Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.23
      1 /*
      2  * Copyright  2008 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eric Anholt <eric (at) anholt.net>
     25  *
     26  */
     27 
     28 #ifdef __NetBSD__
     29 #if 0				/* XXX uvmhist option?  */
     30 #include "opt_uvmhist.h"
     31 #endif
     32 
     33 #include <sys/types.h>
     34 #include <sys/param.h>
     35 
     36 #include <uvm/uvm.h>
     37 #include <uvm/uvm_extern.h>
     38 #include <uvm/uvm_fault.h>
     39 #include <uvm/uvm_page.h>
     40 #include <uvm/uvm_pmap.h>
     41 #include <uvm/uvm_prot.h>
     42 
     43 #include <drm/bus_dma_hacks.h>
     44 #endif
     45 
     46 #include <drm/drmP.h>
     47 #include <drm/drm_vma_manager.h>
     48 #include <drm/i915_drm.h>
     49 #include "i915_drv.h"
     50 #include "i915_trace.h"
     51 #include "intel_drv.h"
     52 #include <linux/shmem_fs.h>
     53 #include <linux/slab.h>
     54 #include <linux/swap.h>
     55 #include <linux/pci.h>
     56 #include <linux/dma-buf.h>
     57 #include <linux/errno.h>
     58 #include <linux/time.h>
     59 #include <linux/err.h>
     60 #include <linux/bitops.h>
     61 #include <linux/printk.h>
     62 #include <asm/param.h>
     63 #include <asm/page.h>
     64 
     65 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
     66 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
     67 						   bool force);
     68 static __must_check int
     69 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
     70 			       bool readonly);
     71 
     72 static void i915_gem_write_fence(struct drm_device *dev, int reg,
     73 				 struct drm_i915_gem_object *obj);
     74 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
     75 					 struct drm_i915_fence_reg *fence,
     76 					 bool enable);
     77 
     78 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
     79 					     struct shrink_control *sc);
     80 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
     81 					    struct shrink_control *sc);
     82 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
     83 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
     84 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
     85 static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
     86 
     87 static bool cpu_cache_is_coherent(struct drm_device *dev,
     88 				  enum i915_cache_level level)
     89 {
     90 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
     91 }
     92 
     93 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
     94 {
     95 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
     96 		return true;
     97 
     98 	return obj->pin_display;
     99 }
    100 
    101 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
    102 {
    103 	if (obj->tiling_mode)
    104 		i915_gem_release_mmap(obj);
    105 
    106 	/* As we do not have an associated fence register, we will force
    107 	 * a tiling change if we ever need to acquire one.
    108 	 */
    109 	obj->fence_dirty = false;
    110 	obj->fence_reg = I915_FENCE_REG_NONE;
    111 }
    112 
    113 /* some bookkeeping */
    114 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
    115 				  size_t size)
    116 {
    117 	spin_lock(&dev_priv->mm.object_stat_lock);
    118 	dev_priv->mm.object_count++;
    119 	dev_priv->mm.object_memory += size;
    120 	spin_unlock(&dev_priv->mm.object_stat_lock);
    121 }
    122 
    123 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
    124 				     size_t size)
    125 {
    126 	spin_lock(&dev_priv->mm.object_stat_lock);
    127 	dev_priv->mm.object_count--;
    128 	dev_priv->mm.object_memory -= size;
    129 	spin_unlock(&dev_priv->mm.object_stat_lock);
    130 }
    131 
    132 static int
    133 i915_gem_wait_for_error(struct i915_gpu_error *error)
    134 {
    135 	int ret;
    136 
    137 #define EXIT_COND (!i915_reset_in_progress(error) || \
    138 		   i915_terminally_wedged(error))
    139 	if (EXIT_COND)
    140 		return 0;
    141 
    142 	/*
    143 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
    144 	 * userspace. If it takes that long something really bad is going on and
    145 	 * we should simply try to bail out and fail as gracefully as possible.
    146 	 */
    147 #ifdef __NetBSD__
    148 	spin_lock(&error->reset_lock);
    149 	DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
    150 	    10*HZ, EXIT_COND);
    151 	spin_unlock(&error->reset_lock);
    152 #else
    153 	ret = wait_event_interruptible_timeout(error->reset_queue,
    154 					       EXIT_COND,
    155 					       10*HZ);
    156 #endif
    157 	if (ret == 0) {
    158 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
    159 		return -EIO;
    160 	} else if (ret < 0) {
    161 		return ret;
    162 	}
    163 #undef EXIT_COND
    164 
    165 	return 0;
    166 }
    167 
    168 int i915_mutex_lock_interruptible(struct drm_device *dev)
    169 {
    170 	struct drm_i915_private *dev_priv = dev->dev_private;
    171 	int ret;
    172 
    173 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
    174 	if (ret)
    175 		return ret;
    176 
    177 	ret = mutex_lock_interruptible(&dev->struct_mutex);
    178 	if (ret)
    179 		return ret;
    180 
    181 	WARN_ON(i915_verify_lists(dev));
    182 	return 0;
    183 }
    184 
    185 static inline bool
    186 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
    187 {
    188 	return i915_gem_obj_bound_any(obj) && !obj->active;
    189 }
    190 
    191 int
    192 i915_gem_init_ioctl(struct drm_device *dev, void *data,
    193 		    struct drm_file *file)
    194 {
    195 	struct drm_i915_private *dev_priv = dev->dev_private;
    196 	struct drm_i915_gem_init *args = data;
    197 
    198 	if (drm_core_check_feature(dev, DRIVER_MODESET))
    199 		return -ENODEV;
    200 
    201 	if (args->gtt_start >= args->gtt_end ||
    202 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
    203 		return -EINVAL;
    204 
    205 	/* GEM with user mode setting was never supported on ilk and later. */
    206 	if (INTEL_INFO(dev)->gen >= 5)
    207 		return -ENODEV;
    208 
    209 	mutex_lock(&dev->struct_mutex);
    210 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
    211 				  args->gtt_end);
    212 	dev_priv->gtt.mappable_end = args->gtt_end;
    213 	mutex_unlock(&dev->struct_mutex);
    214 
    215 	return 0;
    216 }
    217 
    218 int
    219 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    220 			    struct drm_file *file)
    221 {
    222 	struct drm_i915_private *dev_priv = dev->dev_private;
    223 	struct drm_i915_gem_get_aperture *args = data;
    224 	struct drm_i915_gem_object *obj;
    225 	size_t pinned;
    226 
    227 	pinned = 0;
    228 	mutex_lock(&dev->struct_mutex);
    229 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
    230 		if (i915_gem_obj_is_pinned(obj))
    231 			pinned += i915_gem_obj_ggtt_size(obj);
    232 	mutex_unlock(&dev->struct_mutex);
    233 
    234 	args->aper_size = dev_priv->gtt.base.total;
    235 	args->aper_available_size = args->aper_size - pinned;
    236 
    237 	return 0;
    238 }
    239 
    240 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
    241 {
    242 	drm_dma_handle_t *phys = obj->phys_handle;
    243 
    244 	if (!phys)
    245 		return;
    246 
    247 	if (obj->madv == I915_MADV_WILLNEED) {
    248 #ifdef __NetBSD__
    249 		const char *vaddr = phys->vaddr;
    250 		unsigned i;
    251 
    252 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    253 			struct pglist pages;
    254 			int error;
    255 
    256 			TAILQ_INIT(&pages);
    257 			error = uvm_obj_wirepages(obj->base.gemo_shm_uao,
    258 			    i*PAGE_SIZE, (i+1)*PAGE_SIZE, &pages);
    259 			if (error)
    260 				continue;
    261 
    262 			struct vm_page *const vm_page = TAILQ_FIRST(&pages);
    263 			struct page *const page = container_of(vm_page,
    264 			    struct page, p_vmp);
    265 			char *const dst = kmap_atomic(page);
    266 			(void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
    267 			drm_clflush_virt_range(dst, PAGE_SIZE);
    268 			kunmap_atomic(dst);
    269 
    270 			vm_page->flags &= ~PG_CLEAN;
    271 			/* XXX mark page accessed */
    272 			uvm_obj_unwirepages(obj->base.gemo_shm_uao,
    273 			    i*PAGE_SIZE, (i+1)*PAGE_SIZE);
    274 		}
    275 #else
    276 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    277 		char *vaddr = phys->vaddr;
    278 		int i;
    279 
    280 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    281 			struct page *page = shmem_read_mapping_page(mapping, i);
    282 			if (!IS_ERR(page)) {
    283 				char *dst = kmap_atomic(page);
    284 				memcpy(dst, vaddr, PAGE_SIZE);
    285 				drm_clflush_virt_range(dst, PAGE_SIZE);
    286 				kunmap_atomic(dst);
    287 
    288 				set_page_dirty(page);
    289 				mark_page_accessed(page);
    290 				page_cache_release(page);
    291 			}
    292 			vaddr += PAGE_SIZE;
    293 		}
    294 #endif
    295 		i915_gem_chipset_flush(obj->base.dev);
    296 	}
    297 
    298 #ifndef __NetBSD__
    299 #ifdef CONFIG_X86
    300 	set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
    301 #endif
    302 #endif
    303 	drm_pci_free(obj->base.dev, phys);
    304 	obj->phys_handle = NULL;
    305 }
    306 
    307 int
    308 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
    309 			    int align)
    310 {
    311 	drm_dma_handle_t *phys;
    312 #ifndef __NetBSD__
    313 	struct address_space *mapping;
    314 #endif
    315 	char *vaddr;
    316 	int i;
    317 
    318 	if (obj->phys_handle) {
    319 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
    320 			return -EBUSY;
    321 
    322 		return 0;
    323 	}
    324 
    325 	if (obj->madv != I915_MADV_WILLNEED)
    326 		return -EFAULT;
    327 
    328 #ifdef __NetBSD__
    329 	if (obj->base.gemo_shm_uao == NULL)
    330 		return -EINVAL;
    331 #else
    332 	if (obj->base.filp == NULL)
    333 		return -EINVAL;
    334 #endif
    335 
    336 	/* create a new object */
    337 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
    338 	if (!phys)
    339 		return -ENOMEM;
    340 
    341 	vaddr = phys->vaddr;
    342 #ifndef __NetBSD__
    343 #ifdef CONFIG_X86
    344 	set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
    345 #endif
    346 	mapping = file_inode(obj->base.filp)->i_mapping;
    347 #endif
    348 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    349 		struct page *page;
    350 		char *src;
    351 
    352 #ifdef __NetBSD__
    353 		struct pglist pages;
    354 		int ret;
    355 
    356 		TAILQ_INIT(&pages);
    357 
    358 		/* XXX errno NetBSD->Linux */
    359 		ret = -uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
    360 		    (i+1)*PAGE_SIZE, &pages);
    361 		if (ret) {
    362 			drm_pci_free(obj->base.dev, phys);
    363 			return ret;
    364 		}
    365 		KASSERT(!TAILQ_EMPTY(&pages));
    366 		page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
    367 #else
    368 		page = shmem_read_mapping_page(mapping, i);
    369 		if (IS_ERR(page)) {
    370 #ifdef CONFIG_X86
    371 			set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
    372 #endif
    373 			drm_pci_free(obj->base.dev, phys);
    374 			return PTR_ERR(page);
    375 		}
    376 #endif	/* defined(__NetBSD__) */
    377 
    378 		src = kmap_atomic(page);
    379 		memcpy(vaddr, src, PAGE_SIZE);
    380 		kunmap_atomic(src);
    381 
    382 #ifndef __NetBSD__
    383 		mark_page_accessed(page);
    384 		page_cache_release(page);
    385 #endif
    386 
    387 		vaddr += PAGE_SIZE;
    388 	}
    389 
    390 	obj->phys_handle = phys;
    391 	return 0;
    392 }
    393 
    394 static int
    395 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
    396 		     struct drm_i915_gem_pwrite *args,
    397 		     struct drm_file *file_priv)
    398 {
    399 	struct drm_device *dev = obj->base.dev;
    400 	void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
    401 	char __user *user_data = to_user_ptr(args->data_ptr);
    402 
    403 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
    404 		unsigned long unwritten;
    405 
    406 		/* The physical object once assigned is fixed for the lifetime
    407 		 * of the obj, so we can safely drop the lock and continue
    408 		 * to access vaddr.
    409 		 */
    410 		mutex_unlock(&dev->struct_mutex);
    411 		unwritten = copy_from_user(vaddr, user_data, args->size);
    412 		mutex_lock(&dev->struct_mutex);
    413 		if (unwritten)
    414 			return -EFAULT;
    415 	}
    416 
    417 	i915_gem_chipset_flush(dev);
    418 	return 0;
    419 }
    420 
    421 void *i915_gem_object_alloc(struct drm_device *dev)
    422 {
    423 	struct drm_i915_private *dev_priv = dev->dev_private;
    424 	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
    425 }
    426 
    427 void i915_gem_object_free(struct drm_i915_gem_object *obj)
    428 {
    429 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
    430 	kmem_cache_free(dev_priv->slab, obj);
    431 }
    432 
    433 static int
    434 i915_gem_create(struct drm_file *file,
    435 		struct drm_device *dev,
    436 		uint64_t size,
    437 		uint32_t *handle_p)
    438 {
    439 	struct drm_i915_gem_object *obj;
    440 	int ret;
    441 	u32 handle;
    442 
    443 	size = roundup(size, PAGE_SIZE);
    444 	if (size == 0)
    445 		return -EINVAL;
    446 
    447 	/* Allocate the new object */
    448 	obj = i915_gem_alloc_object(dev, size);
    449 	if (obj == NULL)
    450 		return -ENOMEM;
    451 
    452 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    453 	/* drop reference from allocate - handle holds it now */
    454 	drm_gem_object_unreference_unlocked(&obj->base);
    455 	if (ret)
    456 		return ret;
    457 
    458 	*handle_p = handle;
    459 	return 0;
    460 }
    461 
    462 int
    463 i915_gem_dumb_create(struct drm_file *file,
    464 		     struct drm_device *dev,
    465 		     struct drm_mode_create_dumb *args)
    466 {
    467 	/* have to work out size/pitch and return them */
    468 #ifdef __NetBSD__		/* ALIGN means something else.  */
    469 	args->pitch = round_up(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    470 #else
    471 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    472 #endif
    473 	args->size = args->pitch * args->height;
    474 	return i915_gem_create(file, dev,
    475 			       args->size, &args->handle);
    476 }
    477 
    478 /**
    479  * Creates a new mm object and returns a handle to it.
    480  */
    481 int
    482 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    483 		      struct drm_file *file)
    484 {
    485 	struct drm_i915_gem_create *args = data;
    486 
    487 	return i915_gem_create(file, dev,
    488 			       args->size, &args->handle);
    489 }
    490 
    491 static inline int
    492 __copy_to_user_swizzled(char __user *cpu_vaddr,
    493 			const char *gpu_vaddr, int gpu_offset,
    494 			int length)
    495 {
    496 	int ret, cpu_offset = 0;
    497 
    498 	while (length > 0) {
    499 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    500 		int cacheline_end = round_up(gpu_offset + 1, 64);
    501 #else
    502 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    503 #endif
    504 		int this_length = min(cacheline_end - gpu_offset, length);
    505 		int swizzled_gpu_offset = gpu_offset ^ 64;
    506 
    507 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
    508 				     gpu_vaddr + swizzled_gpu_offset,
    509 				     this_length);
    510 		if (ret)
    511 			return ret + length;
    512 
    513 		cpu_offset += this_length;
    514 		gpu_offset += this_length;
    515 		length -= this_length;
    516 	}
    517 
    518 	return 0;
    519 }
    520 
    521 static inline int
    522 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
    523 			  const char __user *cpu_vaddr,
    524 			  int length)
    525 {
    526 	int ret, cpu_offset = 0;
    527 
    528 	while (length > 0) {
    529 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    530 		int cacheline_end = round_up(gpu_offset + 1, 64);
    531 #else
    532 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    533 #endif
    534 		int this_length = min(cacheline_end - gpu_offset, length);
    535 		int swizzled_gpu_offset = gpu_offset ^ 64;
    536 
    537 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
    538 				       cpu_vaddr + cpu_offset,
    539 				       this_length);
    540 		if (ret)
    541 			return ret + length;
    542 
    543 		cpu_offset += this_length;
    544 		gpu_offset += this_length;
    545 		length -= this_length;
    546 	}
    547 
    548 	return 0;
    549 }
    550 
    551 /*
    552  * Pins the specified object's pages and synchronizes the object with
    553  * GPU accesses. Sets needs_clflush to non-zero if the caller should
    554  * flush the object from the CPU cache.
    555  */
    556 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
    557 				    int *needs_clflush)
    558 {
    559 	int ret;
    560 
    561 	*needs_clflush = 0;
    562 
    563 #ifdef __NetBSD__
    564 	if (obj->base.gemo_shm_uao == NULL)
    565 		return -EINVAL;
    566 #else
    567 	if (!obj->base.filp)
    568 		return -EINVAL;
    569 #endif
    570 
    571 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
    572 		/* If we're not in the cpu read domain, set ourself into the gtt
    573 		 * read domain and manually flush cachelines (if required). This
    574 		 * optimizes for the case when the gpu will dirty the data
    575 		 * anyway again before the next pread happens. */
    576 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
    577 							obj->cache_level);
    578 		ret = i915_gem_object_wait_rendering(obj, true);
    579 		if (ret)
    580 			return ret;
    581 	}
    582 
    583 	ret = i915_gem_object_get_pages(obj);
    584 	if (ret)
    585 		return ret;
    586 
    587 	i915_gem_object_pin_pages(obj);
    588 
    589 	return ret;
    590 }
    591 
    592 /* Per-page copy function for the shmem pread fastpath.
    593  * Flushes invalid cachelines before reading the target if
    594  * needs_clflush is set. */
    595 static int
    596 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
    597 		 char __user *user_data,
    598 		 bool page_do_bit17_swizzling, bool needs_clflush)
    599 {
    600 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    601 	return -EFAULT;
    602 #else
    603 	char *vaddr;
    604 	int ret;
    605 
    606 	if (unlikely(page_do_bit17_swizzling))
    607 		return -EINVAL;
    608 
    609 	vaddr = kmap_atomic(page);
    610 	if (needs_clflush)
    611 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    612 				       page_length);
    613 	ret = __copy_to_user_inatomic(user_data,
    614 				      vaddr + shmem_page_offset,
    615 				      page_length);
    616 	kunmap_atomic(vaddr);
    617 
    618 	return ret ? -EFAULT : 0;
    619 #endif
    620 }
    621 
    622 static void
    623 shmem_clflush_swizzled_range(char *addr, unsigned long length,
    624 			     bool swizzled)
    625 {
    626 	if (unlikely(swizzled)) {
    627 		unsigned long start = (unsigned long) addr;
    628 		unsigned long end = (unsigned long) addr + length;
    629 
    630 		/* For swizzling simply ensure that we always flush both
    631 		 * channels. Lame, but simple and it works. Swizzled
    632 		 * pwrite/pread is far from a hotpath - current userspace
    633 		 * doesn't use it at all. */
    634 		start = round_down(start, 128);
    635 		end = round_up(end, 128);
    636 
    637 		drm_clflush_virt_range((void *)start, end - start);
    638 	} else {
    639 		drm_clflush_virt_range(addr, length);
    640 	}
    641 
    642 }
    643 
    644 /* Only difference to the fast-path function is that this can handle bit17
    645  * and uses non-atomic copy and kmap functions. */
    646 static int
    647 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
    648 		 char __user *user_data,
    649 		 bool page_do_bit17_swizzling, bool needs_clflush)
    650 {
    651 	char *vaddr;
    652 	int ret;
    653 
    654 	vaddr = kmap(page);
    655 	if (needs_clflush)
    656 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    657 					     page_length,
    658 					     page_do_bit17_swizzling);
    659 
    660 	if (page_do_bit17_swizzling)
    661 		ret = __copy_to_user_swizzled(user_data,
    662 					      vaddr, shmem_page_offset,
    663 					      page_length);
    664 	else
    665 		ret = __copy_to_user(user_data,
    666 				     vaddr + shmem_page_offset,
    667 				     page_length);
    668 	kunmap(page);
    669 
    670 	return ret ? - EFAULT : 0;
    671 }
    672 
    673 static int
    674 i915_gem_shmem_pread(struct drm_device *dev,
    675 		     struct drm_i915_gem_object *obj,
    676 		     struct drm_i915_gem_pread *args,
    677 		     struct drm_file *file)
    678 {
    679 	char __user *user_data;
    680 	ssize_t remain;
    681 	loff_t offset;
    682 	int shmem_page_offset, page_length, ret = 0;
    683 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    684 #ifndef __NetBSD__		/* XXX */
    685 	int prefaulted = 0;
    686 #endif
    687 	int needs_clflush = 0;
    688 #ifndef __NetBSD__
    689 	struct sg_page_iter sg_iter;
    690 #endif
    691 
    692 	user_data = to_user_ptr(args->data_ptr);
    693 	remain = args->size;
    694 
    695 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    696 
    697 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
    698 	if (ret)
    699 		return ret;
    700 
    701 	offset = args->offset;
    702 
    703 #ifdef __NetBSD__
    704 	/*
    705 	 * XXX This is a big #ifdef with a lot of duplicated code, but
    706 	 * factoring out the loop head -- which is all that
    707 	 * substantially differs -- is probably more trouble than it's
    708 	 * worth at the moment.
    709 	 */
    710 	while (0 < remain) {
    711 		/* Get the next page.  */
    712 		shmem_page_offset = offset_in_page(offset);
    713 		KASSERT(shmem_page_offset < PAGE_SIZE);
    714 		page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
    715 		struct page *const page = i915_gem_object_get_page(obj,
    716 		    atop(offset));
    717 
    718 		/* Decide whether to swizzle bit 17.  */
    719 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    720 		    (page_to_phys(page) & (1 << 17)) != 0;
    721 
    722 		/* Try the fast path.  */
    723 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    724 		    user_data, page_do_bit17_swizzling, needs_clflush);
    725 		if (ret == 0)
    726 			goto next_page;
    727 
    728 		/* Fast path failed.  Try the slow path.  */
    729 		mutex_unlock(&dev->struct_mutex);
    730 		/* XXX prefault */
    731 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    732 		    user_data, page_do_bit17_swizzling, needs_clflush);
    733 		mutex_lock(&dev->struct_mutex);
    734 		if (ret)
    735 			goto out;
    736 
    737 next_page:	KASSERT(page_length <= remain);
    738 		remain -= page_length;
    739 		user_data += page_length;
    740 		offset += page_length;
    741 	}
    742 #else
    743 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
    744 			 offset >> PAGE_SHIFT) {
    745 		struct page *page = sg_page_iter_page(&sg_iter);
    746 
    747 		if (remain <= 0)
    748 			break;
    749 
    750 		/* Operation in this page
    751 		 *
    752 		 * shmem_page_offset = offset within page in shmem file
    753 		 * page_length = bytes to copy for this page
    754 		 */
    755 		shmem_page_offset = offset_in_page(offset);
    756 		page_length = remain;
    757 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    758 			page_length = PAGE_SIZE - shmem_page_offset;
    759 
    760 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    761 			(page_to_phys(page) & (1 << 17)) != 0;
    762 
    763 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    764 				       user_data, page_do_bit17_swizzling,
    765 				       needs_clflush);
    766 		if (ret == 0)
    767 			goto next_page;
    768 
    769 		mutex_unlock(&dev->struct_mutex);
    770 
    771 		if (likely(!i915.prefault_disable) && !prefaulted) {
    772 			ret = fault_in_multipages_writeable(user_data, remain);
    773 			/* Userspace is tricking us, but we've already clobbered
    774 			 * its pages with the prefault and promised to write the
    775 			 * data up to the first fault. Hence ignore any errors
    776 			 * and just continue. */
    777 			(void)ret;
    778 			prefaulted = 1;
    779 		}
    780 
    781 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    782 				       user_data, page_do_bit17_swizzling,
    783 				       needs_clflush);
    784 
    785 		mutex_lock(&dev->struct_mutex);
    786 
    787 		if (ret)
    788 			goto out;
    789 
    790 next_page:
    791 		remain -= page_length;
    792 		user_data += page_length;
    793 		offset += page_length;
    794 	}
    795 #endif
    796 
    797 out:
    798 	i915_gem_object_unpin_pages(obj);
    799 
    800 	return ret;
    801 }
    802 
    803 /**
    804  * Reads data from the object referenced by handle.
    805  *
    806  * On error, the contents of *data are undefined.
    807  */
    808 int
    809 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    810 		     struct drm_file *file)
    811 {
    812 	struct drm_i915_gem_pread *args = data;
    813 	struct drm_gem_object *gobj;
    814 	struct drm_i915_gem_object *obj;
    815 	int ret = 0;
    816 
    817 	if (args->size == 0)
    818 		return 0;
    819 
    820 	if (!access_ok(VERIFY_WRITE,
    821 		       to_user_ptr(args->data_ptr),
    822 		       args->size))
    823 		return -EFAULT;
    824 
    825 	ret = i915_mutex_lock_interruptible(dev);
    826 	if (ret)
    827 		return ret;
    828 
    829 	gobj = drm_gem_object_lookup(dev, file, args->handle);
    830 	if (gobj == NULL) {
    831 		ret = -ENOENT;
    832 		goto unlock;
    833 	}
    834 	obj = to_intel_bo(gobj);
    835 
    836 	/* Bounds check source.  */
    837 	if (args->offset > obj->base.size ||
    838 	    args->size > obj->base.size - args->offset) {
    839 		ret = -EINVAL;
    840 		goto out;
    841 	}
    842 
    843 	/* prime objects have no backing filp to GEM pread/pwrite
    844 	 * pages from.
    845 	 */
    846 #ifdef __NetBSD__
    847 	/* Also stolen objects.  */
    848 	if (obj->base.gemo_shm_uao == NULL) {
    849 		ret = -EINVAL;
    850 		goto out;
    851 	}
    852 #else
    853 	if (!obj->base.filp) {
    854 		ret = -EINVAL;
    855 		goto out;
    856 	}
    857 #endif
    858 
    859 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    860 
    861 	ret = i915_gem_shmem_pread(dev, obj, args, file);
    862 
    863 out:
    864 	drm_gem_object_unreference(&obj->base);
    865 unlock:
    866 	mutex_unlock(&dev->struct_mutex);
    867 	return ret;
    868 }
    869 
    870 /* This is the fast write path which cannot handle
    871  * page faults in the source data
    872  */
    873 
    874 static inline int
    875 fast_user_write(struct io_mapping *mapping,
    876 		loff_t page_base, int page_offset,
    877 		char __user *user_data,
    878 		int length)
    879 {
    880 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    881 	return -EFAULT;
    882 #else
    883 	void __iomem *vaddr_atomic;
    884 	void *vaddr;
    885 	unsigned long unwritten;
    886 
    887 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
    888 	/* We can use the cpu mem copy function because this is X86. */
    889 	vaddr = (void __force*)vaddr_atomic + page_offset;
    890 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
    891 						      user_data, length);
    892 	io_mapping_unmap_atomic(vaddr_atomic);
    893 	return unwritten;
    894 #endif
    895 }
    896 
    897 /**
    898  * This is the fast pwrite path, where we copy the data directly from the
    899  * user into the GTT, uncached.
    900  */
    901 static int
    902 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
    903 			 struct drm_i915_gem_object *obj,
    904 			 struct drm_i915_gem_pwrite *args,
    905 			 struct drm_file *file)
    906 {
    907 	struct drm_i915_private *dev_priv = dev->dev_private;
    908 	ssize_t remain;
    909 	loff_t offset, page_base;
    910 	char __user *user_data;
    911 	int page_offset, page_length, ret;
    912 
    913 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
    914 	if (ret)
    915 		goto out;
    916 
    917 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    918 	if (ret)
    919 		goto out_unpin;
    920 
    921 	ret = i915_gem_object_put_fence(obj);
    922 	if (ret)
    923 		goto out_unpin;
    924 
    925 	user_data = to_user_ptr(args->data_ptr);
    926 	remain = args->size;
    927 
    928 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
    929 
    930 	while (remain > 0) {
    931 		/* Operation in this page
    932 		 *
    933 		 * page_base = page offset within aperture
    934 		 * page_offset = offset within page
    935 		 * page_length = bytes to copy for this page
    936 		 */
    937 		page_base = offset & PAGE_MASK;
    938 		page_offset = offset_in_page(offset);
    939 		page_length = remain;
    940 		if ((page_offset + remain) > PAGE_SIZE)
    941 			page_length = PAGE_SIZE - page_offset;
    942 
    943 		/* If we get a fault while copying data, then (presumably) our
    944 		 * source page isn't available.  Return the error and we'll
    945 		 * retry in the slow path.
    946 		 */
    947 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
    948 				    page_offset, user_data, page_length)) {
    949 			ret = -EFAULT;
    950 			goto out_unpin;
    951 		}
    952 
    953 		remain -= page_length;
    954 		user_data += page_length;
    955 		offset += page_length;
    956 	}
    957 
    958 out_unpin:
    959 	i915_gem_object_ggtt_unpin(obj);
    960 out:
    961 	return ret;
    962 }
    963 
    964 /* Per-page copy function for the shmem pwrite fastpath.
    965  * Flushes invalid cachelines before writing to the target if
    966  * needs_clflush_before is set and flushes out any written cachelines after
    967  * writing if needs_clflush is set. */
    968 static int
    969 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
    970 		  char __user *user_data,
    971 		  bool page_do_bit17_swizzling,
    972 		  bool needs_clflush_before,
    973 		  bool needs_clflush_after)
    974 {
    975 #ifdef __NetBSD__
    976 	return -EFAULT;
    977 #else
    978 	char *vaddr;
    979 	int ret;
    980 
    981 	if (unlikely(page_do_bit17_swizzling))
    982 		return -EINVAL;
    983 
    984 	vaddr = kmap_atomic(page);
    985 	if (needs_clflush_before)
    986 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    987 				       page_length);
    988 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
    989 					user_data, page_length);
    990 	if (needs_clflush_after)
    991 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    992 				       page_length);
    993 	kunmap_atomic(vaddr);
    994 
    995 	return ret ? -EFAULT : 0;
    996 #endif
    997 }
    998 
    999 /* Only difference to the fast-path function is that this can handle bit17
   1000  * and uses non-atomic copy and kmap functions. */
   1001 static int
   1002 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
   1003 		  char __user *user_data,
   1004 		  bool page_do_bit17_swizzling,
   1005 		  bool needs_clflush_before,
   1006 		  bool needs_clflush_after)
   1007 {
   1008 	char *vaddr;
   1009 	int ret;
   1010 
   1011 	vaddr = kmap(page);
   1012 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
   1013 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
   1014 					     page_length,
   1015 					     page_do_bit17_swizzling);
   1016 	if (page_do_bit17_swizzling)
   1017 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
   1018 						user_data,
   1019 						page_length);
   1020 	else
   1021 		ret = __copy_from_user(vaddr + shmem_page_offset,
   1022 				       user_data,
   1023 				       page_length);
   1024 	if (needs_clflush_after)
   1025 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
   1026 					     page_length,
   1027 					     page_do_bit17_swizzling);
   1028 	kunmap(page);
   1029 
   1030 	return ret ? -EFAULT : 0;
   1031 }
   1032 
   1033 static int
   1034 i915_gem_shmem_pwrite(struct drm_device *dev,
   1035 		      struct drm_i915_gem_object *obj,
   1036 		      struct drm_i915_gem_pwrite *args,
   1037 		      struct drm_file *file)
   1038 {
   1039 	ssize_t remain;
   1040 	loff_t offset;
   1041 	char __user *user_data;
   1042 	int shmem_page_offset, page_length, ret = 0;
   1043 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
   1044 	int hit_slowpath = 0;
   1045 	int needs_clflush_after = 0;
   1046 	int needs_clflush_before = 0;
   1047 #ifndef __NetBSD__
   1048 	struct sg_page_iter sg_iter;
   1049 #endif
   1050 
   1051 	user_data = to_user_ptr(args->data_ptr);
   1052 	remain = args->size;
   1053 
   1054 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
   1055 
   1056 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1057 		/* If we're not in the cpu write domain, set ourself into the gtt
   1058 		 * write domain and manually flush cachelines (if required). This
   1059 		 * optimizes for the case when the gpu will use the data
   1060 		 * right away and we therefore have to clflush anyway. */
   1061 		needs_clflush_after = cpu_write_needs_clflush(obj);
   1062 		ret = i915_gem_object_wait_rendering(obj, false);
   1063 		if (ret)
   1064 			return ret;
   1065 	}
   1066 	/* Same trick applies to invalidate partially written cachelines read
   1067 	 * before writing. */
   1068 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
   1069 		needs_clflush_before =
   1070 			!cpu_cache_is_coherent(dev, obj->cache_level);
   1071 
   1072 	ret = i915_gem_object_get_pages(obj);
   1073 	if (ret)
   1074 		return ret;
   1075 
   1076 	i915_gem_object_pin_pages(obj);
   1077 
   1078 	offset = args->offset;
   1079 	obj->dirty = 1;
   1080 
   1081 #ifdef __NetBSD__
   1082 	while (0 < remain) {
   1083 		/* Get the next page.  */
   1084 		shmem_page_offset = offset_in_page(offset);
   1085 		KASSERT(shmem_page_offset < PAGE_SIZE);
   1086 		page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
   1087 		struct page *const page = i915_gem_object_get_page(obj,
   1088 		    atop(offset));
   1089 
   1090 		/* Decide whether to flush the cache or swizzle bit 17.  */
   1091 		const bool partial_cacheline_write = needs_clflush_before &&
   1092 		    ((shmem_page_offset | page_length)
   1093 			& (cpu_info_primary.ci_cflush_lsize - 1));
   1094 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
   1095 		    (page_to_phys(page) & (1 << 17)) != 0;
   1096 
   1097 		/* Try the fast path.  */
   1098 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
   1099 		    user_data, page_do_bit17_swizzling,
   1100 		    partial_cacheline_write, needs_clflush_after);
   1101 		if (ret == 0)
   1102 			goto next_page;
   1103 
   1104 		/* Fast path failed.  Try the slow path.  */
   1105 		hit_slowpath = 1;
   1106 		mutex_unlock(&dev->struct_mutex);
   1107 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
   1108 		    user_data, page_do_bit17_swizzling,
   1109 		    partial_cacheline_write, needs_clflush_after);
   1110 		mutex_lock(&dev->struct_mutex);
   1111 		if (ret)
   1112 			goto out;
   1113 
   1114 next_page:	KASSERT(page_length <= remain);
   1115 		remain -= page_length;
   1116 		user_data += page_length;
   1117 		offset += page_length;
   1118 	}
   1119 #else
   1120 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
   1121 			 offset >> PAGE_SHIFT) {
   1122 		struct page *page = sg_page_iter_page(&sg_iter);
   1123 		int partial_cacheline_write;
   1124 
   1125 		if (remain <= 0)
   1126 			break;
   1127 
   1128 		/* Operation in this page
   1129 		 *
   1130 		 * shmem_page_offset = offset within page in shmem file
   1131 		 * page_length = bytes to copy for this page
   1132 		 */
   1133 		shmem_page_offset = offset_in_page(offset);
   1134 
   1135 		page_length = remain;
   1136 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
   1137 			page_length = PAGE_SIZE - shmem_page_offset;
   1138 
   1139 		/* If we don't overwrite a cacheline completely we need to be
   1140 		 * careful to have up-to-date data by first clflushing. Don't
   1141 		 * overcomplicate things and flush the entire patch. */
   1142 		partial_cacheline_write = needs_clflush_before &&
   1143 			((shmem_page_offset | page_length)
   1144 				& (boot_cpu_data.x86_clflush_size - 1));
   1145 
   1146 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
   1147 			(page_to_phys(page) & (1 << 17)) != 0;
   1148 
   1149 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
   1150 					user_data, page_do_bit17_swizzling,
   1151 					partial_cacheline_write,
   1152 					needs_clflush_after);
   1153 		if (ret == 0)
   1154 			goto next_page;
   1155 
   1156 		hit_slowpath = 1;
   1157 		mutex_unlock(&dev->struct_mutex);
   1158 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
   1159 					user_data, page_do_bit17_swizzling,
   1160 					partial_cacheline_write,
   1161 					needs_clflush_after);
   1162 
   1163 		mutex_lock(&dev->struct_mutex);
   1164 
   1165 		if (ret)
   1166 			goto out;
   1167 
   1168 next_page:
   1169 		remain -= page_length;
   1170 		user_data += page_length;
   1171 		offset += page_length;
   1172 	}
   1173 #endif
   1174 
   1175 out:
   1176 	i915_gem_object_unpin_pages(obj);
   1177 
   1178 	if (hit_slowpath) {
   1179 		/*
   1180 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
   1181 		 * cachelines in-line while writing and the object moved
   1182 		 * out of the cpu write domain while we've dropped the lock.
   1183 		 */
   1184 		if (!needs_clflush_after &&
   1185 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1186 			if (i915_gem_clflush_object(obj, obj->pin_display))
   1187 				i915_gem_chipset_flush(dev);
   1188 		}
   1189 	}
   1190 
   1191 	if (needs_clflush_after)
   1192 		i915_gem_chipset_flush(dev);
   1193 
   1194 	return ret;
   1195 }
   1196 
   1197 /**
   1198  * Writes data to the object referenced by handle.
   1199  *
   1200  * On error, the contents of the buffer that were to be modified are undefined.
   1201  */
   1202 int
   1203 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
   1204 		      struct drm_file *file)
   1205 {
   1206 	struct drm_i915_gem_pwrite *args = data;
   1207 	struct drm_gem_object *gobj;
   1208 	struct drm_i915_gem_object *obj;
   1209 	int ret;
   1210 
   1211 	if (args->size == 0)
   1212 		return 0;
   1213 
   1214 	if (!access_ok(VERIFY_READ,
   1215 		       to_user_ptr(args->data_ptr),
   1216 		       args->size))
   1217 		return -EFAULT;
   1218 
   1219 #ifndef __NetBSD__		/* XXX prefault */
   1220 	if (likely(!i915.prefault_disable)) {
   1221 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
   1222 						   args->size);
   1223 		if (ret)
   1224 			return -EFAULT;
   1225 	}
   1226 #endif
   1227 
   1228 	ret = i915_mutex_lock_interruptible(dev);
   1229 	if (ret)
   1230 		return ret;
   1231 
   1232 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1233 	if (gobj == NULL) {
   1234 		ret = -ENOENT;
   1235 		goto unlock;
   1236 	}
   1237 	obj = to_intel_bo(gobj);
   1238 
   1239 	/* Bounds check destination. */
   1240 	if (args->offset > obj->base.size ||
   1241 	    args->size > obj->base.size - args->offset) {
   1242 		ret = -EINVAL;
   1243 		goto out;
   1244 	}
   1245 
   1246 	/* prime objects have no backing filp to GEM pread/pwrite
   1247 	 * pages from.
   1248 	 */
   1249 #ifdef __NetBSD__
   1250 	/* Also stolen objects.  */
   1251 	if (obj->base.gemo_shm_uao == NULL) {
   1252 		ret = -EINVAL;
   1253 		goto out;
   1254 	}
   1255 #else
   1256 	if (!obj->base.filp) {
   1257 		ret = -EINVAL;
   1258 		goto out;
   1259 	}
   1260 #endif
   1261 
   1262 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
   1263 
   1264 	ret = -EFAULT;
   1265 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
   1266 	 * it would end up going through the fenced access, and we'll get
   1267 	 * different detiling behavior between reading and writing.
   1268 	 * pread/pwrite currently are reading and writing from the CPU
   1269 	 * perspective, requiring manual detiling by the client.
   1270 	 */
   1271 	if (obj->phys_handle) {
   1272 		ret = i915_gem_phys_pwrite(obj, args, file);
   1273 		goto out;
   1274 	}
   1275 
   1276 	if (obj->tiling_mode == I915_TILING_NONE &&
   1277 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
   1278 	    cpu_write_needs_clflush(obj)) {
   1279 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
   1280 		/* Note that the gtt paths might fail with non-page-backed user
   1281 		 * pointers (e.g. gtt mappings when moving data between
   1282 		 * textures). Fallback to the shmem path in that case. */
   1283 	}
   1284 
   1285 	if (ret == -EFAULT || ret == -ENOSPC)
   1286 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
   1287 
   1288 out:
   1289 	drm_gem_object_unreference(&obj->base);
   1290 unlock:
   1291 	mutex_unlock(&dev->struct_mutex);
   1292 	return ret;
   1293 }
   1294 
   1295 int
   1296 i915_gem_check_wedge(struct i915_gpu_error *error,
   1297 		     bool interruptible)
   1298 {
   1299 	if (i915_reset_in_progress(error)) {
   1300 		/* Non-interruptible callers can't handle -EAGAIN, hence return
   1301 		 * -EIO unconditionally for these. */
   1302 		if (!interruptible)
   1303 			return -EIO;
   1304 
   1305 		/* Recovery complete, but the reset failed ... */
   1306 		if (i915_terminally_wedged(error))
   1307 			return -EIO;
   1308 
   1309 		return -EAGAIN;
   1310 	}
   1311 
   1312 	return 0;
   1313 }
   1314 
   1315 /*
   1316  * Compare seqno against outstanding lazy request. Emit a request if they are
   1317  * equal.
   1318  */
   1319 static int
   1320 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
   1321 {
   1322 	int ret;
   1323 
   1324 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
   1325 
   1326 	ret = 0;
   1327 	if (seqno == ring->outstanding_lazy_seqno)
   1328 		ret = i915_add_request(ring, NULL);
   1329 
   1330 	return ret;
   1331 }
   1332 
   1333 #ifndef __NetBSD__
   1334 static void fake_irq(unsigned long data)
   1335 {
   1336 	wake_up_process((struct task_struct *)data);
   1337 }
   1338 #endif
   1339 
   1340 static bool missed_irq(struct drm_i915_private *dev_priv,
   1341 		       struct intel_ring_buffer *ring)
   1342 {
   1343 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
   1344 }
   1345 
   1346 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
   1347 {
   1348 	if (file_priv == NULL)
   1349 		return true;
   1350 
   1351 	return !atomic_xchg(&file_priv->rps_wait_boost, true);
   1352 }
   1353 
   1354 /**
   1355  * __wait_seqno - wait until execution of seqno has finished
   1356  * @ring: the ring expected to report seqno
   1357  * @seqno: duh!
   1358  * @reset_counter: reset sequence associated with the given seqno
   1359  * @interruptible: do an interruptible wait (normally yes)
   1360  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
   1361  *
   1362  * Note: It is of utmost importance that the passed in seqno and reset_counter
   1363  * values have been read by the caller in an smp safe manner. Where read-side
   1364  * locks are involved, it is sufficient to read the reset_counter before
   1365  * unlocking the lock that protects the seqno. For lockless tricks, the
   1366  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
   1367  * inserted.
   1368  *
   1369  * Returns 0 if the seqno was found within the alloted time. Else returns the
   1370  * errno with remaining time filled in timeout argument.
   1371  */
   1372 #ifdef __NetBSD__
   1373 static int
   1374 __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, unsigned reset_counter,
   1375     bool interruptible, struct timespec *timeout,
   1376     struct drm_i915_file_private *file_priv)
   1377 {
   1378 	struct drm_device *dev = ring->dev;
   1379 	struct drm_i915_private *dev_priv = dev->dev_private;
   1380 	bool irq_test_in_progress;
   1381 	struct timespec before, after;
   1382 	int ticks;
   1383 	bool wedged;
   1384 	int ret;
   1385 
   1386 	irq_test_in_progress = (dev_priv->gpu_error.test_irq_rings &
   1387 	    intel_ring_flag(ring));
   1388 	__insn_barrier();
   1389 
   1390 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
   1391 		return 0;
   1392 
   1393 	if (timeout)
   1394 		ticks = mstohz(timespec_to_ns(timeout) / 1000000);
   1395 	else
   1396 		ticks = 1;
   1397 
   1398 	if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
   1399 		gen6_rps_boost(dev_priv);
   1400 		if (file_priv)
   1401 			mod_delayed_work(dev_priv->wq,
   1402 					 &file_priv->mm.idle_work,
   1403 					 msecs_to_jiffies(100));
   1404 	}
   1405 
   1406 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
   1407 		return -ENODEV;
   1408 
   1409 	nanotime(&before);
   1410 	spin_lock(&dev_priv->irq_lock);
   1411 #define	EXIT_COND							      \
   1412 	(((reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))  \
   1413 	    ? wedged = true : false) ||					      \
   1414 	    i915_seqno_passed(ring->get_seqno(ring, false),		      \
   1415 		seqno))
   1416 
   1417 	if (timeout) {
   1418 		/*
   1419 		 * XXX This missed_irq business smells like unlocked
   1420 		 * Linux waitqueue nonsense.
   1421 		 */
   1422 		if (missed_irq(dev_priv, ring))
   1423 			ticks = 1;
   1424 		if (interruptible)
   1425 			DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
   1426 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1427 		else
   1428 			DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1429 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1430 		if (ret < 0)	/* Failure: return negative error as is.  */
   1431 			;
   1432 		else if (ret == 0) /* Timed out: return -ETIME.  */
   1433 			ret = -ETIME;
   1434 		else		/* Succeeded (ret > 0): return 0.  */
   1435 			ret = 0;
   1436 	} else {
   1437 		if (interruptible)
   1438 			DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
   1439 			    &dev_priv->irq_lock, EXIT_COND);
   1440 		else
   1441 			DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1442 			    &dev_priv->irq_lock, EXIT_COND);
   1443 		/* ret is negative on failure or zero on success.  */
   1444 	}
   1445 #undef	EXIT_COND
   1446 	spin_unlock(&dev_priv->irq_lock);
   1447 	nanotime(&after);
   1448 
   1449 	if (!irq_test_in_progress)
   1450 		ring->irq_put(ring);
   1451 	if (timeout) {
   1452 		struct timespec slept;
   1453 
   1454 		/* Compute slept = after - before.  */
   1455 		timespecsub(&after, &before, &slept);
   1456 
   1457 		/*
   1458 		 * Return the time remaining, timeout - slept, if we
   1459 		 * slept for less time than the timeout; or zero if we
   1460 		 * timed out.
   1461 		 */
   1462 		if (timespeccmp(&slept, timeout, <))
   1463 			timespecsub(timeout, &slept, timeout);
   1464 		else
   1465 			timespecclear(timeout);
   1466 	}
   1467 	if (wedged) {		/* GPU reset while we were waiting.  */
   1468 		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
   1469 		    interruptible);
   1470 		if (ret == 0)
   1471 			ret = -EAGAIN;
   1472 	}
   1473 	return ret;
   1474 }
   1475 #else
   1476 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
   1477 			unsigned reset_counter,
   1478 			bool interruptible,
   1479 			struct timespec *timeout,
   1480 			struct drm_i915_file_private *file_priv)
   1481 {
   1482 	struct drm_device *dev = ring->dev;
   1483 	struct drm_i915_private *dev_priv = dev->dev_private;
   1484 	const bool irq_test_in_progress =
   1485 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
   1486 	struct timespec before, now;
   1487 	DEFINE_WAIT(wait);
   1488 	unsigned long timeout_expire;
   1489 	int ret;
   1490 
   1491 	WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
   1492 
   1493 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
   1494 		return 0;
   1495 
   1496 	timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
   1497 
   1498 	if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
   1499 		gen6_rps_boost(dev_priv);
   1500 		if (file_priv)
   1501 			mod_delayed_work(dev_priv->wq,
   1502 					 &file_priv->mm.idle_work,
   1503 					 msecs_to_jiffies(100));
   1504 	}
   1505 
   1506 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
   1507 		return -ENODEV;
   1508 
   1509 	/* Record current time in case interrupted by signal, or wedged */
   1510 	trace_i915_gem_request_wait_begin(ring, seqno);
   1511 	getrawmonotonic(&before);
   1512 	for (;;) {
   1513 		struct timer_list timer;
   1514 
   1515 		prepare_to_wait(&ring->irq_queue, &wait,
   1516 				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
   1517 
   1518 		/* We need to check whether any gpu reset happened in between
   1519 		 * the caller grabbing the seqno and now ... */
   1520 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
   1521 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
   1522 			 * is truely gone. */
   1523 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1524 			if (ret == 0)
   1525 				ret = -EAGAIN;
   1526 			break;
   1527 		}
   1528 
   1529 		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
   1530 			ret = 0;
   1531 			break;
   1532 		}
   1533 
   1534 		if (interruptible && signal_pending(current)) {
   1535 			ret = -ERESTARTSYS;
   1536 			break;
   1537 		}
   1538 
   1539 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
   1540 			ret = -ETIME;
   1541 			break;
   1542 		}
   1543 
   1544 		timer.function = NULL;
   1545 		if (timeout || missed_irq(dev_priv, ring)) {
   1546 			unsigned long expire;
   1547 
   1548 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
   1549 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
   1550 			mod_timer(&timer, expire);
   1551 		}
   1552 
   1553 		io_schedule();
   1554 
   1555 		if (timer.function) {
   1556 			del_singleshot_timer_sync(&timer);
   1557 			destroy_timer_on_stack(&timer);
   1558 		}
   1559 	}
   1560 	getrawmonotonic(&now);
   1561 	trace_i915_gem_request_wait_end(ring, seqno);
   1562 
   1563 	if (!irq_test_in_progress)
   1564 		ring->irq_put(ring);
   1565 
   1566 	finish_wait(&ring->irq_queue, &wait);
   1567 
   1568 	if (timeout) {
   1569 		struct timespec sleep_time = timespec_sub(now, before);
   1570 		*timeout = timespec_sub(*timeout, sleep_time);
   1571 		if (!timespec_valid(timeout)) /* i.e. negative time remains */
   1572 			set_normalized_timespec(timeout, 0, 0);
   1573 	}
   1574 
   1575 	return ret;
   1576 }
   1577 #endif
   1578 
   1579 /**
   1580  * Waits for a sequence number to be signaled, and cleans up the
   1581  * request and object lists appropriately for that event.
   1582  */
   1583 int
   1584 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
   1585 {
   1586 	struct drm_device *dev = ring->dev;
   1587 	struct drm_i915_private *dev_priv = dev->dev_private;
   1588 	bool interruptible = dev_priv->mm.interruptible;
   1589 	int ret;
   1590 
   1591 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1592 	BUG_ON(seqno == 0);
   1593 
   1594 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1595 	if (ret)
   1596 		return ret;
   1597 
   1598 	ret = i915_gem_check_olr(ring, seqno);
   1599 	if (ret)
   1600 		return ret;
   1601 
   1602 	return __wait_seqno(ring, seqno,
   1603 			    atomic_read(&dev_priv->gpu_error.reset_counter),
   1604 			    interruptible, NULL, NULL);
   1605 }
   1606 
   1607 static int
   1608 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
   1609 				     struct intel_ring_buffer *ring)
   1610 {
   1611 	i915_gem_retire_requests_ring(ring);
   1612 
   1613 	/* Manually manage the write flush as we may have not yet
   1614 	 * retired the buffer.
   1615 	 *
   1616 	 * Note that the last_write_seqno is always the earlier of
   1617 	 * the two (read/write) seqno, so if we haved successfully waited,
   1618 	 * we know we have passed the last write.
   1619 	 */
   1620 	obj->last_write_seqno = 0;
   1621 	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
   1622 
   1623 	return 0;
   1624 }
   1625 
   1626 /**
   1627  * Ensures that all rendering to the object has completed and the object is
   1628  * safe to unbind from the GTT or access from the CPU.
   1629  */
   1630 static __must_check int
   1631 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
   1632 			       bool readonly)
   1633 {
   1634 	struct intel_ring_buffer *ring = obj->ring;
   1635 	u32 seqno;
   1636 	int ret;
   1637 
   1638 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
   1639 	if (seqno == 0)
   1640 		return 0;
   1641 
   1642 	ret = i915_wait_seqno(ring, seqno);
   1643 	if (ret)
   1644 		return ret;
   1645 
   1646 	return i915_gem_object_wait_rendering__tail(obj, ring);
   1647 }
   1648 
   1649 /* A nonblocking variant of the above wait. This is a highly dangerous routine
   1650  * as the object state may change during this call.
   1651  */
   1652 static __must_check int
   1653 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
   1654 					    struct drm_i915_file_private *file_priv,
   1655 					    bool readonly)
   1656 {
   1657 	struct drm_device *dev = obj->base.dev;
   1658 	struct drm_i915_private *dev_priv = dev->dev_private;
   1659 	struct intel_ring_buffer *ring = obj->ring;
   1660 	unsigned reset_counter;
   1661 	u32 seqno;
   1662 	int ret;
   1663 
   1664 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1665 	BUG_ON(!dev_priv->mm.interruptible);
   1666 
   1667 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
   1668 	if (seqno == 0)
   1669 		return 0;
   1670 
   1671 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
   1672 	if (ret)
   1673 		return ret;
   1674 
   1675 	ret = i915_gem_check_olr(ring, seqno);
   1676 	if (ret)
   1677 		return ret;
   1678 
   1679 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   1680 	mutex_unlock(&dev->struct_mutex);
   1681 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
   1682 	mutex_lock(&dev->struct_mutex);
   1683 	if (ret)
   1684 		return ret;
   1685 
   1686 	return i915_gem_object_wait_rendering__tail(obj, ring);
   1687 }
   1688 
   1689 /**
   1690  * Called when user space prepares to use an object with the CPU, either
   1691  * through the mmap ioctl's mapping or a GTT mapping.
   1692  */
   1693 int
   1694 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
   1695 			  struct drm_file *file)
   1696 {
   1697 	struct drm_i915_gem_set_domain *args = data;
   1698 	struct drm_gem_object *gobj;
   1699 	struct drm_i915_gem_object *obj;
   1700 	uint32_t read_domains = args->read_domains;
   1701 	uint32_t write_domain = args->write_domain;
   1702 	int ret;
   1703 
   1704 	/* Only handle setting domains to types used by the CPU. */
   1705 	if (write_domain & I915_GEM_GPU_DOMAINS)
   1706 		return -EINVAL;
   1707 
   1708 	if (read_domains & I915_GEM_GPU_DOMAINS)
   1709 		return -EINVAL;
   1710 
   1711 	/* Having something in the write domain implies it's in the read
   1712 	 * domain, and only that read domain.  Enforce that in the request.
   1713 	 */
   1714 	if (write_domain != 0 && read_domains != write_domain)
   1715 		return -EINVAL;
   1716 
   1717 	ret = i915_mutex_lock_interruptible(dev);
   1718 	if (ret)
   1719 		return ret;
   1720 
   1721 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1722 	if (gobj == NULL) {
   1723 		ret = -ENOENT;
   1724 		goto unlock;
   1725 	}
   1726 	obj = to_intel_bo(gobj);
   1727 
   1728 	/* Try to flush the object off the GPU without holding the lock.
   1729 	 * We will repeat the flush holding the lock in the normal manner
   1730 	 * to catch cases where we are gazumped.
   1731 	 */
   1732 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
   1733 							  file->driver_priv,
   1734 							  !write_domain);
   1735 	if (ret)
   1736 		goto unref;
   1737 
   1738 	if (read_domains & I915_GEM_DOMAIN_GTT) {
   1739 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
   1740 
   1741 		/* Silently promote "you're not bound, there was nothing to do"
   1742 		 * to success, since the client was just asking us to
   1743 		 * make sure everything was done.
   1744 		 */
   1745 		if (ret == -EINVAL)
   1746 			ret = 0;
   1747 	} else {
   1748 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
   1749 	}
   1750 
   1751 unref:
   1752 	drm_gem_object_unreference(&obj->base);
   1753 unlock:
   1754 	mutex_unlock(&dev->struct_mutex);
   1755 	return ret;
   1756 }
   1757 
   1758 /**
   1759  * Called when user space has done writes to this buffer
   1760  */
   1761 int
   1762 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
   1763 			 struct drm_file *file)
   1764 {
   1765 	struct drm_i915_gem_sw_finish *args = data;
   1766 	struct drm_gem_object *gobj;
   1767 	struct drm_i915_gem_object *obj;
   1768 	int ret = 0;
   1769 
   1770 	ret = i915_mutex_lock_interruptible(dev);
   1771 	if (ret)
   1772 		return ret;
   1773 
   1774 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1775 	if (gobj == NULL) {
   1776 		ret = -ENOENT;
   1777 		goto unlock;
   1778 	}
   1779 	obj = to_intel_bo(gobj);
   1780 
   1781 	/* Pinned buffers may be scanout, so flush the cache */
   1782 	if (obj->pin_display)
   1783 		i915_gem_object_flush_cpu_write_domain(obj, true);
   1784 
   1785 	drm_gem_object_unreference(&obj->base);
   1786 unlock:
   1787 	mutex_unlock(&dev->struct_mutex);
   1788 	return ret;
   1789 }
   1790 
   1791 /**
   1792  * Maps the contents of an object, returning the address it is mapped
   1793  * into.
   1794  *
   1795  * While the mapping holds a reference on the contents of the object, it doesn't
   1796  * imply a ref on the object itself.
   1797  */
   1798 int
   1799 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
   1800 		    struct drm_file *file)
   1801 {
   1802 	struct drm_i915_gem_mmap *args = data;
   1803 	struct drm_gem_object *obj;
   1804 	unsigned long addr;
   1805 #ifdef __NetBSD__
   1806 	int ret;
   1807 #endif
   1808 
   1809 	obj = drm_gem_object_lookup(dev, file, args->handle);
   1810 	if (obj == NULL)
   1811 		return -ENOENT;
   1812 
   1813 	/* prime objects have no backing filp to GEM mmap
   1814 	 * pages from.
   1815 	 */
   1816 #ifdef __NetBSD__
   1817 	/* Also stolen objects (XXX can we get them here?)  */
   1818 	if (obj->gemo_shm_uao == NULL) {
   1819 		drm_gem_object_unreference_unlocked(obj);
   1820 		return -EINVAL;
   1821 	}
   1822 #else
   1823 	if (!obj->filp) {
   1824 		drm_gem_object_unreference_unlocked(obj);
   1825 		return -EINVAL;
   1826 	}
   1827 #endif
   1828 
   1829 #ifdef __NetBSD__
   1830 	addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
   1831 	    (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
   1832 	/* XXX errno NetBSD->Linux */
   1833 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
   1834 	    obj->gemo_shm_uao, args->offset, 0,
   1835 	    UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
   1836 		(VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
   1837 		0));
   1838 	if (ret) {
   1839 		drm_gem_object_unreference_unlocked(obj);
   1840 		return ret;
   1841 	}
   1842 	uao_reference(obj->gemo_shm_uao);
   1843 	drm_gem_object_unreference_unlocked(obj);
   1844 #else
   1845 	addr = vm_mmap(obj->filp, 0, args->size,
   1846 		       PROT_READ | PROT_WRITE, MAP_SHARED,
   1847 		       args->offset);
   1848 	drm_gem_object_unreference_unlocked(obj);
   1849 	if (IS_ERR((void *)addr))
   1850 		return addr;
   1851 #endif
   1852 
   1853 	args->addr_ptr = (uint64_t) addr;
   1854 
   1855 	return 0;
   1856 }
   1857 
   1858 #ifdef __NetBSD__		/* XXX gem gtt fault */
   1859 static int	i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
   1860 		    struct vm_page **, int, int, vm_prot_t, int, paddr_t);
   1861 
   1862 int
   1863 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   1864     int npages, int centeridx, vm_prot_t access_type, int flags)
   1865 {
   1866 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1867 	struct drm_gem_object *gem_obj =
   1868 	    container_of(uobj, struct drm_gem_object, gemo_uvmobj);
   1869 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   1870 	struct drm_device *dev = obj->base.dev;
   1871 	struct drm_i915_private *dev_priv = dev->dev_private;
   1872 	voff_t byte_offset;
   1873 	pgoff_t page_offset;
   1874 	int ret = 0;
   1875 	bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
   1876 
   1877 	byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
   1878 	KASSERT(byte_offset <= obj->base.size);
   1879 	page_offset = (byte_offset >> PAGE_SHIFT);
   1880 
   1881 	intel_runtime_pm_get(dev_priv);
   1882 
   1883 	/* Thanks, uvm, but we don't need this lock.  */
   1884 	mutex_exit(uobj->vmobjlock);
   1885 
   1886 	ret = i915_mutex_lock_interruptible(dev);
   1887 	if (ret)
   1888 		goto out;
   1889 
   1890 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   1891 
   1892 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   1893 	if (ret)
   1894 		goto unlock;
   1895 
   1896 	if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
   1897 		ret = -EINVAL;
   1898 		goto unlock;
   1899 	}
   1900 
   1901 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
   1902 	if (ret)
   1903 		goto unlock;
   1904 
   1905 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   1906 	if (ret)
   1907 		goto unpin;
   1908 
   1909 	ret = i915_gem_object_get_fence(obj);
   1910 	if (ret)
   1911 		goto unpin;
   1912 
   1913 	obj->fault_mappable = true;
   1914 
   1915 	/* XXX errno NetBSD->Linux */
   1916 	ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
   1917 	    flags,
   1918 	    (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
   1919 unpin:
   1920 	i915_gem_object_ggtt_unpin(obj);
   1921 unlock:
   1922 	mutex_unlock(&dev->struct_mutex);
   1923 out:
   1924 	mutex_enter(uobj->vmobjlock);
   1925 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
   1926 	if (ret == -ERESTART)
   1927 		uvm_wait("i915flt");
   1928 	/* XXX Deal with GPU hangs here...  */
   1929 	intel_runtime_pm_put(dev_priv);
   1930 	/* XXX errno Linux->NetBSD */
   1931 	return -ret;
   1932 }
   1933 
   1934 /*
   1935  * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
   1936  *
   1937  * XXX pmap_enter_default instead of pmap_enter because of a problem
   1938  * with using weak aliases in kernel modules or something.
   1939  */
   1940 int	pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
   1941 
   1942 static int
   1943 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   1944     int npages, int centeridx, vm_prot_t access_type, int flags,
   1945     paddr_t gtt_paddr)
   1946 {
   1947 	struct vm_map_entry *entry = ufi->entry;
   1948 	vaddr_t curr_va;
   1949 	off_t curr_offset;
   1950 	paddr_t paddr;
   1951 	u_int mmapflags;
   1952 	int lcv, retval;
   1953 	vm_prot_t mapprot;
   1954 	UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
   1955 	UVMHIST_LOG(maphist,"  flags=%d", flags,0,0,0);
   1956 
   1957 	/*
   1958 	 * we do not allow device mappings to be mapped copy-on-write
   1959 	 * so we kill any attempt to do so here.
   1960 	 */
   1961 
   1962 	if (UVM_ET_ISCOPYONWRITE(entry)) {
   1963 		UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
   1964 		entry->etype, 0,0,0);
   1965 		return(EIO);
   1966 	}
   1967 
   1968 	/*
   1969 	 * now we must determine the offset in udv to use and the VA to
   1970 	 * use for pmap_enter.  note that we always use orig_map's pmap
   1971 	 * for pmap_enter (even if we have a submap).   since virtual
   1972 	 * addresses in a submap must match the main map, this is ok.
   1973 	 */
   1974 
   1975 	/* udv offset = (offset from start of entry) + entry's offset */
   1976 	curr_offset = entry->offset + (vaddr - entry->start);
   1977 	/* pmap va = vaddr (virtual address of pps[0]) */
   1978 	curr_va = vaddr;
   1979 
   1980 	/*
   1981 	 * loop over the page range entering in as needed
   1982 	 */
   1983 
   1984 	retval = 0;
   1985 	for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
   1986 	    curr_va += PAGE_SIZE) {
   1987 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
   1988 			continue;
   1989 
   1990 		if (pps[lcv] == PGO_DONTCARE)
   1991 			continue;
   1992 
   1993 		paddr = (gtt_paddr + curr_offset);
   1994 		mmapflags = 0;
   1995 		mapprot = ufi->entry->protection;
   1996 		UVMHIST_LOG(maphist,
   1997 		    "  MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
   1998 		    ufi->orig_map->pmap, curr_va, paddr, mapprot);
   1999 		if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
   2000 		    PMAP_CANFAIL | mapprot | mmapflags) != 0) {
   2001 			/*
   2002 			 * pmap_enter() didn't have the resource to
   2003 			 * enter this mapping.  Unlock everything,
   2004 			 * wait for the pagedaemon to free up some
   2005 			 * pages, and then tell uvm_fault() to start
   2006 			 * the fault again.
   2007 			 *
   2008 			 * XXX Needs some rethinking for the PGO_ALLPAGES
   2009 			 * XXX case.
   2010 			 */
   2011 			pmap_update(ufi->orig_map->pmap);	/* sync what we have so far */
   2012 			return (ERESTART);
   2013 		}
   2014 	}
   2015 
   2016 	pmap_update(ufi->orig_map->pmap);
   2017 	return (retval);
   2018 }
   2019 #else
   2020 /**
   2021  * i915_gem_fault - fault a page into the GTT
   2022  * vma: VMA in question
   2023  * vmf: fault info
   2024  *
   2025  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
   2026  * from userspace.  The fault handler takes care of binding the object to
   2027  * the GTT (if needed), allocating and programming a fence register (again,
   2028  * only if needed based on whether the old reg is still valid or the object
   2029  * is tiled) and inserting a new PTE into the faulting process.
   2030  *
   2031  * Note that the faulting process may involve evicting existing objects
   2032  * from the GTT and/or fence registers to make room.  So performance may
   2033  * suffer if the GTT working set is large or there are few fence registers
   2034  * left.
   2035  */
   2036 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
   2037 {
   2038 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
   2039 	struct drm_device *dev = obj->base.dev;
   2040 	struct drm_i915_private *dev_priv = dev->dev_private;
   2041 	pgoff_t page_offset;
   2042 	unsigned long pfn;
   2043 	int ret = 0;
   2044 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
   2045 
   2046 	intel_runtime_pm_get(dev_priv);
   2047 
   2048 	/* We don't use vmf->pgoff since that has the fake offset */
   2049 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
   2050 		PAGE_SHIFT;
   2051 
   2052 	ret = i915_mutex_lock_interruptible(dev);
   2053 	if (ret)
   2054 		goto out;
   2055 
   2056 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   2057 
   2058 	/* Try to flush the object off the GPU first without holding the lock.
   2059 	 * Upon reacquiring the lock, we will perform our sanity checks and then
   2060 	 * repeat the flush holding the lock in the normal manner to catch cases
   2061 	 * where we are gazumped.
   2062 	 */
   2063 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   2064 	if (ret)
   2065 		goto unlock;
   2066 
   2067 	/* Access to snoopable pages through the GTT is incoherent. */
   2068 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
   2069 		ret = -EINVAL;
   2070 		goto unlock;
   2071 	}
   2072 
   2073 	/* Now bind it into the GTT if needed */
   2074 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
   2075 	if (ret)
   2076 		goto unlock;
   2077 
   2078 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   2079 	if (ret)
   2080 		goto unpin;
   2081 
   2082 	ret = i915_gem_object_get_fence(obj);
   2083 	if (ret)
   2084 		goto unpin;
   2085 
   2086 	obj->fault_mappable = true;
   2087 
   2088 	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
   2089 	pfn >>= PAGE_SHIFT;
   2090 	pfn += page_offset;
   2091 
   2092 	/* Finally, remap it using the new GTT offset */
   2093 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
   2094 unpin:
   2095 	i915_gem_object_ggtt_unpin(obj);
   2096 unlock:
   2097 	mutex_unlock(&dev->struct_mutex);
   2098 out:
   2099 	switch (ret) {
   2100 	case -EIO:
   2101 		/* If this -EIO is due to a gpu hang, give the reset code a
   2102 		 * chance to clean up the mess. Otherwise return the proper
   2103 		 * SIGBUS. */
   2104 		if (i915_terminally_wedged(&dev_priv->gpu_error)) {
   2105 			ret = VM_FAULT_SIGBUS;
   2106 			break;
   2107 		}
   2108 	case -EAGAIN:
   2109 		/*
   2110 		 * EAGAIN means the gpu is hung and we'll wait for the error
   2111 		 * handler to reset everything when re-faulting in
   2112 		 * i915_mutex_lock_interruptible.
   2113 		 */
   2114 	case 0:
   2115 	case -ERESTARTSYS:
   2116 	case -EINTR:
   2117 	case -EBUSY:
   2118 		/*
   2119 		 * EBUSY is ok: this just means that another thread
   2120 		 * already did the job.
   2121 		 */
   2122 		ret = VM_FAULT_NOPAGE;
   2123 		break;
   2124 	case -ENOMEM:
   2125 		ret = VM_FAULT_OOM;
   2126 		break;
   2127 	case -ENOSPC:
   2128 	case -EFAULT:
   2129 		ret = VM_FAULT_SIGBUS;
   2130 		break;
   2131 	default:
   2132 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
   2133 		ret = VM_FAULT_SIGBUS;
   2134 		break;
   2135 	}
   2136 
   2137 	intel_runtime_pm_put(dev_priv);
   2138 	return ret;
   2139 }
   2140 
   2141 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
   2142 {
   2143 	struct i915_vma *vma;
   2144 
   2145 	/*
   2146 	 * Only the global gtt is relevant for gtt memory mappings, so restrict
   2147 	 * list traversal to objects bound into the global address space. Note
   2148 	 * that the active list should be empty, but better safe than sorry.
   2149 	 */
   2150 	WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
   2151 	list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
   2152 		i915_gem_release_mmap(vma->obj);
   2153 	list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
   2154 		i915_gem_release_mmap(vma->obj);
   2155 }
   2156 #endif
   2157 
   2158 /**
   2159  * i915_gem_release_mmap - remove physical page mappings
   2160  * @obj: obj in question
   2161  *
   2162  * Preserve the reservation of the mmapping with the DRM core code, but
   2163  * relinquish ownership of the pages back to the system.
   2164  *
   2165  * It is vital that we remove the page mapping if we have mapped a tiled
   2166  * object through the GTT and then lose the fence register due to
   2167  * resource pressure. Similarly if the object has been moved out of the
   2168  * aperture, than pages mapped into userspace must be revoked. Removing the
   2169  * mapping will then trigger a page fault on the next user access, allowing
   2170  * fixup by i915_gem_fault().
   2171  */
   2172 void
   2173 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
   2174 {
   2175 	if (!obj->fault_mappable)
   2176 		return;
   2177 
   2178 #ifdef __NetBSD__		/* XXX gem gtt fault */
   2179 	{
   2180 		struct vm_page *page;
   2181 
   2182 		mutex_enter(obj->base.gemo_shm_uao->vmobjlock);
   2183 		KASSERT(obj->pages != NULL);
   2184 		/* Force a fresh fault for each page.  */
   2185 		/*
   2186 		 * XXX OOPS!  This doesn't actually do what we want.
   2187 		 * This causes a fresh fault for access to the backing
   2188 		 * pages -- but nothing accesses the backing pages
   2189 		 * directly!  What is actually entered into CPU page
   2190 		 * table entries is aperture addresses which have been
   2191 		 * programmed by the GTT to refer to those backing
   2192 		 * pages.
   2193 		 *
   2194 		 * We need to clear those page table entries, but
   2195 		 * there's no good way to do that at the moment: nobody
   2196 		 * records for us a map from either uvm objects or
   2197 		 * physical device addresses to a list of all virtual
   2198 		 * pages where they have been mapped.  pmap(9) records
   2199 		 * a map only from physical RAM addresses to virtual
   2200 		 * pages; it does nothing for physical device
   2201 		 * addresses.
   2202 		 */
   2203 		TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
   2204 			pmap_page_protect(page, VM_PROT_NONE);
   2205 		mutex_exit(obj->base.gemo_shm_uao->vmobjlock);
   2206 	}
   2207 #else
   2208 	drm_vma_node_unmap(&obj->base.vma_node,
   2209 			   obj->base.dev->anon_inode->i_mapping);
   2210 #endif
   2211 	obj->fault_mappable = false;
   2212 }
   2213 
   2214 uint32_t
   2215 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
   2216 {
   2217 	uint32_t gtt_size;
   2218 
   2219 	if (INTEL_INFO(dev)->gen >= 4 ||
   2220 	    tiling_mode == I915_TILING_NONE)
   2221 		return size;
   2222 
   2223 	/* Previous chips need a power-of-two fence region when tiling */
   2224 	if (INTEL_INFO(dev)->gen == 3)
   2225 		gtt_size = 1024*1024;
   2226 	else
   2227 		gtt_size = 512*1024;
   2228 
   2229 	while (gtt_size < size)
   2230 		gtt_size <<= 1;
   2231 
   2232 	return gtt_size;
   2233 }
   2234 
   2235 /**
   2236  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
   2237  * @obj: object to check
   2238  *
   2239  * Return the required GTT alignment for an object, taking into account
   2240  * potential fence register mapping.
   2241  */
   2242 uint32_t
   2243 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
   2244 			   int tiling_mode, bool fenced)
   2245 {
   2246 	/*
   2247 	 * Minimum alignment is 4k (GTT page size), but might be greater
   2248 	 * if a fence register is needed for the object.
   2249 	 */
   2250 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
   2251 	    tiling_mode == I915_TILING_NONE)
   2252 		return 4096;
   2253 
   2254 	/*
   2255 	 * Previous chips need to be aligned to the size of the smallest
   2256 	 * fence register that can contain the object.
   2257 	 */
   2258 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
   2259 }
   2260 
   2261 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
   2262 {
   2263 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2264 	int ret;
   2265 
   2266 	if (drm_vma_node_has_offset(&obj->base.vma_node))
   2267 		return 0;
   2268 
   2269 	dev_priv->mm.shrinker_no_lock_stealing = true;
   2270 
   2271 	ret = drm_gem_create_mmap_offset(&obj->base);
   2272 	if (ret != -ENOSPC)
   2273 		goto out;
   2274 
   2275 	/* Badly fragmented mmap space? The only way we can recover
   2276 	 * space is by destroying unwanted objects. We can't randomly release
   2277 	 * mmap_offsets as userspace expects them to be persistent for the
   2278 	 * lifetime of the objects. The closest we can is to release the
   2279 	 * offsets on purgeable objects by truncating it and marking it purged,
   2280 	 * which prevents userspace from ever using that object again.
   2281 	 */
   2282 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
   2283 	ret = drm_gem_create_mmap_offset(&obj->base);
   2284 	if (ret != -ENOSPC)
   2285 		goto out;
   2286 
   2287 	i915_gem_shrink_all(dev_priv);
   2288 	ret = drm_gem_create_mmap_offset(&obj->base);
   2289 out:
   2290 	dev_priv->mm.shrinker_no_lock_stealing = false;
   2291 
   2292 	return ret;
   2293 }
   2294 
   2295 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
   2296 {
   2297 	drm_gem_free_mmap_offset(&obj->base);
   2298 }
   2299 
   2300 int
   2301 i915_gem_mmap_gtt(struct drm_file *file,
   2302 		  struct drm_device *dev,
   2303 		  uint32_t handle,
   2304 		  uint64_t *offset)
   2305 {
   2306 	struct drm_i915_private *dev_priv = dev->dev_private;
   2307 	struct drm_gem_object *gobj;
   2308 	struct drm_i915_gem_object *obj;
   2309 	int ret;
   2310 
   2311 	ret = i915_mutex_lock_interruptible(dev);
   2312 	if (ret)
   2313 		return ret;
   2314 
   2315 	gobj = drm_gem_object_lookup(dev, file, handle);
   2316 	if (gobj == NULL) {
   2317 		ret = -ENOENT;
   2318 		goto unlock;
   2319 	}
   2320 	obj = to_intel_bo(gobj);
   2321 
   2322 	if (obj->base.size > dev_priv->gtt.mappable_end) {
   2323 		ret = -E2BIG;
   2324 		goto out;
   2325 	}
   2326 
   2327 	if (obj->madv != I915_MADV_WILLNEED) {
   2328 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
   2329 		ret = -EFAULT;
   2330 		goto out;
   2331 	}
   2332 
   2333 	ret = i915_gem_object_create_mmap_offset(obj);
   2334 	if (ret)
   2335 		goto out;
   2336 
   2337 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
   2338 
   2339 out:
   2340 	drm_gem_object_unreference(&obj->base);
   2341 unlock:
   2342 	mutex_unlock(&dev->struct_mutex);
   2343 	return ret;
   2344 }
   2345 
   2346 /**
   2347  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
   2348  * @dev: DRM device
   2349  * @data: GTT mapping ioctl data
   2350  * @file: GEM object info
   2351  *
   2352  * Simply returns the fake offset to userspace so it can mmap it.
   2353  * The mmap call will end up in drm_gem_mmap(), which will set things
   2354  * up so we can get faults in the handler above.
   2355  *
   2356  * The fault handler will take care of binding the object into the GTT
   2357  * (since it may have been evicted to make room for something), allocating
   2358  * a fence register, and mapping the appropriate aperture address into
   2359  * userspace.
   2360  */
   2361 int
   2362 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
   2363 			struct drm_file *file)
   2364 {
   2365 	struct drm_i915_gem_mmap_gtt *args = data;
   2366 
   2367 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
   2368 }
   2369 
   2370 /* Immediately discard the backing storage */
   2371 static void
   2372 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
   2373 {
   2374 #ifndef __NetBSD__
   2375 	struct inode *inode;
   2376 #endif
   2377 
   2378 	i915_gem_object_free_mmap_offset(obj);
   2379 
   2380 #ifdef __NetBSD__
   2381 	if (obj->base.gemo_shm_uao == NULL)
   2382 		return;
   2383 
   2384 	{
   2385 		struct uvm_object *const uobj = obj->base.gemo_shm_uao;
   2386 
   2387 		if (uobj != NULL) {
   2388 			/* XXX Calling pgo_put like this is bogus.  */
   2389 			mutex_enter(uobj->vmobjlock);
   2390 			(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   2391 			    (PGO_ALLPAGES | PGO_FREE));
   2392 		}
   2393 	}
   2394 #else
   2395 	if (obj->base.filp == NULL)
   2396 		return;
   2397 
   2398 	/* Our goal here is to return as much of the memory as
   2399 	 * is possible back to the system as we are called from OOM.
   2400 	 * To do this we must instruct the shmfs to drop all of its
   2401 	 * backing pages, *now*.
   2402 	 */
   2403 	inode = file_inode(obj->base.filp);
   2404 	shmem_truncate_range(inode, 0, (loff_t)-1);
   2405 #endif
   2406 
   2407 	obj->madv = __I915_MADV_PURGED;
   2408 }
   2409 
   2410 static inline int
   2411 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
   2412 {
   2413 	return obj->madv == I915_MADV_DONTNEED;
   2414 }
   2415 
   2416 #ifdef __NetBSD__
   2417 static void
   2418 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2419 {
   2420 	struct drm_device *const dev = obj->base.dev;
   2421 	int ret;
   2422 
   2423 	/* XXX Cargo-culted from the Linux code.  */
   2424 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2425 
   2426 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2427 	if (ret) {
   2428 		WARN_ON(ret != -EIO);
   2429 		i915_gem_clflush_object(obj, true);
   2430 		obj->base.read_domains = obj->base.write_domain =
   2431 		    I915_GEM_DOMAIN_CPU;
   2432 	}
   2433 
   2434 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2435 		i915_gem_object_save_bit_17_swizzle(obj);
   2436 
   2437 	/* XXX Maintain dirty flag?  */
   2438 
   2439 	bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
   2440 	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
   2441 	    obj->base.size, obj->pages, obj->igo_nsegs);
   2442 
   2443 	kfree(obj->pages);
   2444 }
   2445 #else
   2446 static void
   2447 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2448 {
   2449 	struct sg_page_iter sg_iter;
   2450 	int ret;
   2451 
   2452 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2453 
   2454 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2455 	if (ret) {
   2456 		/* In the event of a disaster, abandon all caches and
   2457 		 * hope for the best.
   2458 		 */
   2459 		WARN_ON(ret != -EIO);
   2460 		i915_gem_clflush_object(obj, true);
   2461 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   2462 	}
   2463 
   2464 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2465 		i915_gem_object_save_bit_17_swizzle(obj);
   2466 
   2467 	if (obj->madv == I915_MADV_DONTNEED)
   2468 		obj->dirty = 0;
   2469 
   2470 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
   2471 		struct page *page = sg_page_iter_page(&sg_iter);
   2472 
   2473 		if (obj->dirty)
   2474 			set_page_dirty(page);
   2475 
   2476 		if (obj->madv == I915_MADV_WILLNEED)
   2477 			mark_page_accessed(page);
   2478 
   2479 		page_cache_release(page);
   2480 	}
   2481 	obj->dirty = 0;
   2482 
   2483 	sg_free_table(obj->pages);
   2484 	kfree(obj->pages);
   2485 }
   2486 #endif
   2487 
   2488 int
   2489 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
   2490 {
   2491 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2492 
   2493 	if (obj->pages == NULL)
   2494 		return 0;
   2495 
   2496 	if (obj->pages_pin_count)
   2497 		return -EBUSY;
   2498 
   2499 	BUG_ON(i915_gem_obj_bound_any(obj));
   2500 
   2501 	/* ->put_pages might need to allocate memory for the bit17 swizzle
   2502 	 * array, hence protect them from being reaped by removing them from gtt
   2503 	 * lists early. */
   2504 	list_del(&obj->global_list);
   2505 
   2506 	ops->put_pages(obj);
   2507 	obj->pages = NULL;
   2508 
   2509 	if (i915_gem_object_is_purgeable(obj))
   2510 		i915_gem_object_truncate(obj);
   2511 
   2512 	return 0;
   2513 }
   2514 
   2515 static unsigned long
   2516 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
   2517 		  bool purgeable_only)
   2518 {
   2519 	struct list_head still_bound_list;
   2520 	struct drm_i915_gem_object *obj, *next;
   2521 	unsigned long count = 0;
   2522 
   2523 	list_for_each_entry_safe(obj, next,
   2524 				 &dev_priv->mm.unbound_list,
   2525 				 global_list) {
   2526 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
   2527 		    i915_gem_object_put_pages(obj) == 0) {
   2528 			count += obj->base.size >> PAGE_SHIFT;
   2529 			if (count >= target)
   2530 				return count;
   2531 		}
   2532 	}
   2533 
   2534 	/*
   2535 	 * As we may completely rewrite the bound list whilst unbinding
   2536 	 * (due to retiring requests) we have to strictly process only
   2537 	 * one element of the list at the time, and recheck the list
   2538 	 * on every iteration.
   2539 	 */
   2540 	INIT_LIST_HEAD(&still_bound_list);
   2541 	while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
   2542 		struct i915_vma *vma, *v;
   2543 
   2544 		obj = list_first_entry(&dev_priv->mm.bound_list,
   2545 				       typeof(*obj), global_list);
   2546 		list_move_tail(&obj->global_list, &still_bound_list);
   2547 
   2548 		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
   2549 			continue;
   2550 
   2551 		/*
   2552 		 * Hold a reference whilst we unbind this object, as we may
   2553 		 * end up waiting for and retiring requests. This might
   2554 		 * release the final reference (held by the active list)
   2555 		 * and result in the object being freed from under us.
   2556 		 * in this object being freed.
   2557 		 *
   2558 		 * Note 1: Shrinking the bound list is special since only active
   2559 		 * (and hence bound objects) can contain such limbo objects, so
   2560 		 * we don't need special tricks for shrinking the unbound list.
   2561 		 * The only other place where we have to be careful with active
   2562 		 * objects suddenly disappearing due to retiring requests is the
   2563 		 * eviction code.
   2564 		 *
   2565 		 * Note 2: Even though the bound list doesn't hold a reference
   2566 		 * to the object we can safely grab one here: The final object
   2567 		 * unreferencing and the bound_list are both protected by the
   2568 		 * dev->struct_mutex and so we won't ever be able to observe an
   2569 		 * object on the bound_list with a reference count equals 0.
   2570 		 */
   2571 		drm_gem_object_reference(&obj->base);
   2572 
   2573 		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
   2574 			if (i915_vma_unbind(vma))
   2575 				break;
   2576 
   2577 		if (i915_gem_object_put_pages(obj) == 0)
   2578 			count += obj->base.size >> PAGE_SHIFT;
   2579 
   2580 		drm_gem_object_unreference(&obj->base);
   2581 	}
   2582 	list_splice(&still_bound_list, &dev_priv->mm.bound_list);
   2583 
   2584 	return count;
   2585 }
   2586 
   2587 static unsigned long
   2588 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
   2589 {
   2590 	return __i915_gem_shrink(dev_priv, target, true);
   2591 }
   2592 
   2593 static unsigned long
   2594 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
   2595 {
   2596 	struct drm_i915_gem_object *obj, *next;
   2597 	long freed = 0;
   2598 
   2599 	i915_gem_evict_everything(dev_priv->dev);
   2600 
   2601 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
   2602 				 global_list) {
   2603 		if (i915_gem_object_put_pages(obj) == 0)
   2604 			freed += obj->base.size >> PAGE_SHIFT;
   2605 	}
   2606 	return freed;
   2607 }
   2608 
   2609 #ifdef __NetBSD__
   2610 static int
   2611 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2612 {
   2613 	struct drm_device *const dev = obj->base.dev;
   2614 	struct vm_page *page;
   2615 	int error;
   2616 
   2617 	/* XXX Cargo-culted from the Linux code.  */
   2618 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2619 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2620 
   2621 	KASSERT(obj->pages == NULL);
   2622 	TAILQ_INIT(&obj->igo_pageq);
   2623 	obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
   2624 	    sizeof(obj->pages[0]), GFP_KERNEL);
   2625 	if (obj->pages == NULL) {
   2626 		error = -ENOMEM;
   2627 		goto fail0;
   2628 	}
   2629 
   2630 	/* XXX errno NetBSD->Linux */
   2631 	error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
   2632 	    0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
   2633 	    (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
   2634 	if (error)
   2635 		/* XXX Try i915_gem_purge, i915_gem_shrink_all.  */
   2636 		goto fail1;
   2637 	KASSERT(0 < obj->igo_nsegs);
   2638 	KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
   2639 
   2640 	/*
   2641 	 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
   2642 	 *
   2643 	 * XXX This is wrong; we ought to pass this constraint to
   2644 	 * bus_dmamem_wire_uvm_object instead.
   2645 	 */
   2646 	TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
   2647 		const uint64_t mask =
   2648 		    (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
   2649 			0xffffffffULL : 0xffffffffffULL);
   2650 		if (VM_PAGE_TO_PHYS(page) & ~mask) {
   2651 			DRM_ERROR("GEM physical address exceeds %u bits"
   2652 			    ": %"PRIxMAX"\n",
   2653 			    popcount64(mask),
   2654 			    (uintmax_t)VM_PAGE_TO_PHYS(page));
   2655 			error = -EIO;
   2656 			goto fail2;
   2657 		}
   2658 	}
   2659 
   2660 	/* XXX Should create the DMA map when creating the object.  */
   2661 
   2662 	/* XXX errno NetBSD->Linux */
   2663 	error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
   2664 	    PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
   2665 	if (error)
   2666 		goto fail2;
   2667 
   2668 	/* XXX Cargo-culted from the Linux code.  */
   2669 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2670 		i915_gem_object_do_bit_17_swizzle(obj);
   2671 
   2672 	/* Success!  */
   2673 	return 0;
   2674 
   2675 fail2:	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
   2676 	    obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
   2677 fail1:	kfree(obj->pages);
   2678 	obj->pages = NULL;
   2679 fail0:	KASSERT(error);
   2680 	return error;
   2681 }
   2682 #else
   2683 static int
   2684 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2685 {
   2686 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2687 	int page_count, i;
   2688 	struct address_space *mapping;
   2689 	struct sg_table *st;
   2690 	struct scatterlist *sg;
   2691 	struct sg_page_iter sg_iter;
   2692 	struct page *page;
   2693 	unsigned long last_pfn = 0;	/* suppress gcc warning */
   2694 	gfp_t gfp;
   2695 
   2696 	/* Assert that the object is not currently in any GPU domain. As it
   2697 	 * wasn't in the GTT, there shouldn't be any way it could have been in
   2698 	 * a GPU cache
   2699 	 */
   2700 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2701 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2702 
   2703 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   2704 	if (st == NULL)
   2705 		return -ENOMEM;
   2706 
   2707 	page_count = obj->base.size / PAGE_SIZE;
   2708 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
   2709 		kfree(st);
   2710 		return -ENOMEM;
   2711 	}
   2712 
   2713 	/* Get the list of pages out of our struct file.  They'll be pinned
   2714 	 * at this point until we release them.
   2715 	 *
   2716 	 * Fail silently without starting the shrinker
   2717 	 */
   2718 	mapping = file_inode(obj->base.filp)->i_mapping;
   2719 	gfp = mapping_gfp_mask(mapping);
   2720 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
   2721 	gfp &= ~(__GFP_IO | __GFP_WAIT);
   2722 	sg = st->sgl;
   2723 	st->nents = 0;
   2724 	for (i = 0; i < page_count; i++) {
   2725 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2726 		if (IS_ERR(page)) {
   2727 			i915_gem_purge(dev_priv, page_count);
   2728 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2729 		}
   2730 		if (IS_ERR(page)) {
   2731 			/* We've tried hard to allocate the memory by reaping
   2732 			 * our own buffer, now let the real VM do its job and
   2733 			 * go down in flames if truly OOM.
   2734 			 */
   2735 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
   2736 			gfp |= __GFP_IO | __GFP_WAIT;
   2737 
   2738 			i915_gem_shrink_all(dev_priv);
   2739 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2740 			if (IS_ERR(page))
   2741 				goto err_pages;
   2742 
   2743 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
   2744 			gfp &= ~(__GFP_IO | __GFP_WAIT);
   2745 		}
   2746 #ifdef CONFIG_SWIOTLB
   2747 		if (swiotlb_nr_tbl()) {
   2748 			st->nents++;
   2749 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2750 			sg = sg_next(sg);
   2751 			continue;
   2752 		}
   2753 #endif
   2754 		if (!i || page_to_pfn(page) != last_pfn + 1) {
   2755 			if (i)
   2756 				sg = sg_next(sg);
   2757 			st->nents++;
   2758 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2759 		} else {
   2760 			sg->length += PAGE_SIZE;
   2761 		}
   2762 		last_pfn = page_to_pfn(page);
   2763 
   2764 		/* Check that the i965g/gm workaround works. */
   2765 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
   2766 	}
   2767 #ifdef CONFIG_SWIOTLB
   2768 	if (!swiotlb_nr_tbl())
   2769 #endif
   2770 		sg_mark_end(sg);
   2771 	obj->pages = st;
   2772 
   2773 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2774 		i915_gem_object_do_bit_17_swizzle(obj);
   2775 
   2776 	return 0;
   2777 
   2778 err_pages:
   2779 	sg_mark_end(sg);
   2780 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
   2781 		page_cache_release(sg_page_iter_page(&sg_iter));
   2782 	sg_free_table(st);
   2783 	kfree(st);
   2784 	return PTR_ERR(page);
   2785 }
   2786 #endif
   2787 
   2788 /* Ensure that the associated pages are gathered from the backing storage
   2789  * and pinned into our object. i915_gem_object_get_pages() may be called
   2790  * multiple times before they are released by a single call to
   2791  * i915_gem_object_put_pages() - once the pages are no longer referenced
   2792  * either as a result of memory pressure (reaping pages under the shrinker)
   2793  * or as the object is itself released.
   2794  */
   2795 int
   2796 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
   2797 {
   2798 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2799 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2800 	int ret;
   2801 
   2802 	if (obj->pages)
   2803 		return 0;
   2804 
   2805 	if (obj->madv != I915_MADV_WILLNEED) {
   2806 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
   2807 		return -EFAULT;
   2808 	}
   2809 
   2810 	BUG_ON(obj->pages_pin_count);
   2811 
   2812 	ret = ops->get_pages(obj);
   2813 	if (ret)
   2814 		return ret;
   2815 
   2816 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   2817 	return 0;
   2818 }
   2819 
   2820 static void
   2821 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
   2822 			       struct intel_ring_buffer *ring)
   2823 {
   2824 	struct drm_device *dev = obj->base.dev;
   2825 	struct drm_i915_private *dev_priv = dev->dev_private;
   2826 	u32 seqno = intel_ring_get_seqno(ring);
   2827 
   2828 	BUG_ON(ring == NULL);
   2829 	if (obj->ring != ring && obj->last_write_seqno) {
   2830 		/* Keep the seqno relative to the current ring */
   2831 		obj->last_write_seqno = seqno;
   2832 	}
   2833 	obj->ring = ring;
   2834 
   2835 	/* Add a reference if we're newly entering the active list. */
   2836 	if (!obj->active) {
   2837 		drm_gem_object_reference(&obj->base);
   2838 		obj->active = 1;
   2839 	}
   2840 
   2841 	list_move_tail(&obj->ring_list, &ring->active_list);
   2842 
   2843 	obj->last_read_seqno = seqno;
   2844 
   2845 	if (obj->fenced_gpu_access) {
   2846 		obj->last_fenced_seqno = seqno;
   2847 
   2848 		/* Bump MRU to take account of the delayed flush */
   2849 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
   2850 			struct drm_i915_fence_reg *reg;
   2851 
   2852 			reg = &dev_priv->fence_regs[obj->fence_reg];
   2853 			list_move_tail(&reg->lru_list,
   2854 				       &dev_priv->mm.fence_list);
   2855 		}
   2856 	}
   2857 }
   2858 
   2859 void i915_vma_move_to_active(struct i915_vma *vma,
   2860 			     struct intel_ring_buffer *ring)
   2861 {
   2862 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
   2863 	return i915_gem_object_move_to_active(vma->obj, ring);
   2864 }
   2865 
   2866 static void
   2867 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
   2868 {
   2869 	struct drm_device *dev = obj->base.dev;
   2870 	struct drm_i915_private *dev_priv = dev->dev_private;
   2871 	struct i915_address_space *vm;
   2872 	struct i915_vma *vma;
   2873 
   2874 	if ((obj->base.write_domain & I915_GEM_DOMAIN_GTT) != 0) {
   2875 #if 0
   2876 		printk(KERN_ERR "%s: %p 0x%x flushing gtt\n", __func__, obj,
   2877 			obj->base.write_domain);
   2878 #endif
   2879 		i915_gem_object_flush_gtt_write_domain(obj);
   2880 	}
   2881 	if ((obj->base.write_domain & I915_GEM_DOMAIN_CPU) != 0) {
   2882 #if 0
   2883 		printk(KERN_ERR "%s: %p 0x%x flushing cpu\n", __func__, obj,
   2884 			obj->base.write_domain);
   2885 #endif
   2886 		i915_gem_object_flush_cpu_write_domain(obj, false);
   2887 	}
   2888 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
   2889 	BUG_ON(!obj->active);
   2890 
   2891 	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
   2892 		vma = i915_gem_obj_to_vma(obj, vm);
   2893 		if (vma && !list_empty(&vma->mm_list))
   2894 			list_move_tail(&vma->mm_list, &vm->inactive_list);
   2895 	}
   2896 
   2897 	list_del_init(&obj->ring_list);
   2898 	obj->ring = NULL;
   2899 
   2900 	obj->last_read_seqno = 0;
   2901 	obj->last_write_seqno = 0;
   2902 	obj->base.write_domain = 0;
   2903 
   2904 	obj->last_fenced_seqno = 0;
   2905 	obj->fenced_gpu_access = false;
   2906 
   2907 	obj->active = 0;
   2908 	drm_gem_object_unreference(&obj->base);
   2909 
   2910 	WARN_ON(i915_verify_lists(dev));
   2911 }
   2912 
   2913 static int
   2914 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
   2915 {
   2916 	struct drm_i915_private *dev_priv = dev->dev_private;
   2917 	struct intel_ring_buffer *ring;
   2918 	int ret, i, j;
   2919 
   2920 	/* Carefully retire all requests without writing to the rings */
   2921 	for_each_ring(ring, dev_priv, i) {
   2922 		ret = intel_ring_idle(ring);
   2923 		if (ret)
   2924 			return ret;
   2925 	}
   2926 	i915_gem_retire_requests(dev);
   2927 
   2928 	/* Finally reset hw state */
   2929 	for_each_ring(ring, dev_priv, i) {
   2930 		intel_ring_init_seqno(ring, seqno);
   2931 
   2932 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
   2933 			ring->sync_seqno[j] = 0;
   2934 	}
   2935 
   2936 	return 0;
   2937 }
   2938 
   2939 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
   2940 {
   2941 	struct drm_i915_private *dev_priv = dev->dev_private;
   2942 	int ret;
   2943 
   2944 	if (seqno == 0)
   2945 		return -EINVAL;
   2946 
   2947 	/* HWS page needs to be set less than what we
   2948 	 * will inject to ring
   2949 	 */
   2950 	ret = i915_gem_init_seqno(dev, seqno - 1);
   2951 	if (ret)
   2952 		return ret;
   2953 
   2954 	/* Carefully set the last_seqno value so that wrap
   2955 	 * detection still works
   2956 	 */
   2957 	dev_priv->next_seqno = seqno;
   2958 	dev_priv->last_seqno = seqno - 1;
   2959 	if (dev_priv->last_seqno == 0)
   2960 		dev_priv->last_seqno--;
   2961 
   2962 	return 0;
   2963 }
   2964 
   2965 int
   2966 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
   2967 {
   2968 	struct drm_i915_private *dev_priv = dev->dev_private;
   2969 
   2970 	/* reserve 0 for non-seqno */
   2971 	if (dev_priv->next_seqno == 0) {
   2972 		int ret = i915_gem_init_seqno(dev, 0);
   2973 		if (ret)
   2974 			return ret;
   2975 
   2976 		dev_priv->next_seqno = 1;
   2977 	}
   2978 
   2979 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
   2980 	return 0;
   2981 }
   2982 
   2983 int __i915_add_request(struct intel_ring_buffer *ring,
   2984 		       struct drm_file *file,
   2985 		       struct drm_i915_gem_object *obj,
   2986 		       u32 *out_seqno)
   2987 {
   2988 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
   2989 	struct drm_i915_gem_request *request;
   2990 	u32 request_ring_position, request_start;
   2991 	int ret;
   2992 
   2993 	request_start = intel_ring_get_tail(ring);
   2994 	/*
   2995 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
   2996 	 * after having emitted the batchbuffer command. Hence we need to fix
   2997 	 * things up similar to emitting the lazy request. The difference here
   2998 	 * is that the flush _must_ happen before the next request, no matter
   2999 	 * what.
   3000 	 */
   3001 	ret = intel_ring_flush_all_caches(ring);
   3002 	if (ret)
   3003 		return ret;
   3004 
   3005 	request = ring->preallocated_lazy_request;
   3006 	if (WARN_ON(request == NULL))
   3007 		return -ENOMEM;
   3008 
   3009 	/* Record the position of the start of the request so that
   3010 	 * should we detect the updated seqno part-way through the
   3011 	 * GPU processing the request, we never over-estimate the
   3012 	 * position of the head.
   3013 	 */
   3014 	request_ring_position = intel_ring_get_tail(ring);
   3015 
   3016 	ret = ring->add_request(ring);
   3017 	if (ret)
   3018 		return ret;
   3019 
   3020 	request->seqno = intel_ring_get_seqno(ring);
   3021 	request->ring = ring;
   3022 	request->head = request_start;
   3023 	request->tail = request_ring_position;
   3024 
   3025 	/* Whilst this request exists, batch_obj will be on the
   3026 	 * active_list, and so will hold the active reference. Only when this
   3027 	 * request is retired will the the batch_obj be moved onto the
   3028 	 * inactive_list and lose its active reference. Hence we do not need
   3029 	 * to explicitly hold another reference here.
   3030 	 */
   3031 	request->batch_obj = obj;
   3032 
   3033 	/* Hold a reference to the current context so that we can inspect
   3034 	 * it later in case a hangcheck error event fires.
   3035 	 */
   3036 	request->ctx = ring->last_context;
   3037 	if (request->ctx)
   3038 		i915_gem_context_reference(request->ctx);
   3039 
   3040 	request->emitted_jiffies = jiffies;
   3041 	list_add_tail(&request->list, &ring->request_list);
   3042 	request->file_priv = NULL;
   3043 
   3044 	if (file) {
   3045 		struct drm_i915_file_private *file_priv = file->driver_priv;
   3046 
   3047 		spin_lock(&file_priv->mm.lock);
   3048 		request->file_priv = file_priv;
   3049 		list_add_tail(&request->client_list,
   3050 			      &file_priv->mm.request_list);
   3051 		spin_unlock(&file_priv->mm.lock);
   3052 	}
   3053 
   3054 	trace_i915_gem_request_add(ring, request->seqno);
   3055 	ring->outstanding_lazy_seqno = 0;
   3056 	ring->preallocated_lazy_request = NULL;
   3057 
   3058 	if (!dev_priv->ums.mm_suspended) {
   3059 		i915_queue_hangcheck(ring->dev);
   3060 
   3061 		cancel_delayed_work_sync(&dev_priv->mm.idle_work);
   3062 		queue_delayed_work(dev_priv->wq,
   3063 				   &dev_priv->mm.retire_work,
   3064 				   round_jiffies_up_relative(HZ));
   3065 		intel_mark_busy(dev_priv->dev);
   3066 	}
   3067 
   3068 	if (out_seqno)
   3069 		*out_seqno = request->seqno;
   3070 	return 0;
   3071 }
   3072 
   3073 static inline void
   3074 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
   3075 {
   3076 	struct drm_i915_file_private *file_priv = request->file_priv;
   3077 
   3078 	if (!file_priv)
   3079 		return;
   3080 
   3081 	spin_lock(&file_priv->mm.lock);
   3082 	list_del(&request->client_list);
   3083 	request->file_priv = NULL;
   3084 	spin_unlock(&file_priv->mm.lock);
   3085 }
   3086 
   3087 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
   3088 				   const struct i915_hw_context *ctx)
   3089 {
   3090 	unsigned long elapsed;
   3091 
   3092 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
   3093 
   3094 	if (ctx->hang_stats.banned)
   3095 		return true;
   3096 
   3097 	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
   3098 		if (!i915_gem_context_is_default(ctx)) {
   3099 			DRM_DEBUG("context hanging too fast, banning!\n");
   3100 			return true;
   3101 		} else if (dev_priv->gpu_error.stop_rings == 0) {
   3102 			DRM_ERROR("gpu hanging too fast, banning!\n");
   3103 			return true;
   3104 		}
   3105 	}
   3106 
   3107 	return false;
   3108 }
   3109 
   3110 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
   3111 				  struct i915_hw_context *ctx,
   3112 				  const bool guilty)
   3113 {
   3114 	struct i915_ctx_hang_stats *hs;
   3115 
   3116 	if (WARN_ON(!ctx))
   3117 		return;
   3118 
   3119 	hs = &ctx->hang_stats;
   3120 
   3121 	if (guilty) {
   3122 		hs->banned = i915_context_is_banned(dev_priv, ctx);
   3123 		hs->batch_active++;
   3124 		hs->guilty_ts = get_seconds();
   3125 	} else {
   3126 		hs->batch_pending++;
   3127 	}
   3128 }
   3129 
   3130 static void i915_gem_free_request(struct drm_i915_gem_request *request)
   3131 {
   3132 	list_del(&request->list);
   3133 	i915_gem_request_remove_from_client(request);
   3134 
   3135 	if (request->ctx)
   3136 		i915_gem_context_unreference(request->ctx);
   3137 
   3138 	kfree(request);
   3139 }
   3140 
   3141 struct drm_i915_gem_request *
   3142 i915_gem_find_active_request(struct intel_ring_buffer *ring)
   3143 {
   3144 	struct drm_i915_gem_request *request;
   3145 	u32 completed_seqno;
   3146 
   3147 	completed_seqno = ring->get_seqno(ring, false);
   3148 
   3149 	list_for_each_entry(request, &ring->request_list, list) {
   3150 		if (i915_seqno_passed(completed_seqno, request->seqno))
   3151 			continue;
   3152 
   3153 		return request;
   3154 	}
   3155 
   3156 	return NULL;
   3157 }
   3158 
   3159 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
   3160 				       struct intel_ring_buffer *ring)
   3161 {
   3162 	struct drm_i915_gem_request *request;
   3163 	bool ring_hung;
   3164 
   3165 	request = i915_gem_find_active_request(ring);
   3166 
   3167 	if (request == NULL)
   3168 		return;
   3169 
   3170 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
   3171 
   3172 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
   3173 
   3174 	list_for_each_entry_continue(request, &ring->request_list, list)
   3175 		i915_set_reset_status(dev_priv, request->ctx, false);
   3176 }
   3177 
   3178 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
   3179 					struct intel_ring_buffer *ring)
   3180 {
   3181 	while (!list_empty(&ring->active_list)) {
   3182 		struct drm_i915_gem_object *obj;
   3183 
   3184 		obj = list_first_entry(&ring->active_list,
   3185 				       struct drm_i915_gem_object,
   3186 				       ring_list);
   3187 
   3188 		i915_gem_object_move_to_inactive(obj);
   3189 	}
   3190 
   3191 	/*
   3192 	 * We must free the requests after all the corresponding objects have
   3193 	 * been moved off active lists. Which is the same order as the normal
   3194 	 * retire_requests function does. This is important if object hold
   3195 	 * implicit references on things like e.g. ppgtt address spaces through
   3196 	 * the request.
   3197 	 */
   3198 	while (!list_empty(&ring->request_list)) {
   3199 		struct drm_i915_gem_request *request;
   3200 
   3201 		request = list_first_entry(&ring->request_list,
   3202 					   struct drm_i915_gem_request,
   3203 					   list);
   3204 
   3205 		i915_gem_free_request(request);
   3206 	}
   3207 }
   3208 
   3209 void i915_gem_restore_fences(struct drm_device *dev)
   3210 {
   3211 	struct drm_i915_private *dev_priv = dev->dev_private;
   3212 	int i;
   3213 
   3214 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
   3215 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
   3216 
   3217 		/*
   3218 		 * Commit delayed tiling changes if we have an object still
   3219 		 * attached to the fence, otherwise just clear the fence.
   3220 		 */
   3221 		if (reg->obj) {
   3222 			i915_gem_object_update_fence(reg->obj, reg,
   3223 						     reg->obj->tiling_mode);
   3224 		} else {
   3225 			i915_gem_write_fence(dev, i, NULL);
   3226 		}
   3227 	}
   3228 }
   3229 
   3230 void i915_gem_reset(struct drm_device *dev)
   3231 {
   3232 	struct drm_i915_private *dev_priv = dev->dev_private;
   3233 	struct intel_ring_buffer *ring;
   3234 	int i;
   3235 
   3236 	/*
   3237 	 * Before we free the objects from the requests, we need to inspect
   3238 	 * them for finding the guilty party. As the requests only borrow
   3239 	 * their reference to the objects, the inspection must be done first.
   3240 	 */
   3241 	for_each_ring(ring, dev_priv, i)
   3242 		i915_gem_reset_ring_status(dev_priv, ring);
   3243 
   3244 	for_each_ring(ring, dev_priv, i)
   3245 		i915_gem_reset_ring_cleanup(dev_priv, ring);
   3246 
   3247 	i915_gem_cleanup_ringbuffer(dev);
   3248 
   3249 	i915_gem_context_reset(dev);
   3250 
   3251 	i915_gem_restore_fences(dev);
   3252 }
   3253 
   3254 /**
   3255  * This function clears the request list as sequence numbers are passed.
   3256  */
   3257 static void
   3258 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
   3259 {
   3260 	uint32_t seqno;
   3261 
   3262 	if (list_empty(&ring->request_list))
   3263 		return;
   3264 
   3265 	WARN_ON(i915_verify_lists(ring->dev));
   3266 
   3267 	seqno = ring->get_seqno(ring, true);
   3268 
   3269 	/* Move any buffers on the active list that are no longer referenced
   3270 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
   3271 	 * before we free the context associated with the requests.
   3272 	 */
   3273 	while (!list_empty(&ring->active_list)) {
   3274 		struct drm_i915_gem_object *obj;
   3275 
   3276 		obj = list_first_entry(&ring->active_list,
   3277 				      struct drm_i915_gem_object,
   3278 				      ring_list);
   3279 
   3280 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
   3281 			break;
   3282 
   3283 		i915_gem_object_move_to_inactive(obj);
   3284 	}
   3285 
   3286 
   3287 	while (!list_empty(&ring->request_list)) {
   3288 		struct drm_i915_gem_request *request;
   3289 
   3290 		request = list_first_entry(&ring->request_list,
   3291 					   struct drm_i915_gem_request,
   3292 					   list);
   3293 
   3294 		if (!i915_seqno_passed(seqno, request->seqno))
   3295 			break;
   3296 
   3297 		trace_i915_gem_request_retire(ring, request->seqno);
   3298 		/* We know the GPU must have read the request to have
   3299 		 * sent us the seqno + interrupt, so use the position
   3300 		 * of tail of the request to update the last known position
   3301 		 * of the GPU head.
   3302 		 */
   3303 		ring->last_retired_head = request->tail;
   3304 
   3305 		i915_gem_free_request(request);
   3306 	}
   3307 
   3308 	if (unlikely(ring->trace_irq_seqno &&
   3309 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
   3310 		ring->irq_put(ring);
   3311 		ring->trace_irq_seqno = 0;
   3312 	}
   3313 
   3314 	WARN_ON(i915_verify_lists(ring->dev));
   3315 }
   3316 
   3317 bool
   3318 i915_gem_retire_requests(struct drm_device *dev)
   3319 {
   3320 	struct drm_i915_private *dev_priv = dev->dev_private;
   3321 	struct intel_ring_buffer *ring;
   3322 	bool idle = true;
   3323 	int i;
   3324 
   3325 	for_each_ring(ring, dev_priv, i) {
   3326 		i915_gem_retire_requests_ring(ring);
   3327 		idle &= list_empty(&ring->request_list);
   3328 	}
   3329 
   3330 	if (idle)
   3331 		mod_delayed_work(dev_priv->wq,
   3332 				   &dev_priv->mm.idle_work,
   3333 				   msecs_to_jiffies(100));
   3334 
   3335 	return idle;
   3336 }
   3337 
   3338 static void
   3339 i915_gem_retire_work_handler(struct work_struct *work)
   3340 {
   3341 	struct drm_i915_private *dev_priv =
   3342 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
   3343 	struct drm_device *dev = dev_priv->dev;
   3344 	bool idle;
   3345 
   3346 	/* Come back later if the device is busy... */
   3347 	idle = false;
   3348 	if (mutex_trylock(&dev->struct_mutex)) {
   3349 		idle = i915_gem_retire_requests(dev);
   3350 		mutex_unlock(&dev->struct_mutex);
   3351 	}
   3352 	if (!idle)
   3353 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
   3354 				   round_jiffies_up_relative(HZ));
   3355 }
   3356 
   3357 static void
   3358 i915_gem_idle_work_handler(struct work_struct *work)
   3359 {
   3360 	struct drm_i915_private *dev_priv =
   3361 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
   3362 
   3363 	intel_mark_idle(dev_priv->dev);
   3364 }
   3365 
   3366 /**
   3367  * Ensures that an object will eventually get non-busy by flushing any required
   3368  * write domains, emitting any outstanding lazy request and retiring and
   3369  * completed requests.
   3370  */
   3371 static int
   3372 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
   3373 {
   3374 	int ret;
   3375 
   3376 	if (obj->active) {
   3377 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
   3378 		if (ret)
   3379 			return ret;
   3380 
   3381 		i915_gem_retire_requests_ring(obj->ring);
   3382 	}
   3383 
   3384 	return 0;
   3385 }
   3386 
   3387 /**
   3388  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
   3389  * @DRM_IOCTL_ARGS: standard ioctl arguments
   3390  *
   3391  * Returns 0 if successful, else an error is returned with the remaining time in
   3392  * the timeout parameter.
   3393  *  -ETIME: object is still busy after timeout
   3394  *  -ERESTARTSYS: signal interrupted the wait
   3395  *  -ENONENT: object doesn't exist
   3396  * Also possible, but rare:
   3397  *  -EAGAIN: GPU wedged
   3398  *  -ENOMEM: damn
   3399  *  -ENODEV: Internal IRQ fail
   3400  *  -E?: The add request failed
   3401  *
   3402  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
   3403  * non-zero timeout parameter the wait ioctl will wait for the given number of
   3404  * nanoseconds on an object becoming unbusy. Since the wait itself does so
   3405  * without holding struct_mutex the object may become re-busied before this
   3406  * function completes. A similar but shorter * race condition exists in the busy
   3407  * ioctl
   3408  */
   3409 int
   3410 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
   3411 {
   3412 	struct drm_i915_private *dev_priv = dev->dev_private;
   3413 	struct drm_i915_gem_wait *args = data;
   3414 	struct drm_gem_object *gobj;
   3415 	struct drm_i915_gem_object *obj;
   3416 	struct intel_ring_buffer *ring = NULL;
   3417 	struct timespec timeout_stack, *timeout = NULL;
   3418 	unsigned reset_counter;
   3419 	u32 seqno = 0;
   3420 	int ret = 0;
   3421 
   3422 	if (args->timeout_ns >= 0) {
   3423 		timeout_stack = ns_to_timespec(args->timeout_ns);
   3424 		timeout = &timeout_stack;
   3425 	}
   3426 
   3427 	ret = i915_mutex_lock_interruptible(dev);
   3428 	if (ret)
   3429 		return ret;
   3430 
   3431 	gobj = drm_gem_object_lookup(dev, file, args->bo_handle);
   3432 	if (gobj == NULL) {
   3433 		mutex_unlock(&dev->struct_mutex);
   3434 		return -ENOENT;
   3435 	}
   3436 	obj = to_intel_bo(gobj);
   3437 
   3438 	/* Need to make sure the object gets inactive eventually. */
   3439 	ret = i915_gem_object_flush_active(obj);
   3440 	if (ret)
   3441 		goto out;
   3442 
   3443 	if (obj->active) {
   3444 		seqno = obj->last_read_seqno;
   3445 		ring = obj->ring;
   3446 	}
   3447 
   3448 	if (seqno == 0)
   3449 		 goto out;
   3450 
   3451 	/* Do this after OLR check to make sure we make forward progress polling
   3452 	 * on this IOCTL with a 0 timeout (like busy ioctl)
   3453 	 */
   3454 	if (!args->timeout_ns) {
   3455 		ret = -ETIME;
   3456 		goto out;
   3457 	}
   3458 
   3459 	drm_gem_object_unreference(&obj->base);
   3460 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   3461 	mutex_unlock(&dev->struct_mutex);
   3462 
   3463 	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
   3464 	if (timeout)
   3465 		args->timeout_ns = timespec_to_ns(timeout);
   3466 	return ret;
   3467 
   3468 out:
   3469 	drm_gem_object_unreference(&obj->base);
   3470 	mutex_unlock(&dev->struct_mutex);
   3471 	return ret;
   3472 }
   3473 
   3474 /**
   3475  * i915_gem_object_sync - sync an object to a ring.
   3476  *
   3477  * @obj: object which may be in use on another ring.
   3478  * @to: ring we wish to use the object on. May be NULL.
   3479  *
   3480  * This code is meant to abstract object synchronization with the GPU.
   3481  * Calling with NULL implies synchronizing the object with the CPU
   3482  * rather than a particular GPU ring.
   3483  *
   3484  * Returns 0 if successful, else propagates up the lower layer error.
   3485  */
   3486 int
   3487 i915_gem_object_sync(struct drm_i915_gem_object *obj,
   3488 		     struct intel_ring_buffer *to)
   3489 {
   3490 	struct intel_ring_buffer *from = obj->ring;
   3491 	u32 seqno;
   3492 	int ret, idx;
   3493 
   3494 	if (from == NULL || to == from)
   3495 		return 0;
   3496 
   3497 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
   3498 		return i915_gem_object_wait_rendering(obj, false);
   3499 
   3500 	idx = intel_ring_sync_index(from, to);
   3501 
   3502 	seqno = obj->last_read_seqno;
   3503 	if (seqno <= from->sync_seqno[idx])
   3504 		return 0;
   3505 
   3506 	ret = i915_gem_check_olr(obj->ring, seqno);
   3507 	if (ret)
   3508 		return ret;
   3509 
   3510 	trace_i915_gem_ring_sync_to(from, to, seqno);
   3511 	ret = to->sync_to(to, from, seqno);
   3512 	if (!ret)
   3513 		/* We use last_read_seqno because sync_to()
   3514 		 * might have just caused seqno wrap under
   3515 		 * the radar.
   3516 		 */
   3517 		from->sync_seqno[idx] = obj->last_read_seqno;
   3518 
   3519 	return ret;
   3520 }
   3521 
   3522 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
   3523 {
   3524 	u32 old_write_domain, old_read_domains;
   3525 
   3526 	/* Force a pagefault for domain tracking on next user access */
   3527 	i915_gem_release_mmap(obj);
   3528 
   3529 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   3530 		return;
   3531 
   3532 	/* Wait for any direct GTT access to complete */
   3533 	mb();
   3534 
   3535 	old_read_domains = obj->base.read_domains;
   3536 	old_write_domain = obj->base.write_domain;
   3537 
   3538 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
   3539 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
   3540 
   3541 	trace_i915_gem_object_change_domain(obj,
   3542 					    old_read_domains,
   3543 					    old_write_domain);
   3544 }
   3545 
   3546 int i915_vma_unbind(struct i915_vma *vma)
   3547 {
   3548 	struct drm_i915_gem_object *obj = vma->obj;
   3549 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3550 	int ret;
   3551 
   3552 	if (list_empty(&vma->vma_link))
   3553 		return 0;
   3554 
   3555 	if (!drm_mm_node_allocated(&vma->node)) {
   3556 		i915_gem_vma_destroy(vma);
   3557 		return 0;
   3558 	}
   3559 
   3560 	if (vma->pin_count)
   3561 		return -EBUSY;
   3562 
   3563 	BUG_ON(obj->pages == NULL);
   3564 
   3565 	ret = i915_gem_object_finish_gpu(obj);
   3566 	if (ret)
   3567 		return ret;
   3568 	/* Continue on if we fail due to EIO, the GPU is hung so we
   3569 	 * should be safe and we need to cleanup or else we might
   3570 	 * cause memory corruption through use-after-free.
   3571 	 */
   3572 
   3573 	i915_gem_object_finish_gtt(obj);
   3574 
   3575 	/* release the fence reg _after_ flushing */
   3576 	ret = i915_gem_object_put_fence(obj);
   3577 	if (ret)
   3578 		return ret;
   3579 
   3580 	trace_i915_vma_unbind(vma);
   3581 
   3582 	vma->unbind_vma(vma);
   3583 
   3584 	i915_gem_gtt_finish_object(obj);
   3585 
   3586 	list_del_init(&vma->mm_list);
   3587 	/* Avoid an unnecessary call to unbind on rebind. */
   3588 	if (i915_is_ggtt(vma->vm))
   3589 		obj->map_and_fenceable = true;
   3590 
   3591 	drm_mm_remove_node(&vma->node);
   3592 	i915_gem_vma_destroy(vma);
   3593 
   3594 	/* Since the unbound list is global, only move to that list if
   3595 	 * no more VMAs exist. */
   3596 	if (list_empty(&obj->vma_list))
   3597 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   3598 
   3599 	/* And finally now the object is completely decoupled from this vma,
   3600 	 * we can drop its hold on the backing storage and allow it to be
   3601 	 * reaped by the shrinker.
   3602 	 */
   3603 	i915_gem_object_unpin_pages(obj);
   3604 
   3605 	return 0;
   3606 }
   3607 
   3608 int i915_gpu_idle(struct drm_device *dev)
   3609 {
   3610 	struct drm_i915_private *dev_priv = dev->dev_private;
   3611 	struct intel_ring_buffer *ring;
   3612 	int ret, i;
   3613 
   3614 	/* Flush everything onto the inactive list. */
   3615 	for_each_ring(ring, dev_priv, i) {
   3616 		ret = i915_switch_context(ring, ring->default_context);
   3617 		if (ret)
   3618 			return ret;
   3619 
   3620 		ret = intel_ring_idle(ring);
   3621 		if (ret)
   3622 			return ret;
   3623 	}
   3624 
   3625 	return 0;
   3626 }
   3627 
   3628 static void i965_write_fence_reg(struct drm_device *dev, int reg,
   3629 				 struct drm_i915_gem_object *obj)
   3630 {
   3631 	struct drm_i915_private *dev_priv = dev->dev_private;
   3632 	int fence_reg;
   3633 	int fence_pitch_shift;
   3634 
   3635 	if (INTEL_INFO(dev)->gen >= 6) {
   3636 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
   3637 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
   3638 	} else {
   3639 		fence_reg = FENCE_REG_965_0;
   3640 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
   3641 	}
   3642 
   3643 	fence_reg += reg * 8;
   3644 
   3645 	/* To w/a incoherency with non-atomic 64-bit register updates,
   3646 	 * we split the 64-bit update into two 32-bit writes. In order
   3647 	 * for a partial fence not to be evaluated between writes, we
   3648 	 * precede the update with write to turn off the fence register,
   3649 	 * and only enable the fence as the last step.
   3650 	 *
   3651 	 * For extra levels of paranoia, we make sure each step lands
   3652 	 * before applying the next step.
   3653 	 */
   3654 	I915_WRITE(fence_reg, 0);
   3655 	POSTING_READ(fence_reg);
   3656 
   3657 	if (obj) {
   3658 		u32 size = i915_gem_obj_ggtt_size(obj);
   3659 		uint64_t val;
   3660 
   3661 		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
   3662 				 0xfffff000) << 32;
   3663 		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
   3664 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
   3665 		if (obj->tiling_mode == I915_TILING_Y)
   3666 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
   3667 		val |= I965_FENCE_REG_VALID;
   3668 
   3669 		I915_WRITE(fence_reg + 4, val >> 32);
   3670 		POSTING_READ(fence_reg + 4);
   3671 
   3672 		I915_WRITE(fence_reg + 0, val);
   3673 		POSTING_READ(fence_reg);
   3674 	} else {
   3675 		I915_WRITE(fence_reg + 4, 0);
   3676 		POSTING_READ(fence_reg + 4);
   3677 	}
   3678 }
   3679 
   3680 static void i915_write_fence_reg(struct drm_device *dev, int reg,
   3681 				 struct drm_i915_gem_object *obj)
   3682 {
   3683 	struct drm_i915_private *dev_priv = dev->dev_private;
   3684 	u32 val;
   3685 
   3686 	if (obj) {
   3687 		u32 size = i915_gem_obj_ggtt_size(obj);
   3688 		int pitch_val;
   3689 		int tile_width;
   3690 
   3691 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
   3692 		     (size & -size) != size ||
   3693 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
   3694 		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
   3695 		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
   3696 
   3697 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
   3698 			tile_width = 128;
   3699 		else
   3700 			tile_width = 512;
   3701 
   3702 		/* Note: pitch better be a power of two tile widths */
   3703 		pitch_val = obj->stride / tile_width;
   3704 		pitch_val = ffs(pitch_val) - 1;
   3705 
   3706 		val = i915_gem_obj_ggtt_offset(obj);
   3707 		if (obj->tiling_mode == I915_TILING_Y)
   3708 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
   3709 		val |= I915_FENCE_SIZE_BITS(size);
   3710 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
   3711 		val |= I830_FENCE_REG_VALID;
   3712 	} else
   3713 		val = 0;
   3714 
   3715 	if (reg < 8)
   3716 		reg = FENCE_REG_830_0 + reg * 4;
   3717 	else
   3718 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
   3719 
   3720 	I915_WRITE(reg, val);
   3721 	POSTING_READ(reg);
   3722 }
   3723 
   3724 static void i830_write_fence_reg(struct drm_device *dev, int reg,
   3725 				struct drm_i915_gem_object *obj)
   3726 {
   3727 	struct drm_i915_private *dev_priv = dev->dev_private;
   3728 	uint32_t val;
   3729 
   3730 	if (obj) {
   3731 		u32 size = i915_gem_obj_ggtt_size(obj);
   3732 		uint32_t pitch_val;
   3733 
   3734 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
   3735 		     (size & -size) != size ||
   3736 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
   3737 		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
   3738 		     i915_gem_obj_ggtt_offset(obj), size);
   3739 
   3740 		pitch_val = obj->stride / 128;
   3741 		pitch_val = ffs(pitch_val) - 1;
   3742 
   3743 		val = i915_gem_obj_ggtt_offset(obj);
   3744 		if (obj->tiling_mode == I915_TILING_Y)
   3745 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
   3746 		val |= I830_FENCE_SIZE_BITS(size);
   3747 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
   3748 		val |= I830_FENCE_REG_VALID;
   3749 	} else
   3750 		val = 0;
   3751 
   3752 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
   3753 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
   3754 }
   3755 
   3756 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
   3757 {
   3758 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
   3759 }
   3760 
   3761 static void i915_gem_write_fence(struct drm_device *dev, int reg,
   3762 				 struct drm_i915_gem_object *obj)
   3763 {
   3764 	struct drm_i915_private *dev_priv = dev->dev_private;
   3765 
   3766 	/* Ensure that all CPU reads are completed before installing a fence
   3767 	 * and all writes before removing the fence.
   3768 	 */
   3769 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
   3770 		mb();
   3771 
   3772 	WARN(obj && (!obj->stride || !obj->tiling_mode),
   3773 	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
   3774 	     obj->stride, obj->tiling_mode);
   3775 
   3776 	switch (INTEL_INFO(dev)->gen) {
   3777 	case 8:
   3778 	case 7:
   3779 	case 6:
   3780 	case 5:
   3781 	case 4: i965_write_fence_reg(dev, reg, obj); break;
   3782 	case 3: i915_write_fence_reg(dev, reg, obj); break;
   3783 	case 2: i830_write_fence_reg(dev, reg, obj); break;
   3784 	default: BUG();
   3785 	}
   3786 
   3787 	/* And similarly be paranoid that no direct access to this region
   3788 	 * is reordered to before the fence is installed.
   3789 	 */
   3790 	if (i915_gem_object_needs_mb(obj))
   3791 		mb();
   3792 }
   3793 
   3794 static inline int fence_number(struct drm_i915_private *dev_priv,
   3795 			       struct drm_i915_fence_reg *fence)
   3796 {
   3797 	return fence - dev_priv->fence_regs;
   3798 }
   3799 
   3800 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
   3801 					 struct drm_i915_fence_reg *fence,
   3802 					 bool enable)
   3803 {
   3804 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3805 	int reg = fence_number(dev_priv, fence);
   3806 
   3807 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
   3808 
   3809 	if (enable) {
   3810 		obj->fence_reg = reg;
   3811 		fence->obj = obj;
   3812 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
   3813 	} else {
   3814 		obj->fence_reg = I915_FENCE_REG_NONE;
   3815 		fence->obj = NULL;
   3816 		list_del_init(&fence->lru_list);
   3817 	}
   3818 	obj->fence_dirty = false;
   3819 }
   3820 
   3821 static int
   3822 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
   3823 {
   3824 	if (obj->last_fenced_seqno) {
   3825 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
   3826 		if (ret)
   3827 			return ret;
   3828 
   3829 		obj->last_fenced_seqno = 0;
   3830 	}
   3831 
   3832 	obj->fenced_gpu_access = false;
   3833 	return 0;
   3834 }
   3835 
   3836 int
   3837 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
   3838 {
   3839 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3840 	struct drm_i915_fence_reg *fence;
   3841 	int ret;
   3842 
   3843 	ret = i915_gem_object_wait_fence(obj);
   3844 	if (ret)
   3845 		return ret;
   3846 
   3847 	if (obj->fence_reg == I915_FENCE_REG_NONE)
   3848 		return 0;
   3849 
   3850 	fence = &dev_priv->fence_regs[obj->fence_reg];
   3851 
   3852 	i915_gem_object_fence_lost(obj);
   3853 	i915_gem_object_update_fence(obj, fence, false);
   3854 
   3855 	return 0;
   3856 }
   3857 
   3858 static struct drm_i915_fence_reg *
   3859 i915_find_fence_reg(struct drm_device *dev)
   3860 {
   3861 	struct drm_i915_private *dev_priv = dev->dev_private;
   3862 	struct drm_i915_fence_reg *reg, *avail;
   3863 	int i;
   3864 
   3865 	/* First try to find a free reg */
   3866 	avail = NULL;
   3867 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
   3868 		reg = &dev_priv->fence_regs[i];
   3869 		if (!reg->obj)
   3870 			return reg;
   3871 
   3872 		if (!reg->pin_count)
   3873 			avail = reg;
   3874 	}
   3875 
   3876 	if (avail == NULL)
   3877 		goto deadlock;
   3878 
   3879 	/* None available, try to steal one or wait for a user to finish */
   3880 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
   3881 		if (reg->pin_count)
   3882 			continue;
   3883 
   3884 		return reg;
   3885 	}
   3886 
   3887 deadlock:
   3888 	/* Wait for completion of pending flips which consume fences */
   3889 	if (intel_has_pending_fb_unpin(dev))
   3890 		return ERR_PTR(-EAGAIN);
   3891 
   3892 	return ERR_PTR(-EDEADLK);
   3893 }
   3894 
   3895 /**
   3896  * i915_gem_object_get_fence - set up fencing for an object
   3897  * @obj: object to map through a fence reg
   3898  *
   3899  * When mapping objects through the GTT, userspace wants to be able to write
   3900  * to them without having to worry about swizzling if the object is tiled.
   3901  * This function walks the fence regs looking for a free one for @obj,
   3902  * stealing one if it can't find any.
   3903  *
   3904  * It then sets up the reg based on the object's properties: address, pitch
   3905  * and tiling format.
   3906  *
   3907  * For an untiled surface, this removes any existing fence.
   3908  */
   3909 int
   3910 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
   3911 {
   3912 	struct drm_device *dev = obj->base.dev;
   3913 	struct drm_i915_private *dev_priv = dev->dev_private;
   3914 	bool enable = obj->tiling_mode != I915_TILING_NONE;
   3915 	struct drm_i915_fence_reg *reg;
   3916 	int ret;
   3917 
   3918 	/* Have we updated the tiling parameters upon the object and so
   3919 	 * will need to serialise the write to the associated fence register?
   3920 	 */
   3921 	if (obj->fence_dirty) {
   3922 		ret = i915_gem_object_wait_fence(obj);
   3923 		if (ret)
   3924 			return ret;
   3925 	}
   3926 
   3927 	/* Just update our place in the LRU if our fence is getting reused. */
   3928 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
   3929 		reg = &dev_priv->fence_regs[obj->fence_reg];
   3930 		if (!obj->fence_dirty) {
   3931 			list_move_tail(&reg->lru_list,
   3932 				       &dev_priv->mm.fence_list);
   3933 			return 0;
   3934 		}
   3935 	} else if (enable) {
   3936 		reg = i915_find_fence_reg(dev);
   3937 		if (IS_ERR(reg))
   3938 			return PTR_ERR(reg);
   3939 
   3940 		if (reg->obj) {
   3941 			struct drm_i915_gem_object *old = reg->obj;
   3942 
   3943 			ret = i915_gem_object_wait_fence(old);
   3944 			if (ret)
   3945 				return ret;
   3946 
   3947 			i915_gem_object_fence_lost(old);
   3948 		}
   3949 	} else
   3950 		return 0;
   3951 
   3952 	i915_gem_object_update_fence(obj, reg, enable);
   3953 
   3954 	return 0;
   3955 }
   3956 
   3957 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
   3958 				     struct drm_mm_node *gtt_space,
   3959 				     unsigned long cache_level)
   3960 {
   3961 	struct drm_mm_node *other;
   3962 
   3963 	/* On non-LLC machines we have to be careful when putting differing
   3964 	 * types of snoopable memory together to avoid the prefetcher
   3965 	 * crossing memory domains and dying.
   3966 	 */
   3967 	if (HAS_LLC(dev))
   3968 		return true;
   3969 
   3970 	if (!drm_mm_node_allocated(gtt_space))
   3971 		return true;
   3972 
   3973 	if (list_empty(&gtt_space->node_list))
   3974 		return true;
   3975 
   3976 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
   3977 	if (other->allocated && !other->hole_follows && other->color != cache_level)
   3978 		return false;
   3979 
   3980 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
   3981 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
   3982 		return false;
   3983 
   3984 	return true;
   3985 }
   3986 
   3987 static void i915_gem_verify_gtt(struct drm_device *dev)
   3988 {
   3989 #if WATCH_GTT
   3990 	struct drm_i915_private *dev_priv = dev->dev_private;
   3991 	struct drm_i915_gem_object *obj;
   3992 	int err = 0;
   3993 
   3994 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
   3995 		if (obj->gtt_space == NULL) {
   3996 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
   3997 			err++;
   3998 			continue;
   3999 		}
   4000 
   4001 		if (obj->cache_level != obj->gtt_space->color) {
   4002 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
   4003 			       i915_gem_obj_ggtt_offset(obj),
   4004 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
   4005 			       obj->cache_level,
   4006 			       obj->gtt_space->color);
   4007 			err++;
   4008 			continue;
   4009 		}
   4010 
   4011 		if (!i915_gem_valid_gtt_space(dev,
   4012 					      obj->gtt_space,
   4013 					      obj->cache_level)) {
   4014 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
   4015 			       i915_gem_obj_ggtt_offset(obj),
   4016 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
   4017 			       obj->cache_level);
   4018 			err++;
   4019 			continue;
   4020 		}
   4021 	}
   4022 
   4023 	WARN_ON(err);
   4024 #endif
   4025 }
   4026 
   4027 /**
   4028  * Finds free space in the GTT aperture and binds the object there.
   4029  */
   4030 static struct i915_vma *
   4031 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
   4032 			   struct i915_address_space *vm,
   4033 			   unsigned alignment,
   4034 			   uint64_t flags)
   4035 {
   4036 	struct drm_device *dev = obj->base.dev;
   4037 	struct drm_i915_private *dev_priv = dev->dev_private;
   4038 	u32 size, fence_size, fence_alignment, unfenced_alignment;
   4039 	unsigned long start =
   4040 		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
   4041 	unsigned long end =
   4042 		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
   4043 	struct i915_vma *vma;
   4044 	int ret;
   4045 
   4046 	fence_size = i915_gem_get_gtt_size(dev,
   4047 					   obj->base.size,
   4048 					   obj->tiling_mode);
   4049 	fence_alignment = i915_gem_get_gtt_alignment(dev,
   4050 						     obj->base.size,
   4051 						     obj->tiling_mode, true);
   4052 	unfenced_alignment =
   4053 		i915_gem_get_gtt_alignment(dev,
   4054 					   obj->base.size,
   4055 					   obj->tiling_mode, false);
   4056 
   4057 	if (alignment == 0)
   4058 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
   4059 						unfenced_alignment;
   4060 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
   4061 		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
   4062 		return ERR_PTR(-EINVAL);
   4063 	}
   4064 
   4065 	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
   4066 
   4067 	/* If the object is bigger than the entire aperture, reject it early
   4068 	 * before evicting everything in a vain attempt to find space.
   4069 	 */
   4070 	if (obj->base.size > end) {
   4071 		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
   4072 			  obj->base.size,
   4073 			  flags & PIN_MAPPABLE ? "mappable" : "total",
   4074 			  end);
   4075 		return ERR_PTR(-E2BIG);
   4076 	}
   4077 
   4078 	ret = i915_gem_object_get_pages(obj);
   4079 	if (ret)
   4080 		return ERR_PTR(ret);
   4081 
   4082 	i915_gem_object_pin_pages(obj);
   4083 
   4084 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
   4085 	if (IS_ERR(vma))
   4086 		goto err_unpin;
   4087 
   4088 search_free:
   4089 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
   4090 						  size, alignment,
   4091 						  obj->cache_level,
   4092 						  start, end,
   4093 						  DRM_MM_SEARCH_DEFAULT,
   4094 						  DRM_MM_CREATE_DEFAULT);
   4095 	if (ret) {
   4096 		ret = i915_gem_evict_something(dev, vm, size, alignment,
   4097 					       obj->cache_level,
   4098 					       start, end,
   4099 					       flags);
   4100 		if (ret == 0)
   4101 			goto search_free;
   4102 
   4103 		goto err_free_vma;
   4104 	}
   4105 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
   4106 					      obj->cache_level))) {
   4107 		ret = -EINVAL;
   4108 		goto err_remove_node;
   4109 	}
   4110 
   4111 	ret = i915_gem_gtt_prepare_object(obj);
   4112 	if (ret)
   4113 		goto err_remove_node;
   4114 
   4115 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
   4116 	list_add_tail(&vma->mm_list, &vm->inactive_list);
   4117 
   4118 	if (i915_is_ggtt(vm)) {
   4119 		bool mappable, fenceable;
   4120 
   4121 		fenceable = (vma->node.size == fence_size &&
   4122 			     (vma->node.start & (fence_alignment - 1)) == 0);
   4123 
   4124 		mappable = (vma->node.start + obj->base.size <=
   4125 			    dev_priv->gtt.mappable_end);
   4126 
   4127 		obj->map_and_fenceable = mappable && fenceable;
   4128 	}
   4129 
   4130 	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
   4131 
   4132 	trace_i915_vma_bind(vma, flags);
   4133 	vma->bind_vma(vma, obj->cache_level,
   4134 		      flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
   4135 
   4136 	i915_gem_verify_gtt(dev);
   4137 	return vma;
   4138 
   4139 err_remove_node:
   4140 	drm_mm_remove_node(&vma->node);
   4141 err_free_vma:
   4142 	i915_gem_vma_destroy(vma);
   4143 	vma = ERR_PTR(ret);
   4144 err_unpin:
   4145 	i915_gem_object_unpin_pages(obj);
   4146 	return vma;
   4147 }
   4148 
   4149 bool
   4150 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
   4151 			bool force)
   4152 {
   4153 	/* If we don't have a page list set up, then we're not pinned
   4154 	 * to GPU, and we can ignore the cache flush because it'll happen
   4155 	 * again at bind time.
   4156 	 */
   4157 	if (obj->pages == NULL)
   4158 		return false;
   4159 
   4160 	/*
   4161 	 * Stolen memory is always coherent with the GPU as it is explicitly
   4162 	 * marked as wc by the system, or the system is cache-coherent.
   4163 	 */
   4164 	if (obj->stolen)
   4165 		return false;
   4166 
   4167 	/* If the GPU is snooping the contents of the CPU cache,
   4168 	 * we do not need to manually clear the CPU cache lines.  However,
   4169 	 * the caches are only snooped when the render cache is
   4170 	 * flushed/invalidated.  As we always have to emit invalidations
   4171 	 * and flushes when moving into and out of the RENDER domain, correct
   4172 	 * snooping behaviour occurs naturally as the result of our domain
   4173 	 * tracking.
   4174 	 */
   4175 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
   4176 		return false;
   4177 
   4178 	trace_i915_gem_object_clflush(obj);
   4179 #ifdef __NetBSD__
   4180 	drm_clflush_pglist(&obj->igo_pageq);
   4181 #else
   4182 	drm_clflush_sg(obj->pages);
   4183 #endif
   4184 
   4185 	return true;
   4186 }
   4187 
   4188 /** Flushes the GTT write domain for the object if it's dirty. */
   4189 static void
   4190 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
   4191 {
   4192 	uint32_t old_write_domain;
   4193 
   4194 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
   4195 		return;
   4196 
   4197 	/* No actual flushing is required for the GTT write domain.  Writes
   4198 	 * to it immediately go to main memory as far as we know, so there's
   4199 	 * no chipset flush.  It also doesn't land in render cache.
   4200 	 *
   4201 	 * However, we do have to enforce the order so that all writes through
   4202 	 * the GTT land before any writes to the device, such as updates to
   4203 	 * the GATT itself.
   4204 	 */
   4205 	wmb();
   4206 
   4207 	old_write_domain = obj->base.write_domain;
   4208 	obj->base.write_domain = 0;
   4209 
   4210 	trace_i915_gem_object_change_domain(obj,
   4211 					    obj->base.read_domains,
   4212 					    old_write_domain);
   4213 }
   4214 
   4215 /** Flushes the CPU write domain for the object if it's dirty. */
   4216 static void
   4217 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
   4218 				       bool force)
   4219 {
   4220 	uint32_t old_write_domain;
   4221 
   4222 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
   4223 		return;
   4224 
   4225 	if (i915_gem_clflush_object(obj, force))
   4226 		i915_gem_chipset_flush(obj->base.dev);
   4227 
   4228 	old_write_domain = obj->base.write_domain;
   4229 	obj->base.write_domain = 0;
   4230 
   4231 	trace_i915_gem_object_change_domain(obj,
   4232 					    obj->base.read_domains,
   4233 					    old_write_domain);
   4234 }
   4235 
   4236 /**
   4237  * Moves a single object to the GTT read, and possibly write domain.
   4238  *
   4239  * This function returns when the move is complete, including waiting on
   4240  * flushes to occur.
   4241  */
   4242 int
   4243 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
   4244 {
   4245 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   4246 	uint32_t old_write_domain, old_read_domains;
   4247 	int ret;
   4248 
   4249 	/* Not valid to be called on unbound objects. */
   4250 	if (!i915_gem_obj_bound_any(obj))
   4251 		return -EINVAL;
   4252 
   4253 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
   4254 		return 0;
   4255 
   4256 	ret = i915_gem_object_wait_rendering(obj, !write);
   4257 	if (ret)
   4258 		return ret;
   4259 
   4260 	i915_gem_object_flush_cpu_write_domain(obj, false);
   4261 
   4262 	/* Serialise direct access to this object with the barriers for
   4263 	 * coherent writes from the GPU, by effectively invalidating the
   4264 	 * GTT domain upon first access.
   4265 	 */
   4266 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   4267 		mb();
   4268 
   4269 	old_write_domain = obj->base.write_domain;
   4270 	old_read_domains = obj->base.read_domains;
   4271 
   4272 	/* It should now be out of any other write domains, and we can update
   4273 	 * the domain values for our changes.
   4274 	 */
   4275 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
   4276 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4277 	if (write) {
   4278 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
   4279 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
   4280 		obj->dirty = 1;
   4281 	}
   4282 
   4283 	trace_i915_gem_object_change_domain(obj,
   4284 					    old_read_domains,
   4285 					    old_write_domain);
   4286 
   4287 	/* And bump the LRU for this access */
   4288 	if (i915_gem_object_is_inactive(obj)) {
   4289 		struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
   4290 		if (vma)
   4291 			list_move_tail(&vma->mm_list,
   4292 				       &dev_priv->gtt.base.inactive_list);
   4293 
   4294 	}
   4295 
   4296 	return 0;
   4297 }
   4298 
   4299 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
   4300 				    enum i915_cache_level cache_level)
   4301 {
   4302 	struct drm_device *dev = obj->base.dev;
   4303 	struct i915_vma *vma, *next;
   4304 	int ret;
   4305 
   4306 	if (obj->cache_level == cache_level)
   4307 		return 0;
   4308 
   4309 	if (i915_gem_obj_is_pinned(obj)) {
   4310 		DRM_DEBUG("can not change the cache level of pinned objects\n");
   4311 		return -EBUSY;
   4312 	}
   4313 
   4314 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   4315 		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
   4316 			ret = i915_vma_unbind(vma);
   4317 			if (ret)
   4318 				return ret;
   4319 		}
   4320 	}
   4321 
   4322 	if (i915_gem_obj_bound_any(obj)) {
   4323 		ret = i915_gem_object_finish_gpu(obj);
   4324 		if (ret)
   4325 			return ret;
   4326 
   4327 		i915_gem_object_finish_gtt(obj);
   4328 
   4329 		/* Before SandyBridge, you could not use tiling or fence
   4330 		 * registers with snooped memory, so relinquish any fences
   4331 		 * currently pointing to our region in the aperture.
   4332 		 */
   4333 		if (INTEL_INFO(dev)->gen < 6) {
   4334 			ret = i915_gem_object_put_fence(obj);
   4335 			if (ret)
   4336 				return ret;
   4337 		}
   4338 
   4339 		list_for_each_entry(vma, &obj->vma_list, vma_link)
   4340 			if (drm_mm_node_allocated(&vma->node))
   4341 				vma->bind_vma(vma, cache_level,
   4342 					      obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
   4343 	}
   4344 
   4345 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   4346 		vma->node.color = cache_level;
   4347 	obj->cache_level = cache_level;
   4348 
   4349 	if (cpu_write_needs_clflush(obj)) {
   4350 		u32 old_read_domains, old_write_domain;
   4351 
   4352 		/* If we're coming from LLC cached, then we haven't
   4353 		 * actually been tracking whether the data is in the
   4354 		 * CPU cache or not, since we only allow one bit set
   4355 		 * in obj->write_domain and have been skipping the clflushes.
   4356 		 * Just set it to the CPU cache for now.
   4357 		 */
   4358 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
   4359 
   4360 		old_read_domains = obj->base.read_domains;
   4361 		old_write_domain = obj->base.write_domain;
   4362 
   4363 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4364 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4365 
   4366 		trace_i915_gem_object_change_domain(obj,
   4367 						    old_read_domains,
   4368 						    old_write_domain);
   4369 	}
   4370 
   4371 	i915_gem_verify_gtt(dev);
   4372 	return 0;
   4373 }
   4374 
   4375 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
   4376 			       struct drm_file *file)
   4377 {
   4378 	struct drm_i915_gem_caching *args = data;
   4379 	struct drm_gem_object *gobj;
   4380 	struct drm_i915_gem_object *obj;
   4381 	int ret;
   4382 
   4383 	ret = i915_mutex_lock_interruptible(dev);
   4384 	if (ret)
   4385 		return ret;
   4386 
   4387 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4388 	if (gobj == NULL) {
   4389 		ret = -ENOENT;
   4390 		goto unlock;
   4391 	}
   4392 	obj = to_intel_bo(gobj);
   4393 
   4394 	switch (obj->cache_level) {
   4395 	case I915_CACHE_LLC:
   4396 	case I915_CACHE_L3_LLC:
   4397 		args->caching = I915_CACHING_CACHED;
   4398 		break;
   4399 
   4400 	case I915_CACHE_WT:
   4401 		args->caching = I915_CACHING_DISPLAY;
   4402 		break;
   4403 
   4404 	default:
   4405 		args->caching = I915_CACHING_NONE;
   4406 		break;
   4407 	}
   4408 
   4409 	drm_gem_object_unreference(&obj->base);
   4410 unlock:
   4411 	mutex_unlock(&dev->struct_mutex);
   4412 	return ret;
   4413 }
   4414 
   4415 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
   4416 			       struct drm_file *file)
   4417 {
   4418 	struct drm_i915_gem_caching *args = data;
   4419 	struct drm_gem_object *gobj;
   4420 	struct drm_i915_gem_object *obj;
   4421 	enum i915_cache_level level;
   4422 	int ret;
   4423 
   4424 	switch (args->caching) {
   4425 	case I915_CACHING_NONE:
   4426 		level = I915_CACHE_NONE;
   4427 		break;
   4428 	case I915_CACHING_CACHED:
   4429 		level = I915_CACHE_LLC;
   4430 		break;
   4431 	case I915_CACHING_DISPLAY:
   4432 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
   4433 		break;
   4434 	default:
   4435 		return -EINVAL;
   4436 	}
   4437 
   4438 	ret = i915_mutex_lock_interruptible(dev);
   4439 	if (ret)
   4440 		return ret;
   4441 
   4442 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4443 	if (gobj == NULL) {
   4444 		ret = -ENOENT;
   4445 		goto unlock;
   4446 	}
   4447 	obj = to_intel_bo(gobj);
   4448 
   4449 	ret = i915_gem_object_set_cache_level(obj, level);
   4450 
   4451 	drm_gem_object_unreference(&obj->base);
   4452 unlock:
   4453 	mutex_unlock(&dev->struct_mutex);
   4454 	return ret;
   4455 }
   4456 
   4457 static bool is_pin_display(struct drm_i915_gem_object *obj)
   4458 {
   4459 	/* There are 3 sources that pin objects:
   4460 	 *   1. The display engine (scanouts, sprites, cursors);
   4461 	 *   2. Reservations for execbuffer;
   4462 	 *   3. The user.
   4463 	 *
   4464 	 * We can ignore reservations as we hold the struct_mutex and
   4465 	 * are only called outside of the reservation path.  The user
   4466 	 * can only increment pin_count once, and so if after
   4467 	 * subtracting the potential reference by the user, any pin_count
   4468 	 * remains, it must be due to another use by the display engine.
   4469 	 */
   4470 	return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
   4471 }
   4472 
   4473 /*
   4474  * Prepare buffer for display plane (scanout, cursors, etc).
   4475  * Can be called from an uninterruptible phase (modesetting) and allows
   4476  * any flushes to be pipelined (for pageflips).
   4477  */
   4478 int
   4479 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
   4480 				     u32 alignment,
   4481 				     struct intel_ring_buffer *pipelined)
   4482 {
   4483 	u32 old_read_domains, old_write_domain;
   4484 	int ret;
   4485 
   4486 	if (pipelined != obj->ring) {
   4487 		ret = i915_gem_object_sync(obj, pipelined);
   4488 		if (ret)
   4489 			return ret;
   4490 	}
   4491 
   4492 	/* Mark the pin_display early so that we account for the
   4493 	 * display coherency whilst setting up the cache domains.
   4494 	 */
   4495 	obj->pin_display = true;
   4496 
   4497 	/* The display engine is not coherent with the LLC cache on gen6.  As
   4498 	 * a result, we make sure that the pinning that is about to occur is
   4499 	 * done with uncached PTEs. This is lowest common denominator for all
   4500 	 * chipsets.
   4501 	 *
   4502 	 * However for gen6+, we could do better by using the GFDT bit instead
   4503 	 * of uncaching, which would allow us to flush all the LLC-cached data
   4504 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
   4505 	 */
   4506 	ret = i915_gem_object_set_cache_level(obj,
   4507 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
   4508 	if (ret)
   4509 		goto err_unpin_display;
   4510 
   4511 	/* As the user may map the buffer once pinned in the display plane
   4512 	 * (e.g. libkms for the bootup splash), we have to ensure that we
   4513 	 * always use map_and_fenceable for all scanout buffers.
   4514 	 */
   4515 	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
   4516 	if (ret)
   4517 		goto err_unpin_display;
   4518 
   4519 	i915_gem_object_flush_cpu_write_domain(obj, true);
   4520 
   4521 	old_write_domain = obj->base.write_domain;
   4522 	old_read_domains = obj->base.read_domains;
   4523 
   4524 	/* It should now be out of any other write domains, and we can update
   4525 	 * the domain values for our changes.
   4526 	 */
   4527 	obj->base.write_domain = 0;
   4528 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4529 
   4530 	trace_i915_gem_object_change_domain(obj,
   4531 					    old_read_domains,
   4532 					    old_write_domain);
   4533 
   4534 	return 0;
   4535 
   4536 err_unpin_display:
   4537 	obj->pin_display = is_pin_display(obj);
   4538 	return ret;
   4539 }
   4540 
   4541 void
   4542 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
   4543 {
   4544 	i915_gem_object_ggtt_unpin(obj);
   4545 	obj->pin_display = is_pin_display(obj);
   4546 }
   4547 
   4548 int
   4549 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
   4550 {
   4551 	int ret;
   4552 
   4553 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
   4554 		return 0;
   4555 
   4556 	ret = i915_gem_object_wait_rendering(obj, false);
   4557 	if (ret)
   4558 		return ret;
   4559 
   4560 	/* Ensure that we invalidate the GPU's caches and TLBs. */
   4561 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
   4562 	return 0;
   4563 }
   4564 
   4565 /**
   4566  * Moves a single object to the CPU read, and possibly write domain.
   4567  *
   4568  * This function returns when the move is complete, including waiting on
   4569  * flushes to occur.
   4570  */
   4571 int
   4572 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
   4573 {
   4574 	uint32_t old_write_domain, old_read_domains;
   4575 	int ret;
   4576 
   4577 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
   4578 		return 0;
   4579 
   4580 	ret = i915_gem_object_wait_rendering(obj, !write);
   4581 	if (ret)
   4582 		return ret;
   4583 
   4584 	i915_gem_object_flush_gtt_write_domain(obj);
   4585 
   4586 	old_write_domain = obj->base.write_domain;
   4587 	old_read_domains = obj->base.read_domains;
   4588 
   4589 	/* Flush the CPU cache if it's still invalid. */
   4590 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
   4591 		i915_gem_clflush_object(obj, false);
   4592 
   4593 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
   4594 	}
   4595 
   4596 	/* It should now be out of any other write domains, and we can update
   4597 	 * the domain values for our changes.
   4598 	 */
   4599 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
   4600 
   4601 	/* If we're writing through the CPU, then the GPU read domains will
   4602 	 * need to be invalidated at next use.
   4603 	 */
   4604 	if (write) {
   4605 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4606 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4607 	}
   4608 
   4609 	trace_i915_gem_object_change_domain(obj,
   4610 					    old_read_domains,
   4611 					    old_write_domain);
   4612 
   4613 	return 0;
   4614 }
   4615 
   4616 /* Throttle our rendering by waiting until the ring has completed our requests
   4617  * emitted over 20 msec ago.
   4618  *
   4619  * Note that if we were to use the current jiffies each time around the loop,
   4620  * we wouldn't escape the function with any frames outstanding if the time to
   4621  * render a frame was over 20ms.
   4622  *
   4623  * This should get us reasonable parallelism between CPU and GPU but also
   4624  * relatively low latency when blocking on a particular request to finish.
   4625  */
   4626 static int
   4627 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
   4628 {
   4629 	struct drm_i915_private *dev_priv = dev->dev_private;
   4630 	struct drm_i915_file_private *file_priv = file->driver_priv;
   4631 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
   4632 	struct drm_i915_gem_request *request;
   4633 	struct intel_ring_buffer *ring = NULL;
   4634 	unsigned reset_counter;
   4635 	u32 seqno = 0;
   4636 	int ret;
   4637 
   4638 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
   4639 	if (ret)
   4640 		return ret;
   4641 
   4642 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
   4643 	if (ret)
   4644 		return ret;
   4645 
   4646 	spin_lock(&file_priv->mm.lock);
   4647 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
   4648 		if (time_after_eq(request->emitted_jiffies, recent_enough))
   4649 			break;
   4650 
   4651 		ring = request->ring;
   4652 		seqno = request->seqno;
   4653 	}
   4654 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   4655 	spin_unlock(&file_priv->mm.lock);
   4656 
   4657 	if (seqno == 0)
   4658 		return 0;
   4659 
   4660 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
   4661 	if (ret == 0)
   4662 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
   4663 
   4664 	return ret;
   4665 }
   4666 
   4667 static bool
   4668 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
   4669 {
   4670 	struct drm_i915_gem_object *obj = vma->obj;
   4671 
   4672 	if (alignment &&
   4673 	    vma->node.start & (alignment - 1))
   4674 		return true;
   4675 
   4676 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
   4677 		return true;
   4678 
   4679 	if (flags & PIN_OFFSET_BIAS &&
   4680 	    vma->node.start < (flags & PIN_OFFSET_MASK))
   4681 		return true;
   4682 
   4683 	return false;
   4684 }
   4685 
   4686 int
   4687 i915_gem_object_pin(struct drm_i915_gem_object *obj,
   4688 		    struct i915_address_space *vm,
   4689 		    uint32_t alignment,
   4690 		    uint64_t flags)
   4691 {
   4692 	struct i915_vma *vma;
   4693 	int ret;
   4694 
   4695 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
   4696 		return -EINVAL;
   4697 
   4698 	vma = i915_gem_obj_to_vma(obj, vm);
   4699 	if (vma) {
   4700 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
   4701 			return -EBUSY;
   4702 
   4703 		if (i915_vma_misplaced(vma, alignment, flags)) {
   4704 			WARN(vma->pin_count,
   4705 			     "bo is already pinned with incorrect alignment:"
   4706 			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
   4707 			     " obj->map_and_fenceable=%d\n",
   4708 			     i915_gem_obj_offset(obj, vm), alignment,
   4709 			     !!(flags & PIN_MAPPABLE),
   4710 			     obj->map_and_fenceable);
   4711 			ret = i915_vma_unbind(vma);
   4712 			if (ret)
   4713 				return ret;
   4714 
   4715 			vma = NULL;
   4716 		}
   4717 	}
   4718 
   4719 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
   4720 		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
   4721 		if (IS_ERR(vma))
   4722 			return PTR_ERR(vma);
   4723 	}
   4724 
   4725 	if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
   4726 		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
   4727 
   4728 	vma->pin_count++;
   4729 	if (flags & PIN_MAPPABLE)
   4730 		obj->pin_mappable |= true;
   4731 
   4732 	return 0;
   4733 }
   4734 
   4735 void
   4736 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
   4737 {
   4738 	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
   4739 
   4740 	BUG_ON(!vma);
   4741 	BUG_ON(vma->pin_count == 0);
   4742 	BUG_ON(!i915_gem_obj_ggtt_bound(obj));
   4743 
   4744 	if (--vma->pin_count == 0)
   4745 		obj->pin_mappable = false;
   4746 }
   4747 
   4748 int
   4749 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
   4750 		   struct drm_file *file)
   4751 {
   4752 	struct drm_i915_gem_pin *args = data;
   4753 	struct drm_gem_object *gobj;
   4754 	struct drm_i915_gem_object *obj;
   4755 	int ret;
   4756 
   4757 	if (INTEL_INFO(dev)->gen >= 6)
   4758 		return -ENODEV;
   4759 
   4760 	ret = i915_mutex_lock_interruptible(dev);
   4761 	if (ret)
   4762 		return ret;
   4763 
   4764 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4765 	if (gobj == NULL) {
   4766 		ret = -ENOENT;
   4767 		goto unlock;
   4768 	}
   4769 	obj = to_intel_bo(gobj);
   4770 
   4771 	if (obj->madv != I915_MADV_WILLNEED) {
   4772 		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
   4773 		ret = -EFAULT;
   4774 		goto out;
   4775 	}
   4776 
   4777 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
   4778 		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
   4779 			  args->handle);
   4780 		ret = -EINVAL;
   4781 		goto out;
   4782 	}
   4783 
   4784 	if (obj->user_pin_count == ULONG_MAX) {
   4785 		ret = -EBUSY;
   4786 		goto out;
   4787 	}
   4788 
   4789 	if (obj->user_pin_count == 0) {
   4790 		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
   4791 		if (ret)
   4792 			goto out;
   4793 	}
   4794 
   4795 	obj->user_pin_count++;
   4796 	obj->pin_filp = file;
   4797 
   4798 	args->offset = i915_gem_obj_ggtt_offset(obj);
   4799 out:
   4800 	drm_gem_object_unreference(&obj->base);
   4801 unlock:
   4802 	mutex_unlock(&dev->struct_mutex);
   4803 	return ret;
   4804 }
   4805 
   4806 int
   4807 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
   4808 		     struct drm_file *file)
   4809 {
   4810 	struct drm_i915_gem_pin *args = data;
   4811 	struct drm_gem_object *gobj;
   4812 	struct drm_i915_gem_object *obj;
   4813 	int ret;
   4814 
   4815 	ret = i915_mutex_lock_interruptible(dev);
   4816 	if (ret)
   4817 		return ret;
   4818 
   4819 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4820 	if (gobj == NULL) {
   4821 		ret = -ENOENT;
   4822 		goto unlock;
   4823 	}
   4824 	obj = to_intel_bo(gobj);
   4825 
   4826 	if (obj->pin_filp != file) {
   4827 		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
   4828 			  args->handle);
   4829 		ret = -EINVAL;
   4830 		goto out;
   4831 	}
   4832 	obj->user_pin_count--;
   4833 	if (obj->user_pin_count == 0) {
   4834 		obj->pin_filp = NULL;
   4835 		i915_gem_object_ggtt_unpin(obj);
   4836 	}
   4837 
   4838 out:
   4839 	drm_gem_object_unreference(&obj->base);
   4840 unlock:
   4841 	mutex_unlock(&dev->struct_mutex);
   4842 	return ret;
   4843 }
   4844 
   4845 int
   4846 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
   4847 		    struct drm_file *file)
   4848 {
   4849 	struct drm_i915_gem_busy *args = data;
   4850 	struct drm_gem_object *gobj;
   4851 	struct drm_i915_gem_object *obj;
   4852 	int ret;
   4853 
   4854 	ret = i915_mutex_lock_interruptible(dev);
   4855 	if (ret)
   4856 		return ret;
   4857 
   4858 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4859 	if (gobj == NULL) {
   4860 		ret = -ENOENT;
   4861 		goto unlock;
   4862 	}
   4863 	obj = to_intel_bo(gobj);
   4864 
   4865 	/* Count all active objects as busy, even if they are currently not used
   4866 	 * by the gpu. Users of this interface expect objects to eventually
   4867 	 * become non-busy without any further actions, therefore emit any
   4868 	 * necessary flushes here.
   4869 	 */
   4870 	ret = i915_gem_object_flush_active(obj);
   4871 
   4872 	args->busy = obj->active;
   4873 	if (obj->ring) {
   4874 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
   4875 		args->busy |= intel_ring_flag(obj->ring) << 16;
   4876 	}
   4877 
   4878 	drm_gem_object_unreference(&obj->base);
   4879 unlock:
   4880 	mutex_unlock(&dev->struct_mutex);
   4881 	return ret;
   4882 }
   4883 
   4884 int
   4885 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
   4886 			struct drm_file *file_priv)
   4887 {
   4888 	return i915_gem_ring_throttle(dev, file_priv);
   4889 }
   4890 
   4891 int
   4892 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   4893 		       struct drm_file *file_priv)
   4894 {
   4895 	struct drm_i915_gem_madvise *args = data;
   4896 	struct drm_gem_object *gobj;
   4897 	struct drm_i915_gem_object *obj;
   4898 	int ret;
   4899 
   4900 	switch (args->madv) {
   4901 	case I915_MADV_DONTNEED:
   4902 	case I915_MADV_WILLNEED:
   4903 	    break;
   4904 	default:
   4905 	    return -EINVAL;
   4906 	}
   4907 
   4908 	ret = i915_mutex_lock_interruptible(dev);
   4909 	if (ret)
   4910 		return ret;
   4911 
   4912 	gobj = drm_gem_object_lookup(dev, file_priv, args->handle);
   4913 	if (gobj == NULL) {
   4914 		ret = -ENOENT;
   4915 		goto unlock;
   4916 	}
   4917 	obj = to_intel_bo(gobj);
   4918 
   4919 	if (i915_gem_obj_is_pinned(obj)) {
   4920 		ret = -EINVAL;
   4921 		goto out;
   4922 	}
   4923 
   4924 	if (obj->madv != __I915_MADV_PURGED)
   4925 		obj->madv = args->madv;
   4926 
   4927 	/* if the object is no longer attached, discard its backing storage */
   4928 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
   4929 		i915_gem_object_truncate(obj);
   4930 
   4931 	args->retained = obj->madv != __I915_MADV_PURGED;
   4932 
   4933 out:
   4934 	drm_gem_object_unreference(&obj->base);
   4935 unlock:
   4936 	mutex_unlock(&dev->struct_mutex);
   4937 	return ret;
   4938 }
   4939 
   4940 void i915_gem_object_init(struct drm_i915_gem_object *obj,
   4941 			  const struct drm_i915_gem_object_ops *ops)
   4942 {
   4943 	INIT_LIST_HEAD(&obj->global_list);
   4944 	INIT_LIST_HEAD(&obj->ring_list);
   4945 	INIT_LIST_HEAD(&obj->obj_exec_link);
   4946 	INIT_LIST_HEAD(&obj->vma_list);
   4947 
   4948 	obj->ops = ops;
   4949 
   4950 	obj->fence_reg = I915_FENCE_REG_NONE;
   4951 	obj->madv = I915_MADV_WILLNEED;
   4952 	/* Avoid an unnecessary call to unbind on the first bind. */
   4953 	obj->map_and_fenceable = true;
   4954 
   4955 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
   4956 }
   4957 
   4958 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
   4959 	.get_pages = i915_gem_object_get_pages_gtt,
   4960 	.put_pages = i915_gem_object_put_pages_gtt,
   4961 };
   4962 
   4963 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
   4964 						  size_t size)
   4965 {
   4966 #ifdef __NetBSD__
   4967 	struct drm_i915_private *const dev_priv = dev->dev_private;
   4968 #endif
   4969 	struct drm_i915_gem_object *obj;
   4970 #ifndef __NetBSD__
   4971 	struct address_space *mapping;
   4972 	gfp_t mask;
   4973 #endif
   4974 
   4975 	obj = i915_gem_object_alloc(dev);
   4976 	if (obj == NULL)
   4977 		return NULL;
   4978 
   4979 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
   4980 		i915_gem_object_free(obj);
   4981 		return NULL;
   4982 	}
   4983 
   4984 #ifdef __NetBSD__
   4985 	uao_set_pgfl(obj->base.gemo_shm_uao, dev_priv->gtt.pgfl);
   4986 #else
   4987 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
   4988 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
   4989 		/* 965gm cannot relocate objects above 4GiB. */
   4990 		mask &= ~__GFP_HIGHMEM;
   4991 		mask |= __GFP_DMA32;
   4992 	}
   4993 
   4994 	mapping = file_inode(obj->base.filp)->i_mapping;
   4995 	mapping_set_gfp_mask(mapping, mask);
   4996 #endif
   4997 
   4998 	i915_gem_object_init(obj, &i915_gem_object_ops);
   4999 
   5000 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   5001 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   5002 
   5003 	if (HAS_LLC(dev)) {
   5004 		/* On some devices, we can have the GPU use the LLC (the CPU
   5005 		 * cache) for about a 10% performance improvement
   5006 		 * compared to uncached.  Graphics requests other than
   5007 		 * display scanout are coherent with the CPU in
   5008 		 * accessing this cache.  This means in this mode we
   5009 		 * don't need to clflush on the CPU side, and on the
   5010 		 * GPU side we only need to flush internal caches to
   5011 		 * get data visible to the CPU.
   5012 		 *
   5013 		 * However, we maintain the display planes as UC, and so
   5014 		 * need to rebind when first used as such.
   5015 		 */
   5016 		obj->cache_level = I915_CACHE_LLC;
   5017 	} else
   5018 		obj->cache_level = I915_CACHE_NONE;
   5019 
   5020 	trace_i915_gem_object_create(obj);
   5021 
   5022 	return obj;
   5023 }
   5024 
   5025 void i915_gem_free_object(struct drm_gem_object *gem_obj)
   5026 {
   5027 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   5028 	struct drm_device *dev = obj->base.dev;
   5029 	struct drm_i915_private *dev_priv = dev->dev_private;
   5030 	struct i915_vma *vma, *next;
   5031 
   5032 	intel_runtime_pm_get(dev_priv);
   5033 
   5034 	trace_i915_gem_object_destroy(obj);
   5035 
   5036 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   5037 		int ret;
   5038 
   5039 		vma->pin_count = 0;
   5040 		ret = i915_vma_unbind(vma);
   5041 		if (WARN_ON(ret == -ERESTARTSYS)) {
   5042 			bool was_interruptible;
   5043 
   5044 			was_interruptible = dev_priv->mm.interruptible;
   5045 			dev_priv->mm.interruptible = false;
   5046 
   5047 			WARN_ON(i915_vma_unbind(vma));
   5048 
   5049 			dev_priv->mm.interruptible = was_interruptible;
   5050 		}
   5051 	}
   5052 
   5053 	i915_gem_object_detach_phys(obj);
   5054 
   5055 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
   5056 	 * before progressing. */
   5057 	if (obj->stolen)
   5058 		i915_gem_object_unpin_pages(obj);
   5059 
   5060 	if (WARN_ON(obj->pages_pin_count))
   5061 		obj->pages_pin_count = 0;
   5062 	i915_gem_object_put_pages(obj);
   5063 	i915_gem_object_free_mmap_offset(obj);
   5064 	i915_gem_object_release_stolen(obj);
   5065 
   5066 	BUG_ON(obj->pages);
   5067 
   5068 #ifndef __NetBSD__		/* XXX drm prime */
   5069 	if (obj->base.import_attach)
   5070 		drm_prime_gem_destroy(&obj->base, NULL);
   5071 #endif
   5072 
   5073 	drm_gem_object_release(&obj->base);
   5074 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
   5075 
   5076 	kfree(obj->bit_17);
   5077 	i915_gem_object_free(obj);
   5078 
   5079 	intel_runtime_pm_put(dev_priv);
   5080 }
   5081 
   5082 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
   5083 				     struct i915_address_space *vm)
   5084 {
   5085 	struct i915_vma *vma;
   5086 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   5087 		if (vma->vm == vm)
   5088 			return vma;
   5089 
   5090 	return NULL;
   5091 }
   5092 
   5093 void i915_gem_vma_destroy(struct i915_vma *vma)
   5094 {
   5095 	WARN_ON(vma->node.allocated);
   5096 
   5097 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
   5098 	if (!list_empty(&vma->exec_list))
   5099 		return;
   5100 
   5101 	list_del(&vma->vma_link);
   5102 
   5103 	kfree(vma);
   5104 }
   5105 
   5106 int
   5107 i915_gem_suspend(struct drm_device *dev)
   5108 {
   5109 	struct drm_i915_private *dev_priv = dev->dev_private;
   5110 	int ret = 0;
   5111 
   5112 	mutex_lock(&dev->struct_mutex);
   5113 	if (dev_priv->ums.mm_suspended)
   5114 		goto err;
   5115 
   5116 	ret = i915_gpu_idle(dev);
   5117 	if (ret)
   5118 		goto err;
   5119 
   5120 	i915_gem_retire_requests(dev);
   5121 
   5122 	/* Under UMS, be paranoid and evict. */
   5123 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   5124 		i915_gem_evict_everything(dev);
   5125 
   5126 	i915_kernel_lost_context(dev);
   5127 	i915_gem_cleanup_ringbuffer(dev);
   5128 
   5129 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
   5130 	 * We need to replace this with a semaphore, or something.
   5131 	 * And not confound ums.mm_suspended!
   5132 	 */
   5133 	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
   5134 							     DRIVER_MODESET);
   5135 	mutex_unlock(&dev->struct_mutex);
   5136 
   5137 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
   5138 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
   5139 	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
   5140 
   5141 	return 0;
   5142 
   5143 err:
   5144 	mutex_unlock(&dev->struct_mutex);
   5145 	return ret;
   5146 }
   5147 
   5148 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
   5149 {
   5150 	struct drm_device *dev = ring->dev;
   5151 	struct drm_i915_private *dev_priv = dev->dev_private;
   5152 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
   5153 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
   5154 	int i, ret;
   5155 
   5156 	if (!HAS_L3_DPF(dev) || !remap_info)
   5157 		return 0;
   5158 
   5159 	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
   5160 	if (ret)
   5161 		return ret;
   5162 
   5163 	/*
   5164 	 * Note: We do not worry about the concurrent register cacheline hang
   5165 	 * here because no other code should access these registers other than
   5166 	 * at initialization time.
   5167 	 */
   5168 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
   5169 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
   5170 		intel_ring_emit(ring, reg_base + i);
   5171 		intel_ring_emit(ring, remap_info[i/4]);
   5172 	}
   5173 
   5174 	intel_ring_advance(ring);
   5175 
   5176 	return ret;
   5177 }
   5178 
   5179 void i915_gem_init_swizzling(struct drm_device *dev)
   5180 {
   5181 	struct drm_i915_private *dev_priv = dev->dev_private;
   5182 
   5183 	if (INTEL_INFO(dev)->gen < 5 ||
   5184 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
   5185 		return;
   5186 
   5187 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
   5188 				 DISP_TILE_SURFACE_SWIZZLING);
   5189 
   5190 	if (IS_GEN5(dev))
   5191 		return;
   5192 
   5193 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
   5194 	if (IS_GEN6(dev))
   5195 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
   5196 	else if (IS_GEN7(dev))
   5197 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
   5198 	else if (IS_GEN8(dev))
   5199 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
   5200 	else
   5201 		BUG();
   5202 }
   5203 
   5204 static bool
   5205 intel_enable_blt(struct drm_device *dev)
   5206 {
   5207 	if (!HAS_BLT(dev))
   5208 		return false;
   5209 
   5210 	/* The blitter was dysfunctional on early prototypes */
   5211 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
   5212 		DRM_INFO("BLT not supported on this pre-production hardware;"
   5213 			 " graphics performance will be degraded.\n");
   5214 		return false;
   5215 	}
   5216 
   5217 	return true;
   5218 }
   5219 
   5220 static int i915_gem_init_rings(struct drm_device *dev)
   5221 {
   5222 	struct drm_i915_private *dev_priv = dev->dev_private;
   5223 	int ret;
   5224 
   5225 	ret = intel_init_render_ring_buffer(dev);
   5226 	if (ret)
   5227 		return ret;
   5228 
   5229 	if (HAS_BSD(dev)) {
   5230 		ret = intel_init_bsd_ring_buffer(dev);
   5231 		if (ret)
   5232 			goto cleanup_render_ring;
   5233 	}
   5234 
   5235 	if (intel_enable_blt(dev)) {
   5236 		ret = intel_init_blt_ring_buffer(dev);
   5237 		if (ret)
   5238 			goto cleanup_bsd_ring;
   5239 	}
   5240 
   5241 	if (HAS_VEBOX(dev)) {
   5242 		ret = intel_init_vebox_ring_buffer(dev);
   5243 		if (ret)
   5244 			goto cleanup_blt_ring;
   5245 	}
   5246 
   5247 
   5248 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
   5249 	if (ret)
   5250 		goto cleanup_vebox_ring;
   5251 
   5252 	return 0;
   5253 
   5254 cleanup_vebox_ring:
   5255 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
   5256 cleanup_blt_ring:
   5257 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
   5258 cleanup_bsd_ring:
   5259 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
   5260 cleanup_render_ring:
   5261 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
   5262 
   5263 	return ret;
   5264 }
   5265 
   5266 int
   5267 i915_gem_init_hw(struct drm_device *dev)
   5268 {
   5269 	struct drm_i915_private *dev_priv = dev->dev_private;
   5270 	int ret, i;
   5271 
   5272 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
   5273 		return -EIO;
   5274 
   5275 	if (dev_priv->ellc_size)
   5276 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
   5277 
   5278 	if (IS_HASWELL(dev))
   5279 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
   5280 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
   5281 
   5282 	if (HAS_PCH_NOP(dev)) {
   5283 		if (IS_IVYBRIDGE(dev)) {
   5284 			u32 temp = I915_READ(GEN7_MSG_CTL);
   5285 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
   5286 			I915_WRITE(GEN7_MSG_CTL, temp);
   5287 		} else if (INTEL_INFO(dev)->gen >= 7) {
   5288 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
   5289 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
   5290 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
   5291 		}
   5292 	}
   5293 
   5294 	i915_gem_init_swizzling(dev);
   5295 
   5296 	ret = i915_gem_init_rings(dev);
   5297 	if (ret)
   5298 		return ret;
   5299 
   5300 	for (i = 0; i < NUM_L3_SLICES(dev); i++)
   5301 		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
   5302 
   5303 	/*
   5304 	 * XXX: Contexts should only be initialized once. Doing a switch to the
   5305 	 * default context switch however is something we'd like to do after
   5306 	 * reset or thaw (the latter may not actually be necessary for HW, but
   5307 	 * goes with our code better). Context switching requires rings (for
   5308 	 * the do_switch), but before enabling PPGTT. So don't move this.
   5309 	 */
   5310 	ret = i915_gem_context_enable(dev_priv);
   5311 	if (ret) {
   5312 		DRM_ERROR("Context enable failed %d\n", ret);
   5313 		goto err_out;
   5314 	}
   5315 
   5316 	return 0;
   5317 
   5318 err_out:
   5319 	i915_gem_cleanup_ringbuffer(dev);
   5320 	return ret;
   5321 }
   5322 
   5323 int i915_gem_init(struct drm_device *dev)
   5324 {
   5325 	struct drm_i915_private *dev_priv = dev->dev_private;
   5326 	int ret;
   5327 
   5328 	mutex_lock(&dev->struct_mutex);
   5329 
   5330 	if (IS_VALLEYVIEW(dev)) {
   5331 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
   5332 		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
   5333 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
   5334 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
   5335 	}
   5336 	i915_gem_init_global_gtt(dev);
   5337 
   5338 	ret = i915_gem_context_init(dev);
   5339 	if (ret) {
   5340 		mutex_unlock(&dev->struct_mutex);
   5341 		return ret;
   5342 	}
   5343 
   5344 	ret = i915_gem_init_hw(dev);
   5345 	mutex_unlock(&dev->struct_mutex);
   5346 	if (ret) {
   5347 		WARN_ON(dev_priv->mm.aliasing_ppgtt);
   5348 		i915_gem_context_fini(dev);
   5349 		drm_mm_takedown(&dev_priv->gtt.base.mm);
   5350 		return ret;
   5351 	}
   5352 
   5353 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
   5354 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   5355 		dev_priv->dri1.allow_batchbuffer = 1;
   5356 	return 0;
   5357 }
   5358 
   5359 void
   5360 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
   5361 {
   5362 	struct drm_i915_private *dev_priv = dev->dev_private;
   5363 	struct intel_ring_buffer *ring;
   5364 	int i;
   5365 
   5366 	for_each_ring(ring, dev_priv, i)
   5367 		intel_cleanup_ring_buffer(ring);
   5368 }
   5369 
   5370 int
   5371 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
   5372 		       struct drm_file *file_priv)
   5373 {
   5374 	struct drm_i915_private *dev_priv = dev->dev_private;
   5375 	int ret;
   5376 
   5377 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   5378 		return 0;
   5379 
   5380 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
   5381 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
   5382 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
   5383 	}
   5384 
   5385 	mutex_lock(&dev->struct_mutex);
   5386 	dev_priv->ums.mm_suspended = 0;
   5387 
   5388 	ret = i915_gem_init_hw(dev);
   5389 	if (ret != 0) {
   5390 		mutex_unlock(&dev->struct_mutex);
   5391 		return ret;
   5392 	}
   5393 
   5394 	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
   5395 	mutex_unlock(&dev->struct_mutex);
   5396 
   5397 	ret = drm_irq_install(dev);
   5398 	if (ret)
   5399 		goto cleanup_ringbuffer;
   5400 
   5401 	return 0;
   5402 
   5403 cleanup_ringbuffer:
   5404 	mutex_lock(&dev->struct_mutex);
   5405 	i915_gem_cleanup_ringbuffer(dev);
   5406 	dev_priv->ums.mm_suspended = 1;
   5407 	mutex_unlock(&dev->struct_mutex);
   5408 
   5409 	return ret;
   5410 }
   5411 
   5412 int
   5413 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
   5414 		       struct drm_file *file_priv)
   5415 {
   5416 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   5417 		return 0;
   5418 
   5419 	drm_irq_uninstall(dev);
   5420 
   5421 	return i915_gem_suspend(dev);
   5422 }
   5423 
   5424 void
   5425 i915_gem_lastclose(struct drm_device *dev)
   5426 {
   5427 	int ret;
   5428 
   5429 	if (drm_core_check_feature(dev, DRIVER_MODESET))
   5430 		return;
   5431 
   5432 	ret = i915_gem_suspend(dev);
   5433 	if (ret)
   5434 		DRM_ERROR("failed to idle hardware: %d\n", ret);
   5435 }
   5436 
   5437 static void
   5438 init_ring_lists(struct intel_ring_buffer *ring)
   5439 {
   5440 	INIT_LIST_HEAD(&ring->active_list);
   5441 	INIT_LIST_HEAD(&ring->request_list);
   5442 }
   5443 
   5444 void i915_init_vm(struct drm_i915_private *dev_priv,
   5445 		  struct i915_address_space *vm)
   5446 {
   5447 	if (!i915_is_ggtt(vm))
   5448 		drm_mm_init(&vm->mm, vm->start, vm->total);
   5449 	vm->dev = dev_priv->dev;
   5450 	INIT_LIST_HEAD(&vm->active_list);
   5451 	INIT_LIST_HEAD(&vm->inactive_list);
   5452 	INIT_LIST_HEAD(&vm->global_link);
   5453 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
   5454 }
   5455 
   5456 void
   5457 i915_gem_load(struct drm_device *dev)
   5458 {
   5459 	struct drm_i915_private *dev_priv = dev->dev_private;
   5460 	int i;
   5461 
   5462 	dev_priv->slab =
   5463 		kmem_cache_create("i915_gem_object",
   5464 				  sizeof(struct drm_i915_gem_object), 0,
   5465 				  SLAB_HWCACHE_ALIGN,
   5466 				  NULL);
   5467 
   5468 	INIT_LIST_HEAD(&dev_priv->vm_list);
   5469 	i915_init_vm(dev_priv, &dev_priv->gtt.base);
   5470 
   5471 	INIT_LIST_HEAD(&dev_priv->context_list);
   5472 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
   5473 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
   5474 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5475 	for (i = 0; i < I915_NUM_RINGS; i++)
   5476 		init_ring_lists(&dev_priv->ring[i]);
   5477 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
   5478 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
   5479 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
   5480 			  i915_gem_retire_work_handler);
   5481 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
   5482 			  i915_gem_idle_work_handler);
   5483 #ifdef __NetBSD__
   5484 	spin_lock_init(&dev_priv->gpu_error.reset_lock);
   5485 	DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
   5486 #else
   5487 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
   5488 #endif
   5489 
   5490 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
   5491 	if (IS_GEN3(dev)) {
   5492 		I915_WRITE(MI_ARB_STATE,
   5493 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
   5494 	}
   5495 
   5496 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
   5497 
   5498 	/* Old X drivers will take 0-2 for front, back, depth buffers */
   5499 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   5500 		dev_priv->fence_reg_start = 3;
   5501 
   5502 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
   5503 		dev_priv->num_fence_regs = 32;
   5504 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
   5505 		dev_priv->num_fence_regs = 16;
   5506 	else
   5507 		dev_priv->num_fence_regs = 8;
   5508 
   5509 	/* Initialize fence registers to zero */
   5510 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5511 	i915_gem_restore_fences(dev);
   5512 
   5513 	i915_gem_detect_bit_6_swizzle(dev);
   5514 #ifdef __NetBSD__
   5515 	DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
   5516 	spin_lock_init(&dev_priv->pending_flip_lock);
   5517 #else
   5518 	init_waitqueue_head(&dev_priv->pending_flip_queue);
   5519 #endif
   5520 
   5521 	dev_priv->mm.interruptible = true;
   5522 
   5523 	dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
   5524 	dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
   5525 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
   5526 	register_shrinker(&dev_priv->mm.inactive_shrinker);
   5527 }
   5528 
   5529 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   5530 {
   5531 	struct drm_i915_file_private *file_priv = file->driver_priv;
   5532 
   5533 	cancel_delayed_work_sync(&file_priv->mm.idle_work);
   5534 
   5535 	/* Clean up our request list when the client is going away, so that
   5536 	 * later retire_requests won't dereference our soon-to-be-gone
   5537 	 * file_priv.
   5538 	 */
   5539 	spin_lock(&file_priv->mm.lock);
   5540 	while (!list_empty(&file_priv->mm.request_list)) {
   5541 		struct drm_i915_gem_request *request;
   5542 
   5543 		request = list_first_entry(&file_priv->mm.request_list,
   5544 					   struct drm_i915_gem_request,
   5545 					   client_list);
   5546 		list_del(&request->client_list);
   5547 		request->file_priv = NULL;
   5548 	}
   5549 	spin_unlock(&file_priv->mm.lock);
   5550 }
   5551 
   5552 static void
   5553 i915_gem_file_idle_work_handler(struct work_struct *work)
   5554 {
   5555 	struct drm_i915_file_private *file_priv =
   5556 		container_of(work, typeof(*file_priv), mm.idle_work.work);
   5557 
   5558 	atomic_set(&file_priv->rps_wait_boost, false);
   5559 }
   5560 
   5561 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
   5562 {
   5563 	struct drm_i915_file_private *file_priv;
   5564 	int ret;
   5565 
   5566 	DRM_DEBUG_DRIVER("\n");
   5567 
   5568 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
   5569 	if (!file_priv)
   5570 		return -ENOMEM;
   5571 
   5572 	file->driver_priv = file_priv;
   5573 	file_priv->dev_priv = dev->dev_private;
   5574 	file_priv->file = file;
   5575 
   5576 	spin_lock_init(&file_priv->mm.lock);
   5577 	INIT_LIST_HEAD(&file_priv->mm.request_list);
   5578 	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
   5579 			  i915_gem_file_idle_work_handler);
   5580 
   5581 	ret = i915_gem_context_open(dev, file);
   5582 	if (ret)
   5583 		kfree(file_priv);
   5584 
   5585 	return ret;
   5586 }
   5587 
   5588 #ifndef __NetBSD__
   5589 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
   5590 {
   5591 	if (!mutex_is_locked(mutex))
   5592 		return false;
   5593 
   5594 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
   5595 	return mutex->owner == task;
   5596 #else
   5597 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
   5598 	return false;
   5599 #endif
   5600 }
   5601 #endif
   5602 
   5603 static unsigned long
   5604 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
   5605 {
   5606 #ifdef __NetBSD__		/* XXX shrinkers */
   5607 	return 0;
   5608 #else
   5609 	struct drm_i915_private *dev_priv =
   5610 		container_of(shrinker,
   5611 			     struct drm_i915_private,
   5612 			     mm.inactive_shrinker);
   5613 	struct drm_device *dev = dev_priv->dev;
   5614 	struct drm_i915_gem_object *obj;
   5615 	bool unlock = true;
   5616 	unsigned long count;
   5617 
   5618 	if (!mutex_trylock(&dev->struct_mutex)) {
   5619 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
   5620 			return 0;
   5621 
   5622 		if (dev_priv->mm.shrinker_no_lock_stealing)
   5623 			return 0;
   5624 
   5625 		unlock = false;
   5626 	}
   5627 
   5628 	count = 0;
   5629 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
   5630 		if (obj->pages_pin_count == 0)
   5631 			count += obj->base.size >> PAGE_SHIFT;
   5632 
   5633 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
   5634 		if (obj->active)
   5635 			continue;
   5636 
   5637 		if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
   5638 			count += obj->base.size >> PAGE_SHIFT;
   5639 	}
   5640 
   5641 	if (unlock)
   5642 		mutex_unlock(&dev->struct_mutex);
   5643 
   5644 	return count;
   5645 #endif
   5646 }
   5647 
   5648 /* All the new VM stuff */
   5649 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
   5650 				  struct i915_address_space *vm)
   5651 {
   5652 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5653 	struct i915_vma *vma;
   5654 
   5655 	if (!dev_priv->mm.aliasing_ppgtt ||
   5656 	    vm == &dev_priv->mm.aliasing_ppgtt->base)
   5657 		vm = &dev_priv->gtt.base;
   5658 
   5659 	BUG_ON(list_empty(&o->vma_list));
   5660 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5661 		if (vma->vm == vm)
   5662 			return vma->node.start;
   5663 
   5664 	}
   5665 	return -1;
   5666 }
   5667 
   5668 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
   5669 			struct i915_address_space *vm)
   5670 {
   5671 	struct i915_vma *vma;
   5672 
   5673 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5674 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
   5675 			return true;
   5676 
   5677 	return false;
   5678 }
   5679 
   5680 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
   5681 {
   5682 	struct i915_vma *vma;
   5683 
   5684 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5685 		if (drm_mm_node_allocated(&vma->node))
   5686 			return true;
   5687 
   5688 	return false;
   5689 }
   5690 
   5691 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
   5692 				struct i915_address_space *vm)
   5693 {
   5694 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5695 	struct i915_vma *vma;
   5696 
   5697 	if (!dev_priv->mm.aliasing_ppgtt ||
   5698 	    vm == &dev_priv->mm.aliasing_ppgtt->base)
   5699 		vm = &dev_priv->gtt.base;
   5700 
   5701 	BUG_ON(list_empty(&o->vma_list));
   5702 
   5703 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5704 		if (vma->vm == vm)
   5705 			return vma->node.size;
   5706 
   5707 	return 0;
   5708 }
   5709 
   5710 static unsigned long
   5711 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
   5712 {
   5713 #ifdef __NetBSD__		/* XXX shrinkers */
   5714 	return 0;
   5715 #else
   5716 	struct drm_i915_private *dev_priv =
   5717 		container_of(shrinker,
   5718 			     struct drm_i915_private,
   5719 			     mm.inactive_shrinker);
   5720 	struct drm_device *dev = dev_priv->dev;
   5721 	unsigned long freed;
   5722 	bool unlock = true;
   5723 
   5724 	if (!mutex_trylock(&dev->struct_mutex)) {
   5725 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
   5726 			return SHRINK_STOP;
   5727 
   5728 		if (dev_priv->mm.shrinker_no_lock_stealing)
   5729 			return SHRINK_STOP;
   5730 
   5731 		unlock = false;
   5732 	}
   5733 
   5734 	freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
   5735 	if (freed < sc->nr_to_scan)
   5736 		freed += __i915_gem_shrink(dev_priv,
   5737 					   sc->nr_to_scan - freed,
   5738 					   false);
   5739 	if (freed < sc->nr_to_scan)
   5740 		freed += i915_gem_shrink_all(dev_priv);
   5741 
   5742 	if (unlock)
   5743 		mutex_unlock(&dev->struct_mutex);
   5744 
   5745 	return freed;
   5746 #endif
   5747 }
   5748 
   5749 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
   5750 {
   5751 	struct i915_vma *vma;
   5752 
   5753 	if (WARN_ON(list_empty(&obj->vma_list)))
   5754 		return NULL;
   5755 
   5756 	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
   5757 	if (vma->vm != obj_to_ggtt(obj))
   5758 		return NULL;
   5759 
   5760 	return vma;
   5761 }
   5762