i915_gem.c revision 1.17 1 /*
2 * Copyright 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric (at) anholt.net>
25 *
26 */
27
28 #ifdef __NetBSD__
29 #if 0 /* XXX uvmhist option? */
30 #include "opt_uvmhist.h"
31 #endif
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35
36 #include <uvm/uvm.h>
37 #include <uvm/uvm_extern.h>
38 #include <uvm/uvm_fault.h>
39 #include <uvm/uvm_page.h>
40 #include <uvm/uvm_pmap.h>
41 #include <uvm/uvm_prot.h>
42
43 #include <drm/bus_dma_hacks.h>
44 #endif
45
46 #include <drm/drmP.h>
47 #include <drm/drm_vma_manager.h>
48 #include <drm/i915_drm.h>
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "intel_drv.h"
52 #include <linux/shmem_fs.h>
53 #include <linux/slab.h>
54 #include <linux/swap.h>
55 #include <linux/pci.h>
56 #include <linux/dma-buf.h>
57 #include <linux/errno.h>
58 #include <linux/time.h>
59 #include <linux/err.h>
60 #include <linux/bitops.h>
61 #include <asm/param.h>
62 #include <asm/page.h>
63
64 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
65 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
66 bool force);
67 static __must_check int
68 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
69 bool readonly);
70
71 static void i915_gem_write_fence(struct drm_device *dev, int reg,
72 struct drm_i915_gem_object *obj);
73 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
74 struct drm_i915_fence_reg *fence,
75 bool enable);
76
77 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
78 struct shrink_control *sc);
79 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
80 struct shrink_control *sc);
81 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
82 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
83 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
84 static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
85
86 static bool cpu_cache_is_coherent(struct drm_device *dev,
87 enum i915_cache_level level)
88 {
89 return HAS_LLC(dev) || level != I915_CACHE_NONE;
90 }
91
92 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
93 {
94 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
95 return true;
96
97 return obj->pin_display;
98 }
99
100 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
101 {
102 if (obj->tiling_mode)
103 i915_gem_release_mmap(obj);
104
105 /* As we do not have an associated fence register, we will force
106 * a tiling change if we ever need to acquire one.
107 */
108 obj->fence_dirty = false;
109 obj->fence_reg = I915_FENCE_REG_NONE;
110 }
111
112 /* some bookkeeping */
113 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
114 size_t size)
115 {
116 spin_lock(&dev_priv->mm.object_stat_lock);
117 dev_priv->mm.object_count++;
118 dev_priv->mm.object_memory += size;
119 spin_unlock(&dev_priv->mm.object_stat_lock);
120 }
121
122 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
123 size_t size)
124 {
125 spin_lock(&dev_priv->mm.object_stat_lock);
126 dev_priv->mm.object_count--;
127 dev_priv->mm.object_memory -= size;
128 spin_unlock(&dev_priv->mm.object_stat_lock);
129 }
130
131 static int
132 i915_gem_wait_for_error(struct i915_gpu_error *error)
133 {
134 int ret;
135
136 #define EXIT_COND (!i915_reset_in_progress(error) || \
137 i915_terminally_wedged(error))
138 if (EXIT_COND)
139 return 0;
140
141 /*
142 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
143 * userspace. If it takes that long something really bad is going on and
144 * we should simply try to bail out and fail as gracefully as possible.
145 */
146 #ifdef __NetBSD__
147 spin_lock(&error->reset_lock);
148 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
149 10*HZ, EXIT_COND);
150 spin_unlock(&error->reset_lock);
151 #else
152 ret = wait_event_interruptible_timeout(error->reset_queue,
153 EXIT_COND,
154 10*HZ);
155 #endif
156 if (ret == 0) {
157 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
158 return -EIO;
159 } else if (ret < 0) {
160 return ret;
161 }
162 #undef EXIT_COND
163
164 return 0;
165 }
166
167 int i915_mutex_lock_interruptible(struct drm_device *dev)
168 {
169 struct drm_i915_private *dev_priv = dev->dev_private;
170 int ret;
171
172 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
173 if (ret)
174 return ret;
175
176 ret = mutex_lock_interruptible(&dev->struct_mutex);
177 if (ret)
178 return ret;
179
180 WARN_ON(i915_verify_lists(dev));
181 return 0;
182 }
183
184 static inline bool
185 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
186 {
187 return i915_gem_obj_bound_any(obj) && !obj->active;
188 }
189
190 int
191 i915_gem_init_ioctl(struct drm_device *dev, void *data,
192 struct drm_file *file)
193 {
194 struct drm_i915_private *dev_priv = dev->dev_private;
195 struct drm_i915_gem_init *args = data;
196
197 if (drm_core_check_feature(dev, DRIVER_MODESET))
198 return -ENODEV;
199
200 if (args->gtt_start >= args->gtt_end ||
201 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
202 return -EINVAL;
203
204 /* GEM with user mode setting was never supported on ilk and later. */
205 if (INTEL_INFO(dev)->gen >= 5)
206 return -ENODEV;
207
208 mutex_lock(&dev->struct_mutex);
209 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
210 args->gtt_end);
211 dev_priv->gtt.mappable_end = args->gtt_end;
212 mutex_unlock(&dev->struct_mutex);
213
214 return 0;
215 }
216
217 int
218 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
219 struct drm_file *file)
220 {
221 struct drm_i915_private *dev_priv = dev->dev_private;
222 struct drm_i915_gem_get_aperture *args = data;
223 struct drm_i915_gem_object *obj;
224 size_t pinned;
225
226 pinned = 0;
227 mutex_lock(&dev->struct_mutex);
228 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
229 if (i915_gem_obj_is_pinned(obj))
230 pinned += i915_gem_obj_ggtt_size(obj);
231 mutex_unlock(&dev->struct_mutex);
232
233 args->aper_size = dev_priv->gtt.base.total;
234 args->aper_available_size = args->aper_size - pinned;
235
236 return 0;
237 }
238
239 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
240 {
241 drm_dma_handle_t *phys = obj->phys_handle;
242
243 if (!phys)
244 return;
245
246 if (obj->madv == I915_MADV_WILLNEED) {
247 #ifdef __NetBSD__
248 const char *vaddr = phys->vaddr;
249 unsigned i;
250
251 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
252 struct pglist pages;
253 int error;
254
255 TAILQ_INIT(&pages);
256 error = uvm_obj_wirepages(obj->base.gemo_shm_uao,
257 i*PAGE_SIZE, (i+1)*PAGE_SIZE, &pages);
258 if (error)
259 continue;
260
261 struct vm_page *const vm_page = TAILQ_FIRST(&pages);
262 struct page *const page = container_of(vm_page,
263 struct page, p_vmp);
264 char *const dst = kmap_atomic(page);
265 (void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
266 drm_clflush_virt_range(dst, PAGE_SIZE);
267 kunmap_atomic(dst);
268
269 vm_page->flags &= ~PG_CLEAN;
270 /* XXX mark page accessed */
271 uvm_obj_unwirepages(obj->base.gemo_shm_uao,
272 i*PAGE_SIZE, (i+1)*PAGE_SIZE);
273 }
274 #else
275 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
276 char *vaddr = phys->vaddr;
277 int i;
278
279 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
280 struct page *page = shmem_read_mapping_page(mapping, i);
281 if (!IS_ERR(page)) {
282 char *dst = kmap_atomic(page);
283 memcpy(dst, vaddr, PAGE_SIZE);
284 drm_clflush_virt_range(dst, PAGE_SIZE);
285 kunmap_atomic(dst);
286
287 set_page_dirty(page);
288 mark_page_accessed(page);
289 page_cache_release(page);
290 }
291 vaddr += PAGE_SIZE;
292 }
293 #endif
294 i915_gem_chipset_flush(obj->base.dev);
295 }
296
297 #ifndef __NetBSD__
298 #ifdef CONFIG_X86
299 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
300 #endif
301 #endif
302 drm_pci_free(obj->base.dev, phys);
303 obj->phys_handle = NULL;
304 }
305
306 int
307 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
308 int align)
309 {
310 drm_dma_handle_t *phys;
311 #ifndef __NetBSD__
312 struct address_space *mapping;
313 #endif
314 char *vaddr;
315 int i;
316
317 if (obj->phys_handle) {
318 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
319 return -EBUSY;
320
321 return 0;
322 }
323
324 if (obj->madv != I915_MADV_WILLNEED)
325 return -EFAULT;
326
327 #ifdef __NetBSD__
328 if (obj->base.gemo_shm_uao == NULL)
329 return -EINVAL;
330 #else
331 if (obj->base.filp == NULL)
332 return -EINVAL;
333 #endif
334
335 /* create a new object */
336 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
337 if (!phys)
338 return -ENOMEM;
339
340 vaddr = phys->vaddr;
341 #ifndef __NetBSD__
342 #ifdef CONFIG_X86
343 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
344 #endif
345 mapping = file_inode(obj->base.filp)->i_mapping;
346 #endif
347 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
348 struct page *page;
349 char *src;
350
351 #ifdef __NetBSD__
352 struct pglist pages;
353 int ret;
354
355 TAILQ_INIT(&pages);
356
357 /* XXX errno NetBSD->Linux */
358 ret = -uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
359 (i+1)*PAGE_SIZE, &pages);
360 if (ret) {
361 drm_pci_free(obj->base.dev, phys);
362 return ret;
363 }
364 KASSERT(!TAILQ_EMPTY(&pages));
365 page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
366 #else
367 page = shmem_read_mapping_page(mapping, i);
368 if (IS_ERR(page)) {
369 #ifdef CONFIG_X86
370 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
371 #endif
372 drm_pci_free(obj->base.dev, phys);
373 return PTR_ERR(page);
374 }
375 #endif /* defined(__NetBSD__) */
376
377 src = kmap_atomic(page);
378 memcpy(vaddr, src, PAGE_SIZE);
379 kunmap_atomic(src);
380
381 #ifndef __NetBSD__
382 mark_page_accessed(page);
383 page_cache_release(page);
384 #endif
385
386 vaddr += PAGE_SIZE;
387 }
388
389 obj->phys_handle = phys;
390 return 0;
391 }
392
393 static int
394 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
395 struct drm_i915_gem_pwrite *args,
396 struct drm_file *file_priv)
397 {
398 struct drm_device *dev = obj->base.dev;
399 void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
400 char __user *user_data = to_user_ptr(args->data_ptr);
401
402 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
403 unsigned long unwritten;
404
405 /* The physical object once assigned is fixed for the lifetime
406 * of the obj, so we can safely drop the lock and continue
407 * to access vaddr.
408 */
409 mutex_unlock(&dev->struct_mutex);
410 unwritten = copy_from_user(vaddr, user_data, args->size);
411 mutex_lock(&dev->struct_mutex);
412 if (unwritten)
413 return -EFAULT;
414 }
415
416 i915_gem_chipset_flush(dev);
417 return 0;
418 }
419
420 void *i915_gem_object_alloc(struct drm_device *dev)
421 {
422 struct drm_i915_private *dev_priv = dev->dev_private;
423 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
424 }
425
426 void i915_gem_object_free(struct drm_i915_gem_object *obj)
427 {
428 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
429 kmem_cache_free(dev_priv->slab, obj);
430 }
431
432 static int
433 i915_gem_create(struct drm_file *file,
434 struct drm_device *dev,
435 uint64_t size,
436 uint32_t *handle_p)
437 {
438 struct drm_i915_gem_object *obj;
439 int ret;
440 u32 handle;
441
442 size = roundup(size, PAGE_SIZE);
443 if (size == 0)
444 return -EINVAL;
445
446 /* Allocate the new object */
447 obj = i915_gem_alloc_object(dev, size);
448 if (obj == NULL)
449 return -ENOMEM;
450
451 ret = drm_gem_handle_create(file, &obj->base, &handle);
452 /* drop reference from allocate - handle holds it now */
453 drm_gem_object_unreference_unlocked(&obj->base);
454 if (ret)
455 return ret;
456
457 *handle_p = handle;
458 return 0;
459 }
460
461 int
462 i915_gem_dumb_create(struct drm_file *file,
463 struct drm_device *dev,
464 struct drm_mode_create_dumb *args)
465 {
466 /* have to work out size/pitch and return them */
467 #ifdef __NetBSD__ /* ALIGN means something else. */
468 args->pitch = round_up(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
469 #else
470 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
471 #endif
472 args->size = args->pitch * args->height;
473 return i915_gem_create(file, dev,
474 args->size, &args->handle);
475 }
476
477 /**
478 * Creates a new mm object and returns a handle to it.
479 */
480 int
481 i915_gem_create_ioctl(struct drm_device *dev, void *data,
482 struct drm_file *file)
483 {
484 struct drm_i915_gem_create *args = data;
485
486 return i915_gem_create(file, dev,
487 args->size, &args->handle);
488 }
489
490 static inline int
491 __copy_to_user_swizzled(char __user *cpu_vaddr,
492 const char *gpu_vaddr, int gpu_offset,
493 int length)
494 {
495 int ret, cpu_offset = 0;
496
497 while (length > 0) {
498 #ifdef __NetBSD__ /* XXX ALIGN means something else. */
499 int cacheline_end = round_up(gpu_offset + 1, 64);
500 #else
501 int cacheline_end = ALIGN(gpu_offset + 1, 64);
502 #endif
503 int this_length = min(cacheline_end - gpu_offset, length);
504 int swizzled_gpu_offset = gpu_offset ^ 64;
505
506 ret = __copy_to_user(cpu_vaddr + cpu_offset,
507 gpu_vaddr + swizzled_gpu_offset,
508 this_length);
509 if (ret)
510 return ret + length;
511
512 cpu_offset += this_length;
513 gpu_offset += this_length;
514 length -= this_length;
515 }
516
517 return 0;
518 }
519
520 static inline int
521 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
522 const char __user *cpu_vaddr,
523 int length)
524 {
525 int ret, cpu_offset = 0;
526
527 while (length > 0) {
528 #ifdef __NetBSD__ /* XXX ALIGN means something else. */
529 int cacheline_end = round_up(gpu_offset + 1, 64);
530 #else
531 int cacheline_end = ALIGN(gpu_offset + 1, 64);
532 #endif
533 int this_length = min(cacheline_end - gpu_offset, length);
534 int swizzled_gpu_offset = gpu_offset ^ 64;
535
536 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
537 cpu_vaddr + cpu_offset,
538 this_length);
539 if (ret)
540 return ret + length;
541
542 cpu_offset += this_length;
543 gpu_offset += this_length;
544 length -= this_length;
545 }
546
547 return 0;
548 }
549
550 /*
551 * Pins the specified object's pages and synchronizes the object with
552 * GPU accesses. Sets needs_clflush to non-zero if the caller should
553 * flush the object from the CPU cache.
554 */
555 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
556 int *needs_clflush)
557 {
558 int ret;
559
560 *needs_clflush = 0;
561
562 #ifdef __NetBSD__
563 if (obj->base.gemo_shm_uao == NULL)
564 return -EINVAL;
565 #else
566 if (!obj->base.filp)
567 return -EINVAL;
568 #endif
569
570 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
571 /* If we're not in the cpu read domain, set ourself into the gtt
572 * read domain and manually flush cachelines (if required). This
573 * optimizes for the case when the gpu will dirty the data
574 * anyway again before the next pread happens. */
575 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
576 obj->cache_level);
577 ret = i915_gem_object_wait_rendering(obj, true);
578 if (ret)
579 return ret;
580 }
581
582 ret = i915_gem_object_get_pages(obj);
583 if (ret)
584 return ret;
585
586 i915_gem_object_pin_pages(obj);
587
588 return ret;
589 }
590
591 /* Per-page copy function for the shmem pread fastpath.
592 * Flushes invalid cachelines before reading the target if
593 * needs_clflush is set. */
594 static int
595 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
596 char __user *user_data,
597 bool page_do_bit17_swizzling, bool needs_clflush)
598 {
599 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
600 return -EFAULT;
601 #else
602 char *vaddr;
603 int ret;
604
605 if (unlikely(page_do_bit17_swizzling))
606 return -EINVAL;
607
608 vaddr = kmap_atomic(page);
609 if (needs_clflush)
610 drm_clflush_virt_range(vaddr + shmem_page_offset,
611 page_length);
612 ret = __copy_to_user_inatomic(user_data,
613 vaddr + shmem_page_offset,
614 page_length);
615 kunmap_atomic(vaddr);
616
617 return ret ? -EFAULT : 0;
618 #endif
619 }
620
621 static void
622 shmem_clflush_swizzled_range(char *addr, unsigned long length,
623 bool swizzled)
624 {
625 if (unlikely(swizzled)) {
626 unsigned long start = (unsigned long) addr;
627 unsigned long end = (unsigned long) addr + length;
628
629 /* For swizzling simply ensure that we always flush both
630 * channels. Lame, but simple and it works. Swizzled
631 * pwrite/pread is far from a hotpath - current userspace
632 * doesn't use it at all. */
633 start = round_down(start, 128);
634 end = round_up(end, 128);
635
636 drm_clflush_virt_range((void *)start, end - start);
637 } else {
638 drm_clflush_virt_range(addr, length);
639 }
640
641 }
642
643 /* Only difference to the fast-path function is that this can handle bit17
644 * and uses non-atomic copy and kmap functions. */
645 static int
646 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
647 char __user *user_data,
648 bool page_do_bit17_swizzling, bool needs_clflush)
649 {
650 char *vaddr;
651 int ret;
652
653 vaddr = kmap(page);
654 if (needs_clflush)
655 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
656 page_length,
657 page_do_bit17_swizzling);
658
659 if (page_do_bit17_swizzling)
660 ret = __copy_to_user_swizzled(user_data,
661 vaddr, shmem_page_offset,
662 page_length);
663 else
664 ret = __copy_to_user(user_data,
665 vaddr + shmem_page_offset,
666 page_length);
667 kunmap(page);
668
669 return ret ? - EFAULT : 0;
670 }
671
672 static int
673 i915_gem_shmem_pread(struct drm_device *dev,
674 struct drm_i915_gem_object *obj,
675 struct drm_i915_gem_pread *args,
676 struct drm_file *file)
677 {
678 char __user *user_data;
679 ssize_t remain;
680 loff_t offset;
681 int shmem_page_offset, page_length, ret = 0;
682 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
683 #ifndef __NetBSD__ /* XXX */
684 int prefaulted = 0;
685 #endif
686 int needs_clflush = 0;
687 #ifndef __NetBSD__
688 struct sg_page_iter sg_iter;
689 #endif
690
691 user_data = to_user_ptr(args->data_ptr);
692 remain = args->size;
693
694 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
695
696 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
697 if (ret)
698 return ret;
699
700 offset = args->offset;
701
702 #ifdef __NetBSD__
703 /*
704 * XXX This is a big #ifdef with a lot of duplicated code, but
705 * factoring out the loop head -- which is all that
706 * substantially differs -- is probably more trouble than it's
707 * worth at the moment.
708 */
709 while (0 < remain) {
710 /* Get the next page. */
711 shmem_page_offset = offset_in_page(offset);
712 KASSERT(shmem_page_offset < PAGE_SIZE);
713 page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
714 struct page *const page = i915_gem_object_get_page(obj,
715 atop(offset));
716
717 /* Decide whether to swizzle bit 17. */
718 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
719 (page_to_phys(page) & (1 << 17)) != 0;
720
721 /* Try the fast path. */
722 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
723 user_data, page_do_bit17_swizzling, needs_clflush);
724 if (ret == 0)
725 goto next_page;
726
727 /* Fast path failed. Try the slow path. */
728 mutex_unlock(&dev->struct_mutex);
729 /* XXX prefault */
730 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
731 user_data, page_do_bit17_swizzling, needs_clflush);
732 mutex_lock(&dev->struct_mutex);
733 if (ret)
734 goto out;
735
736 next_page: KASSERT(page_length <= remain);
737 remain -= page_length;
738 user_data += page_length;
739 offset += page_length;
740 }
741 #else
742 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
743 offset >> PAGE_SHIFT) {
744 struct page *page = sg_page_iter_page(&sg_iter);
745
746 if (remain <= 0)
747 break;
748
749 /* Operation in this page
750 *
751 * shmem_page_offset = offset within page in shmem file
752 * page_length = bytes to copy for this page
753 */
754 shmem_page_offset = offset_in_page(offset);
755 page_length = remain;
756 if ((shmem_page_offset + page_length) > PAGE_SIZE)
757 page_length = PAGE_SIZE - shmem_page_offset;
758
759 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
760 (page_to_phys(page) & (1 << 17)) != 0;
761
762 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
763 user_data, page_do_bit17_swizzling,
764 needs_clflush);
765 if (ret == 0)
766 goto next_page;
767
768 mutex_unlock(&dev->struct_mutex);
769
770 if (likely(!i915.prefault_disable) && !prefaulted) {
771 ret = fault_in_multipages_writeable(user_data, remain);
772 /* Userspace is tricking us, but we've already clobbered
773 * its pages with the prefault and promised to write the
774 * data up to the first fault. Hence ignore any errors
775 * and just continue. */
776 (void)ret;
777 prefaulted = 1;
778 }
779
780 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
781 user_data, page_do_bit17_swizzling,
782 needs_clflush);
783
784 mutex_lock(&dev->struct_mutex);
785
786 if (ret)
787 goto out;
788
789 next_page:
790 remain -= page_length;
791 user_data += page_length;
792 offset += page_length;
793 }
794 #endif
795
796 out:
797 i915_gem_object_unpin_pages(obj);
798
799 return ret;
800 }
801
802 /**
803 * Reads data from the object referenced by handle.
804 *
805 * On error, the contents of *data are undefined.
806 */
807 int
808 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
809 struct drm_file *file)
810 {
811 struct drm_i915_gem_pread *args = data;
812 struct drm_gem_object *gobj;
813 struct drm_i915_gem_object *obj;
814 int ret = 0;
815
816 if (args->size == 0)
817 return 0;
818
819 if (!access_ok(VERIFY_WRITE,
820 to_user_ptr(args->data_ptr),
821 args->size))
822 return -EFAULT;
823
824 ret = i915_mutex_lock_interruptible(dev);
825 if (ret)
826 return ret;
827
828 gobj = drm_gem_object_lookup(dev, file, args->handle);
829 if (gobj == NULL) {
830 ret = -ENOENT;
831 goto unlock;
832 }
833 obj = to_intel_bo(gobj);
834
835 /* Bounds check source. */
836 if (args->offset > obj->base.size ||
837 args->size > obj->base.size - args->offset) {
838 ret = -EINVAL;
839 goto out;
840 }
841
842 /* prime objects have no backing filp to GEM pread/pwrite
843 * pages from.
844 */
845 #ifdef __NetBSD__
846 /* Also stolen objects. */
847 if (obj->base.gemo_shm_uao == NULL) {
848 ret = -EINVAL;
849 goto out;
850 }
851 #else
852 if (!obj->base.filp) {
853 ret = -EINVAL;
854 goto out;
855 }
856 #endif
857
858 trace_i915_gem_object_pread(obj, args->offset, args->size);
859
860 ret = i915_gem_shmem_pread(dev, obj, args, file);
861
862 out:
863 drm_gem_object_unreference(&obj->base);
864 unlock:
865 mutex_unlock(&dev->struct_mutex);
866 return ret;
867 }
868
869 /* This is the fast write path which cannot handle
870 * page faults in the source data
871 */
872
873 static inline int
874 fast_user_write(struct io_mapping *mapping,
875 loff_t page_base, int page_offset,
876 char __user *user_data,
877 int length)
878 {
879 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
880 return -EFAULT;
881 #else
882 void __iomem *vaddr_atomic;
883 void *vaddr;
884 unsigned long unwritten;
885
886 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
887 /* We can use the cpu mem copy function because this is X86. */
888 vaddr = (void __force*)vaddr_atomic + page_offset;
889 unwritten = __copy_from_user_inatomic_nocache(vaddr,
890 user_data, length);
891 io_mapping_unmap_atomic(vaddr_atomic);
892 return unwritten;
893 #endif
894 }
895
896 /**
897 * This is the fast pwrite path, where we copy the data directly from the
898 * user into the GTT, uncached.
899 */
900 static int
901 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
902 struct drm_i915_gem_object *obj,
903 struct drm_i915_gem_pwrite *args,
904 struct drm_file *file)
905 {
906 struct drm_i915_private *dev_priv = dev->dev_private;
907 ssize_t remain;
908 loff_t offset, page_base;
909 char __user *user_data;
910 int page_offset, page_length, ret;
911
912 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
913 if (ret)
914 goto out;
915
916 ret = i915_gem_object_set_to_gtt_domain(obj, true);
917 if (ret)
918 goto out_unpin;
919
920 ret = i915_gem_object_put_fence(obj);
921 if (ret)
922 goto out_unpin;
923
924 user_data = to_user_ptr(args->data_ptr);
925 remain = args->size;
926
927 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
928
929 while (remain > 0) {
930 /* Operation in this page
931 *
932 * page_base = page offset within aperture
933 * page_offset = offset within page
934 * page_length = bytes to copy for this page
935 */
936 page_base = offset & PAGE_MASK;
937 page_offset = offset_in_page(offset);
938 page_length = remain;
939 if ((page_offset + remain) > PAGE_SIZE)
940 page_length = PAGE_SIZE - page_offset;
941
942 /* If we get a fault while copying data, then (presumably) our
943 * source page isn't available. Return the error and we'll
944 * retry in the slow path.
945 */
946 if (fast_user_write(dev_priv->gtt.mappable, page_base,
947 page_offset, user_data, page_length)) {
948 ret = -EFAULT;
949 goto out_unpin;
950 }
951
952 remain -= page_length;
953 user_data += page_length;
954 offset += page_length;
955 }
956
957 out_unpin:
958 i915_gem_object_ggtt_unpin(obj);
959 out:
960 return ret;
961 }
962
963 /* Per-page copy function for the shmem pwrite fastpath.
964 * Flushes invalid cachelines before writing to the target if
965 * needs_clflush_before is set and flushes out any written cachelines after
966 * writing if needs_clflush is set. */
967 static int
968 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
969 char __user *user_data,
970 bool page_do_bit17_swizzling,
971 bool needs_clflush_before,
972 bool needs_clflush_after)
973 {
974 #ifdef __NetBSD__
975 return -EFAULT;
976 #else
977 char *vaddr;
978 int ret;
979
980 if (unlikely(page_do_bit17_swizzling))
981 return -EINVAL;
982
983 vaddr = kmap_atomic(page);
984 if (needs_clflush_before)
985 drm_clflush_virt_range(vaddr + shmem_page_offset,
986 page_length);
987 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
988 user_data, page_length);
989 if (needs_clflush_after)
990 drm_clflush_virt_range(vaddr + shmem_page_offset,
991 page_length);
992 kunmap_atomic(vaddr);
993
994 return ret ? -EFAULT : 0;
995 #endif
996 }
997
998 /* Only difference to the fast-path function is that this can handle bit17
999 * and uses non-atomic copy and kmap functions. */
1000 static int
1001 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1002 char __user *user_data,
1003 bool page_do_bit17_swizzling,
1004 bool needs_clflush_before,
1005 bool needs_clflush_after)
1006 {
1007 char *vaddr;
1008 int ret;
1009
1010 vaddr = kmap(page);
1011 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1012 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1013 page_length,
1014 page_do_bit17_swizzling);
1015 if (page_do_bit17_swizzling)
1016 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1017 user_data,
1018 page_length);
1019 else
1020 ret = __copy_from_user(vaddr + shmem_page_offset,
1021 user_data,
1022 page_length);
1023 if (needs_clflush_after)
1024 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1025 page_length,
1026 page_do_bit17_swizzling);
1027 kunmap(page);
1028
1029 return ret ? -EFAULT : 0;
1030 }
1031
1032 static int
1033 i915_gem_shmem_pwrite(struct drm_device *dev,
1034 struct drm_i915_gem_object *obj,
1035 struct drm_i915_gem_pwrite *args,
1036 struct drm_file *file)
1037 {
1038 ssize_t remain;
1039 loff_t offset;
1040 char __user *user_data;
1041 int shmem_page_offset, page_length, ret = 0;
1042 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1043 int hit_slowpath = 0;
1044 int needs_clflush_after = 0;
1045 int needs_clflush_before = 0;
1046 #ifndef __NetBSD__
1047 struct sg_page_iter sg_iter;
1048 #endif
1049
1050 user_data = to_user_ptr(args->data_ptr);
1051 remain = args->size;
1052
1053 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1054
1055 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1056 /* If we're not in the cpu write domain, set ourself into the gtt
1057 * write domain and manually flush cachelines (if required). This
1058 * optimizes for the case when the gpu will use the data
1059 * right away and we therefore have to clflush anyway. */
1060 needs_clflush_after = cpu_write_needs_clflush(obj);
1061 ret = i915_gem_object_wait_rendering(obj, false);
1062 if (ret)
1063 return ret;
1064 }
1065 /* Same trick applies to invalidate partially written cachelines read
1066 * before writing. */
1067 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1068 needs_clflush_before =
1069 !cpu_cache_is_coherent(dev, obj->cache_level);
1070
1071 ret = i915_gem_object_get_pages(obj);
1072 if (ret)
1073 return ret;
1074
1075 i915_gem_object_pin_pages(obj);
1076
1077 offset = args->offset;
1078 obj->dirty = 1;
1079
1080 #ifdef __NetBSD__
1081 while (0 < remain) {
1082 /* Get the next page. */
1083 shmem_page_offset = offset_in_page(offset);
1084 KASSERT(shmem_page_offset < PAGE_SIZE);
1085 page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
1086 struct page *const page = i915_gem_object_get_page(obj,
1087 atop(offset));
1088
1089 /* Decide whether to flush the cache or swizzle bit 17. */
1090 const bool partial_cacheline_write = needs_clflush_before &&
1091 ((shmem_page_offset | page_length)
1092 & (cpu_info_primary.ci_cflush_lsize - 1));
1093 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1094 (page_to_phys(page) & (1 << 17)) != 0;
1095
1096 /* Try the fast path. */
1097 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1098 user_data, page_do_bit17_swizzling,
1099 partial_cacheline_write, needs_clflush_after);
1100 if (ret == 0)
1101 goto next_page;
1102
1103 /* Fast path failed. Try the slow path. */
1104 hit_slowpath = 1;
1105 mutex_unlock(&dev->struct_mutex);
1106 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1107 user_data, page_do_bit17_swizzling,
1108 partial_cacheline_write, needs_clflush_after);
1109 mutex_lock(&dev->struct_mutex);
1110 if (ret)
1111 goto out;
1112
1113 next_page: KASSERT(page_length <= remain);
1114 remain -= page_length;
1115 user_data += page_length;
1116 offset += page_length;
1117 }
1118 #else
1119 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1120 offset >> PAGE_SHIFT) {
1121 struct page *page = sg_page_iter_page(&sg_iter);
1122 int partial_cacheline_write;
1123
1124 if (remain <= 0)
1125 break;
1126
1127 /* Operation in this page
1128 *
1129 * shmem_page_offset = offset within page in shmem file
1130 * page_length = bytes to copy for this page
1131 */
1132 shmem_page_offset = offset_in_page(offset);
1133
1134 page_length = remain;
1135 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1136 page_length = PAGE_SIZE - shmem_page_offset;
1137
1138 /* If we don't overwrite a cacheline completely we need to be
1139 * careful to have up-to-date data by first clflushing. Don't
1140 * overcomplicate things and flush the entire patch. */
1141 partial_cacheline_write = needs_clflush_before &&
1142 ((shmem_page_offset | page_length)
1143 & (boot_cpu_data.x86_clflush_size - 1));
1144
1145 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1146 (page_to_phys(page) & (1 << 17)) != 0;
1147
1148 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1149 user_data, page_do_bit17_swizzling,
1150 partial_cacheline_write,
1151 needs_clflush_after);
1152 if (ret == 0)
1153 goto next_page;
1154
1155 hit_slowpath = 1;
1156 mutex_unlock(&dev->struct_mutex);
1157 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1158 user_data, page_do_bit17_swizzling,
1159 partial_cacheline_write,
1160 needs_clflush_after);
1161
1162 mutex_lock(&dev->struct_mutex);
1163
1164 if (ret)
1165 goto out;
1166
1167 next_page:
1168 remain -= page_length;
1169 user_data += page_length;
1170 offset += page_length;
1171 }
1172 #endif
1173
1174 out:
1175 i915_gem_object_unpin_pages(obj);
1176
1177 if (hit_slowpath) {
1178 /*
1179 * Fixup: Flush cpu caches in case we didn't flush the dirty
1180 * cachelines in-line while writing and the object moved
1181 * out of the cpu write domain while we've dropped the lock.
1182 */
1183 if (!needs_clflush_after &&
1184 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1185 if (i915_gem_clflush_object(obj, obj->pin_display))
1186 i915_gem_chipset_flush(dev);
1187 }
1188 }
1189
1190 if (needs_clflush_after)
1191 i915_gem_chipset_flush(dev);
1192
1193 return ret;
1194 }
1195
1196 /**
1197 * Writes data to the object referenced by handle.
1198 *
1199 * On error, the contents of the buffer that were to be modified are undefined.
1200 */
1201 int
1202 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1203 struct drm_file *file)
1204 {
1205 struct drm_i915_gem_pwrite *args = data;
1206 struct drm_gem_object *gobj;
1207 struct drm_i915_gem_object *obj;
1208 int ret;
1209
1210 if (args->size == 0)
1211 return 0;
1212
1213 if (!access_ok(VERIFY_READ,
1214 to_user_ptr(args->data_ptr),
1215 args->size))
1216 return -EFAULT;
1217
1218 #ifndef __NetBSD__ /* XXX prefault */
1219 if (likely(!i915.prefault_disable)) {
1220 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1221 args->size);
1222 if (ret)
1223 return -EFAULT;
1224 }
1225 #endif
1226
1227 ret = i915_mutex_lock_interruptible(dev);
1228 if (ret)
1229 return ret;
1230
1231 gobj = drm_gem_object_lookup(dev, file, args->handle);
1232 if (gobj == NULL) {
1233 ret = -ENOENT;
1234 goto unlock;
1235 }
1236 obj = to_intel_bo(gobj);
1237
1238 /* Bounds check destination. */
1239 if (args->offset > obj->base.size ||
1240 args->size > obj->base.size - args->offset) {
1241 ret = -EINVAL;
1242 goto out;
1243 }
1244
1245 /* prime objects have no backing filp to GEM pread/pwrite
1246 * pages from.
1247 */
1248 #ifdef __NetBSD__
1249 /* Also stolen objects. */
1250 if (obj->base.gemo_shm_uao == NULL) {
1251 ret = -EINVAL;
1252 goto out;
1253 }
1254 #else
1255 if (!obj->base.filp) {
1256 ret = -EINVAL;
1257 goto out;
1258 }
1259 #endif
1260
1261 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1262
1263 ret = -EFAULT;
1264 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1265 * it would end up going through the fenced access, and we'll get
1266 * different detiling behavior between reading and writing.
1267 * pread/pwrite currently are reading and writing from the CPU
1268 * perspective, requiring manual detiling by the client.
1269 */
1270 if (obj->phys_handle) {
1271 ret = i915_gem_phys_pwrite(obj, args, file);
1272 goto out;
1273 }
1274
1275 if (obj->tiling_mode == I915_TILING_NONE &&
1276 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1277 cpu_write_needs_clflush(obj)) {
1278 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1279 /* Note that the gtt paths might fail with non-page-backed user
1280 * pointers (e.g. gtt mappings when moving data between
1281 * textures). Fallback to the shmem path in that case. */
1282 }
1283
1284 if (ret == -EFAULT || ret == -ENOSPC)
1285 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1286
1287 out:
1288 drm_gem_object_unreference(&obj->base);
1289 unlock:
1290 mutex_unlock(&dev->struct_mutex);
1291 return ret;
1292 }
1293
1294 int
1295 i915_gem_check_wedge(struct i915_gpu_error *error,
1296 bool interruptible)
1297 {
1298 if (i915_reset_in_progress(error)) {
1299 /* Non-interruptible callers can't handle -EAGAIN, hence return
1300 * -EIO unconditionally for these. */
1301 if (!interruptible)
1302 return -EIO;
1303
1304 /* Recovery complete, but the reset failed ... */
1305 if (i915_terminally_wedged(error))
1306 return -EIO;
1307
1308 return -EAGAIN;
1309 }
1310
1311 return 0;
1312 }
1313
1314 /*
1315 * Compare seqno against outstanding lazy request. Emit a request if they are
1316 * equal.
1317 */
1318 static int
1319 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1320 {
1321 int ret;
1322
1323 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1324
1325 ret = 0;
1326 if (seqno == ring->outstanding_lazy_seqno)
1327 ret = i915_add_request(ring, NULL);
1328
1329 return ret;
1330 }
1331
1332 #ifndef __NetBSD__
1333 static void fake_irq(unsigned long data)
1334 {
1335 wake_up_process((struct task_struct *)data);
1336 }
1337 #endif
1338
1339 static bool missed_irq(struct drm_i915_private *dev_priv,
1340 struct intel_ring_buffer *ring)
1341 {
1342 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1343 }
1344
1345 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1346 {
1347 if (file_priv == NULL)
1348 return true;
1349
1350 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1351 }
1352
1353 /**
1354 * __wait_seqno - wait until execution of seqno has finished
1355 * @ring: the ring expected to report seqno
1356 * @seqno: duh!
1357 * @reset_counter: reset sequence associated with the given seqno
1358 * @interruptible: do an interruptible wait (normally yes)
1359 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1360 *
1361 * Note: It is of utmost importance that the passed in seqno and reset_counter
1362 * values have been read by the caller in an smp safe manner. Where read-side
1363 * locks are involved, it is sufficient to read the reset_counter before
1364 * unlocking the lock that protects the seqno. For lockless tricks, the
1365 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1366 * inserted.
1367 *
1368 * Returns 0 if the seqno was found within the alloted time. Else returns the
1369 * errno with remaining time filled in timeout argument.
1370 */
1371 #ifdef __NetBSD__
1372 static int
1373 __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, unsigned reset_counter,
1374 bool interruptible, struct timespec *timeout,
1375 struct drm_i915_file_private *file_priv)
1376 {
1377 struct drm_device *dev = ring->dev;
1378 struct drm_i915_private *dev_priv = dev->dev_private;
1379 bool irq_test_in_progress;
1380 struct timespec before, after;
1381 int ticks;
1382 bool wedged;
1383 int ret;
1384
1385 irq_test_in_progress = (dev_priv->gpu_error.test_irq_rings &
1386 intel_ring_flag(ring));
1387 __insn_barrier();
1388
1389 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1390 return 0;
1391
1392 if (timeout)
1393 ticks = mstohz(timespec_to_ns(timeout) / 1000000);
1394 else
1395 ticks = 1;
1396
1397 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1398 gen6_rps_boost(dev_priv);
1399 if (file_priv)
1400 mod_delayed_work(dev_priv->wq,
1401 &file_priv->mm.idle_work,
1402 msecs_to_jiffies(100));
1403 }
1404
1405 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1406 return -ENODEV;
1407
1408 nanotime(&before);
1409 spin_lock(&dev_priv->irq_lock);
1410 #define EXIT_COND \
1411 (((reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) \
1412 ? wedged = true : false) || \
1413 i915_seqno_passed(ring->get_seqno(ring, false), \
1414 seqno))
1415
1416 if (timeout) {
1417 /*
1418 * XXX This missed_irq business smells like unlocked
1419 * Linux waitqueue nonsense.
1420 */
1421 if (missed_irq(dev_priv, ring))
1422 ticks = 1;
1423 if (interruptible)
1424 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
1425 &dev_priv->irq_lock, ticks, EXIT_COND);
1426 else
1427 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
1428 &dev_priv->irq_lock, ticks, EXIT_COND);
1429 } else {
1430 if (interruptible)
1431 DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
1432 &dev_priv->irq_lock, EXIT_COND);
1433 else
1434 DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
1435 &dev_priv->irq_lock, EXIT_COND);
1436 }
1437 #undef EXIT_COND
1438 spin_unlock(&dev_priv->irq_lock);
1439 nanotime(&after);
1440
1441 if (!irq_test_in_progress)
1442 ring->irq_put(ring);
1443 if (timeout)
1444 timespecsub(&after, &before, timeout);
1445 return MAX(ret, 0); /* ignore remaining ticks */
1446 }
1447 #else
1448 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1449 unsigned reset_counter,
1450 bool interruptible,
1451 struct timespec *timeout,
1452 struct drm_i915_file_private *file_priv)
1453 {
1454 struct drm_device *dev = ring->dev;
1455 struct drm_i915_private *dev_priv = dev->dev_private;
1456 const bool irq_test_in_progress =
1457 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1458 struct timespec before, now;
1459 DEFINE_WAIT(wait);
1460 unsigned long timeout_expire;
1461 int ret;
1462
1463 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1464
1465 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1466 return 0;
1467
1468 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1469
1470 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1471 gen6_rps_boost(dev_priv);
1472 if (file_priv)
1473 mod_delayed_work(dev_priv->wq,
1474 &file_priv->mm.idle_work,
1475 msecs_to_jiffies(100));
1476 }
1477
1478 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1479 return -ENODEV;
1480
1481 /* Record current time in case interrupted by signal, or wedged */
1482 trace_i915_gem_request_wait_begin(ring, seqno);
1483 getrawmonotonic(&before);
1484 for (;;) {
1485 struct timer_list timer;
1486
1487 prepare_to_wait(&ring->irq_queue, &wait,
1488 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1489
1490 /* We need to check whether any gpu reset happened in between
1491 * the caller grabbing the seqno and now ... */
1492 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1493 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1494 * is truely gone. */
1495 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1496 if (ret == 0)
1497 ret = -EAGAIN;
1498 break;
1499 }
1500
1501 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1502 ret = 0;
1503 break;
1504 }
1505
1506 if (interruptible && signal_pending(current)) {
1507 ret = -ERESTARTSYS;
1508 break;
1509 }
1510
1511 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1512 ret = -ETIME;
1513 break;
1514 }
1515
1516 timer.function = NULL;
1517 if (timeout || missed_irq(dev_priv, ring)) {
1518 unsigned long expire;
1519
1520 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1521 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1522 mod_timer(&timer, expire);
1523 }
1524
1525 io_schedule();
1526
1527 if (timer.function) {
1528 del_singleshot_timer_sync(&timer);
1529 destroy_timer_on_stack(&timer);
1530 }
1531 }
1532 getrawmonotonic(&now);
1533 trace_i915_gem_request_wait_end(ring, seqno);
1534
1535 if (!irq_test_in_progress)
1536 ring->irq_put(ring);
1537
1538 finish_wait(&ring->irq_queue, &wait);
1539
1540 if (timeout) {
1541 struct timespec sleep_time = timespec_sub(now, before);
1542 *timeout = timespec_sub(*timeout, sleep_time);
1543 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1544 set_normalized_timespec(timeout, 0, 0);
1545 }
1546
1547 return ret;
1548 }
1549 #endif
1550
1551 /**
1552 * Waits for a sequence number to be signaled, and cleans up the
1553 * request and object lists appropriately for that event.
1554 */
1555 int
1556 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1557 {
1558 struct drm_device *dev = ring->dev;
1559 struct drm_i915_private *dev_priv = dev->dev_private;
1560 bool interruptible = dev_priv->mm.interruptible;
1561 int ret;
1562
1563 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1564 BUG_ON(seqno == 0);
1565
1566 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1567 if (ret)
1568 return ret;
1569
1570 ret = i915_gem_check_olr(ring, seqno);
1571 if (ret)
1572 return ret;
1573
1574 return __wait_seqno(ring, seqno,
1575 atomic_read(&dev_priv->gpu_error.reset_counter),
1576 interruptible, NULL, NULL);
1577 }
1578
1579 static int
1580 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1581 struct intel_ring_buffer *ring)
1582 {
1583 i915_gem_retire_requests_ring(ring);
1584
1585 /* Manually manage the write flush as we may have not yet
1586 * retired the buffer.
1587 *
1588 * Note that the last_write_seqno is always the earlier of
1589 * the two (read/write) seqno, so if we haved successfully waited,
1590 * we know we have passed the last write.
1591 */
1592 obj->last_write_seqno = 0;
1593 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1594
1595 return 0;
1596 }
1597
1598 /**
1599 * Ensures that all rendering to the object has completed and the object is
1600 * safe to unbind from the GTT or access from the CPU.
1601 */
1602 static __must_check int
1603 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1604 bool readonly)
1605 {
1606 struct intel_ring_buffer *ring = obj->ring;
1607 u32 seqno;
1608 int ret;
1609
1610 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1611 if (seqno == 0)
1612 return 0;
1613
1614 ret = i915_wait_seqno(ring, seqno);
1615 if (ret)
1616 return ret;
1617
1618 return i915_gem_object_wait_rendering__tail(obj, ring);
1619 }
1620
1621 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1622 * as the object state may change during this call.
1623 */
1624 static __must_check int
1625 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1626 struct drm_i915_file_private *file_priv,
1627 bool readonly)
1628 {
1629 struct drm_device *dev = obj->base.dev;
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1631 struct intel_ring_buffer *ring = obj->ring;
1632 unsigned reset_counter;
1633 u32 seqno;
1634 int ret;
1635
1636 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1637 BUG_ON(!dev_priv->mm.interruptible);
1638
1639 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1640 if (seqno == 0)
1641 return 0;
1642
1643 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1644 if (ret)
1645 return ret;
1646
1647 ret = i915_gem_check_olr(ring, seqno);
1648 if (ret)
1649 return ret;
1650
1651 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1652 mutex_unlock(&dev->struct_mutex);
1653 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1654 mutex_lock(&dev->struct_mutex);
1655 if (ret)
1656 return ret;
1657
1658 return i915_gem_object_wait_rendering__tail(obj, ring);
1659 }
1660
1661 /**
1662 * Called when user space prepares to use an object with the CPU, either
1663 * through the mmap ioctl's mapping or a GTT mapping.
1664 */
1665 int
1666 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1667 struct drm_file *file)
1668 {
1669 struct drm_i915_gem_set_domain *args = data;
1670 struct drm_gem_object *gobj;
1671 struct drm_i915_gem_object *obj;
1672 uint32_t read_domains = args->read_domains;
1673 uint32_t write_domain = args->write_domain;
1674 int ret;
1675
1676 /* Only handle setting domains to types used by the CPU. */
1677 if (write_domain & I915_GEM_GPU_DOMAINS)
1678 return -EINVAL;
1679
1680 if (read_domains & I915_GEM_GPU_DOMAINS)
1681 return -EINVAL;
1682
1683 /* Having something in the write domain implies it's in the read
1684 * domain, and only that read domain. Enforce that in the request.
1685 */
1686 if (write_domain != 0 && read_domains != write_domain)
1687 return -EINVAL;
1688
1689 ret = i915_mutex_lock_interruptible(dev);
1690 if (ret)
1691 return ret;
1692
1693 gobj = drm_gem_object_lookup(dev, file, args->handle);
1694 if (gobj == NULL) {
1695 ret = -ENOENT;
1696 goto unlock;
1697 }
1698 obj = to_intel_bo(gobj);
1699
1700 /* Try to flush the object off the GPU without holding the lock.
1701 * We will repeat the flush holding the lock in the normal manner
1702 * to catch cases where we are gazumped.
1703 */
1704 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1705 file->driver_priv,
1706 !write_domain);
1707 if (ret)
1708 goto unref;
1709
1710 if (read_domains & I915_GEM_DOMAIN_GTT) {
1711 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1712
1713 /* Silently promote "you're not bound, there was nothing to do"
1714 * to success, since the client was just asking us to
1715 * make sure everything was done.
1716 */
1717 if (ret == -EINVAL)
1718 ret = 0;
1719 } else {
1720 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1721 }
1722
1723 unref:
1724 drm_gem_object_unreference(&obj->base);
1725 unlock:
1726 mutex_unlock(&dev->struct_mutex);
1727 return ret;
1728 }
1729
1730 /**
1731 * Called when user space has done writes to this buffer
1732 */
1733 int
1734 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1735 struct drm_file *file)
1736 {
1737 struct drm_i915_gem_sw_finish *args = data;
1738 struct drm_gem_object *gobj;
1739 struct drm_i915_gem_object *obj;
1740 int ret = 0;
1741
1742 ret = i915_mutex_lock_interruptible(dev);
1743 if (ret)
1744 return ret;
1745
1746 gobj = drm_gem_object_lookup(dev, file, args->handle);
1747 if (gobj == NULL) {
1748 ret = -ENOENT;
1749 goto unlock;
1750 }
1751 obj = to_intel_bo(gobj);
1752
1753 /* Pinned buffers may be scanout, so flush the cache */
1754 if (obj->pin_display)
1755 i915_gem_object_flush_cpu_write_domain(obj, true);
1756
1757 drm_gem_object_unreference(&obj->base);
1758 unlock:
1759 mutex_unlock(&dev->struct_mutex);
1760 return ret;
1761 }
1762
1763 /**
1764 * Maps the contents of an object, returning the address it is mapped
1765 * into.
1766 *
1767 * While the mapping holds a reference on the contents of the object, it doesn't
1768 * imply a ref on the object itself.
1769 */
1770 int
1771 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1772 struct drm_file *file)
1773 {
1774 struct drm_i915_gem_mmap *args = data;
1775 struct drm_gem_object *obj;
1776 unsigned long addr;
1777 #ifdef __NetBSD__
1778 int ret;
1779 #endif
1780
1781 obj = drm_gem_object_lookup(dev, file, args->handle);
1782 if (obj == NULL)
1783 return -ENOENT;
1784
1785 /* prime objects have no backing filp to GEM mmap
1786 * pages from.
1787 */
1788 #ifdef __NetBSD__
1789 /* Also stolen objects (XXX can we get them here?) */
1790 if (obj->gemo_shm_uao == NULL) {
1791 drm_gem_object_unreference_unlocked(obj);
1792 return -EINVAL;
1793 }
1794 #else
1795 if (!obj->filp) {
1796 drm_gem_object_unreference_unlocked(obj);
1797 return -EINVAL;
1798 }
1799 #endif
1800
1801 #ifdef __NetBSD__
1802 addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
1803 (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
1804 /* XXX errno NetBSD->Linux */
1805 ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
1806 obj->gemo_shm_uao, args->offset, 0,
1807 UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
1808 (VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
1809 0));
1810 if (ret) {
1811 drm_gem_object_unreference_unlocked(obj);
1812 return ret;
1813 }
1814 uao_reference(obj->gemo_shm_uao);
1815 drm_gem_object_unreference_unlocked(obj);
1816 #else
1817 addr = vm_mmap(obj->filp, 0, args->size,
1818 PROT_READ | PROT_WRITE, MAP_SHARED,
1819 args->offset);
1820 drm_gem_object_unreference_unlocked(obj);
1821 if (IS_ERR((void *)addr))
1822 return addr;
1823 #endif
1824
1825 args->addr_ptr = (uint64_t) addr;
1826
1827 return 0;
1828 }
1829
1830 #ifdef __NetBSD__ /* XXX gem gtt fault */
1831 static int i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
1832 struct vm_page **, int, int, vm_prot_t, int, paddr_t);
1833
1834 int
1835 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1836 int npages, int centeridx, vm_prot_t access_type, int flags)
1837 {
1838 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1839 struct drm_gem_object *gem_obj =
1840 container_of(uobj, struct drm_gem_object, gemo_uvmobj);
1841 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
1842 struct drm_device *dev = obj->base.dev;
1843 struct drm_i915_private *dev_priv = dev->dev_private;
1844 voff_t byte_offset;
1845 pgoff_t page_offset;
1846 int ret = 0;
1847 bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
1848
1849 byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
1850 KASSERT(byte_offset <= obj->base.size);
1851 page_offset = (byte_offset >> PAGE_SHIFT);
1852
1853 intel_runtime_pm_get(dev_priv);
1854
1855 /* Thanks, uvm, but we don't need this lock. */
1856 mutex_exit(uobj->vmobjlock);
1857
1858 ret = i915_mutex_lock_interruptible(dev);
1859 if (ret)
1860 goto out;
1861
1862 trace_i915_gem_object_fault(obj, page_offset, true, write);
1863
1864 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1865 if (ret)
1866 goto unlock;
1867
1868 if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
1869 ret = -EINVAL;
1870 goto unlock;
1871 }
1872
1873 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1874 if (ret)
1875 goto unlock;
1876
1877 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1878 if (ret)
1879 goto unpin;
1880
1881 ret = i915_gem_object_get_fence(obj);
1882 if (ret)
1883 goto unpin;
1884
1885 obj->fault_mappable = true;
1886
1887 /* XXX errno NetBSD->Linux */
1888 ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
1889 flags,
1890 (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
1891 unpin:
1892 i915_gem_object_ggtt_unpin(obj);
1893 unlock:
1894 mutex_unlock(&dev->struct_mutex);
1895 out:
1896 mutex_enter(uobj->vmobjlock);
1897 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
1898 if (ret == -ERESTART)
1899 uvm_wait("i915flt");
1900 /* XXX Deal with GPU hangs here... */
1901 intel_runtime_pm_put(dev_priv);
1902 /* XXX errno Linux->NetBSD */
1903 return -ret;
1904 }
1905
1906 /*
1907 * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
1908 *
1909 * XXX pmap_enter_default instead of pmap_enter because of a problem
1910 * with using weak aliases in kernel modules or something.
1911 */
1912 int pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
1913
1914 static int
1915 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1916 int npages, int centeridx, vm_prot_t access_type, int flags,
1917 paddr_t gtt_paddr)
1918 {
1919 struct vm_map_entry *entry = ufi->entry;
1920 vaddr_t curr_va;
1921 off_t curr_offset;
1922 paddr_t paddr;
1923 u_int mmapflags;
1924 int lcv, retval;
1925 vm_prot_t mapprot;
1926 UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
1927 UVMHIST_LOG(maphist," flags=%d", flags,0,0,0);
1928
1929 /*
1930 * we do not allow device mappings to be mapped copy-on-write
1931 * so we kill any attempt to do so here.
1932 */
1933
1934 if (UVM_ET_ISCOPYONWRITE(entry)) {
1935 UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
1936 entry->etype, 0,0,0);
1937 return(EIO);
1938 }
1939
1940 /*
1941 * now we must determine the offset in udv to use and the VA to
1942 * use for pmap_enter. note that we always use orig_map's pmap
1943 * for pmap_enter (even if we have a submap). since virtual
1944 * addresses in a submap must match the main map, this is ok.
1945 */
1946
1947 /* udv offset = (offset from start of entry) + entry's offset */
1948 curr_offset = entry->offset + (vaddr - entry->start);
1949 /* pmap va = vaddr (virtual address of pps[0]) */
1950 curr_va = vaddr;
1951
1952 /*
1953 * loop over the page range entering in as needed
1954 */
1955
1956 retval = 0;
1957 for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
1958 curr_va += PAGE_SIZE) {
1959 if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
1960 continue;
1961
1962 if (pps[lcv] == PGO_DONTCARE)
1963 continue;
1964
1965 paddr = (gtt_paddr + curr_offset);
1966 mmapflags = 0;
1967 mapprot = ufi->entry->protection;
1968 UVMHIST_LOG(maphist,
1969 " MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
1970 ufi->orig_map->pmap, curr_va, paddr, mapprot);
1971 if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
1972 PMAP_CANFAIL | mapprot | mmapflags) != 0) {
1973 /*
1974 * pmap_enter() didn't have the resource to
1975 * enter this mapping. Unlock everything,
1976 * wait for the pagedaemon to free up some
1977 * pages, and then tell uvm_fault() to start
1978 * the fault again.
1979 *
1980 * XXX Needs some rethinking for the PGO_ALLPAGES
1981 * XXX case.
1982 */
1983 pmap_update(ufi->orig_map->pmap); /* sync what we have so far */
1984 return (ERESTART);
1985 }
1986 }
1987
1988 pmap_update(ufi->orig_map->pmap);
1989 return (retval);
1990 }
1991 #else
1992 /**
1993 * i915_gem_fault - fault a page into the GTT
1994 * vma: VMA in question
1995 * vmf: fault info
1996 *
1997 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1998 * from userspace. The fault handler takes care of binding the object to
1999 * the GTT (if needed), allocating and programming a fence register (again,
2000 * only if needed based on whether the old reg is still valid or the object
2001 * is tiled) and inserting a new PTE into the faulting process.
2002 *
2003 * Note that the faulting process may involve evicting existing objects
2004 * from the GTT and/or fence registers to make room. So performance may
2005 * suffer if the GTT working set is large or there are few fence registers
2006 * left.
2007 */
2008 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2009 {
2010 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2011 struct drm_device *dev = obj->base.dev;
2012 struct drm_i915_private *dev_priv = dev->dev_private;
2013 pgoff_t page_offset;
2014 unsigned long pfn;
2015 int ret = 0;
2016 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2017
2018 intel_runtime_pm_get(dev_priv);
2019
2020 /* We don't use vmf->pgoff since that has the fake offset */
2021 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2022 PAGE_SHIFT;
2023
2024 ret = i915_mutex_lock_interruptible(dev);
2025 if (ret)
2026 goto out;
2027
2028 trace_i915_gem_object_fault(obj, page_offset, true, write);
2029
2030 /* Try to flush the object off the GPU first without holding the lock.
2031 * Upon reacquiring the lock, we will perform our sanity checks and then
2032 * repeat the flush holding the lock in the normal manner to catch cases
2033 * where we are gazumped.
2034 */
2035 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2036 if (ret)
2037 goto unlock;
2038
2039 /* Access to snoopable pages through the GTT is incoherent. */
2040 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2041 ret = -EINVAL;
2042 goto unlock;
2043 }
2044
2045 /* Now bind it into the GTT if needed */
2046 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
2047 if (ret)
2048 goto unlock;
2049
2050 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2051 if (ret)
2052 goto unpin;
2053
2054 ret = i915_gem_object_get_fence(obj);
2055 if (ret)
2056 goto unpin;
2057
2058 obj->fault_mappable = true;
2059
2060 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
2061 pfn >>= PAGE_SHIFT;
2062 pfn += page_offset;
2063
2064 /* Finally, remap it using the new GTT offset */
2065 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
2066 unpin:
2067 i915_gem_object_ggtt_unpin(obj);
2068 unlock:
2069 mutex_unlock(&dev->struct_mutex);
2070 out:
2071 switch (ret) {
2072 case -EIO:
2073 /* If this -EIO is due to a gpu hang, give the reset code a
2074 * chance to clean up the mess. Otherwise return the proper
2075 * SIGBUS. */
2076 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
2077 ret = VM_FAULT_SIGBUS;
2078 break;
2079 }
2080 case -EAGAIN:
2081 /*
2082 * EAGAIN means the gpu is hung and we'll wait for the error
2083 * handler to reset everything when re-faulting in
2084 * i915_mutex_lock_interruptible.
2085 */
2086 case 0:
2087 case -ERESTARTSYS:
2088 case -EINTR:
2089 case -EBUSY:
2090 /*
2091 * EBUSY is ok: this just means that another thread
2092 * already did the job.
2093 */
2094 ret = VM_FAULT_NOPAGE;
2095 break;
2096 case -ENOMEM:
2097 ret = VM_FAULT_OOM;
2098 break;
2099 case -ENOSPC:
2100 case -EFAULT:
2101 ret = VM_FAULT_SIGBUS;
2102 break;
2103 default:
2104 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2105 ret = VM_FAULT_SIGBUS;
2106 break;
2107 }
2108
2109 intel_runtime_pm_put(dev_priv);
2110 return ret;
2111 }
2112
2113 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2114 {
2115 struct i915_vma *vma;
2116
2117 /*
2118 * Only the global gtt is relevant for gtt memory mappings, so restrict
2119 * list traversal to objects bound into the global address space. Note
2120 * that the active list should be empty, but better safe than sorry.
2121 */
2122 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
2123 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
2124 i915_gem_release_mmap(vma->obj);
2125 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
2126 i915_gem_release_mmap(vma->obj);
2127 }
2128 #endif
2129
2130 /**
2131 * i915_gem_release_mmap - remove physical page mappings
2132 * @obj: obj in question
2133 *
2134 * Preserve the reservation of the mmapping with the DRM core code, but
2135 * relinquish ownership of the pages back to the system.
2136 *
2137 * It is vital that we remove the page mapping if we have mapped a tiled
2138 * object through the GTT and then lose the fence register due to
2139 * resource pressure. Similarly if the object has been moved out of the
2140 * aperture, than pages mapped into userspace must be revoked. Removing the
2141 * mapping will then trigger a page fault on the next user access, allowing
2142 * fixup by i915_gem_fault().
2143 */
2144 void
2145 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2146 {
2147 if (!obj->fault_mappable)
2148 return;
2149
2150 #ifdef __NetBSD__ /* XXX gem gtt fault */
2151 {
2152 struct vm_page *page;
2153
2154 mutex_enter(obj->base.gemo_shm_uao->vmobjlock);
2155 KASSERT(obj->pages != NULL);
2156 /* Force a fresh fault for each page. */
2157 /*
2158 * XXX OOPS! This doesn't actually do what we want.
2159 * This causes a fresh fault for access to the backing
2160 * pages -- but nothing accesses the backing pages
2161 * directly! What is actually entered into CPU page
2162 * table entries is aperture addresses which have been
2163 * programmed by the GTT to refer to those backing
2164 * pages.
2165 *
2166 * We need to clear those page table entries, but
2167 * there's no good way to do that at the moment: nobody
2168 * records for us a map from either uvm objects or
2169 * physical device addresses to a list of all virtual
2170 * pages where they have been mapped. pmap(9) records
2171 * a map only from physical RAM addresses to virtual
2172 * pages; it does nothing for physical device
2173 * addresses.
2174 */
2175 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
2176 pmap_page_protect(page, VM_PROT_NONE);
2177 mutex_exit(obj->base.gemo_shm_uao->vmobjlock);
2178 }
2179 #else
2180 drm_vma_node_unmap(&obj->base.vma_node,
2181 obj->base.dev->anon_inode->i_mapping);
2182 #endif
2183 obj->fault_mappable = false;
2184 }
2185
2186 uint32_t
2187 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2188 {
2189 uint32_t gtt_size;
2190
2191 if (INTEL_INFO(dev)->gen >= 4 ||
2192 tiling_mode == I915_TILING_NONE)
2193 return size;
2194
2195 /* Previous chips need a power-of-two fence region when tiling */
2196 if (INTEL_INFO(dev)->gen == 3)
2197 gtt_size = 1024*1024;
2198 else
2199 gtt_size = 512*1024;
2200
2201 while (gtt_size < size)
2202 gtt_size <<= 1;
2203
2204 return gtt_size;
2205 }
2206
2207 /**
2208 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2209 * @obj: object to check
2210 *
2211 * Return the required GTT alignment for an object, taking into account
2212 * potential fence register mapping.
2213 */
2214 uint32_t
2215 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2216 int tiling_mode, bool fenced)
2217 {
2218 /*
2219 * Minimum alignment is 4k (GTT page size), but might be greater
2220 * if a fence register is needed for the object.
2221 */
2222 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2223 tiling_mode == I915_TILING_NONE)
2224 return 4096;
2225
2226 /*
2227 * Previous chips need to be aligned to the size of the smallest
2228 * fence register that can contain the object.
2229 */
2230 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2231 }
2232
2233 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2234 {
2235 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2236 int ret;
2237
2238 if (drm_vma_node_has_offset(&obj->base.vma_node))
2239 return 0;
2240
2241 dev_priv->mm.shrinker_no_lock_stealing = true;
2242
2243 ret = drm_gem_create_mmap_offset(&obj->base);
2244 if (ret != -ENOSPC)
2245 goto out;
2246
2247 /* Badly fragmented mmap space? The only way we can recover
2248 * space is by destroying unwanted objects. We can't randomly release
2249 * mmap_offsets as userspace expects them to be persistent for the
2250 * lifetime of the objects. The closest we can is to release the
2251 * offsets on purgeable objects by truncating it and marking it purged,
2252 * which prevents userspace from ever using that object again.
2253 */
2254 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
2255 ret = drm_gem_create_mmap_offset(&obj->base);
2256 if (ret != -ENOSPC)
2257 goto out;
2258
2259 i915_gem_shrink_all(dev_priv);
2260 ret = drm_gem_create_mmap_offset(&obj->base);
2261 out:
2262 dev_priv->mm.shrinker_no_lock_stealing = false;
2263
2264 return ret;
2265 }
2266
2267 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2268 {
2269 drm_gem_free_mmap_offset(&obj->base);
2270 }
2271
2272 int
2273 i915_gem_mmap_gtt(struct drm_file *file,
2274 struct drm_device *dev,
2275 uint32_t handle,
2276 uint64_t *offset)
2277 {
2278 struct drm_i915_private *dev_priv = dev->dev_private;
2279 struct drm_gem_object *gobj;
2280 struct drm_i915_gem_object *obj;
2281 int ret;
2282
2283 ret = i915_mutex_lock_interruptible(dev);
2284 if (ret)
2285 return ret;
2286
2287 gobj = drm_gem_object_lookup(dev, file, handle);
2288 if (gobj == NULL) {
2289 ret = -ENOENT;
2290 goto unlock;
2291 }
2292 obj = to_intel_bo(gobj);
2293
2294 if (obj->base.size > dev_priv->gtt.mappable_end) {
2295 ret = -E2BIG;
2296 goto out;
2297 }
2298
2299 if (obj->madv != I915_MADV_WILLNEED) {
2300 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2301 ret = -EFAULT;
2302 goto out;
2303 }
2304
2305 ret = i915_gem_object_create_mmap_offset(obj);
2306 if (ret)
2307 goto out;
2308
2309 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2310
2311 out:
2312 drm_gem_object_unreference(&obj->base);
2313 unlock:
2314 mutex_unlock(&dev->struct_mutex);
2315 return ret;
2316 }
2317
2318 /**
2319 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2320 * @dev: DRM device
2321 * @data: GTT mapping ioctl data
2322 * @file: GEM object info
2323 *
2324 * Simply returns the fake offset to userspace so it can mmap it.
2325 * The mmap call will end up in drm_gem_mmap(), which will set things
2326 * up so we can get faults in the handler above.
2327 *
2328 * The fault handler will take care of binding the object into the GTT
2329 * (since it may have been evicted to make room for something), allocating
2330 * a fence register, and mapping the appropriate aperture address into
2331 * userspace.
2332 */
2333 int
2334 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2335 struct drm_file *file)
2336 {
2337 struct drm_i915_gem_mmap_gtt *args = data;
2338
2339 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2340 }
2341
2342 /* Immediately discard the backing storage */
2343 static void
2344 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2345 {
2346 #ifndef __NetBSD__
2347 struct inode *inode;
2348 #endif
2349
2350 i915_gem_object_free_mmap_offset(obj);
2351
2352 #ifdef __NetBSD__
2353 if (obj->base.gemo_shm_uao == NULL)
2354 return;
2355
2356 {
2357 struct uvm_object *const uobj = obj->base.gemo_shm_uao;
2358
2359 if (uobj != NULL) {
2360 /* XXX Calling pgo_put like this is bogus. */
2361 mutex_enter(uobj->vmobjlock);
2362 (*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
2363 (PGO_ALLPAGES | PGO_FREE));
2364 }
2365 }
2366 #else
2367 if (obj->base.filp == NULL)
2368 return;
2369
2370 /* Our goal here is to return as much of the memory as
2371 * is possible back to the system as we are called from OOM.
2372 * To do this we must instruct the shmfs to drop all of its
2373 * backing pages, *now*.
2374 */
2375 inode = file_inode(obj->base.filp);
2376 shmem_truncate_range(inode, 0, (loff_t)-1);
2377 #endif
2378
2379 obj->madv = __I915_MADV_PURGED;
2380 }
2381
2382 static inline int
2383 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
2384 {
2385 return obj->madv == I915_MADV_DONTNEED;
2386 }
2387
2388 #ifdef __NetBSD__
2389 static void
2390 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2391 {
2392 struct drm_device *const dev = obj->base.dev;
2393 int ret;
2394
2395 /* XXX Cargo-culted from the Linux code. */
2396 BUG_ON(obj->madv == __I915_MADV_PURGED);
2397
2398 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2399 if (ret) {
2400 WARN_ON(ret != -EIO);
2401 i915_gem_clflush_object(obj, true);
2402 obj->base.read_domains = obj->base.write_domain =
2403 I915_GEM_DOMAIN_CPU;
2404 }
2405
2406 if (i915_gem_object_needs_bit17_swizzle(obj))
2407 i915_gem_object_save_bit_17_swizzle(obj);
2408
2409 /* XXX Maintain dirty flag? */
2410
2411 bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
2412 bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2413 obj->base.size, obj->pages, obj->igo_nsegs);
2414
2415 kfree(obj->pages);
2416 }
2417 #else
2418 static void
2419 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2420 {
2421 struct sg_page_iter sg_iter;
2422 int ret;
2423
2424 BUG_ON(obj->madv == __I915_MADV_PURGED);
2425
2426 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2427 if (ret) {
2428 /* In the event of a disaster, abandon all caches and
2429 * hope for the best.
2430 */
2431 WARN_ON(ret != -EIO);
2432 i915_gem_clflush_object(obj, true);
2433 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2434 }
2435
2436 if (i915_gem_object_needs_bit17_swizzle(obj))
2437 i915_gem_object_save_bit_17_swizzle(obj);
2438
2439 if (obj->madv == I915_MADV_DONTNEED)
2440 obj->dirty = 0;
2441
2442 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2443 struct page *page = sg_page_iter_page(&sg_iter);
2444
2445 if (obj->dirty)
2446 set_page_dirty(page);
2447
2448 if (obj->madv == I915_MADV_WILLNEED)
2449 mark_page_accessed(page);
2450
2451 page_cache_release(page);
2452 }
2453 obj->dirty = 0;
2454
2455 sg_free_table(obj->pages);
2456 kfree(obj->pages);
2457 }
2458 #endif
2459
2460 int
2461 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2462 {
2463 const struct drm_i915_gem_object_ops *ops = obj->ops;
2464
2465 if (obj->pages == NULL)
2466 return 0;
2467
2468 if (obj->pages_pin_count)
2469 return -EBUSY;
2470
2471 BUG_ON(i915_gem_obj_bound_any(obj));
2472
2473 /* ->put_pages might need to allocate memory for the bit17 swizzle
2474 * array, hence protect them from being reaped by removing them from gtt
2475 * lists early. */
2476 list_del(&obj->global_list);
2477
2478 ops->put_pages(obj);
2479 obj->pages = NULL;
2480
2481 if (i915_gem_object_is_purgeable(obj))
2482 i915_gem_object_truncate(obj);
2483
2484 return 0;
2485 }
2486
2487 static unsigned long
2488 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
2489 bool purgeable_only)
2490 {
2491 struct list_head still_bound_list;
2492 struct drm_i915_gem_object *obj, *next;
2493 unsigned long count = 0;
2494
2495 list_for_each_entry_safe(obj, next,
2496 &dev_priv->mm.unbound_list,
2497 global_list) {
2498 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2499 i915_gem_object_put_pages(obj) == 0) {
2500 count += obj->base.size >> PAGE_SHIFT;
2501 if (count >= target)
2502 return count;
2503 }
2504 }
2505
2506 /*
2507 * As we may completely rewrite the bound list whilst unbinding
2508 * (due to retiring requests) we have to strictly process only
2509 * one element of the list at the time, and recheck the list
2510 * on every iteration.
2511 */
2512 INIT_LIST_HEAD(&still_bound_list);
2513 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
2514 struct i915_vma *vma, *v;
2515
2516 obj = list_first_entry(&dev_priv->mm.bound_list,
2517 typeof(*obj), global_list);
2518 list_move_tail(&obj->global_list, &still_bound_list);
2519
2520 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
2521 continue;
2522
2523 /*
2524 * Hold a reference whilst we unbind this object, as we may
2525 * end up waiting for and retiring requests. This might
2526 * release the final reference (held by the active list)
2527 * and result in the object being freed from under us.
2528 * in this object being freed.
2529 *
2530 * Note 1: Shrinking the bound list is special since only active
2531 * (and hence bound objects) can contain such limbo objects, so
2532 * we don't need special tricks for shrinking the unbound list.
2533 * The only other place where we have to be careful with active
2534 * objects suddenly disappearing due to retiring requests is the
2535 * eviction code.
2536 *
2537 * Note 2: Even though the bound list doesn't hold a reference
2538 * to the object we can safely grab one here: The final object
2539 * unreferencing and the bound_list are both protected by the
2540 * dev->struct_mutex and so we won't ever be able to observe an
2541 * object on the bound_list with a reference count equals 0.
2542 */
2543 drm_gem_object_reference(&obj->base);
2544
2545 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
2546 if (i915_vma_unbind(vma))
2547 break;
2548
2549 if (i915_gem_object_put_pages(obj) == 0)
2550 count += obj->base.size >> PAGE_SHIFT;
2551
2552 drm_gem_object_unreference(&obj->base);
2553 }
2554 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
2555
2556 return count;
2557 }
2558
2559 static unsigned long
2560 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2561 {
2562 return __i915_gem_shrink(dev_priv, target, true);
2563 }
2564
2565 static unsigned long
2566 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2567 {
2568 struct drm_i915_gem_object *obj, *next;
2569 long freed = 0;
2570
2571 i915_gem_evict_everything(dev_priv->dev);
2572
2573 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
2574 global_list) {
2575 if (i915_gem_object_put_pages(obj) == 0)
2576 freed += obj->base.size >> PAGE_SHIFT;
2577 }
2578 return freed;
2579 }
2580
2581 #ifdef __NetBSD__
2582 static int
2583 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2584 {
2585 struct drm_device *const dev = obj->base.dev;
2586 struct vm_page *page;
2587 int error;
2588
2589 /* XXX Cargo-culted from the Linux code. */
2590 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2591 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2592
2593 KASSERT(obj->pages == NULL);
2594 TAILQ_INIT(&obj->igo_pageq);
2595 obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
2596 sizeof(obj->pages[0]), GFP_KERNEL);
2597 if (obj->pages == NULL) {
2598 error = -ENOMEM;
2599 goto fail0;
2600 }
2601
2602 /* XXX errno NetBSD->Linux */
2603 error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
2604 0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
2605 (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
2606 if (error)
2607 /* XXX Try i915_gem_purge, i915_gem_shrink_all. */
2608 goto fail1;
2609 KASSERT(0 < obj->igo_nsegs);
2610 KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
2611
2612 /*
2613 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
2614 *
2615 * XXX This is wrong; we ought to pass this constraint to
2616 * bus_dmamem_wire_uvm_object instead.
2617 */
2618 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
2619 const uint64_t mask =
2620 (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
2621 0xffffffffULL : 0xffffffffffULL);
2622 if (VM_PAGE_TO_PHYS(page) & ~mask) {
2623 DRM_ERROR("GEM physical address exceeds %u bits"
2624 ": %"PRIxMAX"\n",
2625 popcount64(mask),
2626 (uintmax_t)VM_PAGE_TO_PHYS(page));
2627 error = -EIO;
2628 goto fail2;
2629 }
2630 }
2631
2632 /* XXX Should create the DMA map when creating the object. */
2633
2634 /* XXX errno NetBSD->Linux */
2635 error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
2636 PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
2637 if (error)
2638 goto fail2;
2639
2640 /* XXX Cargo-culted from the Linux code. */
2641 if (i915_gem_object_needs_bit17_swizzle(obj))
2642 i915_gem_object_do_bit_17_swizzle(obj);
2643
2644 /* Success! */
2645 return 0;
2646
2647 fail2: bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2648 obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
2649 fail1: kfree(obj->pages);
2650 obj->pages = NULL;
2651 fail0: KASSERT(error);
2652 return error;
2653 }
2654 #else
2655 static int
2656 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2657 {
2658 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2659 int page_count, i;
2660 struct address_space *mapping;
2661 struct sg_table *st;
2662 struct scatterlist *sg;
2663 struct sg_page_iter sg_iter;
2664 struct page *page;
2665 unsigned long last_pfn = 0; /* suppress gcc warning */
2666 gfp_t gfp;
2667
2668 /* Assert that the object is not currently in any GPU domain. As it
2669 * wasn't in the GTT, there shouldn't be any way it could have been in
2670 * a GPU cache
2671 */
2672 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2673 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2674
2675 st = kmalloc(sizeof(*st), GFP_KERNEL);
2676 if (st == NULL)
2677 return -ENOMEM;
2678
2679 page_count = obj->base.size / PAGE_SIZE;
2680 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2681 kfree(st);
2682 return -ENOMEM;
2683 }
2684
2685 /* Get the list of pages out of our struct file. They'll be pinned
2686 * at this point until we release them.
2687 *
2688 * Fail silently without starting the shrinker
2689 */
2690 mapping = file_inode(obj->base.filp)->i_mapping;
2691 gfp = mapping_gfp_mask(mapping);
2692 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2693 gfp &= ~(__GFP_IO | __GFP_WAIT);
2694 sg = st->sgl;
2695 st->nents = 0;
2696 for (i = 0; i < page_count; i++) {
2697 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2698 if (IS_ERR(page)) {
2699 i915_gem_purge(dev_priv, page_count);
2700 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2701 }
2702 if (IS_ERR(page)) {
2703 /* We've tried hard to allocate the memory by reaping
2704 * our own buffer, now let the real VM do its job and
2705 * go down in flames if truly OOM.
2706 */
2707 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2708 gfp |= __GFP_IO | __GFP_WAIT;
2709
2710 i915_gem_shrink_all(dev_priv);
2711 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2712 if (IS_ERR(page))
2713 goto err_pages;
2714
2715 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2716 gfp &= ~(__GFP_IO | __GFP_WAIT);
2717 }
2718 #ifdef CONFIG_SWIOTLB
2719 if (swiotlb_nr_tbl()) {
2720 st->nents++;
2721 sg_set_page(sg, page, PAGE_SIZE, 0);
2722 sg = sg_next(sg);
2723 continue;
2724 }
2725 #endif
2726 if (!i || page_to_pfn(page) != last_pfn + 1) {
2727 if (i)
2728 sg = sg_next(sg);
2729 st->nents++;
2730 sg_set_page(sg, page, PAGE_SIZE, 0);
2731 } else {
2732 sg->length += PAGE_SIZE;
2733 }
2734 last_pfn = page_to_pfn(page);
2735
2736 /* Check that the i965g/gm workaround works. */
2737 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2738 }
2739 #ifdef CONFIG_SWIOTLB
2740 if (!swiotlb_nr_tbl())
2741 #endif
2742 sg_mark_end(sg);
2743 obj->pages = st;
2744
2745 if (i915_gem_object_needs_bit17_swizzle(obj))
2746 i915_gem_object_do_bit_17_swizzle(obj);
2747
2748 return 0;
2749
2750 err_pages:
2751 sg_mark_end(sg);
2752 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2753 page_cache_release(sg_page_iter_page(&sg_iter));
2754 sg_free_table(st);
2755 kfree(st);
2756 return PTR_ERR(page);
2757 }
2758 #endif
2759
2760 /* Ensure that the associated pages are gathered from the backing storage
2761 * and pinned into our object. i915_gem_object_get_pages() may be called
2762 * multiple times before they are released by a single call to
2763 * i915_gem_object_put_pages() - once the pages are no longer referenced
2764 * either as a result of memory pressure (reaping pages under the shrinker)
2765 * or as the object is itself released.
2766 */
2767 int
2768 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2769 {
2770 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2771 const struct drm_i915_gem_object_ops *ops = obj->ops;
2772 int ret;
2773
2774 if (obj->pages)
2775 return 0;
2776
2777 if (obj->madv != I915_MADV_WILLNEED) {
2778 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2779 return -EFAULT;
2780 }
2781
2782 BUG_ON(obj->pages_pin_count);
2783
2784 ret = ops->get_pages(obj);
2785 if (ret)
2786 return ret;
2787
2788 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2789 return 0;
2790 }
2791
2792 static void
2793 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2794 struct intel_ring_buffer *ring)
2795 {
2796 struct drm_device *dev = obj->base.dev;
2797 struct drm_i915_private *dev_priv = dev->dev_private;
2798 u32 seqno = intel_ring_get_seqno(ring);
2799
2800 BUG_ON(ring == NULL);
2801 if (obj->ring != ring && obj->last_write_seqno) {
2802 /* Keep the seqno relative to the current ring */
2803 obj->last_write_seqno = seqno;
2804 }
2805 obj->ring = ring;
2806
2807 /* Add a reference if we're newly entering the active list. */
2808 if (!obj->active) {
2809 drm_gem_object_reference(&obj->base);
2810 obj->active = 1;
2811 }
2812
2813 list_move_tail(&obj->ring_list, &ring->active_list);
2814
2815 obj->last_read_seqno = seqno;
2816
2817 if (obj->fenced_gpu_access) {
2818 obj->last_fenced_seqno = seqno;
2819
2820 /* Bump MRU to take account of the delayed flush */
2821 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2822 struct drm_i915_fence_reg *reg;
2823
2824 reg = &dev_priv->fence_regs[obj->fence_reg];
2825 list_move_tail(®->lru_list,
2826 &dev_priv->mm.fence_list);
2827 }
2828 }
2829 }
2830
2831 void i915_vma_move_to_active(struct i915_vma *vma,
2832 struct intel_ring_buffer *ring)
2833 {
2834 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2835 return i915_gem_object_move_to_active(vma->obj, ring);
2836 }
2837
2838 static void
2839 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2840 {
2841 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2842 struct i915_address_space *vm;
2843 struct i915_vma *vma;
2844
2845 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2846 BUG_ON(!obj->active);
2847
2848 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2849 vma = i915_gem_obj_to_vma(obj, vm);
2850 if (vma && !list_empty(&vma->mm_list))
2851 list_move_tail(&vma->mm_list, &vm->inactive_list);
2852 }
2853
2854 list_del_init(&obj->ring_list);
2855 obj->ring = NULL;
2856
2857 obj->last_read_seqno = 0;
2858 obj->last_write_seqno = 0;
2859 obj->base.write_domain = 0;
2860
2861 obj->last_fenced_seqno = 0;
2862 obj->fenced_gpu_access = false;
2863
2864 obj->active = 0;
2865 drm_gem_object_unreference(&obj->base);
2866
2867 WARN_ON(i915_verify_lists(dev));
2868 }
2869
2870 static int
2871 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2872 {
2873 struct drm_i915_private *dev_priv = dev->dev_private;
2874 struct intel_ring_buffer *ring;
2875 int ret, i, j;
2876
2877 /* Carefully retire all requests without writing to the rings */
2878 for_each_ring(ring, dev_priv, i) {
2879 ret = intel_ring_idle(ring);
2880 if (ret)
2881 return ret;
2882 }
2883 i915_gem_retire_requests(dev);
2884
2885 /* Finally reset hw state */
2886 for_each_ring(ring, dev_priv, i) {
2887 intel_ring_init_seqno(ring, seqno);
2888
2889 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2890 ring->sync_seqno[j] = 0;
2891 }
2892
2893 return 0;
2894 }
2895
2896 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2897 {
2898 struct drm_i915_private *dev_priv = dev->dev_private;
2899 int ret;
2900
2901 if (seqno == 0)
2902 return -EINVAL;
2903
2904 /* HWS page needs to be set less than what we
2905 * will inject to ring
2906 */
2907 ret = i915_gem_init_seqno(dev, seqno - 1);
2908 if (ret)
2909 return ret;
2910
2911 /* Carefully set the last_seqno value so that wrap
2912 * detection still works
2913 */
2914 dev_priv->next_seqno = seqno;
2915 dev_priv->last_seqno = seqno - 1;
2916 if (dev_priv->last_seqno == 0)
2917 dev_priv->last_seqno--;
2918
2919 return 0;
2920 }
2921
2922 int
2923 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2924 {
2925 struct drm_i915_private *dev_priv = dev->dev_private;
2926
2927 /* reserve 0 for non-seqno */
2928 if (dev_priv->next_seqno == 0) {
2929 int ret = i915_gem_init_seqno(dev, 0);
2930 if (ret)
2931 return ret;
2932
2933 dev_priv->next_seqno = 1;
2934 }
2935
2936 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2937 return 0;
2938 }
2939
2940 int __i915_add_request(struct intel_ring_buffer *ring,
2941 struct drm_file *file,
2942 struct drm_i915_gem_object *obj,
2943 u32 *out_seqno)
2944 {
2945 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2946 struct drm_i915_gem_request *request;
2947 u32 request_ring_position, request_start;
2948 int ret;
2949
2950 request_start = intel_ring_get_tail(ring);
2951 /*
2952 * Emit any outstanding flushes - execbuf can fail to emit the flush
2953 * after having emitted the batchbuffer command. Hence we need to fix
2954 * things up similar to emitting the lazy request. The difference here
2955 * is that the flush _must_ happen before the next request, no matter
2956 * what.
2957 */
2958 ret = intel_ring_flush_all_caches(ring);
2959 if (ret)
2960 return ret;
2961
2962 request = ring->preallocated_lazy_request;
2963 if (WARN_ON(request == NULL))
2964 return -ENOMEM;
2965
2966 /* Record the position of the start of the request so that
2967 * should we detect the updated seqno part-way through the
2968 * GPU processing the request, we never over-estimate the
2969 * position of the head.
2970 */
2971 request_ring_position = intel_ring_get_tail(ring);
2972
2973 ret = ring->add_request(ring);
2974 if (ret)
2975 return ret;
2976
2977 request->seqno = intel_ring_get_seqno(ring);
2978 request->ring = ring;
2979 request->head = request_start;
2980 request->tail = request_ring_position;
2981
2982 /* Whilst this request exists, batch_obj will be on the
2983 * active_list, and so will hold the active reference. Only when this
2984 * request is retired will the the batch_obj be moved onto the
2985 * inactive_list and lose its active reference. Hence we do not need
2986 * to explicitly hold another reference here.
2987 */
2988 request->batch_obj = obj;
2989
2990 /* Hold a reference to the current context so that we can inspect
2991 * it later in case a hangcheck error event fires.
2992 */
2993 request->ctx = ring->last_context;
2994 if (request->ctx)
2995 i915_gem_context_reference(request->ctx);
2996
2997 request->emitted_jiffies = jiffies;
2998 list_add_tail(&request->list, &ring->request_list);
2999 request->file_priv = NULL;
3000
3001 if (file) {
3002 struct drm_i915_file_private *file_priv = file->driver_priv;
3003
3004 spin_lock(&file_priv->mm.lock);
3005 request->file_priv = file_priv;
3006 list_add_tail(&request->client_list,
3007 &file_priv->mm.request_list);
3008 spin_unlock(&file_priv->mm.lock);
3009 }
3010
3011 trace_i915_gem_request_add(ring, request->seqno);
3012 ring->outstanding_lazy_seqno = 0;
3013 ring->preallocated_lazy_request = NULL;
3014
3015 if (!dev_priv->ums.mm_suspended) {
3016 i915_queue_hangcheck(ring->dev);
3017
3018 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
3019 queue_delayed_work(dev_priv->wq,
3020 &dev_priv->mm.retire_work,
3021 round_jiffies_up_relative(HZ));
3022 intel_mark_busy(dev_priv->dev);
3023 }
3024
3025 if (out_seqno)
3026 *out_seqno = request->seqno;
3027 return 0;
3028 }
3029
3030 static inline void
3031 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
3032 {
3033 struct drm_i915_file_private *file_priv = request->file_priv;
3034
3035 if (!file_priv)
3036 return;
3037
3038 spin_lock(&file_priv->mm.lock);
3039 list_del(&request->client_list);
3040 request->file_priv = NULL;
3041 spin_unlock(&file_priv->mm.lock);
3042 }
3043
3044 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
3045 const struct i915_hw_context *ctx)
3046 {
3047 unsigned long elapsed;
3048
3049 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
3050
3051 if (ctx->hang_stats.banned)
3052 return true;
3053
3054 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
3055 if (!i915_gem_context_is_default(ctx)) {
3056 DRM_DEBUG("context hanging too fast, banning!\n");
3057 return true;
3058 } else if (dev_priv->gpu_error.stop_rings == 0) {
3059 DRM_ERROR("gpu hanging too fast, banning!\n");
3060 return true;
3061 }
3062 }
3063
3064 return false;
3065 }
3066
3067 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
3068 struct i915_hw_context *ctx,
3069 const bool guilty)
3070 {
3071 struct i915_ctx_hang_stats *hs;
3072
3073 if (WARN_ON(!ctx))
3074 return;
3075
3076 hs = &ctx->hang_stats;
3077
3078 if (guilty) {
3079 hs->banned = i915_context_is_banned(dev_priv, ctx);
3080 hs->batch_active++;
3081 hs->guilty_ts = get_seconds();
3082 } else {
3083 hs->batch_pending++;
3084 }
3085 }
3086
3087 static void i915_gem_free_request(struct drm_i915_gem_request *request)
3088 {
3089 list_del(&request->list);
3090 i915_gem_request_remove_from_client(request);
3091
3092 if (request->ctx)
3093 i915_gem_context_unreference(request->ctx);
3094
3095 kfree(request);
3096 }
3097
3098 struct drm_i915_gem_request *
3099 i915_gem_find_active_request(struct intel_ring_buffer *ring)
3100 {
3101 struct drm_i915_gem_request *request;
3102 u32 completed_seqno;
3103
3104 completed_seqno = ring->get_seqno(ring, false);
3105
3106 list_for_each_entry(request, &ring->request_list, list) {
3107 if (i915_seqno_passed(completed_seqno, request->seqno))
3108 continue;
3109
3110 return request;
3111 }
3112
3113 return NULL;
3114 }
3115
3116 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
3117 struct intel_ring_buffer *ring)
3118 {
3119 struct drm_i915_gem_request *request;
3120 bool ring_hung;
3121
3122 request = i915_gem_find_active_request(ring);
3123
3124 if (request == NULL)
3125 return;
3126
3127 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3128
3129 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3130
3131 list_for_each_entry_continue(request, &ring->request_list, list)
3132 i915_set_reset_status(dev_priv, request->ctx, false);
3133 }
3134
3135 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
3136 struct intel_ring_buffer *ring)
3137 {
3138 while (!list_empty(&ring->active_list)) {
3139 struct drm_i915_gem_object *obj;
3140
3141 obj = list_first_entry(&ring->active_list,
3142 struct drm_i915_gem_object,
3143 ring_list);
3144
3145 i915_gem_object_move_to_inactive(obj);
3146 }
3147
3148 /*
3149 * We must free the requests after all the corresponding objects have
3150 * been moved off active lists. Which is the same order as the normal
3151 * retire_requests function does. This is important if object hold
3152 * implicit references on things like e.g. ppgtt address spaces through
3153 * the request.
3154 */
3155 while (!list_empty(&ring->request_list)) {
3156 struct drm_i915_gem_request *request;
3157
3158 request = list_first_entry(&ring->request_list,
3159 struct drm_i915_gem_request,
3160 list);
3161
3162 i915_gem_free_request(request);
3163 }
3164 }
3165
3166 void i915_gem_restore_fences(struct drm_device *dev)
3167 {
3168 struct drm_i915_private *dev_priv = dev->dev_private;
3169 int i;
3170
3171 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3172 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
3173
3174 /*
3175 * Commit delayed tiling changes if we have an object still
3176 * attached to the fence, otherwise just clear the fence.
3177 */
3178 if (reg->obj) {
3179 i915_gem_object_update_fence(reg->obj, reg,
3180 reg->obj->tiling_mode);
3181 } else {
3182 i915_gem_write_fence(dev, i, NULL);
3183 }
3184 }
3185 }
3186
3187 void i915_gem_reset(struct drm_device *dev)
3188 {
3189 struct drm_i915_private *dev_priv = dev->dev_private;
3190 struct intel_ring_buffer *ring;
3191 int i;
3192
3193 /*
3194 * Before we free the objects from the requests, we need to inspect
3195 * them for finding the guilty party. As the requests only borrow
3196 * their reference to the objects, the inspection must be done first.
3197 */
3198 for_each_ring(ring, dev_priv, i)
3199 i915_gem_reset_ring_status(dev_priv, ring);
3200
3201 for_each_ring(ring, dev_priv, i)
3202 i915_gem_reset_ring_cleanup(dev_priv, ring);
3203
3204 i915_gem_cleanup_ringbuffer(dev);
3205
3206 i915_gem_context_reset(dev);
3207
3208 i915_gem_restore_fences(dev);
3209 }
3210
3211 /**
3212 * This function clears the request list as sequence numbers are passed.
3213 */
3214 static void
3215 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
3216 {
3217 uint32_t seqno;
3218
3219 if (list_empty(&ring->request_list))
3220 return;
3221
3222 WARN_ON(i915_verify_lists(ring->dev));
3223
3224 seqno = ring->get_seqno(ring, true);
3225
3226 /* Move any buffers on the active list that are no longer referenced
3227 * by the ringbuffer to the flushing/inactive lists as appropriate,
3228 * before we free the context associated with the requests.
3229 */
3230 while (!list_empty(&ring->active_list)) {
3231 struct drm_i915_gem_object *obj;
3232
3233 obj = list_first_entry(&ring->active_list,
3234 struct drm_i915_gem_object,
3235 ring_list);
3236
3237 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
3238 break;
3239
3240 i915_gem_object_move_to_inactive(obj);
3241 }
3242
3243
3244 while (!list_empty(&ring->request_list)) {
3245 struct drm_i915_gem_request *request;
3246
3247 request = list_first_entry(&ring->request_list,
3248 struct drm_i915_gem_request,
3249 list);
3250
3251 if (!i915_seqno_passed(seqno, request->seqno))
3252 break;
3253
3254 trace_i915_gem_request_retire(ring, request->seqno);
3255 /* We know the GPU must have read the request to have
3256 * sent us the seqno + interrupt, so use the position
3257 * of tail of the request to update the last known position
3258 * of the GPU head.
3259 */
3260 ring->last_retired_head = request->tail;
3261
3262 i915_gem_free_request(request);
3263 }
3264
3265 if (unlikely(ring->trace_irq_seqno &&
3266 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
3267 ring->irq_put(ring);
3268 ring->trace_irq_seqno = 0;
3269 }
3270
3271 WARN_ON(i915_verify_lists(ring->dev));
3272 }
3273
3274 bool
3275 i915_gem_retire_requests(struct drm_device *dev)
3276 {
3277 struct drm_i915_private *dev_priv = dev->dev_private;
3278 struct intel_ring_buffer *ring;
3279 bool idle = true;
3280 int i;
3281
3282 for_each_ring(ring, dev_priv, i) {
3283 i915_gem_retire_requests_ring(ring);
3284 idle &= list_empty(&ring->request_list);
3285 }
3286
3287 if (idle)
3288 mod_delayed_work(dev_priv->wq,
3289 &dev_priv->mm.idle_work,
3290 msecs_to_jiffies(100));
3291
3292 return idle;
3293 }
3294
3295 static void
3296 i915_gem_retire_work_handler(struct work_struct *work)
3297 {
3298 struct drm_i915_private *dev_priv =
3299 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3300 struct drm_device *dev = dev_priv->dev;
3301 bool idle;
3302
3303 /* Come back later if the device is busy... */
3304 idle = false;
3305 if (mutex_trylock(&dev->struct_mutex)) {
3306 idle = i915_gem_retire_requests(dev);
3307 mutex_unlock(&dev->struct_mutex);
3308 }
3309 if (!idle)
3310 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3311 round_jiffies_up_relative(HZ));
3312 }
3313
3314 static void
3315 i915_gem_idle_work_handler(struct work_struct *work)
3316 {
3317 struct drm_i915_private *dev_priv =
3318 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3319
3320 intel_mark_idle(dev_priv->dev);
3321 }
3322
3323 /**
3324 * Ensures that an object will eventually get non-busy by flushing any required
3325 * write domains, emitting any outstanding lazy request and retiring and
3326 * completed requests.
3327 */
3328 static int
3329 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3330 {
3331 int ret;
3332
3333 if (obj->active) {
3334 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
3335 if (ret)
3336 return ret;
3337
3338 i915_gem_retire_requests_ring(obj->ring);
3339 }
3340
3341 return 0;
3342 }
3343
3344 /**
3345 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3346 * @DRM_IOCTL_ARGS: standard ioctl arguments
3347 *
3348 * Returns 0 if successful, else an error is returned with the remaining time in
3349 * the timeout parameter.
3350 * -ETIME: object is still busy after timeout
3351 * -ERESTARTSYS: signal interrupted the wait
3352 * -ENONENT: object doesn't exist
3353 * Also possible, but rare:
3354 * -EAGAIN: GPU wedged
3355 * -ENOMEM: damn
3356 * -ENODEV: Internal IRQ fail
3357 * -E?: The add request failed
3358 *
3359 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3360 * non-zero timeout parameter the wait ioctl will wait for the given number of
3361 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3362 * without holding struct_mutex the object may become re-busied before this
3363 * function completes. A similar but shorter * race condition exists in the busy
3364 * ioctl
3365 */
3366 int
3367 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3368 {
3369 struct drm_i915_private *dev_priv = dev->dev_private;
3370 struct drm_i915_gem_wait *args = data;
3371 struct drm_gem_object *gobj;
3372 struct drm_i915_gem_object *obj;
3373 struct intel_ring_buffer *ring = NULL;
3374 struct timespec timeout_stack, *timeout = NULL;
3375 unsigned reset_counter;
3376 u32 seqno = 0;
3377 int ret = 0;
3378
3379 if (args->timeout_ns >= 0) {
3380 timeout_stack = ns_to_timespec(args->timeout_ns);
3381 timeout = &timeout_stack;
3382 }
3383
3384 ret = i915_mutex_lock_interruptible(dev);
3385 if (ret)
3386 return ret;
3387
3388 gobj = drm_gem_object_lookup(dev, file, args->bo_handle);
3389 if (gobj == NULL) {
3390 mutex_unlock(&dev->struct_mutex);
3391 return -ENOENT;
3392 }
3393 obj = to_intel_bo(gobj);
3394
3395 /* Need to make sure the object gets inactive eventually. */
3396 ret = i915_gem_object_flush_active(obj);
3397 if (ret)
3398 goto out;
3399
3400 if (obj->active) {
3401 seqno = obj->last_read_seqno;
3402 ring = obj->ring;
3403 }
3404
3405 if (seqno == 0)
3406 goto out;
3407
3408 /* Do this after OLR check to make sure we make forward progress polling
3409 * on this IOCTL with a 0 timeout (like busy ioctl)
3410 */
3411 if (!args->timeout_ns) {
3412 ret = -ETIME;
3413 goto out;
3414 }
3415
3416 drm_gem_object_unreference(&obj->base);
3417 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3418 mutex_unlock(&dev->struct_mutex);
3419
3420 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
3421 if (timeout)
3422 args->timeout_ns = timespec_to_ns(timeout);
3423 return ret;
3424
3425 out:
3426 drm_gem_object_unreference(&obj->base);
3427 mutex_unlock(&dev->struct_mutex);
3428 return ret;
3429 }
3430
3431 /**
3432 * i915_gem_object_sync - sync an object to a ring.
3433 *
3434 * @obj: object which may be in use on another ring.
3435 * @to: ring we wish to use the object on. May be NULL.
3436 *
3437 * This code is meant to abstract object synchronization with the GPU.
3438 * Calling with NULL implies synchronizing the object with the CPU
3439 * rather than a particular GPU ring.
3440 *
3441 * Returns 0 if successful, else propagates up the lower layer error.
3442 */
3443 int
3444 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3445 struct intel_ring_buffer *to)
3446 {
3447 struct intel_ring_buffer *from = obj->ring;
3448 u32 seqno;
3449 int ret, idx;
3450
3451 if (from == NULL || to == from)
3452 return 0;
3453
3454 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
3455 return i915_gem_object_wait_rendering(obj, false);
3456
3457 idx = intel_ring_sync_index(from, to);
3458
3459 seqno = obj->last_read_seqno;
3460 if (seqno <= from->sync_seqno[idx])
3461 return 0;
3462
3463 ret = i915_gem_check_olr(obj->ring, seqno);
3464 if (ret)
3465 return ret;
3466
3467 trace_i915_gem_ring_sync_to(from, to, seqno);
3468 ret = to->sync_to(to, from, seqno);
3469 if (!ret)
3470 /* We use last_read_seqno because sync_to()
3471 * might have just caused seqno wrap under
3472 * the radar.
3473 */
3474 from->sync_seqno[idx] = obj->last_read_seqno;
3475
3476 return ret;
3477 }
3478
3479 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3480 {
3481 u32 old_write_domain, old_read_domains;
3482
3483 /* Force a pagefault for domain tracking on next user access */
3484 i915_gem_release_mmap(obj);
3485
3486 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3487 return;
3488
3489 /* Wait for any direct GTT access to complete */
3490 mb();
3491
3492 old_read_domains = obj->base.read_domains;
3493 old_write_domain = obj->base.write_domain;
3494
3495 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3496 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3497
3498 trace_i915_gem_object_change_domain(obj,
3499 old_read_domains,
3500 old_write_domain);
3501 }
3502
3503 int i915_vma_unbind(struct i915_vma *vma)
3504 {
3505 struct drm_i915_gem_object *obj = vma->obj;
3506 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3507 int ret;
3508
3509 if (list_empty(&vma->vma_link))
3510 return 0;
3511
3512 if (!drm_mm_node_allocated(&vma->node)) {
3513 i915_gem_vma_destroy(vma);
3514 return 0;
3515 }
3516
3517 if (vma->pin_count)
3518 return -EBUSY;
3519
3520 BUG_ON(obj->pages == NULL);
3521
3522 ret = i915_gem_object_finish_gpu(obj);
3523 if (ret)
3524 return ret;
3525 /* Continue on if we fail due to EIO, the GPU is hung so we
3526 * should be safe and we need to cleanup or else we might
3527 * cause memory corruption through use-after-free.
3528 */
3529
3530 i915_gem_object_finish_gtt(obj);
3531
3532 /* release the fence reg _after_ flushing */
3533 ret = i915_gem_object_put_fence(obj);
3534 if (ret)
3535 return ret;
3536
3537 trace_i915_vma_unbind(vma);
3538
3539 vma->unbind_vma(vma);
3540
3541 i915_gem_gtt_finish_object(obj);
3542
3543 list_del_init(&vma->mm_list);
3544 /* Avoid an unnecessary call to unbind on rebind. */
3545 if (i915_is_ggtt(vma->vm))
3546 obj->map_and_fenceable = true;
3547
3548 drm_mm_remove_node(&vma->node);
3549 i915_gem_vma_destroy(vma);
3550
3551 /* Since the unbound list is global, only move to that list if
3552 * no more VMAs exist. */
3553 if (list_empty(&obj->vma_list))
3554 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3555
3556 /* And finally now the object is completely decoupled from this vma,
3557 * we can drop its hold on the backing storage and allow it to be
3558 * reaped by the shrinker.
3559 */
3560 i915_gem_object_unpin_pages(obj);
3561
3562 return 0;
3563 }
3564
3565 int i915_gpu_idle(struct drm_device *dev)
3566 {
3567 struct drm_i915_private *dev_priv = dev->dev_private;
3568 struct intel_ring_buffer *ring;
3569 int ret, i;
3570
3571 /* Flush everything onto the inactive list. */
3572 for_each_ring(ring, dev_priv, i) {
3573 ret = i915_switch_context(ring, ring->default_context);
3574 if (ret)
3575 return ret;
3576
3577 ret = intel_ring_idle(ring);
3578 if (ret)
3579 return ret;
3580 }
3581
3582 return 0;
3583 }
3584
3585 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3586 struct drm_i915_gem_object *obj)
3587 {
3588 struct drm_i915_private *dev_priv = dev->dev_private;
3589 int fence_reg;
3590 int fence_pitch_shift;
3591
3592 if (INTEL_INFO(dev)->gen >= 6) {
3593 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3594 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3595 } else {
3596 fence_reg = FENCE_REG_965_0;
3597 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3598 }
3599
3600 fence_reg += reg * 8;
3601
3602 /* To w/a incoherency with non-atomic 64-bit register updates,
3603 * we split the 64-bit update into two 32-bit writes. In order
3604 * for a partial fence not to be evaluated between writes, we
3605 * precede the update with write to turn off the fence register,
3606 * and only enable the fence as the last step.
3607 *
3608 * For extra levels of paranoia, we make sure each step lands
3609 * before applying the next step.
3610 */
3611 I915_WRITE(fence_reg, 0);
3612 POSTING_READ(fence_reg);
3613
3614 if (obj) {
3615 u32 size = i915_gem_obj_ggtt_size(obj);
3616 uint64_t val;
3617
3618 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3619 0xfffff000) << 32;
3620 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3621 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3622 if (obj->tiling_mode == I915_TILING_Y)
3623 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3624 val |= I965_FENCE_REG_VALID;
3625
3626 I915_WRITE(fence_reg + 4, val >> 32);
3627 POSTING_READ(fence_reg + 4);
3628
3629 I915_WRITE(fence_reg + 0, val);
3630 POSTING_READ(fence_reg);
3631 } else {
3632 I915_WRITE(fence_reg + 4, 0);
3633 POSTING_READ(fence_reg + 4);
3634 }
3635 }
3636
3637 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3638 struct drm_i915_gem_object *obj)
3639 {
3640 struct drm_i915_private *dev_priv = dev->dev_private;
3641 u32 val;
3642
3643 if (obj) {
3644 u32 size = i915_gem_obj_ggtt_size(obj);
3645 int pitch_val;
3646 int tile_width;
3647
3648 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3649 (size & -size) != size ||
3650 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3651 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3652 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3653
3654 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3655 tile_width = 128;
3656 else
3657 tile_width = 512;
3658
3659 /* Note: pitch better be a power of two tile widths */
3660 pitch_val = obj->stride / tile_width;
3661 pitch_val = ffs(pitch_val) - 1;
3662
3663 val = i915_gem_obj_ggtt_offset(obj);
3664 if (obj->tiling_mode == I915_TILING_Y)
3665 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3666 val |= I915_FENCE_SIZE_BITS(size);
3667 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3668 val |= I830_FENCE_REG_VALID;
3669 } else
3670 val = 0;
3671
3672 if (reg < 8)
3673 reg = FENCE_REG_830_0 + reg * 4;
3674 else
3675 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3676
3677 I915_WRITE(reg, val);
3678 POSTING_READ(reg);
3679 }
3680
3681 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3682 struct drm_i915_gem_object *obj)
3683 {
3684 struct drm_i915_private *dev_priv = dev->dev_private;
3685 uint32_t val;
3686
3687 if (obj) {
3688 u32 size = i915_gem_obj_ggtt_size(obj);
3689 uint32_t pitch_val;
3690
3691 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3692 (size & -size) != size ||
3693 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3694 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3695 i915_gem_obj_ggtt_offset(obj), size);
3696
3697 pitch_val = obj->stride / 128;
3698 pitch_val = ffs(pitch_val) - 1;
3699
3700 val = i915_gem_obj_ggtt_offset(obj);
3701 if (obj->tiling_mode == I915_TILING_Y)
3702 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3703 val |= I830_FENCE_SIZE_BITS(size);
3704 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3705 val |= I830_FENCE_REG_VALID;
3706 } else
3707 val = 0;
3708
3709 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3710 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3711 }
3712
3713 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3714 {
3715 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3716 }
3717
3718 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3719 struct drm_i915_gem_object *obj)
3720 {
3721 struct drm_i915_private *dev_priv = dev->dev_private;
3722
3723 /* Ensure that all CPU reads are completed before installing a fence
3724 * and all writes before removing the fence.
3725 */
3726 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3727 mb();
3728
3729 WARN(obj && (!obj->stride || !obj->tiling_mode),
3730 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3731 obj->stride, obj->tiling_mode);
3732
3733 switch (INTEL_INFO(dev)->gen) {
3734 case 8:
3735 case 7:
3736 case 6:
3737 case 5:
3738 case 4: i965_write_fence_reg(dev, reg, obj); break;
3739 case 3: i915_write_fence_reg(dev, reg, obj); break;
3740 case 2: i830_write_fence_reg(dev, reg, obj); break;
3741 default: BUG();
3742 }
3743
3744 /* And similarly be paranoid that no direct access to this region
3745 * is reordered to before the fence is installed.
3746 */
3747 if (i915_gem_object_needs_mb(obj))
3748 mb();
3749 }
3750
3751 static inline int fence_number(struct drm_i915_private *dev_priv,
3752 struct drm_i915_fence_reg *fence)
3753 {
3754 return fence - dev_priv->fence_regs;
3755 }
3756
3757 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3758 struct drm_i915_fence_reg *fence,
3759 bool enable)
3760 {
3761 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3762 int reg = fence_number(dev_priv, fence);
3763
3764 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3765
3766 if (enable) {
3767 obj->fence_reg = reg;
3768 fence->obj = obj;
3769 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3770 } else {
3771 obj->fence_reg = I915_FENCE_REG_NONE;
3772 fence->obj = NULL;
3773 list_del_init(&fence->lru_list);
3774 }
3775 obj->fence_dirty = false;
3776 }
3777
3778 static int
3779 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3780 {
3781 if (obj->last_fenced_seqno) {
3782 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3783 if (ret)
3784 return ret;
3785
3786 obj->last_fenced_seqno = 0;
3787 }
3788
3789 obj->fenced_gpu_access = false;
3790 return 0;
3791 }
3792
3793 int
3794 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3795 {
3796 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3797 struct drm_i915_fence_reg *fence;
3798 int ret;
3799
3800 ret = i915_gem_object_wait_fence(obj);
3801 if (ret)
3802 return ret;
3803
3804 if (obj->fence_reg == I915_FENCE_REG_NONE)
3805 return 0;
3806
3807 fence = &dev_priv->fence_regs[obj->fence_reg];
3808
3809 i915_gem_object_fence_lost(obj);
3810 i915_gem_object_update_fence(obj, fence, false);
3811
3812 return 0;
3813 }
3814
3815 static struct drm_i915_fence_reg *
3816 i915_find_fence_reg(struct drm_device *dev)
3817 {
3818 struct drm_i915_private *dev_priv = dev->dev_private;
3819 struct drm_i915_fence_reg *reg, *avail;
3820 int i;
3821
3822 /* First try to find a free reg */
3823 avail = NULL;
3824 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3825 reg = &dev_priv->fence_regs[i];
3826 if (!reg->obj)
3827 return reg;
3828
3829 if (!reg->pin_count)
3830 avail = reg;
3831 }
3832
3833 if (avail == NULL)
3834 goto deadlock;
3835
3836 /* None available, try to steal one or wait for a user to finish */
3837 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3838 if (reg->pin_count)
3839 continue;
3840
3841 return reg;
3842 }
3843
3844 deadlock:
3845 /* Wait for completion of pending flips which consume fences */
3846 if (intel_has_pending_fb_unpin(dev))
3847 return ERR_PTR(-EAGAIN);
3848
3849 return ERR_PTR(-EDEADLK);
3850 }
3851
3852 /**
3853 * i915_gem_object_get_fence - set up fencing for an object
3854 * @obj: object to map through a fence reg
3855 *
3856 * When mapping objects through the GTT, userspace wants to be able to write
3857 * to them without having to worry about swizzling if the object is tiled.
3858 * This function walks the fence regs looking for a free one for @obj,
3859 * stealing one if it can't find any.
3860 *
3861 * It then sets up the reg based on the object's properties: address, pitch
3862 * and tiling format.
3863 *
3864 * For an untiled surface, this removes any existing fence.
3865 */
3866 int
3867 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3868 {
3869 struct drm_device *dev = obj->base.dev;
3870 struct drm_i915_private *dev_priv = dev->dev_private;
3871 bool enable = obj->tiling_mode != I915_TILING_NONE;
3872 struct drm_i915_fence_reg *reg;
3873 int ret;
3874
3875 /* Have we updated the tiling parameters upon the object and so
3876 * will need to serialise the write to the associated fence register?
3877 */
3878 if (obj->fence_dirty) {
3879 ret = i915_gem_object_wait_fence(obj);
3880 if (ret)
3881 return ret;
3882 }
3883
3884 /* Just update our place in the LRU if our fence is getting reused. */
3885 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3886 reg = &dev_priv->fence_regs[obj->fence_reg];
3887 if (!obj->fence_dirty) {
3888 list_move_tail(®->lru_list,
3889 &dev_priv->mm.fence_list);
3890 return 0;
3891 }
3892 } else if (enable) {
3893 reg = i915_find_fence_reg(dev);
3894 if (IS_ERR(reg))
3895 return PTR_ERR(reg);
3896
3897 if (reg->obj) {
3898 struct drm_i915_gem_object *old = reg->obj;
3899
3900 ret = i915_gem_object_wait_fence(old);
3901 if (ret)
3902 return ret;
3903
3904 i915_gem_object_fence_lost(old);
3905 }
3906 } else
3907 return 0;
3908
3909 i915_gem_object_update_fence(obj, reg, enable);
3910
3911 return 0;
3912 }
3913
3914 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3915 struct drm_mm_node *gtt_space,
3916 unsigned long cache_level)
3917 {
3918 struct drm_mm_node *other;
3919
3920 /* On non-LLC machines we have to be careful when putting differing
3921 * types of snoopable memory together to avoid the prefetcher
3922 * crossing memory domains and dying.
3923 */
3924 if (HAS_LLC(dev))
3925 return true;
3926
3927 if (!drm_mm_node_allocated(gtt_space))
3928 return true;
3929
3930 if (list_empty(>t_space->node_list))
3931 return true;
3932
3933 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3934 if (other->allocated && !other->hole_follows && other->color != cache_level)
3935 return false;
3936
3937 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3938 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3939 return false;
3940
3941 return true;
3942 }
3943
3944 static void i915_gem_verify_gtt(struct drm_device *dev)
3945 {
3946 #if WATCH_GTT
3947 struct drm_i915_private *dev_priv = dev->dev_private;
3948 struct drm_i915_gem_object *obj;
3949 int err = 0;
3950
3951 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3952 if (obj->gtt_space == NULL) {
3953 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3954 err++;
3955 continue;
3956 }
3957
3958 if (obj->cache_level != obj->gtt_space->color) {
3959 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3960 i915_gem_obj_ggtt_offset(obj),
3961 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3962 obj->cache_level,
3963 obj->gtt_space->color);
3964 err++;
3965 continue;
3966 }
3967
3968 if (!i915_gem_valid_gtt_space(dev,
3969 obj->gtt_space,
3970 obj->cache_level)) {
3971 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3972 i915_gem_obj_ggtt_offset(obj),
3973 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3974 obj->cache_level);
3975 err++;
3976 continue;
3977 }
3978 }
3979
3980 WARN_ON(err);
3981 #endif
3982 }
3983
3984 /**
3985 * Finds free space in the GTT aperture and binds the object there.
3986 */
3987 static struct i915_vma *
3988 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3989 struct i915_address_space *vm,
3990 unsigned alignment,
3991 uint64_t flags)
3992 {
3993 struct drm_device *dev = obj->base.dev;
3994 struct drm_i915_private *dev_priv = dev->dev_private;
3995 u32 size, fence_size, fence_alignment, unfenced_alignment;
3996 unsigned long start =
3997 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3998 unsigned long end =
3999 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
4000 struct i915_vma *vma;
4001 int ret;
4002
4003 fence_size = i915_gem_get_gtt_size(dev,
4004 obj->base.size,
4005 obj->tiling_mode);
4006 fence_alignment = i915_gem_get_gtt_alignment(dev,
4007 obj->base.size,
4008 obj->tiling_mode, true);
4009 unfenced_alignment =
4010 i915_gem_get_gtt_alignment(dev,
4011 obj->base.size,
4012 obj->tiling_mode, false);
4013
4014 if (alignment == 0)
4015 alignment = flags & PIN_MAPPABLE ? fence_alignment :
4016 unfenced_alignment;
4017 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
4018 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
4019 return ERR_PTR(-EINVAL);
4020 }
4021
4022 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
4023
4024 /* If the object is bigger than the entire aperture, reject it early
4025 * before evicting everything in a vain attempt to find space.
4026 */
4027 if (obj->base.size > end) {
4028 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
4029 obj->base.size,
4030 flags & PIN_MAPPABLE ? "mappable" : "total",
4031 end);
4032 return ERR_PTR(-E2BIG);
4033 }
4034
4035 ret = i915_gem_object_get_pages(obj);
4036 if (ret)
4037 return ERR_PTR(ret);
4038
4039 i915_gem_object_pin_pages(obj);
4040
4041 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
4042 if (IS_ERR(vma))
4043 goto err_unpin;
4044
4045 search_free:
4046 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
4047 size, alignment,
4048 obj->cache_level,
4049 start, end,
4050 DRM_MM_SEARCH_DEFAULT,
4051 DRM_MM_CREATE_DEFAULT);
4052 if (ret) {
4053 ret = i915_gem_evict_something(dev, vm, size, alignment,
4054 obj->cache_level,
4055 start, end,
4056 flags);
4057 if (ret == 0)
4058 goto search_free;
4059
4060 goto err_free_vma;
4061 }
4062 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
4063 obj->cache_level))) {
4064 ret = -EINVAL;
4065 goto err_remove_node;
4066 }
4067
4068 ret = i915_gem_gtt_prepare_object(obj);
4069 if (ret)
4070 goto err_remove_node;
4071
4072 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
4073 list_add_tail(&vma->mm_list, &vm->inactive_list);
4074
4075 if (i915_is_ggtt(vm)) {
4076 bool mappable, fenceable;
4077
4078 fenceable = (vma->node.size == fence_size &&
4079 (vma->node.start & (fence_alignment - 1)) == 0);
4080
4081 mappable = (vma->node.start + obj->base.size <=
4082 dev_priv->gtt.mappable_end);
4083
4084 obj->map_and_fenceable = mappable && fenceable;
4085 }
4086
4087 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4088
4089 trace_i915_vma_bind(vma, flags);
4090 vma->bind_vma(vma, obj->cache_level,
4091 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
4092
4093 i915_gem_verify_gtt(dev);
4094 return vma;
4095
4096 err_remove_node:
4097 drm_mm_remove_node(&vma->node);
4098 err_free_vma:
4099 i915_gem_vma_destroy(vma);
4100 vma = ERR_PTR(ret);
4101 err_unpin:
4102 i915_gem_object_unpin_pages(obj);
4103 return vma;
4104 }
4105
4106 bool
4107 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
4108 bool force)
4109 {
4110 /* If we don't have a page list set up, then we're not pinned
4111 * to GPU, and we can ignore the cache flush because it'll happen
4112 * again at bind time.
4113 */
4114 if (obj->pages == NULL)
4115 return false;
4116
4117 /*
4118 * Stolen memory is always coherent with the GPU as it is explicitly
4119 * marked as wc by the system, or the system is cache-coherent.
4120 */
4121 if (obj->stolen)
4122 return false;
4123
4124 /* If the GPU is snooping the contents of the CPU cache,
4125 * we do not need to manually clear the CPU cache lines. However,
4126 * the caches are only snooped when the render cache is
4127 * flushed/invalidated. As we always have to emit invalidations
4128 * and flushes when moving into and out of the RENDER domain, correct
4129 * snooping behaviour occurs naturally as the result of our domain
4130 * tracking.
4131 */
4132 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
4133 return false;
4134
4135 trace_i915_gem_object_clflush(obj);
4136 #ifdef __NetBSD__
4137 drm_clflush_pglist(&obj->igo_pageq);
4138 #else
4139 drm_clflush_sg(obj->pages);
4140 #endif
4141
4142 return true;
4143 }
4144
4145 /** Flushes the GTT write domain for the object if it's dirty. */
4146 static void
4147 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
4148 {
4149 uint32_t old_write_domain;
4150
4151 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
4152 return;
4153
4154 /* No actual flushing is required for the GTT write domain. Writes
4155 * to it immediately go to main memory as far as we know, so there's
4156 * no chipset flush. It also doesn't land in render cache.
4157 *
4158 * However, we do have to enforce the order so that all writes through
4159 * the GTT land before any writes to the device, such as updates to
4160 * the GATT itself.
4161 */
4162 wmb();
4163
4164 old_write_domain = obj->base.write_domain;
4165 obj->base.write_domain = 0;
4166
4167 trace_i915_gem_object_change_domain(obj,
4168 obj->base.read_domains,
4169 old_write_domain);
4170 }
4171
4172 /** Flushes the CPU write domain for the object if it's dirty. */
4173 static void
4174 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
4175 bool force)
4176 {
4177 uint32_t old_write_domain;
4178
4179 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4180 return;
4181
4182 if (i915_gem_clflush_object(obj, force))
4183 i915_gem_chipset_flush(obj->base.dev);
4184
4185 old_write_domain = obj->base.write_domain;
4186 obj->base.write_domain = 0;
4187
4188 trace_i915_gem_object_change_domain(obj,
4189 obj->base.read_domains,
4190 old_write_domain);
4191 }
4192
4193 /**
4194 * Moves a single object to the GTT read, and possibly write domain.
4195 *
4196 * This function returns when the move is complete, including waiting on
4197 * flushes to occur.
4198 */
4199 int
4200 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4201 {
4202 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4203 uint32_t old_write_domain, old_read_domains;
4204 int ret;
4205
4206 /* Not valid to be called on unbound objects. */
4207 if (!i915_gem_obj_bound_any(obj))
4208 return -EINVAL;
4209
4210 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4211 return 0;
4212
4213 ret = i915_gem_object_wait_rendering(obj, !write);
4214 if (ret)
4215 return ret;
4216
4217 i915_gem_object_flush_cpu_write_domain(obj, false);
4218
4219 /* Serialise direct access to this object with the barriers for
4220 * coherent writes from the GPU, by effectively invalidating the
4221 * GTT domain upon first access.
4222 */
4223 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4224 mb();
4225
4226 old_write_domain = obj->base.write_domain;
4227 old_read_domains = obj->base.read_domains;
4228
4229 /* It should now be out of any other write domains, and we can update
4230 * the domain values for our changes.
4231 */
4232 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4233 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4234 if (write) {
4235 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4236 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4237 obj->dirty = 1;
4238 }
4239
4240 trace_i915_gem_object_change_domain(obj,
4241 old_read_domains,
4242 old_write_domain);
4243
4244 /* And bump the LRU for this access */
4245 if (i915_gem_object_is_inactive(obj)) {
4246 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4247 if (vma)
4248 list_move_tail(&vma->mm_list,
4249 &dev_priv->gtt.base.inactive_list);
4250
4251 }
4252
4253 return 0;
4254 }
4255
4256 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4257 enum i915_cache_level cache_level)
4258 {
4259 struct drm_device *dev = obj->base.dev;
4260 struct i915_vma *vma, *next;
4261 int ret;
4262
4263 if (obj->cache_level == cache_level)
4264 return 0;
4265
4266 if (i915_gem_obj_is_pinned(obj)) {
4267 DRM_DEBUG("can not change the cache level of pinned objects\n");
4268 return -EBUSY;
4269 }
4270
4271 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4272 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
4273 ret = i915_vma_unbind(vma);
4274 if (ret)
4275 return ret;
4276 }
4277 }
4278
4279 if (i915_gem_obj_bound_any(obj)) {
4280 ret = i915_gem_object_finish_gpu(obj);
4281 if (ret)
4282 return ret;
4283
4284 i915_gem_object_finish_gtt(obj);
4285
4286 /* Before SandyBridge, you could not use tiling or fence
4287 * registers with snooped memory, so relinquish any fences
4288 * currently pointing to our region in the aperture.
4289 */
4290 if (INTEL_INFO(dev)->gen < 6) {
4291 ret = i915_gem_object_put_fence(obj);
4292 if (ret)
4293 return ret;
4294 }
4295
4296 list_for_each_entry(vma, &obj->vma_list, vma_link)
4297 if (drm_mm_node_allocated(&vma->node))
4298 vma->bind_vma(vma, cache_level,
4299 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
4300 }
4301
4302 list_for_each_entry(vma, &obj->vma_list, vma_link)
4303 vma->node.color = cache_level;
4304 obj->cache_level = cache_level;
4305
4306 if (cpu_write_needs_clflush(obj)) {
4307 u32 old_read_domains, old_write_domain;
4308
4309 /* If we're coming from LLC cached, then we haven't
4310 * actually been tracking whether the data is in the
4311 * CPU cache or not, since we only allow one bit set
4312 * in obj->write_domain and have been skipping the clflushes.
4313 * Just set it to the CPU cache for now.
4314 */
4315 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
4316
4317 old_read_domains = obj->base.read_domains;
4318 old_write_domain = obj->base.write_domain;
4319
4320 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4321 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4322
4323 trace_i915_gem_object_change_domain(obj,
4324 old_read_domains,
4325 old_write_domain);
4326 }
4327
4328 i915_gem_verify_gtt(dev);
4329 return 0;
4330 }
4331
4332 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4333 struct drm_file *file)
4334 {
4335 struct drm_i915_gem_caching *args = data;
4336 struct drm_gem_object *gobj;
4337 struct drm_i915_gem_object *obj;
4338 int ret;
4339
4340 ret = i915_mutex_lock_interruptible(dev);
4341 if (ret)
4342 return ret;
4343
4344 gobj = drm_gem_object_lookup(dev, file, args->handle);
4345 if (gobj == NULL) {
4346 ret = -ENOENT;
4347 goto unlock;
4348 }
4349 obj = to_intel_bo(gobj);
4350
4351 switch (obj->cache_level) {
4352 case I915_CACHE_LLC:
4353 case I915_CACHE_L3_LLC:
4354 args->caching = I915_CACHING_CACHED;
4355 break;
4356
4357 case I915_CACHE_WT:
4358 args->caching = I915_CACHING_DISPLAY;
4359 break;
4360
4361 default:
4362 args->caching = I915_CACHING_NONE;
4363 break;
4364 }
4365
4366 drm_gem_object_unreference(&obj->base);
4367 unlock:
4368 mutex_unlock(&dev->struct_mutex);
4369 return ret;
4370 }
4371
4372 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4373 struct drm_file *file)
4374 {
4375 struct drm_i915_gem_caching *args = data;
4376 struct drm_gem_object *gobj;
4377 struct drm_i915_gem_object *obj;
4378 enum i915_cache_level level;
4379 int ret;
4380
4381 switch (args->caching) {
4382 case I915_CACHING_NONE:
4383 level = I915_CACHE_NONE;
4384 break;
4385 case I915_CACHING_CACHED:
4386 level = I915_CACHE_LLC;
4387 break;
4388 case I915_CACHING_DISPLAY:
4389 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4390 break;
4391 default:
4392 return -EINVAL;
4393 }
4394
4395 ret = i915_mutex_lock_interruptible(dev);
4396 if (ret)
4397 return ret;
4398
4399 gobj = drm_gem_object_lookup(dev, file, args->handle);
4400 if (gobj == NULL) {
4401 ret = -ENOENT;
4402 goto unlock;
4403 }
4404 obj = to_intel_bo(gobj);
4405
4406 ret = i915_gem_object_set_cache_level(obj, level);
4407
4408 drm_gem_object_unreference(&obj->base);
4409 unlock:
4410 mutex_unlock(&dev->struct_mutex);
4411 return ret;
4412 }
4413
4414 static bool is_pin_display(struct drm_i915_gem_object *obj)
4415 {
4416 /* There are 3 sources that pin objects:
4417 * 1. The display engine (scanouts, sprites, cursors);
4418 * 2. Reservations for execbuffer;
4419 * 3. The user.
4420 *
4421 * We can ignore reservations as we hold the struct_mutex and
4422 * are only called outside of the reservation path. The user
4423 * can only increment pin_count once, and so if after
4424 * subtracting the potential reference by the user, any pin_count
4425 * remains, it must be due to another use by the display engine.
4426 */
4427 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
4428 }
4429
4430 /*
4431 * Prepare buffer for display plane (scanout, cursors, etc).
4432 * Can be called from an uninterruptible phase (modesetting) and allows
4433 * any flushes to be pipelined (for pageflips).
4434 */
4435 int
4436 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4437 u32 alignment,
4438 struct intel_ring_buffer *pipelined)
4439 {
4440 u32 old_read_domains, old_write_domain;
4441 int ret;
4442
4443 if (pipelined != obj->ring) {
4444 ret = i915_gem_object_sync(obj, pipelined);
4445 if (ret)
4446 return ret;
4447 }
4448
4449 /* Mark the pin_display early so that we account for the
4450 * display coherency whilst setting up the cache domains.
4451 */
4452 obj->pin_display = true;
4453
4454 /* The display engine is not coherent with the LLC cache on gen6. As
4455 * a result, we make sure that the pinning that is about to occur is
4456 * done with uncached PTEs. This is lowest common denominator for all
4457 * chipsets.
4458 *
4459 * However for gen6+, we could do better by using the GFDT bit instead
4460 * of uncaching, which would allow us to flush all the LLC-cached data
4461 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4462 */
4463 ret = i915_gem_object_set_cache_level(obj,
4464 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4465 if (ret)
4466 goto err_unpin_display;
4467
4468 /* As the user may map the buffer once pinned in the display plane
4469 * (e.g. libkms for the bootup splash), we have to ensure that we
4470 * always use map_and_fenceable for all scanout buffers.
4471 */
4472 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
4473 if (ret)
4474 goto err_unpin_display;
4475
4476 i915_gem_object_flush_cpu_write_domain(obj, true);
4477
4478 old_write_domain = obj->base.write_domain;
4479 old_read_domains = obj->base.read_domains;
4480
4481 /* It should now be out of any other write domains, and we can update
4482 * the domain values for our changes.
4483 */
4484 obj->base.write_domain = 0;
4485 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4486
4487 trace_i915_gem_object_change_domain(obj,
4488 old_read_domains,
4489 old_write_domain);
4490
4491 return 0;
4492
4493 err_unpin_display:
4494 obj->pin_display = is_pin_display(obj);
4495 return ret;
4496 }
4497
4498 void
4499 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4500 {
4501 i915_gem_object_ggtt_unpin(obj);
4502 obj->pin_display = is_pin_display(obj);
4503 }
4504
4505 int
4506 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4507 {
4508 int ret;
4509
4510 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4511 return 0;
4512
4513 ret = i915_gem_object_wait_rendering(obj, false);
4514 if (ret)
4515 return ret;
4516
4517 /* Ensure that we invalidate the GPU's caches and TLBs. */
4518 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4519 return 0;
4520 }
4521
4522 /**
4523 * Moves a single object to the CPU read, and possibly write domain.
4524 *
4525 * This function returns when the move is complete, including waiting on
4526 * flushes to occur.
4527 */
4528 int
4529 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4530 {
4531 uint32_t old_write_domain, old_read_domains;
4532 int ret;
4533
4534 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4535 return 0;
4536
4537 ret = i915_gem_object_wait_rendering(obj, !write);
4538 if (ret)
4539 return ret;
4540
4541 i915_gem_object_flush_gtt_write_domain(obj);
4542
4543 old_write_domain = obj->base.write_domain;
4544 old_read_domains = obj->base.read_domains;
4545
4546 /* Flush the CPU cache if it's still invalid. */
4547 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4548 i915_gem_clflush_object(obj, false);
4549
4550 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4551 }
4552
4553 /* It should now be out of any other write domains, and we can update
4554 * the domain values for our changes.
4555 */
4556 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4557
4558 /* If we're writing through the CPU, then the GPU read domains will
4559 * need to be invalidated at next use.
4560 */
4561 if (write) {
4562 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4563 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4564 }
4565
4566 trace_i915_gem_object_change_domain(obj,
4567 old_read_domains,
4568 old_write_domain);
4569
4570 return 0;
4571 }
4572
4573 /* Throttle our rendering by waiting until the ring has completed our requests
4574 * emitted over 20 msec ago.
4575 *
4576 * Note that if we were to use the current jiffies each time around the loop,
4577 * we wouldn't escape the function with any frames outstanding if the time to
4578 * render a frame was over 20ms.
4579 *
4580 * This should get us reasonable parallelism between CPU and GPU but also
4581 * relatively low latency when blocking on a particular request to finish.
4582 */
4583 static int
4584 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4585 {
4586 struct drm_i915_private *dev_priv = dev->dev_private;
4587 struct drm_i915_file_private *file_priv = file->driver_priv;
4588 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4589 struct drm_i915_gem_request *request;
4590 struct intel_ring_buffer *ring = NULL;
4591 unsigned reset_counter;
4592 u32 seqno = 0;
4593 int ret;
4594
4595 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4596 if (ret)
4597 return ret;
4598
4599 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4600 if (ret)
4601 return ret;
4602
4603 spin_lock(&file_priv->mm.lock);
4604 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4605 if (time_after_eq(request->emitted_jiffies, recent_enough))
4606 break;
4607
4608 ring = request->ring;
4609 seqno = request->seqno;
4610 }
4611 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4612 spin_unlock(&file_priv->mm.lock);
4613
4614 if (seqno == 0)
4615 return 0;
4616
4617 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4618 if (ret == 0)
4619 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4620
4621 return ret;
4622 }
4623
4624 static bool
4625 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4626 {
4627 struct drm_i915_gem_object *obj = vma->obj;
4628
4629 if (alignment &&
4630 vma->node.start & (alignment - 1))
4631 return true;
4632
4633 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4634 return true;
4635
4636 if (flags & PIN_OFFSET_BIAS &&
4637 vma->node.start < (flags & PIN_OFFSET_MASK))
4638 return true;
4639
4640 return false;
4641 }
4642
4643 int
4644 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4645 struct i915_address_space *vm,
4646 uint32_t alignment,
4647 uint64_t flags)
4648 {
4649 struct i915_vma *vma;
4650 int ret;
4651
4652 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4653 return -EINVAL;
4654
4655 vma = i915_gem_obj_to_vma(obj, vm);
4656 if (vma) {
4657 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4658 return -EBUSY;
4659
4660 if (i915_vma_misplaced(vma, alignment, flags)) {
4661 WARN(vma->pin_count,
4662 "bo is already pinned with incorrect alignment:"
4663 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4664 " obj->map_and_fenceable=%d\n",
4665 i915_gem_obj_offset(obj, vm), alignment,
4666 !!(flags & PIN_MAPPABLE),
4667 obj->map_and_fenceable);
4668 ret = i915_vma_unbind(vma);
4669 if (ret)
4670 return ret;
4671
4672 vma = NULL;
4673 }
4674 }
4675
4676 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4677 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4678 if (IS_ERR(vma))
4679 return PTR_ERR(vma);
4680 }
4681
4682 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4683 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4684
4685 vma->pin_count++;
4686 if (flags & PIN_MAPPABLE)
4687 obj->pin_mappable |= true;
4688
4689 return 0;
4690 }
4691
4692 void
4693 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4694 {
4695 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4696
4697 BUG_ON(!vma);
4698 BUG_ON(vma->pin_count == 0);
4699 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4700
4701 if (--vma->pin_count == 0)
4702 obj->pin_mappable = false;
4703 }
4704
4705 int
4706 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4707 struct drm_file *file)
4708 {
4709 struct drm_i915_gem_pin *args = data;
4710 struct drm_gem_object *gobj;
4711 struct drm_i915_gem_object *obj;
4712 int ret;
4713
4714 if (INTEL_INFO(dev)->gen >= 6)
4715 return -ENODEV;
4716
4717 ret = i915_mutex_lock_interruptible(dev);
4718 if (ret)
4719 return ret;
4720
4721 gobj = drm_gem_object_lookup(dev, file, args->handle);
4722 if (gobj == NULL) {
4723 ret = -ENOENT;
4724 goto unlock;
4725 }
4726 obj = to_intel_bo(gobj);
4727
4728 if (obj->madv != I915_MADV_WILLNEED) {
4729 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4730 ret = -EFAULT;
4731 goto out;
4732 }
4733
4734 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4735 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4736 args->handle);
4737 ret = -EINVAL;
4738 goto out;
4739 }
4740
4741 if (obj->user_pin_count == ULONG_MAX) {
4742 ret = -EBUSY;
4743 goto out;
4744 }
4745
4746 if (obj->user_pin_count == 0) {
4747 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4748 if (ret)
4749 goto out;
4750 }
4751
4752 obj->user_pin_count++;
4753 obj->pin_filp = file;
4754
4755 args->offset = i915_gem_obj_ggtt_offset(obj);
4756 out:
4757 drm_gem_object_unreference(&obj->base);
4758 unlock:
4759 mutex_unlock(&dev->struct_mutex);
4760 return ret;
4761 }
4762
4763 int
4764 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4765 struct drm_file *file)
4766 {
4767 struct drm_i915_gem_pin *args = data;
4768 struct drm_gem_object *gobj;
4769 struct drm_i915_gem_object *obj;
4770 int ret;
4771
4772 ret = i915_mutex_lock_interruptible(dev);
4773 if (ret)
4774 return ret;
4775
4776 gobj = drm_gem_object_lookup(dev, file, args->handle);
4777 if (gobj == NULL) {
4778 ret = -ENOENT;
4779 goto unlock;
4780 }
4781 obj = to_intel_bo(gobj);
4782
4783 if (obj->pin_filp != file) {
4784 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4785 args->handle);
4786 ret = -EINVAL;
4787 goto out;
4788 }
4789 obj->user_pin_count--;
4790 if (obj->user_pin_count == 0) {
4791 obj->pin_filp = NULL;
4792 i915_gem_object_ggtt_unpin(obj);
4793 }
4794
4795 out:
4796 drm_gem_object_unreference(&obj->base);
4797 unlock:
4798 mutex_unlock(&dev->struct_mutex);
4799 return ret;
4800 }
4801
4802 int
4803 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4804 struct drm_file *file)
4805 {
4806 struct drm_i915_gem_busy *args = data;
4807 struct drm_gem_object *gobj;
4808 struct drm_i915_gem_object *obj;
4809 int ret;
4810
4811 ret = i915_mutex_lock_interruptible(dev);
4812 if (ret)
4813 return ret;
4814
4815 gobj = drm_gem_object_lookup(dev, file, args->handle);
4816 if (gobj == NULL) {
4817 ret = -ENOENT;
4818 goto unlock;
4819 }
4820 obj = to_intel_bo(gobj);
4821
4822 /* Count all active objects as busy, even if they are currently not used
4823 * by the gpu. Users of this interface expect objects to eventually
4824 * become non-busy without any further actions, therefore emit any
4825 * necessary flushes here.
4826 */
4827 ret = i915_gem_object_flush_active(obj);
4828
4829 args->busy = obj->active;
4830 if (obj->ring) {
4831 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4832 args->busy |= intel_ring_flag(obj->ring) << 16;
4833 }
4834
4835 drm_gem_object_unreference(&obj->base);
4836 unlock:
4837 mutex_unlock(&dev->struct_mutex);
4838 return ret;
4839 }
4840
4841 int
4842 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4843 struct drm_file *file_priv)
4844 {
4845 return i915_gem_ring_throttle(dev, file_priv);
4846 }
4847
4848 int
4849 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4850 struct drm_file *file_priv)
4851 {
4852 struct drm_i915_gem_madvise *args = data;
4853 struct drm_gem_object *gobj;
4854 struct drm_i915_gem_object *obj;
4855 int ret;
4856
4857 switch (args->madv) {
4858 case I915_MADV_DONTNEED:
4859 case I915_MADV_WILLNEED:
4860 break;
4861 default:
4862 return -EINVAL;
4863 }
4864
4865 ret = i915_mutex_lock_interruptible(dev);
4866 if (ret)
4867 return ret;
4868
4869 gobj = drm_gem_object_lookup(dev, file_priv, args->handle);
4870 if (gobj == NULL) {
4871 ret = -ENOENT;
4872 goto unlock;
4873 }
4874 obj = to_intel_bo(gobj);
4875
4876 if (i915_gem_obj_is_pinned(obj)) {
4877 ret = -EINVAL;
4878 goto out;
4879 }
4880
4881 if (obj->madv != __I915_MADV_PURGED)
4882 obj->madv = args->madv;
4883
4884 /* if the object is no longer attached, discard its backing storage */
4885 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4886 i915_gem_object_truncate(obj);
4887
4888 args->retained = obj->madv != __I915_MADV_PURGED;
4889
4890 out:
4891 drm_gem_object_unreference(&obj->base);
4892 unlock:
4893 mutex_unlock(&dev->struct_mutex);
4894 return ret;
4895 }
4896
4897 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4898 const struct drm_i915_gem_object_ops *ops)
4899 {
4900 INIT_LIST_HEAD(&obj->global_list);
4901 INIT_LIST_HEAD(&obj->ring_list);
4902 INIT_LIST_HEAD(&obj->obj_exec_link);
4903 INIT_LIST_HEAD(&obj->vma_list);
4904
4905 obj->ops = ops;
4906
4907 obj->fence_reg = I915_FENCE_REG_NONE;
4908 obj->madv = I915_MADV_WILLNEED;
4909 /* Avoid an unnecessary call to unbind on the first bind. */
4910 obj->map_and_fenceable = true;
4911
4912 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4913 }
4914
4915 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4916 .get_pages = i915_gem_object_get_pages_gtt,
4917 .put_pages = i915_gem_object_put_pages_gtt,
4918 };
4919
4920 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4921 size_t size)
4922 {
4923 #ifdef __NetBSD__
4924 struct drm_i915_private *const dev_priv = dev->dev_private;
4925 #endif
4926 struct drm_i915_gem_object *obj;
4927 #ifndef __NetBSD__
4928 struct address_space *mapping;
4929 gfp_t mask;
4930 #endif
4931
4932 obj = i915_gem_object_alloc(dev);
4933 if (obj == NULL)
4934 return NULL;
4935
4936 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4937 i915_gem_object_free(obj);
4938 return NULL;
4939 }
4940
4941 #ifdef __NetBSD__
4942 uao_set_pgfl(obj->base.gemo_shm_uao, dev_priv->gtt.pgfl);
4943 #else
4944 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4945 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4946 /* 965gm cannot relocate objects above 4GiB. */
4947 mask &= ~__GFP_HIGHMEM;
4948 mask |= __GFP_DMA32;
4949 }
4950
4951 mapping = file_inode(obj->base.filp)->i_mapping;
4952 mapping_set_gfp_mask(mapping, mask);
4953 #endif
4954
4955 i915_gem_object_init(obj, &i915_gem_object_ops);
4956
4957 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4958 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4959
4960 if (HAS_LLC(dev)) {
4961 /* On some devices, we can have the GPU use the LLC (the CPU
4962 * cache) for about a 10% performance improvement
4963 * compared to uncached. Graphics requests other than
4964 * display scanout are coherent with the CPU in
4965 * accessing this cache. This means in this mode we
4966 * don't need to clflush on the CPU side, and on the
4967 * GPU side we only need to flush internal caches to
4968 * get data visible to the CPU.
4969 *
4970 * However, we maintain the display planes as UC, and so
4971 * need to rebind when first used as such.
4972 */
4973 obj->cache_level = I915_CACHE_LLC;
4974 } else
4975 obj->cache_level = I915_CACHE_NONE;
4976
4977 trace_i915_gem_object_create(obj);
4978
4979 return obj;
4980 }
4981
4982 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4983 {
4984 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4985 struct drm_device *dev = obj->base.dev;
4986 struct drm_i915_private *dev_priv = dev->dev_private;
4987 struct i915_vma *vma, *next;
4988
4989 intel_runtime_pm_get(dev_priv);
4990
4991 trace_i915_gem_object_destroy(obj);
4992
4993 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4994 int ret;
4995
4996 vma->pin_count = 0;
4997 ret = i915_vma_unbind(vma);
4998 if (WARN_ON(ret == -ERESTARTSYS)) {
4999 bool was_interruptible;
5000
5001 was_interruptible = dev_priv->mm.interruptible;
5002 dev_priv->mm.interruptible = false;
5003
5004 WARN_ON(i915_vma_unbind(vma));
5005
5006 dev_priv->mm.interruptible = was_interruptible;
5007 }
5008 }
5009
5010 i915_gem_object_detach_phys(obj);
5011
5012 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
5013 * before progressing. */
5014 if (obj->stolen)
5015 i915_gem_object_unpin_pages(obj);
5016
5017 if (WARN_ON(obj->pages_pin_count))
5018 obj->pages_pin_count = 0;
5019 i915_gem_object_put_pages(obj);
5020 i915_gem_object_free_mmap_offset(obj);
5021 i915_gem_object_release_stolen(obj);
5022
5023 BUG_ON(obj->pages);
5024
5025 #ifndef __NetBSD__ /* XXX drm prime */
5026 if (obj->base.import_attach)
5027 drm_prime_gem_destroy(&obj->base, NULL);
5028 #endif
5029
5030 drm_gem_object_release(&obj->base);
5031 i915_gem_info_remove_obj(dev_priv, obj->base.size);
5032
5033 kfree(obj->bit_17);
5034 i915_gem_object_free(obj);
5035
5036 intel_runtime_pm_put(dev_priv);
5037 }
5038
5039 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
5040 struct i915_address_space *vm)
5041 {
5042 struct i915_vma *vma;
5043 list_for_each_entry(vma, &obj->vma_list, vma_link)
5044 if (vma->vm == vm)
5045 return vma;
5046
5047 return NULL;
5048 }
5049
5050 void i915_gem_vma_destroy(struct i915_vma *vma)
5051 {
5052 WARN_ON(vma->node.allocated);
5053
5054 /* Keep the vma as a placeholder in the execbuffer reservation lists */
5055 if (!list_empty(&vma->exec_list))
5056 return;
5057
5058 list_del(&vma->vma_link);
5059
5060 kfree(vma);
5061 }
5062
5063 int
5064 i915_gem_suspend(struct drm_device *dev)
5065 {
5066 struct drm_i915_private *dev_priv = dev->dev_private;
5067 int ret = 0;
5068
5069 mutex_lock(&dev->struct_mutex);
5070 if (dev_priv->ums.mm_suspended)
5071 goto err;
5072
5073 ret = i915_gpu_idle(dev);
5074 if (ret)
5075 goto err;
5076
5077 i915_gem_retire_requests(dev);
5078
5079 /* Under UMS, be paranoid and evict. */
5080 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5081 i915_gem_evict_everything(dev);
5082
5083 i915_kernel_lost_context(dev);
5084 i915_gem_cleanup_ringbuffer(dev);
5085
5086 /* Hack! Don't let anybody do execbuf while we don't control the chip.
5087 * We need to replace this with a semaphore, or something.
5088 * And not confound ums.mm_suspended!
5089 */
5090 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
5091 DRIVER_MODESET);
5092 mutex_unlock(&dev->struct_mutex);
5093
5094 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
5095 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
5096 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
5097
5098 return 0;
5099
5100 err:
5101 mutex_unlock(&dev->struct_mutex);
5102 return ret;
5103 }
5104
5105 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
5106 {
5107 struct drm_device *dev = ring->dev;
5108 struct drm_i915_private *dev_priv = dev->dev_private;
5109 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
5110 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
5111 int i, ret;
5112
5113 if (!HAS_L3_DPF(dev) || !remap_info)
5114 return 0;
5115
5116 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
5117 if (ret)
5118 return ret;
5119
5120 /*
5121 * Note: We do not worry about the concurrent register cacheline hang
5122 * here because no other code should access these registers other than
5123 * at initialization time.
5124 */
5125 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
5126 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
5127 intel_ring_emit(ring, reg_base + i);
5128 intel_ring_emit(ring, remap_info[i/4]);
5129 }
5130
5131 intel_ring_advance(ring);
5132
5133 return ret;
5134 }
5135
5136 void i915_gem_init_swizzling(struct drm_device *dev)
5137 {
5138 struct drm_i915_private *dev_priv = dev->dev_private;
5139
5140 if (INTEL_INFO(dev)->gen < 5 ||
5141 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5142 return;
5143
5144 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5145 DISP_TILE_SURFACE_SWIZZLING);
5146
5147 if (IS_GEN5(dev))
5148 return;
5149
5150 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5151 if (IS_GEN6(dev))
5152 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5153 else if (IS_GEN7(dev))
5154 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5155 else if (IS_GEN8(dev))
5156 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5157 else
5158 BUG();
5159 }
5160
5161 static bool
5162 intel_enable_blt(struct drm_device *dev)
5163 {
5164 if (!HAS_BLT(dev))
5165 return false;
5166
5167 /* The blitter was dysfunctional on early prototypes */
5168 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
5169 DRM_INFO("BLT not supported on this pre-production hardware;"
5170 " graphics performance will be degraded.\n");
5171 return false;
5172 }
5173
5174 return true;
5175 }
5176
5177 static int i915_gem_init_rings(struct drm_device *dev)
5178 {
5179 struct drm_i915_private *dev_priv = dev->dev_private;
5180 int ret;
5181
5182 ret = intel_init_render_ring_buffer(dev);
5183 if (ret)
5184 return ret;
5185
5186 if (HAS_BSD(dev)) {
5187 ret = intel_init_bsd_ring_buffer(dev);
5188 if (ret)
5189 goto cleanup_render_ring;
5190 }
5191
5192 if (intel_enable_blt(dev)) {
5193 ret = intel_init_blt_ring_buffer(dev);
5194 if (ret)
5195 goto cleanup_bsd_ring;
5196 }
5197
5198 if (HAS_VEBOX(dev)) {
5199 ret = intel_init_vebox_ring_buffer(dev);
5200 if (ret)
5201 goto cleanup_blt_ring;
5202 }
5203
5204
5205 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
5206 if (ret)
5207 goto cleanup_vebox_ring;
5208
5209 return 0;
5210
5211 cleanup_vebox_ring:
5212 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5213 cleanup_blt_ring:
5214 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5215 cleanup_bsd_ring:
5216 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5217 cleanup_render_ring:
5218 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5219
5220 return ret;
5221 }
5222
5223 int
5224 i915_gem_init_hw(struct drm_device *dev)
5225 {
5226 struct drm_i915_private *dev_priv = dev->dev_private;
5227 int ret, i;
5228
5229 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5230 return -EIO;
5231
5232 if (dev_priv->ellc_size)
5233 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5234
5235 if (IS_HASWELL(dev))
5236 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5237 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5238
5239 if (HAS_PCH_NOP(dev)) {
5240 if (IS_IVYBRIDGE(dev)) {
5241 u32 temp = I915_READ(GEN7_MSG_CTL);
5242 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5243 I915_WRITE(GEN7_MSG_CTL, temp);
5244 } else if (INTEL_INFO(dev)->gen >= 7) {
5245 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5246 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5247 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5248 }
5249 }
5250
5251 i915_gem_init_swizzling(dev);
5252
5253 ret = i915_gem_init_rings(dev);
5254 if (ret)
5255 return ret;
5256
5257 for (i = 0; i < NUM_L3_SLICES(dev); i++)
5258 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
5259
5260 /*
5261 * XXX: Contexts should only be initialized once. Doing a switch to the
5262 * default context switch however is something we'd like to do after
5263 * reset or thaw (the latter may not actually be necessary for HW, but
5264 * goes with our code better). Context switching requires rings (for
5265 * the do_switch), but before enabling PPGTT. So don't move this.
5266 */
5267 ret = i915_gem_context_enable(dev_priv);
5268 if (ret) {
5269 DRM_ERROR("Context enable failed %d\n", ret);
5270 goto err_out;
5271 }
5272
5273 return 0;
5274
5275 err_out:
5276 i915_gem_cleanup_ringbuffer(dev);
5277 return ret;
5278 }
5279
5280 int i915_gem_init(struct drm_device *dev)
5281 {
5282 struct drm_i915_private *dev_priv = dev->dev_private;
5283 int ret;
5284
5285 mutex_lock(&dev->struct_mutex);
5286
5287 if (IS_VALLEYVIEW(dev)) {
5288 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5289 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
5290 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
5291 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5292 }
5293 i915_gem_init_global_gtt(dev);
5294
5295 ret = i915_gem_context_init(dev);
5296 if (ret) {
5297 mutex_unlock(&dev->struct_mutex);
5298 return ret;
5299 }
5300
5301 ret = i915_gem_init_hw(dev);
5302 mutex_unlock(&dev->struct_mutex);
5303 if (ret) {
5304 WARN_ON(dev_priv->mm.aliasing_ppgtt);
5305 i915_gem_context_fini(dev);
5306 drm_mm_takedown(&dev_priv->gtt.base.mm);
5307 return ret;
5308 }
5309
5310 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
5311 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5312 dev_priv->dri1.allow_batchbuffer = 1;
5313 return 0;
5314 }
5315
5316 void
5317 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5318 {
5319 struct drm_i915_private *dev_priv = dev->dev_private;
5320 struct intel_ring_buffer *ring;
5321 int i;
5322
5323 for_each_ring(ring, dev_priv, i)
5324 intel_cleanup_ring_buffer(ring);
5325 }
5326
5327 int
5328 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
5329 struct drm_file *file_priv)
5330 {
5331 struct drm_i915_private *dev_priv = dev->dev_private;
5332 int ret;
5333
5334 if (drm_core_check_feature(dev, DRIVER_MODESET))
5335 return 0;
5336
5337 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
5338 DRM_ERROR("Reenabling wedged hardware, good luck\n");
5339 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
5340 }
5341
5342 mutex_lock(&dev->struct_mutex);
5343 dev_priv->ums.mm_suspended = 0;
5344
5345 ret = i915_gem_init_hw(dev);
5346 if (ret != 0) {
5347 mutex_unlock(&dev->struct_mutex);
5348 return ret;
5349 }
5350
5351 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
5352 mutex_unlock(&dev->struct_mutex);
5353
5354 ret = drm_irq_install(dev);
5355 if (ret)
5356 goto cleanup_ringbuffer;
5357
5358 return 0;
5359
5360 cleanup_ringbuffer:
5361 mutex_lock(&dev->struct_mutex);
5362 i915_gem_cleanup_ringbuffer(dev);
5363 dev_priv->ums.mm_suspended = 1;
5364 mutex_unlock(&dev->struct_mutex);
5365
5366 return ret;
5367 }
5368
5369 int
5370 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
5371 struct drm_file *file_priv)
5372 {
5373 if (drm_core_check_feature(dev, DRIVER_MODESET))
5374 return 0;
5375
5376 drm_irq_uninstall(dev);
5377
5378 return i915_gem_suspend(dev);
5379 }
5380
5381 void
5382 i915_gem_lastclose(struct drm_device *dev)
5383 {
5384 int ret;
5385
5386 if (drm_core_check_feature(dev, DRIVER_MODESET))
5387 return;
5388
5389 ret = i915_gem_suspend(dev);
5390 if (ret)
5391 DRM_ERROR("failed to idle hardware: %d\n", ret);
5392 }
5393
5394 static void
5395 init_ring_lists(struct intel_ring_buffer *ring)
5396 {
5397 INIT_LIST_HEAD(&ring->active_list);
5398 INIT_LIST_HEAD(&ring->request_list);
5399 }
5400
5401 void i915_init_vm(struct drm_i915_private *dev_priv,
5402 struct i915_address_space *vm)
5403 {
5404 if (!i915_is_ggtt(vm))
5405 drm_mm_init(&vm->mm, vm->start, vm->total);
5406 vm->dev = dev_priv->dev;
5407 INIT_LIST_HEAD(&vm->active_list);
5408 INIT_LIST_HEAD(&vm->inactive_list);
5409 INIT_LIST_HEAD(&vm->global_link);
5410 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5411 }
5412
5413 void
5414 i915_gem_load(struct drm_device *dev)
5415 {
5416 struct drm_i915_private *dev_priv = dev->dev_private;
5417 int i;
5418
5419 dev_priv->slab =
5420 kmem_cache_create("i915_gem_object",
5421 sizeof(struct drm_i915_gem_object), 0,
5422 SLAB_HWCACHE_ALIGN,
5423 NULL);
5424
5425 INIT_LIST_HEAD(&dev_priv->vm_list);
5426 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5427
5428 INIT_LIST_HEAD(&dev_priv->context_list);
5429 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5430 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5431 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5432 for (i = 0; i < I915_NUM_RINGS; i++)
5433 init_ring_lists(&dev_priv->ring[i]);
5434 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5435 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5436 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5437 i915_gem_retire_work_handler);
5438 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5439 i915_gem_idle_work_handler);
5440 #ifdef __NetBSD__
5441 spin_lock_init(&dev_priv->gpu_error.reset_lock);
5442 DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
5443 #else
5444 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5445 #endif
5446
5447 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5448 if (IS_GEN3(dev)) {
5449 I915_WRITE(MI_ARB_STATE,
5450 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5451 }
5452
5453 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5454
5455 /* Old X drivers will take 0-2 for front, back, depth buffers */
5456 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5457 dev_priv->fence_reg_start = 3;
5458
5459 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5460 dev_priv->num_fence_regs = 32;
5461 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5462 dev_priv->num_fence_regs = 16;
5463 else
5464 dev_priv->num_fence_regs = 8;
5465
5466 /* Initialize fence registers to zero */
5467 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5468 i915_gem_restore_fences(dev);
5469
5470 i915_gem_detect_bit_6_swizzle(dev);
5471 #ifdef __NetBSD__
5472 DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
5473 spin_lock_init(&dev_priv->pending_flip_lock);
5474 #else
5475 init_waitqueue_head(&dev_priv->pending_flip_queue);
5476 #endif
5477
5478 dev_priv->mm.interruptible = true;
5479
5480 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
5481 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
5482 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
5483 register_shrinker(&dev_priv->mm.inactive_shrinker);
5484 }
5485
5486 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5487 {
5488 struct drm_i915_file_private *file_priv = file->driver_priv;
5489
5490 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5491
5492 /* Clean up our request list when the client is going away, so that
5493 * later retire_requests won't dereference our soon-to-be-gone
5494 * file_priv.
5495 */
5496 spin_lock(&file_priv->mm.lock);
5497 while (!list_empty(&file_priv->mm.request_list)) {
5498 struct drm_i915_gem_request *request;
5499
5500 request = list_first_entry(&file_priv->mm.request_list,
5501 struct drm_i915_gem_request,
5502 client_list);
5503 list_del(&request->client_list);
5504 request->file_priv = NULL;
5505 }
5506 spin_unlock(&file_priv->mm.lock);
5507 }
5508
5509 static void
5510 i915_gem_file_idle_work_handler(struct work_struct *work)
5511 {
5512 struct drm_i915_file_private *file_priv =
5513 container_of(work, typeof(*file_priv), mm.idle_work.work);
5514
5515 atomic_set(&file_priv->rps_wait_boost, false);
5516 }
5517
5518 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5519 {
5520 struct drm_i915_file_private *file_priv;
5521 int ret;
5522
5523 DRM_DEBUG_DRIVER("\n");
5524
5525 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5526 if (!file_priv)
5527 return -ENOMEM;
5528
5529 file->driver_priv = file_priv;
5530 file_priv->dev_priv = dev->dev_private;
5531 file_priv->file = file;
5532
5533 spin_lock_init(&file_priv->mm.lock);
5534 INIT_LIST_HEAD(&file_priv->mm.request_list);
5535 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5536 i915_gem_file_idle_work_handler);
5537
5538 ret = i915_gem_context_open(dev, file);
5539 if (ret)
5540 kfree(file_priv);
5541
5542 return ret;
5543 }
5544
5545 #ifndef __NetBSD__
5546 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5547 {
5548 if (!mutex_is_locked(mutex))
5549 return false;
5550
5551 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5552 return mutex->owner == task;
5553 #else
5554 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5555 return false;
5556 #endif
5557 }
5558 #endif
5559
5560 static unsigned long
5561 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
5562 {
5563 #ifdef __NetBSD__ /* XXX shrinkers */
5564 return 0;
5565 #else
5566 struct drm_i915_private *dev_priv =
5567 container_of(shrinker,
5568 struct drm_i915_private,
5569 mm.inactive_shrinker);
5570 struct drm_device *dev = dev_priv->dev;
5571 struct drm_i915_gem_object *obj;
5572 bool unlock = true;
5573 unsigned long count;
5574
5575 if (!mutex_trylock(&dev->struct_mutex)) {
5576 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5577 return 0;
5578
5579 if (dev_priv->mm.shrinker_no_lock_stealing)
5580 return 0;
5581
5582 unlock = false;
5583 }
5584
5585 count = 0;
5586 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5587 if (obj->pages_pin_count == 0)
5588 count += obj->base.size >> PAGE_SHIFT;
5589
5590 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5591 if (obj->active)
5592 continue;
5593
5594 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
5595 count += obj->base.size >> PAGE_SHIFT;
5596 }
5597
5598 if (unlock)
5599 mutex_unlock(&dev->struct_mutex);
5600
5601 return count;
5602 #endif
5603 }
5604
5605 /* All the new VM stuff */
5606 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5607 struct i915_address_space *vm)
5608 {
5609 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5610 struct i915_vma *vma;
5611
5612 if (!dev_priv->mm.aliasing_ppgtt ||
5613 vm == &dev_priv->mm.aliasing_ppgtt->base)
5614 vm = &dev_priv->gtt.base;
5615
5616 BUG_ON(list_empty(&o->vma_list));
5617 list_for_each_entry(vma, &o->vma_list, vma_link) {
5618 if (vma->vm == vm)
5619 return vma->node.start;
5620
5621 }
5622 return -1;
5623 }
5624
5625 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5626 struct i915_address_space *vm)
5627 {
5628 struct i915_vma *vma;
5629
5630 list_for_each_entry(vma, &o->vma_list, vma_link)
5631 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5632 return true;
5633
5634 return false;
5635 }
5636
5637 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5638 {
5639 struct i915_vma *vma;
5640
5641 list_for_each_entry(vma, &o->vma_list, vma_link)
5642 if (drm_mm_node_allocated(&vma->node))
5643 return true;
5644
5645 return false;
5646 }
5647
5648 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5649 struct i915_address_space *vm)
5650 {
5651 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5652 struct i915_vma *vma;
5653
5654 if (!dev_priv->mm.aliasing_ppgtt ||
5655 vm == &dev_priv->mm.aliasing_ppgtt->base)
5656 vm = &dev_priv->gtt.base;
5657
5658 BUG_ON(list_empty(&o->vma_list));
5659
5660 list_for_each_entry(vma, &o->vma_list, vma_link)
5661 if (vma->vm == vm)
5662 return vma->node.size;
5663
5664 return 0;
5665 }
5666
5667 static unsigned long
5668 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5669 {
5670 #ifdef __NetBSD__ /* XXX shrinkers */
5671 return 0;
5672 #else
5673 struct drm_i915_private *dev_priv =
5674 container_of(shrinker,
5675 struct drm_i915_private,
5676 mm.inactive_shrinker);
5677 struct drm_device *dev = dev_priv->dev;
5678 unsigned long freed;
5679 bool unlock = true;
5680
5681 if (!mutex_trylock(&dev->struct_mutex)) {
5682 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5683 return SHRINK_STOP;
5684
5685 if (dev_priv->mm.shrinker_no_lock_stealing)
5686 return SHRINK_STOP;
5687
5688 unlock = false;
5689 }
5690
5691 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5692 if (freed < sc->nr_to_scan)
5693 freed += __i915_gem_shrink(dev_priv,
5694 sc->nr_to_scan - freed,
5695 false);
5696 if (freed < sc->nr_to_scan)
5697 freed += i915_gem_shrink_all(dev_priv);
5698
5699 if (unlock)
5700 mutex_unlock(&dev->struct_mutex);
5701
5702 return freed;
5703 #endif
5704 }
5705
5706 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5707 {
5708 struct i915_vma *vma;
5709
5710 if (WARN_ON(list_empty(&obj->vma_list)))
5711 return NULL;
5712
5713 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5714 if (vma->vm != obj_to_ggtt(obj))
5715 return NULL;
5716
5717 return vma;
5718 }
5719