Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.19
      1 /*
      2  * Copyright  2008 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eric Anholt <eric (at) anholt.net>
     25  *
     26  */
     27 
     28 #ifdef __NetBSD__
     29 #if 0				/* XXX uvmhist option?  */
     30 #include "opt_uvmhist.h"
     31 #endif
     32 
     33 #include <sys/types.h>
     34 #include <sys/param.h>
     35 
     36 #include <uvm/uvm.h>
     37 #include <uvm/uvm_extern.h>
     38 #include <uvm/uvm_fault.h>
     39 #include <uvm/uvm_page.h>
     40 #include <uvm/uvm_pmap.h>
     41 #include <uvm/uvm_prot.h>
     42 
     43 #include <drm/bus_dma_hacks.h>
     44 #endif
     45 
     46 #include <drm/drmP.h>
     47 #include <drm/drm_vma_manager.h>
     48 #include <drm/i915_drm.h>
     49 #include "i915_drv.h"
     50 #include "i915_trace.h"
     51 #include "intel_drv.h"
     52 #include <linux/shmem_fs.h>
     53 #include <linux/slab.h>
     54 #include <linux/swap.h>
     55 #include <linux/pci.h>
     56 #include <linux/dma-buf.h>
     57 #include <linux/errno.h>
     58 #include <linux/time.h>
     59 #include <linux/err.h>
     60 #include <linux/bitops.h>
     61 #include <linux/printk.h>
     62 #include <asm/param.h>
     63 #include <asm/page.h>
     64 
     65 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
     66 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
     67 						   bool force);
     68 static __must_check int
     69 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
     70 			       bool readonly);
     71 
     72 static void i915_gem_write_fence(struct drm_device *dev, int reg,
     73 				 struct drm_i915_gem_object *obj);
     74 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
     75 					 struct drm_i915_fence_reg *fence,
     76 					 bool enable);
     77 
     78 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
     79 					     struct shrink_control *sc);
     80 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
     81 					    struct shrink_control *sc);
     82 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
     83 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
     84 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
     85 static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
     86 
     87 static bool cpu_cache_is_coherent(struct drm_device *dev,
     88 				  enum i915_cache_level level)
     89 {
     90 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
     91 }
     92 
     93 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
     94 {
     95 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
     96 		return true;
     97 
     98 	return obj->pin_display;
     99 }
    100 
    101 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
    102 {
    103 	if (obj->tiling_mode)
    104 		i915_gem_release_mmap(obj);
    105 
    106 	/* As we do not have an associated fence register, we will force
    107 	 * a tiling change if we ever need to acquire one.
    108 	 */
    109 	obj->fence_dirty = false;
    110 	obj->fence_reg = I915_FENCE_REG_NONE;
    111 }
    112 
    113 /* some bookkeeping */
    114 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
    115 				  size_t size)
    116 {
    117 	spin_lock(&dev_priv->mm.object_stat_lock);
    118 	dev_priv->mm.object_count++;
    119 	dev_priv->mm.object_memory += size;
    120 	spin_unlock(&dev_priv->mm.object_stat_lock);
    121 }
    122 
    123 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
    124 				     size_t size)
    125 {
    126 	spin_lock(&dev_priv->mm.object_stat_lock);
    127 	dev_priv->mm.object_count--;
    128 	dev_priv->mm.object_memory -= size;
    129 	spin_unlock(&dev_priv->mm.object_stat_lock);
    130 }
    131 
    132 static int
    133 i915_gem_wait_for_error(struct i915_gpu_error *error)
    134 {
    135 	int ret;
    136 
    137 #define EXIT_COND (!i915_reset_in_progress(error) || \
    138 		   i915_terminally_wedged(error))
    139 	if (EXIT_COND)
    140 		return 0;
    141 
    142 	/*
    143 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
    144 	 * userspace. If it takes that long something really bad is going on and
    145 	 * we should simply try to bail out and fail as gracefully as possible.
    146 	 */
    147 #ifdef __NetBSD__
    148 	spin_lock(&error->reset_lock);
    149 	DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
    150 	    10*HZ, EXIT_COND);
    151 	spin_unlock(&error->reset_lock);
    152 #else
    153 	ret = wait_event_interruptible_timeout(error->reset_queue,
    154 					       EXIT_COND,
    155 					       10*HZ);
    156 #endif
    157 	if (ret == 0) {
    158 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
    159 		return -EIO;
    160 	} else if (ret < 0) {
    161 		return ret;
    162 	}
    163 #undef EXIT_COND
    164 
    165 	return 0;
    166 }
    167 
    168 int i915_mutex_lock_interruptible(struct drm_device *dev)
    169 {
    170 	struct drm_i915_private *dev_priv = dev->dev_private;
    171 	int ret;
    172 
    173 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
    174 	if (ret)
    175 		return ret;
    176 
    177 	ret = mutex_lock_interruptible(&dev->struct_mutex);
    178 	if (ret)
    179 		return ret;
    180 
    181 	WARN_ON(i915_verify_lists(dev));
    182 	return 0;
    183 }
    184 
    185 static inline bool
    186 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
    187 {
    188 	return i915_gem_obj_bound_any(obj) && !obj->active;
    189 }
    190 
    191 int
    192 i915_gem_init_ioctl(struct drm_device *dev, void *data,
    193 		    struct drm_file *file)
    194 {
    195 	struct drm_i915_private *dev_priv = dev->dev_private;
    196 	struct drm_i915_gem_init *args = data;
    197 
    198 	if (drm_core_check_feature(dev, DRIVER_MODESET))
    199 		return -ENODEV;
    200 
    201 	if (args->gtt_start >= args->gtt_end ||
    202 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
    203 		return -EINVAL;
    204 
    205 	/* GEM with user mode setting was never supported on ilk and later. */
    206 	if (INTEL_INFO(dev)->gen >= 5)
    207 		return -ENODEV;
    208 
    209 	mutex_lock(&dev->struct_mutex);
    210 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
    211 				  args->gtt_end);
    212 	dev_priv->gtt.mappable_end = args->gtt_end;
    213 	mutex_unlock(&dev->struct_mutex);
    214 
    215 	return 0;
    216 }
    217 
    218 int
    219 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    220 			    struct drm_file *file)
    221 {
    222 	struct drm_i915_private *dev_priv = dev->dev_private;
    223 	struct drm_i915_gem_get_aperture *args = data;
    224 	struct drm_i915_gem_object *obj;
    225 	size_t pinned;
    226 
    227 	pinned = 0;
    228 	mutex_lock(&dev->struct_mutex);
    229 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
    230 		if (i915_gem_obj_is_pinned(obj))
    231 			pinned += i915_gem_obj_ggtt_size(obj);
    232 	mutex_unlock(&dev->struct_mutex);
    233 
    234 	args->aper_size = dev_priv->gtt.base.total;
    235 	args->aper_available_size = args->aper_size - pinned;
    236 
    237 	return 0;
    238 }
    239 
    240 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
    241 {
    242 	drm_dma_handle_t *phys = obj->phys_handle;
    243 
    244 	if (!phys)
    245 		return;
    246 
    247 	if (obj->madv == I915_MADV_WILLNEED) {
    248 #ifdef __NetBSD__
    249 		const char *vaddr = phys->vaddr;
    250 		unsigned i;
    251 
    252 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    253 			struct pglist pages;
    254 			int error;
    255 
    256 			TAILQ_INIT(&pages);
    257 			error = uvm_obj_wirepages(obj->base.gemo_shm_uao,
    258 			    i*PAGE_SIZE, (i+1)*PAGE_SIZE, &pages);
    259 			if (error)
    260 				continue;
    261 
    262 			struct vm_page *const vm_page = TAILQ_FIRST(&pages);
    263 			struct page *const page = container_of(vm_page,
    264 			    struct page, p_vmp);
    265 			char *const dst = kmap_atomic(page);
    266 			(void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
    267 			drm_clflush_virt_range(dst, PAGE_SIZE);
    268 			kunmap_atomic(dst);
    269 
    270 			vm_page->flags &= ~PG_CLEAN;
    271 			/* XXX mark page accessed */
    272 			uvm_obj_unwirepages(obj->base.gemo_shm_uao,
    273 			    i*PAGE_SIZE, (i+1)*PAGE_SIZE);
    274 		}
    275 #else
    276 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    277 		char *vaddr = phys->vaddr;
    278 		int i;
    279 
    280 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    281 			struct page *page = shmem_read_mapping_page(mapping, i);
    282 			if (!IS_ERR(page)) {
    283 				char *dst = kmap_atomic(page);
    284 				memcpy(dst, vaddr, PAGE_SIZE);
    285 				drm_clflush_virt_range(dst, PAGE_SIZE);
    286 				kunmap_atomic(dst);
    287 
    288 				set_page_dirty(page);
    289 				mark_page_accessed(page);
    290 				page_cache_release(page);
    291 			}
    292 			vaddr += PAGE_SIZE;
    293 		}
    294 #endif
    295 		i915_gem_chipset_flush(obj->base.dev);
    296 	}
    297 
    298 #ifndef __NetBSD__
    299 #ifdef CONFIG_X86
    300 	set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
    301 #endif
    302 #endif
    303 	drm_pci_free(obj->base.dev, phys);
    304 	obj->phys_handle = NULL;
    305 }
    306 
    307 int
    308 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
    309 			    int align)
    310 {
    311 	drm_dma_handle_t *phys;
    312 #ifndef __NetBSD__
    313 	struct address_space *mapping;
    314 #endif
    315 	char *vaddr;
    316 	int i;
    317 
    318 	if (obj->phys_handle) {
    319 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
    320 			return -EBUSY;
    321 
    322 		return 0;
    323 	}
    324 
    325 	if (obj->madv != I915_MADV_WILLNEED)
    326 		return -EFAULT;
    327 
    328 #ifdef __NetBSD__
    329 	if (obj->base.gemo_shm_uao == NULL)
    330 		return -EINVAL;
    331 #else
    332 	if (obj->base.filp == NULL)
    333 		return -EINVAL;
    334 #endif
    335 
    336 	/* create a new object */
    337 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
    338 	if (!phys)
    339 		return -ENOMEM;
    340 
    341 	vaddr = phys->vaddr;
    342 #ifndef __NetBSD__
    343 #ifdef CONFIG_X86
    344 	set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
    345 #endif
    346 	mapping = file_inode(obj->base.filp)->i_mapping;
    347 #endif
    348 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    349 		struct page *page;
    350 		char *src;
    351 
    352 #ifdef __NetBSD__
    353 		struct pglist pages;
    354 		int ret;
    355 
    356 		TAILQ_INIT(&pages);
    357 
    358 		/* XXX errno NetBSD->Linux */
    359 		ret = -uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
    360 		    (i+1)*PAGE_SIZE, &pages);
    361 		if (ret) {
    362 			drm_pci_free(obj->base.dev, phys);
    363 			return ret;
    364 		}
    365 		KASSERT(!TAILQ_EMPTY(&pages));
    366 		page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
    367 #else
    368 		page = shmem_read_mapping_page(mapping, i);
    369 		if (IS_ERR(page)) {
    370 #ifdef CONFIG_X86
    371 			set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
    372 #endif
    373 			drm_pci_free(obj->base.dev, phys);
    374 			return PTR_ERR(page);
    375 		}
    376 #endif	/* defined(__NetBSD__) */
    377 
    378 		src = kmap_atomic(page);
    379 		memcpy(vaddr, src, PAGE_SIZE);
    380 		kunmap_atomic(src);
    381 
    382 #ifndef __NetBSD__
    383 		mark_page_accessed(page);
    384 		page_cache_release(page);
    385 #endif
    386 
    387 		vaddr += PAGE_SIZE;
    388 	}
    389 
    390 	obj->phys_handle = phys;
    391 	return 0;
    392 }
    393 
    394 static int
    395 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
    396 		     struct drm_i915_gem_pwrite *args,
    397 		     struct drm_file *file_priv)
    398 {
    399 	struct drm_device *dev = obj->base.dev;
    400 	void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
    401 	char __user *user_data = to_user_ptr(args->data_ptr);
    402 
    403 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
    404 		unsigned long unwritten;
    405 
    406 		/* The physical object once assigned is fixed for the lifetime
    407 		 * of the obj, so we can safely drop the lock and continue
    408 		 * to access vaddr.
    409 		 */
    410 		mutex_unlock(&dev->struct_mutex);
    411 		unwritten = copy_from_user(vaddr, user_data, args->size);
    412 		mutex_lock(&dev->struct_mutex);
    413 		if (unwritten)
    414 			return -EFAULT;
    415 	}
    416 
    417 	i915_gem_chipset_flush(dev);
    418 	return 0;
    419 }
    420 
    421 void *i915_gem_object_alloc(struct drm_device *dev)
    422 {
    423 	struct drm_i915_private *dev_priv = dev->dev_private;
    424 	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
    425 }
    426 
    427 void i915_gem_object_free(struct drm_i915_gem_object *obj)
    428 {
    429 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
    430 	kmem_cache_free(dev_priv->slab, obj);
    431 }
    432 
    433 static int
    434 i915_gem_create(struct drm_file *file,
    435 		struct drm_device *dev,
    436 		uint64_t size,
    437 		uint32_t *handle_p)
    438 {
    439 	struct drm_i915_gem_object *obj;
    440 	int ret;
    441 	u32 handle;
    442 
    443 	size = roundup(size, PAGE_SIZE);
    444 	if (size == 0)
    445 		return -EINVAL;
    446 
    447 	/* Allocate the new object */
    448 	obj = i915_gem_alloc_object(dev, size);
    449 	if (obj == NULL)
    450 		return -ENOMEM;
    451 
    452 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    453 	/* drop reference from allocate - handle holds it now */
    454 	drm_gem_object_unreference_unlocked(&obj->base);
    455 	if (ret)
    456 		return ret;
    457 
    458 	*handle_p = handle;
    459 	return 0;
    460 }
    461 
    462 int
    463 i915_gem_dumb_create(struct drm_file *file,
    464 		     struct drm_device *dev,
    465 		     struct drm_mode_create_dumb *args)
    466 {
    467 	/* have to work out size/pitch and return them */
    468 #ifdef __NetBSD__		/* ALIGN means something else.  */
    469 	args->pitch = round_up(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    470 #else
    471 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    472 #endif
    473 	args->size = args->pitch * args->height;
    474 	return i915_gem_create(file, dev,
    475 			       args->size, &args->handle);
    476 }
    477 
    478 /**
    479  * Creates a new mm object and returns a handle to it.
    480  */
    481 int
    482 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    483 		      struct drm_file *file)
    484 {
    485 	struct drm_i915_gem_create *args = data;
    486 
    487 	return i915_gem_create(file, dev,
    488 			       args->size, &args->handle);
    489 }
    490 
    491 static inline int
    492 __copy_to_user_swizzled(char __user *cpu_vaddr,
    493 			const char *gpu_vaddr, int gpu_offset,
    494 			int length)
    495 {
    496 	int ret, cpu_offset = 0;
    497 
    498 	while (length > 0) {
    499 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    500 		int cacheline_end = round_up(gpu_offset + 1, 64);
    501 #else
    502 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    503 #endif
    504 		int this_length = min(cacheline_end - gpu_offset, length);
    505 		int swizzled_gpu_offset = gpu_offset ^ 64;
    506 
    507 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
    508 				     gpu_vaddr + swizzled_gpu_offset,
    509 				     this_length);
    510 		if (ret)
    511 			return ret + length;
    512 
    513 		cpu_offset += this_length;
    514 		gpu_offset += this_length;
    515 		length -= this_length;
    516 	}
    517 
    518 	return 0;
    519 }
    520 
    521 static inline int
    522 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
    523 			  const char __user *cpu_vaddr,
    524 			  int length)
    525 {
    526 	int ret, cpu_offset = 0;
    527 
    528 	while (length > 0) {
    529 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    530 		int cacheline_end = round_up(gpu_offset + 1, 64);
    531 #else
    532 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    533 #endif
    534 		int this_length = min(cacheline_end - gpu_offset, length);
    535 		int swizzled_gpu_offset = gpu_offset ^ 64;
    536 
    537 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
    538 				       cpu_vaddr + cpu_offset,
    539 				       this_length);
    540 		if (ret)
    541 			return ret + length;
    542 
    543 		cpu_offset += this_length;
    544 		gpu_offset += this_length;
    545 		length -= this_length;
    546 	}
    547 
    548 	return 0;
    549 }
    550 
    551 /*
    552  * Pins the specified object's pages and synchronizes the object with
    553  * GPU accesses. Sets needs_clflush to non-zero if the caller should
    554  * flush the object from the CPU cache.
    555  */
    556 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
    557 				    int *needs_clflush)
    558 {
    559 	int ret;
    560 
    561 	*needs_clflush = 0;
    562 
    563 #ifdef __NetBSD__
    564 	if (obj->base.gemo_shm_uao == NULL)
    565 		return -EINVAL;
    566 #else
    567 	if (!obj->base.filp)
    568 		return -EINVAL;
    569 #endif
    570 
    571 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
    572 		/* If we're not in the cpu read domain, set ourself into the gtt
    573 		 * read domain and manually flush cachelines (if required). This
    574 		 * optimizes for the case when the gpu will dirty the data
    575 		 * anyway again before the next pread happens. */
    576 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
    577 							obj->cache_level);
    578 		ret = i915_gem_object_wait_rendering(obj, true);
    579 		if (ret)
    580 			return ret;
    581 	}
    582 
    583 	ret = i915_gem_object_get_pages(obj);
    584 	if (ret)
    585 		return ret;
    586 
    587 	i915_gem_object_pin_pages(obj);
    588 
    589 	return ret;
    590 }
    591 
    592 /* Per-page copy function for the shmem pread fastpath.
    593  * Flushes invalid cachelines before reading the target if
    594  * needs_clflush is set. */
    595 static int
    596 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
    597 		 char __user *user_data,
    598 		 bool page_do_bit17_swizzling, bool needs_clflush)
    599 {
    600 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    601 	return -EFAULT;
    602 #else
    603 	char *vaddr;
    604 	int ret;
    605 
    606 	if (unlikely(page_do_bit17_swizzling))
    607 		return -EINVAL;
    608 
    609 	vaddr = kmap_atomic(page);
    610 	if (needs_clflush)
    611 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    612 				       page_length);
    613 	ret = __copy_to_user_inatomic(user_data,
    614 				      vaddr + shmem_page_offset,
    615 				      page_length);
    616 	kunmap_atomic(vaddr);
    617 
    618 	return ret ? -EFAULT : 0;
    619 #endif
    620 }
    621 
    622 static void
    623 shmem_clflush_swizzled_range(char *addr, unsigned long length,
    624 			     bool swizzled)
    625 {
    626 	if (unlikely(swizzled)) {
    627 		unsigned long start = (unsigned long) addr;
    628 		unsigned long end = (unsigned long) addr + length;
    629 
    630 		/* For swizzling simply ensure that we always flush both
    631 		 * channels. Lame, but simple and it works. Swizzled
    632 		 * pwrite/pread is far from a hotpath - current userspace
    633 		 * doesn't use it at all. */
    634 		start = round_down(start, 128);
    635 		end = round_up(end, 128);
    636 
    637 		drm_clflush_virt_range((void *)start, end - start);
    638 	} else {
    639 		drm_clflush_virt_range(addr, length);
    640 	}
    641 
    642 }
    643 
    644 /* Only difference to the fast-path function is that this can handle bit17
    645  * and uses non-atomic copy and kmap functions. */
    646 static int
    647 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
    648 		 char __user *user_data,
    649 		 bool page_do_bit17_swizzling, bool needs_clflush)
    650 {
    651 	char *vaddr;
    652 	int ret;
    653 
    654 	vaddr = kmap(page);
    655 	if (needs_clflush)
    656 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    657 					     page_length,
    658 					     page_do_bit17_swizzling);
    659 
    660 	if (page_do_bit17_swizzling)
    661 		ret = __copy_to_user_swizzled(user_data,
    662 					      vaddr, shmem_page_offset,
    663 					      page_length);
    664 	else
    665 		ret = __copy_to_user(user_data,
    666 				     vaddr + shmem_page_offset,
    667 				     page_length);
    668 	kunmap(page);
    669 
    670 	return ret ? - EFAULT : 0;
    671 }
    672 
    673 static int
    674 i915_gem_shmem_pread(struct drm_device *dev,
    675 		     struct drm_i915_gem_object *obj,
    676 		     struct drm_i915_gem_pread *args,
    677 		     struct drm_file *file)
    678 {
    679 	char __user *user_data;
    680 	ssize_t remain;
    681 	loff_t offset;
    682 	int shmem_page_offset, page_length, ret = 0;
    683 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    684 #ifndef __NetBSD__		/* XXX */
    685 	int prefaulted = 0;
    686 #endif
    687 	int needs_clflush = 0;
    688 #ifndef __NetBSD__
    689 	struct sg_page_iter sg_iter;
    690 #endif
    691 
    692 	user_data = to_user_ptr(args->data_ptr);
    693 	remain = args->size;
    694 
    695 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    696 
    697 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
    698 	if (ret)
    699 		return ret;
    700 
    701 	offset = args->offset;
    702 
    703 #ifdef __NetBSD__
    704 	/*
    705 	 * XXX This is a big #ifdef with a lot of duplicated code, but
    706 	 * factoring out the loop head -- which is all that
    707 	 * substantially differs -- is probably more trouble than it's
    708 	 * worth at the moment.
    709 	 */
    710 	while (0 < remain) {
    711 		/* Get the next page.  */
    712 		shmem_page_offset = offset_in_page(offset);
    713 		KASSERT(shmem_page_offset < PAGE_SIZE);
    714 		page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
    715 		struct page *const page = i915_gem_object_get_page(obj,
    716 		    atop(offset));
    717 
    718 		/* Decide whether to swizzle bit 17.  */
    719 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    720 		    (page_to_phys(page) & (1 << 17)) != 0;
    721 
    722 		/* Try the fast path.  */
    723 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    724 		    user_data, page_do_bit17_swizzling, needs_clflush);
    725 		if (ret == 0)
    726 			goto next_page;
    727 
    728 		/* Fast path failed.  Try the slow path.  */
    729 		mutex_unlock(&dev->struct_mutex);
    730 		/* XXX prefault */
    731 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    732 		    user_data, page_do_bit17_swizzling, needs_clflush);
    733 		mutex_lock(&dev->struct_mutex);
    734 		if (ret)
    735 			goto out;
    736 
    737 next_page:	KASSERT(page_length <= remain);
    738 		remain -= page_length;
    739 		user_data += page_length;
    740 		offset += page_length;
    741 	}
    742 #else
    743 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
    744 			 offset >> PAGE_SHIFT) {
    745 		struct page *page = sg_page_iter_page(&sg_iter);
    746 
    747 		if (remain <= 0)
    748 			break;
    749 
    750 		/* Operation in this page
    751 		 *
    752 		 * shmem_page_offset = offset within page in shmem file
    753 		 * page_length = bytes to copy for this page
    754 		 */
    755 		shmem_page_offset = offset_in_page(offset);
    756 		page_length = remain;
    757 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    758 			page_length = PAGE_SIZE - shmem_page_offset;
    759 
    760 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    761 			(page_to_phys(page) & (1 << 17)) != 0;
    762 
    763 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    764 				       user_data, page_do_bit17_swizzling,
    765 				       needs_clflush);
    766 		if (ret == 0)
    767 			goto next_page;
    768 
    769 		mutex_unlock(&dev->struct_mutex);
    770 
    771 		if (likely(!i915.prefault_disable) && !prefaulted) {
    772 			ret = fault_in_multipages_writeable(user_data, remain);
    773 			/* Userspace is tricking us, but we've already clobbered
    774 			 * its pages with the prefault and promised to write the
    775 			 * data up to the first fault. Hence ignore any errors
    776 			 * and just continue. */
    777 			(void)ret;
    778 			prefaulted = 1;
    779 		}
    780 
    781 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    782 				       user_data, page_do_bit17_swizzling,
    783 				       needs_clflush);
    784 
    785 		mutex_lock(&dev->struct_mutex);
    786 
    787 		if (ret)
    788 			goto out;
    789 
    790 next_page:
    791 		remain -= page_length;
    792 		user_data += page_length;
    793 		offset += page_length;
    794 	}
    795 #endif
    796 
    797 out:
    798 	i915_gem_object_unpin_pages(obj);
    799 
    800 	return ret;
    801 }
    802 
    803 /**
    804  * Reads data from the object referenced by handle.
    805  *
    806  * On error, the contents of *data are undefined.
    807  */
    808 int
    809 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    810 		     struct drm_file *file)
    811 {
    812 	struct drm_i915_gem_pread *args = data;
    813 	struct drm_gem_object *gobj;
    814 	struct drm_i915_gem_object *obj;
    815 	int ret = 0;
    816 
    817 	if (args->size == 0)
    818 		return 0;
    819 
    820 	if (!access_ok(VERIFY_WRITE,
    821 		       to_user_ptr(args->data_ptr),
    822 		       args->size))
    823 		return -EFAULT;
    824 
    825 	ret = i915_mutex_lock_interruptible(dev);
    826 	if (ret)
    827 		return ret;
    828 
    829 	gobj = drm_gem_object_lookup(dev, file, args->handle);
    830 	if (gobj == NULL) {
    831 		ret = -ENOENT;
    832 		goto unlock;
    833 	}
    834 	obj = to_intel_bo(gobj);
    835 
    836 	/* Bounds check source.  */
    837 	if (args->offset > obj->base.size ||
    838 	    args->size > obj->base.size - args->offset) {
    839 		ret = -EINVAL;
    840 		goto out;
    841 	}
    842 
    843 	/* prime objects have no backing filp to GEM pread/pwrite
    844 	 * pages from.
    845 	 */
    846 #ifdef __NetBSD__
    847 	/* Also stolen objects.  */
    848 	if (obj->base.gemo_shm_uao == NULL) {
    849 		ret = -EINVAL;
    850 		goto out;
    851 	}
    852 #else
    853 	if (!obj->base.filp) {
    854 		ret = -EINVAL;
    855 		goto out;
    856 	}
    857 #endif
    858 
    859 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    860 
    861 	ret = i915_gem_shmem_pread(dev, obj, args, file);
    862 
    863 out:
    864 	drm_gem_object_unreference(&obj->base);
    865 unlock:
    866 	mutex_unlock(&dev->struct_mutex);
    867 	return ret;
    868 }
    869 
    870 /* This is the fast write path which cannot handle
    871  * page faults in the source data
    872  */
    873 
    874 static inline int
    875 fast_user_write(struct io_mapping *mapping,
    876 		loff_t page_base, int page_offset,
    877 		char __user *user_data,
    878 		int length)
    879 {
    880 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    881 	return -EFAULT;
    882 #else
    883 	void __iomem *vaddr_atomic;
    884 	void *vaddr;
    885 	unsigned long unwritten;
    886 
    887 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
    888 	/* We can use the cpu mem copy function because this is X86. */
    889 	vaddr = (void __force*)vaddr_atomic + page_offset;
    890 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
    891 						      user_data, length);
    892 	io_mapping_unmap_atomic(vaddr_atomic);
    893 	return unwritten;
    894 #endif
    895 }
    896 
    897 /**
    898  * This is the fast pwrite path, where we copy the data directly from the
    899  * user into the GTT, uncached.
    900  */
    901 static int
    902 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
    903 			 struct drm_i915_gem_object *obj,
    904 			 struct drm_i915_gem_pwrite *args,
    905 			 struct drm_file *file)
    906 {
    907 	struct drm_i915_private *dev_priv = dev->dev_private;
    908 	ssize_t remain;
    909 	loff_t offset, page_base;
    910 	char __user *user_data;
    911 	int page_offset, page_length, ret;
    912 
    913 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
    914 	if (ret)
    915 		goto out;
    916 
    917 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    918 	if (ret)
    919 		goto out_unpin;
    920 
    921 	ret = i915_gem_object_put_fence(obj);
    922 	if (ret)
    923 		goto out_unpin;
    924 
    925 	user_data = to_user_ptr(args->data_ptr);
    926 	remain = args->size;
    927 
    928 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
    929 
    930 	while (remain > 0) {
    931 		/* Operation in this page
    932 		 *
    933 		 * page_base = page offset within aperture
    934 		 * page_offset = offset within page
    935 		 * page_length = bytes to copy for this page
    936 		 */
    937 		page_base = offset & PAGE_MASK;
    938 		page_offset = offset_in_page(offset);
    939 		page_length = remain;
    940 		if ((page_offset + remain) > PAGE_SIZE)
    941 			page_length = PAGE_SIZE - page_offset;
    942 
    943 		/* If we get a fault while copying data, then (presumably) our
    944 		 * source page isn't available.  Return the error and we'll
    945 		 * retry in the slow path.
    946 		 */
    947 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
    948 				    page_offset, user_data, page_length)) {
    949 			ret = -EFAULT;
    950 			goto out_unpin;
    951 		}
    952 
    953 		remain -= page_length;
    954 		user_data += page_length;
    955 		offset += page_length;
    956 	}
    957 
    958 out_unpin:
    959 	i915_gem_object_ggtt_unpin(obj);
    960 out:
    961 	return ret;
    962 }
    963 
    964 /* Per-page copy function for the shmem pwrite fastpath.
    965  * Flushes invalid cachelines before writing to the target if
    966  * needs_clflush_before is set and flushes out any written cachelines after
    967  * writing if needs_clflush is set. */
    968 static int
    969 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
    970 		  char __user *user_data,
    971 		  bool page_do_bit17_swizzling,
    972 		  bool needs_clflush_before,
    973 		  bool needs_clflush_after)
    974 {
    975 #ifdef __NetBSD__
    976 	return -EFAULT;
    977 #else
    978 	char *vaddr;
    979 	int ret;
    980 
    981 	if (unlikely(page_do_bit17_swizzling))
    982 		return -EINVAL;
    983 
    984 	vaddr = kmap_atomic(page);
    985 	if (needs_clflush_before)
    986 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    987 				       page_length);
    988 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
    989 					user_data, page_length);
    990 	if (needs_clflush_after)
    991 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    992 				       page_length);
    993 	kunmap_atomic(vaddr);
    994 
    995 	return ret ? -EFAULT : 0;
    996 #endif
    997 }
    998 
    999 /* Only difference to the fast-path function is that this can handle bit17
   1000  * and uses non-atomic copy and kmap functions. */
   1001 static int
   1002 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
   1003 		  char __user *user_data,
   1004 		  bool page_do_bit17_swizzling,
   1005 		  bool needs_clflush_before,
   1006 		  bool needs_clflush_after)
   1007 {
   1008 	char *vaddr;
   1009 	int ret;
   1010 
   1011 	vaddr = kmap(page);
   1012 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
   1013 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
   1014 					     page_length,
   1015 					     page_do_bit17_swizzling);
   1016 	if (page_do_bit17_swizzling)
   1017 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
   1018 						user_data,
   1019 						page_length);
   1020 	else
   1021 		ret = __copy_from_user(vaddr + shmem_page_offset,
   1022 				       user_data,
   1023 				       page_length);
   1024 	if (needs_clflush_after)
   1025 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
   1026 					     page_length,
   1027 					     page_do_bit17_swizzling);
   1028 	kunmap(page);
   1029 
   1030 	return ret ? -EFAULT : 0;
   1031 }
   1032 
   1033 static int
   1034 i915_gem_shmem_pwrite(struct drm_device *dev,
   1035 		      struct drm_i915_gem_object *obj,
   1036 		      struct drm_i915_gem_pwrite *args,
   1037 		      struct drm_file *file)
   1038 {
   1039 	ssize_t remain;
   1040 	loff_t offset;
   1041 	char __user *user_data;
   1042 	int shmem_page_offset, page_length, ret = 0;
   1043 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
   1044 	int hit_slowpath = 0;
   1045 	int needs_clflush_after = 0;
   1046 	int needs_clflush_before = 0;
   1047 #ifndef __NetBSD__
   1048 	struct sg_page_iter sg_iter;
   1049 #endif
   1050 
   1051 	user_data = to_user_ptr(args->data_ptr);
   1052 	remain = args->size;
   1053 
   1054 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
   1055 
   1056 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1057 		/* If we're not in the cpu write domain, set ourself into the gtt
   1058 		 * write domain and manually flush cachelines (if required). This
   1059 		 * optimizes for the case when the gpu will use the data
   1060 		 * right away and we therefore have to clflush anyway. */
   1061 		needs_clflush_after = cpu_write_needs_clflush(obj);
   1062 		ret = i915_gem_object_wait_rendering(obj, false);
   1063 		if (ret)
   1064 			return ret;
   1065 	}
   1066 	/* Same trick applies to invalidate partially written cachelines read
   1067 	 * before writing. */
   1068 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
   1069 		needs_clflush_before =
   1070 			!cpu_cache_is_coherent(dev, obj->cache_level);
   1071 
   1072 	ret = i915_gem_object_get_pages(obj);
   1073 	if (ret)
   1074 		return ret;
   1075 
   1076 	i915_gem_object_pin_pages(obj);
   1077 
   1078 	offset = args->offset;
   1079 	obj->dirty = 1;
   1080 
   1081 #ifdef __NetBSD__
   1082 	while (0 < remain) {
   1083 		/* Get the next page.  */
   1084 		shmem_page_offset = offset_in_page(offset);
   1085 		KASSERT(shmem_page_offset < PAGE_SIZE);
   1086 		page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
   1087 		struct page *const page = i915_gem_object_get_page(obj,
   1088 		    atop(offset));
   1089 
   1090 		/* Decide whether to flush the cache or swizzle bit 17.  */
   1091 		const bool partial_cacheline_write = needs_clflush_before &&
   1092 		    ((shmem_page_offset | page_length)
   1093 			& (cpu_info_primary.ci_cflush_lsize - 1));
   1094 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
   1095 		    (page_to_phys(page) & (1 << 17)) != 0;
   1096 
   1097 		/* Try the fast path.  */
   1098 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
   1099 		    user_data, page_do_bit17_swizzling,
   1100 		    partial_cacheline_write, needs_clflush_after);
   1101 		if (ret == 0)
   1102 			goto next_page;
   1103 
   1104 		/* Fast path failed.  Try the slow path.  */
   1105 		hit_slowpath = 1;
   1106 		mutex_unlock(&dev->struct_mutex);
   1107 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
   1108 		    user_data, page_do_bit17_swizzling,
   1109 		    partial_cacheline_write, needs_clflush_after);
   1110 		mutex_lock(&dev->struct_mutex);
   1111 		if (ret)
   1112 			goto out;
   1113 
   1114 next_page:	KASSERT(page_length <= remain);
   1115 		remain -= page_length;
   1116 		user_data += page_length;
   1117 		offset += page_length;
   1118 	}
   1119 #else
   1120 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
   1121 			 offset >> PAGE_SHIFT) {
   1122 		struct page *page = sg_page_iter_page(&sg_iter);
   1123 		int partial_cacheline_write;
   1124 
   1125 		if (remain <= 0)
   1126 			break;
   1127 
   1128 		/* Operation in this page
   1129 		 *
   1130 		 * shmem_page_offset = offset within page in shmem file
   1131 		 * page_length = bytes to copy for this page
   1132 		 */
   1133 		shmem_page_offset = offset_in_page(offset);
   1134 
   1135 		page_length = remain;
   1136 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
   1137 			page_length = PAGE_SIZE - shmem_page_offset;
   1138 
   1139 		/* If we don't overwrite a cacheline completely we need to be
   1140 		 * careful to have up-to-date data by first clflushing. Don't
   1141 		 * overcomplicate things and flush the entire patch. */
   1142 		partial_cacheline_write = needs_clflush_before &&
   1143 			((shmem_page_offset | page_length)
   1144 				& (boot_cpu_data.x86_clflush_size - 1));
   1145 
   1146 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
   1147 			(page_to_phys(page) & (1 << 17)) != 0;
   1148 
   1149 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
   1150 					user_data, page_do_bit17_swizzling,
   1151 					partial_cacheline_write,
   1152 					needs_clflush_after);
   1153 		if (ret == 0)
   1154 			goto next_page;
   1155 
   1156 		hit_slowpath = 1;
   1157 		mutex_unlock(&dev->struct_mutex);
   1158 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
   1159 					user_data, page_do_bit17_swizzling,
   1160 					partial_cacheline_write,
   1161 					needs_clflush_after);
   1162 
   1163 		mutex_lock(&dev->struct_mutex);
   1164 
   1165 		if (ret)
   1166 			goto out;
   1167 
   1168 next_page:
   1169 		remain -= page_length;
   1170 		user_data += page_length;
   1171 		offset += page_length;
   1172 	}
   1173 #endif
   1174 
   1175 out:
   1176 	i915_gem_object_unpin_pages(obj);
   1177 
   1178 	if (hit_slowpath) {
   1179 		/*
   1180 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
   1181 		 * cachelines in-line while writing and the object moved
   1182 		 * out of the cpu write domain while we've dropped the lock.
   1183 		 */
   1184 		if (!needs_clflush_after &&
   1185 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1186 			if (i915_gem_clflush_object(obj, obj->pin_display))
   1187 				i915_gem_chipset_flush(dev);
   1188 		}
   1189 	}
   1190 
   1191 	if (needs_clflush_after)
   1192 		i915_gem_chipset_flush(dev);
   1193 
   1194 	return ret;
   1195 }
   1196 
   1197 /**
   1198  * Writes data to the object referenced by handle.
   1199  *
   1200  * On error, the contents of the buffer that were to be modified are undefined.
   1201  */
   1202 int
   1203 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
   1204 		      struct drm_file *file)
   1205 {
   1206 	struct drm_i915_gem_pwrite *args = data;
   1207 	struct drm_gem_object *gobj;
   1208 	struct drm_i915_gem_object *obj;
   1209 	int ret;
   1210 
   1211 	if (args->size == 0)
   1212 		return 0;
   1213 
   1214 	if (!access_ok(VERIFY_READ,
   1215 		       to_user_ptr(args->data_ptr),
   1216 		       args->size))
   1217 		return -EFAULT;
   1218 
   1219 #ifndef __NetBSD__		/* XXX prefault */
   1220 	if (likely(!i915.prefault_disable)) {
   1221 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
   1222 						   args->size);
   1223 		if (ret)
   1224 			return -EFAULT;
   1225 	}
   1226 #endif
   1227 
   1228 	ret = i915_mutex_lock_interruptible(dev);
   1229 	if (ret)
   1230 		return ret;
   1231 
   1232 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1233 	if (gobj == NULL) {
   1234 		ret = -ENOENT;
   1235 		goto unlock;
   1236 	}
   1237 	obj = to_intel_bo(gobj);
   1238 
   1239 	/* Bounds check destination. */
   1240 	if (args->offset > obj->base.size ||
   1241 	    args->size > obj->base.size - args->offset) {
   1242 		ret = -EINVAL;
   1243 		goto out;
   1244 	}
   1245 
   1246 	/* prime objects have no backing filp to GEM pread/pwrite
   1247 	 * pages from.
   1248 	 */
   1249 #ifdef __NetBSD__
   1250 	/* Also stolen objects.  */
   1251 	if (obj->base.gemo_shm_uao == NULL) {
   1252 		ret = -EINVAL;
   1253 		goto out;
   1254 	}
   1255 #else
   1256 	if (!obj->base.filp) {
   1257 		ret = -EINVAL;
   1258 		goto out;
   1259 	}
   1260 #endif
   1261 
   1262 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
   1263 
   1264 	ret = -EFAULT;
   1265 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
   1266 	 * it would end up going through the fenced access, and we'll get
   1267 	 * different detiling behavior between reading and writing.
   1268 	 * pread/pwrite currently are reading and writing from the CPU
   1269 	 * perspective, requiring manual detiling by the client.
   1270 	 */
   1271 	if (obj->phys_handle) {
   1272 		ret = i915_gem_phys_pwrite(obj, args, file);
   1273 		goto out;
   1274 	}
   1275 
   1276 	if (obj->tiling_mode == I915_TILING_NONE &&
   1277 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
   1278 	    cpu_write_needs_clflush(obj)) {
   1279 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
   1280 		/* Note that the gtt paths might fail with non-page-backed user
   1281 		 * pointers (e.g. gtt mappings when moving data between
   1282 		 * textures). Fallback to the shmem path in that case. */
   1283 	}
   1284 
   1285 	if (ret == -EFAULT || ret == -ENOSPC)
   1286 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
   1287 
   1288 out:
   1289 	drm_gem_object_unreference(&obj->base);
   1290 unlock:
   1291 	mutex_unlock(&dev->struct_mutex);
   1292 	return ret;
   1293 }
   1294 
   1295 int
   1296 i915_gem_check_wedge(struct i915_gpu_error *error,
   1297 		     bool interruptible)
   1298 {
   1299 	if (i915_reset_in_progress(error)) {
   1300 		/* Non-interruptible callers can't handle -EAGAIN, hence return
   1301 		 * -EIO unconditionally for these. */
   1302 		if (!interruptible)
   1303 			return -EIO;
   1304 
   1305 		/* Recovery complete, but the reset failed ... */
   1306 		if (i915_terminally_wedged(error))
   1307 			return -EIO;
   1308 
   1309 		return -EAGAIN;
   1310 	}
   1311 
   1312 	return 0;
   1313 }
   1314 
   1315 /*
   1316  * Compare seqno against outstanding lazy request. Emit a request if they are
   1317  * equal.
   1318  */
   1319 static int
   1320 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
   1321 {
   1322 	int ret;
   1323 
   1324 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
   1325 
   1326 	ret = 0;
   1327 	if (seqno == ring->outstanding_lazy_seqno)
   1328 		ret = i915_add_request(ring, NULL);
   1329 
   1330 	return ret;
   1331 }
   1332 
   1333 #ifndef __NetBSD__
   1334 static void fake_irq(unsigned long data)
   1335 {
   1336 	wake_up_process((struct task_struct *)data);
   1337 }
   1338 #endif
   1339 
   1340 static bool missed_irq(struct drm_i915_private *dev_priv,
   1341 		       struct intel_ring_buffer *ring)
   1342 {
   1343 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
   1344 }
   1345 
   1346 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
   1347 {
   1348 	if (file_priv == NULL)
   1349 		return true;
   1350 
   1351 	return !atomic_xchg(&file_priv->rps_wait_boost, true);
   1352 }
   1353 
   1354 /**
   1355  * __wait_seqno - wait until execution of seqno has finished
   1356  * @ring: the ring expected to report seqno
   1357  * @seqno: duh!
   1358  * @reset_counter: reset sequence associated with the given seqno
   1359  * @interruptible: do an interruptible wait (normally yes)
   1360  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
   1361  *
   1362  * Note: It is of utmost importance that the passed in seqno and reset_counter
   1363  * values have been read by the caller in an smp safe manner. Where read-side
   1364  * locks are involved, it is sufficient to read the reset_counter before
   1365  * unlocking the lock that protects the seqno. For lockless tricks, the
   1366  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
   1367  * inserted.
   1368  *
   1369  * Returns 0 if the seqno was found within the alloted time. Else returns the
   1370  * errno with remaining time filled in timeout argument.
   1371  */
   1372 #ifdef __NetBSD__
   1373 static int
   1374 __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, unsigned reset_counter,
   1375     bool interruptible, struct timespec *timeout,
   1376     struct drm_i915_file_private *file_priv)
   1377 {
   1378 	struct drm_device *dev = ring->dev;
   1379 	struct drm_i915_private *dev_priv = dev->dev_private;
   1380 	bool irq_test_in_progress;
   1381 	struct timespec before, after;
   1382 	int ticks;
   1383 	bool wedged;
   1384 	int ret;
   1385 
   1386 	irq_test_in_progress = (dev_priv->gpu_error.test_irq_rings &
   1387 	    intel_ring_flag(ring));
   1388 	__insn_barrier();
   1389 
   1390 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
   1391 		return 0;
   1392 
   1393 	if (timeout)
   1394 		ticks = mstohz(timespec_to_ns(timeout) / 1000000);
   1395 	else
   1396 		ticks = 1;
   1397 
   1398 	if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
   1399 		gen6_rps_boost(dev_priv);
   1400 		if (file_priv)
   1401 			mod_delayed_work(dev_priv->wq,
   1402 					 &file_priv->mm.idle_work,
   1403 					 msecs_to_jiffies(100));
   1404 	}
   1405 
   1406 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
   1407 		return -ENODEV;
   1408 
   1409 	nanotime(&before);
   1410 	spin_lock(&dev_priv->irq_lock);
   1411 #define	EXIT_COND							      \
   1412 	(((reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))  \
   1413 	    ? wedged = true : false) ||					      \
   1414 	    i915_seqno_passed(ring->get_seqno(ring, false),		      \
   1415 		seqno))
   1416 
   1417 	if (timeout) {
   1418 		/*
   1419 		 * XXX This missed_irq business smells like unlocked
   1420 		 * Linux waitqueue nonsense.
   1421 		 */
   1422 		if (missed_irq(dev_priv, ring))
   1423 			ticks = 1;
   1424 		if (interruptible)
   1425 			DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
   1426 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1427 		else
   1428 			DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1429 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1430 	} else {
   1431 		if (interruptible)
   1432 			DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
   1433 			    &dev_priv->irq_lock, EXIT_COND);
   1434 		else
   1435 			DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1436 			    &dev_priv->irq_lock, EXIT_COND);
   1437 	}
   1438 #undef	EXIT_COND
   1439 	spin_unlock(&dev_priv->irq_lock);
   1440 	nanotime(&after);
   1441 
   1442 	if (!irq_test_in_progress)
   1443 		ring->irq_put(ring);
   1444 	if (timeout)
   1445 		timespecsub(&after, &before, timeout);
   1446 	return MAX(ret, 0);	/* ignore remaining ticks */
   1447 }
   1448 #else
   1449 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
   1450 			unsigned reset_counter,
   1451 			bool interruptible,
   1452 			struct timespec *timeout,
   1453 			struct drm_i915_file_private *file_priv)
   1454 {
   1455 	struct drm_device *dev = ring->dev;
   1456 	struct drm_i915_private *dev_priv = dev->dev_private;
   1457 	const bool irq_test_in_progress =
   1458 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
   1459 	struct timespec before, now;
   1460 	DEFINE_WAIT(wait);
   1461 	unsigned long timeout_expire;
   1462 	int ret;
   1463 
   1464 	WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
   1465 
   1466 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
   1467 		return 0;
   1468 
   1469 	timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
   1470 
   1471 	if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
   1472 		gen6_rps_boost(dev_priv);
   1473 		if (file_priv)
   1474 			mod_delayed_work(dev_priv->wq,
   1475 					 &file_priv->mm.idle_work,
   1476 					 msecs_to_jiffies(100));
   1477 	}
   1478 
   1479 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
   1480 		return -ENODEV;
   1481 
   1482 	/* Record current time in case interrupted by signal, or wedged */
   1483 	trace_i915_gem_request_wait_begin(ring, seqno);
   1484 	getrawmonotonic(&before);
   1485 	for (;;) {
   1486 		struct timer_list timer;
   1487 
   1488 		prepare_to_wait(&ring->irq_queue, &wait,
   1489 				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
   1490 
   1491 		/* We need to check whether any gpu reset happened in between
   1492 		 * the caller grabbing the seqno and now ... */
   1493 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
   1494 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
   1495 			 * is truely gone. */
   1496 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1497 			if (ret == 0)
   1498 				ret = -EAGAIN;
   1499 			break;
   1500 		}
   1501 
   1502 		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
   1503 			ret = 0;
   1504 			break;
   1505 		}
   1506 
   1507 		if (interruptible && signal_pending(current)) {
   1508 			ret = -ERESTARTSYS;
   1509 			break;
   1510 		}
   1511 
   1512 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
   1513 			ret = -ETIME;
   1514 			break;
   1515 		}
   1516 
   1517 		timer.function = NULL;
   1518 		if (timeout || missed_irq(dev_priv, ring)) {
   1519 			unsigned long expire;
   1520 
   1521 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
   1522 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
   1523 			mod_timer(&timer, expire);
   1524 		}
   1525 
   1526 		io_schedule();
   1527 
   1528 		if (timer.function) {
   1529 			del_singleshot_timer_sync(&timer);
   1530 			destroy_timer_on_stack(&timer);
   1531 		}
   1532 	}
   1533 	getrawmonotonic(&now);
   1534 	trace_i915_gem_request_wait_end(ring, seqno);
   1535 
   1536 	if (!irq_test_in_progress)
   1537 		ring->irq_put(ring);
   1538 
   1539 	finish_wait(&ring->irq_queue, &wait);
   1540 
   1541 	if (timeout) {
   1542 		struct timespec sleep_time = timespec_sub(now, before);
   1543 		*timeout = timespec_sub(*timeout, sleep_time);
   1544 		if (!timespec_valid(timeout)) /* i.e. negative time remains */
   1545 			set_normalized_timespec(timeout, 0, 0);
   1546 	}
   1547 
   1548 	return ret;
   1549 }
   1550 #endif
   1551 
   1552 /**
   1553  * Waits for a sequence number to be signaled, and cleans up the
   1554  * request and object lists appropriately for that event.
   1555  */
   1556 int
   1557 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
   1558 {
   1559 	struct drm_device *dev = ring->dev;
   1560 	struct drm_i915_private *dev_priv = dev->dev_private;
   1561 	bool interruptible = dev_priv->mm.interruptible;
   1562 	int ret;
   1563 
   1564 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1565 	BUG_ON(seqno == 0);
   1566 
   1567 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1568 	if (ret)
   1569 		return ret;
   1570 
   1571 	ret = i915_gem_check_olr(ring, seqno);
   1572 	if (ret)
   1573 		return ret;
   1574 
   1575 	return __wait_seqno(ring, seqno,
   1576 			    atomic_read(&dev_priv->gpu_error.reset_counter),
   1577 			    interruptible, NULL, NULL);
   1578 }
   1579 
   1580 static int
   1581 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
   1582 				     struct intel_ring_buffer *ring)
   1583 {
   1584 	i915_gem_retire_requests_ring(ring);
   1585 
   1586 	/* Manually manage the write flush as we may have not yet
   1587 	 * retired the buffer.
   1588 	 *
   1589 	 * Note that the last_write_seqno is always the earlier of
   1590 	 * the two (read/write) seqno, so if we haved successfully waited,
   1591 	 * we know we have passed the last write.
   1592 	 */
   1593 	obj->last_write_seqno = 0;
   1594 	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
   1595 
   1596 	return 0;
   1597 }
   1598 
   1599 /**
   1600  * Ensures that all rendering to the object has completed and the object is
   1601  * safe to unbind from the GTT or access from the CPU.
   1602  */
   1603 static __must_check int
   1604 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
   1605 			       bool readonly)
   1606 {
   1607 	struct intel_ring_buffer *ring = obj->ring;
   1608 	u32 seqno;
   1609 	int ret;
   1610 
   1611 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
   1612 	if (seqno == 0)
   1613 		return 0;
   1614 
   1615 	ret = i915_wait_seqno(ring, seqno);
   1616 	if (ret)
   1617 		return ret;
   1618 
   1619 	return i915_gem_object_wait_rendering__tail(obj, ring);
   1620 }
   1621 
   1622 /* A nonblocking variant of the above wait. This is a highly dangerous routine
   1623  * as the object state may change during this call.
   1624  */
   1625 static __must_check int
   1626 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
   1627 					    struct drm_i915_file_private *file_priv,
   1628 					    bool readonly)
   1629 {
   1630 	struct drm_device *dev = obj->base.dev;
   1631 	struct drm_i915_private *dev_priv = dev->dev_private;
   1632 	struct intel_ring_buffer *ring = obj->ring;
   1633 	unsigned reset_counter;
   1634 	u32 seqno;
   1635 	int ret;
   1636 
   1637 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1638 	BUG_ON(!dev_priv->mm.interruptible);
   1639 
   1640 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
   1641 	if (seqno == 0)
   1642 		return 0;
   1643 
   1644 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
   1645 	if (ret)
   1646 		return ret;
   1647 
   1648 	ret = i915_gem_check_olr(ring, seqno);
   1649 	if (ret)
   1650 		return ret;
   1651 
   1652 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   1653 	mutex_unlock(&dev->struct_mutex);
   1654 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
   1655 	mutex_lock(&dev->struct_mutex);
   1656 	if (ret)
   1657 		return ret;
   1658 
   1659 	return i915_gem_object_wait_rendering__tail(obj, ring);
   1660 }
   1661 
   1662 /**
   1663  * Called when user space prepares to use an object with the CPU, either
   1664  * through the mmap ioctl's mapping or a GTT mapping.
   1665  */
   1666 int
   1667 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
   1668 			  struct drm_file *file)
   1669 {
   1670 	struct drm_i915_gem_set_domain *args = data;
   1671 	struct drm_gem_object *gobj;
   1672 	struct drm_i915_gem_object *obj;
   1673 	uint32_t read_domains = args->read_domains;
   1674 	uint32_t write_domain = args->write_domain;
   1675 	int ret;
   1676 
   1677 	/* Only handle setting domains to types used by the CPU. */
   1678 	if (write_domain & I915_GEM_GPU_DOMAINS)
   1679 		return -EINVAL;
   1680 
   1681 	if (read_domains & I915_GEM_GPU_DOMAINS)
   1682 		return -EINVAL;
   1683 
   1684 	/* Having something in the write domain implies it's in the read
   1685 	 * domain, and only that read domain.  Enforce that in the request.
   1686 	 */
   1687 	if (write_domain != 0 && read_domains != write_domain)
   1688 		return -EINVAL;
   1689 
   1690 	ret = i915_mutex_lock_interruptible(dev);
   1691 	if (ret)
   1692 		return ret;
   1693 
   1694 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1695 	if (gobj == NULL) {
   1696 		ret = -ENOENT;
   1697 		goto unlock;
   1698 	}
   1699 	obj = to_intel_bo(gobj);
   1700 
   1701 	/* Try to flush the object off the GPU without holding the lock.
   1702 	 * We will repeat the flush holding the lock in the normal manner
   1703 	 * to catch cases where we are gazumped.
   1704 	 */
   1705 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
   1706 							  file->driver_priv,
   1707 							  !write_domain);
   1708 	if (ret)
   1709 		goto unref;
   1710 
   1711 	if (read_domains & I915_GEM_DOMAIN_GTT) {
   1712 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
   1713 
   1714 		/* Silently promote "you're not bound, there was nothing to do"
   1715 		 * to success, since the client was just asking us to
   1716 		 * make sure everything was done.
   1717 		 */
   1718 		if (ret == -EINVAL)
   1719 			ret = 0;
   1720 	} else {
   1721 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
   1722 	}
   1723 
   1724 unref:
   1725 	drm_gem_object_unreference(&obj->base);
   1726 unlock:
   1727 	mutex_unlock(&dev->struct_mutex);
   1728 	return ret;
   1729 }
   1730 
   1731 /**
   1732  * Called when user space has done writes to this buffer
   1733  */
   1734 int
   1735 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
   1736 			 struct drm_file *file)
   1737 {
   1738 	struct drm_i915_gem_sw_finish *args = data;
   1739 	struct drm_gem_object *gobj;
   1740 	struct drm_i915_gem_object *obj;
   1741 	int ret = 0;
   1742 
   1743 	ret = i915_mutex_lock_interruptible(dev);
   1744 	if (ret)
   1745 		return ret;
   1746 
   1747 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1748 	if (gobj == NULL) {
   1749 		ret = -ENOENT;
   1750 		goto unlock;
   1751 	}
   1752 	obj = to_intel_bo(gobj);
   1753 
   1754 	/* Pinned buffers may be scanout, so flush the cache */
   1755 	if (obj->pin_display)
   1756 		i915_gem_object_flush_cpu_write_domain(obj, true);
   1757 
   1758 	drm_gem_object_unreference(&obj->base);
   1759 unlock:
   1760 	mutex_unlock(&dev->struct_mutex);
   1761 	return ret;
   1762 }
   1763 
   1764 /**
   1765  * Maps the contents of an object, returning the address it is mapped
   1766  * into.
   1767  *
   1768  * While the mapping holds a reference on the contents of the object, it doesn't
   1769  * imply a ref on the object itself.
   1770  */
   1771 int
   1772 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
   1773 		    struct drm_file *file)
   1774 {
   1775 	struct drm_i915_gem_mmap *args = data;
   1776 	struct drm_gem_object *obj;
   1777 	unsigned long addr;
   1778 #ifdef __NetBSD__
   1779 	int ret;
   1780 #endif
   1781 
   1782 	obj = drm_gem_object_lookup(dev, file, args->handle);
   1783 	if (obj == NULL)
   1784 		return -ENOENT;
   1785 
   1786 	/* prime objects have no backing filp to GEM mmap
   1787 	 * pages from.
   1788 	 */
   1789 #ifdef __NetBSD__
   1790 	/* Also stolen objects (XXX can we get them here?)  */
   1791 	if (obj->gemo_shm_uao == NULL) {
   1792 		drm_gem_object_unreference_unlocked(obj);
   1793 		return -EINVAL;
   1794 	}
   1795 #else
   1796 	if (!obj->filp) {
   1797 		drm_gem_object_unreference_unlocked(obj);
   1798 		return -EINVAL;
   1799 	}
   1800 #endif
   1801 
   1802 #ifdef __NetBSD__
   1803 	addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
   1804 	    (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
   1805 	/* XXX errno NetBSD->Linux */
   1806 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
   1807 	    obj->gemo_shm_uao, args->offset, 0,
   1808 	    UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
   1809 		(VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
   1810 		0));
   1811 	if (ret) {
   1812 		drm_gem_object_unreference_unlocked(obj);
   1813 		return ret;
   1814 	}
   1815 	uao_reference(obj->gemo_shm_uao);
   1816 	drm_gem_object_unreference_unlocked(obj);
   1817 #else
   1818 	addr = vm_mmap(obj->filp, 0, args->size,
   1819 		       PROT_READ | PROT_WRITE, MAP_SHARED,
   1820 		       args->offset);
   1821 	drm_gem_object_unreference_unlocked(obj);
   1822 	if (IS_ERR((void *)addr))
   1823 		return addr;
   1824 #endif
   1825 
   1826 	args->addr_ptr = (uint64_t) addr;
   1827 
   1828 	return 0;
   1829 }
   1830 
   1831 #ifdef __NetBSD__		/* XXX gem gtt fault */
   1832 static int	i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
   1833 		    struct vm_page **, int, int, vm_prot_t, int, paddr_t);
   1834 
   1835 int
   1836 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   1837     int npages, int centeridx, vm_prot_t access_type, int flags)
   1838 {
   1839 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1840 	struct drm_gem_object *gem_obj =
   1841 	    container_of(uobj, struct drm_gem_object, gemo_uvmobj);
   1842 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   1843 	struct drm_device *dev = obj->base.dev;
   1844 	struct drm_i915_private *dev_priv = dev->dev_private;
   1845 	voff_t byte_offset;
   1846 	pgoff_t page_offset;
   1847 	int ret = 0;
   1848 	bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
   1849 
   1850 	byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
   1851 	KASSERT(byte_offset <= obj->base.size);
   1852 	page_offset = (byte_offset >> PAGE_SHIFT);
   1853 
   1854 	intel_runtime_pm_get(dev_priv);
   1855 
   1856 	/* Thanks, uvm, but we don't need this lock.  */
   1857 	mutex_exit(uobj->vmobjlock);
   1858 
   1859 	ret = i915_mutex_lock_interruptible(dev);
   1860 	if (ret)
   1861 		goto out;
   1862 
   1863 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   1864 
   1865 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   1866 	if (ret)
   1867 		goto unlock;
   1868 
   1869 	if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
   1870 		ret = -EINVAL;
   1871 		goto unlock;
   1872 	}
   1873 
   1874 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
   1875 	if (ret)
   1876 		goto unlock;
   1877 
   1878 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   1879 	if (ret)
   1880 		goto unpin;
   1881 
   1882 	ret = i915_gem_object_get_fence(obj);
   1883 	if (ret)
   1884 		goto unpin;
   1885 
   1886 	obj->fault_mappable = true;
   1887 
   1888 	/* XXX errno NetBSD->Linux */
   1889 	ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
   1890 	    flags,
   1891 	    (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
   1892 unpin:
   1893 	i915_gem_object_ggtt_unpin(obj);
   1894 unlock:
   1895 	mutex_unlock(&dev->struct_mutex);
   1896 out:
   1897 	mutex_enter(uobj->vmobjlock);
   1898 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
   1899 	if (ret == -ERESTART)
   1900 		uvm_wait("i915flt");
   1901 	/* XXX Deal with GPU hangs here...  */
   1902 	intel_runtime_pm_put(dev_priv);
   1903 	/* XXX errno Linux->NetBSD */
   1904 	return -ret;
   1905 }
   1906 
   1907 /*
   1908  * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
   1909  *
   1910  * XXX pmap_enter_default instead of pmap_enter because of a problem
   1911  * with using weak aliases in kernel modules or something.
   1912  */
   1913 int	pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
   1914 
   1915 static int
   1916 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   1917     int npages, int centeridx, vm_prot_t access_type, int flags,
   1918     paddr_t gtt_paddr)
   1919 {
   1920 	struct vm_map_entry *entry = ufi->entry;
   1921 	vaddr_t curr_va;
   1922 	off_t curr_offset;
   1923 	paddr_t paddr;
   1924 	u_int mmapflags;
   1925 	int lcv, retval;
   1926 	vm_prot_t mapprot;
   1927 	UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
   1928 	UVMHIST_LOG(maphist,"  flags=%d", flags,0,0,0);
   1929 
   1930 	/*
   1931 	 * we do not allow device mappings to be mapped copy-on-write
   1932 	 * so we kill any attempt to do so here.
   1933 	 */
   1934 
   1935 	if (UVM_ET_ISCOPYONWRITE(entry)) {
   1936 		UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
   1937 		entry->etype, 0,0,0);
   1938 		return(EIO);
   1939 	}
   1940 
   1941 	/*
   1942 	 * now we must determine the offset in udv to use and the VA to
   1943 	 * use for pmap_enter.  note that we always use orig_map's pmap
   1944 	 * for pmap_enter (even if we have a submap).   since virtual
   1945 	 * addresses in a submap must match the main map, this is ok.
   1946 	 */
   1947 
   1948 	/* udv offset = (offset from start of entry) + entry's offset */
   1949 	curr_offset = entry->offset + (vaddr - entry->start);
   1950 	/* pmap va = vaddr (virtual address of pps[0]) */
   1951 	curr_va = vaddr;
   1952 
   1953 	/*
   1954 	 * loop over the page range entering in as needed
   1955 	 */
   1956 
   1957 	retval = 0;
   1958 	for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
   1959 	    curr_va += PAGE_SIZE) {
   1960 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
   1961 			continue;
   1962 
   1963 		if (pps[lcv] == PGO_DONTCARE)
   1964 			continue;
   1965 
   1966 		paddr = (gtt_paddr + curr_offset);
   1967 		mmapflags = 0;
   1968 		mapprot = ufi->entry->protection;
   1969 		UVMHIST_LOG(maphist,
   1970 		    "  MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
   1971 		    ufi->orig_map->pmap, curr_va, paddr, mapprot);
   1972 		if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
   1973 		    PMAP_CANFAIL | mapprot | mmapflags) != 0) {
   1974 			/*
   1975 			 * pmap_enter() didn't have the resource to
   1976 			 * enter this mapping.  Unlock everything,
   1977 			 * wait for the pagedaemon to free up some
   1978 			 * pages, and then tell uvm_fault() to start
   1979 			 * the fault again.
   1980 			 *
   1981 			 * XXX Needs some rethinking for the PGO_ALLPAGES
   1982 			 * XXX case.
   1983 			 */
   1984 			pmap_update(ufi->orig_map->pmap);	/* sync what we have so far */
   1985 			return (ERESTART);
   1986 		}
   1987 	}
   1988 
   1989 	pmap_update(ufi->orig_map->pmap);
   1990 	return (retval);
   1991 }
   1992 #else
   1993 /**
   1994  * i915_gem_fault - fault a page into the GTT
   1995  * vma: VMA in question
   1996  * vmf: fault info
   1997  *
   1998  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
   1999  * from userspace.  The fault handler takes care of binding the object to
   2000  * the GTT (if needed), allocating and programming a fence register (again,
   2001  * only if needed based on whether the old reg is still valid or the object
   2002  * is tiled) and inserting a new PTE into the faulting process.
   2003  *
   2004  * Note that the faulting process may involve evicting existing objects
   2005  * from the GTT and/or fence registers to make room.  So performance may
   2006  * suffer if the GTT working set is large or there are few fence registers
   2007  * left.
   2008  */
   2009 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
   2010 {
   2011 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
   2012 	struct drm_device *dev = obj->base.dev;
   2013 	struct drm_i915_private *dev_priv = dev->dev_private;
   2014 	pgoff_t page_offset;
   2015 	unsigned long pfn;
   2016 	int ret = 0;
   2017 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
   2018 
   2019 	intel_runtime_pm_get(dev_priv);
   2020 
   2021 	/* We don't use vmf->pgoff since that has the fake offset */
   2022 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
   2023 		PAGE_SHIFT;
   2024 
   2025 	ret = i915_mutex_lock_interruptible(dev);
   2026 	if (ret)
   2027 		goto out;
   2028 
   2029 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   2030 
   2031 	/* Try to flush the object off the GPU first without holding the lock.
   2032 	 * Upon reacquiring the lock, we will perform our sanity checks and then
   2033 	 * repeat the flush holding the lock in the normal manner to catch cases
   2034 	 * where we are gazumped.
   2035 	 */
   2036 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   2037 	if (ret)
   2038 		goto unlock;
   2039 
   2040 	/* Access to snoopable pages through the GTT is incoherent. */
   2041 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
   2042 		ret = -EINVAL;
   2043 		goto unlock;
   2044 	}
   2045 
   2046 	/* Now bind it into the GTT if needed */
   2047 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
   2048 	if (ret)
   2049 		goto unlock;
   2050 
   2051 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   2052 	if (ret)
   2053 		goto unpin;
   2054 
   2055 	ret = i915_gem_object_get_fence(obj);
   2056 	if (ret)
   2057 		goto unpin;
   2058 
   2059 	obj->fault_mappable = true;
   2060 
   2061 	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
   2062 	pfn >>= PAGE_SHIFT;
   2063 	pfn += page_offset;
   2064 
   2065 	/* Finally, remap it using the new GTT offset */
   2066 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
   2067 unpin:
   2068 	i915_gem_object_ggtt_unpin(obj);
   2069 unlock:
   2070 	mutex_unlock(&dev->struct_mutex);
   2071 out:
   2072 	switch (ret) {
   2073 	case -EIO:
   2074 		/* If this -EIO is due to a gpu hang, give the reset code a
   2075 		 * chance to clean up the mess. Otherwise return the proper
   2076 		 * SIGBUS. */
   2077 		if (i915_terminally_wedged(&dev_priv->gpu_error)) {
   2078 			ret = VM_FAULT_SIGBUS;
   2079 			break;
   2080 		}
   2081 	case -EAGAIN:
   2082 		/*
   2083 		 * EAGAIN means the gpu is hung and we'll wait for the error
   2084 		 * handler to reset everything when re-faulting in
   2085 		 * i915_mutex_lock_interruptible.
   2086 		 */
   2087 	case 0:
   2088 	case -ERESTARTSYS:
   2089 	case -EINTR:
   2090 	case -EBUSY:
   2091 		/*
   2092 		 * EBUSY is ok: this just means that another thread
   2093 		 * already did the job.
   2094 		 */
   2095 		ret = VM_FAULT_NOPAGE;
   2096 		break;
   2097 	case -ENOMEM:
   2098 		ret = VM_FAULT_OOM;
   2099 		break;
   2100 	case -ENOSPC:
   2101 	case -EFAULT:
   2102 		ret = VM_FAULT_SIGBUS;
   2103 		break;
   2104 	default:
   2105 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
   2106 		ret = VM_FAULT_SIGBUS;
   2107 		break;
   2108 	}
   2109 
   2110 	intel_runtime_pm_put(dev_priv);
   2111 	return ret;
   2112 }
   2113 
   2114 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
   2115 {
   2116 	struct i915_vma *vma;
   2117 
   2118 	/*
   2119 	 * Only the global gtt is relevant for gtt memory mappings, so restrict
   2120 	 * list traversal to objects bound into the global address space. Note
   2121 	 * that the active list should be empty, but better safe than sorry.
   2122 	 */
   2123 	WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
   2124 	list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
   2125 		i915_gem_release_mmap(vma->obj);
   2126 	list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
   2127 		i915_gem_release_mmap(vma->obj);
   2128 }
   2129 #endif
   2130 
   2131 /**
   2132  * i915_gem_release_mmap - remove physical page mappings
   2133  * @obj: obj in question
   2134  *
   2135  * Preserve the reservation of the mmapping with the DRM core code, but
   2136  * relinquish ownership of the pages back to the system.
   2137  *
   2138  * It is vital that we remove the page mapping if we have mapped a tiled
   2139  * object through the GTT and then lose the fence register due to
   2140  * resource pressure. Similarly if the object has been moved out of the
   2141  * aperture, than pages mapped into userspace must be revoked. Removing the
   2142  * mapping will then trigger a page fault on the next user access, allowing
   2143  * fixup by i915_gem_fault().
   2144  */
   2145 void
   2146 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
   2147 {
   2148 	if (!obj->fault_mappable)
   2149 		return;
   2150 
   2151 #ifdef __NetBSD__		/* XXX gem gtt fault */
   2152 	{
   2153 		struct vm_page *page;
   2154 
   2155 		mutex_enter(obj->base.gemo_shm_uao->vmobjlock);
   2156 		KASSERT(obj->pages != NULL);
   2157 		/* Force a fresh fault for each page.  */
   2158 		/*
   2159 		 * XXX OOPS!  This doesn't actually do what we want.
   2160 		 * This causes a fresh fault for access to the backing
   2161 		 * pages -- but nothing accesses the backing pages
   2162 		 * directly!  What is actually entered into CPU page
   2163 		 * table entries is aperture addresses which have been
   2164 		 * programmed by the GTT to refer to those backing
   2165 		 * pages.
   2166 		 *
   2167 		 * We need to clear those page table entries, but
   2168 		 * there's no good way to do that at the moment: nobody
   2169 		 * records for us a map from either uvm objects or
   2170 		 * physical device addresses to a list of all virtual
   2171 		 * pages where they have been mapped.  pmap(9) records
   2172 		 * a map only from physical RAM addresses to virtual
   2173 		 * pages; it does nothing for physical device
   2174 		 * addresses.
   2175 		 */
   2176 		TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
   2177 			pmap_page_protect(page, VM_PROT_NONE);
   2178 		mutex_exit(obj->base.gemo_shm_uao->vmobjlock);
   2179 	}
   2180 #else
   2181 	drm_vma_node_unmap(&obj->base.vma_node,
   2182 			   obj->base.dev->anon_inode->i_mapping);
   2183 #endif
   2184 	obj->fault_mappable = false;
   2185 }
   2186 
   2187 uint32_t
   2188 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
   2189 {
   2190 	uint32_t gtt_size;
   2191 
   2192 	if (INTEL_INFO(dev)->gen >= 4 ||
   2193 	    tiling_mode == I915_TILING_NONE)
   2194 		return size;
   2195 
   2196 	/* Previous chips need a power-of-two fence region when tiling */
   2197 	if (INTEL_INFO(dev)->gen == 3)
   2198 		gtt_size = 1024*1024;
   2199 	else
   2200 		gtt_size = 512*1024;
   2201 
   2202 	while (gtt_size < size)
   2203 		gtt_size <<= 1;
   2204 
   2205 	return gtt_size;
   2206 }
   2207 
   2208 /**
   2209  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
   2210  * @obj: object to check
   2211  *
   2212  * Return the required GTT alignment for an object, taking into account
   2213  * potential fence register mapping.
   2214  */
   2215 uint32_t
   2216 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
   2217 			   int tiling_mode, bool fenced)
   2218 {
   2219 	/*
   2220 	 * Minimum alignment is 4k (GTT page size), but might be greater
   2221 	 * if a fence register is needed for the object.
   2222 	 */
   2223 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
   2224 	    tiling_mode == I915_TILING_NONE)
   2225 		return 4096;
   2226 
   2227 	/*
   2228 	 * Previous chips need to be aligned to the size of the smallest
   2229 	 * fence register that can contain the object.
   2230 	 */
   2231 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
   2232 }
   2233 
   2234 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
   2235 {
   2236 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2237 	int ret;
   2238 
   2239 	if (drm_vma_node_has_offset(&obj->base.vma_node))
   2240 		return 0;
   2241 
   2242 	dev_priv->mm.shrinker_no_lock_stealing = true;
   2243 
   2244 	ret = drm_gem_create_mmap_offset(&obj->base);
   2245 	if (ret != -ENOSPC)
   2246 		goto out;
   2247 
   2248 	/* Badly fragmented mmap space? The only way we can recover
   2249 	 * space is by destroying unwanted objects. We can't randomly release
   2250 	 * mmap_offsets as userspace expects them to be persistent for the
   2251 	 * lifetime of the objects. The closest we can is to release the
   2252 	 * offsets on purgeable objects by truncating it and marking it purged,
   2253 	 * which prevents userspace from ever using that object again.
   2254 	 */
   2255 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
   2256 	ret = drm_gem_create_mmap_offset(&obj->base);
   2257 	if (ret != -ENOSPC)
   2258 		goto out;
   2259 
   2260 	i915_gem_shrink_all(dev_priv);
   2261 	ret = drm_gem_create_mmap_offset(&obj->base);
   2262 out:
   2263 	dev_priv->mm.shrinker_no_lock_stealing = false;
   2264 
   2265 	return ret;
   2266 }
   2267 
   2268 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
   2269 {
   2270 	drm_gem_free_mmap_offset(&obj->base);
   2271 }
   2272 
   2273 int
   2274 i915_gem_mmap_gtt(struct drm_file *file,
   2275 		  struct drm_device *dev,
   2276 		  uint32_t handle,
   2277 		  uint64_t *offset)
   2278 {
   2279 	struct drm_i915_private *dev_priv = dev->dev_private;
   2280 	struct drm_gem_object *gobj;
   2281 	struct drm_i915_gem_object *obj;
   2282 	int ret;
   2283 
   2284 	ret = i915_mutex_lock_interruptible(dev);
   2285 	if (ret)
   2286 		return ret;
   2287 
   2288 	gobj = drm_gem_object_lookup(dev, file, handle);
   2289 	if (gobj == NULL) {
   2290 		ret = -ENOENT;
   2291 		goto unlock;
   2292 	}
   2293 	obj = to_intel_bo(gobj);
   2294 
   2295 	if (obj->base.size > dev_priv->gtt.mappable_end) {
   2296 		ret = -E2BIG;
   2297 		goto out;
   2298 	}
   2299 
   2300 	if (obj->madv != I915_MADV_WILLNEED) {
   2301 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
   2302 		ret = -EFAULT;
   2303 		goto out;
   2304 	}
   2305 
   2306 	ret = i915_gem_object_create_mmap_offset(obj);
   2307 	if (ret)
   2308 		goto out;
   2309 
   2310 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
   2311 
   2312 out:
   2313 	drm_gem_object_unreference(&obj->base);
   2314 unlock:
   2315 	mutex_unlock(&dev->struct_mutex);
   2316 	return ret;
   2317 }
   2318 
   2319 /**
   2320  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
   2321  * @dev: DRM device
   2322  * @data: GTT mapping ioctl data
   2323  * @file: GEM object info
   2324  *
   2325  * Simply returns the fake offset to userspace so it can mmap it.
   2326  * The mmap call will end up in drm_gem_mmap(), which will set things
   2327  * up so we can get faults in the handler above.
   2328  *
   2329  * The fault handler will take care of binding the object into the GTT
   2330  * (since it may have been evicted to make room for something), allocating
   2331  * a fence register, and mapping the appropriate aperture address into
   2332  * userspace.
   2333  */
   2334 int
   2335 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
   2336 			struct drm_file *file)
   2337 {
   2338 	struct drm_i915_gem_mmap_gtt *args = data;
   2339 
   2340 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
   2341 }
   2342 
   2343 /* Immediately discard the backing storage */
   2344 static void
   2345 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
   2346 {
   2347 #ifndef __NetBSD__
   2348 	struct inode *inode;
   2349 #endif
   2350 
   2351 	i915_gem_object_free_mmap_offset(obj);
   2352 
   2353 #ifdef __NetBSD__
   2354 	if (obj->base.gemo_shm_uao == NULL)
   2355 		return;
   2356 
   2357 	{
   2358 		struct uvm_object *const uobj = obj->base.gemo_shm_uao;
   2359 
   2360 		if (uobj != NULL) {
   2361 			/* XXX Calling pgo_put like this is bogus.  */
   2362 			mutex_enter(uobj->vmobjlock);
   2363 			(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   2364 			    (PGO_ALLPAGES | PGO_FREE));
   2365 		}
   2366 	}
   2367 #else
   2368 	if (obj->base.filp == NULL)
   2369 		return;
   2370 
   2371 	/* Our goal here is to return as much of the memory as
   2372 	 * is possible back to the system as we are called from OOM.
   2373 	 * To do this we must instruct the shmfs to drop all of its
   2374 	 * backing pages, *now*.
   2375 	 */
   2376 	inode = file_inode(obj->base.filp);
   2377 	shmem_truncate_range(inode, 0, (loff_t)-1);
   2378 #endif
   2379 
   2380 	obj->madv = __I915_MADV_PURGED;
   2381 }
   2382 
   2383 static inline int
   2384 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
   2385 {
   2386 	return obj->madv == I915_MADV_DONTNEED;
   2387 }
   2388 
   2389 #ifdef __NetBSD__
   2390 static void
   2391 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2392 {
   2393 	struct drm_device *const dev = obj->base.dev;
   2394 	int ret;
   2395 
   2396 	/* XXX Cargo-culted from the Linux code.  */
   2397 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2398 
   2399 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2400 	if (ret) {
   2401 		WARN_ON(ret != -EIO);
   2402 		i915_gem_clflush_object(obj, true);
   2403 		obj->base.read_domains = obj->base.write_domain =
   2404 		    I915_GEM_DOMAIN_CPU;
   2405 	}
   2406 
   2407 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2408 		i915_gem_object_save_bit_17_swizzle(obj);
   2409 
   2410 	/* XXX Maintain dirty flag?  */
   2411 
   2412 	bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
   2413 	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
   2414 	    obj->base.size, obj->pages, obj->igo_nsegs);
   2415 
   2416 	kfree(obj->pages);
   2417 }
   2418 #else
   2419 static void
   2420 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2421 {
   2422 	struct sg_page_iter sg_iter;
   2423 	int ret;
   2424 
   2425 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2426 
   2427 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2428 	if (ret) {
   2429 		/* In the event of a disaster, abandon all caches and
   2430 		 * hope for the best.
   2431 		 */
   2432 		WARN_ON(ret != -EIO);
   2433 		i915_gem_clflush_object(obj, true);
   2434 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   2435 	}
   2436 
   2437 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2438 		i915_gem_object_save_bit_17_swizzle(obj);
   2439 
   2440 	if (obj->madv == I915_MADV_DONTNEED)
   2441 		obj->dirty = 0;
   2442 
   2443 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
   2444 		struct page *page = sg_page_iter_page(&sg_iter);
   2445 
   2446 		if (obj->dirty)
   2447 			set_page_dirty(page);
   2448 
   2449 		if (obj->madv == I915_MADV_WILLNEED)
   2450 			mark_page_accessed(page);
   2451 
   2452 		page_cache_release(page);
   2453 	}
   2454 	obj->dirty = 0;
   2455 
   2456 	sg_free_table(obj->pages);
   2457 	kfree(obj->pages);
   2458 }
   2459 #endif
   2460 
   2461 int
   2462 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
   2463 {
   2464 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2465 
   2466 	if (obj->pages == NULL)
   2467 		return 0;
   2468 
   2469 	if (obj->pages_pin_count)
   2470 		return -EBUSY;
   2471 
   2472 	BUG_ON(i915_gem_obj_bound_any(obj));
   2473 
   2474 	/* ->put_pages might need to allocate memory for the bit17 swizzle
   2475 	 * array, hence protect them from being reaped by removing them from gtt
   2476 	 * lists early. */
   2477 	list_del(&obj->global_list);
   2478 
   2479 	ops->put_pages(obj);
   2480 	obj->pages = NULL;
   2481 
   2482 	if (i915_gem_object_is_purgeable(obj))
   2483 		i915_gem_object_truncate(obj);
   2484 
   2485 	return 0;
   2486 }
   2487 
   2488 static unsigned long
   2489 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
   2490 		  bool purgeable_only)
   2491 {
   2492 	struct list_head still_bound_list;
   2493 	struct drm_i915_gem_object *obj, *next;
   2494 	unsigned long count = 0;
   2495 
   2496 	list_for_each_entry_safe(obj, next,
   2497 				 &dev_priv->mm.unbound_list,
   2498 				 global_list) {
   2499 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
   2500 		    i915_gem_object_put_pages(obj) == 0) {
   2501 			count += obj->base.size >> PAGE_SHIFT;
   2502 			if (count >= target)
   2503 				return count;
   2504 		}
   2505 	}
   2506 
   2507 	/*
   2508 	 * As we may completely rewrite the bound list whilst unbinding
   2509 	 * (due to retiring requests) we have to strictly process only
   2510 	 * one element of the list at the time, and recheck the list
   2511 	 * on every iteration.
   2512 	 */
   2513 	INIT_LIST_HEAD(&still_bound_list);
   2514 	while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
   2515 		struct i915_vma *vma, *v;
   2516 
   2517 		obj = list_first_entry(&dev_priv->mm.bound_list,
   2518 				       typeof(*obj), global_list);
   2519 		list_move_tail(&obj->global_list, &still_bound_list);
   2520 
   2521 		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
   2522 			continue;
   2523 
   2524 		/*
   2525 		 * Hold a reference whilst we unbind this object, as we may
   2526 		 * end up waiting for and retiring requests. This might
   2527 		 * release the final reference (held by the active list)
   2528 		 * and result in the object being freed from under us.
   2529 		 * in this object being freed.
   2530 		 *
   2531 		 * Note 1: Shrinking the bound list is special since only active
   2532 		 * (and hence bound objects) can contain such limbo objects, so
   2533 		 * we don't need special tricks for shrinking the unbound list.
   2534 		 * The only other place where we have to be careful with active
   2535 		 * objects suddenly disappearing due to retiring requests is the
   2536 		 * eviction code.
   2537 		 *
   2538 		 * Note 2: Even though the bound list doesn't hold a reference
   2539 		 * to the object we can safely grab one here: The final object
   2540 		 * unreferencing and the bound_list are both protected by the
   2541 		 * dev->struct_mutex and so we won't ever be able to observe an
   2542 		 * object on the bound_list with a reference count equals 0.
   2543 		 */
   2544 		drm_gem_object_reference(&obj->base);
   2545 
   2546 		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
   2547 			if (i915_vma_unbind(vma))
   2548 				break;
   2549 
   2550 		if (i915_gem_object_put_pages(obj) == 0)
   2551 			count += obj->base.size >> PAGE_SHIFT;
   2552 
   2553 		drm_gem_object_unreference(&obj->base);
   2554 	}
   2555 	list_splice(&still_bound_list, &dev_priv->mm.bound_list);
   2556 
   2557 	return count;
   2558 }
   2559 
   2560 static unsigned long
   2561 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
   2562 {
   2563 	return __i915_gem_shrink(dev_priv, target, true);
   2564 }
   2565 
   2566 static unsigned long
   2567 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
   2568 {
   2569 	struct drm_i915_gem_object *obj, *next;
   2570 	long freed = 0;
   2571 
   2572 	i915_gem_evict_everything(dev_priv->dev);
   2573 
   2574 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
   2575 				 global_list) {
   2576 		if (i915_gem_object_put_pages(obj) == 0)
   2577 			freed += obj->base.size >> PAGE_SHIFT;
   2578 	}
   2579 	return freed;
   2580 }
   2581 
   2582 #ifdef __NetBSD__
   2583 static int
   2584 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2585 {
   2586 	struct drm_device *const dev = obj->base.dev;
   2587 	struct vm_page *page;
   2588 	int error;
   2589 
   2590 	/* XXX Cargo-culted from the Linux code.  */
   2591 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2592 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2593 
   2594 	KASSERT(obj->pages == NULL);
   2595 	TAILQ_INIT(&obj->igo_pageq);
   2596 	obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
   2597 	    sizeof(obj->pages[0]), GFP_KERNEL);
   2598 	if (obj->pages == NULL) {
   2599 		error = -ENOMEM;
   2600 		goto fail0;
   2601 	}
   2602 
   2603 	/* XXX errno NetBSD->Linux */
   2604 	error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
   2605 	    0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
   2606 	    (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
   2607 	if (error)
   2608 		/* XXX Try i915_gem_purge, i915_gem_shrink_all.  */
   2609 		goto fail1;
   2610 	KASSERT(0 < obj->igo_nsegs);
   2611 	KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
   2612 
   2613 	/*
   2614 	 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
   2615 	 *
   2616 	 * XXX This is wrong; we ought to pass this constraint to
   2617 	 * bus_dmamem_wire_uvm_object instead.
   2618 	 */
   2619 	TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
   2620 		const uint64_t mask =
   2621 		    (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
   2622 			0xffffffffULL : 0xffffffffffULL);
   2623 		if (VM_PAGE_TO_PHYS(page) & ~mask) {
   2624 			DRM_ERROR("GEM physical address exceeds %u bits"
   2625 			    ": %"PRIxMAX"\n",
   2626 			    popcount64(mask),
   2627 			    (uintmax_t)VM_PAGE_TO_PHYS(page));
   2628 			error = -EIO;
   2629 			goto fail2;
   2630 		}
   2631 	}
   2632 
   2633 	/* XXX Should create the DMA map when creating the object.  */
   2634 
   2635 	/* XXX errno NetBSD->Linux */
   2636 	error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
   2637 	    PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
   2638 	if (error)
   2639 		goto fail2;
   2640 
   2641 	/* XXX Cargo-culted from the Linux code.  */
   2642 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2643 		i915_gem_object_do_bit_17_swizzle(obj);
   2644 
   2645 	/* Success!  */
   2646 	return 0;
   2647 
   2648 fail2:	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
   2649 	    obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
   2650 fail1:	kfree(obj->pages);
   2651 	obj->pages = NULL;
   2652 fail0:	KASSERT(error);
   2653 	return error;
   2654 }
   2655 #else
   2656 static int
   2657 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2658 {
   2659 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2660 	int page_count, i;
   2661 	struct address_space *mapping;
   2662 	struct sg_table *st;
   2663 	struct scatterlist *sg;
   2664 	struct sg_page_iter sg_iter;
   2665 	struct page *page;
   2666 	unsigned long last_pfn = 0;	/* suppress gcc warning */
   2667 	gfp_t gfp;
   2668 
   2669 	/* Assert that the object is not currently in any GPU domain. As it
   2670 	 * wasn't in the GTT, there shouldn't be any way it could have been in
   2671 	 * a GPU cache
   2672 	 */
   2673 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2674 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2675 
   2676 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   2677 	if (st == NULL)
   2678 		return -ENOMEM;
   2679 
   2680 	page_count = obj->base.size / PAGE_SIZE;
   2681 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
   2682 		kfree(st);
   2683 		return -ENOMEM;
   2684 	}
   2685 
   2686 	/* Get the list of pages out of our struct file.  They'll be pinned
   2687 	 * at this point until we release them.
   2688 	 *
   2689 	 * Fail silently without starting the shrinker
   2690 	 */
   2691 	mapping = file_inode(obj->base.filp)->i_mapping;
   2692 	gfp = mapping_gfp_mask(mapping);
   2693 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
   2694 	gfp &= ~(__GFP_IO | __GFP_WAIT);
   2695 	sg = st->sgl;
   2696 	st->nents = 0;
   2697 	for (i = 0; i < page_count; i++) {
   2698 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2699 		if (IS_ERR(page)) {
   2700 			i915_gem_purge(dev_priv, page_count);
   2701 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2702 		}
   2703 		if (IS_ERR(page)) {
   2704 			/* We've tried hard to allocate the memory by reaping
   2705 			 * our own buffer, now let the real VM do its job and
   2706 			 * go down in flames if truly OOM.
   2707 			 */
   2708 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
   2709 			gfp |= __GFP_IO | __GFP_WAIT;
   2710 
   2711 			i915_gem_shrink_all(dev_priv);
   2712 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2713 			if (IS_ERR(page))
   2714 				goto err_pages;
   2715 
   2716 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
   2717 			gfp &= ~(__GFP_IO | __GFP_WAIT);
   2718 		}
   2719 #ifdef CONFIG_SWIOTLB
   2720 		if (swiotlb_nr_tbl()) {
   2721 			st->nents++;
   2722 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2723 			sg = sg_next(sg);
   2724 			continue;
   2725 		}
   2726 #endif
   2727 		if (!i || page_to_pfn(page) != last_pfn + 1) {
   2728 			if (i)
   2729 				sg = sg_next(sg);
   2730 			st->nents++;
   2731 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2732 		} else {
   2733 			sg->length += PAGE_SIZE;
   2734 		}
   2735 		last_pfn = page_to_pfn(page);
   2736 
   2737 		/* Check that the i965g/gm workaround works. */
   2738 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
   2739 	}
   2740 #ifdef CONFIG_SWIOTLB
   2741 	if (!swiotlb_nr_tbl())
   2742 #endif
   2743 		sg_mark_end(sg);
   2744 	obj->pages = st;
   2745 
   2746 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2747 		i915_gem_object_do_bit_17_swizzle(obj);
   2748 
   2749 	return 0;
   2750 
   2751 err_pages:
   2752 	sg_mark_end(sg);
   2753 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
   2754 		page_cache_release(sg_page_iter_page(&sg_iter));
   2755 	sg_free_table(st);
   2756 	kfree(st);
   2757 	return PTR_ERR(page);
   2758 }
   2759 #endif
   2760 
   2761 /* Ensure that the associated pages are gathered from the backing storage
   2762  * and pinned into our object. i915_gem_object_get_pages() may be called
   2763  * multiple times before they are released by a single call to
   2764  * i915_gem_object_put_pages() - once the pages are no longer referenced
   2765  * either as a result of memory pressure (reaping pages under the shrinker)
   2766  * or as the object is itself released.
   2767  */
   2768 int
   2769 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
   2770 {
   2771 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2772 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2773 	int ret;
   2774 
   2775 	if (obj->pages)
   2776 		return 0;
   2777 
   2778 	if (obj->madv != I915_MADV_WILLNEED) {
   2779 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
   2780 		return -EFAULT;
   2781 	}
   2782 
   2783 	BUG_ON(obj->pages_pin_count);
   2784 
   2785 	ret = ops->get_pages(obj);
   2786 	if (ret)
   2787 		return ret;
   2788 
   2789 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   2790 	return 0;
   2791 }
   2792 
   2793 static void
   2794 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
   2795 			       struct intel_ring_buffer *ring)
   2796 {
   2797 	struct drm_device *dev = obj->base.dev;
   2798 	struct drm_i915_private *dev_priv = dev->dev_private;
   2799 	u32 seqno = intel_ring_get_seqno(ring);
   2800 
   2801 	BUG_ON(ring == NULL);
   2802 	if (obj->ring != ring && obj->last_write_seqno) {
   2803 		/* Keep the seqno relative to the current ring */
   2804 		obj->last_write_seqno = seqno;
   2805 	}
   2806 	obj->ring = ring;
   2807 
   2808 	/* Add a reference if we're newly entering the active list. */
   2809 	if (!obj->active) {
   2810 		drm_gem_object_reference(&obj->base);
   2811 		obj->active = 1;
   2812 	}
   2813 
   2814 	list_move_tail(&obj->ring_list, &ring->active_list);
   2815 
   2816 	obj->last_read_seqno = seqno;
   2817 
   2818 	if (obj->fenced_gpu_access) {
   2819 		obj->last_fenced_seqno = seqno;
   2820 
   2821 		/* Bump MRU to take account of the delayed flush */
   2822 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
   2823 			struct drm_i915_fence_reg *reg;
   2824 
   2825 			reg = &dev_priv->fence_regs[obj->fence_reg];
   2826 			list_move_tail(&reg->lru_list,
   2827 				       &dev_priv->mm.fence_list);
   2828 		}
   2829 	}
   2830 }
   2831 
   2832 void i915_vma_move_to_active(struct i915_vma *vma,
   2833 			     struct intel_ring_buffer *ring)
   2834 {
   2835 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
   2836 	return i915_gem_object_move_to_active(vma->obj, ring);
   2837 }
   2838 
   2839 static void
   2840 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
   2841 {
   2842 	struct drm_device *dev = obj->base.dev;
   2843 	struct drm_i915_private *dev_priv = dev->dev_private;
   2844 	struct i915_address_space *vm;
   2845 	struct i915_vma *vma;
   2846 
   2847 	if ((obj->base.write_domain & I915_GEM_DOMAIN_GTT) != 0) {
   2848 #if 0
   2849 		printk(KERN_ERR "%s: %p 0x%x flushing gtt\n", __func__, obj,
   2850 			obj->base.write_domain);
   2851 #endif
   2852 		i915_gem_object_flush_gtt_write_domain(obj);
   2853 	}
   2854 	if ((obj->base.write_domain & I915_GEM_DOMAIN_CPU) != 0) {
   2855 #if 0
   2856 		printk(KERN_ERR "%s: %p 0x%x flushing cpu\n", __func__, obj,
   2857 			obj->base.write_domain);
   2858 #endif
   2859 		i915_gem_object_flush_cpu_write_domain(obj, false);
   2860 	}
   2861 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
   2862 	BUG_ON(!obj->active);
   2863 
   2864 	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
   2865 		vma = i915_gem_obj_to_vma(obj, vm);
   2866 		if (vma && !list_empty(&vma->mm_list))
   2867 			list_move_tail(&vma->mm_list, &vm->inactive_list);
   2868 	}
   2869 
   2870 	list_del_init(&obj->ring_list);
   2871 	obj->ring = NULL;
   2872 
   2873 	obj->last_read_seqno = 0;
   2874 	obj->last_write_seqno = 0;
   2875 	obj->base.write_domain = 0;
   2876 
   2877 	obj->last_fenced_seqno = 0;
   2878 	obj->fenced_gpu_access = false;
   2879 
   2880 	obj->active = 0;
   2881 	drm_gem_object_unreference(&obj->base);
   2882 
   2883 	WARN_ON(i915_verify_lists(dev));
   2884 }
   2885 
   2886 static int
   2887 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
   2888 {
   2889 	struct drm_i915_private *dev_priv = dev->dev_private;
   2890 	struct intel_ring_buffer *ring;
   2891 	int ret, i, j;
   2892 
   2893 	/* Carefully retire all requests without writing to the rings */
   2894 	for_each_ring(ring, dev_priv, i) {
   2895 		ret = intel_ring_idle(ring);
   2896 		if (ret)
   2897 			return ret;
   2898 	}
   2899 	i915_gem_retire_requests(dev);
   2900 
   2901 	/* Finally reset hw state */
   2902 	for_each_ring(ring, dev_priv, i) {
   2903 		intel_ring_init_seqno(ring, seqno);
   2904 
   2905 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
   2906 			ring->sync_seqno[j] = 0;
   2907 	}
   2908 
   2909 	return 0;
   2910 }
   2911 
   2912 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
   2913 {
   2914 	struct drm_i915_private *dev_priv = dev->dev_private;
   2915 	int ret;
   2916 
   2917 	if (seqno == 0)
   2918 		return -EINVAL;
   2919 
   2920 	/* HWS page needs to be set less than what we
   2921 	 * will inject to ring
   2922 	 */
   2923 	ret = i915_gem_init_seqno(dev, seqno - 1);
   2924 	if (ret)
   2925 		return ret;
   2926 
   2927 	/* Carefully set the last_seqno value so that wrap
   2928 	 * detection still works
   2929 	 */
   2930 	dev_priv->next_seqno = seqno;
   2931 	dev_priv->last_seqno = seqno - 1;
   2932 	if (dev_priv->last_seqno == 0)
   2933 		dev_priv->last_seqno--;
   2934 
   2935 	return 0;
   2936 }
   2937 
   2938 int
   2939 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
   2940 {
   2941 	struct drm_i915_private *dev_priv = dev->dev_private;
   2942 
   2943 	/* reserve 0 for non-seqno */
   2944 	if (dev_priv->next_seqno == 0) {
   2945 		int ret = i915_gem_init_seqno(dev, 0);
   2946 		if (ret)
   2947 			return ret;
   2948 
   2949 		dev_priv->next_seqno = 1;
   2950 	}
   2951 
   2952 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
   2953 	return 0;
   2954 }
   2955 
   2956 int __i915_add_request(struct intel_ring_buffer *ring,
   2957 		       struct drm_file *file,
   2958 		       struct drm_i915_gem_object *obj,
   2959 		       u32 *out_seqno)
   2960 {
   2961 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
   2962 	struct drm_i915_gem_request *request;
   2963 	u32 request_ring_position, request_start;
   2964 	int ret;
   2965 
   2966 	request_start = intel_ring_get_tail(ring);
   2967 	/*
   2968 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
   2969 	 * after having emitted the batchbuffer command. Hence we need to fix
   2970 	 * things up similar to emitting the lazy request. The difference here
   2971 	 * is that the flush _must_ happen before the next request, no matter
   2972 	 * what.
   2973 	 */
   2974 	ret = intel_ring_flush_all_caches(ring);
   2975 	if (ret)
   2976 		return ret;
   2977 
   2978 	request = ring->preallocated_lazy_request;
   2979 	if (WARN_ON(request == NULL))
   2980 		return -ENOMEM;
   2981 
   2982 	/* Record the position of the start of the request so that
   2983 	 * should we detect the updated seqno part-way through the
   2984 	 * GPU processing the request, we never over-estimate the
   2985 	 * position of the head.
   2986 	 */
   2987 	request_ring_position = intel_ring_get_tail(ring);
   2988 
   2989 	ret = ring->add_request(ring);
   2990 	if (ret)
   2991 		return ret;
   2992 
   2993 	request->seqno = intel_ring_get_seqno(ring);
   2994 	request->ring = ring;
   2995 	request->head = request_start;
   2996 	request->tail = request_ring_position;
   2997 
   2998 	/* Whilst this request exists, batch_obj will be on the
   2999 	 * active_list, and so will hold the active reference. Only when this
   3000 	 * request is retired will the the batch_obj be moved onto the
   3001 	 * inactive_list and lose its active reference. Hence we do not need
   3002 	 * to explicitly hold another reference here.
   3003 	 */
   3004 	request->batch_obj = obj;
   3005 
   3006 	/* Hold a reference to the current context so that we can inspect
   3007 	 * it later in case a hangcheck error event fires.
   3008 	 */
   3009 	request->ctx = ring->last_context;
   3010 	if (request->ctx)
   3011 		i915_gem_context_reference(request->ctx);
   3012 
   3013 	request->emitted_jiffies = jiffies;
   3014 	list_add_tail(&request->list, &ring->request_list);
   3015 	request->file_priv = NULL;
   3016 
   3017 	if (file) {
   3018 		struct drm_i915_file_private *file_priv = file->driver_priv;
   3019 
   3020 		spin_lock(&file_priv->mm.lock);
   3021 		request->file_priv = file_priv;
   3022 		list_add_tail(&request->client_list,
   3023 			      &file_priv->mm.request_list);
   3024 		spin_unlock(&file_priv->mm.lock);
   3025 	}
   3026 
   3027 	trace_i915_gem_request_add(ring, request->seqno);
   3028 	ring->outstanding_lazy_seqno = 0;
   3029 	ring->preallocated_lazy_request = NULL;
   3030 
   3031 	if (!dev_priv->ums.mm_suspended) {
   3032 		i915_queue_hangcheck(ring->dev);
   3033 
   3034 		cancel_delayed_work_sync(&dev_priv->mm.idle_work);
   3035 		queue_delayed_work(dev_priv->wq,
   3036 				   &dev_priv->mm.retire_work,
   3037 				   round_jiffies_up_relative(HZ));
   3038 		intel_mark_busy(dev_priv->dev);
   3039 	}
   3040 
   3041 	if (out_seqno)
   3042 		*out_seqno = request->seqno;
   3043 	return 0;
   3044 }
   3045 
   3046 static inline void
   3047 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
   3048 {
   3049 	struct drm_i915_file_private *file_priv = request->file_priv;
   3050 
   3051 	if (!file_priv)
   3052 		return;
   3053 
   3054 	spin_lock(&file_priv->mm.lock);
   3055 	list_del(&request->client_list);
   3056 	request->file_priv = NULL;
   3057 	spin_unlock(&file_priv->mm.lock);
   3058 }
   3059 
   3060 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
   3061 				   const struct i915_hw_context *ctx)
   3062 {
   3063 	unsigned long elapsed;
   3064 
   3065 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
   3066 
   3067 	if (ctx->hang_stats.banned)
   3068 		return true;
   3069 
   3070 	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
   3071 		if (!i915_gem_context_is_default(ctx)) {
   3072 			DRM_DEBUG("context hanging too fast, banning!\n");
   3073 			return true;
   3074 		} else if (dev_priv->gpu_error.stop_rings == 0) {
   3075 			DRM_ERROR("gpu hanging too fast, banning!\n");
   3076 			return true;
   3077 		}
   3078 	}
   3079 
   3080 	return false;
   3081 }
   3082 
   3083 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
   3084 				  struct i915_hw_context *ctx,
   3085 				  const bool guilty)
   3086 {
   3087 	struct i915_ctx_hang_stats *hs;
   3088 
   3089 	if (WARN_ON(!ctx))
   3090 		return;
   3091 
   3092 	hs = &ctx->hang_stats;
   3093 
   3094 	if (guilty) {
   3095 		hs->banned = i915_context_is_banned(dev_priv, ctx);
   3096 		hs->batch_active++;
   3097 		hs->guilty_ts = get_seconds();
   3098 	} else {
   3099 		hs->batch_pending++;
   3100 	}
   3101 }
   3102 
   3103 static void i915_gem_free_request(struct drm_i915_gem_request *request)
   3104 {
   3105 	list_del(&request->list);
   3106 	i915_gem_request_remove_from_client(request);
   3107 
   3108 	if (request->ctx)
   3109 		i915_gem_context_unreference(request->ctx);
   3110 
   3111 	kfree(request);
   3112 }
   3113 
   3114 struct drm_i915_gem_request *
   3115 i915_gem_find_active_request(struct intel_ring_buffer *ring)
   3116 {
   3117 	struct drm_i915_gem_request *request;
   3118 	u32 completed_seqno;
   3119 
   3120 	completed_seqno = ring->get_seqno(ring, false);
   3121 
   3122 	list_for_each_entry(request, &ring->request_list, list) {
   3123 		if (i915_seqno_passed(completed_seqno, request->seqno))
   3124 			continue;
   3125 
   3126 		return request;
   3127 	}
   3128 
   3129 	return NULL;
   3130 }
   3131 
   3132 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
   3133 				       struct intel_ring_buffer *ring)
   3134 {
   3135 	struct drm_i915_gem_request *request;
   3136 	bool ring_hung;
   3137 
   3138 	request = i915_gem_find_active_request(ring);
   3139 
   3140 	if (request == NULL)
   3141 		return;
   3142 
   3143 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
   3144 
   3145 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
   3146 
   3147 	list_for_each_entry_continue(request, &ring->request_list, list)
   3148 		i915_set_reset_status(dev_priv, request->ctx, false);
   3149 }
   3150 
   3151 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
   3152 					struct intel_ring_buffer *ring)
   3153 {
   3154 	while (!list_empty(&ring->active_list)) {
   3155 		struct drm_i915_gem_object *obj;
   3156 
   3157 		obj = list_first_entry(&ring->active_list,
   3158 				       struct drm_i915_gem_object,
   3159 				       ring_list);
   3160 
   3161 		i915_gem_object_move_to_inactive(obj);
   3162 	}
   3163 
   3164 	/*
   3165 	 * We must free the requests after all the corresponding objects have
   3166 	 * been moved off active lists. Which is the same order as the normal
   3167 	 * retire_requests function does. This is important if object hold
   3168 	 * implicit references on things like e.g. ppgtt address spaces through
   3169 	 * the request.
   3170 	 */
   3171 	while (!list_empty(&ring->request_list)) {
   3172 		struct drm_i915_gem_request *request;
   3173 
   3174 		request = list_first_entry(&ring->request_list,
   3175 					   struct drm_i915_gem_request,
   3176 					   list);
   3177 
   3178 		i915_gem_free_request(request);
   3179 	}
   3180 }
   3181 
   3182 void i915_gem_restore_fences(struct drm_device *dev)
   3183 {
   3184 	struct drm_i915_private *dev_priv = dev->dev_private;
   3185 	int i;
   3186 
   3187 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
   3188 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
   3189 
   3190 		/*
   3191 		 * Commit delayed tiling changes if we have an object still
   3192 		 * attached to the fence, otherwise just clear the fence.
   3193 		 */
   3194 		if (reg->obj) {
   3195 			i915_gem_object_update_fence(reg->obj, reg,
   3196 						     reg->obj->tiling_mode);
   3197 		} else {
   3198 			i915_gem_write_fence(dev, i, NULL);
   3199 		}
   3200 	}
   3201 }
   3202 
   3203 void i915_gem_reset(struct drm_device *dev)
   3204 {
   3205 	struct drm_i915_private *dev_priv = dev->dev_private;
   3206 	struct intel_ring_buffer *ring;
   3207 	int i;
   3208 
   3209 	/*
   3210 	 * Before we free the objects from the requests, we need to inspect
   3211 	 * them for finding the guilty party. As the requests only borrow
   3212 	 * their reference to the objects, the inspection must be done first.
   3213 	 */
   3214 	for_each_ring(ring, dev_priv, i)
   3215 		i915_gem_reset_ring_status(dev_priv, ring);
   3216 
   3217 	for_each_ring(ring, dev_priv, i)
   3218 		i915_gem_reset_ring_cleanup(dev_priv, ring);
   3219 
   3220 	i915_gem_cleanup_ringbuffer(dev);
   3221 
   3222 	i915_gem_context_reset(dev);
   3223 
   3224 	i915_gem_restore_fences(dev);
   3225 }
   3226 
   3227 /**
   3228  * This function clears the request list as sequence numbers are passed.
   3229  */
   3230 static void
   3231 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
   3232 {
   3233 	uint32_t seqno;
   3234 
   3235 	if (list_empty(&ring->request_list))
   3236 		return;
   3237 
   3238 	WARN_ON(i915_verify_lists(ring->dev));
   3239 
   3240 	seqno = ring->get_seqno(ring, true);
   3241 
   3242 	/* Move any buffers on the active list that are no longer referenced
   3243 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
   3244 	 * before we free the context associated with the requests.
   3245 	 */
   3246 	while (!list_empty(&ring->active_list)) {
   3247 		struct drm_i915_gem_object *obj;
   3248 
   3249 		obj = list_first_entry(&ring->active_list,
   3250 				      struct drm_i915_gem_object,
   3251 				      ring_list);
   3252 
   3253 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
   3254 			break;
   3255 
   3256 		i915_gem_object_move_to_inactive(obj);
   3257 	}
   3258 
   3259 
   3260 	while (!list_empty(&ring->request_list)) {
   3261 		struct drm_i915_gem_request *request;
   3262 
   3263 		request = list_first_entry(&ring->request_list,
   3264 					   struct drm_i915_gem_request,
   3265 					   list);
   3266 
   3267 		if (!i915_seqno_passed(seqno, request->seqno))
   3268 			break;
   3269 
   3270 		trace_i915_gem_request_retire(ring, request->seqno);
   3271 		/* We know the GPU must have read the request to have
   3272 		 * sent us the seqno + interrupt, so use the position
   3273 		 * of tail of the request to update the last known position
   3274 		 * of the GPU head.
   3275 		 */
   3276 		ring->last_retired_head = request->tail;
   3277 
   3278 		i915_gem_free_request(request);
   3279 	}
   3280 
   3281 	if (unlikely(ring->trace_irq_seqno &&
   3282 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
   3283 		ring->irq_put(ring);
   3284 		ring->trace_irq_seqno = 0;
   3285 	}
   3286 
   3287 	WARN_ON(i915_verify_lists(ring->dev));
   3288 }
   3289 
   3290 bool
   3291 i915_gem_retire_requests(struct drm_device *dev)
   3292 {
   3293 	struct drm_i915_private *dev_priv = dev->dev_private;
   3294 	struct intel_ring_buffer *ring;
   3295 	bool idle = true;
   3296 	int i;
   3297 
   3298 	for_each_ring(ring, dev_priv, i) {
   3299 		i915_gem_retire_requests_ring(ring);
   3300 		idle &= list_empty(&ring->request_list);
   3301 	}
   3302 
   3303 	if (idle)
   3304 		mod_delayed_work(dev_priv->wq,
   3305 				   &dev_priv->mm.idle_work,
   3306 				   msecs_to_jiffies(100));
   3307 
   3308 	return idle;
   3309 }
   3310 
   3311 static void
   3312 i915_gem_retire_work_handler(struct work_struct *work)
   3313 {
   3314 	struct drm_i915_private *dev_priv =
   3315 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
   3316 	struct drm_device *dev = dev_priv->dev;
   3317 	bool idle;
   3318 
   3319 	/* Come back later if the device is busy... */
   3320 	idle = false;
   3321 	if (mutex_trylock(&dev->struct_mutex)) {
   3322 		idle = i915_gem_retire_requests(dev);
   3323 		mutex_unlock(&dev->struct_mutex);
   3324 	}
   3325 	if (!idle)
   3326 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
   3327 				   round_jiffies_up_relative(HZ));
   3328 }
   3329 
   3330 static void
   3331 i915_gem_idle_work_handler(struct work_struct *work)
   3332 {
   3333 	struct drm_i915_private *dev_priv =
   3334 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
   3335 
   3336 	intel_mark_idle(dev_priv->dev);
   3337 }
   3338 
   3339 /**
   3340  * Ensures that an object will eventually get non-busy by flushing any required
   3341  * write domains, emitting any outstanding lazy request and retiring and
   3342  * completed requests.
   3343  */
   3344 static int
   3345 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
   3346 {
   3347 	int ret;
   3348 
   3349 	if (obj->active) {
   3350 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
   3351 		if (ret)
   3352 			return ret;
   3353 
   3354 		i915_gem_retire_requests_ring(obj->ring);
   3355 	}
   3356 
   3357 	return 0;
   3358 }
   3359 
   3360 /**
   3361  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
   3362  * @DRM_IOCTL_ARGS: standard ioctl arguments
   3363  *
   3364  * Returns 0 if successful, else an error is returned with the remaining time in
   3365  * the timeout parameter.
   3366  *  -ETIME: object is still busy after timeout
   3367  *  -ERESTARTSYS: signal interrupted the wait
   3368  *  -ENONENT: object doesn't exist
   3369  * Also possible, but rare:
   3370  *  -EAGAIN: GPU wedged
   3371  *  -ENOMEM: damn
   3372  *  -ENODEV: Internal IRQ fail
   3373  *  -E?: The add request failed
   3374  *
   3375  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
   3376  * non-zero timeout parameter the wait ioctl will wait for the given number of
   3377  * nanoseconds on an object becoming unbusy. Since the wait itself does so
   3378  * without holding struct_mutex the object may become re-busied before this
   3379  * function completes. A similar but shorter * race condition exists in the busy
   3380  * ioctl
   3381  */
   3382 int
   3383 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
   3384 {
   3385 	struct drm_i915_private *dev_priv = dev->dev_private;
   3386 	struct drm_i915_gem_wait *args = data;
   3387 	struct drm_gem_object *gobj;
   3388 	struct drm_i915_gem_object *obj;
   3389 	struct intel_ring_buffer *ring = NULL;
   3390 	struct timespec timeout_stack, *timeout = NULL;
   3391 	unsigned reset_counter;
   3392 	u32 seqno = 0;
   3393 	int ret = 0;
   3394 
   3395 	if (args->timeout_ns >= 0) {
   3396 		timeout_stack = ns_to_timespec(args->timeout_ns);
   3397 		timeout = &timeout_stack;
   3398 	}
   3399 
   3400 	ret = i915_mutex_lock_interruptible(dev);
   3401 	if (ret)
   3402 		return ret;
   3403 
   3404 	gobj = drm_gem_object_lookup(dev, file, args->bo_handle);
   3405 	if (gobj == NULL) {
   3406 		mutex_unlock(&dev->struct_mutex);
   3407 		return -ENOENT;
   3408 	}
   3409 	obj = to_intel_bo(gobj);
   3410 
   3411 	/* Need to make sure the object gets inactive eventually. */
   3412 	ret = i915_gem_object_flush_active(obj);
   3413 	if (ret)
   3414 		goto out;
   3415 
   3416 	if (obj->active) {
   3417 		seqno = obj->last_read_seqno;
   3418 		ring = obj->ring;
   3419 	}
   3420 
   3421 	if (seqno == 0)
   3422 		 goto out;
   3423 
   3424 	/* Do this after OLR check to make sure we make forward progress polling
   3425 	 * on this IOCTL with a 0 timeout (like busy ioctl)
   3426 	 */
   3427 	if (!args->timeout_ns) {
   3428 		ret = -ETIME;
   3429 		goto out;
   3430 	}
   3431 
   3432 	drm_gem_object_unreference(&obj->base);
   3433 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   3434 	mutex_unlock(&dev->struct_mutex);
   3435 
   3436 	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
   3437 	if (timeout)
   3438 		args->timeout_ns = timespec_to_ns(timeout);
   3439 	return ret;
   3440 
   3441 out:
   3442 	drm_gem_object_unreference(&obj->base);
   3443 	mutex_unlock(&dev->struct_mutex);
   3444 	return ret;
   3445 }
   3446 
   3447 /**
   3448  * i915_gem_object_sync - sync an object to a ring.
   3449  *
   3450  * @obj: object which may be in use on another ring.
   3451  * @to: ring we wish to use the object on. May be NULL.
   3452  *
   3453  * This code is meant to abstract object synchronization with the GPU.
   3454  * Calling with NULL implies synchronizing the object with the CPU
   3455  * rather than a particular GPU ring.
   3456  *
   3457  * Returns 0 if successful, else propagates up the lower layer error.
   3458  */
   3459 int
   3460 i915_gem_object_sync(struct drm_i915_gem_object *obj,
   3461 		     struct intel_ring_buffer *to)
   3462 {
   3463 	struct intel_ring_buffer *from = obj->ring;
   3464 	u32 seqno;
   3465 	int ret, idx;
   3466 
   3467 	if (from == NULL || to == from)
   3468 		return 0;
   3469 
   3470 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
   3471 		return i915_gem_object_wait_rendering(obj, false);
   3472 
   3473 	idx = intel_ring_sync_index(from, to);
   3474 
   3475 	seqno = obj->last_read_seqno;
   3476 	if (seqno <= from->sync_seqno[idx])
   3477 		return 0;
   3478 
   3479 	ret = i915_gem_check_olr(obj->ring, seqno);
   3480 	if (ret)
   3481 		return ret;
   3482 
   3483 	trace_i915_gem_ring_sync_to(from, to, seqno);
   3484 	ret = to->sync_to(to, from, seqno);
   3485 	if (!ret)
   3486 		/* We use last_read_seqno because sync_to()
   3487 		 * might have just caused seqno wrap under
   3488 		 * the radar.
   3489 		 */
   3490 		from->sync_seqno[idx] = obj->last_read_seqno;
   3491 
   3492 	return ret;
   3493 }
   3494 
   3495 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
   3496 {
   3497 	u32 old_write_domain, old_read_domains;
   3498 
   3499 	/* Force a pagefault for domain tracking on next user access */
   3500 	i915_gem_release_mmap(obj);
   3501 
   3502 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   3503 		return;
   3504 
   3505 	/* Wait for any direct GTT access to complete */
   3506 	mb();
   3507 
   3508 	old_read_domains = obj->base.read_domains;
   3509 	old_write_domain = obj->base.write_domain;
   3510 
   3511 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
   3512 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
   3513 
   3514 	trace_i915_gem_object_change_domain(obj,
   3515 					    old_read_domains,
   3516 					    old_write_domain);
   3517 }
   3518 
   3519 int i915_vma_unbind(struct i915_vma *vma)
   3520 {
   3521 	struct drm_i915_gem_object *obj = vma->obj;
   3522 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3523 	int ret;
   3524 
   3525 	if (list_empty(&vma->vma_link))
   3526 		return 0;
   3527 
   3528 	if (!drm_mm_node_allocated(&vma->node)) {
   3529 		i915_gem_vma_destroy(vma);
   3530 		return 0;
   3531 	}
   3532 
   3533 	if (vma->pin_count)
   3534 		return -EBUSY;
   3535 
   3536 	BUG_ON(obj->pages == NULL);
   3537 
   3538 	ret = i915_gem_object_finish_gpu(obj);
   3539 	if (ret)
   3540 		return ret;
   3541 	/* Continue on if we fail due to EIO, the GPU is hung so we
   3542 	 * should be safe and we need to cleanup or else we might
   3543 	 * cause memory corruption through use-after-free.
   3544 	 */
   3545 
   3546 	i915_gem_object_finish_gtt(obj);
   3547 
   3548 	/* release the fence reg _after_ flushing */
   3549 	ret = i915_gem_object_put_fence(obj);
   3550 	if (ret)
   3551 		return ret;
   3552 
   3553 	trace_i915_vma_unbind(vma);
   3554 
   3555 	vma->unbind_vma(vma);
   3556 
   3557 	i915_gem_gtt_finish_object(obj);
   3558 
   3559 	list_del_init(&vma->mm_list);
   3560 	/* Avoid an unnecessary call to unbind on rebind. */
   3561 	if (i915_is_ggtt(vma->vm))
   3562 		obj->map_and_fenceable = true;
   3563 
   3564 	drm_mm_remove_node(&vma->node);
   3565 	i915_gem_vma_destroy(vma);
   3566 
   3567 	/* Since the unbound list is global, only move to that list if
   3568 	 * no more VMAs exist. */
   3569 	if (list_empty(&obj->vma_list))
   3570 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   3571 
   3572 	/* And finally now the object is completely decoupled from this vma,
   3573 	 * we can drop its hold on the backing storage and allow it to be
   3574 	 * reaped by the shrinker.
   3575 	 */
   3576 	i915_gem_object_unpin_pages(obj);
   3577 
   3578 	return 0;
   3579 }
   3580 
   3581 int i915_gpu_idle(struct drm_device *dev)
   3582 {
   3583 	struct drm_i915_private *dev_priv = dev->dev_private;
   3584 	struct intel_ring_buffer *ring;
   3585 	int ret, i;
   3586 
   3587 	/* Flush everything onto the inactive list. */
   3588 	for_each_ring(ring, dev_priv, i) {
   3589 		ret = i915_switch_context(ring, ring->default_context);
   3590 		if (ret)
   3591 			return ret;
   3592 
   3593 		ret = intel_ring_idle(ring);
   3594 		if (ret)
   3595 			return ret;
   3596 	}
   3597 
   3598 	return 0;
   3599 }
   3600 
   3601 static void i965_write_fence_reg(struct drm_device *dev, int reg,
   3602 				 struct drm_i915_gem_object *obj)
   3603 {
   3604 	struct drm_i915_private *dev_priv = dev->dev_private;
   3605 	int fence_reg;
   3606 	int fence_pitch_shift;
   3607 
   3608 	if (INTEL_INFO(dev)->gen >= 6) {
   3609 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
   3610 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
   3611 	} else {
   3612 		fence_reg = FENCE_REG_965_0;
   3613 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
   3614 	}
   3615 
   3616 	fence_reg += reg * 8;
   3617 
   3618 	/* To w/a incoherency with non-atomic 64-bit register updates,
   3619 	 * we split the 64-bit update into two 32-bit writes. In order
   3620 	 * for a partial fence not to be evaluated between writes, we
   3621 	 * precede the update with write to turn off the fence register,
   3622 	 * and only enable the fence as the last step.
   3623 	 *
   3624 	 * For extra levels of paranoia, we make sure each step lands
   3625 	 * before applying the next step.
   3626 	 */
   3627 	I915_WRITE(fence_reg, 0);
   3628 	POSTING_READ(fence_reg);
   3629 
   3630 	if (obj) {
   3631 		u32 size = i915_gem_obj_ggtt_size(obj);
   3632 		uint64_t val;
   3633 
   3634 		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
   3635 				 0xfffff000) << 32;
   3636 		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
   3637 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
   3638 		if (obj->tiling_mode == I915_TILING_Y)
   3639 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
   3640 		val |= I965_FENCE_REG_VALID;
   3641 
   3642 		I915_WRITE(fence_reg + 4, val >> 32);
   3643 		POSTING_READ(fence_reg + 4);
   3644 
   3645 		I915_WRITE(fence_reg + 0, val);
   3646 		POSTING_READ(fence_reg);
   3647 	} else {
   3648 		I915_WRITE(fence_reg + 4, 0);
   3649 		POSTING_READ(fence_reg + 4);
   3650 	}
   3651 }
   3652 
   3653 static void i915_write_fence_reg(struct drm_device *dev, int reg,
   3654 				 struct drm_i915_gem_object *obj)
   3655 {
   3656 	struct drm_i915_private *dev_priv = dev->dev_private;
   3657 	u32 val;
   3658 
   3659 	if (obj) {
   3660 		u32 size = i915_gem_obj_ggtt_size(obj);
   3661 		int pitch_val;
   3662 		int tile_width;
   3663 
   3664 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
   3665 		     (size & -size) != size ||
   3666 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
   3667 		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
   3668 		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
   3669 
   3670 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
   3671 			tile_width = 128;
   3672 		else
   3673 			tile_width = 512;
   3674 
   3675 		/* Note: pitch better be a power of two tile widths */
   3676 		pitch_val = obj->stride / tile_width;
   3677 		pitch_val = ffs(pitch_val) - 1;
   3678 
   3679 		val = i915_gem_obj_ggtt_offset(obj);
   3680 		if (obj->tiling_mode == I915_TILING_Y)
   3681 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
   3682 		val |= I915_FENCE_SIZE_BITS(size);
   3683 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
   3684 		val |= I830_FENCE_REG_VALID;
   3685 	} else
   3686 		val = 0;
   3687 
   3688 	if (reg < 8)
   3689 		reg = FENCE_REG_830_0 + reg * 4;
   3690 	else
   3691 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
   3692 
   3693 	I915_WRITE(reg, val);
   3694 	POSTING_READ(reg);
   3695 }
   3696 
   3697 static void i830_write_fence_reg(struct drm_device *dev, int reg,
   3698 				struct drm_i915_gem_object *obj)
   3699 {
   3700 	struct drm_i915_private *dev_priv = dev->dev_private;
   3701 	uint32_t val;
   3702 
   3703 	if (obj) {
   3704 		u32 size = i915_gem_obj_ggtt_size(obj);
   3705 		uint32_t pitch_val;
   3706 
   3707 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
   3708 		     (size & -size) != size ||
   3709 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
   3710 		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
   3711 		     i915_gem_obj_ggtt_offset(obj), size);
   3712 
   3713 		pitch_val = obj->stride / 128;
   3714 		pitch_val = ffs(pitch_val) - 1;
   3715 
   3716 		val = i915_gem_obj_ggtt_offset(obj);
   3717 		if (obj->tiling_mode == I915_TILING_Y)
   3718 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
   3719 		val |= I830_FENCE_SIZE_BITS(size);
   3720 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
   3721 		val |= I830_FENCE_REG_VALID;
   3722 	} else
   3723 		val = 0;
   3724 
   3725 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
   3726 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
   3727 }
   3728 
   3729 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
   3730 {
   3731 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
   3732 }
   3733 
   3734 static void i915_gem_write_fence(struct drm_device *dev, int reg,
   3735 				 struct drm_i915_gem_object *obj)
   3736 {
   3737 	struct drm_i915_private *dev_priv = dev->dev_private;
   3738 
   3739 	/* Ensure that all CPU reads are completed before installing a fence
   3740 	 * and all writes before removing the fence.
   3741 	 */
   3742 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
   3743 		mb();
   3744 
   3745 	WARN(obj && (!obj->stride || !obj->tiling_mode),
   3746 	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
   3747 	     obj->stride, obj->tiling_mode);
   3748 
   3749 	switch (INTEL_INFO(dev)->gen) {
   3750 	case 8:
   3751 	case 7:
   3752 	case 6:
   3753 	case 5:
   3754 	case 4: i965_write_fence_reg(dev, reg, obj); break;
   3755 	case 3: i915_write_fence_reg(dev, reg, obj); break;
   3756 	case 2: i830_write_fence_reg(dev, reg, obj); break;
   3757 	default: BUG();
   3758 	}
   3759 
   3760 	/* And similarly be paranoid that no direct access to this region
   3761 	 * is reordered to before the fence is installed.
   3762 	 */
   3763 	if (i915_gem_object_needs_mb(obj))
   3764 		mb();
   3765 }
   3766 
   3767 static inline int fence_number(struct drm_i915_private *dev_priv,
   3768 			       struct drm_i915_fence_reg *fence)
   3769 {
   3770 	return fence - dev_priv->fence_regs;
   3771 }
   3772 
   3773 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
   3774 					 struct drm_i915_fence_reg *fence,
   3775 					 bool enable)
   3776 {
   3777 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3778 	int reg = fence_number(dev_priv, fence);
   3779 
   3780 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
   3781 
   3782 	if (enable) {
   3783 		obj->fence_reg = reg;
   3784 		fence->obj = obj;
   3785 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
   3786 	} else {
   3787 		obj->fence_reg = I915_FENCE_REG_NONE;
   3788 		fence->obj = NULL;
   3789 		list_del_init(&fence->lru_list);
   3790 	}
   3791 	obj->fence_dirty = false;
   3792 }
   3793 
   3794 static int
   3795 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
   3796 {
   3797 	if (obj->last_fenced_seqno) {
   3798 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
   3799 		if (ret)
   3800 			return ret;
   3801 
   3802 		obj->last_fenced_seqno = 0;
   3803 	}
   3804 
   3805 	obj->fenced_gpu_access = false;
   3806 	return 0;
   3807 }
   3808 
   3809 int
   3810 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
   3811 {
   3812 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3813 	struct drm_i915_fence_reg *fence;
   3814 	int ret;
   3815 
   3816 	ret = i915_gem_object_wait_fence(obj);
   3817 	if (ret)
   3818 		return ret;
   3819 
   3820 	if (obj->fence_reg == I915_FENCE_REG_NONE)
   3821 		return 0;
   3822 
   3823 	fence = &dev_priv->fence_regs[obj->fence_reg];
   3824 
   3825 	i915_gem_object_fence_lost(obj);
   3826 	i915_gem_object_update_fence(obj, fence, false);
   3827 
   3828 	return 0;
   3829 }
   3830 
   3831 static struct drm_i915_fence_reg *
   3832 i915_find_fence_reg(struct drm_device *dev)
   3833 {
   3834 	struct drm_i915_private *dev_priv = dev->dev_private;
   3835 	struct drm_i915_fence_reg *reg, *avail;
   3836 	int i;
   3837 
   3838 	/* First try to find a free reg */
   3839 	avail = NULL;
   3840 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
   3841 		reg = &dev_priv->fence_regs[i];
   3842 		if (!reg->obj)
   3843 			return reg;
   3844 
   3845 		if (!reg->pin_count)
   3846 			avail = reg;
   3847 	}
   3848 
   3849 	if (avail == NULL)
   3850 		goto deadlock;
   3851 
   3852 	/* None available, try to steal one or wait for a user to finish */
   3853 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
   3854 		if (reg->pin_count)
   3855 			continue;
   3856 
   3857 		return reg;
   3858 	}
   3859 
   3860 deadlock:
   3861 	/* Wait for completion of pending flips which consume fences */
   3862 	if (intel_has_pending_fb_unpin(dev))
   3863 		return ERR_PTR(-EAGAIN);
   3864 
   3865 	return ERR_PTR(-EDEADLK);
   3866 }
   3867 
   3868 /**
   3869  * i915_gem_object_get_fence - set up fencing for an object
   3870  * @obj: object to map through a fence reg
   3871  *
   3872  * When mapping objects through the GTT, userspace wants to be able to write
   3873  * to them without having to worry about swizzling if the object is tiled.
   3874  * This function walks the fence regs looking for a free one for @obj,
   3875  * stealing one if it can't find any.
   3876  *
   3877  * It then sets up the reg based on the object's properties: address, pitch
   3878  * and tiling format.
   3879  *
   3880  * For an untiled surface, this removes any existing fence.
   3881  */
   3882 int
   3883 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
   3884 {
   3885 	struct drm_device *dev = obj->base.dev;
   3886 	struct drm_i915_private *dev_priv = dev->dev_private;
   3887 	bool enable = obj->tiling_mode != I915_TILING_NONE;
   3888 	struct drm_i915_fence_reg *reg;
   3889 	int ret;
   3890 
   3891 	/* Have we updated the tiling parameters upon the object and so
   3892 	 * will need to serialise the write to the associated fence register?
   3893 	 */
   3894 	if (obj->fence_dirty) {
   3895 		ret = i915_gem_object_wait_fence(obj);
   3896 		if (ret)
   3897 			return ret;
   3898 	}
   3899 
   3900 	/* Just update our place in the LRU if our fence is getting reused. */
   3901 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
   3902 		reg = &dev_priv->fence_regs[obj->fence_reg];
   3903 		if (!obj->fence_dirty) {
   3904 			list_move_tail(&reg->lru_list,
   3905 				       &dev_priv->mm.fence_list);
   3906 			return 0;
   3907 		}
   3908 	} else if (enable) {
   3909 		reg = i915_find_fence_reg(dev);
   3910 		if (IS_ERR(reg))
   3911 			return PTR_ERR(reg);
   3912 
   3913 		if (reg->obj) {
   3914 			struct drm_i915_gem_object *old = reg->obj;
   3915 
   3916 			ret = i915_gem_object_wait_fence(old);
   3917 			if (ret)
   3918 				return ret;
   3919 
   3920 			i915_gem_object_fence_lost(old);
   3921 		}
   3922 	} else
   3923 		return 0;
   3924 
   3925 	i915_gem_object_update_fence(obj, reg, enable);
   3926 
   3927 	return 0;
   3928 }
   3929 
   3930 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
   3931 				     struct drm_mm_node *gtt_space,
   3932 				     unsigned long cache_level)
   3933 {
   3934 	struct drm_mm_node *other;
   3935 
   3936 	/* On non-LLC machines we have to be careful when putting differing
   3937 	 * types of snoopable memory together to avoid the prefetcher
   3938 	 * crossing memory domains and dying.
   3939 	 */
   3940 	if (HAS_LLC(dev))
   3941 		return true;
   3942 
   3943 	if (!drm_mm_node_allocated(gtt_space))
   3944 		return true;
   3945 
   3946 	if (list_empty(&gtt_space->node_list))
   3947 		return true;
   3948 
   3949 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
   3950 	if (other->allocated && !other->hole_follows && other->color != cache_level)
   3951 		return false;
   3952 
   3953 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
   3954 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
   3955 		return false;
   3956 
   3957 	return true;
   3958 }
   3959 
   3960 static void i915_gem_verify_gtt(struct drm_device *dev)
   3961 {
   3962 #if WATCH_GTT
   3963 	struct drm_i915_private *dev_priv = dev->dev_private;
   3964 	struct drm_i915_gem_object *obj;
   3965 	int err = 0;
   3966 
   3967 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
   3968 		if (obj->gtt_space == NULL) {
   3969 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
   3970 			err++;
   3971 			continue;
   3972 		}
   3973 
   3974 		if (obj->cache_level != obj->gtt_space->color) {
   3975 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
   3976 			       i915_gem_obj_ggtt_offset(obj),
   3977 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
   3978 			       obj->cache_level,
   3979 			       obj->gtt_space->color);
   3980 			err++;
   3981 			continue;
   3982 		}
   3983 
   3984 		if (!i915_gem_valid_gtt_space(dev,
   3985 					      obj->gtt_space,
   3986 					      obj->cache_level)) {
   3987 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
   3988 			       i915_gem_obj_ggtt_offset(obj),
   3989 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
   3990 			       obj->cache_level);
   3991 			err++;
   3992 			continue;
   3993 		}
   3994 	}
   3995 
   3996 	WARN_ON(err);
   3997 #endif
   3998 }
   3999 
   4000 /**
   4001  * Finds free space in the GTT aperture and binds the object there.
   4002  */
   4003 static struct i915_vma *
   4004 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
   4005 			   struct i915_address_space *vm,
   4006 			   unsigned alignment,
   4007 			   uint64_t flags)
   4008 {
   4009 	struct drm_device *dev = obj->base.dev;
   4010 	struct drm_i915_private *dev_priv = dev->dev_private;
   4011 	u32 size, fence_size, fence_alignment, unfenced_alignment;
   4012 	unsigned long start =
   4013 		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
   4014 	unsigned long end =
   4015 		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
   4016 	struct i915_vma *vma;
   4017 	int ret;
   4018 
   4019 	fence_size = i915_gem_get_gtt_size(dev,
   4020 					   obj->base.size,
   4021 					   obj->tiling_mode);
   4022 	fence_alignment = i915_gem_get_gtt_alignment(dev,
   4023 						     obj->base.size,
   4024 						     obj->tiling_mode, true);
   4025 	unfenced_alignment =
   4026 		i915_gem_get_gtt_alignment(dev,
   4027 					   obj->base.size,
   4028 					   obj->tiling_mode, false);
   4029 
   4030 	if (alignment == 0)
   4031 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
   4032 						unfenced_alignment;
   4033 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
   4034 		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
   4035 		return ERR_PTR(-EINVAL);
   4036 	}
   4037 
   4038 	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
   4039 
   4040 	/* If the object is bigger than the entire aperture, reject it early
   4041 	 * before evicting everything in a vain attempt to find space.
   4042 	 */
   4043 	if (obj->base.size > end) {
   4044 		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
   4045 			  obj->base.size,
   4046 			  flags & PIN_MAPPABLE ? "mappable" : "total",
   4047 			  end);
   4048 		return ERR_PTR(-E2BIG);
   4049 	}
   4050 
   4051 	ret = i915_gem_object_get_pages(obj);
   4052 	if (ret)
   4053 		return ERR_PTR(ret);
   4054 
   4055 	i915_gem_object_pin_pages(obj);
   4056 
   4057 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
   4058 	if (IS_ERR(vma))
   4059 		goto err_unpin;
   4060 
   4061 search_free:
   4062 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
   4063 						  size, alignment,
   4064 						  obj->cache_level,
   4065 						  start, end,
   4066 						  DRM_MM_SEARCH_DEFAULT,
   4067 						  DRM_MM_CREATE_DEFAULT);
   4068 	if (ret) {
   4069 		ret = i915_gem_evict_something(dev, vm, size, alignment,
   4070 					       obj->cache_level,
   4071 					       start, end,
   4072 					       flags);
   4073 		if (ret == 0)
   4074 			goto search_free;
   4075 
   4076 		goto err_free_vma;
   4077 	}
   4078 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
   4079 					      obj->cache_level))) {
   4080 		ret = -EINVAL;
   4081 		goto err_remove_node;
   4082 	}
   4083 
   4084 	ret = i915_gem_gtt_prepare_object(obj);
   4085 	if (ret)
   4086 		goto err_remove_node;
   4087 
   4088 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
   4089 	list_add_tail(&vma->mm_list, &vm->inactive_list);
   4090 
   4091 	if (i915_is_ggtt(vm)) {
   4092 		bool mappable, fenceable;
   4093 
   4094 		fenceable = (vma->node.size == fence_size &&
   4095 			     (vma->node.start & (fence_alignment - 1)) == 0);
   4096 
   4097 		mappable = (vma->node.start + obj->base.size <=
   4098 			    dev_priv->gtt.mappable_end);
   4099 
   4100 		obj->map_and_fenceable = mappable && fenceable;
   4101 	}
   4102 
   4103 	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
   4104 
   4105 	trace_i915_vma_bind(vma, flags);
   4106 	vma->bind_vma(vma, obj->cache_level,
   4107 		      flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
   4108 
   4109 	i915_gem_verify_gtt(dev);
   4110 	return vma;
   4111 
   4112 err_remove_node:
   4113 	drm_mm_remove_node(&vma->node);
   4114 err_free_vma:
   4115 	i915_gem_vma_destroy(vma);
   4116 	vma = ERR_PTR(ret);
   4117 err_unpin:
   4118 	i915_gem_object_unpin_pages(obj);
   4119 	return vma;
   4120 }
   4121 
   4122 bool
   4123 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
   4124 			bool force)
   4125 {
   4126 	/* If we don't have a page list set up, then we're not pinned
   4127 	 * to GPU, and we can ignore the cache flush because it'll happen
   4128 	 * again at bind time.
   4129 	 */
   4130 	if (obj->pages == NULL)
   4131 		return false;
   4132 
   4133 	/*
   4134 	 * Stolen memory is always coherent with the GPU as it is explicitly
   4135 	 * marked as wc by the system, or the system is cache-coherent.
   4136 	 */
   4137 	if (obj->stolen)
   4138 		return false;
   4139 
   4140 	/* If the GPU is snooping the contents of the CPU cache,
   4141 	 * we do not need to manually clear the CPU cache lines.  However,
   4142 	 * the caches are only snooped when the render cache is
   4143 	 * flushed/invalidated.  As we always have to emit invalidations
   4144 	 * and flushes when moving into and out of the RENDER domain, correct
   4145 	 * snooping behaviour occurs naturally as the result of our domain
   4146 	 * tracking.
   4147 	 */
   4148 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
   4149 		return false;
   4150 
   4151 	trace_i915_gem_object_clflush(obj);
   4152 #ifdef __NetBSD__
   4153 	drm_clflush_pglist(&obj->igo_pageq);
   4154 #else
   4155 	drm_clflush_sg(obj->pages);
   4156 #endif
   4157 
   4158 	return true;
   4159 }
   4160 
   4161 /** Flushes the GTT write domain for the object if it's dirty. */
   4162 static void
   4163 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
   4164 {
   4165 	uint32_t old_write_domain;
   4166 
   4167 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
   4168 		return;
   4169 
   4170 	/* No actual flushing is required for the GTT write domain.  Writes
   4171 	 * to it immediately go to main memory as far as we know, so there's
   4172 	 * no chipset flush.  It also doesn't land in render cache.
   4173 	 *
   4174 	 * However, we do have to enforce the order so that all writes through
   4175 	 * the GTT land before any writes to the device, such as updates to
   4176 	 * the GATT itself.
   4177 	 */
   4178 	wmb();
   4179 
   4180 	old_write_domain = obj->base.write_domain;
   4181 	obj->base.write_domain = 0;
   4182 
   4183 	trace_i915_gem_object_change_domain(obj,
   4184 					    obj->base.read_domains,
   4185 					    old_write_domain);
   4186 }
   4187 
   4188 /** Flushes the CPU write domain for the object if it's dirty. */
   4189 static void
   4190 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
   4191 				       bool force)
   4192 {
   4193 	uint32_t old_write_domain;
   4194 
   4195 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
   4196 		return;
   4197 
   4198 	if (i915_gem_clflush_object(obj, force))
   4199 		i915_gem_chipset_flush(obj->base.dev);
   4200 
   4201 	old_write_domain = obj->base.write_domain;
   4202 	obj->base.write_domain = 0;
   4203 
   4204 	trace_i915_gem_object_change_domain(obj,
   4205 					    obj->base.read_domains,
   4206 					    old_write_domain);
   4207 }
   4208 
   4209 /**
   4210  * Moves a single object to the GTT read, and possibly write domain.
   4211  *
   4212  * This function returns when the move is complete, including waiting on
   4213  * flushes to occur.
   4214  */
   4215 int
   4216 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
   4217 {
   4218 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   4219 	uint32_t old_write_domain, old_read_domains;
   4220 	int ret;
   4221 
   4222 	/* Not valid to be called on unbound objects. */
   4223 	if (!i915_gem_obj_bound_any(obj))
   4224 		return -EINVAL;
   4225 
   4226 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
   4227 		return 0;
   4228 
   4229 	ret = i915_gem_object_wait_rendering(obj, !write);
   4230 	if (ret)
   4231 		return ret;
   4232 
   4233 	i915_gem_object_flush_cpu_write_domain(obj, false);
   4234 
   4235 	/* Serialise direct access to this object with the barriers for
   4236 	 * coherent writes from the GPU, by effectively invalidating the
   4237 	 * GTT domain upon first access.
   4238 	 */
   4239 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   4240 		mb();
   4241 
   4242 	old_write_domain = obj->base.write_domain;
   4243 	old_read_domains = obj->base.read_domains;
   4244 
   4245 	/* It should now be out of any other write domains, and we can update
   4246 	 * the domain values for our changes.
   4247 	 */
   4248 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
   4249 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4250 	if (write) {
   4251 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
   4252 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
   4253 		obj->dirty = 1;
   4254 	}
   4255 
   4256 	trace_i915_gem_object_change_domain(obj,
   4257 					    old_read_domains,
   4258 					    old_write_domain);
   4259 
   4260 	/* And bump the LRU for this access */
   4261 	if (i915_gem_object_is_inactive(obj)) {
   4262 		struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
   4263 		if (vma)
   4264 			list_move_tail(&vma->mm_list,
   4265 				       &dev_priv->gtt.base.inactive_list);
   4266 
   4267 	}
   4268 
   4269 	return 0;
   4270 }
   4271 
   4272 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
   4273 				    enum i915_cache_level cache_level)
   4274 {
   4275 	struct drm_device *dev = obj->base.dev;
   4276 	struct i915_vma *vma, *next;
   4277 	int ret;
   4278 
   4279 	if (obj->cache_level == cache_level)
   4280 		return 0;
   4281 
   4282 	if (i915_gem_obj_is_pinned(obj)) {
   4283 		DRM_DEBUG("can not change the cache level of pinned objects\n");
   4284 		return -EBUSY;
   4285 	}
   4286 
   4287 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   4288 		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
   4289 			ret = i915_vma_unbind(vma);
   4290 			if (ret)
   4291 				return ret;
   4292 		}
   4293 	}
   4294 
   4295 	if (i915_gem_obj_bound_any(obj)) {
   4296 		ret = i915_gem_object_finish_gpu(obj);
   4297 		if (ret)
   4298 			return ret;
   4299 
   4300 		i915_gem_object_finish_gtt(obj);
   4301 
   4302 		/* Before SandyBridge, you could not use tiling or fence
   4303 		 * registers with snooped memory, so relinquish any fences
   4304 		 * currently pointing to our region in the aperture.
   4305 		 */
   4306 		if (INTEL_INFO(dev)->gen < 6) {
   4307 			ret = i915_gem_object_put_fence(obj);
   4308 			if (ret)
   4309 				return ret;
   4310 		}
   4311 
   4312 		list_for_each_entry(vma, &obj->vma_list, vma_link)
   4313 			if (drm_mm_node_allocated(&vma->node))
   4314 				vma->bind_vma(vma, cache_level,
   4315 					      obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
   4316 	}
   4317 
   4318 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   4319 		vma->node.color = cache_level;
   4320 	obj->cache_level = cache_level;
   4321 
   4322 	if (cpu_write_needs_clflush(obj)) {
   4323 		u32 old_read_domains, old_write_domain;
   4324 
   4325 		/* If we're coming from LLC cached, then we haven't
   4326 		 * actually been tracking whether the data is in the
   4327 		 * CPU cache or not, since we only allow one bit set
   4328 		 * in obj->write_domain and have been skipping the clflushes.
   4329 		 * Just set it to the CPU cache for now.
   4330 		 */
   4331 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
   4332 
   4333 		old_read_domains = obj->base.read_domains;
   4334 		old_write_domain = obj->base.write_domain;
   4335 
   4336 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4337 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4338 
   4339 		trace_i915_gem_object_change_domain(obj,
   4340 						    old_read_domains,
   4341 						    old_write_domain);
   4342 	}
   4343 
   4344 	i915_gem_verify_gtt(dev);
   4345 	return 0;
   4346 }
   4347 
   4348 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
   4349 			       struct drm_file *file)
   4350 {
   4351 	struct drm_i915_gem_caching *args = data;
   4352 	struct drm_gem_object *gobj;
   4353 	struct drm_i915_gem_object *obj;
   4354 	int ret;
   4355 
   4356 	ret = i915_mutex_lock_interruptible(dev);
   4357 	if (ret)
   4358 		return ret;
   4359 
   4360 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4361 	if (gobj == NULL) {
   4362 		ret = -ENOENT;
   4363 		goto unlock;
   4364 	}
   4365 	obj = to_intel_bo(gobj);
   4366 
   4367 	switch (obj->cache_level) {
   4368 	case I915_CACHE_LLC:
   4369 	case I915_CACHE_L3_LLC:
   4370 		args->caching = I915_CACHING_CACHED;
   4371 		break;
   4372 
   4373 	case I915_CACHE_WT:
   4374 		args->caching = I915_CACHING_DISPLAY;
   4375 		break;
   4376 
   4377 	default:
   4378 		args->caching = I915_CACHING_NONE;
   4379 		break;
   4380 	}
   4381 
   4382 	drm_gem_object_unreference(&obj->base);
   4383 unlock:
   4384 	mutex_unlock(&dev->struct_mutex);
   4385 	return ret;
   4386 }
   4387 
   4388 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
   4389 			       struct drm_file *file)
   4390 {
   4391 	struct drm_i915_gem_caching *args = data;
   4392 	struct drm_gem_object *gobj;
   4393 	struct drm_i915_gem_object *obj;
   4394 	enum i915_cache_level level;
   4395 	int ret;
   4396 
   4397 	switch (args->caching) {
   4398 	case I915_CACHING_NONE:
   4399 		level = I915_CACHE_NONE;
   4400 		break;
   4401 	case I915_CACHING_CACHED:
   4402 		level = I915_CACHE_LLC;
   4403 		break;
   4404 	case I915_CACHING_DISPLAY:
   4405 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
   4406 		break;
   4407 	default:
   4408 		return -EINVAL;
   4409 	}
   4410 
   4411 	ret = i915_mutex_lock_interruptible(dev);
   4412 	if (ret)
   4413 		return ret;
   4414 
   4415 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4416 	if (gobj == NULL) {
   4417 		ret = -ENOENT;
   4418 		goto unlock;
   4419 	}
   4420 	obj = to_intel_bo(gobj);
   4421 
   4422 	ret = i915_gem_object_set_cache_level(obj, level);
   4423 
   4424 	drm_gem_object_unreference(&obj->base);
   4425 unlock:
   4426 	mutex_unlock(&dev->struct_mutex);
   4427 	return ret;
   4428 }
   4429 
   4430 static bool is_pin_display(struct drm_i915_gem_object *obj)
   4431 {
   4432 	/* There are 3 sources that pin objects:
   4433 	 *   1. The display engine (scanouts, sprites, cursors);
   4434 	 *   2. Reservations for execbuffer;
   4435 	 *   3. The user.
   4436 	 *
   4437 	 * We can ignore reservations as we hold the struct_mutex and
   4438 	 * are only called outside of the reservation path.  The user
   4439 	 * can only increment pin_count once, and so if after
   4440 	 * subtracting the potential reference by the user, any pin_count
   4441 	 * remains, it must be due to another use by the display engine.
   4442 	 */
   4443 	return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
   4444 }
   4445 
   4446 /*
   4447  * Prepare buffer for display plane (scanout, cursors, etc).
   4448  * Can be called from an uninterruptible phase (modesetting) and allows
   4449  * any flushes to be pipelined (for pageflips).
   4450  */
   4451 int
   4452 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
   4453 				     u32 alignment,
   4454 				     struct intel_ring_buffer *pipelined)
   4455 {
   4456 	u32 old_read_domains, old_write_domain;
   4457 	int ret;
   4458 
   4459 	if (pipelined != obj->ring) {
   4460 		ret = i915_gem_object_sync(obj, pipelined);
   4461 		if (ret)
   4462 			return ret;
   4463 	}
   4464 
   4465 	/* Mark the pin_display early so that we account for the
   4466 	 * display coherency whilst setting up the cache domains.
   4467 	 */
   4468 	obj->pin_display = true;
   4469 
   4470 	/* The display engine is not coherent with the LLC cache on gen6.  As
   4471 	 * a result, we make sure that the pinning that is about to occur is
   4472 	 * done with uncached PTEs. This is lowest common denominator for all
   4473 	 * chipsets.
   4474 	 *
   4475 	 * However for gen6+, we could do better by using the GFDT bit instead
   4476 	 * of uncaching, which would allow us to flush all the LLC-cached data
   4477 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
   4478 	 */
   4479 	ret = i915_gem_object_set_cache_level(obj,
   4480 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
   4481 	if (ret)
   4482 		goto err_unpin_display;
   4483 
   4484 	/* As the user may map the buffer once pinned in the display plane
   4485 	 * (e.g. libkms for the bootup splash), we have to ensure that we
   4486 	 * always use map_and_fenceable for all scanout buffers.
   4487 	 */
   4488 	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
   4489 	if (ret)
   4490 		goto err_unpin_display;
   4491 
   4492 	i915_gem_object_flush_cpu_write_domain(obj, true);
   4493 
   4494 	old_write_domain = obj->base.write_domain;
   4495 	old_read_domains = obj->base.read_domains;
   4496 
   4497 	/* It should now be out of any other write domains, and we can update
   4498 	 * the domain values for our changes.
   4499 	 */
   4500 	obj->base.write_domain = 0;
   4501 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4502 
   4503 	trace_i915_gem_object_change_domain(obj,
   4504 					    old_read_domains,
   4505 					    old_write_domain);
   4506 
   4507 	return 0;
   4508 
   4509 err_unpin_display:
   4510 	obj->pin_display = is_pin_display(obj);
   4511 	return ret;
   4512 }
   4513 
   4514 void
   4515 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
   4516 {
   4517 	i915_gem_object_ggtt_unpin(obj);
   4518 	obj->pin_display = is_pin_display(obj);
   4519 }
   4520 
   4521 int
   4522 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
   4523 {
   4524 	int ret;
   4525 
   4526 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
   4527 		return 0;
   4528 
   4529 	ret = i915_gem_object_wait_rendering(obj, false);
   4530 	if (ret)
   4531 		return ret;
   4532 
   4533 	/* Ensure that we invalidate the GPU's caches and TLBs. */
   4534 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
   4535 	return 0;
   4536 }
   4537 
   4538 /**
   4539  * Moves a single object to the CPU read, and possibly write domain.
   4540  *
   4541  * This function returns when the move is complete, including waiting on
   4542  * flushes to occur.
   4543  */
   4544 int
   4545 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
   4546 {
   4547 	uint32_t old_write_domain, old_read_domains;
   4548 	int ret;
   4549 
   4550 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
   4551 		return 0;
   4552 
   4553 	ret = i915_gem_object_wait_rendering(obj, !write);
   4554 	if (ret)
   4555 		return ret;
   4556 
   4557 	i915_gem_object_flush_gtt_write_domain(obj);
   4558 
   4559 	old_write_domain = obj->base.write_domain;
   4560 	old_read_domains = obj->base.read_domains;
   4561 
   4562 	/* Flush the CPU cache if it's still invalid. */
   4563 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
   4564 		i915_gem_clflush_object(obj, false);
   4565 
   4566 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
   4567 	}
   4568 
   4569 	/* It should now be out of any other write domains, and we can update
   4570 	 * the domain values for our changes.
   4571 	 */
   4572 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
   4573 
   4574 	/* If we're writing through the CPU, then the GPU read domains will
   4575 	 * need to be invalidated at next use.
   4576 	 */
   4577 	if (write) {
   4578 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4579 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4580 	}
   4581 
   4582 	trace_i915_gem_object_change_domain(obj,
   4583 					    old_read_domains,
   4584 					    old_write_domain);
   4585 
   4586 	return 0;
   4587 }
   4588 
   4589 /* Throttle our rendering by waiting until the ring has completed our requests
   4590  * emitted over 20 msec ago.
   4591  *
   4592  * Note that if we were to use the current jiffies each time around the loop,
   4593  * we wouldn't escape the function with any frames outstanding if the time to
   4594  * render a frame was over 20ms.
   4595  *
   4596  * This should get us reasonable parallelism between CPU and GPU but also
   4597  * relatively low latency when blocking on a particular request to finish.
   4598  */
   4599 static int
   4600 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
   4601 {
   4602 	struct drm_i915_private *dev_priv = dev->dev_private;
   4603 	struct drm_i915_file_private *file_priv = file->driver_priv;
   4604 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
   4605 	struct drm_i915_gem_request *request;
   4606 	struct intel_ring_buffer *ring = NULL;
   4607 	unsigned reset_counter;
   4608 	u32 seqno = 0;
   4609 	int ret;
   4610 
   4611 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
   4612 	if (ret)
   4613 		return ret;
   4614 
   4615 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
   4616 	if (ret)
   4617 		return ret;
   4618 
   4619 	spin_lock(&file_priv->mm.lock);
   4620 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
   4621 		if (time_after_eq(request->emitted_jiffies, recent_enough))
   4622 			break;
   4623 
   4624 		ring = request->ring;
   4625 		seqno = request->seqno;
   4626 	}
   4627 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   4628 	spin_unlock(&file_priv->mm.lock);
   4629 
   4630 	if (seqno == 0)
   4631 		return 0;
   4632 
   4633 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
   4634 	if (ret == 0)
   4635 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
   4636 
   4637 	return ret;
   4638 }
   4639 
   4640 static bool
   4641 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
   4642 {
   4643 	struct drm_i915_gem_object *obj = vma->obj;
   4644 
   4645 	if (alignment &&
   4646 	    vma->node.start & (alignment - 1))
   4647 		return true;
   4648 
   4649 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
   4650 		return true;
   4651 
   4652 	if (flags & PIN_OFFSET_BIAS &&
   4653 	    vma->node.start < (flags & PIN_OFFSET_MASK))
   4654 		return true;
   4655 
   4656 	return false;
   4657 }
   4658 
   4659 int
   4660 i915_gem_object_pin(struct drm_i915_gem_object *obj,
   4661 		    struct i915_address_space *vm,
   4662 		    uint32_t alignment,
   4663 		    uint64_t flags)
   4664 {
   4665 	struct i915_vma *vma;
   4666 	int ret;
   4667 
   4668 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
   4669 		return -EINVAL;
   4670 
   4671 	vma = i915_gem_obj_to_vma(obj, vm);
   4672 	if (vma) {
   4673 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
   4674 			return -EBUSY;
   4675 
   4676 		if (i915_vma_misplaced(vma, alignment, flags)) {
   4677 			WARN(vma->pin_count,
   4678 			     "bo is already pinned with incorrect alignment:"
   4679 			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
   4680 			     " obj->map_and_fenceable=%d\n",
   4681 			     i915_gem_obj_offset(obj, vm), alignment,
   4682 			     !!(flags & PIN_MAPPABLE),
   4683 			     obj->map_and_fenceable);
   4684 			ret = i915_vma_unbind(vma);
   4685 			if (ret)
   4686 				return ret;
   4687 
   4688 			vma = NULL;
   4689 		}
   4690 	}
   4691 
   4692 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
   4693 		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
   4694 		if (IS_ERR(vma))
   4695 			return PTR_ERR(vma);
   4696 	}
   4697 
   4698 	if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
   4699 		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
   4700 
   4701 	vma->pin_count++;
   4702 	if (flags & PIN_MAPPABLE)
   4703 		obj->pin_mappable |= true;
   4704 
   4705 	return 0;
   4706 }
   4707 
   4708 void
   4709 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
   4710 {
   4711 	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
   4712 
   4713 	BUG_ON(!vma);
   4714 	BUG_ON(vma->pin_count == 0);
   4715 	BUG_ON(!i915_gem_obj_ggtt_bound(obj));
   4716 
   4717 	if (--vma->pin_count == 0)
   4718 		obj->pin_mappable = false;
   4719 }
   4720 
   4721 int
   4722 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
   4723 		   struct drm_file *file)
   4724 {
   4725 	struct drm_i915_gem_pin *args = data;
   4726 	struct drm_gem_object *gobj;
   4727 	struct drm_i915_gem_object *obj;
   4728 	int ret;
   4729 
   4730 	if (INTEL_INFO(dev)->gen >= 6)
   4731 		return -ENODEV;
   4732 
   4733 	ret = i915_mutex_lock_interruptible(dev);
   4734 	if (ret)
   4735 		return ret;
   4736 
   4737 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4738 	if (gobj == NULL) {
   4739 		ret = -ENOENT;
   4740 		goto unlock;
   4741 	}
   4742 	obj = to_intel_bo(gobj);
   4743 
   4744 	if (obj->madv != I915_MADV_WILLNEED) {
   4745 		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
   4746 		ret = -EFAULT;
   4747 		goto out;
   4748 	}
   4749 
   4750 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
   4751 		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
   4752 			  args->handle);
   4753 		ret = -EINVAL;
   4754 		goto out;
   4755 	}
   4756 
   4757 	if (obj->user_pin_count == ULONG_MAX) {
   4758 		ret = -EBUSY;
   4759 		goto out;
   4760 	}
   4761 
   4762 	if (obj->user_pin_count == 0) {
   4763 		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
   4764 		if (ret)
   4765 			goto out;
   4766 	}
   4767 
   4768 	obj->user_pin_count++;
   4769 	obj->pin_filp = file;
   4770 
   4771 	args->offset = i915_gem_obj_ggtt_offset(obj);
   4772 out:
   4773 	drm_gem_object_unreference(&obj->base);
   4774 unlock:
   4775 	mutex_unlock(&dev->struct_mutex);
   4776 	return ret;
   4777 }
   4778 
   4779 int
   4780 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
   4781 		     struct drm_file *file)
   4782 {
   4783 	struct drm_i915_gem_pin *args = data;
   4784 	struct drm_gem_object *gobj;
   4785 	struct drm_i915_gem_object *obj;
   4786 	int ret;
   4787 
   4788 	ret = i915_mutex_lock_interruptible(dev);
   4789 	if (ret)
   4790 		return ret;
   4791 
   4792 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4793 	if (gobj == NULL) {
   4794 		ret = -ENOENT;
   4795 		goto unlock;
   4796 	}
   4797 	obj = to_intel_bo(gobj);
   4798 
   4799 	if (obj->pin_filp != file) {
   4800 		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
   4801 			  args->handle);
   4802 		ret = -EINVAL;
   4803 		goto out;
   4804 	}
   4805 	obj->user_pin_count--;
   4806 	if (obj->user_pin_count == 0) {
   4807 		obj->pin_filp = NULL;
   4808 		i915_gem_object_ggtt_unpin(obj);
   4809 	}
   4810 
   4811 out:
   4812 	drm_gem_object_unreference(&obj->base);
   4813 unlock:
   4814 	mutex_unlock(&dev->struct_mutex);
   4815 	return ret;
   4816 }
   4817 
   4818 int
   4819 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
   4820 		    struct drm_file *file)
   4821 {
   4822 	struct drm_i915_gem_busy *args = data;
   4823 	struct drm_gem_object *gobj;
   4824 	struct drm_i915_gem_object *obj;
   4825 	int ret;
   4826 
   4827 	ret = i915_mutex_lock_interruptible(dev);
   4828 	if (ret)
   4829 		return ret;
   4830 
   4831 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4832 	if (gobj == NULL) {
   4833 		ret = -ENOENT;
   4834 		goto unlock;
   4835 	}
   4836 	obj = to_intel_bo(gobj);
   4837 
   4838 	/* Count all active objects as busy, even if they are currently not used
   4839 	 * by the gpu. Users of this interface expect objects to eventually
   4840 	 * become non-busy without any further actions, therefore emit any
   4841 	 * necessary flushes here.
   4842 	 */
   4843 	ret = i915_gem_object_flush_active(obj);
   4844 
   4845 	args->busy = obj->active;
   4846 	if (obj->ring) {
   4847 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
   4848 		args->busy |= intel_ring_flag(obj->ring) << 16;
   4849 	}
   4850 
   4851 	drm_gem_object_unreference(&obj->base);
   4852 unlock:
   4853 	mutex_unlock(&dev->struct_mutex);
   4854 	return ret;
   4855 }
   4856 
   4857 int
   4858 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
   4859 			struct drm_file *file_priv)
   4860 {
   4861 	return i915_gem_ring_throttle(dev, file_priv);
   4862 }
   4863 
   4864 int
   4865 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   4866 		       struct drm_file *file_priv)
   4867 {
   4868 	struct drm_i915_gem_madvise *args = data;
   4869 	struct drm_gem_object *gobj;
   4870 	struct drm_i915_gem_object *obj;
   4871 	int ret;
   4872 
   4873 	switch (args->madv) {
   4874 	case I915_MADV_DONTNEED:
   4875 	case I915_MADV_WILLNEED:
   4876 	    break;
   4877 	default:
   4878 	    return -EINVAL;
   4879 	}
   4880 
   4881 	ret = i915_mutex_lock_interruptible(dev);
   4882 	if (ret)
   4883 		return ret;
   4884 
   4885 	gobj = drm_gem_object_lookup(dev, file_priv, args->handle);
   4886 	if (gobj == NULL) {
   4887 		ret = -ENOENT;
   4888 		goto unlock;
   4889 	}
   4890 	obj = to_intel_bo(gobj);
   4891 
   4892 	if (i915_gem_obj_is_pinned(obj)) {
   4893 		ret = -EINVAL;
   4894 		goto out;
   4895 	}
   4896 
   4897 	if (obj->madv != __I915_MADV_PURGED)
   4898 		obj->madv = args->madv;
   4899 
   4900 	/* if the object is no longer attached, discard its backing storage */
   4901 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
   4902 		i915_gem_object_truncate(obj);
   4903 
   4904 	args->retained = obj->madv != __I915_MADV_PURGED;
   4905 
   4906 out:
   4907 	drm_gem_object_unreference(&obj->base);
   4908 unlock:
   4909 	mutex_unlock(&dev->struct_mutex);
   4910 	return ret;
   4911 }
   4912 
   4913 void i915_gem_object_init(struct drm_i915_gem_object *obj,
   4914 			  const struct drm_i915_gem_object_ops *ops)
   4915 {
   4916 	INIT_LIST_HEAD(&obj->global_list);
   4917 	INIT_LIST_HEAD(&obj->ring_list);
   4918 	INIT_LIST_HEAD(&obj->obj_exec_link);
   4919 	INIT_LIST_HEAD(&obj->vma_list);
   4920 
   4921 	obj->ops = ops;
   4922 
   4923 	obj->fence_reg = I915_FENCE_REG_NONE;
   4924 	obj->madv = I915_MADV_WILLNEED;
   4925 	/* Avoid an unnecessary call to unbind on the first bind. */
   4926 	obj->map_and_fenceable = true;
   4927 
   4928 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
   4929 }
   4930 
   4931 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
   4932 	.get_pages = i915_gem_object_get_pages_gtt,
   4933 	.put_pages = i915_gem_object_put_pages_gtt,
   4934 };
   4935 
   4936 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
   4937 						  size_t size)
   4938 {
   4939 #ifdef __NetBSD__
   4940 	struct drm_i915_private *const dev_priv = dev->dev_private;
   4941 #endif
   4942 	struct drm_i915_gem_object *obj;
   4943 #ifndef __NetBSD__
   4944 	struct address_space *mapping;
   4945 	gfp_t mask;
   4946 #endif
   4947 
   4948 	obj = i915_gem_object_alloc(dev);
   4949 	if (obj == NULL)
   4950 		return NULL;
   4951 
   4952 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
   4953 		i915_gem_object_free(obj);
   4954 		return NULL;
   4955 	}
   4956 
   4957 #ifdef __NetBSD__
   4958 	uao_set_pgfl(obj->base.gemo_shm_uao, dev_priv->gtt.pgfl);
   4959 #else
   4960 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
   4961 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
   4962 		/* 965gm cannot relocate objects above 4GiB. */
   4963 		mask &= ~__GFP_HIGHMEM;
   4964 		mask |= __GFP_DMA32;
   4965 	}
   4966 
   4967 	mapping = file_inode(obj->base.filp)->i_mapping;
   4968 	mapping_set_gfp_mask(mapping, mask);
   4969 #endif
   4970 
   4971 	i915_gem_object_init(obj, &i915_gem_object_ops);
   4972 
   4973 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4974 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4975 
   4976 	if (HAS_LLC(dev)) {
   4977 		/* On some devices, we can have the GPU use the LLC (the CPU
   4978 		 * cache) for about a 10% performance improvement
   4979 		 * compared to uncached.  Graphics requests other than
   4980 		 * display scanout are coherent with the CPU in
   4981 		 * accessing this cache.  This means in this mode we
   4982 		 * don't need to clflush on the CPU side, and on the
   4983 		 * GPU side we only need to flush internal caches to
   4984 		 * get data visible to the CPU.
   4985 		 *
   4986 		 * However, we maintain the display planes as UC, and so
   4987 		 * need to rebind when first used as such.
   4988 		 */
   4989 		obj->cache_level = I915_CACHE_LLC;
   4990 	} else
   4991 		obj->cache_level = I915_CACHE_NONE;
   4992 
   4993 	trace_i915_gem_object_create(obj);
   4994 
   4995 	return obj;
   4996 }
   4997 
   4998 void i915_gem_free_object(struct drm_gem_object *gem_obj)
   4999 {
   5000 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   5001 	struct drm_device *dev = obj->base.dev;
   5002 	struct drm_i915_private *dev_priv = dev->dev_private;
   5003 	struct i915_vma *vma, *next;
   5004 
   5005 	intel_runtime_pm_get(dev_priv);
   5006 
   5007 	trace_i915_gem_object_destroy(obj);
   5008 
   5009 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   5010 		int ret;
   5011 
   5012 		vma->pin_count = 0;
   5013 		ret = i915_vma_unbind(vma);
   5014 		if (WARN_ON(ret == -ERESTARTSYS)) {
   5015 			bool was_interruptible;
   5016 
   5017 			was_interruptible = dev_priv->mm.interruptible;
   5018 			dev_priv->mm.interruptible = false;
   5019 
   5020 			WARN_ON(i915_vma_unbind(vma));
   5021 
   5022 			dev_priv->mm.interruptible = was_interruptible;
   5023 		}
   5024 	}
   5025 
   5026 	i915_gem_object_detach_phys(obj);
   5027 
   5028 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
   5029 	 * before progressing. */
   5030 	if (obj->stolen)
   5031 		i915_gem_object_unpin_pages(obj);
   5032 
   5033 	if (WARN_ON(obj->pages_pin_count))
   5034 		obj->pages_pin_count = 0;
   5035 	i915_gem_object_put_pages(obj);
   5036 	i915_gem_object_free_mmap_offset(obj);
   5037 	i915_gem_object_release_stolen(obj);
   5038 
   5039 	BUG_ON(obj->pages);
   5040 
   5041 #ifndef __NetBSD__		/* XXX drm prime */
   5042 	if (obj->base.import_attach)
   5043 		drm_prime_gem_destroy(&obj->base, NULL);
   5044 #endif
   5045 
   5046 	drm_gem_object_release(&obj->base);
   5047 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
   5048 
   5049 	kfree(obj->bit_17);
   5050 	i915_gem_object_free(obj);
   5051 
   5052 	intel_runtime_pm_put(dev_priv);
   5053 }
   5054 
   5055 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
   5056 				     struct i915_address_space *vm)
   5057 {
   5058 	struct i915_vma *vma;
   5059 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   5060 		if (vma->vm == vm)
   5061 			return vma;
   5062 
   5063 	return NULL;
   5064 }
   5065 
   5066 void i915_gem_vma_destroy(struct i915_vma *vma)
   5067 {
   5068 	WARN_ON(vma->node.allocated);
   5069 
   5070 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
   5071 	if (!list_empty(&vma->exec_list))
   5072 		return;
   5073 
   5074 	list_del(&vma->vma_link);
   5075 
   5076 	kfree(vma);
   5077 }
   5078 
   5079 int
   5080 i915_gem_suspend(struct drm_device *dev)
   5081 {
   5082 	struct drm_i915_private *dev_priv = dev->dev_private;
   5083 	int ret = 0;
   5084 
   5085 	mutex_lock(&dev->struct_mutex);
   5086 	if (dev_priv->ums.mm_suspended)
   5087 		goto err;
   5088 
   5089 	ret = i915_gpu_idle(dev);
   5090 	if (ret)
   5091 		goto err;
   5092 
   5093 	i915_gem_retire_requests(dev);
   5094 
   5095 	/* Under UMS, be paranoid and evict. */
   5096 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   5097 		i915_gem_evict_everything(dev);
   5098 
   5099 	i915_kernel_lost_context(dev);
   5100 	i915_gem_cleanup_ringbuffer(dev);
   5101 
   5102 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
   5103 	 * We need to replace this with a semaphore, or something.
   5104 	 * And not confound ums.mm_suspended!
   5105 	 */
   5106 	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
   5107 							     DRIVER_MODESET);
   5108 	mutex_unlock(&dev->struct_mutex);
   5109 
   5110 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
   5111 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
   5112 	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
   5113 
   5114 	return 0;
   5115 
   5116 err:
   5117 	mutex_unlock(&dev->struct_mutex);
   5118 	return ret;
   5119 }
   5120 
   5121 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
   5122 {
   5123 	struct drm_device *dev = ring->dev;
   5124 	struct drm_i915_private *dev_priv = dev->dev_private;
   5125 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
   5126 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
   5127 	int i, ret;
   5128 
   5129 	if (!HAS_L3_DPF(dev) || !remap_info)
   5130 		return 0;
   5131 
   5132 	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
   5133 	if (ret)
   5134 		return ret;
   5135 
   5136 	/*
   5137 	 * Note: We do not worry about the concurrent register cacheline hang
   5138 	 * here because no other code should access these registers other than
   5139 	 * at initialization time.
   5140 	 */
   5141 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
   5142 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
   5143 		intel_ring_emit(ring, reg_base + i);
   5144 		intel_ring_emit(ring, remap_info[i/4]);
   5145 	}
   5146 
   5147 	intel_ring_advance(ring);
   5148 
   5149 	return ret;
   5150 }
   5151 
   5152 void i915_gem_init_swizzling(struct drm_device *dev)
   5153 {
   5154 	struct drm_i915_private *dev_priv = dev->dev_private;
   5155 
   5156 	if (INTEL_INFO(dev)->gen < 5 ||
   5157 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
   5158 		return;
   5159 
   5160 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
   5161 				 DISP_TILE_SURFACE_SWIZZLING);
   5162 
   5163 	if (IS_GEN5(dev))
   5164 		return;
   5165 
   5166 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
   5167 	if (IS_GEN6(dev))
   5168 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
   5169 	else if (IS_GEN7(dev))
   5170 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
   5171 	else if (IS_GEN8(dev))
   5172 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
   5173 	else
   5174 		BUG();
   5175 }
   5176 
   5177 static bool
   5178 intel_enable_blt(struct drm_device *dev)
   5179 {
   5180 	if (!HAS_BLT(dev))
   5181 		return false;
   5182 
   5183 	/* The blitter was dysfunctional on early prototypes */
   5184 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
   5185 		DRM_INFO("BLT not supported on this pre-production hardware;"
   5186 			 " graphics performance will be degraded.\n");
   5187 		return false;
   5188 	}
   5189 
   5190 	return true;
   5191 }
   5192 
   5193 static int i915_gem_init_rings(struct drm_device *dev)
   5194 {
   5195 	struct drm_i915_private *dev_priv = dev->dev_private;
   5196 	int ret;
   5197 
   5198 	ret = intel_init_render_ring_buffer(dev);
   5199 	if (ret)
   5200 		return ret;
   5201 
   5202 	if (HAS_BSD(dev)) {
   5203 		ret = intel_init_bsd_ring_buffer(dev);
   5204 		if (ret)
   5205 			goto cleanup_render_ring;
   5206 	}
   5207 
   5208 	if (intel_enable_blt(dev)) {
   5209 		ret = intel_init_blt_ring_buffer(dev);
   5210 		if (ret)
   5211 			goto cleanup_bsd_ring;
   5212 	}
   5213 
   5214 	if (HAS_VEBOX(dev)) {
   5215 		ret = intel_init_vebox_ring_buffer(dev);
   5216 		if (ret)
   5217 			goto cleanup_blt_ring;
   5218 	}
   5219 
   5220 
   5221 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
   5222 	if (ret)
   5223 		goto cleanup_vebox_ring;
   5224 
   5225 	return 0;
   5226 
   5227 cleanup_vebox_ring:
   5228 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
   5229 cleanup_blt_ring:
   5230 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
   5231 cleanup_bsd_ring:
   5232 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
   5233 cleanup_render_ring:
   5234 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
   5235 
   5236 	return ret;
   5237 }
   5238 
   5239 int
   5240 i915_gem_init_hw(struct drm_device *dev)
   5241 {
   5242 	struct drm_i915_private *dev_priv = dev->dev_private;
   5243 	int ret, i;
   5244 
   5245 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
   5246 		return -EIO;
   5247 
   5248 	if (dev_priv->ellc_size)
   5249 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
   5250 
   5251 	if (IS_HASWELL(dev))
   5252 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
   5253 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
   5254 
   5255 	if (HAS_PCH_NOP(dev)) {
   5256 		if (IS_IVYBRIDGE(dev)) {
   5257 			u32 temp = I915_READ(GEN7_MSG_CTL);
   5258 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
   5259 			I915_WRITE(GEN7_MSG_CTL, temp);
   5260 		} else if (INTEL_INFO(dev)->gen >= 7) {
   5261 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
   5262 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
   5263 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
   5264 		}
   5265 	}
   5266 
   5267 	i915_gem_init_swizzling(dev);
   5268 
   5269 	ret = i915_gem_init_rings(dev);
   5270 	if (ret)
   5271 		return ret;
   5272 
   5273 	for (i = 0; i < NUM_L3_SLICES(dev); i++)
   5274 		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
   5275 
   5276 	/*
   5277 	 * XXX: Contexts should only be initialized once. Doing a switch to the
   5278 	 * default context switch however is something we'd like to do after
   5279 	 * reset or thaw (the latter may not actually be necessary for HW, but
   5280 	 * goes with our code better). Context switching requires rings (for
   5281 	 * the do_switch), but before enabling PPGTT. So don't move this.
   5282 	 */
   5283 	ret = i915_gem_context_enable(dev_priv);
   5284 	if (ret) {
   5285 		DRM_ERROR("Context enable failed %d\n", ret);
   5286 		goto err_out;
   5287 	}
   5288 
   5289 	return 0;
   5290 
   5291 err_out:
   5292 	i915_gem_cleanup_ringbuffer(dev);
   5293 	return ret;
   5294 }
   5295 
   5296 int i915_gem_init(struct drm_device *dev)
   5297 {
   5298 	struct drm_i915_private *dev_priv = dev->dev_private;
   5299 	int ret;
   5300 
   5301 	mutex_lock(&dev->struct_mutex);
   5302 
   5303 	if (IS_VALLEYVIEW(dev)) {
   5304 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
   5305 		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
   5306 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
   5307 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
   5308 	}
   5309 	i915_gem_init_global_gtt(dev);
   5310 
   5311 	ret = i915_gem_context_init(dev);
   5312 	if (ret) {
   5313 		mutex_unlock(&dev->struct_mutex);
   5314 		return ret;
   5315 	}
   5316 
   5317 	ret = i915_gem_init_hw(dev);
   5318 	mutex_unlock(&dev->struct_mutex);
   5319 	if (ret) {
   5320 		WARN_ON(dev_priv->mm.aliasing_ppgtt);
   5321 		i915_gem_context_fini(dev);
   5322 		drm_mm_takedown(&dev_priv->gtt.base.mm);
   5323 		return ret;
   5324 	}
   5325 
   5326 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
   5327 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   5328 		dev_priv->dri1.allow_batchbuffer = 1;
   5329 	return 0;
   5330 }
   5331 
   5332 void
   5333 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
   5334 {
   5335 	struct drm_i915_private *dev_priv = dev->dev_private;
   5336 	struct intel_ring_buffer *ring;
   5337 	int i;
   5338 
   5339 	for_each_ring(ring, dev_priv, i)
   5340 		intel_cleanup_ring_buffer(ring);
   5341 }
   5342 
   5343 int
   5344 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
   5345 		       struct drm_file *file_priv)
   5346 {
   5347 	struct drm_i915_private *dev_priv = dev->dev_private;
   5348 	int ret;
   5349 
   5350 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   5351 		return 0;
   5352 
   5353 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
   5354 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
   5355 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
   5356 	}
   5357 
   5358 	mutex_lock(&dev->struct_mutex);
   5359 	dev_priv->ums.mm_suspended = 0;
   5360 
   5361 	ret = i915_gem_init_hw(dev);
   5362 	if (ret != 0) {
   5363 		mutex_unlock(&dev->struct_mutex);
   5364 		return ret;
   5365 	}
   5366 
   5367 	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
   5368 	mutex_unlock(&dev->struct_mutex);
   5369 
   5370 	ret = drm_irq_install(dev);
   5371 	if (ret)
   5372 		goto cleanup_ringbuffer;
   5373 
   5374 	return 0;
   5375 
   5376 cleanup_ringbuffer:
   5377 	mutex_lock(&dev->struct_mutex);
   5378 	i915_gem_cleanup_ringbuffer(dev);
   5379 	dev_priv->ums.mm_suspended = 1;
   5380 	mutex_unlock(&dev->struct_mutex);
   5381 
   5382 	return ret;
   5383 }
   5384 
   5385 int
   5386 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
   5387 		       struct drm_file *file_priv)
   5388 {
   5389 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   5390 		return 0;
   5391 
   5392 	drm_irq_uninstall(dev);
   5393 
   5394 	return i915_gem_suspend(dev);
   5395 }
   5396 
   5397 void
   5398 i915_gem_lastclose(struct drm_device *dev)
   5399 {
   5400 	int ret;
   5401 
   5402 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   5403 		return;
   5404 
   5405 	ret = i915_gem_suspend(dev);
   5406 	if (ret)
   5407 		DRM_ERROR("failed to idle hardware: %d\n", ret);
   5408 }
   5409 
   5410 static void
   5411 init_ring_lists(struct intel_ring_buffer *ring)
   5412 {
   5413 	INIT_LIST_HEAD(&ring->active_list);
   5414 	INIT_LIST_HEAD(&ring->request_list);
   5415 }
   5416 
   5417 void i915_init_vm(struct drm_i915_private *dev_priv,
   5418 		  struct i915_address_space *vm)
   5419 {
   5420 	if (!i915_is_ggtt(vm))
   5421 		drm_mm_init(&vm->mm, vm->start, vm->total);
   5422 	vm->dev = dev_priv->dev;
   5423 	INIT_LIST_HEAD(&vm->active_list);
   5424 	INIT_LIST_HEAD(&vm->inactive_list);
   5425 	INIT_LIST_HEAD(&vm->global_link);
   5426 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
   5427 }
   5428 
   5429 void
   5430 i915_gem_load(struct drm_device *dev)
   5431 {
   5432 	struct drm_i915_private *dev_priv = dev->dev_private;
   5433 	int i;
   5434 
   5435 	dev_priv->slab =
   5436 		kmem_cache_create("i915_gem_object",
   5437 				  sizeof(struct drm_i915_gem_object), 0,
   5438 				  SLAB_HWCACHE_ALIGN,
   5439 				  NULL);
   5440 
   5441 	INIT_LIST_HEAD(&dev_priv->vm_list);
   5442 	i915_init_vm(dev_priv, &dev_priv->gtt.base);
   5443 
   5444 	INIT_LIST_HEAD(&dev_priv->context_list);
   5445 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
   5446 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
   5447 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5448 	for (i = 0; i < I915_NUM_RINGS; i++)
   5449 		init_ring_lists(&dev_priv->ring[i]);
   5450 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
   5451 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
   5452 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
   5453 			  i915_gem_retire_work_handler);
   5454 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
   5455 			  i915_gem_idle_work_handler);
   5456 #ifdef __NetBSD__
   5457 	spin_lock_init(&dev_priv->gpu_error.reset_lock);
   5458 	DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
   5459 #else
   5460 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
   5461 #endif
   5462 
   5463 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
   5464 	if (IS_GEN3(dev)) {
   5465 		I915_WRITE(MI_ARB_STATE,
   5466 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
   5467 	}
   5468 
   5469 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
   5470 
   5471 	/* Old X drivers will take 0-2 for front, back, depth buffers */
   5472 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   5473 		dev_priv->fence_reg_start = 3;
   5474 
   5475 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
   5476 		dev_priv->num_fence_regs = 32;
   5477 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
   5478 		dev_priv->num_fence_regs = 16;
   5479 	else
   5480 		dev_priv->num_fence_regs = 8;
   5481 
   5482 	/* Initialize fence registers to zero */
   5483 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5484 	i915_gem_restore_fences(dev);
   5485 
   5486 	i915_gem_detect_bit_6_swizzle(dev);
   5487 #ifdef __NetBSD__
   5488 	DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
   5489 	spin_lock_init(&dev_priv->pending_flip_lock);
   5490 #else
   5491 	init_waitqueue_head(&dev_priv->pending_flip_queue);
   5492 #endif
   5493 
   5494 	dev_priv->mm.interruptible = true;
   5495 
   5496 	dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
   5497 	dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
   5498 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
   5499 	register_shrinker(&dev_priv->mm.inactive_shrinker);
   5500 }
   5501 
   5502 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   5503 {
   5504 	struct drm_i915_file_private *file_priv = file->driver_priv;
   5505 
   5506 	cancel_delayed_work_sync(&file_priv->mm.idle_work);
   5507 
   5508 	/* Clean up our request list when the client is going away, so that
   5509 	 * later retire_requests won't dereference our soon-to-be-gone
   5510 	 * file_priv.
   5511 	 */
   5512 	spin_lock(&file_priv->mm.lock);
   5513 	while (!list_empty(&file_priv->mm.request_list)) {
   5514 		struct drm_i915_gem_request *request;
   5515 
   5516 		request = list_first_entry(&file_priv->mm.request_list,
   5517 					   struct drm_i915_gem_request,
   5518 					   client_list);
   5519 		list_del(&request->client_list);
   5520 		request->file_priv = NULL;
   5521 	}
   5522 	spin_unlock(&file_priv->mm.lock);
   5523 }
   5524 
   5525 static void
   5526 i915_gem_file_idle_work_handler(struct work_struct *work)
   5527 {
   5528 	struct drm_i915_file_private *file_priv =
   5529 		container_of(work, typeof(*file_priv), mm.idle_work.work);
   5530 
   5531 	atomic_set(&file_priv->rps_wait_boost, false);
   5532 }
   5533 
   5534 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
   5535 {
   5536 	struct drm_i915_file_private *file_priv;
   5537 	int ret;
   5538 
   5539 	DRM_DEBUG_DRIVER("\n");
   5540 
   5541 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
   5542 	if (!file_priv)
   5543 		return -ENOMEM;
   5544 
   5545 	file->driver_priv = file_priv;
   5546 	file_priv->dev_priv = dev->dev_private;
   5547 	file_priv->file = file;
   5548 
   5549 	spin_lock_init(&file_priv->mm.lock);
   5550 	INIT_LIST_HEAD(&file_priv->mm.request_list);
   5551 	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
   5552 			  i915_gem_file_idle_work_handler);
   5553 
   5554 	ret = i915_gem_context_open(dev, file);
   5555 	if (ret)
   5556 		kfree(file_priv);
   5557 
   5558 	return ret;
   5559 }
   5560 
   5561 #ifndef __NetBSD__
   5562 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
   5563 {
   5564 	if (!mutex_is_locked(mutex))
   5565 		return false;
   5566 
   5567 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
   5568 	return mutex->owner == task;
   5569 #else
   5570 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
   5571 	return false;
   5572 #endif
   5573 }
   5574 #endif
   5575 
   5576 static unsigned long
   5577 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
   5578 {
   5579 #ifdef __NetBSD__		/* XXX shrinkers */
   5580 	return 0;
   5581 #else
   5582 	struct drm_i915_private *dev_priv =
   5583 		container_of(shrinker,
   5584 			     struct drm_i915_private,
   5585 			     mm.inactive_shrinker);
   5586 	struct drm_device *dev = dev_priv->dev;
   5587 	struct drm_i915_gem_object *obj;
   5588 	bool unlock = true;
   5589 	unsigned long count;
   5590 
   5591 	if (!mutex_trylock(&dev->struct_mutex)) {
   5592 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
   5593 			return 0;
   5594 
   5595 		if (dev_priv->mm.shrinker_no_lock_stealing)
   5596 			return 0;
   5597 
   5598 		unlock = false;
   5599 	}
   5600 
   5601 	count = 0;
   5602 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
   5603 		if (obj->pages_pin_count == 0)
   5604 			count += obj->base.size >> PAGE_SHIFT;
   5605 
   5606 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
   5607 		if (obj->active)
   5608 			continue;
   5609 
   5610 		if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
   5611 			count += obj->base.size >> PAGE_SHIFT;
   5612 	}
   5613 
   5614 	if (unlock)
   5615 		mutex_unlock(&dev->struct_mutex);
   5616 
   5617 	return count;
   5618 #endif
   5619 }
   5620 
   5621 /* All the new VM stuff */
   5622 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
   5623 				  struct i915_address_space *vm)
   5624 {
   5625 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5626 	struct i915_vma *vma;
   5627 
   5628 	if (!dev_priv->mm.aliasing_ppgtt ||
   5629 	    vm == &dev_priv->mm.aliasing_ppgtt->base)
   5630 		vm = &dev_priv->gtt.base;
   5631 
   5632 	BUG_ON(list_empty(&o->vma_list));
   5633 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5634 		if (vma->vm == vm)
   5635 			return vma->node.start;
   5636 
   5637 	}
   5638 	return -1;
   5639 }
   5640 
   5641 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
   5642 			struct i915_address_space *vm)
   5643 {
   5644 	struct i915_vma *vma;
   5645 
   5646 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5647 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
   5648 			return true;
   5649 
   5650 	return false;
   5651 }
   5652 
   5653 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
   5654 {
   5655 	struct i915_vma *vma;
   5656 
   5657 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5658 		if (drm_mm_node_allocated(&vma->node))
   5659 			return true;
   5660 
   5661 	return false;
   5662 }
   5663 
   5664 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
   5665 				struct i915_address_space *vm)
   5666 {
   5667 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5668 	struct i915_vma *vma;
   5669 
   5670 	if (!dev_priv->mm.aliasing_ppgtt ||
   5671 	    vm == &dev_priv->mm.aliasing_ppgtt->base)
   5672 		vm = &dev_priv->gtt.base;
   5673 
   5674 	BUG_ON(list_empty(&o->vma_list));
   5675 
   5676 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5677 		if (vma->vm == vm)
   5678 			return vma->node.size;
   5679 
   5680 	return 0;
   5681 }
   5682 
   5683 static unsigned long
   5684 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
   5685 {
   5686 #ifdef __NetBSD__		/* XXX shrinkers */
   5687 	return 0;
   5688 #else
   5689 	struct drm_i915_private *dev_priv =
   5690 		container_of(shrinker,
   5691 			     struct drm_i915_private,
   5692 			     mm.inactive_shrinker);
   5693 	struct drm_device *dev = dev_priv->dev;
   5694 	unsigned long freed;
   5695 	bool unlock = true;
   5696 
   5697 	if (!mutex_trylock(&dev->struct_mutex)) {
   5698 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
   5699 			return SHRINK_STOP;
   5700 
   5701 		if (dev_priv->mm.shrinker_no_lock_stealing)
   5702 			return SHRINK_STOP;
   5703 
   5704 		unlock = false;
   5705 	}
   5706 
   5707 	freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
   5708 	if (freed < sc->nr_to_scan)
   5709 		freed += __i915_gem_shrink(dev_priv,
   5710 					   sc->nr_to_scan - freed,
   5711 					   false);
   5712 	if (freed < sc->nr_to_scan)
   5713 		freed += i915_gem_shrink_all(dev_priv);
   5714 
   5715 	if (unlock)
   5716 		mutex_unlock(&dev->struct_mutex);
   5717 
   5718 	return freed;
   5719 #endif
   5720 }
   5721 
   5722 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
   5723 {
   5724 	struct i915_vma *vma;
   5725 
   5726 	if (WARN_ON(list_empty(&obj->vma_list)))
   5727 		return NULL;
   5728 
   5729 	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
   5730 	if (vma->vm != obj_to_ggtt(obj))
   5731 		return NULL;
   5732 
   5733 	return vma;
   5734 }
   5735