Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.18
      1 /*
      2  * Copyright  2008 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eric Anholt <eric (at) anholt.net>
     25  *
     26  */
     27 
     28 #ifdef __NetBSD__
     29 #if 0				/* XXX uvmhist option?  */
     30 #include "opt_uvmhist.h"
     31 #endif
     32 
     33 #include <sys/types.h>
     34 #include <sys/param.h>
     35 
     36 #include <uvm/uvm.h>
     37 #include <uvm/uvm_extern.h>
     38 #include <uvm/uvm_fault.h>
     39 #include <uvm/uvm_page.h>
     40 #include <uvm/uvm_pmap.h>
     41 #include <uvm/uvm_prot.h>
     42 
     43 #include <drm/bus_dma_hacks.h>
     44 #endif
     45 
     46 #include <drm/drmP.h>
     47 #include <drm/drm_vma_manager.h>
     48 #include <drm/i915_drm.h>
     49 #include "i915_drv.h"
     50 #include "i915_trace.h"
     51 #include "intel_drv.h"
     52 #include <linux/shmem_fs.h>
     53 #include <linux/slab.h>
     54 #include <linux/swap.h>
     55 #include <linux/pci.h>
     56 #include <linux/dma-buf.h>
     57 #include <linux/errno.h>
     58 #include <linux/time.h>
     59 #include <linux/err.h>
     60 #include <linux/bitops.h>
     61 #include <linux/printk.h>
     62 #include <asm/param.h>
     63 #include <asm/page.h>
     64 
     65 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
     66 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
     67 						   bool force);
     68 static __must_check int
     69 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
     70 			       bool readonly);
     71 
     72 static void i915_gem_write_fence(struct drm_device *dev, int reg,
     73 				 struct drm_i915_gem_object *obj);
     74 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
     75 					 struct drm_i915_fence_reg *fence,
     76 					 bool enable);
     77 
     78 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
     79 					     struct shrink_control *sc);
     80 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
     81 					    struct shrink_control *sc);
     82 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
     83 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
     84 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
     85 static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
     86 
     87 static bool cpu_cache_is_coherent(struct drm_device *dev,
     88 				  enum i915_cache_level level)
     89 {
     90 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
     91 }
     92 
     93 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
     94 {
     95 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
     96 		return true;
     97 
     98 	return obj->pin_display;
     99 }
    100 
    101 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
    102 {
    103 	if (obj->tiling_mode)
    104 		i915_gem_release_mmap(obj);
    105 
    106 	/* As we do not have an associated fence register, we will force
    107 	 * a tiling change if we ever need to acquire one.
    108 	 */
    109 	obj->fence_dirty = false;
    110 	obj->fence_reg = I915_FENCE_REG_NONE;
    111 }
    112 
    113 /* some bookkeeping */
    114 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
    115 				  size_t size)
    116 {
    117 	spin_lock(&dev_priv->mm.object_stat_lock);
    118 	dev_priv->mm.object_count++;
    119 	dev_priv->mm.object_memory += size;
    120 	spin_unlock(&dev_priv->mm.object_stat_lock);
    121 }
    122 
    123 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
    124 				     size_t size)
    125 {
    126 	spin_lock(&dev_priv->mm.object_stat_lock);
    127 	dev_priv->mm.object_count--;
    128 	dev_priv->mm.object_memory -= size;
    129 	spin_unlock(&dev_priv->mm.object_stat_lock);
    130 }
    131 
    132 static int
    133 i915_gem_wait_for_error(struct i915_gpu_error *error)
    134 {
    135 	int ret;
    136 
    137 #define EXIT_COND (!i915_reset_in_progress(error) || \
    138 		   i915_terminally_wedged(error))
    139 	if (EXIT_COND)
    140 		return 0;
    141 
    142 	/*
    143 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
    144 	 * userspace. If it takes that long something really bad is going on and
    145 	 * we should simply try to bail out and fail as gracefully as possible.
    146 	 */
    147 #ifdef __NetBSD__
    148 	spin_lock(&error->reset_lock);
    149 	DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
    150 	    10*HZ, EXIT_COND);
    151 	spin_unlock(&error->reset_lock);
    152 #else
    153 	ret = wait_event_interruptible_timeout(error->reset_queue,
    154 					       EXIT_COND,
    155 					       10*HZ);
    156 #endif
    157 	if (ret == 0) {
    158 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
    159 		return -EIO;
    160 	} else if (ret < 0) {
    161 		return ret;
    162 	}
    163 #undef EXIT_COND
    164 
    165 	return 0;
    166 }
    167 
    168 int i915_mutex_lock_interruptible(struct drm_device *dev)
    169 {
    170 	struct drm_i915_private *dev_priv = dev->dev_private;
    171 	int ret;
    172 
    173 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
    174 	if (ret)
    175 		return ret;
    176 
    177 	ret = mutex_lock_interruptible(&dev->struct_mutex);
    178 	if (ret)
    179 		return ret;
    180 
    181 	WARN_ON(i915_verify_lists(dev));
    182 	return 0;
    183 }
    184 
    185 static inline bool
    186 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
    187 {
    188 	return i915_gem_obj_bound_any(obj) && !obj->active;
    189 }
    190 
    191 int
    192 i915_gem_init_ioctl(struct drm_device *dev, void *data,
    193 		    struct drm_file *file)
    194 {
    195 	struct drm_i915_private *dev_priv = dev->dev_private;
    196 	struct drm_i915_gem_init *args = data;
    197 
    198 	if (drm_core_check_feature(dev, DRIVER_MODESET))
    199 		return -ENODEV;
    200 
    201 	if (args->gtt_start >= args->gtt_end ||
    202 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
    203 		return -EINVAL;
    204 
    205 	/* GEM with user mode setting was never supported on ilk and later. */
    206 	if (INTEL_INFO(dev)->gen >= 5)
    207 		return -ENODEV;
    208 
    209 	mutex_lock(&dev->struct_mutex);
    210 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
    211 				  args->gtt_end);
    212 	dev_priv->gtt.mappable_end = args->gtt_end;
    213 	mutex_unlock(&dev->struct_mutex);
    214 
    215 	return 0;
    216 }
    217 
    218 int
    219 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    220 			    struct drm_file *file)
    221 {
    222 	struct drm_i915_private *dev_priv = dev->dev_private;
    223 	struct drm_i915_gem_get_aperture *args = data;
    224 	struct drm_i915_gem_object *obj;
    225 	size_t pinned;
    226 
    227 	pinned = 0;
    228 	mutex_lock(&dev->struct_mutex);
    229 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
    230 		if (i915_gem_obj_is_pinned(obj))
    231 			pinned += i915_gem_obj_ggtt_size(obj);
    232 	mutex_unlock(&dev->struct_mutex);
    233 
    234 	args->aper_size = dev_priv->gtt.base.total;
    235 	args->aper_available_size = args->aper_size - pinned;
    236 
    237 	return 0;
    238 }
    239 
    240 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
    241 {
    242 	drm_dma_handle_t *phys = obj->phys_handle;
    243 
    244 	if (!phys)
    245 		return;
    246 
    247 	if (obj->madv == I915_MADV_WILLNEED) {
    248 #ifdef __NetBSD__
    249 		const char *vaddr = phys->vaddr;
    250 		unsigned i;
    251 
    252 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    253 			struct pglist pages;
    254 			int error;
    255 
    256 			TAILQ_INIT(&pages);
    257 			error = uvm_obj_wirepages(obj->base.gemo_shm_uao,
    258 			    i*PAGE_SIZE, (i+1)*PAGE_SIZE, &pages);
    259 			if (error)
    260 				continue;
    261 
    262 			struct vm_page *const vm_page = TAILQ_FIRST(&pages);
    263 			struct page *const page = container_of(vm_page,
    264 			    struct page, p_vmp);
    265 			char *const dst = kmap_atomic(page);
    266 			(void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
    267 			drm_clflush_virt_range(dst, PAGE_SIZE);
    268 			kunmap_atomic(dst);
    269 
    270 			vm_page->flags &= ~PG_CLEAN;
    271 			/* XXX mark page accessed */
    272 			uvm_obj_unwirepages(obj->base.gemo_shm_uao,
    273 			    i*PAGE_SIZE, (i+1)*PAGE_SIZE);
    274 		}
    275 #else
    276 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    277 		char *vaddr = phys->vaddr;
    278 		int i;
    279 
    280 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    281 			struct page *page = shmem_read_mapping_page(mapping, i);
    282 			if (!IS_ERR(page)) {
    283 				char *dst = kmap_atomic(page);
    284 				memcpy(dst, vaddr, PAGE_SIZE);
    285 				drm_clflush_virt_range(dst, PAGE_SIZE);
    286 				kunmap_atomic(dst);
    287 
    288 				set_page_dirty(page);
    289 				mark_page_accessed(page);
    290 				page_cache_release(page);
    291 			}
    292 			vaddr += PAGE_SIZE;
    293 		}
    294 #endif
    295 		i915_gem_chipset_flush(obj->base.dev);
    296 	}
    297 
    298 #ifndef __NetBSD__
    299 #ifdef CONFIG_X86
    300 	set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
    301 #endif
    302 #endif
    303 	drm_pci_free(obj->base.dev, phys);
    304 	obj->phys_handle = NULL;
    305 }
    306 
    307 int
    308 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
    309 			    int align)
    310 {
    311 	drm_dma_handle_t *phys;
    312 #ifndef __NetBSD__
    313 	struct address_space *mapping;
    314 #endif
    315 	char *vaddr;
    316 	int i;
    317 
    318 	if (obj->phys_handle) {
    319 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
    320 			return -EBUSY;
    321 
    322 		return 0;
    323 	}
    324 
    325 	if (obj->madv != I915_MADV_WILLNEED)
    326 		return -EFAULT;
    327 
    328 #ifdef __NetBSD__
    329 	if (obj->base.gemo_shm_uao == NULL)
    330 		return -EINVAL;
    331 #else
    332 	if (obj->base.filp == NULL)
    333 		return -EINVAL;
    334 #endif
    335 
    336 	/* create a new object */
    337 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
    338 	if (!phys)
    339 		return -ENOMEM;
    340 
    341 	vaddr = phys->vaddr;
    342 #ifndef __NetBSD__
    343 #ifdef CONFIG_X86
    344 	set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
    345 #endif
    346 	mapping = file_inode(obj->base.filp)->i_mapping;
    347 #endif
    348 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    349 		struct page *page;
    350 		char *src;
    351 
    352 #ifdef __NetBSD__
    353 		struct pglist pages;
    354 		int ret;
    355 
    356 		TAILQ_INIT(&pages);
    357 
    358 		/* XXX errno NetBSD->Linux */
    359 		ret = -uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
    360 		    (i+1)*PAGE_SIZE, &pages);
    361 		if (ret) {
    362 			drm_pci_free(obj->base.dev, phys);
    363 			return ret;
    364 		}
    365 		KASSERT(!TAILQ_EMPTY(&pages));
    366 		page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
    367 #else
    368 		page = shmem_read_mapping_page(mapping, i);
    369 		if (IS_ERR(page)) {
    370 #ifdef CONFIG_X86
    371 			set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
    372 #endif
    373 			drm_pci_free(obj->base.dev, phys);
    374 			return PTR_ERR(page);
    375 		}
    376 #endif	/* defined(__NetBSD__) */
    377 
    378 		src = kmap_atomic(page);
    379 		memcpy(vaddr, src, PAGE_SIZE);
    380 		kunmap_atomic(src);
    381 
    382 #ifndef __NetBSD__
    383 		mark_page_accessed(page);
    384 		page_cache_release(page);
    385 #endif
    386 
    387 		vaddr += PAGE_SIZE;
    388 	}
    389 
    390 	obj->phys_handle = phys;
    391 	return 0;
    392 }
    393 
    394 static int
    395 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
    396 		     struct drm_i915_gem_pwrite *args,
    397 		     struct drm_file *file_priv)
    398 {
    399 	struct drm_device *dev = obj->base.dev;
    400 	void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
    401 	char __user *user_data = to_user_ptr(args->data_ptr);
    402 
    403 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
    404 		unsigned long unwritten;
    405 
    406 		/* The physical object once assigned is fixed for the lifetime
    407 		 * of the obj, so we can safely drop the lock and continue
    408 		 * to access vaddr.
    409 		 */
    410 		mutex_unlock(&dev->struct_mutex);
    411 		unwritten = copy_from_user(vaddr, user_data, args->size);
    412 		mutex_lock(&dev->struct_mutex);
    413 		if (unwritten)
    414 			return -EFAULT;
    415 	}
    416 
    417 	i915_gem_chipset_flush(dev);
    418 	return 0;
    419 }
    420 
    421 void *i915_gem_object_alloc(struct drm_device *dev)
    422 {
    423 	struct drm_i915_private *dev_priv = dev->dev_private;
    424 	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
    425 }
    426 
    427 void i915_gem_object_free(struct drm_i915_gem_object *obj)
    428 {
    429 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
    430 	kmem_cache_free(dev_priv->slab, obj);
    431 }
    432 
    433 static int
    434 i915_gem_create(struct drm_file *file,
    435 		struct drm_device *dev,
    436 		uint64_t size,
    437 		uint32_t *handle_p)
    438 {
    439 	struct drm_i915_gem_object *obj;
    440 	int ret;
    441 	u32 handle;
    442 
    443 	size = roundup(size, PAGE_SIZE);
    444 	if (size == 0)
    445 		return -EINVAL;
    446 
    447 	/* Allocate the new object */
    448 	obj = i915_gem_alloc_object(dev, size);
    449 	if (obj == NULL)
    450 		return -ENOMEM;
    451 
    452 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    453 	/* drop reference from allocate - handle holds it now */
    454 	drm_gem_object_unreference_unlocked(&obj->base);
    455 	if (ret)
    456 		return ret;
    457 
    458 	*handle_p = handle;
    459 	return 0;
    460 }
    461 
    462 int
    463 i915_gem_dumb_create(struct drm_file *file,
    464 		     struct drm_device *dev,
    465 		     struct drm_mode_create_dumb *args)
    466 {
    467 	/* have to work out size/pitch and return them */
    468 #ifdef __NetBSD__		/* ALIGN means something else.  */
    469 	args->pitch = round_up(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    470 #else
    471 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    472 #endif
    473 	args->size = args->pitch * args->height;
    474 	return i915_gem_create(file, dev,
    475 			       args->size, &args->handle);
    476 }
    477 
    478 /**
    479  * Creates a new mm object and returns a handle to it.
    480  */
    481 int
    482 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    483 		      struct drm_file *file)
    484 {
    485 	struct drm_i915_gem_create *args = data;
    486 
    487 	return i915_gem_create(file, dev,
    488 			       args->size, &args->handle);
    489 }
    490 
    491 static inline int
    492 __copy_to_user_swizzled(char __user *cpu_vaddr,
    493 			const char *gpu_vaddr, int gpu_offset,
    494 			int length)
    495 {
    496 	int ret, cpu_offset = 0;
    497 
    498 	while (length > 0) {
    499 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    500 		int cacheline_end = round_up(gpu_offset + 1, 64);
    501 #else
    502 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    503 #endif
    504 		int this_length = min(cacheline_end - gpu_offset, length);
    505 		int swizzled_gpu_offset = gpu_offset ^ 64;
    506 
    507 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
    508 				     gpu_vaddr + swizzled_gpu_offset,
    509 				     this_length);
    510 		if (ret)
    511 			return ret + length;
    512 
    513 		cpu_offset += this_length;
    514 		gpu_offset += this_length;
    515 		length -= this_length;
    516 	}
    517 
    518 	return 0;
    519 }
    520 
    521 static inline int
    522 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
    523 			  const char __user *cpu_vaddr,
    524 			  int length)
    525 {
    526 	int ret, cpu_offset = 0;
    527 
    528 	while (length > 0) {
    529 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    530 		int cacheline_end = round_up(gpu_offset + 1, 64);
    531 #else
    532 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    533 #endif
    534 		int this_length = min(cacheline_end - gpu_offset, length);
    535 		int swizzled_gpu_offset = gpu_offset ^ 64;
    536 
    537 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
    538 				       cpu_vaddr + cpu_offset,
    539 				       this_length);
    540 		if (ret)
    541 			return ret + length;
    542 
    543 		cpu_offset += this_length;
    544 		gpu_offset += this_length;
    545 		length -= this_length;
    546 	}
    547 
    548 	return 0;
    549 }
    550 
    551 /*
    552  * Pins the specified object's pages and synchronizes the object with
    553  * GPU accesses. Sets needs_clflush to non-zero if the caller should
    554  * flush the object from the CPU cache.
    555  */
    556 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
    557 				    int *needs_clflush)
    558 {
    559 	int ret;
    560 
    561 	*needs_clflush = 0;
    562 
    563 #ifdef __NetBSD__
    564 	if (obj->base.gemo_shm_uao == NULL)
    565 		return -EINVAL;
    566 #else
    567 	if (!obj->base.filp)
    568 		return -EINVAL;
    569 #endif
    570 
    571 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
    572 		/* If we're not in the cpu read domain, set ourself into the gtt
    573 		 * read domain and manually flush cachelines (if required). This
    574 		 * optimizes for the case when the gpu will dirty the data
    575 		 * anyway again before the next pread happens. */
    576 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
    577 							obj->cache_level);
    578 		ret = i915_gem_object_wait_rendering(obj, true);
    579 		if (ret)
    580 			return ret;
    581 	}
    582 
    583 	ret = i915_gem_object_get_pages(obj);
    584 	if (ret)
    585 		return ret;
    586 
    587 	i915_gem_object_pin_pages(obj);
    588 
    589 	return ret;
    590 }
    591 
    592 /* Per-page copy function for the shmem pread fastpath.
    593  * Flushes invalid cachelines before reading the target if
    594  * needs_clflush is set. */
    595 static int
    596 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
    597 		 char __user *user_data,
    598 		 bool page_do_bit17_swizzling, bool needs_clflush)
    599 {
    600 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    601 	return -EFAULT;
    602 #else
    603 	char *vaddr;
    604 	int ret;
    605 
    606 	if (unlikely(page_do_bit17_swizzling))
    607 		return -EINVAL;
    608 
    609 	vaddr = kmap_atomic(page);
    610 	if (needs_clflush)
    611 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    612 				       page_length);
    613 	ret = __copy_to_user_inatomic(user_data,
    614 				      vaddr + shmem_page_offset,
    615 				      page_length);
    616 	kunmap_atomic(vaddr);
    617 
    618 	return ret ? -EFAULT : 0;
    619 #endif
    620 }
    621 
    622 static void
    623 shmem_clflush_swizzled_range(char *addr, unsigned long length,
    624 			     bool swizzled)
    625 {
    626 	if (unlikely(swizzled)) {
    627 		unsigned long start = (unsigned long) addr;
    628 		unsigned long end = (unsigned long) addr + length;
    629 
    630 		/* For swizzling simply ensure that we always flush both
    631 		 * channels. Lame, but simple and it works. Swizzled
    632 		 * pwrite/pread is far from a hotpath - current userspace
    633 		 * doesn't use it at all. */
    634 		start = round_down(start, 128);
    635 		end = round_up(end, 128);
    636 
    637 		drm_clflush_virt_range((void *)start, end - start);
    638 	} else {
    639 		drm_clflush_virt_range(addr, length);
    640 	}
    641 
    642 }
    643 
    644 /* Only difference to the fast-path function is that this can handle bit17
    645  * and uses non-atomic copy and kmap functions. */
    646 static int
    647 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
    648 		 char __user *user_data,
    649 		 bool page_do_bit17_swizzling, bool needs_clflush)
    650 {
    651 	char *vaddr;
    652 	int ret;
    653 
    654 	vaddr = kmap(page);
    655 	if (needs_clflush)
    656 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    657 					     page_length,
    658 					     page_do_bit17_swizzling);
    659 
    660 	if (page_do_bit17_swizzling)
    661 		ret = __copy_to_user_swizzled(user_data,
    662 					      vaddr, shmem_page_offset,
    663 					      page_length);
    664 	else
    665 		ret = __copy_to_user(user_data,
    666 				     vaddr + shmem_page_offset,
    667 				     page_length);
    668 	kunmap(page);
    669 
    670 	return ret ? - EFAULT : 0;
    671 }
    672 
    673 static int
    674 i915_gem_shmem_pread(struct drm_device *dev,
    675 		     struct drm_i915_gem_object *obj,
    676 		     struct drm_i915_gem_pread *args,
    677 		     struct drm_file *file)
    678 {
    679 	char __user *user_data;
    680 	ssize_t remain;
    681 	loff_t offset;
    682 	int shmem_page_offset, page_length, ret = 0;
    683 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    684 #ifndef __NetBSD__		/* XXX */
    685 	int prefaulted = 0;
    686 #endif
    687 	int needs_clflush = 0;
    688 #ifndef __NetBSD__
    689 	struct sg_page_iter sg_iter;
    690 #endif
    691 
    692 	user_data = to_user_ptr(args->data_ptr);
    693 	remain = args->size;
    694 
    695 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    696 
    697 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
    698 	if (ret)
    699 		return ret;
    700 
    701 	offset = args->offset;
    702 
    703 #ifdef __NetBSD__
    704 	/*
    705 	 * XXX This is a big #ifdef with a lot of duplicated code, but
    706 	 * factoring out the loop head -- which is all that
    707 	 * substantially differs -- is probably more trouble than it's
    708 	 * worth at the moment.
    709 	 */
    710 	while (0 < remain) {
    711 		/* Get the next page.  */
    712 		shmem_page_offset = offset_in_page(offset);
    713 		KASSERT(shmem_page_offset < PAGE_SIZE);
    714 		page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
    715 		struct page *const page = i915_gem_object_get_page(obj,
    716 		    atop(offset));
    717 
    718 		/* Decide whether to swizzle bit 17.  */
    719 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    720 		    (page_to_phys(page) & (1 << 17)) != 0;
    721 
    722 		/* Try the fast path.  */
    723 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    724 		    user_data, page_do_bit17_swizzling, needs_clflush);
    725 		if (ret == 0)
    726 			goto next_page;
    727 
    728 		/* Fast path failed.  Try the slow path.  */
    729 		mutex_unlock(&dev->struct_mutex);
    730 		/* XXX prefault */
    731 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    732 		    user_data, page_do_bit17_swizzling, needs_clflush);
    733 		mutex_lock(&dev->struct_mutex);
    734 		if (ret)
    735 			goto out;
    736 
    737 next_page:	KASSERT(page_length <= remain);
    738 		remain -= page_length;
    739 		user_data += page_length;
    740 		offset += page_length;
    741 	}
    742 #else
    743 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
    744 			 offset >> PAGE_SHIFT) {
    745 		struct page *page = sg_page_iter_page(&sg_iter);
    746 
    747 		if (remain <= 0)
    748 			break;
    749 
    750 		/* Operation in this page
    751 		 *
    752 		 * shmem_page_offset = offset within page in shmem file
    753 		 * page_length = bytes to copy for this page
    754 		 */
    755 		shmem_page_offset = offset_in_page(offset);
    756 		page_length = remain;
    757 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    758 			page_length = PAGE_SIZE - shmem_page_offset;
    759 
    760 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    761 			(page_to_phys(page) & (1 << 17)) != 0;
    762 
    763 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    764 				       user_data, page_do_bit17_swizzling,
    765 				       needs_clflush);
    766 		if (ret == 0)
    767 			goto next_page;
    768 
    769 		mutex_unlock(&dev->struct_mutex);
    770 
    771 		if (likely(!i915.prefault_disable) && !prefaulted) {
    772 			ret = fault_in_multipages_writeable(user_data, remain);
    773 			/* Userspace is tricking us, but we've already clobbered
    774 			 * its pages with the prefault and promised to write the
    775 			 * data up to the first fault. Hence ignore any errors
    776 			 * and just continue. */
    777 			(void)ret;
    778 			prefaulted = 1;
    779 		}
    780 
    781 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    782 				       user_data, page_do_bit17_swizzling,
    783 				       needs_clflush);
    784 
    785 		mutex_lock(&dev->struct_mutex);
    786 
    787 		if (ret)
    788 			goto out;
    789 
    790 next_page:
    791 		remain -= page_length;
    792 		user_data += page_length;
    793 		offset += page_length;
    794 	}
    795 #endif
    796 
    797 out:
    798 	i915_gem_object_unpin_pages(obj);
    799 
    800 	return ret;
    801 }
    802 
    803 /**
    804  * Reads data from the object referenced by handle.
    805  *
    806  * On error, the contents of *data are undefined.
    807  */
    808 int
    809 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    810 		     struct drm_file *file)
    811 {
    812 	struct drm_i915_gem_pread *args = data;
    813 	struct drm_gem_object *gobj;
    814 	struct drm_i915_gem_object *obj;
    815 	int ret = 0;
    816 
    817 	if (args->size == 0)
    818 		return 0;
    819 
    820 	if (!access_ok(VERIFY_WRITE,
    821 		       to_user_ptr(args->data_ptr),
    822 		       args->size))
    823 		return -EFAULT;
    824 
    825 	ret = i915_mutex_lock_interruptible(dev);
    826 	if (ret)
    827 		return ret;
    828 
    829 	gobj = drm_gem_object_lookup(dev, file, args->handle);
    830 	if (gobj == NULL) {
    831 		ret = -ENOENT;
    832 		goto unlock;
    833 	}
    834 	obj = to_intel_bo(gobj);
    835 
    836 	/* Bounds check source.  */
    837 	if (args->offset > obj->base.size ||
    838 	    args->size > obj->base.size - args->offset) {
    839 		ret = -EINVAL;
    840 		goto out;
    841 	}
    842 
    843 	/* prime objects have no backing filp to GEM pread/pwrite
    844 	 * pages from.
    845 	 */
    846 #ifdef __NetBSD__
    847 	/* Also stolen objects.  */
    848 	if (obj->base.gemo_shm_uao == NULL) {
    849 		ret = -EINVAL;
    850 		goto out;
    851 	}
    852 #else
    853 	if (!obj->base.filp) {
    854 		ret = -EINVAL;
    855 		goto out;
    856 	}
    857 #endif
    858 
    859 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    860 
    861 	ret = i915_gem_shmem_pread(dev, obj, args, file);
    862 
    863 out:
    864 	drm_gem_object_unreference(&obj->base);
    865 unlock:
    866 	mutex_unlock(&dev->struct_mutex);
    867 	return ret;
    868 }
    869 
    870 /* This is the fast write path which cannot handle
    871  * page faults in the source data
    872  */
    873 
    874 static inline int
    875 fast_user_write(struct io_mapping *mapping,
    876 		loff_t page_base, int page_offset,
    877 		char __user *user_data,
    878 		int length)
    879 {
    880 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    881 	return -EFAULT;
    882 #else
    883 	void __iomem *vaddr_atomic;
    884 	void *vaddr;
    885 	unsigned long unwritten;
    886 
    887 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
    888 	/* We can use the cpu mem copy function because this is X86. */
    889 	vaddr = (void __force*)vaddr_atomic + page_offset;
    890 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
    891 						      user_data, length);
    892 	io_mapping_unmap_atomic(vaddr_atomic);
    893 	return unwritten;
    894 #endif
    895 }
    896 
    897 /**
    898  * This is the fast pwrite path, where we copy the data directly from the
    899  * user into the GTT, uncached.
    900  */
    901 static int
    902 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
    903 			 struct drm_i915_gem_object *obj,
    904 			 struct drm_i915_gem_pwrite *args,
    905 			 struct drm_file *file)
    906 {
    907 	struct drm_i915_private *dev_priv = dev->dev_private;
    908 	ssize_t remain;
    909 	loff_t offset, page_base;
    910 	char __user *user_data;
    911 	int page_offset, page_length, ret;
    912 
    913 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
    914 	if (ret)
    915 		goto out;
    916 
    917 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    918 	if (ret)
    919 		goto out_unpin;
    920 
    921 	ret = i915_gem_object_put_fence(obj);
    922 	if (ret)
    923 		goto out_unpin;
    924 
    925 	user_data = to_user_ptr(args->data_ptr);
    926 	remain = args->size;
    927 
    928 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
    929 
    930 	while (remain > 0) {
    931 		/* Operation in this page
    932 		 *
    933 		 * page_base = page offset within aperture
    934 		 * page_offset = offset within page
    935 		 * page_length = bytes to copy for this page
    936 		 */
    937 		page_base = offset & PAGE_MASK;
    938 		page_offset = offset_in_page(offset);
    939 		page_length = remain;
    940 		if ((page_offset + remain) > PAGE_SIZE)
    941 			page_length = PAGE_SIZE - page_offset;
    942 
    943 		/* If we get a fault while copying data, then (presumably) our
    944 		 * source page isn't available.  Return the error and we'll
    945 		 * retry in the slow path.
    946 		 */
    947 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
    948 				    page_offset, user_data, page_length)) {
    949 			ret = -EFAULT;
    950 			goto out_unpin;
    951 		}
    952 
    953 		remain -= page_length;
    954 		user_data += page_length;
    955 		offset += page_length;
    956 	}
    957 
    958 out_unpin:
    959 	i915_gem_object_ggtt_unpin(obj);
    960 out:
    961 	return ret;
    962 }
    963 
    964 /* Per-page copy function for the shmem pwrite fastpath.
    965  * Flushes invalid cachelines before writing to the target if
    966  * needs_clflush_before is set and flushes out any written cachelines after
    967  * writing if needs_clflush is set. */
    968 static int
    969 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
    970 		  char __user *user_data,
    971 		  bool page_do_bit17_swizzling,
    972 		  bool needs_clflush_before,
    973 		  bool needs_clflush_after)
    974 {
    975 #ifdef __NetBSD__
    976 	return -EFAULT;
    977 #else
    978 	char *vaddr;
    979 	int ret;
    980 
    981 	if (unlikely(page_do_bit17_swizzling))
    982 		return -EINVAL;
    983 
    984 	vaddr = kmap_atomic(page);
    985 	if (needs_clflush_before)
    986 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    987 				       page_length);
    988 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
    989 					user_data, page_length);
    990 	if (needs_clflush_after)
    991 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    992 				       page_length);
    993 	kunmap_atomic(vaddr);
    994 
    995 	return ret ? -EFAULT : 0;
    996 #endif
    997 }
    998 
    999 /* Only difference to the fast-path function is that this can handle bit17
   1000  * and uses non-atomic copy and kmap functions. */
   1001 static int
   1002 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
   1003 		  char __user *user_data,
   1004 		  bool page_do_bit17_swizzling,
   1005 		  bool needs_clflush_before,
   1006 		  bool needs_clflush_after)
   1007 {
   1008 	char *vaddr;
   1009 	int ret;
   1010 
   1011 	vaddr = kmap(page);
   1012 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
   1013 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
   1014 					     page_length,
   1015 					     page_do_bit17_swizzling);
   1016 	if (page_do_bit17_swizzling)
   1017 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
   1018 						user_data,
   1019 						page_length);
   1020 	else
   1021 		ret = __copy_from_user(vaddr + shmem_page_offset,
   1022 				       user_data,
   1023 				       page_length);
   1024 	if (needs_clflush_after)
   1025 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
   1026 					     page_length,
   1027 					     page_do_bit17_swizzling);
   1028 	kunmap(page);
   1029 
   1030 	return ret ? -EFAULT : 0;
   1031 }
   1032 
   1033 static int
   1034 i915_gem_shmem_pwrite(struct drm_device *dev,
   1035 		      struct drm_i915_gem_object *obj,
   1036 		      struct drm_i915_gem_pwrite *args,
   1037 		      struct drm_file *file)
   1038 {
   1039 	ssize_t remain;
   1040 	loff_t offset;
   1041 	char __user *user_data;
   1042 	int shmem_page_offset, page_length, ret = 0;
   1043 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
   1044 	int hit_slowpath = 0;
   1045 	int needs_clflush_after = 0;
   1046 	int needs_clflush_before = 0;
   1047 #ifndef __NetBSD__
   1048 	struct sg_page_iter sg_iter;
   1049 #endif
   1050 
   1051 	user_data = to_user_ptr(args->data_ptr);
   1052 	remain = args->size;
   1053 
   1054 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
   1055 
   1056 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1057 		/* If we're not in the cpu write domain, set ourself into the gtt
   1058 		 * write domain and manually flush cachelines (if required). This
   1059 		 * optimizes for the case when the gpu will use the data
   1060 		 * right away and we therefore have to clflush anyway. */
   1061 		needs_clflush_after = cpu_write_needs_clflush(obj);
   1062 		ret = i915_gem_object_wait_rendering(obj, false);
   1063 		if (ret)
   1064 			return ret;
   1065 	}
   1066 	/* Same trick applies to invalidate partially written cachelines read
   1067 	 * before writing. */
   1068 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
   1069 		needs_clflush_before =
   1070 			!cpu_cache_is_coherent(dev, obj->cache_level);
   1071 
   1072 	ret = i915_gem_object_get_pages(obj);
   1073 	if (ret)
   1074 		return ret;
   1075 
   1076 	i915_gem_object_pin_pages(obj);
   1077 
   1078 	offset = args->offset;
   1079 	obj->dirty = 1;
   1080 
   1081 #ifdef __NetBSD__
   1082 	while (0 < remain) {
   1083 		/* Get the next page.  */
   1084 		shmem_page_offset = offset_in_page(offset);
   1085 		KASSERT(shmem_page_offset < PAGE_SIZE);
   1086 		page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
   1087 		struct page *const page = i915_gem_object_get_page(obj,
   1088 		    atop(offset));
   1089 
   1090 		/* Decide whether to flush the cache or swizzle bit 17.  */
   1091 		const bool partial_cacheline_write = needs_clflush_before &&
   1092 		    ((shmem_page_offset | page_length)
   1093 			& (cpu_info_primary.ci_cflush_lsize - 1));
   1094 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
   1095 		    (page_to_phys(page) & (1 << 17)) != 0;
   1096 
   1097 		/* Try the fast path.  */
   1098 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
   1099 		    user_data, page_do_bit17_swizzling,
   1100 		    partial_cacheline_write, needs_clflush_after);
   1101 		if (ret == 0)
   1102 			goto next_page;
   1103 
   1104 		/* Fast path failed.  Try the slow path.  */
   1105 		hit_slowpath = 1;
   1106 		mutex_unlock(&dev->struct_mutex);
   1107 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
   1108 		    user_data, page_do_bit17_swizzling,
   1109 		    partial_cacheline_write, needs_clflush_after);
   1110 		mutex_lock(&dev->struct_mutex);
   1111 		if (ret)
   1112 			goto out;
   1113 
   1114 next_page:	KASSERT(page_length <= remain);
   1115 		remain -= page_length;
   1116 		user_data += page_length;
   1117 		offset += page_length;
   1118 	}
   1119 #else
   1120 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
   1121 			 offset >> PAGE_SHIFT) {
   1122 		struct page *page = sg_page_iter_page(&sg_iter);
   1123 		int partial_cacheline_write;
   1124 
   1125 		if (remain <= 0)
   1126 			break;
   1127 
   1128 		/* Operation in this page
   1129 		 *
   1130 		 * shmem_page_offset = offset within page in shmem file
   1131 		 * page_length = bytes to copy for this page
   1132 		 */
   1133 		shmem_page_offset = offset_in_page(offset);
   1134 
   1135 		page_length = remain;
   1136 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
   1137 			page_length = PAGE_SIZE - shmem_page_offset;
   1138 
   1139 		/* If we don't overwrite a cacheline completely we need to be
   1140 		 * careful to have up-to-date data by first clflushing. Don't
   1141 		 * overcomplicate things and flush the entire patch. */
   1142 		partial_cacheline_write = needs_clflush_before &&
   1143 			((shmem_page_offset | page_length)
   1144 				& (boot_cpu_data.x86_clflush_size - 1));
   1145 
   1146 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
   1147 			(page_to_phys(page) & (1 << 17)) != 0;
   1148 
   1149 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
   1150 					user_data, page_do_bit17_swizzling,
   1151 					partial_cacheline_write,
   1152 					needs_clflush_after);
   1153 		if (ret == 0)
   1154 			goto next_page;
   1155 
   1156 		hit_slowpath = 1;
   1157 		mutex_unlock(&dev->struct_mutex);
   1158 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
   1159 					user_data, page_do_bit17_swizzling,
   1160 					partial_cacheline_write,
   1161 					needs_clflush_after);
   1162 
   1163 		mutex_lock(&dev->struct_mutex);
   1164 
   1165 		if (ret)
   1166 			goto out;
   1167 
   1168 next_page:
   1169 		remain -= page_length;
   1170 		user_data += page_length;
   1171 		offset += page_length;
   1172 	}
   1173 #endif
   1174 
   1175 out:
   1176 	i915_gem_object_unpin_pages(obj);
   1177 
   1178 	if (hit_slowpath) {
   1179 		/*
   1180 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
   1181 		 * cachelines in-line while writing and the object moved
   1182 		 * out of the cpu write domain while we've dropped the lock.
   1183 		 */
   1184 		if (!needs_clflush_after &&
   1185 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1186 			if (i915_gem_clflush_object(obj, obj->pin_display))
   1187 				i915_gem_chipset_flush(dev);
   1188 		}
   1189 	}
   1190 
   1191 	if (needs_clflush_after)
   1192 		i915_gem_chipset_flush(dev);
   1193 
   1194 	return ret;
   1195 }
   1196 
   1197 /**
   1198  * Writes data to the object referenced by handle.
   1199  *
   1200  * On error, the contents of the buffer that were to be modified are undefined.
   1201  */
   1202 int
   1203 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
   1204 		      struct drm_file *file)
   1205 {
   1206 	struct drm_i915_gem_pwrite *args = data;
   1207 	struct drm_gem_object *gobj;
   1208 	struct drm_i915_gem_object *obj;
   1209 	int ret;
   1210 
   1211 	if (args->size == 0)
   1212 		return 0;
   1213 
   1214 	if (!access_ok(VERIFY_READ,
   1215 		       to_user_ptr(args->data_ptr),
   1216 		       args->size))
   1217 		return -EFAULT;
   1218 
   1219 #ifndef __NetBSD__		/* XXX prefault */
   1220 	if (likely(!i915.prefault_disable)) {
   1221 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
   1222 						   args->size);
   1223 		if (ret)
   1224 			return -EFAULT;
   1225 	}
   1226 #endif
   1227 
   1228 	ret = i915_mutex_lock_interruptible(dev);
   1229 	if (ret)
   1230 		return ret;
   1231 
   1232 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1233 	if (gobj == NULL) {
   1234 		ret = -ENOENT;
   1235 		goto unlock;
   1236 	}
   1237 	obj = to_intel_bo(gobj);
   1238 
   1239 	/* Bounds check destination. */
   1240 	if (args->offset > obj->base.size ||
   1241 	    args->size > obj->base.size - args->offset) {
   1242 		ret = -EINVAL;
   1243 		goto out;
   1244 	}
   1245 
   1246 	/* prime objects have no backing filp to GEM pread/pwrite
   1247 	 * pages from.
   1248 	 */
   1249 #ifdef __NetBSD__
   1250 	/* Also stolen objects.  */
   1251 	if (obj->base.gemo_shm_uao == NULL) {
   1252 		ret = -EINVAL;
   1253 		goto out;
   1254 	}
   1255 #else
   1256 	if (!obj->base.filp) {
   1257 		ret = -EINVAL;
   1258 		goto out;
   1259 	}
   1260 #endif
   1261 
   1262 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
   1263 
   1264 	ret = -EFAULT;
   1265 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
   1266 	 * it would end up going through the fenced access, and we'll get
   1267 	 * different detiling behavior between reading and writing.
   1268 	 * pread/pwrite currently are reading and writing from the CPU
   1269 	 * perspective, requiring manual detiling by the client.
   1270 	 */
   1271 	if (obj->phys_handle) {
   1272 		ret = i915_gem_phys_pwrite(obj, args, file);
   1273 		goto out;
   1274 	}
   1275 
   1276 	if (obj->tiling_mode == I915_TILING_NONE &&
   1277 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
   1278 	    cpu_write_needs_clflush(obj)) {
   1279 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
   1280 		/* Note that the gtt paths might fail with non-page-backed user
   1281 		 * pointers (e.g. gtt mappings when moving data between
   1282 		 * textures). Fallback to the shmem path in that case. */
   1283 	}
   1284 
   1285 	if (ret == -EFAULT || ret == -ENOSPC)
   1286 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
   1287 
   1288 out:
   1289 	drm_gem_object_unreference(&obj->base);
   1290 unlock:
   1291 	mutex_unlock(&dev->struct_mutex);
   1292 	return ret;
   1293 }
   1294 
   1295 int
   1296 i915_gem_check_wedge(struct i915_gpu_error *error,
   1297 		     bool interruptible)
   1298 {
   1299 	if (i915_reset_in_progress(error)) {
   1300 		/* Non-interruptible callers can't handle -EAGAIN, hence return
   1301 		 * -EIO unconditionally for these. */
   1302 		if (!interruptible)
   1303 			return -EIO;
   1304 
   1305 		/* Recovery complete, but the reset failed ... */
   1306 		if (i915_terminally_wedged(error))
   1307 			return -EIO;
   1308 
   1309 		return -EAGAIN;
   1310 	}
   1311 
   1312 	return 0;
   1313 }
   1314 
   1315 /*
   1316  * Compare seqno against outstanding lazy request. Emit a request if they are
   1317  * equal.
   1318  */
   1319 static int
   1320 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
   1321 {
   1322 	int ret;
   1323 
   1324 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
   1325 
   1326 	ret = 0;
   1327 	if (seqno == ring->outstanding_lazy_seqno)
   1328 		ret = i915_add_request(ring, NULL);
   1329 
   1330 	return ret;
   1331 }
   1332 
   1333 #ifndef __NetBSD__
   1334 static void fake_irq(unsigned long data)
   1335 {
   1336 	wake_up_process((struct task_struct *)data);
   1337 }
   1338 #endif
   1339 
   1340 static bool missed_irq(struct drm_i915_private *dev_priv,
   1341 		       struct intel_ring_buffer *ring)
   1342 {
   1343 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
   1344 }
   1345 
   1346 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
   1347 {
   1348 	if (file_priv == NULL)
   1349 		return true;
   1350 
   1351 	return !atomic_xchg(&file_priv->rps_wait_boost, true);
   1352 }
   1353 
   1354 /**
   1355  * __wait_seqno - wait until execution of seqno has finished
   1356  * @ring: the ring expected to report seqno
   1357  * @seqno: duh!
   1358  * @reset_counter: reset sequence associated with the given seqno
   1359  * @interruptible: do an interruptible wait (normally yes)
   1360  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
   1361  *
   1362  * Note: It is of utmost importance that the passed in seqno and reset_counter
   1363  * values have been read by the caller in an smp safe manner. Where read-side
   1364  * locks are involved, it is sufficient to read the reset_counter before
   1365  * unlocking the lock that protects the seqno. For lockless tricks, the
   1366  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
   1367  * inserted.
   1368  *
   1369  * Returns 0 if the seqno was found within the alloted time. Else returns the
   1370  * errno with remaining time filled in timeout argument.
   1371  */
   1372 #ifdef __NetBSD__
   1373 static int
   1374 __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, unsigned reset_counter,
   1375     bool interruptible, struct timespec *timeout,
   1376     struct drm_i915_file_private *file_priv)
   1377 {
   1378 	struct drm_device *dev = ring->dev;
   1379 	struct drm_i915_private *dev_priv = dev->dev_private;
   1380 	bool irq_test_in_progress;
   1381 	struct timespec before, after;
   1382 	int ticks;
   1383 	bool wedged;
   1384 	int ret;
   1385 
   1386 	irq_test_in_progress = (dev_priv->gpu_error.test_irq_rings &
   1387 	    intel_ring_flag(ring));
   1388 	__insn_barrier();
   1389 
   1390 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
   1391 		return 0;
   1392 
   1393 	if (timeout)
   1394 		ticks = mstohz(timespec_to_ns(timeout) / 1000000);
   1395 	else
   1396 		ticks = 1;
   1397 
   1398 	if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
   1399 		gen6_rps_boost(dev_priv);
   1400 		if (file_priv)
   1401 			mod_delayed_work(dev_priv->wq,
   1402 					 &file_priv->mm.idle_work,
   1403 					 msecs_to_jiffies(100));
   1404 	}
   1405 
   1406 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
   1407 		return -ENODEV;
   1408 
   1409 	nanotime(&before);
   1410 	spin_lock(&dev_priv->irq_lock);
   1411 #define	EXIT_COND							      \
   1412 	(((reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))  \
   1413 	    ? wedged = true : false) ||					      \
   1414 	    i915_seqno_passed(ring->get_seqno(ring, false),		      \
   1415 		seqno))
   1416 
   1417 	if (timeout) {
   1418 		/*
   1419 		 * XXX This missed_irq business smells like unlocked
   1420 		 * Linux waitqueue nonsense.
   1421 		 */
   1422 		if (missed_irq(dev_priv, ring))
   1423 			ticks = 1;
   1424 		if (interruptible)
   1425 			DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
   1426 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1427 		else
   1428 			DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1429 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1430 	} else {
   1431 		if (interruptible)
   1432 			DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
   1433 			    &dev_priv->irq_lock, EXIT_COND);
   1434 		else
   1435 			DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1436 			    &dev_priv->irq_lock, EXIT_COND);
   1437 	}
   1438 #undef	EXIT_COND
   1439 	spin_unlock(&dev_priv->irq_lock);
   1440 	nanotime(&after);
   1441 
   1442 	if (!irq_test_in_progress)
   1443 		ring->irq_put(ring);
   1444 	if (timeout)
   1445 		timespecsub(&after, &before, timeout);
   1446 	return MAX(ret, 0);	/* ignore remaining ticks */
   1447 }
   1448 #else
   1449 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
   1450 			unsigned reset_counter,
   1451 			bool interruptible,
   1452 			struct timespec *timeout,
   1453 			struct drm_i915_file_private *file_priv)
   1454 {
   1455 	struct drm_device *dev = ring->dev;
   1456 	struct drm_i915_private *dev_priv = dev->dev_private;
   1457 	const bool irq_test_in_progress =
   1458 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
   1459 	struct timespec before, now;
   1460 	DEFINE_WAIT(wait);
   1461 	unsigned long timeout_expire;
   1462 	int ret;
   1463 
   1464 	WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
   1465 
   1466 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
   1467 		return 0;
   1468 
   1469 	timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
   1470 
   1471 	if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
   1472 		gen6_rps_boost(dev_priv);
   1473 		if (file_priv)
   1474 			mod_delayed_work(dev_priv->wq,
   1475 					 &file_priv->mm.idle_work,
   1476 					 msecs_to_jiffies(100));
   1477 	}
   1478 
   1479 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
   1480 		return -ENODEV;
   1481 
   1482 	/* Record current time in case interrupted by signal, or wedged */
   1483 	trace_i915_gem_request_wait_begin(ring, seqno);
   1484 	getrawmonotonic(&before);
   1485 	for (;;) {
   1486 		struct timer_list timer;
   1487 
   1488 		prepare_to_wait(&ring->irq_queue, &wait,
   1489 				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
   1490 
   1491 		/* We need to check whether any gpu reset happened in between
   1492 		 * the caller grabbing the seqno and now ... */
   1493 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
   1494 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
   1495 			 * is truely gone. */
   1496 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1497 			if (ret == 0)
   1498 				ret = -EAGAIN;
   1499 			break;
   1500 		}
   1501 
   1502 		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
   1503 			ret = 0;
   1504 			break;
   1505 		}
   1506 
   1507 		if (interruptible && signal_pending(current)) {
   1508 			ret = -ERESTARTSYS;
   1509 			break;
   1510 		}
   1511 
   1512 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
   1513 			ret = -ETIME;
   1514 			break;
   1515 		}
   1516 
   1517 		timer.function = NULL;
   1518 		if (timeout || missed_irq(dev_priv, ring)) {
   1519 			unsigned long expire;
   1520 
   1521 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
   1522 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
   1523 			mod_timer(&timer, expire);
   1524 		}
   1525 
   1526 		io_schedule();
   1527 
   1528 		if (timer.function) {
   1529 			del_singleshot_timer_sync(&timer);
   1530 			destroy_timer_on_stack(&timer);
   1531 		}
   1532 	}
   1533 	getrawmonotonic(&now);
   1534 	trace_i915_gem_request_wait_end(ring, seqno);
   1535 
   1536 	if (!irq_test_in_progress)
   1537 		ring->irq_put(ring);
   1538 
   1539 	finish_wait(&ring->irq_queue, &wait);
   1540 
   1541 	if (timeout) {
   1542 		struct timespec sleep_time = timespec_sub(now, before);
   1543 		*timeout = timespec_sub(*timeout, sleep_time);
   1544 		if (!timespec_valid(timeout)) /* i.e. negative time remains */
   1545 			set_normalized_timespec(timeout, 0, 0);
   1546 	}
   1547 
   1548 	return ret;
   1549 }
   1550 #endif
   1551 
   1552 /**
   1553  * Waits for a sequence number to be signaled, and cleans up the
   1554  * request and object lists appropriately for that event.
   1555  */
   1556 int
   1557 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
   1558 {
   1559 	struct drm_device *dev = ring->dev;
   1560 	struct drm_i915_private *dev_priv = dev->dev_private;
   1561 	bool interruptible = dev_priv->mm.interruptible;
   1562 	int ret;
   1563 
   1564 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1565 	BUG_ON(seqno == 0);
   1566 
   1567 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1568 	if (ret)
   1569 		return ret;
   1570 
   1571 	ret = i915_gem_check_olr(ring, seqno);
   1572 	if (ret)
   1573 		return ret;
   1574 
   1575 	return __wait_seqno(ring, seqno,
   1576 			    atomic_read(&dev_priv->gpu_error.reset_counter),
   1577 			    interruptible, NULL, NULL);
   1578 }
   1579 
   1580 static int
   1581 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
   1582 				     struct intel_ring_buffer *ring)
   1583 {
   1584 	i915_gem_retire_requests_ring(ring);
   1585 
   1586 	/* Manually manage the write flush as we may have not yet
   1587 	 * retired the buffer.
   1588 	 *
   1589 	 * Note that the last_write_seqno is always the earlier of
   1590 	 * the two (read/write) seqno, so if we haved successfully waited,
   1591 	 * we know we have passed the last write.
   1592 	 */
   1593 	obj->last_write_seqno = 0;
   1594 	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
   1595 
   1596 	return 0;
   1597 }
   1598 
   1599 /**
   1600  * Ensures that all rendering to the object has completed and the object is
   1601  * safe to unbind from the GTT or access from the CPU.
   1602  */
   1603 static __must_check int
   1604 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
   1605 			       bool readonly)
   1606 {
   1607 	struct intel_ring_buffer *ring = obj->ring;
   1608 	u32 seqno;
   1609 	int ret;
   1610 
   1611 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
   1612 	if (seqno == 0)
   1613 		return 0;
   1614 
   1615 	ret = i915_wait_seqno(ring, seqno);
   1616 	if (ret)
   1617 		return ret;
   1618 
   1619 	return i915_gem_object_wait_rendering__tail(obj, ring);
   1620 }
   1621 
   1622 /* A nonblocking variant of the above wait. This is a highly dangerous routine
   1623  * as the object state may change during this call.
   1624  */
   1625 static __must_check int
   1626 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
   1627 					    struct drm_i915_file_private *file_priv,
   1628 					    bool readonly)
   1629 {
   1630 	struct drm_device *dev = obj->base.dev;
   1631 	struct drm_i915_private *dev_priv = dev->dev_private;
   1632 	struct intel_ring_buffer *ring = obj->ring;
   1633 	unsigned reset_counter;
   1634 	u32 seqno;
   1635 	int ret;
   1636 
   1637 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1638 	BUG_ON(!dev_priv->mm.interruptible);
   1639 
   1640 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
   1641 	if (seqno == 0)
   1642 		return 0;
   1643 
   1644 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
   1645 	if (ret)
   1646 		return ret;
   1647 
   1648 	ret = i915_gem_check_olr(ring, seqno);
   1649 	if (ret)
   1650 		return ret;
   1651 
   1652 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   1653 	mutex_unlock(&dev->struct_mutex);
   1654 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
   1655 	mutex_lock(&dev->struct_mutex);
   1656 	if (ret)
   1657 		return ret;
   1658 
   1659 	return i915_gem_object_wait_rendering__tail(obj, ring);
   1660 }
   1661 
   1662 /**
   1663  * Called when user space prepares to use an object with the CPU, either
   1664  * through the mmap ioctl's mapping or a GTT mapping.
   1665  */
   1666 int
   1667 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
   1668 			  struct drm_file *file)
   1669 {
   1670 	struct drm_i915_gem_set_domain *args = data;
   1671 	struct drm_gem_object *gobj;
   1672 	struct drm_i915_gem_object *obj;
   1673 	uint32_t read_domains = args->read_domains;
   1674 	uint32_t write_domain = args->write_domain;
   1675 	int ret;
   1676 
   1677 	/* Only handle setting domains to types used by the CPU. */
   1678 	if (write_domain & I915_GEM_GPU_DOMAINS)
   1679 		return -EINVAL;
   1680 
   1681 	if (read_domains & I915_GEM_GPU_DOMAINS)
   1682 		return -EINVAL;
   1683 
   1684 	/* Having something in the write domain implies it's in the read
   1685 	 * domain, and only that read domain.  Enforce that in the request.
   1686 	 */
   1687 	if (write_domain != 0 && read_domains != write_domain)
   1688 		return -EINVAL;
   1689 
   1690 	ret = i915_mutex_lock_interruptible(dev);
   1691 	if (ret)
   1692 		return ret;
   1693 
   1694 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1695 	if (gobj == NULL) {
   1696 		ret = -ENOENT;
   1697 		goto unlock;
   1698 	}
   1699 	obj = to_intel_bo(gobj);
   1700 
   1701 	/* Try to flush the object off the GPU without holding the lock.
   1702 	 * We will repeat the flush holding the lock in the normal manner
   1703 	 * to catch cases where we are gazumped.
   1704 	 */
   1705 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
   1706 							  file->driver_priv,
   1707 							  !write_domain);
   1708 	if (ret)
   1709 		goto unref;
   1710 
   1711 	if (read_domains & I915_GEM_DOMAIN_GTT) {
   1712 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
   1713 
   1714 		/* Silently promote "you're not bound, there was nothing to do"
   1715 		 * to success, since the client was just asking us to
   1716 		 * make sure everything was done.
   1717 		 */
   1718 		if (ret == -EINVAL)
   1719 			ret = 0;
   1720 	} else {
   1721 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
   1722 	}
   1723 
   1724 unref:
   1725 	drm_gem_object_unreference(&obj->base);
   1726 unlock:
   1727 	mutex_unlock(&dev->struct_mutex);
   1728 	return ret;
   1729 }
   1730 
   1731 /**
   1732  * Called when user space has done writes to this buffer
   1733  */
   1734 int
   1735 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
   1736 			 struct drm_file *file)
   1737 {
   1738 	struct drm_i915_gem_sw_finish *args = data;
   1739 	struct drm_gem_object *gobj;
   1740 	struct drm_i915_gem_object *obj;
   1741 	int ret = 0;
   1742 
   1743 	ret = i915_mutex_lock_interruptible(dev);
   1744 	if (ret)
   1745 		return ret;
   1746 
   1747 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1748 	if (gobj == NULL) {
   1749 		ret = -ENOENT;
   1750 		goto unlock;
   1751 	}
   1752 	obj = to_intel_bo(gobj);
   1753 
   1754 	/* Pinned buffers may be scanout, so flush the cache */
   1755 	if (obj->pin_display)
   1756 		i915_gem_object_flush_cpu_write_domain(obj, true);
   1757 
   1758 	drm_gem_object_unreference(&obj->base);
   1759 unlock:
   1760 	mutex_unlock(&dev->struct_mutex);
   1761 	return ret;
   1762 }
   1763 
   1764 /**
   1765  * Maps the contents of an object, returning the address it is mapped
   1766  * into.
   1767  *
   1768  * While the mapping holds a reference on the contents of the object, it doesn't
   1769  * imply a ref on the object itself.
   1770  */
   1771 int
   1772 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
   1773 		    struct drm_file *file)
   1774 {
   1775 	struct drm_i915_gem_mmap *args = data;
   1776 	struct drm_gem_object *obj;
   1777 	unsigned long addr;
   1778 #ifdef __NetBSD__
   1779 	int ret;
   1780 #endif
   1781 
   1782 	obj = drm_gem_object_lookup(dev, file, args->handle);
   1783 	if (obj == NULL)
   1784 		return -ENOENT;
   1785 
   1786 	/* prime objects have no backing filp to GEM mmap
   1787 	 * pages from.
   1788 	 */
   1789 #ifdef __NetBSD__
   1790 	/* Also stolen objects (XXX can we get them here?)  */
   1791 	if (obj->gemo_shm_uao == NULL) {
   1792 		drm_gem_object_unreference_unlocked(obj);
   1793 		return -EINVAL;
   1794 	}
   1795 #else
   1796 	if (!obj->filp) {
   1797 		drm_gem_object_unreference_unlocked(obj);
   1798 		return -EINVAL;
   1799 	}
   1800 #endif
   1801 
   1802 #ifdef __NetBSD__
   1803 	addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
   1804 	    (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
   1805 	/* XXX errno NetBSD->Linux */
   1806 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
   1807 	    obj->gemo_shm_uao, args->offset, 0,
   1808 	    UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
   1809 		(VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
   1810 		0));
   1811 	if (ret) {
   1812 		drm_gem_object_unreference_unlocked(obj);
   1813 		return ret;
   1814 	}
   1815 	uao_reference(obj->gemo_shm_uao);
   1816 	drm_gem_object_unreference_unlocked(obj);
   1817 #else
   1818 	addr = vm_mmap(obj->filp, 0, args->size,
   1819 		       PROT_READ | PROT_WRITE, MAP_SHARED,
   1820 		       args->offset);
   1821 	drm_gem_object_unreference_unlocked(obj);
   1822 	if (IS_ERR((void *)addr))
   1823 		return addr;
   1824 #endif
   1825 
   1826 	args->addr_ptr = (uint64_t) addr;
   1827 
   1828 	return 0;
   1829 }
   1830 
   1831 #ifdef __NetBSD__		/* XXX gem gtt fault */
   1832 static int	i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
   1833 		    struct vm_page **, int, int, vm_prot_t, int, paddr_t);
   1834 
   1835 int
   1836 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   1837     int npages, int centeridx, vm_prot_t access_type, int flags)
   1838 {
   1839 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1840 	struct drm_gem_object *gem_obj =
   1841 	    container_of(uobj, struct drm_gem_object, gemo_uvmobj);
   1842 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   1843 	struct drm_device *dev = obj->base.dev;
   1844 	struct drm_i915_private *dev_priv = dev->dev_private;
   1845 	voff_t byte_offset;
   1846 	pgoff_t page_offset;
   1847 	int ret = 0;
   1848 	bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
   1849 
   1850 	byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
   1851 	KASSERT(byte_offset <= obj->base.size);
   1852 	page_offset = (byte_offset >> PAGE_SHIFT);
   1853 
   1854 	intel_runtime_pm_get(dev_priv);
   1855 
   1856 	/* Thanks, uvm, but we don't need this lock.  */
   1857 	mutex_exit(uobj->vmobjlock);
   1858 
   1859 	ret = i915_mutex_lock_interruptible(dev);
   1860 	if (ret)
   1861 		goto out;
   1862 
   1863 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   1864 
   1865 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   1866 	if (ret)
   1867 		goto unlock;
   1868 
   1869 	if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
   1870 		ret = -EINVAL;
   1871 		goto unlock;
   1872 	}
   1873 
   1874 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
   1875 	if (ret)
   1876 		goto unlock;
   1877 
   1878 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   1879 	if (ret)
   1880 		goto unpin;
   1881 
   1882 	ret = i915_gem_object_get_fence(obj);
   1883 	if (ret)
   1884 		goto unpin;
   1885 
   1886 	obj->fault_mappable = true;
   1887 
   1888 	/* XXX errno NetBSD->Linux */
   1889 	ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
   1890 	    flags,
   1891 	    (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
   1892 unpin:
   1893 	i915_gem_object_ggtt_unpin(obj);
   1894 unlock:
   1895 	mutex_unlock(&dev->struct_mutex);
   1896 out:
   1897 	mutex_enter(uobj->vmobjlock);
   1898 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
   1899 	if (ret == -ERESTART)
   1900 		uvm_wait("i915flt");
   1901 	/* XXX Deal with GPU hangs here...  */
   1902 	intel_runtime_pm_put(dev_priv);
   1903 	/* XXX errno Linux->NetBSD */
   1904 	return -ret;
   1905 }
   1906 
   1907 /*
   1908  * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
   1909  *
   1910  * XXX pmap_enter_default instead of pmap_enter because of a problem
   1911  * with using weak aliases in kernel modules or something.
   1912  */
   1913 int	pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
   1914 
   1915 static int
   1916 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   1917     int npages, int centeridx, vm_prot_t access_type, int flags,
   1918     paddr_t gtt_paddr)
   1919 {
   1920 	struct vm_map_entry *entry = ufi->entry;
   1921 	vaddr_t curr_va;
   1922 	off_t curr_offset;
   1923 	paddr_t paddr;
   1924 	u_int mmapflags;
   1925 	int lcv, retval;
   1926 	vm_prot_t mapprot;
   1927 	UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
   1928 	UVMHIST_LOG(maphist,"  flags=%d", flags,0,0,0);
   1929 
   1930 	/*
   1931 	 * we do not allow device mappings to be mapped copy-on-write
   1932 	 * so we kill any attempt to do so here.
   1933 	 */
   1934 
   1935 	if (UVM_ET_ISCOPYONWRITE(entry)) {
   1936 		UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
   1937 		entry->etype, 0,0,0);
   1938 		return(EIO);
   1939 	}
   1940 
   1941 	/*
   1942 	 * now we must determine the offset in udv to use and the VA to
   1943 	 * use for pmap_enter.  note that we always use orig_map's pmap
   1944 	 * for pmap_enter (even if we have a submap).   since virtual
   1945 	 * addresses in a submap must match the main map, this is ok.
   1946 	 */
   1947 
   1948 	/* udv offset = (offset from start of entry) + entry's offset */
   1949 	curr_offset = entry->offset + (vaddr - entry->start);
   1950 	/* pmap va = vaddr (virtual address of pps[0]) */
   1951 	curr_va = vaddr;
   1952 
   1953 	/*
   1954 	 * loop over the page range entering in as needed
   1955 	 */
   1956 
   1957 	retval = 0;
   1958 	for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
   1959 	    curr_va += PAGE_SIZE) {
   1960 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
   1961 			continue;
   1962 
   1963 		if (pps[lcv] == PGO_DONTCARE)
   1964 			continue;
   1965 
   1966 		paddr = (gtt_paddr + curr_offset);
   1967 		mmapflags = 0;
   1968 		mapprot = ufi->entry->protection;
   1969 		UVMHIST_LOG(maphist,
   1970 		    "  MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
   1971 		    ufi->orig_map->pmap, curr_va, paddr, mapprot);
   1972 		if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
   1973 		    PMAP_CANFAIL | mapprot | mmapflags) != 0) {
   1974 			/*
   1975 			 * pmap_enter() didn't have the resource to
   1976 			 * enter this mapping.  Unlock everything,
   1977 			 * wait for the pagedaemon to free up some
   1978 			 * pages, and then tell uvm_fault() to start
   1979 			 * the fault again.
   1980 			 *
   1981 			 * XXX Needs some rethinking for the PGO_ALLPAGES
   1982 			 * XXX case.
   1983 			 */
   1984 			pmap_update(ufi->orig_map->pmap);	/* sync what we have so far */
   1985 			return (ERESTART);
   1986 		}
   1987 	}
   1988 
   1989 	pmap_update(ufi->orig_map->pmap);
   1990 	return (retval);
   1991 }
   1992 #else
   1993 /**
   1994  * i915_gem_fault - fault a page into the GTT
   1995  * vma: VMA in question
   1996  * vmf: fault info
   1997  *
   1998  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
   1999  * from userspace.  The fault handler takes care of binding the object to
   2000  * the GTT (if needed), allocating and programming a fence register (again,
   2001  * only if needed based on whether the old reg is still valid or the object
   2002  * is tiled) and inserting a new PTE into the faulting process.
   2003  *
   2004  * Note that the faulting process may involve evicting existing objects
   2005  * from the GTT and/or fence registers to make room.  So performance may
   2006  * suffer if the GTT working set is large or there are few fence registers
   2007  * left.
   2008  */
   2009 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
   2010 {
   2011 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
   2012 	struct drm_device *dev = obj->base.dev;
   2013 	struct drm_i915_private *dev_priv = dev->dev_private;
   2014 	pgoff_t page_offset;
   2015 	unsigned long pfn;
   2016 	int ret = 0;
   2017 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
   2018 
   2019 	intel_runtime_pm_get(dev_priv);
   2020 
   2021 	/* We don't use vmf->pgoff since that has the fake offset */
   2022 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
   2023 		PAGE_SHIFT;
   2024 
   2025 	ret = i915_mutex_lock_interruptible(dev);
   2026 	if (ret)
   2027 		goto out;
   2028 
   2029 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   2030 
   2031 	/* Try to flush the object off the GPU first without holding the lock.
   2032 	 * Upon reacquiring the lock, we will perform our sanity checks and then
   2033 	 * repeat the flush holding the lock in the normal manner to catch cases
   2034 	 * where we are gazumped.
   2035 	 */
   2036 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   2037 	if (ret)
   2038 		goto unlock;
   2039 
   2040 	/* Access to snoopable pages through the GTT is incoherent. */
   2041 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
   2042 		ret = -EINVAL;
   2043 		goto unlock;
   2044 	}
   2045 
   2046 	/* Now bind it into the GTT if needed */
   2047 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
   2048 	if (ret)
   2049 		goto unlock;
   2050 
   2051 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   2052 	if (ret)
   2053 		goto unpin;
   2054 
   2055 	ret = i915_gem_object_get_fence(obj);
   2056 	if (ret)
   2057 		goto unpin;
   2058 
   2059 	obj->fault_mappable = true;
   2060 
   2061 	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
   2062 	pfn >>= PAGE_SHIFT;
   2063 	pfn += page_offset;
   2064 
   2065 	/* Finally, remap it using the new GTT offset */
   2066 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
   2067 unpin:
   2068 	i915_gem_object_ggtt_unpin(obj);
   2069 unlock:
   2070 	mutex_unlock(&dev->struct_mutex);
   2071 out:
   2072 	switch (ret) {
   2073 	case -EIO:
   2074 		/* If this -EIO is due to a gpu hang, give the reset code a
   2075 		 * chance to clean up the mess. Otherwise return the proper
   2076 		 * SIGBUS. */
   2077 		if (i915_terminally_wedged(&dev_priv->gpu_error)) {
   2078 			ret = VM_FAULT_SIGBUS;
   2079 			break;
   2080 		}
   2081 	case -EAGAIN:
   2082 		/*
   2083 		 * EAGAIN means the gpu is hung and we'll wait for the error
   2084 		 * handler to reset everything when re-faulting in
   2085 		 * i915_mutex_lock_interruptible.
   2086 		 */
   2087 	case 0:
   2088 	case -ERESTARTSYS:
   2089 	case -EINTR:
   2090 	case -EBUSY:
   2091 		/*
   2092 		 * EBUSY is ok: this just means that another thread
   2093 		 * already did the job.
   2094 		 */
   2095 		ret = VM_FAULT_NOPAGE;
   2096 		break;
   2097 	case -ENOMEM:
   2098 		ret = VM_FAULT_OOM;
   2099 		break;
   2100 	case -ENOSPC:
   2101 	case -EFAULT:
   2102 		ret = VM_FAULT_SIGBUS;
   2103 		break;
   2104 	default:
   2105 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
   2106 		ret = VM_FAULT_SIGBUS;
   2107 		break;
   2108 	}
   2109 
   2110 	intel_runtime_pm_put(dev_priv);
   2111 	return ret;
   2112 }
   2113 
   2114 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
   2115 {
   2116 	struct i915_vma *vma;
   2117 
   2118 	/*
   2119 	 * Only the global gtt is relevant for gtt memory mappings, so restrict
   2120 	 * list traversal to objects bound into the global address space. Note
   2121 	 * that the active list should be empty, but better safe than sorry.
   2122 	 */
   2123 	WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
   2124 	list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
   2125 		i915_gem_release_mmap(vma->obj);
   2126 	list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
   2127 		i915_gem_release_mmap(vma->obj);
   2128 }
   2129 #endif
   2130 
   2131 /**
   2132  * i915_gem_release_mmap - remove physical page mappings
   2133  * @obj: obj in question
   2134  *
   2135  * Preserve the reservation of the mmapping with the DRM core code, but
   2136  * relinquish ownership of the pages back to the system.
   2137  *
   2138  * It is vital that we remove the page mapping if we have mapped a tiled
   2139  * object through the GTT and then lose the fence register due to
   2140  * resource pressure. Similarly if the object has been moved out of the
   2141  * aperture, than pages mapped into userspace must be revoked. Removing the
   2142  * mapping will then trigger a page fault on the next user access, allowing
   2143  * fixup by i915_gem_fault().
   2144  */
   2145 void
   2146 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
   2147 {
   2148 	if (!obj->fault_mappable)
   2149 		return;
   2150 
   2151 #ifdef __NetBSD__		/* XXX gem gtt fault */
   2152 	{
   2153 		struct vm_page *page;
   2154 
   2155 		mutex_enter(obj->base.gemo_shm_uao->vmobjlock);
   2156 		KASSERT(obj->pages != NULL);
   2157 		/* Force a fresh fault for each page.  */
   2158 		/*
   2159 		 * XXX OOPS!  This doesn't actually do what we want.
   2160 		 * This causes a fresh fault for access to the backing
   2161 		 * pages -- but nothing accesses the backing pages
   2162 		 * directly!  What is actually entered into CPU page
   2163 		 * table entries is aperture addresses which have been
   2164 		 * programmed by the GTT to refer to those backing
   2165 		 * pages.
   2166 		 *
   2167 		 * We need to clear those page table entries, but
   2168 		 * there's no good way to do that at the moment: nobody
   2169 		 * records for us a map from either uvm objects or
   2170 		 * physical device addresses to a list of all virtual
   2171 		 * pages where they have been mapped.  pmap(9) records
   2172 		 * a map only from physical RAM addresses to virtual
   2173 		 * pages; it does nothing for physical device
   2174 		 * addresses.
   2175 		 */
   2176 		TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
   2177 			pmap_page_protect(page, VM_PROT_NONE);
   2178 		mutex_exit(obj->base.gemo_shm_uao->vmobjlock);
   2179 	}
   2180 #else
   2181 	drm_vma_node_unmap(&obj->base.vma_node,
   2182 			   obj->base.dev->anon_inode->i_mapping);
   2183 #endif
   2184 	obj->fault_mappable = false;
   2185 }
   2186 
   2187 uint32_t
   2188 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
   2189 {
   2190 	uint32_t gtt_size;
   2191 
   2192 	if (INTEL_INFO(dev)->gen >= 4 ||
   2193 	    tiling_mode == I915_TILING_NONE)
   2194 		return size;
   2195 
   2196 	/* Previous chips need a power-of-two fence region when tiling */
   2197 	if (INTEL_INFO(dev)->gen == 3)
   2198 		gtt_size = 1024*1024;
   2199 	else
   2200 		gtt_size = 512*1024;
   2201 
   2202 	while (gtt_size < size)
   2203 		gtt_size <<= 1;
   2204 
   2205 	return gtt_size;
   2206 }
   2207 
   2208 /**
   2209  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
   2210  * @obj: object to check
   2211  *
   2212  * Return the required GTT alignment for an object, taking into account
   2213  * potential fence register mapping.
   2214  */
   2215 uint32_t
   2216 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
   2217 			   int tiling_mode, bool fenced)
   2218 {
   2219 	/*
   2220 	 * Minimum alignment is 4k (GTT page size), but might be greater
   2221 	 * if a fence register is needed for the object.
   2222 	 */
   2223 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
   2224 	    tiling_mode == I915_TILING_NONE)
   2225 		return 4096;
   2226 
   2227 	/*
   2228 	 * Previous chips need to be aligned to the size of the smallest
   2229 	 * fence register that can contain the object.
   2230 	 */
   2231 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
   2232 }
   2233 
   2234 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
   2235 {
   2236 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2237 	int ret;
   2238 
   2239 	if (drm_vma_node_has_offset(&obj->base.vma_node))
   2240 		return 0;
   2241 
   2242 	dev_priv->mm.shrinker_no_lock_stealing = true;
   2243 
   2244 	ret = drm_gem_create_mmap_offset(&obj->base);
   2245 	if (ret != -ENOSPC)
   2246 		goto out;
   2247 
   2248 	/* Badly fragmented mmap space? The only way we can recover
   2249 	 * space is by destroying unwanted objects. We can't randomly release
   2250 	 * mmap_offsets as userspace expects them to be persistent for the
   2251 	 * lifetime of the objects. The closest we can is to release the
   2252 	 * offsets on purgeable objects by truncating it and marking it purged,
   2253 	 * which prevents userspace from ever using that object again.
   2254 	 */
   2255 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
   2256 	ret = drm_gem_create_mmap_offset(&obj->base);
   2257 	if (ret != -ENOSPC)
   2258 		goto out;
   2259 
   2260 	i915_gem_shrink_all(dev_priv);
   2261 	ret = drm_gem_create_mmap_offset(&obj->base);
   2262 out:
   2263 	dev_priv->mm.shrinker_no_lock_stealing = false;
   2264 
   2265 	return ret;
   2266 }
   2267 
   2268 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
   2269 {
   2270 	drm_gem_free_mmap_offset(&obj->base);
   2271 }
   2272 
   2273 int
   2274 i915_gem_mmap_gtt(struct drm_file *file,
   2275 		  struct drm_device *dev,
   2276 		  uint32_t handle,
   2277 		  uint64_t *offset)
   2278 {
   2279 	struct drm_i915_private *dev_priv = dev->dev_private;
   2280 	struct drm_gem_object *gobj;
   2281 	struct drm_i915_gem_object *obj;
   2282 	int ret;
   2283 
   2284 	ret = i915_mutex_lock_interruptible(dev);
   2285 	if (ret)
   2286 		return ret;
   2287 
   2288 	gobj = drm_gem_object_lookup(dev, file, handle);
   2289 	if (gobj == NULL) {
   2290 		ret = -ENOENT;
   2291 		goto unlock;
   2292 	}
   2293 	obj = to_intel_bo(gobj);
   2294 
   2295 	if (obj->base.size > dev_priv->gtt.mappable_end) {
   2296 		ret = -E2BIG;
   2297 		goto out;
   2298 	}
   2299 
   2300 	if (obj->madv != I915_MADV_WILLNEED) {
   2301 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
   2302 		ret = -EFAULT;
   2303 		goto out;
   2304 	}
   2305 
   2306 	ret = i915_gem_object_create_mmap_offset(obj);
   2307 	if (ret)
   2308 		goto out;
   2309 
   2310 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
   2311 
   2312 out:
   2313 	drm_gem_object_unreference(&obj->base);
   2314 unlock:
   2315 	mutex_unlock(&dev->struct_mutex);
   2316 	return ret;
   2317 }
   2318 
   2319 /**
   2320  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
   2321  * @dev: DRM device
   2322  * @data: GTT mapping ioctl data
   2323  * @file: GEM object info
   2324  *
   2325  * Simply returns the fake offset to userspace so it can mmap it.
   2326  * The mmap call will end up in drm_gem_mmap(), which will set things
   2327  * up so we can get faults in the handler above.
   2328  *
   2329  * The fault handler will take care of binding the object into the GTT
   2330  * (since it may have been evicted to make room for something), allocating
   2331  * a fence register, and mapping the appropriate aperture address into
   2332  * userspace.
   2333  */
   2334 int
   2335 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
   2336 			struct drm_file *file)
   2337 {
   2338 	struct drm_i915_gem_mmap_gtt *args = data;
   2339 
   2340 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
   2341 }
   2342 
   2343 /* Immediately discard the backing storage */
   2344 static void
   2345 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
   2346 {
   2347 #ifndef __NetBSD__
   2348 	struct inode *inode;
   2349 #endif
   2350 
   2351 	i915_gem_object_free_mmap_offset(obj);
   2352 
   2353 #ifdef __NetBSD__
   2354 	if (obj->base.gemo_shm_uao == NULL)
   2355 		return;
   2356 
   2357 	{
   2358 		struct uvm_object *const uobj = obj->base.gemo_shm_uao;
   2359 
   2360 		if (uobj != NULL) {
   2361 			/* XXX Calling pgo_put like this is bogus.  */
   2362 			mutex_enter(uobj->vmobjlock);
   2363 			(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   2364 			    (PGO_ALLPAGES | PGO_FREE));
   2365 		}
   2366 	}
   2367 #else
   2368 	if (obj->base.filp == NULL)
   2369 		return;
   2370 
   2371 	/* Our goal here is to return as much of the memory as
   2372 	 * is possible back to the system as we are called from OOM.
   2373 	 * To do this we must instruct the shmfs to drop all of its
   2374 	 * backing pages, *now*.
   2375 	 */
   2376 	inode = file_inode(obj->base.filp);
   2377 	shmem_truncate_range(inode, 0, (loff_t)-1);
   2378 #endif
   2379 
   2380 	obj->madv = __I915_MADV_PURGED;
   2381 }
   2382 
   2383 static inline int
   2384 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
   2385 {
   2386 	return obj->madv == I915_MADV_DONTNEED;
   2387 }
   2388 
   2389 #ifdef __NetBSD__
   2390 static void
   2391 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2392 {
   2393 	struct drm_device *const dev = obj->base.dev;
   2394 	int ret;
   2395 
   2396 	/* XXX Cargo-culted from the Linux code.  */
   2397 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2398 
   2399 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2400 	if (ret) {
   2401 		WARN_ON(ret != -EIO);
   2402 		i915_gem_clflush_object(obj, true);
   2403 		obj->base.read_domains = obj->base.write_domain =
   2404 		    I915_GEM_DOMAIN_CPU;
   2405 	}
   2406 
   2407 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2408 		i915_gem_object_save_bit_17_swizzle(obj);
   2409 
   2410 	/* XXX Maintain dirty flag?  */
   2411 
   2412 	bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
   2413 	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
   2414 	    obj->base.size, obj->pages, obj->igo_nsegs);
   2415 
   2416 	kfree(obj->pages);
   2417 }
   2418 #else
   2419 static void
   2420 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2421 {
   2422 	struct sg_page_iter sg_iter;
   2423 	int ret;
   2424 
   2425 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2426 
   2427 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2428 	if (ret) {
   2429 		/* In the event of a disaster, abandon all caches and
   2430 		 * hope for the best.
   2431 		 */
   2432 		WARN_ON(ret != -EIO);
   2433 		i915_gem_clflush_object(obj, true);
   2434 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   2435 	}
   2436 
   2437 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2438 		i915_gem_object_save_bit_17_swizzle(obj);
   2439 
   2440 	if (obj->madv == I915_MADV_DONTNEED)
   2441 		obj->dirty = 0;
   2442 
   2443 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
   2444 		struct page *page = sg_page_iter_page(&sg_iter);
   2445 
   2446 		if (obj->dirty)
   2447 			set_page_dirty(page);
   2448 
   2449 		if (obj->madv == I915_MADV_WILLNEED)
   2450 			mark_page_accessed(page);
   2451 
   2452 		page_cache_release(page);
   2453 	}
   2454 	obj->dirty = 0;
   2455 
   2456 	sg_free_table(obj->pages);
   2457 	kfree(obj->pages);
   2458 }
   2459 #endif
   2460 
   2461 int
   2462 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
   2463 {
   2464 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2465 
   2466 	if (obj->pages == NULL)
   2467 		return 0;
   2468 
   2469 	if (obj->pages_pin_count)
   2470 		return -EBUSY;
   2471 
   2472 	BUG_ON(i915_gem_obj_bound_any(obj));
   2473 
   2474 	/* ->put_pages might need to allocate memory for the bit17 swizzle
   2475 	 * array, hence protect them from being reaped by removing them from gtt
   2476 	 * lists early. */
   2477 	list_del(&obj->global_list);
   2478 
   2479 	ops->put_pages(obj);
   2480 	obj->pages = NULL;
   2481 
   2482 	if (i915_gem_object_is_purgeable(obj))
   2483 		i915_gem_object_truncate(obj);
   2484 
   2485 	return 0;
   2486 }
   2487 
   2488 static unsigned long
   2489 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
   2490 		  bool purgeable_only)
   2491 {
   2492 	struct list_head still_bound_list;
   2493 	struct drm_i915_gem_object *obj, *next;
   2494 	unsigned long count = 0;
   2495 
   2496 	list_for_each_entry_safe(obj, next,
   2497 				 &dev_priv->mm.unbound_list,
   2498 				 global_list) {
   2499 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
   2500 		    i915_gem_object_put_pages(obj) == 0) {
   2501 			count += obj->base.size >> PAGE_SHIFT;
   2502 			if (count >= target)
   2503 				return count;
   2504 		}
   2505 	}
   2506 
   2507 	/*
   2508 	 * As we may completely rewrite the bound list whilst unbinding
   2509 	 * (due to retiring requests) we have to strictly process only
   2510 	 * one element of the list at the time, and recheck the list
   2511 	 * on every iteration.
   2512 	 */
   2513 	INIT_LIST_HEAD(&still_bound_list);
   2514 	while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
   2515 		struct i915_vma *vma, *v;
   2516 
   2517 		obj = list_first_entry(&dev_priv->mm.bound_list,
   2518 				       typeof(*obj), global_list);
   2519 		list_move_tail(&obj->global_list, &still_bound_list);
   2520 
   2521 		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
   2522 			continue;
   2523 
   2524 		/*
   2525 		 * Hold a reference whilst we unbind this object, as we may
   2526 		 * end up waiting for and retiring requests. This might
   2527 		 * release the final reference (held by the active list)
   2528 		 * and result in the object being freed from under us.
   2529 		 * in this object being freed.
   2530 		 *
   2531 		 * Note 1: Shrinking the bound list is special since only active
   2532 		 * (and hence bound objects) can contain such limbo objects, so
   2533 		 * we don't need special tricks for shrinking the unbound list.
   2534 		 * The only other place where we have to be careful with active
   2535 		 * objects suddenly disappearing due to retiring requests is the
   2536 		 * eviction code.
   2537 		 *
   2538 		 * Note 2: Even though the bound list doesn't hold a reference
   2539 		 * to the object we can safely grab one here: The final object
   2540 		 * unreferencing and the bound_list are both protected by the
   2541 		 * dev->struct_mutex and so we won't ever be able to observe an
   2542 		 * object on the bound_list with a reference count equals 0.
   2543 		 */
   2544 		drm_gem_object_reference(&obj->base);
   2545 
   2546 		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
   2547 			if (i915_vma_unbind(vma))
   2548 				break;
   2549 
   2550 		if (i915_gem_object_put_pages(obj) == 0)
   2551 			count += obj->base.size >> PAGE_SHIFT;
   2552 
   2553 		drm_gem_object_unreference(&obj->base);
   2554 	}
   2555 	list_splice(&still_bound_list, &dev_priv->mm.bound_list);
   2556 
   2557 	return count;
   2558 }
   2559 
   2560 static unsigned long
   2561 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
   2562 {
   2563 	return __i915_gem_shrink(dev_priv, target, true);
   2564 }
   2565 
   2566 static unsigned long
   2567 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
   2568 {
   2569 	struct drm_i915_gem_object *obj, *next;
   2570 	long freed = 0;
   2571 
   2572 	i915_gem_evict_everything(dev_priv->dev);
   2573 
   2574 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
   2575 				 global_list) {
   2576 		if (i915_gem_object_put_pages(obj) == 0)
   2577 			freed += obj->base.size >> PAGE_SHIFT;
   2578 	}
   2579 	return freed;
   2580 }
   2581 
   2582 #ifdef __NetBSD__
   2583 static int
   2584 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2585 {
   2586 	struct drm_device *const dev = obj->base.dev;
   2587 	struct vm_page *page;
   2588 	int error;
   2589 
   2590 	/* XXX Cargo-culted from the Linux code.  */
   2591 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2592 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2593 
   2594 	KASSERT(obj->pages == NULL);
   2595 	TAILQ_INIT(&obj->igo_pageq);
   2596 	obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
   2597 	    sizeof(obj->pages[0]), GFP_KERNEL);
   2598 	if (obj->pages == NULL) {
   2599 		error = -ENOMEM;
   2600 		goto fail0;
   2601 	}
   2602 
   2603 	/* XXX errno NetBSD->Linux */
   2604 	error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
   2605 	    0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
   2606 	    (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
   2607 	if (error)
   2608 		/* XXX Try i915_gem_purge, i915_gem_shrink_all.  */
   2609 		goto fail1;
   2610 	KASSERT(0 < obj->igo_nsegs);
   2611 	KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
   2612 
   2613 	/*
   2614 	 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
   2615 	 *
   2616 	 * XXX This is wrong; we ought to pass this constraint to
   2617 	 * bus_dmamem_wire_uvm_object instead.
   2618 	 */
   2619 	TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
   2620 		const uint64_t mask =
   2621 		    (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
   2622 			0xffffffffULL : 0xffffffffffULL);
   2623 		if (VM_PAGE_TO_PHYS(page) & ~mask) {
   2624 			DRM_ERROR("GEM physical address exceeds %u bits"
   2625 			    ": %"PRIxMAX"\n",
   2626 			    popcount64(mask),
   2627 			    (uintmax_t)VM_PAGE_TO_PHYS(page));
   2628 			error = -EIO;
   2629 			goto fail2;
   2630 		}
   2631 	}
   2632 
   2633 	/* XXX Should create the DMA map when creating the object.  */
   2634 
   2635 	/* XXX errno NetBSD->Linux */
   2636 	error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
   2637 	    PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
   2638 	if (error)
   2639 		goto fail2;
   2640 
   2641 	/* XXX Cargo-culted from the Linux code.  */
   2642 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2643 		i915_gem_object_do_bit_17_swizzle(obj);
   2644 
   2645 	/* Success!  */
   2646 	return 0;
   2647 
   2648 fail2:	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
   2649 	    obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
   2650 fail1:	kfree(obj->pages);
   2651 	obj->pages = NULL;
   2652 fail0:	KASSERT(error);
   2653 	return error;
   2654 }
   2655 #else
   2656 static int
   2657 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2658 {
   2659 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2660 	int page_count, i;
   2661 	struct address_space *mapping;
   2662 	struct sg_table *st;
   2663 	struct scatterlist *sg;
   2664 	struct sg_page_iter sg_iter;
   2665 	struct page *page;
   2666 	unsigned long last_pfn = 0;	/* suppress gcc warning */
   2667 	gfp_t gfp;
   2668 
   2669 	/* Assert that the object is not currently in any GPU domain. As it
   2670 	 * wasn't in the GTT, there shouldn't be any way it could have been in
   2671 	 * a GPU cache
   2672 	 */
   2673 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2674 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2675 
   2676 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   2677 	if (st == NULL)
   2678 		return -ENOMEM;
   2679 
   2680 	page_count = obj->base.size / PAGE_SIZE;
   2681 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
   2682 		kfree(st);
   2683 		return -ENOMEM;
   2684 	}
   2685 
   2686 	/* Get the list of pages out of our struct file.  They'll be pinned
   2687 	 * at this point until we release them.
   2688 	 *
   2689 	 * Fail silently without starting the shrinker
   2690 	 */
   2691 	mapping = file_inode(obj->base.filp)->i_mapping;
   2692 	gfp = mapping_gfp_mask(mapping);
   2693 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
   2694 	gfp &= ~(__GFP_IO | __GFP_WAIT);
   2695 	sg = st->sgl;
   2696 	st->nents = 0;
   2697 	for (i = 0; i < page_count; i++) {
   2698 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2699 		if (IS_ERR(page)) {
   2700 			i915_gem_purge(dev_priv, page_count);
   2701 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2702 		}
   2703 		if (IS_ERR(page)) {
   2704 			/* We've tried hard to allocate the memory by reaping
   2705 			 * our own buffer, now let the real VM do its job and
   2706 			 * go down in flames if truly OOM.
   2707 			 */
   2708 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
   2709 			gfp |= __GFP_IO | __GFP_WAIT;
   2710 
   2711 			i915_gem_shrink_all(dev_priv);
   2712 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2713 			if (IS_ERR(page))
   2714 				goto err_pages;
   2715 
   2716 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
   2717 			gfp &= ~(__GFP_IO | __GFP_WAIT);
   2718 		}
   2719 #ifdef CONFIG_SWIOTLB
   2720 		if (swiotlb_nr_tbl()) {
   2721 			st->nents++;
   2722 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2723 			sg = sg_next(sg);
   2724 			continue;
   2725 		}
   2726 #endif
   2727 		if (!i || page_to_pfn(page) != last_pfn + 1) {
   2728 			if (i)
   2729 				sg = sg_next(sg);
   2730 			st->nents++;
   2731 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2732 		} else {
   2733 			sg->length += PAGE_SIZE;
   2734 		}
   2735 		last_pfn = page_to_pfn(page);
   2736 
   2737 		/* Check that the i965g/gm workaround works. */
   2738 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
   2739 	}
   2740 #ifdef CONFIG_SWIOTLB
   2741 	if (!swiotlb_nr_tbl())
   2742 #endif
   2743 		sg_mark_end(sg);
   2744 	obj->pages = st;
   2745 
   2746 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2747 		i915_gem_object_do_bit_17_swizzle(obj);
   2748 
   2749 	return 0;
   2750 
   2751 err_pages:
   2752 	sg_mark_end(sg);
   2753 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
   2754 		page_cache_release(sg_page_iter_page(&sg_iter));
   2755 	sg_free_table(st);
   2756 	kfree(st);
   2757 	return PTR_ERR(page);
   2758 }
   2759 #endif
   2760 
   2761 /* Ensure that the associated pages are gathered from the backing storage
   2762  * and pinned into our object. i915_gem_object_get_pages() may be called
   2763  * multiple times before they are released by a single call to
   2764  * i915_gem_object_put_pages() - once the pages are no longer referenced
   2765  * either as a result of memory pressure (reaping pages under the shrinker)
   2766  * or as the object is itself released.
   2767  */
   2768 int
   2769 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
   2770 {
   2771 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2772 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2773 	int ret;
   2774 
   2775 	if (obj->pages)
   2776 		return 0;
   2777 
   2778 	if (obj->madv != I915_MADV_WILLNEED) {
   2779 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
   2780 		return -EFAULT;
   2781 	}
   2782 
   2783 	BUG_ON(obj->pages_pin_count);
   2784 
   2785 	ret = ops->get_pages(obj);
   2786 	if (ret)
   2787 		return ret;
   2788 
   2789 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   2790 	return 0;
   2791 }
   2792 
   2793 static void
   2794 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
   2795 			       struct intel_ring_buffer *ring)
   2796 {
   2797 	struct drm_device *dev = obj->base.dev;
   2798 	struct drm_i915_private *dev_priv = dev->dev_private;
   2799 	u32 seqno = intel_ring_get_seqno(ring);
   2800 
   2801 	BUG_ON(ring == NULL);
   2802 	if (obj->ring != ring && obj->last_write_seqno) {
   2803 		/* Keep the seqno relative to the current ring */
   2804 		obj->last_write_seqno = seqno;
   2805 	}
   2806 	obj->ring = ring;
   2807 
   2808 	/* Add a reference if we're newly entering the active list. */
   2809 	if (!obj->active) {
   2810 		drm_gem_object_reference(&obj->base);
   2811 		obj->active = 1;
   2812 	}
   2813 
   2814 	list_move_tail(&obj->ring_list, &ring->active_list);
   2815 
   2816 	obj->last_read_seqno = seqno;
   2817 
   2818 	if (obj->fenced_gpu_access) {
   2819 		obj->last_fenced_seqno = seqno;
   2820 
   2821 		/* Bump MRU to take account of the delayed flush */
   2822 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
   2823 			struct drm_i915_fence_reg *reg;
   2824 
   2825 			reg = &dev_priv->fence_regs[obj->fence_reg];
   2826 			list_move_tail(&reg->lru_list,
   2827 				       &dev_priv->mm.fence_list);
   2828 		}
   2829 	}
   2830 }
   2831 
   2832 void i915_vma_move_to_active(struct i915_vma *vma,
   2833 			     struct intel_ring_buffer *ring)
   2834 {
   2835 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
   2836 	return i915_gem_object_move_to_active(vma->obj, ring);
   2837 }
   2838 
   2839 static void
   2840 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
   2841 {
   2842 	struct drm_device *dev = obj->base.dev;
   2843 	struct drm_i915_private *dev_priv = dev->dev_private;
   2844 	struct i915_address_space *vm;
   2845 	struct i915_vma *vma;
   2846 
   2847 	if ((obj->base.write_domain & I915_GEM_DOMAIN_GTT) != 0) {
   2848 #if 0
   2849 		printk(KERN_ERR "%s: %p 0x%x flushing gtt\n", __func__, obj,
   2850 			obj->base.write_domain);
   2851 #endif
   2852 		i915_gem_object_flush_gtt_write_domain(obj);
   2853 	}
   2854 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
   2855 	BUG_ON(!obj->active);
   2856 
   2857 	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
   2858 		vma = i915_gem_obj_to_vma(obj, vm);
   2859 		if (vma && !list_empty(&vma->mm_list))
   2860 			list_move_tail(&vma->mm_list, &vm->inactive_list);
   2861 	}
   2862 
   2863 	list_del_init(&obj->ring_list);
   2864 	obj->ring = NULL;
   2865 
   2866 	obj->last_read_seqno = 0;
   2867 	obj->last_write_seqno = 0;
   2868 	obj->base.write_domain = 0;
   2869 
   2870 	obj->last_fenced_seqno = 0;
   2871 	obj->fenced_gpu_access = false;
   2872 
   2873 	obj->active = 0;
   2874 	drm_gem_object_unreference(&obj->base);
   2875 
   2876 	WARN_ON(i915_verify_lists(dev));
   2877 }
   2878 
   2879 static int
   2880 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
   2881 {
   2882 	struct drm_i915_private *dev_priv = dev->dev_private;
   2883 	struct intel_ring_buffer *ring;
   2884 	int ret, i, j;
   2885 
   2886 	/* Carefully retire all requests without writing to the rings */
   2887 	for_each_ring(ring, dev_priv, i) {
   2888 		ret = intel_ring_idle(ring);
   2889 		if (ret)
   2890 			return ret;
   2891 	}
   2892 	i915_gem_retire_requests(dev);
   2893 
   2894 	/* Finally reset hw state */
   2895 	for_each_ring(ring, dev_priv, i) {
   2896 		intel_ring_init_seqno(ring, seqno);
   2897 
   2898 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
   2899 			ring->sync_seqno[j] = 0;
   2900 	}
   2901 
   2902 	return 0;
   2903 }
   2904 
   2905 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
   2906 {
   2907 	struct drm_i915_private *dev_priv = dev->dev_private;
   2908 	int ret;
   2909 
   2910 	if (seqno == 0)
   2911 		return -EINVAL;
   2912 
   2913 	/* HWS page needs to be set less than what we
   2914 	 * will inject to ring
   2915 	 */
   2916 	ret = i915_gem_init_seqno(dev, seqno - 1);
   2917 	if (ret)
   2918 		return ret;
   2919 
   2920 	/* Carefully set the last_seqno value so that wrap
   2921 	 * detection still works
   2922 	 */
   2923 	dev_priv->next_seqno = seqno;
   2924 	dev_priv->last_seqno = seqno - 1;
   2925 	if (dev_priv->last_seqno == 0)
   2926 		dev_priv->last_seqno--;
   2927 
   2928 	return 0;
   2929 }
   2930 
   2931 int
   2932 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
   2933 {
   2934 	struct drm_i915_private *dev_priv = dev->dev_private;
   2935 
   2936 	/* reserve 0 for non-seqno */
   2937 	if (dev_priv->next_seqno == 0) {
   2938 		int ret = i915_gem_init_seqno(dev, 0);
   2939 		if (ret)
   2940 			return ret;
   2941 
   2942 		dev_priv->next_seqno = 1;
   2943 	}
   2944 
   2945 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
   2946 	return 0;
   2947 }
   2948 
   2949 int __i915_add_request(struct intel_ring_buffer *ring,
   2950 		       struct drm_file *file,
   2951 		       struct drm_i915_gem_object *obj,
   2952 		       u32 *out_seqno)
   2953 {
   2954 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
   2955 	struct drm_i915_gem_request *request;
   2956 	u32 request_ring_position, request_start;
   2957 	int ret;
   2958 
   2959 	request_start = intel_ring_get_tail(ring);
   2960 	/*
   2961 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
   2962 	 * after having emitted the batchbuffer command. Hence we need to fix
   2963 	 * things up similar to emitting the lazy request. The difference here
   2964 	 * is that the flush _must_ happen before the next request, no matter
   2965 	 * what.
   2966 	 */
   2967 	ret = intel_ring_flush_all_caches(ring);
   2968 	if (ret)
   2969 		return ret;
   2970 
   2971 	request = ring->preallocated_lazy_request;
   2972 	if (WARN_ON(request == NULL))
   2973 		return -ENOMEM;
   2974 
   2975 	/* Record the position of the start of the request so that
   2976 	 * should we detect the updated seqno part-way through the
   2977 	 * GPU processing the request, we never over-estimate the
   2978 	 * position of the head.
   2979 	 */
   2980 	request_ring_position = intel_ring_get_tail(ring);
   2981 
   2982 	ret = ring->add_request(ring);
   2983 	if (ret)
   2984 		return ret;
   2985 
   2986 	request->seqno = intel_ring_get_seqno(ring);
   2987 	request->ring = ring;
   2988 	request->head = request_start;
   2989 	request->tail = request_ring_position;
   2990 
   2991 	/* Whilst this request exists, batch_obj will be on the
   2992 	 * active_list, and so will hold the active reference. Only when this
   2993 	 * request is retired will the the batch_obj be moved onto the
   2994 	 * inactive_list and lose its active reference. Hence we do not need
   2995 	 * to explicitly hold another reference here.
   2996 	 */
   2997 	request->batch_obj = obj;
   2998 
   2999 	/* Hold a reference to the current context so that we can inspect
   3000 	 * it later in case a hangcheck error event fires.
   3001 	 */
   3002 	request->ctx = ring->last_context;
   3003 	if (request->ctx)
   3004 		i915_gem_context_reference(request->ctx);
   3005 
   3006 	request->emitted_jiffies = jiffies;
   3007 	list_add_tail(&request->list, &ring->request_list);
   3008 	request->file_priv = NULL;
   3009 
   3010 	if (file) {
   3011 		struct drm_i915_file_private *file_priv = file->driver_priv;
   3012 
   3013 		spin_lock(&file_priv->mm.lock);
   3014 		request->file_priv = file_priv;
   3015 		list_add_tail(&request->client_list,
   3016 			      &file_priv->mm.request_list);
   3017 		spin_unlock(&file_priv->mm.lock);
   3018 	}
   3019 
   3020 	trace_i915_gem_request_add(ring, request->seqno);
   3021 	ring->outstanding_lazy_seqno = 0;
   3022 	ring->preallocated_lazy_request = NULL;
   3023 
   3024 	if (!dev_priv->ums.mm_suspended) {
   3025 		i915_queue_hangcheck(ring->dev);
   3026 
   3027 		cancel_delayed_work_sync(&dev_priv->mm.idle_work);
   3028 		queue_delayed_work(dev_priv->wq,
   3029 				   &dev_priv->mm.retire_work,
   3030 				   round_jiffies_up_relative(HZ));
   3031 		intel_mark_busy(dev_priv->dev);
   3032 	}
   3033 
   3034 	if (out_seqno)
   3035 		*out_seqno = request->seqno;
   3036 	return 0;
   3037 }
   3038 
   3039 static inline void
   3040 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
   3041 {
   3042 	struct drm_i915_file_private *file_priv = request->file_priv;
   3043 
   3044 	if (!file_priv)
   3045 		return;
   3046 
   3047 	spin_lock(&file_priv->mm.lock);
   3048 	list_del(&request->client_list);
   3049 	request->file_priv = NULL;
   3050 	spin_unlock(&file_priv->mm.lock);
   3051 }
   3052 
   3053 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
   3054 				   const struct i915_hw_context *ctx)
   3055 {
   3056 	unsigned long elapsed;
   3057 
   3058 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
   3059 
   3060 	if (ctx->hang_stats.banned)
   3061 		return true;
   3062 
   3063 	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
   3064 		if (!i915_gem_context_is_default(ctx)) {
   3065 			DRM_DEBUG("context hanging too fast, banning!\n");
   3066 			return true;
   3067 		} else if (dev_priv->gpu_error.stop_rings == 0) {
   3068 			DRM_ERROR("gpu hanging too fast, banning!\n");
   3069 			return true;
   3070 		}
   3071 	}
   3072 
   3073 	return false;
   3074 }
   3075 
   3076 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
   3077 				  struct i915_hw_context *ctx,
   3078 				  const bool guilty)
   3079 {
   3080 	struct i915_ctx_hang_stats *hs;
   3081 
   3082 	if (WARN_ON(!ctx))
   3083 		return;
   3084 
   3085 	hs = &ctx->hang_stats;
   3086 
   3087 	if (guilty) {
   3088 		hs->banned = i915_context_is_banned(dev_priv, ctx);
   3089 		hs->batch_active++;
   3090 		hs->guilty_ts = get_seconds();
   3091 	} else {
   3092 		hs->batch_pending++;
   3093 	}
   3094 }
   3095 
   3096 static void i915_gem_free_request(struct drm_i915_gem_request *request)
   3097 {
   3098 	list_del(&request->list);
   3099 	i915_gem_request_remove_from_client(request);
   3100 
   3101 	if (request->ctx)
   3102 		i915_gem_context_unreference(request->ctx);
   3103 
   3104 	kfree(request);
   3105 }
   3106 
   3107 struct drm_i915_gem_request *
   3108 i915_gem_find_active_request(struct intel_ring_buffer *ring)
   3109 {
   3110 	struct drm_i915_gem_request *request;
   3111 	u32 completed_seqno;
   3112 
   3113 	completed_seqno = ring->get_seqno(ring, false);
   3114 
   3115 	list_for_each_entry(request, &ring->request_list, list) {
   3116 		if (i915_seqno_passed(completed_seqno, request->seqno))
   3117 			continue;
   3118 
   3119 		return request;
   3120 	}
   3121 
   3122 	return NULL;
   3123 }
   3124 
   3125 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
   3126 				       struct intel_ring_buffer *ring)
   3127 {
   3128 	struct drm_i915_gem_request *request;
   3129 	bool ring_hung;
   3130 
   3131 	request = i915_gem_find_active_request(ring);
   3132 
   3133 	if (request == NULL)
   3134 		return;
   3135 
   3136 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
   3137 
   3138 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
   3139 
   3140 	list_for_each_entry_continue(request, &ring->request_list, list)
   3141 		i915_set_reset_status(dev_priv, request->ctx, false);
   3142 }
   3143 
   3144 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
   3145 					struct intel_ring_buffer *ring)
   3146 {
   3147 	while (!list_empty(&ring->active_list)) {
   3148 		struct drm_i915_gem_object *obj;
   3149 
   3150 		obj = list_first_entry(&ring->active_list,
   3151 				       struct drm_i915_gem_object,
   3152 				       ring_list);
   3153 
   3154 		i915_gem_object_move_to_inactive(obj);
   3155 	}
   3156 
   3157 	/*
   3158 	 * We must free the requests after all the corresponding objects have
   3159 	 * been moved off active lists. Which is the same order as the normal
   3160 	 * retire_requests function does. This is important if object hold
   3161 	 * implicit references on things like e.g. ppgtt address spaces through
   3162 	 * the request.
   3163 	 */
   3164 	while (!list_empty(&ring->request_list)) {
   3165 		struct drm_i915_gem_request *request;
   3166 
   3167 		request = list_first_entry(&ring->request_list,
   3168 					   struct drm_i915_gem_request,
   3169 					   list);
   3170 
   3171 		i915_gem_free_request(request);
   3172 	}
   3173 }
   3174 
   3175 void i915_gem_restore_fences(struct drm_device *dev)
   3176 {
   3177 	struct drm_i915_private *dev_priv = dev->dev_private;
   3178 	int i;
   3179 
   3180 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
   3181 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
   3182 
   3183 		/*
   3184 		 * Commit delayed tiling changes if we have an object still
   3185 		 * attached to the fence, otherwise just clear the fence.
   3186 		 */
   3187 		if (reg->obj) {
   3188 			i915_gem_object_update_fence(reg->obj, reg,
   3189 						     reg->obj->tiling_mode);
   3190 		} else {
   3191 			i915_gem_write_fence(dev, i, NULL);
   3192 		}
   3193 	}
   3194 }
   3195 
   3196 void i915_gem_reset(struct drm_device *dev)
   3197 {
   3198 	struct drm_i915_private *dev_priv = dev->dev_private;
   3199 	struct intel_ring_buffer *ring;
   3200 	int i;
   3201 
   3202 	/*
   3203 	 * Before we free the objects from the requests, we need to inspect
   3204 	 * them for finding the guilty party. As the requests only borrow
   3205 	 * their reference to the objects, the inspection must be done first.
   3206 	 */
   3207 	for_each_ring(ring, dev_priv, i)
   3208 		i915_gem_reset_ring_status(dev_priv, ring);
   3209 
   3210 	for_each_ring(ring, dev_priv, i)
   3211 		i915_gem_reset_ring_cleanup(dev_priv, ring);
   3212 
   3213 	i915_gem_cleanup_ringbuffer(dev);
   3214 
   3215 	i915_gem_context_reset(dev);
   3216 
   3217 	i915_gem_restore_fences(dev);
   3218 }
   3219 
   3220 /**
   3221  * This function clears the request list as sequence numbers are passed.
   3222  */
   3223 static void
   3224 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
   3225 {
   3226 	uint32_t seqno;
   3227 
   3228 	if (list_empty(&ring->request_list))
   3229 		return;
   3230 
   3231 	WARN_ON(i915_verify_lists(ring->dev));
   3232 
   3233 	seqno = ring->get_seqno(ring, true);
   3234 
   3235 	/* Move any buffers on the active list that are no longer referenced
   3236 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
   3237 	 * before we free the context associated with the requests.
   3238 	 */
   3239 	while (!list_empty(&ring->active_list)) {
   3240 		struct drm_i915_gem_object *obj;
   3241 
   3242 		obj = list_first_entry(&ring->active_list,
   3243 				      struct drm_i915_gem_object,
   3244 				      ring_list);
   3245 
   3246 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
   3247 			break;
   3248 
   3249 		i915_gem_object_move_to_inactive(obj);
   3250 	}
   3251 
   3252 
   3253 	while (!list_empty(&ring->request_list)) {
   3254 		struct drm_i915_gem_request *request;
   3255 
   3256 		request = list_first_entry(&ring->request_list,
   3257 					   struct drm_i915_gem_request,
   3258 					   list);
   3259 
   3260 		if (!i915_seqno_passed(seqno, request->seqno))
   3261 			break;
   3262 
   3263 		trace_i915_gem_request_retire(ring, request->seqno);
   3264 		/* We know the GPU must have read the request to have
   3265 		 * sent us the seqno + interrupt, so use the position
   3266 		 * of tail of the request to update the last known position
   3267 		 * of the GPU head.
   3268 		 */
   3269 		ring->last_retired_head = request->tail;
   3270 
   3271 		i915_gem_free_request(request);
   3272 	}
   3273 
   3274 	if (unlikely(ring->trace_irq_seqno &&
   3275 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
   3276 		ring->irq_put(ring);
   3277 		ring->trace_irq_seqno = 0;
   3278 	}
   3279 
   3280 	WARN_ON(i915_verify_lists(ring->dev));
   3281 }
   3282 
   3283 bool
   3284 i915_gem_retire_requests(struct drm_device *dev)
   3285 {
   3286 	struct drm_i915_private *dev_priv = dev->dev_private;
   3287 	struct intel_ring_buffer *ring;
   3288 	bool idle = true;
   3289 	int i;
   3290 
   3291 	for_each_ring(ring, dev_priv, i) {
   3292 		i915_gem_retire_requests_ring(ring);
   3293 		idle &= list_empty(&ring->request_list);
   3294 	}
   3295 
   3296 	if (idle)
   3297 		mod_delayed_work(dev_priv->wq,
   3298 				   &dev_priv->mm.idle_work,
   3299 				   msecs_to_jiffies(100));
   3300 
   3301 	return idle;
   3302 }
   3303 
   3304 static void
   3305 i915_gem_retire_work_handler(struct work_struct *work)
   3306 {
   3307 	struct drm_i915_private *dev_priv =
   3308 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
   3309 	struct drm_device *dev = dev_priv->dev;
   3310 	bool idle;
   3311 
   3312 	/* Come back later if the device is busy... */
   3313 	idle = false;
   3314 	if (mutex_trylock(&dev->struct_mutex)) {
   3315 		idle = i915_gem_retire_requests(dev);
   3316 		mutex_unlock(&dev->struct_mutex);
   3317 	}
   3318 	if (!idle)
   3319 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
   3320 				   round_jiffies_up_relative(HZ));
   3321 }
   3322 
   3323 static void
   3324 i915_gem_idle_work_handler(struct work_struct *work)
   3325 {
   3326 	struct drm_i915_private *dev_priv =
   3327 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
   3328 
   3329 	intel_mark_idle(dev_priv->dev);
   3330 }
   3331 
   3332 /**
   3333  * Ensures that an object will eventually get non-busy by flushing any required
   3334  * write domains, emitting any outstanding lazy request and retiring and
   3335  * completed requests.
   3336  */
   3337 static int
   3338 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
   3339 {
   3340 	int ret;
   3341 
   3342 	if (obj->active) {
   3343 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
   3344 		if (ret)
   3345 			return ret;
   3346 
   3347 		i915_gem_retire_requests_ring(obj->ring);
   3348 	}
   3349 
   3350 	return 0;
   3351 }
   3352 
   3353 /**
   3354  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
   3355  * @DRM_IOCTL_ARGS: standard ioctl arguments
   3356  *
   3357  * Returns 0 if successful, else an error is returned with the remaining time in
   3358  * the timeout parameter.
   3359  *  -ETIME: object is still busy after timeout
   3360  *  -ERESTARTSYS: signal interrupted the wait
   3361  *  -ENONENT: object doesn't exist
   3362  * Also possible, but rare:
   3363  *  -EAGAIN: GPU wedged
   3364  *  -ENOMEM: damn
   3365  *  -ENODEV: Internal IRQ fail
   3366  *  -E?: The add request failed
   3367  *
   3368  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
   3369  * non-zero timeout parameter the wait ioctl will wait for the given number of
   3370  * nanoseconds on an object becoming unbusy. Since the wait itself does so
   3371  * without holding struct_mutex the object may become re-busied before this
   3372  * function completes. A similar but shorter * race condition exists in the busy
   3373  * ioctl
   3374  */
   3375 int
   3376 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
   3377 {
   3378 	struct drm_i915_private *dev_priv = dev->dev_private;
   3379 	struct drm_i915_gem_wait *args = data;
   3380 	struct drm_gem_object *gobj;
   3381 	struct drm_i915_gem_object *obj;
   3382 	struct intel_ring_buffer *ring = NULL;
   3383 	struct timespec timeout_stack, *timeout = NULL;
   3384 	unsigned reset_counter;
   3385 	u32 seqno = 0;
   3386 	int ret = 0;
   3387 
   3388 	if (args->timeout_ns >= 0) {
   3389 		timeout_stack = ns_to_timespec(args->timeout_ns);
   3390 		timeout = &timeout_stack;
   3391 	}
   3392 
   3393 	ret = i915_mutex_lock_interruptible(dev);
   3394 	if (ret)
   3395 		return ret;
   3396 
   3397 	gobj = drm_gem_object_lookup(dev, file, args->bo_handle);
   3398 	if (gobj == NULL) {
   3399 		mutex_unlock(&dev->struct_mutex);
   3400 		return -ENOENT;
   3401 	}
   3402 	obj = to_intel_bo(gobj);
   3403 
   3404 	/* Need to make sure the object gets inactive eventually. */
   3405 	ret = i915_gem_object_flush_active(obj);
   3406 	if (ret)
   3407 		goto out;
   3408 
   3409 	if (obj->active) {
   3410 		seqno = obj->last_read_seqno;
   3411 		ring = obj->ring;
   3412 	}
   3413 
   3414 	if (seqno == 0)
   3415 		 goto out;
   3416 
   3417 	/* Do this after OLR check to make sure we make forward progress polling
   3418 	 * on this IOCTL with a 0 timeout (like busy ioctl)
   3419 	 */
   3420 	if (!args->timeout_ns) {
   3421 		ret = -ETIME;
   3422 		goto out;
   3423 	}
   3424 
   3425 	drm_gem_object_unreference(&obj->base);
   3426 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   3427 	mutex_unlock(&dev->struct_mutex);
   3428 
   3429 	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
   3430 	if (timeout)
   3431 		args->timeout_ns = timespec_to_ns(timeout);
   3432 	return ret;
   3433 
   3434 out:
   3435 	drm_gem_object_unreference(&obj->base);
   3436 	mutex_unlock(&dev->struct_mutex);
   3437 	return ret;
   3438 }
   3439 
   3440 /**
   3441  * i915_gem_object_sync - sync an object to a ring.
   3442  *
   3443  * @obj: object which may be in use on another ring.
   3444  * @to: ring we wish to use the object on. May be NULL.
   3445  *
   3446  * This code is meant to abstract object synchronization with the GPU.
   3447  * Calling with NULL implies synchronizing the object with the CPU
   3448  * rather than a particular GPU ring.
   3449  *
   3450  * Returns 0 if successful, else propagates up the lower layer error.
   3451  */
   3452 int
   3453 i915_gem_object_sync(struct drm_i915_gem_object *obj,
   3454 		     struct intel_ring_buffer *to)
   3455 {
   3456 	struct intel_ring_buffer *from = obj->ring;
   3457 	u32 seqno;
   3458 	int ret, idx;
   3459 
   3460 	if (from == NULL || to == from)
   3461 		return 0;
   3462 
   3463 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
   3464 		return i915_gem_object_wait_rendering(obj, false);
   3465 
   3466 	idx = intel_ring_sync_index(from, to);
   3467 
   3468 	seqno = obj->last_read_seqno;
   3469 	if (seqno <= from->sync_seqno[idx])
   3470 		return 0;
   3471 
   3472 	ret = i915_gem_check_olr(obj->ring, seqno);
   3473 	if (ret)
   3474 		return ret;
   3475 
   3476 	trace_i915_gem_ring_sync_to(from, to, seqno);
   3477 	ret = to->sync_to(to, from, seqno);
   3478 	if (!ret)
   3479 		/* We use last_read_seqno because sync_to()
   3480 		 * might have just caused seqno wrap under
   3481 		 * the radar.
   3482 		 */
   3483 		from->sync_seqno[idx] = obj->last_read_seqno;
   3484 
   3485 	return ret;
   3486 }
   3487 
   3488 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
   3489 {
   3490 	u32 old_write_domain, old_read_domains;
   3491 
   3492 	/* Force a pagefault for domain tracking on next user access */
   3493 	i915_gem_release_mmap(obj);
   3494 
   3495 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   3496 		return;
   3497 
   3498 	/* Wait for any direct GTT access to complete */
   3499 	mb();
   3500 
   3501 	old_read_domains = obj->base.read_domains;
   3502 	old_write_domain = obj->base.write_domain;
   3503 
   3504 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
   3505 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
   3506 
   3507 	trace_i915_gem_object_change_domain(obj,
   3508 					    old_read_domains,
   3509 					    old_write_domain);
   3510 }
   3511 
   3512 int i915_vma_unbind(struct i915_vma *vma)
   3513 {
   3514 	struct drm_i915_gem_object *obj = vma->obj;
   3515 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3516 	int ret;
   3517 
   3518 	if (list_empty(&vma->vma_link))
   3519 		return 0;
   3520 
   3521 	if (!drm_mm_node_allocated(&vma->node)) {
   3522 		i915_gem_vma_destroy(vma);
   3523 		return 0;
   3524 	}
   3525 
   3526 	if (vma->pin_count)
   3527 		return -EBUSY;
   3528 
   3529 	BUG_ON(obj->pages == NULL);
   3530 
   3531 	ret = i915_gem_object_finish_gpu(obj);
   3532 	if (ret)
   3533 		return ret;
   3534 	/* Continue on if we fail due to EIO, the GPU is hung so we
   3535 	 * should be safe and we need to cleanup or else we might
   3536 	 * cause memory corruption through use-after-free.
   3537 	 */
   3538 
   3539 	i915_gem_object_finish_gtt(obj);
   3540 
   3541 	/* release the fence reg _after_ flushing */
   3542 	ret = i915_gem_object_put_fence(obj);
   3543 	if (ret)
   3544 		return ret;
   3545 
   3546 	trace_i915_vma_unbind(vma);
   3547 
   3548 	vma->unbind_vma(vma);
   3549 
   3550 	i915_gem_gtt_finish_object(obj);
   3551 
   3552 	list_del_init(&vma->mm_list);
   3553 	/* Avoid an unnecessary call to unbind on rebind. */
   3554 	if (i915_is_ggtt(vma->vm))
   3555 		obj->map_and_fenceable = true;
   3556 
   3557 	drm_mm_remove_node(&vma->node);
   3558 	i915_gem_vma_destroy(vma);
   3559 
   3560 	/* Since the unbound list is global, only move to that list if
   3561 	 * no more VMAs exist. */
   3562 	if (list_empty(&obj->vma_list))
   3563 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   3564 
   3565 	/* And finally now the object is completely decoupled from this vma,
   3566 	 * we can drop its hold on the backing storage and allow it to be
   3567 	 * reaped by the shrinker.
   3568 	 */
   3569 	i915_gem_object_unpin_pages(obj);
   3570 
   3571 	return 0;
   3572 }
   3573 
   3574 int i915_gpu_idle(struct drm_device *dev)
   3575 {
   3576 	struct drm_i915_private *dev_priv = dev->dev_private;
   3577 	struct intel_ring_buffer *ring;
   3578 	int ret, i;
   3579 
   3580 	/* Flush everything onto the inactive list. */
   3581 	for_each_ring(ring, dev_priv, i) {
   3582 		ret = i915_switch_context(ring, ring->default_context);
   3583 		if (ret)
   3584 			return ret;
   3585 
   3586 		ret = intel_ring_idle(ring);
   3587 		if (ret)
   3588 			return ret;
   3589 	}
   3590 
   3591 	return 0;
   3592 }
   3593 
   3594 static void i965_write_fence_reg(struct drm_device *dev, int reg,
   3595 				 struct drm_i915_gem_object *obj)
   3596 {
   3597 	struct drm_i915_private *dev_priv = dev->dev_private;
   3598 	int fence_reg;
   3599 	int fence_pitch_shift;
   3600 
   3601 	if (INTEL_INFO(dev)->gen >= 6) {
   3602 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
   3603 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
   3604 	} else {
   3605 		fence_reg = FENCE_REG_965_0;
   3606 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
   3607 	}
   3608 
   3609 	fence_reg += reg * 8;
   3610 
   3611 	/* To w/a incoherency with non-atomic 64-bit register updates,
   3612 	 * we split the 64-bit update into two 32-bit writes. In order
   3613 	 * for a partial fence not to be evaluated between writes, we
   3614 	 * precede the update with write to turn off the fence register,
   3615 	 * and only enable the fence as the last step.
   3616 	 *
   3617 	 * For extra levels of paranoia, we make sure each step lands
   3618 	 * before applying the next step.
   3619 	 */
   3620 	I915_WRITE(fence_reg, 0);
   3621 	POSTING_READ(fence_reg);
   3622 
   3623 	if (obj) {
   3624 		u32 size = i915_gem_obj_ggtt_size(obj);
   3625 		uint64_t val;
   3626 
   3627 		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
   3628 				 0xfffff000) << 32;
   3629 		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
   3630 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
   3631 		if (obj->tiling_mode == I915_TILING_Y)
   3632 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
   3633 		val |= I965_FENCE_REG_VALID;
   3634 
   3635 		I915_WRITE(fence_reg + 4, val >> 32);
   3636 		POSTING_READ(fence_reg + 4);
   3637 
   3638 		I915_WRITE(fence_reg + 0, val);
   3639 		POSTING_READ(fence_reg);
   3640 	} else {
   3641 		I915_WRITE(fence_reg + 4, 0);
   3642 		POSTING_READ(fence_reg + 4);
   3643 	}
   3644 }
   3645 
   3646 static void i915_write_fence_reg(struct drm_device *dev, int reg,
   3647 				 struct drm_i915_gem_object *obj)
   3648 {
   3649 	struct drm_i915_private *dev_priv = dev->dev_private;
   3650 	u32 val;
   3651 
   3652 	if (obj) {
   3653 		u32 size = i915_gem_obj_ggtt_size(obj);
   3654 		int pitch_val;
   3655 		int tile_width;
   3656 
   3657 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
   3658 		     (size & -size) != size ||
   3659 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
   3660 		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
   3661 		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
   3662 
   3663 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
   3664 			tile_width = 128;
   3665 		else
   3666 			tile_width = 512;
   3667 
   3668 		/* Note: pitch better be a power of two tile widths */
   3669 		pitch_val = obj->stride / tile_width;
   3670 		pitch_val = ffs(pitch_val) - 1;
   3671 
   3672 		val = i915_gem_obj_ggtt_offset(obj);
   3673 		if (obj->tiling_mode == I915_TILING_Y)
   3674 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
   3675 		val |= I915_FENCE_SIZE_BITS(size);
   3676 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
   3677 		val |= I830_FENCE_REG_VALID;
   3678 	} else
   3679 		val = 0;
   3680 
   3681 	if (reg < 8)
   3682 		reg = FENCE_REG_830_0 + reg * 4;
   3683 	else
   3684 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
   3685 
   3686 	I915_WRITE(reg, val);
   3687 	POSTING_READ(reg);
   3688 }
   3689 
   3690 static void i830_write_fence_reg(struct drm_device *dev, int reg,
   3691 				struct drm_i915_gem_object *obj)
   3692 {
   3693 	struct drm_i915_private *dev_priv = dev->dev_private;
   3694 	uint32_t val;
   3695 
   3696 	if (obj) {
   3697 		u32 size = i915_gem_obj_ggtt_size(obj);
   3698 		uint32_t pitch_val;
   3699 
   3700 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
   3701 		     (size & -size) != size ||
   3702 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
   3703 		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
   3704 		     i915_gem_obj_ggtt_offset(obj), size);
   3705 
   3706 		pitch_val = obj->stride / 128;
   3707 		pitch_val = ffs(pitch_val) - 1;
   3708 
   3709 		val = i915_gem_obj_ggtt_offset(obj);
   3710 		if (obj->tiling_mode == I915_TILING_Y)
   3711 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
   3712 		val |= I830_FENCE_SIZE_BITS(size);
   3713 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
   3714 		val |= I830_FENCE_REG_VALID;
   3715 	} else
   3716 		val = 0;
   3717 
   3718 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
   3719 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
   3720 }
   3721 
   3722 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
   3723 {
   3724 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
   3725 }
   3726 
   3727 static void i915_gem_write_fence(struct drm_device *dev, int reg,
   3728 				 struct drm_i915_gem_object *obj)
   3729 {
   3730 	struct drm_i915_private *dev_priv = dev->dev_private;
   3731 
   3732 	/* Ensure that all CPU reads are completed before installing a fence
   3733 	 * and all writes before removing the fence.
   3734 	 */
   3735 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
   3736 		mb();
   3737 
   3738 	WARN(obj && (!obj->stride || !obj->tiling_mode),
   3739 	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
   3740 	     obj->stride, obj->tiling_mode);
   3741 
   3742 	switch (INTEL_INFO(dev)->gen) {
   3743 	case 8:
   3744 	case 7:
   3745 	case 6:
   3746 	case 5:
   3747 	case 4: i965_write_fence_reg(dev, reg, obj); break;
   3748 	case 3: i915_write_fence_reg(dev, reg, obj); break;
   3749 	case 2: i830_write_fence_reg(dev, reg, obj); break;
   3750 	default: BUG();
   3751 	}
   3752 
   3753 	/* And similarly be paranoid that no direct access to this region
   3754 	 * is reordered to before the fence is installed.
   3755 	 */
   3756 	if (i915_gem_object_needs_mb(obj))
   3757 		mb();
   3758 }
   3759 
   3760 static inline int fence_number(struct drm_i915_private *dev_priv,
   3761 			       struct drm_i915_fence_reg *fence)
   3762 {
   3763 	return fence - dev_priv->fence_regs;
   3764 }
   3765 
   3766 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
   3767 					 struct drm_i915_fence_reg *fence,
   3768 					 bool enable)
   3769 {
   3770 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3771 	int reg = fence_number(dev_priv, fence);
   3772 
   3773 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
   3774 
   3775 	if (enable) {
   3776 		obj->fence_reg = reg;
   3777 		fence->obj = obj;
   3778 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
   3779 	} else {
   3780 		obj->fence_reg = I915_FENCE_REG_NONE;
   3781 		fence->obj = NULL;
   3782 		list_del_init(&fence->lru_list);
   3783 	}
   3784 	obj->fence_dirty = false;
   3785 }
   3786 
   3787 static int
   3788 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
   3789 {
   3790 	if (obj->last_fenced_seqno) {
   3791 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
   3792 		if (ret)
   3793 			return ret;
   3794 
   3795 		obj->last_fenced_seqno = 0;
   3796 	}
   3797 
   3798 	obj->fenced_gpu_access = false;
   3799 	return 0;
   3800 }
   3801 
   3802 int
   3803 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
   3804 {
   3805 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3806 	struct drm_i915_fence_reg *fence;
   3807 	int ret;
   3808 
   3809 	ret = i915_gem_object_wait_fence(obj);
   3810 	if (ret)
   3811 		return ret;
   3812 
   3813 	if (obj->fence_reg == I915_FENCE_REG_NONE)
   3814 		return 0;
   3815 
   3816 	fence = &dev_priv->fence_regs[obj->fence_reg];
   3817 
   3818 	i915_gem_object_fence_lost(obj);
   3819 	i915_gem_object_update_fence(obj, fence, false);
   3820 
   3821 	return 0;
   3822 }
   3823 
   3824 static struct drm_i915_fence_reg *
   3825 i915_find_fence_reg(struct drm_device *dev)
   3826 {
   3827 	struct drm_i915_private *dev_priv = dev->dev_private;
   3828 	struct drm_i915_fence_reg *reg, *avail;
   3829 	int i;
   3830 
   3831 	/* First try to find a free reg */
   3832 	avail = NULL;
   3833 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
   3834 		reg = &dev_priv->fence_regs[i];
   3835 		if (!reg->obj)
   3836 			return reg;
   3837 
   3838 		if (!reg->pin_count)
   3839 			avail = reg;
   3840 	}
   3841 
   3842 	if (avail == NULL)
   3843 		goto deadlock;
   3844 
   3845 	/* None available, try to steal one or wait for a user to finish */
   3846 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
   3847 		if (reg->pin_count)
   3848 			continue;
   3849 
   3850 		return reg;
   3851 	}
   3852 
   3853 deadlock:
   3854 	/* Wait for completion of pending flips which consume fences */
   3855 	if (intel_has_pending_fb_unpin(dev))
   3856 		return ERR_PTR(-EAGAIN);
   3857 
   3858 	return ERR_PTR(-EDEADLK);
   3859 }
   3860 
   3861 /**
   3862  * i915_gem_object_get_fence - set up fencing for an object
   3863  * @obj: object to map through a fence reg
   3864  *
   3865  * When mapping objects through the GTT, userspace wants to be able to write
   3866  * to them without having to worry about swizzling if the object is tiled.
   3867  * This function walks the fence regs looking for a free one for @obj,
   3868  * stealing one if it can't find any.
   3869  *
   3870  * It then sets up the reg based on the object's properties: address, pitch
   3871  * and tiling format.
   3872  *
   3873  * For an untiled surface, this removes any existing fence.
   3874  */
   3875 int
   3876 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
   3877 {
   3878 	struct drm_device *dev = obj->base.dev;
   3879 	struct drm_i915_private *dev_priv = dev->dev_private;
   3880 	bool enable = obj->tiling_mode != I915_TILING_NONE;
   3881 	struct drm_i915_fence_reg *reg;
   3882 	int ret;
   3883 
   3884 	/* Have we updated the tiling parameters upon the object and so
   3885 	 * will need to serialise the write to the associated fence register?
   3886 	 */
   3887 	if (obj->fence_dirty) {
   3888 		ret = i915_gem_object_wait_fence(obj);
   3889 		if (ret)
   3890 			return ret;
   3891 	}
   3892 
   3893 	/* Just update our place in the LRU if our fence is getting reused. */
   3894 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
   3895 		reg = &dev_priv->fence_regs[obj->fence_reg];
   3896 		if (!obj->fence_dirty) {
   3897 			list_move_tail(&reg->lru_list,
   3898 				       &dev_priv->mm.fence_list);
   3899 			return 0;
   3900 		}
   3901 	} else if (enable) {
   3902 		reg = i915_find_fence_reg(dev);
   3903 		if (IS_ERR(reg))
   3904 			return PTR_ERR(reg);
   3905 
   3906 		if (reg->obj) {
   3907 			struct drm_i915_gem_object *old = reg->obj;
   3908 
   3909 			ret = i915_gem_object_wait_fence(old);
   3910 			if (ret)
   3911 				return ret;
   3912 
   3913 			i915_gem_object_fence_lost(old);
   3914 		}
   3915 	} else
   3916 		return 0;
   3917 
   3918 	i915_gem_object_update_fence(obj, reg, enable);
   3919 
   3920 	return 0;
   3921 }
   3922 
   3923 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
   3924 				     struct drm_mm_node *gtt_space,
   3925 				     unsigned long cache_level)
   3926 {
   3927 	struct drm_mm_node *other;
   3928 
   3929 	/* On non-LLC machines we have to be careful when putting differing
   3930 	 * types of snoopable memory together to avoid the prefetcher
   3931 	 * crossing memory domains and dying.
   3932 	 */
   3933 	if (HAS_LLC(dev))
   3934 		return true;
   3935 
   3936 	if (!drm_mm_node_allocated(gtt_space))
   3937 		return true;
   3938 
   3939 	if (list_empty(&gtt_space->node_list))
   3940 		return true;
   3941 
   3942 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
   3943 	if (other->allocated && !other->hole_follows && other->color != cache_level)
   3944 		return false;
   3945 
   3946 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
   3947 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
   3948 		return false;
   3949 
   3950 	return true;
   3951 }
   3952 
   3953 static void i915_gem_verify_gtt(struct drm_device *dev)
   3954 {
   3955 #if WATCH_GTT
   3956 	struct drm_i915_private *dev_priv = dev->dev_private;
   3957 	struct drm_i915_gem_object *obj;
   3958 	int err = 0;
   3959 
   3960 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
   3961 		if (obj->gtt_space == NULL) {
   3962 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
   3963 			err++;
   3964 			continue;
   3965 		}
   3966 
   3967 		if (obj->cache_level != obj->gtt_space->color) {
   3968 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
   3969 			       i915_gem_obj_ggtt_offset(obj),
   3970 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
   3971 			       obj->cache_level,
   3972 			       obj->gtt_space->color);
   3973 			err++;
   3974 			continue;
   3975 		}
   3976 
   3977 		if (!i915_gem_valid_gtt_space(dev,
   3978 					      obj->gtt_space,
   3979 					      obj->cache_level)) {
   3980 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
   3981 			       i915_gem_obj_ggtt_offset(obj),
   3982 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
   3983 			       obj->cache_level);
   3984 			err++;
   3985 			continue;
   3986 		}
   3987 	}
   3988 
   3989 	WARN_ON(err);
   3990 #endif
   3991 }
   3992 
   3993 /**
   3994  * Finds free space in the GTT aperture and binds the object there.
   3995  */
   3996 static struct i915_vma *
   3997 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
   3998 			   struct i915_address_space *vm,
   3999 			   unsigned alignment,
   4000 			   uint64_t flags)
   4001 {
   4002 	struct drm_device *dev = obj->base.dev;
   4003 	struct drm_i915_private *dev_priv = dev->dev_private;
   4004 	u32 size, fence_size, fence_alignment, unfenced_alignment;
   4005 	unsigned long start =
   4006 		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
   4007 	unsigned long end =
   4008 		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
   4009 	struct i915_vma *vma;
   4010 	int ret;
   4011 
   4012 	fence_size = i915_gem_get_gtt_size(dev,
   4013 					   obj->base.size,
   4014 					   obj->tiling_mode);
   4015 	fence_alignment = i915_gem_get_gtt_alignment(dev,
   4016 						     obj->base.size,
   4017 						     obj->tiling_mode, true);
   4018 	unfenced_alignment =
   4019 		i915_gem_get_gtt_alignment(dev,
   4020 					   obj->base.size,
   4021 					   obj->tiling_mode, false);
   4022 
   4023 	if (alignment == 0)
   4024 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
   4025 						unfenced_alignment;
   4026 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
   4027 		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
   4028 		return ERR_PTR(-EINVAL);
   4029 	}
   4030 
   4031 	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
   4032 
   4033 	/* If the object is bigger than the entire aperture, reject it early
   4034 	 * before evicting everything in a vain attempt to find space.
   4035 	 */
   4036 	if (obj->base.size > end) {
   4037 		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
   4038 			  obj->base.size,
   4039 			  flags & PIN_MAPPABLE ? "mappable" : "total",
   4040 			  end);
   4041 		return ERR_PTR(-E2BIG);
   4042 	}
   4043 
   4044 	ret = i915_gem_object_get_pages(obj);
   4045 	if (ret)
   4046 		return ERR_PTR(ret);
   4047 
   4048 	i915_gem_object_pin_pages(obj);
   4049 
   4050 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
   4051 	if (IS_ERR(vma))
   4052 		goto err_unpin;
   4053 
   4054 search_free:
   4055 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
   4056 						  size, alignment,
   4057 						  obj->cache_level,
   4058 						  start, end,
   4059 						  DRM_MM_SEARCH_DEFAULT,
   4060 						  DRM_MM_CREATE_DEFAULT);
   4061 	if (ret) {
   4062 		ret = i915_gem_evict_something(dev, vm, size, alignment,
   4063 					       obj->cache_level,
   4064 					       start, end,
   4065 					       flags);
   4066 		if (ret == 0)
   4067 			goto search_free;
   4068 
   4069 		goto err_free_vma;
   4070 	}
   4071 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
   4072 					      obj->cache_level))) {
   4073 		ret = -EINVAL;
   4074 		goto err_remove_node;
   4075 	}
   4076 
   4077 	ret = i915_gem_gtt_prepare_object(obj);
   4078 	if (ret)
   4079 		goto err_remove_node;
   4080 
   4081 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
   4082 	list_add_tail(&vma->mm_list, &vm->inactive_list);
   4083 
   4084 	if (i915_is_ggtt(vm)) {
   4085 		bool mappable, fenceable;
   4086 
   4087 		fenceable = (vma->node.size == fence_size &&
   4088 			     (vma->node.start & (fence_alignment - 1)) == 0);
   4089 
   4090 		mappable = (vma->node.start + obj->base.size <=
   4091 			    dev_priv->gtt.mappable_end);
   4092 
   4093 		obj->map_and_fenceable = mappable && fenceable;
   4094 	}
   4095 
   4096 	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
   4097 
   4098 	trace_i915_vma_bind(vma, flags);
   4099 	vma->bind_vma(vma, obj->cache_level,
   4100 		      flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
   4101 
   4102 	i915_gem_verify_gtt(dev);
   4103 	return vma;
   4104 
   4105 err_remove_node:
   4106 	drm_mm_remove_node(&vma->node);
   4107 err_free_vma:
   4108 	i915_gem_vma_destroy(vma);
   4109 	vma = ERR_PTR(ret);
   4110 err_unpin:
   4111 	i915_gem_object_unpin_pages(obj);
   4112 	return vma;
   4113 }
   4114 
   4115 bool
   4116 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
   4117 			bool force)
   4118 {
   4119 	/* If we don't have a page list set up, then we're not pinned
   4120 	 * to GPU, and we can ignore the cache flush because it'll happen
   4121 	 * again at bind time.
   4122 	 */
   4123 	if (obj->pages == NULL)
   4124 		return false;
   4125 
   4126 	/*
   4127 	 * Stolen memory is always coherent with the GPU as it is explicitly
   4128 	 * marked as wc by the system, or the system is cache-coherent.
   4129 	 */
   4130 	if (obj->stolen)
   4131 		return false;
   4132 
   4133 	/* If the GPU is snooping the contents of the CPU cache,
   4134 	 * we do not need to manually clear the CPU cache lines.  However,
   4135 	 * the caches are only snooped when the render cache is
   4136 	 * flushed/invalidated.  As we always have to emit invalidations
   4137 	 * and flushes when moving into and out of the RENDER domain, correct
   4138 	 * snooping behaviour occurs naturally as the result of our domain
   4139 	 * tracking.
   4140 	 */
   4141 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
   4142 		return false;
   4143 
   4144 	trace_i915_gem_object_clflush(obj);
   4145 #ifdef __NetBSD__
   4146 	drm_clflush_pglist(&obj->igo_pageq);
   4147 #else
   4148 	drm_clflush_sg(obj->pages);
   4149 #endif
   4150 
   4151 	return true;
   4152 }
   4153 
   4154 /** Flushes the GTT write domain for the object if it's dirty. */
   4155 static void
   4156 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
   4157 {
   4158 	uint32_t old_write_domain;
   4159 
   4160 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
   4161 		return;
   4162 
   4163 	/* No actual flushing is required for the GTT write domain.  Writes
   4164 	 * to it immediately go to main memory as far as we know, so there's
   4165 	 * no chipset flush.  It also doesn't land in render cache.
   4166 	 *
   4167 	 * However, we do have to enforce the order so that all writes through
   4168 	 * the GTT land before any writes to the device, such as updates to
   4169 	 * the GATT itself.
   4170 	 */
   4171 	wmb();
   4172 
   4173 	old_write_domain = obj->base.write_domain;
   4174 	obj->base.write_domain = 0;
   4175 
   4176 	trace_i915_gem_object_change_domain(obj,
   4177 					    obj->base.read_domains,
   4178 					    old_write_domain);
   4179 }
   4180 
   4181 /** Flushes the CPU write domain for the object if it's dirty. */
   4182 static void
   4183 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
   4184 				       bool force)
   4185 {
   4186 	uint32_t old_write_domain;
   4187 
   4188 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
   4189 		return;
   4190 
   4191 	if (i915_gem_clflush_object(obj, force))
   4192 		i915_gem_chipset_flush(obj->base.dev);
   4193 
   4194 	old_write_domain = obj->base.write_domain;
   4195 	obj->base.write_domain = 0;
   4196 
   4197 	trace_i915_gem_object_change_domain(obj,
   4198 					    obj->base.read_domains,
   4199 					    old_write_domain);
   4200 }
   4201 
   4202 /**
   4203  * Moves a single object to the GTT read, and possibly write domain.
   4204  *
   4205  * This function returns when the move is complete, including waiting on
   4206  * flushes to occur.
   4207  */
   4208 int
   4209 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
   4210 {
   4211 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   4212 	uint32_t old_write_domain, old_read_domains;
   4213 	int ret;
   4214 
   4215 	/* Not valid to be called on unbound objects. */
   4216 	if (!i915_gem_obj_bound_any(obj))
   4217 		return -EINVAL;
   4218 
   4219 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
   4220 		return 0;
   4221 
   4222 	ret = i915_gem_object_wait_rendering(obj, !write);
   4223 	if (ret)
   4224 		return ret;
   4225 
   4226 	i915_gem_object_flush_cpu_write_domain(obj, false);
   4227 
   4228 	/* Serialise direct access to this object with the barriers for
   4229 	 * coherent writes from the GPU, by effectively invalidating the
   4230 	 * GTT domain upon first access.
   4231 	 */
   4232 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   4233 		mb();
   4234 
   4235 	old_write_domain = obj->base.write_domain;
   4236 	old_read_domains = obj->base.read_domains;
   4237 
   4238 	/* It should now be out of any other write domains, and we can update
   4239 	 * the domain values for our changes.
   4240 	 */
   4241 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
   4242 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4243 	if (write) {
   4244 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
   4245 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
   4246 		obj->dirty = 1;
   4247 	}
   4248 
   4249 	trace_i915_gem_object_change_domain(obj,
   4250 					    old_read_domains,
   4251 					    old_write_domain);
   4252 
   4253 	/* And bump the LRU for this access */
   4254 	if (i915_gem_object_is_inactive(obj)) {
   4255 		struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
   4256 		if (vma)
   4257 			list_move_tail(&vma->mm_list,
   4258 				       &dev_priv->gtt.base.inactive_list);
   4259 
   4260 	}
   4261 
   4262 	return 0;
   4263 }
   4264 
   4265 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
   4266 				    enum i915_cache_level cache_level)
   4267 {
   4268 	struct drm_device *dev = obj->base.dev;
   4269 	struct i915_vma *vma, *next;
   4270 	int ret;
   4271 
   4272 	if (obj->cache_level == cache_level)
   4273 		return 0;
   4274 
   4275 	if (i915_gem_obj_is_pinned(obj)) {
   4276 		DRM_DEBUG("can not change the cache level of pinned objects\n");
   4277 		return -EBUSY;
   4278 	}
   4279 
   4280 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   4281 		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
   4282 			ret = i915_vma_unbind(vma);
   4283 			if (ret)
   4284 				return ret;
   4285 		}
   4286 	}
   4287 
   4288 	if (i915_gem_obj_bound_any(obj)) {
   4289 		ret = i915_gem_object_finish_gpu(obj);
   4290 		if (ret)
   4291 			return ret;
   4292 
   4293 		i915_gem_object_finish_gtt(obj);
   4294 
   4295 		/* Before SandyBridge, you could not use tiling or fence
   4296 		 * registers with snooped memory, so relinquish any fences
   4297 		 * currently pointing to our region in the aperture.
   4298 		 */
   4299 		if (INTEL_INFO(dev)->gen < 6) {
   4300 			ret = i915_gem_object_put_fence(obj);
   4301 			if (ret)
   4302 				return ret;
   4303 		}
   4304 
   4305 		list_for_each_entry(vma, &obj->vma_list, vma_link)
   4306 			if (drm_mm_node_allocated(&vma->node))
   4307 				vma->bind_vma(vma, cache_level,
   4308 					      obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
   4309 	}
   4310 
   4311 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   4312 		vma->node.color = cache_level;
   4313 	obj->cache_level = cache_level;
   4314 
   4315 	if (cpu_write_needs_clflush(obj)) {
   4316 		u32 old_read_domains, old_write_domain;
   4317 
   4318 		/* If we're coming from LLC cached, then we haven't
   4319 		 * actually been tracking whether the data is in the
   4320 		 * CPU cache or not, since we only allow one bit set
   4321 		 * in obj->write_domain and have been skipping the clflushes.
   4322 		 * Just set it to the CPU cache for now.
   4323 		 */
   4324 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
   4325 
   4326 		old_read_domains = obj->base.read_domains;
   4327 		old_write_domain = obj->base.write_domain;
   4328 
   4329 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4330 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4331 
   4332 		trace_i915_gem_object_change_domain(obj,
   4333 						    old_read_domains,
   4334 						    old_write_domain);
   4335 	}
   4336 
   4337 	i915_gem_verify_gtt(dev);
   4338 	return 0;
   4339 }
   4340 
   4341 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
   4342 			       struct drm_file *file)
   4343 {
   4344 	struct drm_i915_gem_caching *args = data;
   4345 	struct drm_gem_object *gobj;
   4346 	struct drm_i915_gem_object *obj;
   4347 	int ret;
   4348 
   4349 	ret = i915_mutex_lock_interruptible(dev);
   4350 	if (ret)
   4351 		return ret;
   4352 
   4353 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4354 	if (gobj == NULL) {
   4355 		ret = -ENOENT;
   4356 		goto unlock;
   4357 	}
   4358 	obj = to_intel_bo(gobj);
   4359 
   4360 	switch (obj->cache_level) {
   4361 	case I915_CACHE_LLC:
   4362 	case I915_CACHE_L3_LLC:
   4363 		args->caching = I915_CACHING_CACHED;
   4364 		break;
   4365 
   4366 	case I915_CACHE_WT:
   4367 		args->caching = I915_CACHING_DISPLAY;
   4368 		break;
   4369 
   4370 	default:
   4371 		args->caching = I915_CACHING_NONE;
   4372 		break;
   4373 	}
   4374 
   4375 	drm_gem_object_unreference(&obj->base);
   4376 unlock:
   4377 	mutex_unlock(&dev->struct_mutex);
   4378 	return ret;
   4379 }
   4380 
   4381 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
   4382 			       struct drm_file *file)
   4383 {
   4384 	struct drm_i915_gem_caching *args = data;
   4385 	struct drm_gem_object *gobj;
   4386 	struct drm_i915_gem_object *obj;
   4387 	enum i915_cache_level level;
   4388 	int ret;
   4389 
   4390 	switch (args->caching) {
   4391 	case I915_CACHING_NONE:
   4392 		level = I915_CACHE_NONE;
   4393 		break;
   4394 	case I915_CACHING_CACHED:
   4395 		level = I915_CACHE_LLC;
   4396 		break;
   4397 	case I915_CACHING_DISPLAY:
   4398 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
   4399 		break;
   4400 	default:
   4401 		return -EINVAL;
   4402 	}
   4403 
   4404 	ret = i915_mutex_lock_interruptible(dev);
   4405 	if (ret)
   4406 		return ret;
   4407 
   4408 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4409 	if (gobj == NULL) {
   4410 		ret = -ENOENT;
   4411 		goto unlock;
   4412 	}
   4413 	obj = to_intel_bo(gobj);
   4414 
   4415 	ret = i915_gem_object_set_cache_level(obj, level);
   4416 
   4417 	drm_gem_object_unreference(&obj->base);
   4418 unlock:
   4419 	mutex_unlock(&dev->struct_mutex);
   4420 	return ret;
   4421 }
   4422 
   4423 static bool is_pin_display(struct drm_i915_gem_object *obj)
   4424 {
   4425 	/* There are 3 sources that pin objects:
   4426 	 *   1. The display engine (scanouts, sprites, cursors);
   4427 	 *   2. Reservations for execbuffer;
   4428 	 *   3. The user.
   4429 	 *
   4430 	 * We can ignore reservations as we hold the struct_mutex and
   4431 	 * are only called outside of the reservation path.  The user
   4432 	 * can only increment pin_count once, and so if after
   4433 	 * subtracting the potential reference by the user, any pin_count
   4434 	 * remains, it must be due to another use by the display engine.
   4435 	 */
   4436 	return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
   4437 }
   4438 
   4439 /*
   4440  * Prepare buffer for display plane (scanout, cursors, etc).
   4441  * Can be called from an uninterruptible phase (modesetting) and allows
   4442  * any flushes to be pipelined (for pageflips).
   4443  */
   4444 int
   4445 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
   4446 				     u32 alignment,
   4447 				     struct intel_ring_buffer *pipelined)
   4448 {
   4449 	u32 old_read_domains, old_write_domain;
   4450 	int ret;
   4451 
   4452 	if (pipelined != obj->ring) {
   4453 		ret = i915_gem_object_sync(obj, pipelined);
   4454 		if (ret)
   4455 			return ret;
   4456 	}
   4457 
   4458 	/* Mark the pin_display early so that we account for the
   4459 	 * display coherency whilst setting up the cache domains.
   4460 	 */
   4461 	obj->pin_display = true;
   4462 
   4463 	/* The display engine is not coherent with the LLC cache on gen6.  As
   4464 	 * a result, we make sure that the pinning that is about to occur is
   4465 	 * done with uncached PTEs. This is lowest common denominator for all
   4466 	 * chipsets.
   4467 	 *
   4468 	 * However for gen6+, we could do better by using the GFDT bit instead
   4469 	 * of uncaching, which would allow us to flush all the LLC-cached data
   4470 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
   4471 	 */
   4472 	ret = i915_gem_object_set_cache_level(obj,
   4473 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
   4474 	if (ret)
   4475 		goto err_unpin_display;
   4476 
   4477 	/* As the user may map the buffer once pinned in the display plane
   4478 	 * (e.g. libkms for the bootup splash), we have to ensure that we
   4479 	 * always use map_and_fenceable for all scanout buffers.
   4480 	 */
   4481 	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
   4482 	if (ret)
   4483 		goto err_unpin_display;
   4484 
   4485 	i915_gem_object_flush_cpu_write_domain(obj, true);
   4486 
   4487 	old_write_domain = obj->base.write_domain;
   4488 	old_read_domains = obj->base.read_domains;
   4489 
   4490 	/* It should now be out of any other write domains, and we can update
   4491 	 * the domain values for our changes.
   4492 	 */
   4493 	obj->base.write_domain = 0;
   4494 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4495 
   4496 	trace_i915_gem_object_change_domain(obj,
   4497 					    old_read_domains,
   4498 					    old_write_domain);
   4499 
   4500 	return 0;
   4501 
   4502 err_unpin_display:
   4503 	obj->pin_display = is_pin_display(obj);
   4504 	return ret;
   4505 }
   4506 
   4507 void
   4508 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
   4509 {
   4510 	i915_gem_object_ggtt_unpin(obj);
   4511 	obj->pin_display = is_pin_display(obj);
   4512 }
   4513 
   4514 int
   4515 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
   4516 {
   4517 	int ret;
   4518 
   4519 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
   4520 		return 0;
   4521 
   4522 	ret = i915_gem_object_wait_rendering(obj, false);
   4523 	if (ret)
   4524 		return ret;
   4525 
   4526 	/* Ensure that we invalidate the GPU's caches and TLBs. */
   4527 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
   4528 	return 0;
   4529 }
   4530 
   4531 /**
   4532  * Moves a single object to the CPU read, and possibly write domain.
   4533  *
   4534  * This function returns when the move is complete, including waiting on
   4535  * flushes to occur.
   4536  */
   4537 int
   4538 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
   4539 {
   4540 	uint32_t old_write_domain, old_read_domains;
   4541 	int ret;
   4542 
   4543 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
   4544 		return 0;
   4545 
   4546 	ret = i915_gem_object_wait_rendering(obj, !write);
   4547 	if (ret)
   4548 		return ret;
   4549 
   4550 	i915_gem_object_flush_gtt_write_domain(obj);
   4551 
   4552 	old_write_domain = obj->base.write_domain;
   4553 	old_read_domains = obj->base.read_domains;
   4554 
   4555 	/* Flush the CPU cache if it's still invalid. */
   4556 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
   4557 		i915_gem_clflush_object(obj, false);
   4558 
   4559 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
   4560 	}
   4561 
   4562 	/* It should now be out of any other write domains, and we can update
   4563 	 * the domain values for our changes.
   4564 	 */
   4565 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
   4566 
   4567 	/* If we're writing through the CPU, then the GPU read domains will
   4568 	 * need to be invalidated at next use.
   4569 	 */
   4570 	if (write) {
   4571 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4572 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4573 	}
   4574 
   4575 	trace_i915_gem_object_change_domain(obj,
   4576 					    old_read_domains,
   4577 					    old_write_domain);
   4578 
   4579 	return 0;
   4580 }
   4581 
   4582 /* Throttle our rendering by waiting until the ring has completed our requests
   4583  * emitted over 20 msec ago.
   4584  *
   4585  * Note that if we were to use the current jiffies each time around the loop,
   4586  * we wouldn't escape the function with any frames outstanding if the time to
   4587  * render a frame was over 20ms.
   4588  *
   4589  * This should get us reasonable parallelism between CPU and GPU but also
   4590  * relatively low latency when blocking on a particular request to finish.
   4591  */
   4592 static int
   4593 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
   4594 {
   4595 	struct drm_i915_private *dev_priv = dev->dev_private;
   4596 	struct drm_i915_file_private *file_priv = file->driver_priv;
   4597 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
   4598 	struct drm_i915_gem_request *request;
   4599 	struct intel_ring_buffer *ring = NULL;
   4600 	unsigned reset_counter;
   4601 	u32 seqno = 0;
   4602 	int ret;
   4603 
   4604 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
   4605 	if (ret)
   4606 		return ret;
   4607 
   4608 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
   4609 	if (ret)
   4610 		return ret;
   4611 
   4612 	spin_lock(&file_priv->mm.lock);
   4613 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
   4614 		if (time_after_eq(request->emitted_jiffies, recent_enough))
   4615 			break;
   4616 
   4617 		ring = request->ring;
   4618 		seqno = request->seqno;
   4619 	}
   4620 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   4621 	spin_unlock(&file_priv->mm.lock);
   4622 
   4623 	if (seqno == 0)
   4624 		return 0;
   4625 
   4626 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
   4627 	if (ret == 0)
   4628 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
   4629 
   4630 	return ret;
   4631 }
   4632 
   4633 static bool
   4634 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
   4635 {
   4636 	struct drm_i915_gem_object *obj = vma->obj;
   4637 
   4638 	if (alignment &&
   4639 	    vma->node.start & (alignment - 1))
   4640 		return true;
   4641 
   4642 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
   4643 		return true;
   4644 
   4645 	if (flags & PIN_OFFSET_BIAS &&
   4646 	    vma->node.start < (flags & PIN_OFFSET_MASK))
   4647 		return true;
   4648 
   4649 	return false;
   4650 }
   4651 
   4652 int
   4653 i915_gem_object_pin(struct drm_i915_gem_object *obj,
   4654 		    struct i915_address_space *vm,
   4655 		    uint32_t alignment,
   4656 		    uint64_t flags)
   4657 {
   4658 	struct i915_vma *vma;
   4659 	int ret;
   4660 
   4661 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
   4662 		return -EINVAL;
   4663 
   4664 	vma = i915_gem_obj_to_vma(obj, vm);
   4665 	if (vma) {
   4666 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
   4667 			return -EBUSY;
   4668 
   4669 		if (i915_vma_misplaced(vma, alignment, flags)) {
   4670 			WARN(vma->pin_count,
   4671 			     "bo is already pinned with incorrect alignment:"
   4672 			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
   4673 			     " obj->map_and_fenceable=%d\n",
   4674 			     i915_gem_obj_offset(obj, vm), alignment,
   4675 			     !!(flags & PIN_MAPPABLE),
   4676 			     obj->map_and_fenceable);
   4677 			ret = i915_vma_unbind(vma);
   4678 			if (ret)
   4679 				return ret;
   4680 
   4681 			vma = NULL;
   4682 		}
   4683 	}
   4684 
   4685 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
   4686 		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
   4687 		if (IS_ERR(vma))
   4688 			return PTR_ERR(vma);
   4689 	}
   4690 
   4691 	if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
   4692 		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
   4693 
   4694 	vma->pin_count++;
   4695 	if (flags & PIN_MAPPABLE)
   4696 		obj->pin_mappable |= true;
   4697 
   4698 	return 0;
   4699 }
   4700 
   4701 void
   4702 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
   4703 {
   4704 	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
   4705 
   4706 	BUG_ON(!vma);
   4707 	BUG_ON(vma->pin_count == 0);
   4708 	BUG_ON(!i915_gem_obj_ggtt_bound(obj));
   4709 
   4710 	if (--vma->pin_count == 0)
   4711 		obj->pin_mappable = false;
   4712 }
   4713 
   4714 int
   4715 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
   4716 		   struct drm_file *file)
   4717 {
   4718 	struct drm_i915_gem_pin *args = data;
   4719 	struct drm_gem_object *gobj;
   4720 	struct drm_i915_gem_object *obj;
   4721 	int ret;
   4722 
   4723 	if (INTEL_INFO(dev)->gen >= 6)
   4724 		return -ENODEV;
   4725 
   4726 	ret = i915_mutex_lock_interruptible(dev);
   4727 	if (ret)
   4728 		return ret;
   4729 
   4730 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4731 	if (gobj == NULL) {
   4732 		ret = -ENOENT;
   4733 		goto unlock;
   4734 	}
   4735 	obj = to_intel_bo(gobj);
   4736 
   4737 	if (obj->madv != I915_MADV_WILLNEED) {
   4738 		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
   4739 		ret = -EFAULT;
   4740 		goto out;
   4741 	}
   4742 
   4743 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
   4744 		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
   4745 			  args->handle);
   4746 		ret = -EINVAL;
   4747 		goto out;
   4748 	}
   4749 
   4750 	if (obj->user_pin_count == ULONG_MAX) {
   4751 		ret = -EBUSY;
   4752 		goto out;
   4753 	}
   4754 
   4755 	if (obj->user_pin_count == 0) {
   4756 		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
   4757 		if (ret)
   4758 			goto out;
   4759 	}
   4760 
   4761 	obj->user_pin_count++;
   4762 	obj->pin_filp = file;
   4763 
   4764 	args->offset = i915_gem_obj_ggtt_offset(obj);
   4765 out:
   4766 	drm_gem_object_unreference(&obj->base);
   4767 unlock:
   4768 	mutex_unlock(&dev->struct_mutex);
   4769 	return ret;
   4770 }
   4771 
   4772 int
   4773 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
   4774 		     struct drm_file *file)
   4775 {
   4776 	struct drm_i915_gem_pin *args = data;
   4777 	struct drm_gem_object *gobj;
   4778 	struct drm_i915_gem_object *obj;
   4779 	int ret;
   4780 
   4781 	ret = i915_mutex_lock_interruptible(dev);
   4782 	if (ret)
   4783 		return ret;
   4784 
   4785 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4786 	if (gobj == NULL) {
   4787 		ret = -ENOENT;
   4788 		goto unlock;
   4789 	}
   4790 	obj = to_intel_bo(gobj);
   4791 
   4792 	if (obj->pin_filp != file) {
   4793 		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
   4794 			  args->handle);
   4795 		ret = -EINVAL;
   4796 		goto out;
   4797 	}
   4798 	obj->user_pin_count--;
   4799 	if (obj->user_pin_count == 0) {
   4800 		obj->pin_filp = NULL;
   4801 		i915_gem_object_ggtt_unpin(obj);
   4802 	}
   4803 
   4804 out:
   4805 	drm_gem_object_unreference(&obj->base);
   4806 unlock:
   4807 	mutex_unlock(&dev->struct_mutex);
   4808 	return ret;
   4809 }
   4810 
   4811 int
   4812 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
   4813 		    struct drm_file *file)
   4814 {
   4815 	struct drm_i915_gem_busy *args = data;
   4816 	struct drm_gem_object *gobj;
   4817 	struct drm_i915_gem_object *obj;
   4818 	int ret;
   4819 
   4820 	ret = i915_mutex_lock_interruptible(dev);
   4821 	if (ret)
   4822 		return ret;
   4823 
   4824 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4825 	if (gobj == NULL) {
   4826 		ret = -ENOENT;
   4827 		goto unlock;
   4828 	}
   4829 	obj = to_intel_bo(gobj);
   4830 
   4831 	/* Count all active objects as busy, even if they are currently not used
   4832 	 * by the gpu. Users of this interface expect objects to eventually
   4833 	 * become non-busy without any further actions, therefore emit any
   4834 	 * necessary flushes here.
   4835 	 */
   4836 	ret = i915_gem_object_flush_active(obj);
   4837 
   4838 	args->busy = obj->active;
   4839 	if (obj->ring) {
   4840 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
   4841 		args->busy |= intel_ring_flag(obj->ring) << 16;
   4842 	}
   4843 
   4844 	drm_gem_object_unreference(&obj->base);
   4845 unlock:
   4846 	mutex_unlock(&dev->struct_mutex);
   4847 	return ret;
   4848 }
   4849 
   4850 int
   4851 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
   4852 			struct drm_file *file_priv)
   4853 {
   4854 	return i915_gem_ring_throttle(dev, file_priv);
   4855 }
   4856 
   4857 int
   4858 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   4859 		       struct drm_file *file_priv)
   4860 {
   4861 	struct drm_i915_gem_madvise *args = data;
   4862 	struct drm_gem_object *gobj;
   4863 	struct drm_i915_gem_object *obj;
   4864 	int ret;
   4865 
   4866 	switch (args->madv) {
   4867 	case I915_MADV_DONTNEED:
   4868 	case I915_MADV_WILLNEED:
   4869 	    break;
   4870 	default:
   4871 	    return -EINVAL;
   4872 	}
   4873 
   4874 	ret = i915_mutex_lock_interruptible(dev);
   4875 	if (ret)
   4876 		return ret;
   4877 
   4878 	gobj = drm_gem_object_lookup(dev, file_priv, args->handle);
   4879 	if (gobj == NULL) {
   4880 		ret = -ENOENT;
   4881 		goto unlock;
   4882 	}
   4883 	obj = to_intel_bo(gobj);
   4884 
   4885 	if (i915_gem_obj_is_pinned(obj)) {
   4886 		ret = -EINVAL;
   4887 		goto out;
   4888 	}
   4889 
   4890 	if (obj->madv != __I915_MADV_PURGED)
   4891 		obj->madv = args->madv;
   4892 
   4893 	/* if the object is no longer attached, discard its backing storage */
   4894 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
   4895 		i915_gem_object_truncate(obj);
   4896 
   4897 	args->retained = obj->madv != __I915_MADV_PURGED;
   4898 
   4899 out:
   4900 	drm_gem_object_unreference(&obj->base);
   4901 unlock:
   4902 	mutex_unlock(&dev->struct_mutex);
   4903 	return ret;
   4904 }
   4905 
   4906 void i915_gem_object_init(struct drm_i915_gem_object *obj,
   4907 			  const struct drm_i915_gem_object_ops *ops)
   4908 {
   4909 	INIT_LIST_HEAD(&obj->global_list);
   4910 	INIT_LIST_HEAD(&obj->ring_list);
   4911 	INIT_LIST_HEAD(&obj->obj_exec_link);
   4912 	INIT_LIST_HEAD(&obj->vma_list);
   4913 
   4914 	obj->ops = ops;
   4915 
   4916 	obj->fence_reg = I915_FENCE_REG_NONE;
   4917 	obj->madv = I915_MADV_WILLNEED;
   4918 	/* Avoid an unnecessary call to unbind on the first bind. */
   4919 	obj->map_and_fenceable = true;
   4920 
   4921 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
   4922 }
   4923 
   4924 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
   4925 	.get_pages = i915_gem_object_get_pages_gtt,
   4926 	.put_pages = i915_gem_object_put_pages_gtt,
   4927 };
   4928 
   4929 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
   4930 						  size_t size)
   4931 {
   4932 #ifdef __NetBSD__
   4933 	struct drm_i915_private *const dev_priv = dev->dev_private;
   4934 #endif
   4935 	struct drm_i915_gem_object *obj;
   4936 #ifndef __NetBSD__
   4937 	struct address_space *mapping;
   4938 	gfp_t mask;
   4939 #endif
   4940 
   4941 	obj = i915_gem_object_alloc(dev);
   4942 	if (obj == NULL)
   4943 		return NULL;
   4944 
   4945 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
   4946 		i915_gem_object_free(obj);
   4947 		return NULL;
   4948 	}
   4949 
   4950 #ifdef __NetBSD__
   4951 	uao_set_pgfl(obj->base.gemo_shm_uao, dev_priv->gtt.pgfl);
   4952 #else
   4953 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
   4954 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
   4955 		/* 965gm cannot relocate objects above 4GiB. */
   4956 		mask &= ~__GFP_HIGHMEM;
   4957 		mask |= __GFP_DMA32;
   4958 	}
   4959 
   4960 	mapping = file_inode(obj->base.filp)->i_mapping;
   4961 	mapping_set_gfp_mask(mapping, mask);
   4962 #endif
   4963 
   4964 	i915_gem_object_init(obj, &i915_gem_object_ops);
   4965 
   4966 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4967 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4968 
   4969 	if (HAS_LLC(dev)) {
   4970 		/* On some devices, we can have the GPU use the LLC (the CPU
   4971 		 * cache) for about a 10% performance improvement
   4972 		 * compared to uncached.  Graphics requests other than
   4973 		 * display scanout are coherent with the CPU in
   4974 		 * accessing this cache.  This means in this mode we
   4975 		 * don't need to clflush on the CPU side, and on the
   4976 		 * GPU side we only need to flush internal caches to
   4977 		 * get data visible to the CPU.
   4978 		 *
   4979 		 * However, we maintain the display planes as UC, and so
   4980 		 * need to rebind when first used as such.
   4981 		 */
   4982 		obj->cache_level = I915_CACHE_LLC;
   4983 	} else
   4984 		obj->cache_level = I915_CACHE_NONE;
   4985 
   4986 	trace_i915_gem_object_create(obj);
   4987 
   4988 	return obj;
   4989 }
   4990 
   4991 void i915_gem_free_object(struct drm_gem_object *gem_obj)
   4992 {
   4993 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   4994 	struct drm_device *dev = obj->base.dev;
   4995 	struct drm_i915_private *dev_priv = dev->dev_private;
   4996 	struct i915_vma *vma, *next;
   4997 
   4998 	intel_runtime_pm_get(dev_priv);
   4999 
   5000 	trace_i915_gem_object_destroy(obj);
   5001 
   5002 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   5003 		int ret;
   5004 
   5005 		vma->pin_count = 0;
   5006 		ret = i915_vma_unbind(vma);
   5007 		if (WARN_ON(ret == -ERESTARTSYS)) {
   5008 			bool was_interruptible;
   5009 
   5010 			was_interruptible = dev_priv->mm.interruptible;
   5011 			dev_priv->mm.interruptible = false;
   5012 
   5013 			WARN_ON(i915_vma_unbind(vma));
   5014 
   5015 			dev_priv->mm.interruptible = was_interruptible;
   5016 		}
   5017 	}
   5018 
   5019 	i915_gem_object_detach_phys(obj);
   5020 
   5021 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
   5022 	 * before progressing. */
   5023 	if (obj->stolen)
   5024 		i915_gem_object_unpin_pages(obj);
   5025 
   5026 	if (WARN_ON(obj->pages_pin_count))
   5027 		obj->pages_pin_count = 0;
   5028 	i915_gem_object_put_pages(obj);
   5029 	i915_gem_object_free_mmap_offset(obj);
   5030 	i915_gem_object_release_stolen(obj);
   5031 
   5032 	BUG_ON(obj->pages);
   5033 
   5034 #ifndef __NetBSD__		/* XXX drm prime */
   5035 	if (obj->base.import_attach)
   5036 		drm_prime_gem_destroy(&obj->base, NULL);
   5037 #endif
   5038 
   5039 	drm_gem_object_release(&obj->base);
   5040 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
   5041 
   5042 	kfree(obj->bit_17);
   5043 	i915_gem_object_free(obj);
   5044 
   5045 	intel_runtime_pm_put(dev_priv);
   5046 }
   5047 
   5048 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
   5049 				     struct i915_address_space *vm)
   5050 {
   5051 	struct i915_vma *vma;
   5052 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   5053 		if (vma->vm == vm)
   5054 			return vma;
   5055 
   5056 	return NULL;
   5057 }
   5058 
   5059 void i915_gem_vma_destroy(struct i915_vma *vma)
   5060 {
   5061 	WARN_ON(vma->node.allocated);
   5062 
   5063 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
   5064 	if (!list_empty(&vma->exec_list))
   5065 		return;
   5066 
   5067 	list_del(&vma->vma_link);
   5068 
   5069 	kfree(vma);
   5070 }
   5071 
   5072 int
   5073 i915_gem_suspend(struct drm_device *dev)
   5074 {
   5075 	struct drm_i915_private *dev_priv = dev->dev_private;
   5076 	int ret = 0;
   5077 
   5078 	mutex_lock(&dev->struct_mutex);
   5079 	if (dev_priv->ums.mm_suspended)
   5080 		goto err;
   5081 
   5082 	ret = i915_gpu_idle(dev);
   5083 	if (ret)
   5084 		goto err;
   5085 
   5086 	i915_gem_retire_requests(dev);
   5087 
   5088 	/* Under UMS, be paranoid and evict. */
   5089 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   5090 		i915_gem_evict_everything(dev);
   5091 
   5092 	i915_kernel_lost_context(dev);
   5093 	i915_gem_cleanup_ringbuffer(dev);
   5094 
   5095 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
   5096 	 * We need to replace this with a semaphore, or something.
   5097 	 * And not confound ums.mm_suspended!
   5098 	 */
   5099 	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
   5100 							     DRIVER_MODESET);
   5101 	mutex_unlock(&dev->struct_mutex);
   5102 
   5103 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
   5104 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
   5105 	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
   5106 
   5107 	return 0;
   5108 
   5109 err:
   5110 	mutex_unlock(&dev->struct_mutex);
   5111 	return ret;
   5112 }
   5113 
   5114 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
   5115 {
   5116 	struct drm_device *dev = ring->dev;
   5117 	struct drm_i915_private *dev_priv = dev->dev_private;
   5118 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
   5119 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
   5120 	int i, ret;
   5121 
   5122 	if (!HAS_L3_DPF(dev) || !remap_info)
   5123 		return 0;
   5124 
   5125 	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
   5126 	if (ret)
   5127 		return ret;
   5128 
   5129 	/*
   5130 	 * Note: We do not worry about the concurrent register cacheline hang
   5131 	 * here because no other code should access these registers other than
   5132 	 * at initialization time.
   5133 	 */
   5134 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
   5135 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
   5136 		intel_ring_emit(ring, reg_base + i);
   5137 		intel_ring_emit(ring, remap_info[i/4]);
   5138 	}
   5139 
   5140 	intel_ring_advance(ring);
   5141 
   5142 	return ret;
   5143 }
   5144 
   5145 void i915_gem_init_swizzling(struct drm_device *dev)
   5146 {
   5147 	struct drm_i915_private *dev_priv = dev->dev_private;
   5148 
   5149 	if (INTEL_INFO(dev)->gen < 5 ||
   5150 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
   5151 		return;
   5152 
   5153 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
   5154 				 DISP_TILE_SURFACE_SWIZZLING);
   5155 
   5156 	if (IS_GEN5(dev))
   5157 		return;
   5158 
   5159 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
   5160 	if (IS_GEN6(dev))
   5161 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
   5162 	else if (IS_GEN7(dev))
   5163 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
   5164 	else if (IS_GEN8(dev))
   5165 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
   5166 	else
   5167 		BUG();
   5168 }
   5169 
   5170 static bool
   5171 intel_enable_blt(struct drm_device *dev)
   5172 {
   5173 	if (!HAS_BLT(dev))
   5174 		return false;
   5175 
   5176 	/* The blitter was dysfunctional on early prototypes */
   5177 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
   5178 		DRM_INFO("BLT not supported on this pre-production hardware;"
   5179 			 " graphics performance will be degraded.\n");
   5180 		return false;
   5181 	}
   5182 
   5183 	return true;
   5184 }
   5185 
   5186 static int i915_gem_init_rings(struct drm_device *dev)
   5187 {
   5188 	struct drm_i915_private *dev_priv = dev->dev_private;
   5189 	int ret;
   5190 
   5191 	ret = intel_init_render_ring_buffer(dev);
   5192 	if (ret)
   5193 		return ret;
   5194 
   5195 	if (HAS_BSD(dev)) {
   5196 		ret = intel_init_bsd_ring_buffer(dev);
   5197 		if (ret)
   5198 			goto cleanup_render_ring;
   5199 	}
   5200 
   5201 	if (intel_enable_blt(dev)) {
   5202 		ret = intel_init_blt_ring_buffer(dev);
   5203 		if (ret)
   5204 			goto cleanup_bsd_ring;
   5205 	}
   5206 
   5207 	if (HAS_VEBOX(dev)) {
   5208 		ret = intel_init_vebox_ring_buffer(dev);
   5209 		if (ret)
   5210 			goto cleanup_blt_ring;
   5211 	}
   5212 
   5213 
   5214 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
   5215 	if (ret)
   5216 		goto cleanup_vebox_ring;
   5217 
   5218 	return 0;
   5219 
   5220 cleanup_vebox_ring:
   5221 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
   5222 cleanup_blt_ring:
   5223 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
   5224 cleanup_bsd_ring:
   5225 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
   5226 cleanup_render_ring:
   5227 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
   5228 
   5229 	return ret;
   5230 }
   5231 
   5232 int
   5233 i915_gem_init_hw(struct drm_device *dev)
   5234 {
   5235 	struct drm_i915_private *dev_priv = dev->dev_private;
   5236 	int ret, i;
   5237 
   5238 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
   5239 		return -EIO;
   5240 
   5241 	if (dev_priv->ellc_size)
   5242 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
   5243 
   5244 	if (IS_HASWELL(dev))
   5245 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
   5246 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
   5247 
   5248 	if (HAS_PCH_NOP(dev)) {
   5249 		if (IS_IVYBRIDGE(dev)) {
   5250 			u32 temp = I915_READ(GEN7_MSG_CTL);
   5251 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
   5252 			I915_WRITE(GEN7_MSG_CTL, temp);
   5253 		} else if (INTEL_INFO(dev)->gen >= 7) {
   5254 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
   5255 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
   5256 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
   5257 		}
   5258 	}
   5259 
   5260 	i915_gem_init_swizzling(dev);
   5261 
   5262 	ret = i915_gem_init_rings(dev);
   5263 	if (ret)
   5264 		return ret;
   5265 
   5266 	for (i = 0; i < NUM_L3_SLICES(dev); i++)
   5267 		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
   5268 
   5269 	/*
   5270 	 * XXX: Contexts should only be initialized once. Doing a switch to the
   5271 	 * default context switch however is something we'd like to do after
   5272 	 * reset or thaw (the latter may not actually be necessary for HW, but
   5273 	 * goes with our code better). Context switching requires rings (for
   5274 	 * the do_switch), but before enabling PPGTT. So don't move this.
   5275 	 */
   5276 	ret = i915_gem_context_enable(dev_priv);
   5277 	if (ret) {
   5278 		DRM_ERROR("Context enable failed %d\n", ret);
   5279 		goto err_out;
   5280 	}
   5281 
   5282 	return 0;
   5283 
   5284 err_out:
   5285 	i915_gem_cleanup_ringbuffer(dev);
   5286 	return ret;
   5287 }
   5288 
   5289 int i915_gem_init(struct drm_device *dev)
   5290 {
   5291 	struct drm_i915_private *dev_priv = dev->dev_private;
   5292 	int ret;
   5293 
   5294 	mutex_lock(&dev->struct_mutex);
   5295 
   5296 	if (IS_VALLEYVIEW(dev)) {
   5297 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
   5298 		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
   5299 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
   5300 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
   5301 	}
   5302 	i915_gem_init_global_gtt(dev);
   5303 
   5304 	ret = i915_gem_context_init(dev);
   5305 	if (ret) {
   5306 		mutex_unlock(&dev->struct_mutex);
   5307 		return ret;
   5308 	}
   5309 
   5310 	ret = i915_gem_init_hw(dev);
   5311 	mutex_unlock(&dev->struct_mutex);
   5312 	if (ret) {
   5313 		WARN_ON(dev_priv->mm.aliasing_ppgtt);
   5314 		i915_gem_context_fini(dev);
   5315 		drm_mm_takedown(&dev_priv->gtt.base.mm);
   5316 		return ret;
   5317 	}
   5318 
   5319 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
   5320 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   5321 		dev_priv->dri1.allow_batchbuffer = 1;
   5322 	return 0;
   5323 }
   5324 
   5325 void
   5326 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
   5327 {
   5328 	struct drm_i915_private *dev_priv = dev->dev_private;
   5329 	struct intel_ring_buffer *ring;
   5330 	int i;
   5331 
   5332 	for_each_ring(ring, dev_priv, i)
   5333 		intel_cleanup_ring_buffer(ring);
   5334 }
   5335 
   5336 int
   5337 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
   5338 		       struct drm_file *file_priv)
   5339 {
   5340 	struct drm_i915_private *dev_priv = dev->dev_private;
   5341 	int ret;
   5342 
   5343 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   5344 		return 0;
   5345 
   5346 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
   5347 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
   5348 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
   5349 	}
   5350 
   5351 	mutex_lock(&dev->struct_mutex);
   5352 	dev_priv->ums.mm_suspended = 0;
   5353 
   5354 	ret = i915_gem_init_hw(dev);
   5355 	if (ret != 0) {
   5356 		mutex_unlock(&dev->struct_mutex);
   5357 		return ret;
   5358 	}
   5359 
   5360 	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
   5361 	mutex_unlock(&dev->struct_mutex);
   5362 
   5363 	ret = drm_irq_install(dev);
   5364 	if (ret)
   5365 		goto cleanup_ringbuffer;
   5366 
   5367 	return 0;
   5368 
   5369 cleanup_ringbuffer:
   5370 	mutex_lock(&dev->struct_mutex);
   5371 	i915_gem_cleanup_ringbuffer(dev);
   5372 	dev_priv->ums.mm_suspended = 1;
   5373 	mutex_unlock(&dev->struct_mutex);
   5374 
   5375 	return ret;
   5376 }
   5377 
   5378 int
   5379 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
   5380 		       struct drm_file *file_priv)
   5381 {
   5382 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   5383 		return 0;
   5384 
   5385 	drm_irq_uninstall(dev);
   5386 
   5387 	return i915_gem_suspend(dev);
   5388 }
   5389 
   5390 void
   5391 i915_gem_lastclose(struct drm_device *dev)
   5392 {
   5393 	int ret;
   5394 
   5395 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   5396 		return;
   5397 
   5398 	ret = i915_gem_suspend(dev);
   5399 	if (ret)
   5400 		DRM_ERROR("failed to idle hardware: %d\n", ret);
   5401 }
   5402 
   5403 static void
   5404 init_ring_lists(struct intel_ring_buffer *ring)
   5405 {
   5406 	INIT_LIST_HEAD(&ring->active_list);
   5407 	INIT_LIST_HEAD(&ring->request_list);
   5408 }
   5409 
   5410 void i915_init_vm(struct drm_i915_private *dev_priv,
   5411 		  struct i915_address_space *vm)
   5412 {
   5413 	if (!i915_is_ggtt(vm))
   5414 		drm_mm_init(&vm->mm, vm->start, vm->total);
   5415 	vm->dev = dev_priv->dev;
   5416 	INIT_LIST_HEAD(&vm->active_list);
   5417 	INIT_LIST_HEAD(&vm->inactive_list);
   5418 	INIT_LIST_HEAD(&vm->global_link);
   5419 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
   5420 }
   5421 
   5422 void
   5423 i915_gem_load(struct drm_device *dev)
   5424 {
   5425 	struct drm_i915_private *dev_priv = dev->dev_private;
   5426 	int i;
   5427 
   5428 	dev_priv->slab =
   5429 		kmem_cache_create("i915_gem_object",
   5430 				  sizeof(struct drm_i915_gem_object), 0,
   5431 				  SLAB_HWCACHE_ALIGN,
   5432 				  NULL);
   5433 
   5434 	INIT_LIST_HEAD(&dev_priv->vm_list);
   5435 	i915_init_vm(dev_priv, &dev_priv->gtt.base);
   5436 
   5437 	INIT_LIST_HEAD(&dev_priv->context_list);
   5438 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
   5439 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
   5440 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5441 	for (i = 0; i < I915_NUM_RINGS; i++)
   5442 		init_ring_lists(&dev_priv->ring[i]);
   5443 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
   5444 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
   5445 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
   5446 			  i915_gem_retire_work_handler);
   5447 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
   5448 			  i915_gem_idle_work_handler);
   5449 #ifdef __NetBSD__
   5450 	spin_lock_init(&dev_priv->gpu_error.reset_lock);
   5451 	DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
   5452 #else
   5453 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
   5454 #endif
   5455 
   5456 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
   5457 	if (IS_GEN3(dev)) {
   5458 		I915_WRITE(MI_ARB_STATE,
   5459 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
   5460 	}
   5461 
   5462 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
   5463 
   5464 	/* Old X drivers will take 0-2 for front, back, depth buffers */
   5465 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   5466 		dev_priv->fence_reg_start = 3;
   5467 
   5468 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
   5469 		dev_priv->num_fence_regs = 32;
   5470 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
   5471 		dev_priv->num_fence_regs = 16;
   5472 	else
   5473 		dev_priv->num_fence_regs = 8;
   5474 
   5475 	/* Initialize fence registers to zero */
   5476 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5477 	i915_gem_restore_fences(dev);
   5478 
   5479 	i915_gem_detect_bit_6_swizzle(dev);
   5480 #ifdef __NetBSD__
   5481 	DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
   5482 	spin_lock_init(&dev_priv->pending_flip_lock);
   5483 #else
   5484 	init_waitqueue_head(&dev_priv->pending_flip_queue);
   5485 #endif
   5486 
   5487 	dev_priv->mm.interruptible = true;
   5488 
   5489 	dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
   5490 	dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
   5491 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
   5492 	register_shrinker(&dev_priv->mm.inactive_shrinker);
   5493 }
   5494 
   5495 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   5496 {
   5497 	struct drm_i915_file_private *file_priv = file->driver_priv;
   5498 
   5499 	cancel_delayed_work_sync(&file_priv->mm.idle_work);
   5500 
   5501 	/* Clean up our request list when the client is going away, so that
   5502 	 * later retire_requests won't dereference our soon-to-be-gone
   5503 	 * file_priv.
   5504 	 */
   5505 	spin_lock(&file_priv->mm.lock);
   5506 	while (!list_empty(&file_priv->mm.request_list)) {
   5507 		struct drm_i915_gem_request *request;
   5508 
   5509 		request = list_first_entry(&file_priv->mm.request_list,
   5510 					   struct drm_i915_gem_request,
   5511 					   client_list);
   5512 		list_del(&request->client_list);
   5513 		request->file_priv = NULL;
   5514 	}
   5515 	spin_unlock(&file_priv->mm.lock);
   5516 }
   5517 
   5518 static void
   5519 i915_gem_file_idle_work_handler(struct work_struct *work)
   5520 {
   5521 	struct drm_i915_file_private *file_priv =
   5522 		container_of(work, typeof(*file_priv), mm.idle_work.work);
   5523 
   5524 	atomic_set(&file_priv->rps_wait_boost, false);
   5525 }
   5526 
   5527 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
   5528 {
   5529 	struct drm_i915_file_private *file_priv;
   5530 	int ret;
   5531 
   5532 	DRM_DEBUG_DRIVER("\n");
   5533 
   5534 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
   5535 	if (!file_priv)
   5536 		return -ENOMEM;
   5537 
   5538 	file->driver_priv = file_priv;
   5539 	file_priv->dev_priv = dev->dev_private;
   5540 	file_priv->file = file;
   5541 
   5542 	spin_lock_init(&file_priv->mm.lock);
   5543 	INIT_LIST_HEAD(&file_priv->mm.request_list);
   5544 	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
   5545 			  i915_gem_file_idle_work_handler);
   5546 
   5547 	ret = i915_gem_context_open(dev, file);
   5548 	if (ret)
   5549 		kfree(file_priv);
   5550 
   5551 	return ret;
   5552 }
   5553 
   5554 #ifndef __NetBSD__
   5555 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
   5556 {
   5557 	if (!mutex_is_locked(mutex))
   5558 		return false;
   5559 
   5560 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
   5561 	return mutex->owner == task;
   5562 #else
   5563 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
   5564 	return false;
   5565 #endif
   5566 }
   5567 #endif
   5568 
   5569 static unsigned long
   5570 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
   5571 {
   5572 #ifdef __NetBSD__		/* XXX shrinkers */
   5573 	return 0;
   5574 #else
   5575 	struct drm_i915_private *dev_priv =
   5576 		container_of(shrinker,
   5577 			     struct drm_i915_private,
   5578 			     mm.inactive_shrinker);
   5579 	struct drm_device *dev = dev_priv->dev;
   5580 	struct drm_i915_gem_object *obj;
   5581 	bool unlock = true;
   5582 	unsigned long count;
   5583 
   5584 	if (!mutex_trylock(&dev->struct_mutex)) {
   5585 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
   5586 			return 0;
   5587 
   5588 		if (dev_priv->mm.shrinker_no_lock_stealing)
   5589 			return 0;
   5590 
   5591 		unlock = false;
   5592 	}
   5593 
   5594 	count = 0;
   5595 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
   5596 		if (obj->pages_pin_count == 0)
   5597 			count += obj->base.size >> PAGE_SHIFT;
   5598 
   5599 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
   5600 		if (obj->active)
   5601 			continue;
   5602 
   5603 		if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
   5604 			count += obj->base.size >> PAGE_SHIFT;
   5605 	}
   5606 
   5607 	if (unlock)
   5608 		mutex_unlock(&dev->struct_mutex);
   5609 
   5610 	return count;
   5611 #endif
   5612 }
   5613 
   5614 /* All the new VM stuff */
   5615 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
   5616 				  struct i915_address_space *vm)
   5617 {
   5618 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5619 	struct i915_vma *vma;
   5620 
   5621 	if (!dev_priv->mm.aliasing_ppgtt ||
   5622 	    vm == &dev_priv->mm.aliasing_ppgtt->base)
   5623 		vm = &dev_priv->gtt.base;
   5624 
   5625 	BUG_ON(list_empty(&o->vma_list));
   5626 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5627 		if (vma->vm == vm)
   5628 			return vma->node.start;
   5629 
   5630 	}
   5631 	return -1;
   5632 }
   5633 
   5634 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
   5635 			struct i915_address_space *vm)
   5636 {
   5637 	struct i915_vma *vma;
   5638 
   5639 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5640 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
   5641 			return true;
   5642 
   5643 	return false;
   5644 }
   5645 
   5646 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
   5647 {
   5648 	struct i915_vma *vma;
   5649 
   5650 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5651 		if (drm_mm_node_allocated(&vma->node))
   5652 			return true;
   5653 
   5654 	return false;
   5655 }
   5656 
   5657 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
   5658 				struct i915_address_space *vm)
   5659 {
   5660 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5661 	struct i915_vma *vma;
   5662 
   5663 	if (!dev_priv->mm.aliasing_ppgtt ||
   5664 	    vm == &dev_priv->mm.aliasing_ppgtt->base)
   5665 		vm = &dev_priv->gtt.base;
   5666 
   5667 	BUG_ON(list_empty(&o->vma_list));
   5668 
   5669 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5670 		if (vma->vm == vm)
   5671 			return vma->node.size;
   5672 
   5673 	return 0;
   5674 }
   5675 
   5676 static unsigned long
   5677 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
   5678 {
   5679 #ifdef __NetBSD__		/* XXX shrinkers */
   5680 	return 0;
   5681 #else
   5682 	struct drm_i915_private *dev_priv =
   5683 		container_of(shrinker,
   5684 			     struct drm_i915_private,
   5685 			     mm.inactive_shrinker);
   5686 	struct drm_device *dev = dev_priv->dev;
   5687 	unsigned long freed;
   5688 	bool unlock = true;
   5689 
   5690 	if (!mutex_trylock(&dev->struct_mutex)) {
   5691 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
   5692 			return SHRINK_STOP;
   5693 
   5694 		if (dev_priv->mm.shrinker_no_lock_stealing)
   5695 			return SHRINK_STOP;
   5696 
   5697 		unlock = false;
   5698 	}
   5699 
   5700 	freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
   5701 	if (freed < sc->nr_to_scan)
   5702 		freed += __i915_gem_shrink(dev_priv,
   5703 					   sc->nr_to_scan - freed,
   5704 					   false);
   5705 	if (freed < sc->nr_to_scan)
   5706 		freed += i915_gem_shrink_all(dev_priv);
   5707 
   5708 	if (unlock)
   5709 		mutex_unlock(&dev->struct_mutex);
   5710 
   5711 	return freed;
   5712 #endif
   5713 }
   5714 
   5715 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
   5716 {
   5717 	struct i915_vma *vma;
   5718 
   5719 	if (WARN_ON(list_empty(&obj->vma_list)))
   5720 		return NULL;
   5721 
   5722 	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
   5723 	if (vma->vm != obj_to_ggtt(obj))
   5724 		return NULL;
   5725 
   5726 	return vma;
   5727 }
   5728