necessary flushes here.
4824 */
4825 ret = i915_gem_object_flush_active(obj);
4826
4827 args->busy = obj->active;
4828 if (obj->ring) {
4829 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4830 args->busy |= intel_ring_flag(obj->ring) << 16;
4831 }
4832
4833 drm_gem_object_unreference(&obj->base);
4834 unlock:
4835 mutex_unlock(&dev->struct_mutex);
4836 return ret;
4837 }
4838
4839 int
4840 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4841 struct drm_file *file_priv)
4842 {
4843 return i915_gem_ring_throttle(dev, file_priv);
4844 }
4845
4846 int
4847 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4848 struct drm_file *file_priv)
4849 {
4850 struct drm_i915_gem_madvise *args = data;
4851 struct drm_gem_object *gobj;
4852 struct drm_i915_gem_object *obj;
4853 int ret;
4854
4855 switch (args->madv) {
4856 case I915_MADV_DONTNEED:
4857 case I915_MADV_WILLNEED:
4858 break;
4859 default:
4860 return -EINVAL;
4861 }
4862
4863 ret = i915_mutex_lock_interruptible(dev);
4864 if (ret)
4865 return ret;
4866
4867 gobj = drm_gem_object_lookup(dev, file_priv, args->handle);
4868 if (gobj == NULL) {
4869 ret = -ENOENT;
4870 goto unlock;
4871 }
4872 obj = to_intel_bo(gobj);
4873
4874 if (i915_gem_obj_is_pinned(obj)) {
4875 ret = -EINVAL;
4876 goto out;
4877 }
4878
4879 if (obj->madv != __I915_MADV_PURGED)
4880 obj->madv = args->madv;
4881
4882 /* if the object is no longer attached, discard its backing storage */
4883 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4884 i915_gem_object_truncate(obj);
4885
4886 args->retained = obj->madv != __I915_MADV_PURGED;
4887
4888 out:
4889 drm_gem_object_unreference(&obj->base);
4890 unlock:
4891 mutex_unlock(&dev->struct_mutex);
4892 return ret;
4893 }
4894
4895 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4896 const struct drm_i915_gem_object_ops *ops)
4897 {
4898 INIT_LIST_HEAD(&obj->global_list);
4899 INIT_LIST_HEAD(&obj->ring_list);
4900 INIT_LIST_HEAD(&obj->obj_exec_link);
4901 INIT_LIST_HEAD(&obj->vma_list);
4902
4903 obj->ops = ops;
4904
4905 obj->fence_reg = I915_FENCE_REG_NONE;
4906 obj->madv = I915_MADV_WILLNEED;
4907 /* Avoid an unnecessary call to unbind on the first bind. */
4908 obj->map_and_fenceable = true;
4909
4910 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4911 }
4912
4913 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4914 .get_pages = i915_gem_object_get_pages_gtt,
4915 .put_pages = i915_gem_object_put_pages_gtt,
4916 };
4917
4918 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4919 size_t size)
4920 {
4921 #ifdef __NetBSD__
4922 struct drm_i915_private *const dev_priv = dev->dev_private;
4923 #endif
4924 struct drm_i915_gem_object *obj;
4925 #ifndef __NetBSD__
4926 struct address_space *mapping;
4927 gfp_t mask;
4928 #endif
4929
4930 obj = i915_gem_object_alloc(dev);
4931 if (obj == NULL)
4932 return NULL;
4933
4934 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4935 i915_gem_object_free(obj);
4936 return NULL;
4937 }
4938
4939 #ifdef __NetBSD__
4940 uao_set_pgfl(obj->base.gemo_shm_uao, dev_priv->gtt.pgfl);
4941 #else
4942 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4943 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4944 /* 965gm cannot relocate objects above 4GiB. */
4945 mask &= ~__GFP_HIGHMEM;
4946 mask |= __GFP_DMA32;
4947 }
4948
4949 mapping = file_inode(obj->base.filp)->i_mapping;
4950 mapping_set_gfp_mask(mapping, mask);
4951 #endif
4952
4953 i915_gem_object_init(obj, &i915_gem_object_ops);
4954
4955 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4956 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4957
4958 if (HAS_LLC(dev)) {
4959 /* On some devices, we can have the GPU use the LLC (the CPU
4960 * cache) for about a 10% performance improvement
4961 * compared to uncached. Graphics requests other than
4962 * display scanout are coherent with the CPU in
4963 * accessing this cache. This means in this mode we
4964 * don't need to clflush on the CPU side, and on the
4965 * GPU side we only need to flush internal caches to
4966 * get data visible to the CPU.
4967 *
4968 * However, we maintain the display planes as UC, and so
4969 * need to rebind when first used as such.
4970 */
4971 obj->cache_level = I915_CACHE_LLC;
4972 } else
4973 obj->cache_level = I915_CACHE_NONE;
4974
4975 trace_i915_gem_object_create(obj);
4976
4977 return obj;
4978 }
4979
4980 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4981 {
4982 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4983 struct drm_device *dev = obj->base.dev;
4984 struct drm_i915_private *dev_priv = dev->dev_private;
4985 struct i915_vma *vma, *next;
4986
4987 intel_runtime_pm_get(dev_priv);
4988
4989 trace_i915_gem_object_destroy(obj);
4990
4991 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4992 int ret;
4993
4994 vma->pin_count = 0;
4995 ret = i915_vma_unbind(vma);
4996 if (WARN_ON(ret == -ERESTARTSYS)) {
4997 bool was_interruptible;
4998
4999 was_interruptible = dev_priv->mm.interruptible;
5000 dev_priv->mm.interruptible = false;
5001
5002 WARN_ON(i915_vma_unbind(vma));
5003
5004 dev_priv->mm.interruptible = was_interruptible;
5005 }
5006 }
5007
5008 i915_gem_object_detach_phys(obj);
5009
5010 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
5011 * before progressing. */
5012 if (obj->stolen)
5013 i915_gem_object_unpin_pages(obj);
5014
5015 if (WARN_ON(obj->pages_pin_count))
5016 obj->pages_pin_count = 0;
5017 i915_gem_object_put_pages(obj);
5018 i915_gem_object_free_mmap_offset(obj);
5019 i915_gem_object_release_stolen(obj);
5020
5021 BUG_ON(obj->pages);
5022
5023 #ifndef __NetBSD__ /* XXX drm prime */
5024 if (obj->base.import_attach)
5025 drm_prime_gem_destroy(&obj->base, NULL);
5026 #endif
5027
5028 drm_gem_object_release(&obj->base);
5029 i915_gem_info_remove_obj(dev_priv, obj->base.size);
5030
5031 kfree(obj->bit_17);
5032 i915_gem_object_free(obj);
5033
5034 intel_runtime_pm_put(dev_priv);
5035 }
5036
5037 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
5038 struct i915_address_space *vm)
5039 {
5040 struct i915_vma *vma;
5041 list_for_each_entry(vma, &obj->vma_list, vma_link)
5042 if (vma->vm == vm)
5043 return vma;
5044
5045 return NULL;
5046 }
5047
5048 void i915_gem_vma_destroy(struct i915_vma *vma)
5049 {
5050 WARN_ON(vma->node.allocated);
5051
5052 /* Keep the vma as a placeholder in the execbuffer reservation lists */
5053 if (!list_empty(&vma->exec_list))
5054 return;
5055
5056 list_del(&vma->vma_link);
5057
5058 kfree(vma);
5059 }
5060
5061 int
5062 i915_gem_suspend(struct drm_device *dev)
5063 {
5064 struct drm_i915_private *dev_priv = dev->dev_private;
5065 int ret = 0;
5066
5067 mutex_lock(&dev->struct_mutex);
5068 if (dev_priv->ums.mm_suspended)
5069 goto err;
5070
5071 ret = i915_gpu_idle(dev);
5072 if (ret)
5073 goto err;
5074
5075 i915_gem_retire_requests(dev);
5076
5077 /* Under UMS, be paranoid and evict. */
5078 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5079 i915_gem_evict_everything(dev);
5080
5081 i915_kernel_lost_context(dev);
5082 i915_gem_cleanup_ringbuffer(dev);
5083
5084 /* Hack! Don't let anybody do execbuf while we don't control the chip.
5085 * We need to replace this with a semaphore, or something.
5086 * And not confound ums.mm_suspended!
5087 */
5088 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
5089 DRIVER_MODESET);
5090 mutex_unlock(&dev->struct_mutex);
5091
5092 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
5093 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
5094 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
5095
5096 return 0;
5097
5098 err:
5099 mutex_unlock(&dev->struct_mutex);
5100 return ret;
5101 }
5102
5103 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
5104 {
5105 struct drm_device *dev = ring->dev;
5106 struct drm_i915_private *dev_priv = dev->dev_private;
5107 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
5108 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
5109 int i, ret;
5110
5111 if (!HAS_L3_DPF(dev) || !remap_info)
5112 return 0;
5113
5114 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
5115 if (ret)
5116 return ret;
5117
5118 /*
5119 * Note: We do not worry about the concurrent register cacheline hang
5120 * here because no other code should access these registers other than
5121 * at initialization time.
5122 */
5123 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
5124 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
5125 intel_ring_emit(ring, reg_base + i);
5126 intel_ring_emit(ring, remap_info[i/4]);
5127 }
5128
5129 intel_ring_advance(ring);
5130
5131 return ret;
5132 }
5133
5134 void i915_gem_init_swizzling(struct drm_device *dev)
5135 {
5136 struct drm_i915_private *dev_priv = dev->dev_private;
5137
5138 if (INTEL_INFO(dev)->gen < 5 ||
5139 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5140 return;
5141
5142 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5143 DISP_TILE_SURFACE_SWIZZLING);
5144
5145 if (IS_GEN5(dev))
5146 return;
5147
5148 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5149 if (IS_GEN6(dev))
5150 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5151 else if (IS_GEN7(dev))
5152 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5153 else if (IS_GEN8(dev))
5154 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5155 else
5156 BUG();
5157 }
5158
5159 static bool
5160 intel_enable_blt(struct drm_device *dev)
5161 {
5162 if (!HAS_BLT(dev))
5163 return false;
5164
5165 /* The blitter was dysfunctional on early prototypes */
5166 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
5167 DRM_INFO("BLT not supported on this pre-production hardware;"
5168 " graphics performance will be degraded.\n");
5169 return false;
5170 }
5171
5172 return true;
5173 }
5174
5175 static int i915_gem_init_rings(struct drm_device *dev)
5176 {
5177 struct drm_i915_private *dev_priv = dev->dev_private;
5178 int ret;
5179
5180 ret = intel_init_render_ring_buffer(dev);
5181 if (ret)
5182 return ret;
5183
5184 if (HAS_BSD(dev)) {
5185 ret = intel_init_bsd_ring_buffer(dev);
5186 if (ret)
5187 goto cleanup_render_ring;
5188 }
5189
5190 if (intel_enable_blt(dev)) {
5191 ret = intel_init_blt_ring_buffer(dev);
5192 if (ret)
5193 goto cleanup_bsd_ring;
5194 }
5195
5196 if (HAS_VEBOX(dev)) {
5197 ret = intel_init_vebox_ring_buffer(dev);
5198 if (ret)
5199 goto cleanup_blt_ring;
5200 }
5201
5202
5203 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
5204 if (ret)
5205 goto cleanup_vebox_ring;
5206
5207 return 0;
5208
5209 cleanup_vebox_ring:
5210 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5211 cleanup_blt_ring:
5212 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5213 cleanup_bsd_ring:
5214 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5215 cleanup_render_ring:
5216 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5217
5218 return ret;
5219 }
5220
5221 int
5222 i915_gem_init_hw(struct drm_device *dev)
5223 {
5224 struct drm_i915_private *dev_priv = dev->dev_private;
5225 int ret, i;
5226
5227 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5228 return -EIO;
5229
5230 if (dev_priv->ellc_size)
5231 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5232
5233 if (IS_HASWELL(dev))
5234 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5235 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5236
5237 if (HAS_PCH_NOP(dev)) {
5238 if (IS_IVYBRIDGE(dev)) {
5239 u32 temp = I915_READ(GEN7_MSG_CTL);
5240 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5241 I915_WRITE(GEN7_MSG_CTL, temp);
5242 } else if (INTEL_INFO(dev)->gen >= 7) {
5243 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5244 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5245 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5246 }
5247 }
5248
5249 i915_gem_init_swizzling(dev);
5250
5251 ret = i915_gem_init_rings(dev);
5252 if (ret)
5253 return ret;
5254
5255 for (i = 0; i < NUM_L3_SLICES(dev); i++)
5256 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
5257
5258 /*
5259 * XXX: Contexts should only be initialized once. Doing a switch to the
5260 * default context switch however is something we'd like to do after
5261 * reset or thaw (the latter may not actually be necessary for HW, but
5262 * goes with our code better). Context switching requires rings (for
5263 * the do_switch), but before enabling PPGTT. So don't move this.
5264 */
5265 ret = i915_gem_context_enable(dev_priv);
5266 if (ret) {
5267 DRM_ERROR("Context enable failed %d\n", ret);
5268 goto err_out;
5269 }
5270
5271 return 0;
5272
5273 err_out:
5274 i915_gem_cleanup_ringbuffer(dev);
5275 return ret;
5276 }
5277
5278 int i915_gem_init(struct drm_device *dev)
5279 {
5280 struct drm_i915_private *dev_priv = dev->dev_private;
5281 int ret;
5282
5283 mutex_lock(&dev->struct_mutex);
5284
5285 if (IS_VALLEYVIEW(dev)) {
5286 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5287 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
5288 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
5289 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5290 }
5291 i915_gem_init_global_gtt(dev);
5292
5293 ret = i915_gem_context_init(dev);
5294 if (ret) {
5295 mutex_unlock(&dev->struct_mutex);
5296 return ret;
5297 }
5298
5299 ret = i915_gem_init_hw(dev);
5300 mutex_unlock(&dev->struct_mutex);
5301 if (ret) {
5302 WARN_ON(dev_priv->mm.aliasing_ppgtt);
5303 i915_gem_context_fini(dev);
5304 drm_mm_takedown(&dev_priv->gtt.base.mm);
5305 return ret;
5306 }
5307
5308 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
5309 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5310 dev_priv->dri1.allow_batchbuffer = 1;
5311 return 0;
5312 }
5313
5314 void
5315 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5316 {
5317 struct drm_i915_private *dev_priv = dev->dev_private;
5318 struct intel_ring_buffer *ring;
5319 int i;
5320
5321 for_each_ring(ring, dev_priv, i)
5322 intel_cleanup_ring_buffer(ring);
5323 }
5324
5325 int
5326 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
5327 struct drm_file *file_priv)
5328 {
5329 struct drm_i915_private *dev_priv = dev->dev_private;
5330 int ret;
5331
5332 if (drm_core_check_feature(dev, DRIVER_MODESET))
5333 return 0;
5334
5335 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
5336 DRM_ERROR("Reenabling wedged hardware, good luck\n");
5337 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
5338 }
5339
5340 mutex_lock(&dev->struct_mutex);
5341 dev_priv->ums.mm_suspended = 0;
5342
5343 ret = i915_gem_init_hw(dev);
5344 if (ret != 0) {
5345 mutex_unlock(&dev->struct_mutex);
5346 return ret;
5347 }
5348
5349 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
5350 mutex_unlock(&dev->struct_mutex);
5351
5352 ret = drm_irq_install(dev);
5353 if (ret)
5354 goto cleanup_ringbuffer;
5355
5356 return 0;
5357
5358 cleanup_ringbuffer:
5359 mutex_lock(&dev->struct_mutex);
5360 i915_gem_cleanup_ringbuffer(dev);
5361 dev_priv->ums.mm_suspended = 1;
5362 mutex_unlock(&dev->struct_mutex);
5363
5364 return ret;
5365 }
5366
5367 int
5368 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
5369 struct drm_file *file_priv)
5370 {
5371 if (drm_core_check_feature(dev, DRIVER_MODESET))
5372 return 0;
5373
5374 drm_irq_uninstall(dev);
5375
5376 return i915_gem_suspend(dev);
5377 }
5378
5379 void
5380 i915_gem_lastclose(struct drm_device *dev)
5381 {
5382 int ret;
5383
5384 if (drm_core_check_feature(dev, DRIVER_MODESET))
5385 return;
5386
5387 ret = i915_gem_suspend(dev);
5388 if (ret)
5389 DRM_ERROR("failed to idle hardware: %d\n", ret);
5390 }
5391
5392 static void
5393 init_ring_lists(struct intel_ring_buffer *ring)
5394 {
5395 INIT_LIST_HEAD(&ring->active_list);
5396 INIT_LIST_HEAD(&ring->request_list);
5397 }
5398
5399 void i915_init_vm(struct drm_i915_private *dev_priv,
5400 struct i915_address_space *vm)
5401 {
5402 if (!i915_is_ggtt(vm))
5403 drm_mm_init(&vm->mm, vm->start, vm->total);
5404 vm->dev = dev_priv->dev;
5405 INIT_LIST_HEAD(&vm->active_list);
5406 INIT_LIST_HEAD(&vm->inactive_list);
5407 INIT_LIST_HEAD(&vm->global_link);
5408 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5409 }
5410
5411 void
5412 i915_gem_load(struct drm_device *dev)
5413 {
5414 struct drm_i915_private *dev_priv = dev->dev_private;
5415 int i;
5416
5417 dev_priv->slab =
5418 kmem_cache_create("i915_gem_object",
5419 sizeof(struct drm_i915_gem_object), 0,
5420 SLAB_HWCACHE_ALIGN,
5421 NULL);
5422
5423 INIT_LIST_HEAD(&dev_priv->vm_list);
5424 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5425
5426 INIT_LIST_HEAD(&dev_priv->context_list);
5427 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5428 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5429 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5430 for (i = 0; i < I915_NUM_RINGS; i++)
5431 init_ring_lists(&dev_priv->ring[i]);
5432 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5433 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5434 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5435 i915_gem_retire_work_handler);
5436 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5437 i915_gem_idle_work_handler);
5438 #ifdef __NetBSD__
5439 spin_lock_init(&dev_priv->gpu_error.reset_lock);
5440 DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
5441 #else
5442 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5443 #endif
5444
5445 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5446 if (IS_GEN3(dev)) {
5447 I915_WRITE(MI_ARB_STATE,
5448 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5449 }
5450
5451 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5452
5453 /* Old X drivers will take 0-2 for front, back, depth buffers */
5454 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5455 dev_priv->fence_reg_start = 3;
5456
5457 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5458 dev_priv->num_fence_regs = 32;
5459 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5460 dev_priv->num_fence_regs = 16;
5461 else
5462 dev_priv->num_fence_regs = 8;
5463
5464 /* Initialize fence registers to zero */
5465 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5466 i915_gem_restore_fences(dev);
5467
5468 i915_gem_detect_bit_6_swizzle(dev);
5469 #ifdef __NetBSD__
5470 DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
5471 spin_lock_init(&dev_priv->pending_flip_lock);
5472 #else
5473 init_waitqueue_head(&dev_priv->pending_flip_queue);
5474 #endif
5475
5476 dev_priv->mm.interruptible = true;
5477
5478 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
5479 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
5480 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
5481 register_shrinker(&dev_priv->mm.inactive_shrinker);
5482 }
5483
5484 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5485 {
5486 struct drm_i915_file_private *file_priv = file->driver_priv;
5487
5488 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5489
5490 /* Clean up our request list when the client is going away, so that
5491 * later retire_requests won't dereference our soon-to-be-gone
5492 * file_priv.
5493 */
5494 spin_lock(&file_priv->mm.lock);
5495 while (!list_empty(&file_priv->mm.request_list)) {
5496 struct drm_i915_gem_request *request;
5497
5498 request = list_first_entry(&file_priv->mm.request_list,
5499 struct drm_i915_gem_request,
5500 client_list);
5501 list_del(&request->client_list);
5502 request->file_priv = NULL;
5503 }
5504 spin_unlock(&file_priv->mm.lock);
5505 }
5506
5507 static void
5508 i915_gem_file_idle_work_handler(struct work_struct *work)
5509 {
5510 struct drm_i915_file_private *file_priv =
5511 container_of(work, typeof(*file_priv), mm.idle_work.work);
5512
5513 atomic_set(&file_priv->rps_wait_boost, false);
5514 }
5515
5516 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5517 {
5518 struct drm_i915_file_private *file_priv;
5519 int ret;
5520
5521 DRM_DEBUG_DRIVER("\n");
5522
5523 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5524 if (!file_priv)
5525 return -ENOMEM;
5526
5527 file->driver_priv = file_priv;
5528 file_priv->dev_priv = dev->dev_private;
5529 file_priv->file = file;
5530
5531 spin_lock_init(&file_priv->mm.lock);
5532 INIT_LIST_HEAD(&file_priv->mm.request_list);
5533 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5534 i915_gem_file_idle_work_handler);
5535
5536 ret = i915_gem_context_open(dev, file);
5537 if (ret)
5538 kfree(file_priv);
5539
5540 return ret;
5541 }
5542
5543 #ifndef __NetBSD__
5544 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5545 {
5546 if (!mutex_is_locked(mutex))
5547 return false;
5548
5549 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5550 return mutex->owner == task;
5551 #else
5552 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5553 return false;
5554 #endif
5555 }
5556 #endif
5557
5558 static unsigned long
5559 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
5560 {
5561 #ifdef __NetBSD__ /* XXX shrinkers */
5562 return 0;
5563 #else
5564 struct drm_i915_private *dev_priv =
5565 container_of(shrinker,
5566 struct drm_i915_private,
5567 mm.inactive_shrinker);
5568 struct drm_device *dev = dev_priv->dev;
5569 struct drm_i915_gem_object *obj;
5570 bool unlock = true;
5571 unsigned long count;
5572
5573 if (!mutex_trylock(&dev->struct_mutex)) {
5574 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5575 return 0;
5576
5577 if (dev_priv->mm.shrinker_no_lock_stealing)
5578 return 0;
5579
5580 unlock = false;
5581 }
5582
5583 count = 0;
5584 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5585 if (obj->pages_pin_count == 0)
5586 count += obj->base.size >> PAGE_SHIFT;
5587
5588 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5589 if (obj->active)
5590 continue;
5591
5592 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
5593 count += obj->base.size >> PAGE_SHIFT;
5594 }
5595
5596 if (unlock)
5597 mutex_unlock(&dev->struct_mutex);
5598
5599 return count;
5600 #endif
5601 }
5602
5603 /* All the new VM stuff */
5604 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5605 struct i915_address_space *vm)
5606 {
5607 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5608 struct i915_vma *vma;
5609
5610 if (!dev_priv->mm.aliasing_ppgtt ||
5611 vm == &dev_priv->mm.aliasing_ppgtt->base)
5612 vm = &dev_priv->gtt.base;
5613
5614 BUG_ON(list_empty(&o->vma_list));
5615 list_for_each_entry(vma, &o->vma_list, vma_link) {
5616 if (vma->vm == vm)
5617 return vma->node.start;
5618
5619 }
5620 return -1;
5621 }
5622
5623 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5624 struct i915_address_space *vm)
5625 {
5626 struct i915_vma *vma;
5627
5628 list_for_each_entry(vma, &o->vma_list, vma_link)
5629 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5630 return true;
5631
5632 return false;
5633 }
5634
5635 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5636 {
5637 struct i915_vma *vma;
5638
5639 list_for_each_entry(vma, &o->vma_list, vma_link)
5640 if (drm_mm_node_allocated(&vma->node))
5641 return true;
5642
5643 return false;
5644 }
5645
5646 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5647 struct i915_address_space *vm)
5648 {
5649 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5650 struct i915_vma *vma;
5651
5652 if (!dev_priv->mm.aliasing_ppgtt ||
5653 vm == &dev_priv->mm.aliasing_ppgtt->base)
5654 vm = &dev_priv->gtt.base;
5655
5656 BUG_ON(list_empty(&o->vma_list));
5657
5658 list_for_each_entry(vma, &o->vma_list, vma_link)
5659 if (vma->vm == vm)
5660 return vma->node.size;
5661
5662 return 0;
5663 }
5664
5665 static unsigned long
5666 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5667 {
5668 #ifdef __NetBSD__ /* XXX shrinkers */
5669 return 0;
5670 #else
5671 struct drm_i915_private *dev_priv =
5672 container_of(shrinker,
5673 struct drm_i915_private,
5674 mm.inactive_shrinker);
5675 struct drm_device *dev = dev_priv->dev;
5676 unsigned long freed;
5677 bool unlock = true;
5678
5679 if (!mutex_trylock(&dev->struct_mutex)) {
5680 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5681 return SHRINK_STOP;
5682
5683 if (dev_priv->mm.shrinker_no_lock_stealing)
5684 return SHRINK_STOP;
5685
5686 unlock = false;
5687 }
5688
5689 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5690 if (freed < sc->nr_to_scan)
5691 freed += __i915_gem_shrink(dev_priv,
5692 sc->nr_to_scan - freed,
5693 false);
5694 if (freed < sc->nr_to_scan)
5695 freed += i915_gem_shrink_all(dev_priv);
5696
5697 if (unlock)
5698 mutex_unlock(&dev->struct_mutex);
5699
5700 return freed;
5701 #endif
5702 }
5703
5704 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5705 {
5706 struct i915_vma *vma;
5707
5708 if (WARN_ON(list_empty(&obj->vma_list)))
5709 return NULL;
5710
5711 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5712 if (vma->vm != obj_to_ggtt(obj))
5713 return NULL;
5714
5715 return vma;
5716 }
5717