i915_gem.c revision 1.30 1 /*
2 * Copyright 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric (at) anholt.net>
25 *
26 */
27
28 #ifdef __NetBSD__
29 #if 0 /* XXX uvmhist option? */
30 #include "opt_uvmhist.h"
31 #endif
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35
36 #include <uvm/uvm.h>
37 #include <uvm/uvm_extern.h>
38 #include <uvm/uvm_fault.h>
39 #include <uvm/uvm_page.h>
40 #include <uvm/uvm_pmap.h>
41 #include <uvm/uvm_prot.h>
42
43 #include <drm/bus_dma_hacks.h>
44 #endif
45
46 #include <drm/drmP.h>
47 #include <drm/drm_vma_manager.h>
48 #include <drm/i915_drm.h>
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "intel_drv.h"
52 #include <linux/shmem_fs.h>
53 #include <linux/slab.h>
54 #include <linux/swap.h>
55 #include <linux/pci.h>
56 #include <linux/dma-buf.h>
57 #include <linux/errno.h>
58 #include <linux/time.h>
59 #include <linux/err.h>
60 #include <linux/bitops.h>
61 #include <linux/printk.h>
62 #include <asm/param.h>
63 #include <asm/page.h>
64
65 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
66 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
67 bool force);
68 static __must_check int
69 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
70 bool readonly);
71
72 static void i915_gem_write_fence(struct drm_device *dev, int reg,
73 struct drm_i915_gem_object *obj);
74 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
75 struct drm_i915_fence_reg *fence,
76 bool enable);
77
78 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
79 struct shrink_control *sc);
80 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
81 struct shrink_control *sc);
82 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
83 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
84 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
85 static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
86
87 static bool cpu_cache_is_coherent(struct drm_device *dev,
88 enum i915_cache_level level)
89 {
90 return HAS_LLC(dev) || level != I915_CACHE_NONE;
91 }
92
93 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
94 {
95 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
96 return true;
97
98 return obj->pin_display;
99 }
100
101 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
102 {
103 if (obj->tiling_mode)
104 i915_gem_release_mmap(obj);
105
106 /* As we do not have an associated fence register, we will force
107 * a tiling change if we ever need to acquire one.
108 */
109 obj->fence_dirty = false;
110 obj->fence_reg = I915_FENCE_REG_NONE;
111 }
112
113 /* some bookkeeping */
114 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
115 size_t size)
116 {
117 spin_lock(&dev_priv->mm.object_stat_lock);
118 dev_priv->mm.object_count++;
119 dev_priv->mm.object_memory += size;
120 spin_unlock(&dev_priv->mm.object_stat_lock);
121 }
122
123 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
124 size_t size)
125 {
126 spin_lock(&dev_priv->mm.object_stat_lock);
127 dev_priv->mm.object_count--;
128 dev_priv->mm.object_memory -= size;
129 spin_unlock(&dev_priv->mm.object_stat_lock);
130 }
131
132 static int
133 i915_gem_wait_for_error(struct i915_gpu_error *error)
134 {
135 int ret;
136
137 #define EXIT_COND (!i915_reset_in_progress(error) || \
138 i915_terminally_wedged(error))
139 if (EXIT_COND)
140 return 0;
141
142 /*
143 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
144 * userspace. If it takes that long something really bad is going on and
145 * we should simply try to bail out and fail as gracefully as possible.
146 */
147 #ifdef __NetBSD__
148 spin_lock(&error->reset_lock);
149 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
150 10*HZ, EXIT_COND);
151 spin_unlock(&error->reset_lock);
152 #else
153 ret = wait_event_interruptible_timeout(error->reset_queue,
154 EXIT_COND,
155 10*HZ);
156 #endif
157 if (ret == 0) {
158 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
159 return -EIO;
160 } else if (ret < 0) {
161 return ret;
162 }
163 #undef EXIT_COND
164
165 return 0;
166 }
167
168 int i915_mutex_lock_interruptible(struct drm_device *dev)
169 {
170 struct drm_i915_private *dev_priv = dev->dev_private;
171 int ret;
172
173 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
174 if (ret)
175 return ret;
176
177 ret = mutex_lock_interruptible(&dev->struct_mutex);
178 if (ret)
179 return ret;
180
181 WARN_ON(i915_verify_lists(dev));
182 return 0;
183 }
184
185 static inline bool
186 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
187 {
188 return i915_gem_obj_bound_any(obj) && !obj->active;
189 }
190
191 int
192 i915_gem_init_ioctl(struct drm_device *dev, void *data,
193 struct drm_file *file)
194 {
195 struct drm_i915_private *dev_priv = dev->dev_private;
196 struct drm_i915_gem_init *args = data;
197
198 if (drm_core_check_feature(dev, DRIVER_MODESET))
199 return -ENODEV;
200
201 if (args->gtt_start >= args->gtt_end ||
202 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
203 return -EINVAL;
204
205 /* GEM with user mode setting was never supported on ilk and later. */
206 if (INTEL_INFO(dev)->gen >= 5)
207 return -ENODEV;
208
209 mutex_lock(&dev->struct_mutex);
210 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
211 args->gtt_end);
212 dev_priv->gtt.mappable_end = args->gtt_end;
213 mutex_unlock(&dev->struct_mutex);
214
215 return 0;
216 }
217
218 int
219 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
220 struct drm_file *file)
221 {
222 struct drm_i915_private *dev_priv = dev->dev_private;
223 struct drm_i915_gem_get_aperture *args = data;
224 struct drm_i915_gem_object *obj;
225 size_t pinned;
226
227 pinned = 0;
228 mutex_lock(&dev->struct_mutex);
229 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
230 if (i915_gem_obj_is_pinned(obj))
231 pinned += i915_gem_obj_ggtt_size(obj);
232 mutex_unlock(&dev->struct_mutex);
233
234 args->aper_size = dev_priv->gtt.base.total;
235 args->aper_available_size = args->aper_size - pinned;
236
237 return 0;
238 }
239
240 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
241 {
242 drm_dma_handle_t *phys = obj->phys_handle;
243
244 if (!phys)
245 return;
246
247 if (obj->madv == I915_MADV_WILLNEED) {
248 #ifdef __NetBSD__
249 const char *vaddr = phys->vaddr;
250 unsigned i;
251
252 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
253 struct pglist pages;
254 int error;
255
256 TAILQ_INIT(&pages);
257 error = uvm_obj_wirepages(obj->base.gemo_shm_uao,
258 i*PAGE_SIZE, (i+1)*PAGE_SIZE, &pages);
259 if (error)
260 continue;
261
262 struct vm_page *const vm_page = TAILQ_FIRST(&pages);
263 struct page *const page = container_of(vm_page,
264 struct page, p_vmp);
265 char *const dst = kmap_atomic(page);
266 (void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
267 drm_clflush_virt_range(dst, PAGE_SIZE);
268 kunmap_atomic(dst);
269
270 vm_page->flags &= ~PG_CLEAN;
271 /* XXX mark page accessed */
272 uvm_obj_unwirepages(obj->base.gemo_shm_uao,
273 i*PAGE_SIZE, (i+1)*PAGE_SIZE);
274 }
275 #else
276 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
277 char *vaddr = phys->vaddr;
278 int i;
279
280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281 struct page *page = shmem_read_mapping_page(mapping, i);
282 if (!IS_ERR(page)) {
283 char *dst = kmap_atomic(page);
284 memcpy(dst, vaddr, PAGE_SIZE);
285 drm_clflush_virt_range(dst, PAGE_SIZE);
286 kunmap_atomic(dst);
287
288 set_page_dirty(page);
289 mark_page_accessed(page);
290 page_cache_release(page);
291 }
292 vaddr += PAGE_SIZE;
293 }
294 #endif
295 i915_gem_chipset_flush(obj->base.dev);
296 }
297
298 #ifndef __NetBSD__
299 #ifdef CONFIG_X86
300 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
301 #endif
302 #endif
303 drm_pci_free(obj->base.dev, phys);
304 obj->phys_handle = NULL;
305 }
306
307 int
308 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
309 int align)
310 {
311 drm_dma_handle_t *phys;
312 #ifndef __NetBSD__
313 struct address_space *mapping;
314 #endif
315 char *vaddr;
316 int i;
317
318 if (obj->phys_handle) {
319 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
320 return -EBUSY;
321
322 return 0;
323 }
324
325 if (obj->madv != I915_MADV_WILLNEED)
326 return -EFAULT;
327
328 #ifdef __NetBSD__
329 if (obj->base.gemo_shm_uao == NULL)
330 return -EINVAL;
331 #else
332 if (obj->base.filp == NULL)
333 return -EINVAL;
334 #endif
335
336 /* create a new object */
337 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
338 if (!phys)
339 return -ENOMEM;
340
341 vaddr = phys->vaddr;
342 #ifndef __NetBSD__
343 #ifdef CONFIG_X86
344 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
345 #endif
346 mapping = file_inode(obj->base.filp)->i_mapping;
347 #endif
348 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
349 struct page *page;
350 char *src;
351
352 #ifdef __NetBSD__
353 struct pglist pages;
354 int ret;
355
356 TAILQ_INIT(&pages);
357
358 /* XXX errno NetBSD->Linux */
359 ret = -uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
360 (i+1)*PAGE_SIZE, &pages);
361 if (ret) {
362 drm_pci_free(obj->base.dev, phys);
363 return ret;
364 }
365 KASSERT(!TAILQ_EMPTY(&pages));
366 page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
367 #else
368 page = shmem_read_mapping_page(mapping, i);
369 if (IS_ERR(page)) {
370 #ifdef CONFIG_X86
371 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
372 #endif
373 drm_pci_free(obj->base.dev, phys);
374 return PTR_ERR(page);
375 }
376 #endif /* defined(__NetBSD__) */
377
378 src = kmap_atomic(page);
379 memcpy(vaddr, src, PAGE_SIZE);
380 kunmap_atomic(src);
381
382 #ifdef __NetBSD__
383 /* XXX mark page accessed */
384 uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
385 (i + 1)*PAGE_SIZE);
386 #else
387 mark_page_accessed(page);
388 page_cache_release(page);
389 #endif
390
391 vaddr += PAGE_SIZE;
392 }
393
394 obj->phys_handle = phys;
395 return 0;
396 }
397
398 static int
399 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
400 struct drm_i915_gem_pwrite *args,
401 struct drm_file *file_priv)
402 {
403 struct drm_device *dev = obj->base.dev;
404 void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
405 char __user *user_data = to_user_ptr(args->data_ptr);
406
407 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
408 unsigned long unwritten;
409
410 /* The physical object once assigned is fixed for the lifetime
411 * of the obj, so we can safely drop the lock and continue
412 * to access vaddr.
413 */
414 mutex_unlock(&dev->struct_mutex);
415 unwritten = copy_from_user(vaddr, user_data, args->size);
416 mutex_lock(&dev->struct_mutex);
417 if (unwritten)
418 return -EFAULT;
419 }
420
421 i915_gem_chipset_flush(dev);
422 return 0;
423 }
424
425 void *i915_gem_object_alloc(struct drm_device *dev)
426 {
427 struct drm_i915_private *dev_priv = dev->dev_private;
428 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
429 }
430
431 void i915_gem_object_free(struct drm_i915_gem_object *obj)
432 {
433 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
434 kmem_cache_free(dev_priv->slab, obj);
435 }
436
437 static int
438 i915_gem_create(struct drm_file *file,
439 struct drm_device *dev,
440 uint64_t size,
441 uint32_t *handle_p)
442 {
443 struct drm_i915_gem_object *obj;
444 int ret;
445 u32 handle;
446
447 size = roundup(size, PAGE_SIZE);
448 if (size == 0)
449 return -EINVAL;
450
451 /* Allocate the new object */
452 obj = i915_gem_alloc_object(dev, size);
453 if (obj == NULL)
454 return -ENOMEM;
455
456 ret = drm_gem_handle_create(file, &obj->base, &handle);
457 /* drop reference from allocate - handle holds it now */
458 drm_gem_object_unreference_unlocked(&obj->base);
459 if (ret)
460 return ret;
461
462 *handle_p = handle;
463 return 0;
464 }
465
466 int
467 i915_gem_dumb_create(struct drm_file *file,
468 struct drm_device *dev,
469 struct drm_mode_create_dumb *args)
470 {
471 /* have to work out size/pitch and return them */
472 #ifdef __NetBSD__ /* ALIGN means something else. */
473 args->pitch = round_up(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
474 #else
475 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
476 #endif
477 args->size = args->pitch * args->height;
478 return i915_gem_create(file, dev,
479 args->size, &args->handle);
480 }
481
482 /**
483 * Creates a new mm object and returns a handle to it.
484 */
485 int
486 i915_gem_create_ioctl(struct drm_device *dev, void *data,
487 struct drm_file *file)
488 {
489 struct drm_i915_gem_create *args = data;
490
491 return i915_gem_create(file, dev,
492 args->size, &args->handle);
493 }
494
495 static inline int
496 __copy_to_user_swizzled(char __user *cpu_vaddr,
497 const char *gpu_vaddr, int gpu_offset,
498 int length)
499 {
500 int ret, cpu_offset = 0;
501
502 while (length > 0) {
503 #ifdef __NetBSD__ /* XXX ALIGN means something else. */
504 int cacheline_end = round_up(gpu_offset + 1, 64);
505 #else
506 int cacheline_end = ALIGN(gpu_offset + 1, 64);
507 #endif
508 int this_length = min(cacheline_end - gpu_offset, length);
509 int swizzled_gpu_offset = gpu_offset ^ 64;
510
511 ret = __copy_to_user(cpu_vaddr + cpu_offset,
512 gpu_vaddr + swizzled_gpu_offset,
513 this_length);
514 if (ret)
515 return ret + length;
516
517 cpu_offset += this_length;
518 gpu_offset += this_length;
519 length -= this_length;
520 }
521
522 return 0;
523 }
524
525 static inline int
526 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
527 const char __user *cpu_vaddr,
528 int length)
529 {
530 int ret, cpu_offset = 0;
531
532 while (length > 0) {
533 #ifdef __NetBSD__ /* XXX ALIGN means something else. */
534 int cacheline_end = round_up(gpu_offset + 1, 64);
535 #else
536 int cacheline_end = ALIGN(gpu_offset + 1, 64);
537 #endif
538 int this_length = min(cacheline_end - gpu_offset, length);
539 int swizzled_gpu_offset = gpu_offset ^ 64;
540
541 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
542 cpu_vaddr + cpu_offset,
543 this_length);
544 if (ret)
545 return ret + length;
546
547 cpu_offset += this_length;
548 gpu_offset += this_length;
549 length -= this_length;
550 }
551
552 return 0;
553 }
554
555 /*
556 * Pins the specified object's pages and synchronizes the object with
557 * GPU accesses. Sets needs_clflush to non-zero if the caller should
558 * flush the object from the CPU cache.
559 */
560 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
561 int *needs_clflush)
562 {
563 int ret;
564
565 *needs_clflush = 0;
566
567 #ifdef __NetBSD__
568 if (obj->base.gemo_shm_uao == NULL)
569 return -EINVAL;
570 #else
571 if (!obj->base.filp)
572 return -EINVAL;
573 #endif
574
575 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
576 /* If we're not in the cpu read domain, set ourself into the gtt
577 * read domain and manually flush cachelines (if required). This
578 * optimizes for the case when the gpu will dirty the data
579 * anyway again before the next pread happens. */
580 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
581 obj->cache_level);
582 ret = i915_gem_object_wait_rendering(obj, true);
583 if (ret)
584 return ret;
585 }
586
587 ret = i915_gem_object_get_pages(obj);
588 if (ret)
589 return ret;
590
591 i915_gem_object_pin_pages(obj);
592
593 return ret;
594 }
595
596 /* Per-page copy function for the shmem pread fastpath.
597 * Flushes invalid cachelines before reading the target if
598 * needs_clflush is set. */
599 static int
600 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
601 char __user *user_data,
602 bool page_do_bit17_swizzling, bool needs_clflush)
603 {
604 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
605 return -EFAULT;
606 #else
607 char *vaddr;
608 int ret;
609
610 if (unlikely(page_do_bit17_swizzling))
611 return -EINVAL;
612
613 vaddr = kmap_atomic(page);
614 if (needs_clflush)
615 drm_clflush_virt_range(vaddr + shmem_page_offset,
616 page_length);
617 ret = __copy_to_user_inatomic(user_data,
618 vaddr + shmem_page_offset,
619 page_length);
620 kunmap_atomic(vaddr);
621
622 return ret ? -EFAULT : 0;
623 #endif
624 }
625
626 static void
627 shmem_clflush_swizzled_range(char *addr, unsigned long length,
628 bool swizzled)
629 {
630 if (unlikely(swizzled)) {
631 unsigned long start = (unsigned long) addr;
632 unsigned long end = (unsigned long) addr + length;
633
634 /* For swizzling simply ensure that we always flush both
635 * channels. Lame, but simple and it works. Swizzled
636 * pwrite/pread is far from a hotpath - current userspace
637 * doesn't use it at all. */
638 start = round_down(start, 128);
639 end = round_up(end, 128);
640
641 drm_clflush_virt_range((void *)start, end - start);
642 } else {
643 drm_clflush_virt_range(addr, length);
644 }
645
646 }
647
648 /* Only difference to the fast-path function is that this can handle bit17
649 * and uses non-atomic copy and kmap functions. */
650 static int
651 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
652 char __user *user_data,
653 bool page_do_bit17_swizzling, bool needs_clflush)
654 {
655 char *vaddr;
656 int ret;
657
658 vaddr = kmap(page);
659 if (needs_clflush)
660 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
661 page_length,
662 page_do_bit17_swizzling);
663
664 if (page_do_bit17_swizzling)
665 ret = __copy_to_user_swizzled(user_data,
666 vaddr, shmem_page_offset,
667 page_length);
668 else
669 ret = __copy_to_user(user_data,
670 vaddr + shmem_page_offset,
671 page_length);
672 kunmap(page);
673
674 return ret ? - EFAULT : 0;
675 }
676
677 static int
678 i915_gem_shmem_pread(struct drm_device *dev,
679 struct drm_i915_gem_object *obj,
680 struct drm_i915_gem_pread *args,
681 struct drm_file *file)
682 {
683 char __user *user_data;
684 ssize_t remain;
685 loff_t offset;
686 int shmem_page_offset, page_length, ret = 0;
687 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
688 #ifndef __NetBSD__ /* XXX */
689 int prefaulted = 0;
690 #endif
691 int needs_clflush = 0;
692 #ifndef __NetBSD__
693 struct sg_page_iter sg_iter;
694 #endif
695
696 user_data = to_user_ptr(args->data_ptr);
697 remain = args->size;
698
699 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
700
701 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
702 if (ret)
703 return ret;
704
705 offset = args->offset;
706
707 #ifdef __NetBSD__
708 while (0 < remain)
709 #else
710 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
711 offset >> PAGE_SHIFT)
712 #endif
713 {
714 #ifdef __NetBSD__
715 struct page *const page = i915_gem_object_get_page(obj,
716 atop(offset));
717 #else
718 struct page *page = sg_page_iter_page(&sg_iter);
719
720 if (remain <= 0)
721 break;
722 #endif
723
724 /* Operation in this page
725 *
726 * shmem_page_offset = offset within page in shmem file
727 * page_length = bytes to copy for this page
728 */
729 shmem_page_offset = offset_in_page(offset);
730 page_length = remain;
731 if ((shmem_page_offset + page_length) > PAGE_SIZE)
732 page_length = PAGE_SIZE - shmem_page_offset;
733
734 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
735 (page_to_phys(page) & (1 << 17)) != 0;
736
737 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
738 user_data, page_do_bit17_swizzling,
739 needs_clflush);
740 if (ret == 0)
741 goto next_page;
742
743 mutex_unlock(&dev->struct_mutex);
744 #ifndef __NetBSD__
745 if (likely(!i915.prefault_disable) && !prefaulted) {
746 ret = fault_in_multipages_writeable(user_data, remain);
747 /* Userspace is tricking us, but we've already clobbered
748 * its pages with the prefault and promised to write the
749 * data up to the first fault. Hence ignore any errors
750 * and just continue. */
751 (void)ret;
752 prefaulted = 1;
753 }
754 #endif
755 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
756 user_data, page_do_bit17_swizzling,
757 needs_clflush);
758
759 mutex_lock(&dev->struct_mutex);
760
761 if (ret)
762 goto out;
763
764 next_page:
765 remain -= page_length;
766 user_data += page_length;
767 offset += page_length;
768 }
769
770 out:
771 i915_gem_object_unpin_pages(obj);
772
773 return ret;
774 }
775
776 /**
777 * Reads data from the object referenced by handle.
778 *
779 * On error, the contents of *data are undefined.
780 */
781 int
782 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
783 struct drm_file *file)
784 {
785 struct drm_i915_gem_pread *args = data;
786 struct drm_gem_object *gobj;
787 struct drm_i915_gem_object *obj;
788 int ret = 0;
789
790 if (args->size == 0)
791 return 0;
792
793 if (!access_ok(VERIFY_WRITE,
794 to_user_ptr(args->data_ptr),
795 args->size))
796 return -EFAULT;
797
798 ret = i915_mutex_lock_interruptible(dev);
799 if (ret)
800 return ret;
801
802 gobj = drm_gem_object_lookup(dev, file, args->handle);
803 if (gobj == NULL) {
804 ret = -ENOENT;
805 goto unlock;
806 }
807 obj = to_intel_bo(gobj);
808
809 /* Bounds check source. */
810 if (args->offset > obj->base.size ||
811 args->size > obj->base.size - args->offset) {
812 ret = -EINVAL;
813 goto out;
814 }
815
816 /* prime objects have no backing filp to GEM pread/pwrite
817 * pages from.
818 */
819 #ifdef __NetBSD__
820 /* Also stolen objects. */
821 if (obj->base.gemo_shm_uao == NULL) {
822 ret = -EINVAL;
823 goto out;
824 }
825 #else
826 if (!obj->base.filp) {
827 ret = -EINVAL;
828 goto out;
829 }
830 #endif
831
832 trace_i915_gem_object_pread(obj, args->offset, args->size);
833
834 ret = i915_gem_shmem_pread(dev, obj, args, file);
835
836 out:
837 drm_gem_object_unreference(&obj->base);
838 unlock:
839 mutex_unlock(&dev->struct_mutex);
840 return ret;
841 }
842
843 /* This is the fast write path which cannot handle
844 * page faults in the source data
845 */
846
847 static inline int
848 fast_user_write(struct io_mapping *mapping,
849 loff_t page_base, int page_offset,
850 char __user *user_data,
851 int length)
852 {
853 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
854 return -EFAULT;
855 #else
856 void __iomem *vaddr_atomic;
857 void *vaddr;
858 unsigned long unwritten;
859
860 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
861 /* We can use the cpu mem copy function because this is X86. */
862 vaddr = (void __force*)vaddr_atomic + page_offset;
863 unwritten = __copy_from_user_inatomic_nocache(vaddr,
864 user_data, length);
865 io_mapping_unmap_atomic(vaddr_atomic);
866 return unwritten;
867 #endif
868 }
869
870 /**
871 * This is the fast pwrite path, where we copy the data directly from the
872 * user into the GTT, uncached.
873 */
874 static int
875 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
876 struct drm_i915_gem_object *obj,
877 struct drm_i915_gem_pwrite *args,
878 struct drm_file *file)
879 {
880 struct drm_i915_private *dev_priv = dev->dev_private;
881 ssize_t remain;
882 loff_t offset, page_base;
883 char __user *user_data;
884 int page_offset, page_length, ret;
885
886 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
887 if (ret)
888 goto out;
889
890 ret = i915_gem_object_set_to_gtt_domain(obj, true);
891 if (ret)
892 goto out_unpin;
893
894 ret = i915_gem_object_put_fence(obj);
895 if (ret)
896 goto out_unpin;
897
898 user_data = to_user_ptr(args->data_ptr);
899 remain = args->size;
900
901 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
902
903 while (remain > 0) {
904 /* Operation in this page
905 *
906 * page_base = page offset within aperture
907 * page_offset = offset within page
908 * page_length = bytes to copy for this page
909 */
910 page_base = offset & PAGE_MASK;
911 page_offset = offset_in_page(offset);
912 page_length = remain;
913 if ((page_offset + remain) > PAGE_SIZE)
914 page_length = PAGE_SIZE - page_offset;
915
916 /* If we get a fault while copying data, then (presumably) our
917 * source page isn't available. Return the error and we'll
918 * retry in the slow path.
919 */
920 if (fast_user_write(dev_priv->gtt.mappable, page_base,
921 page_offset, user_data, page_length)) {
922 ret = -EFAULT;
923 goto out_unpin;
924 }
925
926 remain -= page_length;
927 user_data += page_length;
928 offset += page_length;
929 }
930
931 out_unpin:
932 i915_gem_object_ggtt_unpin(obj);
933 out:
934 return ret;
935 }
936
937 /* Per-page copy function for the shmem pwrite fastpath.
938 * Flushes invalid cachelines before writing to the target if
939 * needs_clflush_before is set and flushes out any written cachelines after
940 * writing if needs_clflush is set. */
941 static int
942 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
943 char __user *user_data,
944 bool page_do_bit17_swizzling,
945 bool needs_clflush_before,
946 bool needs_clflush_after)
947 {
948 #ifdef __NetBSD__
949 return -EFAULT;
950 #else
951 char *vaddr;
952 int ret;
953
954 if (unlikely(page_do_bit17_swizzling))
955 return -EINVAL;
956
957 vaddr = kmap_atomic(page);
958 if (needs_clflush_before)
959 drm_clflush_virt_range(vaddr + shmem_page_offset,
960 page_length);
961 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
962 user_data, page_length);
963 if (needs_clflush_after)
964 drm_clflush_virt_range(vaddr + shmem_page_offset,
965 page_length);
966 kunmap_atomic(vaddr);
967
968 return ret ? -EFAULT : 0;
969 #endif
970 }
971
972 /* Only difference to the fast-path function is that this can handle bit17
973 * and uses non-atomic copy and kmap functions. */
974 static int
975 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
976 char __user *user_data,
977 bool page_do_bit17_swizzling,
978 bool needs_clflush_before,
979 bool needs_clflush_after)
980 {
981 char *vaddr;
982 int ret;
983
984 vaddr = kmap(page);
985 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
986 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
987 page_length,
988 page_do_bit17_swizzling);
989 if (page_do_bit17_swizzling)
990 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
991 user_data,
992 page_length);
993 else
994 ret = __copy_from_user(vaddr + shmem_page_offset,
995 user_data,
996 page_length);
997 if (needs_clflush_after)
998 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
999 page_length,
1000 page_do_bit17_swizzling);
1001 kunmap(page);
1002
1003 return ret ? -EFAULT : 0;
1004 }
1005
1006 static int
1007 i915_gem_shmem_pwrite(struct drm_device *dev,
1008 struct drm_i915_gem_object *obj,
1009 struct drm_i915_gem_pwrite *args,
1010 struct drm_file *file)
1011 {
1012 ssize_t remain;
1013 loff_t offset;
1014 char __user *user_data;
1015 int shmem_page_offset, page_length, ret = 0;
1016 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1017 int hit_slowpath = 0;
1018 int needs_clflush_after = 0;
1019 int needs_clflush_before = 0;
1020 #ifndef __NetBSD__
1021 struct sg_page_iter sg_iter;
1022 int flush_mask = boot_cpu_data.x86_clflush_size - 1;
1023 #else
1024 int flush_mask = cpu_info_primary.ci_cflush_lsize - 1;
1025 #endif
1026
1027 user_data = to_user_ptr(args->data_ptr);
1028 remain = args->size;
1029
1030 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1031
1032 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1033 /* If we're not in the cpu write domain, set ourself into the gtt
1034 * write domain and manually flush cachelines (if required). This
1035 * optimizes for the case when the gpu will use the data
1036 * right away and we therefore have to clflush anyway. */
1037 needs_clflush_after = cpu_write_needs_clflush(obj);
1038 ret = i915_gem_object_wait_rendering(obj, false);
1039 if (ret)
1040 return ret;
1041 }
1042 /* Same trick applies to invalidate partially written cachelines read
1043 * before writing. */
1044 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1045 needs_clflush_before =
1046 !cpu_cache_is_coherent(dev, obj->cache_level);
1047
1048 ret = i915_gem_object_get_pages(obj);
1049 if (ret)
1050 return ret;
1051
1052 i915_gem_object_pin_pages(obj);
1053
1054 offset = args->offset;
1055 obj->dirty = 1;
1056
1057 #ifdef __NetBSD__
1058 while (0 < remain)
1059 #else
1060 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1061 offset >> PAGE_SHIFT)
1062 #endif
1063 {
1064 #ifdef __NetBSD__
1065 struct page *const page = i915_gem_object_get_page(obj,
1066 atop(offset));
1067 #else
1068 struct page *page = sg_page_iter_page(&sg_iter);
1069 #endif
1070
1071 if (remain <= 0)
1072 break;
1073
1074 /* Operation in this page
1075 *
1076 * shmem_page_offset = offset within page in shmem file
1077 * page_length = bytes to copy for this page
1078 */
1079 shmem_page_offset = offset_in_page(offset);
1080
1081 page_length = remain;
1082 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1083 page_length = PAGE_SIZE - shmem_page_offset;
1084
1085 /* If we don't overwrite a cacheline completely we need to be
1086 * careful to have up-to-date data by first clflushing. Don't
1087 * overcomplicate things and flush the entire patch. */
1088 const int partial_cacheline_write = needs_clflush_before &&
1089 ((shmem_page_offset | page_length) & flush_mask);
1090
1091 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1092 (page_to_phys(page) & (1 << 17)) != 0;
1093
1094 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1095 user_data, page_do_bit17_swizzling,
1096 partial_cacheline_write,
1097 needs_clflush_after);
1098 if (ret == 0)
1099 goto next_page;
1100
1101 hit_slowpath = 1;
1102 mutex_unlock(&dev->struct_mutex);
1103 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1104 user_data, page_do_bit17_swizzling,
1105 partial_cacheline_write,
1106 needs_clflush_after);
1107
1108 mutex_lock(&dev->struct_mutex);
1109
1110 if (ret)
1111 goto out;
1112
1113 next_page:
1114 remain -= page_length;
1115 user_data += page_length;
1116 offset += page_length;
1117 }
1118
1119 out:
1120 i915_gem_object_unpin_pages(obj);
1121
1122 if (hit_slowpath) {
1123 /*
1124 * Fixup: Flush cpu caches in case we didn't flush the dirty
1125 * cachelines in-line while writing and the object moved
1126 * out of the cpu write domain while we've dropped the lock.
1127 */
1128 if (!needs_clflush_after &&
1129 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1130 if (i915_gem_clflush_object(obj, obj->pin_display))
1131 i915_gem_chipset_flush(dev);
1132 }
1133 }
1134
1135 if (needs_clflush_after)
1136 i915_gem_chipset_flush(dev);
1137
1138 return ret;
1139 }
1140
1141 /**
1142 * Writes data to the object referenced by handle.
1143 *
1144 * On error, the contents of the buffer that were to be modified are undefined.
1145 */
1146 int
1147 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1148 struct drm_file *file)
1149 {
1150 struct drm_i915_gem_pwrite *args = data;
1151 struct drm_gem_object *gobj;
1152 struct drm_i915_gem_object *obj;
1153 int ret;
1154
1155 if (args->size == 0)
1156 return 0;
1157
1158 if (!access_ok(VERIFY_READ,
1159 to_user_ptr(args->data_ptr),
1160 args->size))
1161 return -EFAULT;
1162
1163 #ifndef __NetBSD__ /* XXX prefault */
1164 if (likely(!i915.prefault_disable)) {
1165 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1166 args->size);
1167 if (ret)
1168 return -EFAULT;
1169 }
1170 #endif
1171
1172 ret = i915_mutex_lock_interruptible(dev);
1173 if (ret)
1174 return ret;
1175
1176 gobj = drm_gem_object_lookup(dev, file, args->handle);
1177 if (gobj == NULL) {
1178 ret = -ENOENT;
1179 goto unlock;
1180 }
1181 obj = to_intel_bo(gobj);
1182
1183 /* Bounds check destination. */
1184 if (args->offset > obj->base.size ||
1185 args->size > obj->base.size - args->offset) {
1186 ret = -EINVAL;
1187 goto out;
1188 }
1189
1190 /* prime objects have no backing filp to GEM pread/pwrite
1191 * pages from.
1192 */
1193 #ifdef __NetBSD__
1194 /* Also stolen objects. */
1195 if (obj->base.gemo_shm_uao == NULL) {
1196 ret = -EINVAL;
1197 goto out;
1198 }
1199 #else
1200 if (!obj->base.filp) {
1201 ret = -EINVAL;
1202 goto out;
1203 }
1204 #endif
1205
1206 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1207
1208 ret = -EFAULT;
1209 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1210 * it would end up going through the fenced access, and we'll get
1211 * different detiling behavior between reading and writing.
1212 * pread/pwrite currently are reading and writing from the CPU
1213 * perspective, requiring manual detiling by the client.
1214 */
1215 if (obj->phys_handle) {
1216 ret = i915_gem_phys_pwrite(obj, args, file);
1217 goto out;
1218 }
1219
1220 if (obj->tiling_mode == I915_TILING_NONE &&
1221 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1222 cpu_write_needs_clflush(obj)) {
1223 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1224 /* Note that the gtt paths might fail with non-page-backed user
1225 * pointers (e.g. gtt mappings when moving data between
1226 * textures). Fallback to the shmem path in that case. */
1227 }
1228
1229 if (ret == -EFAULT || ret == -ENOSPC)
1230 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1231
1232 out:
1233 drm_gem_object_unreference(&obj->base);
1234 unlock:
1235 mutex_unlock(&dev->struct_mutex);
1236 return ret;
1237 }
1238
1239 int
1240 i915_gem_check_wedge(struct i915_gpu_error *error,
1241 bool interruptible)
1242 {
1243 if (i915_reset_in_progress(error)) {
1244 /* Non-interruptible callers can't handle -EAGAIN, hence return
1245 * -EIO unconditionally for these. */
1246 if (!interruptible)
1247 return -EIO;
1248
1249 /* Recovery complete, but the reset failed ... */
1250 if (i915_terminally_wedged(error))
1251 return -EIO;
1252
1253 return -EAGAIN;
1254 }
1255
1256 return 0;
1257 }
1258
1259 /*
1260 * Compare seqno against outstanding lazy request. Emit a request if they are
1261 * equal.
1262 */
1263 static int
1264 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1265 {
1266 int ret;
1267
1268 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1269
1270 ret = 0;
1271 if (seqno == ring->outstanding_lazy_seqno)
1272 ret = i915_add_request(ring, NULL);
1273
1274 return ret;
1275 }
1276
1277 #ifndef __NetBSD__
1278 static void fake_irq(unsigned long data)
1279 {
1280 wake_up_process((struct task_struct *)data);
1281 }
1282 #endif
1283
1284 static bool missed_irq(struct drm_i915_private *dev_priv,
1285 struct intel_ring_buffer *ring)
1286 {
1287 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1288 }
1289
1290 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1291 {
1292 if (file_priv == NULL)
1293 return true;
1294
1295 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1296 }
1297
1298 /**
1299 * __wait_seqno - wait until execution of seqno has finished
1300 * @ring: the ring expected to report seqno
1301 * @seqno: duh!
1302 * @reset_counter: reset sequence associated with the given seqno
1303 * @interruptible: do an interruptible wait (normally yes)
1304 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1305 *
1306 * Note: It is of utmost importance that the passed in seqno and reset_counter
1307 * values have been read by the caller in an smp safe manner. Where read-side
1308 * locks are involved, it is sufficient to read the reset_counter before
1309 * unlocking the lock that protects the seqno. For lockless tricks, the
1310 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1311 * inserted.
1312 *
1313 * Returns 0 if the seqno was found within the alloted time. Else returns the
1314 * errno with remaining time filled in timeout argument.
1315 */
1316 #ifdef __NetBSD__
1317 static int
1318 __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, unsigned reset_counter,
1319 bool interruptible, struct timespec *timeout,
1320 struct drm_i915_file_private *file_priv)
1321 {
1322 struct drm_device *dev = ring->dev;
1323 struct drm_i915_private *dev_priv = dev->dev_private;
1324 bool irq_test_in_progress;
1325 struct timespec before, after;
1326 int ticks;
1327 bool wedged;
1328 int ret;
1329
1330 irq_test_in_progress = (dev_priv->gpu_error.test_irq_rings &
1331 intel_ring_flag(ring));
1332 __insn_barrier();
1333
1334 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1335 return 0;
1336
1337 if (timeout)
1338 ticks = mstohz(timespec_to_ns(timeout) / 1000000);
1339 else
1340 ticks = 1;
1341
1342 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1343 gen6_rps_boost(dev_priv);
1344 if (file_priv)
1345 mod_delayed_work(dev_priv->wq,
1346 &file_priv->mm.idle_work,
1347 msecs_to_jiffies(100));
1348 }
1349
1350 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1351 return -ENODEV;
1352
1353 nanotime(&before);
1354 spin_lock(&dev_priv->irq_lock);
1355 #define EXIT_COND \
1356 ((wedged = (reset_counter != \
1357 atomic_read(&dev_priv->gpu_error.reset_counter))) || \
1358 i915_seqno_passed(ring->get_seqno(ring, false), \
1359 seqno))
1360
1361 if (timeout) {
1362 /*
1363 * XXX This missed_irq business smells like unlocked
1364 * Linux waitqueue nonsense.
1365 */
1366 if (missed_irq(dev_priv, ring))
1367 ticks = 1;
1368 if (interruptible)
1369 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
1370 &dev_priv->irq_lock, ticks, EXIT_COND);
1371 else
1372 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
1373 &dev_priv->irq_lock, ticks, EXIT_COND);
1374 if (ret < 0) /* Failure: return negative error as is. */
1375 ;
1376 else if (ret == 0) /* Timed out: return -ETIME. */
1377 ret = -ETIME;
1378 else /* Succeeded (ret > 0): return 0. */
1379 ret = 0;
1380 } else {
1381 if (interruptible)
1382 DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
1383 &dev_priv->irq_lock, EXIT_COND);
1384 else
1385 DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
1386 &dev_priv->irq_lock, EXIT_COND);
1387 /* ret is negative on failure or zero on success. */
1388 }
1389 #undef EXIT_COND
1390 spin_unlock(&dev_priv->irq_lock);
1391 nanotime(&after);
1392
1393 if (!irq_test_in_progress)
1394 ring->irq_put(ring);
1395 if (timeout) {
1396 struct timespec slept;
1397
1398 /* Compute slept = after - before. */
1399 timespecsub(&after, &before, &slept);
1400
1401 /*
1402 * Return the time remaining, timeout - slept, if we
1403 * slept for less time than the timeout; or zero if we
1404 * timed out.
1405 */
1406 if (timespeccmp(&slept, timeout, <))
1407 timespecsub(timeout, &slept, timeout);
1408 else
1409 timespecclear(timeout);
1410 }
1411 if (wedged) { /* GPU reset while we were waiting. */
1412 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1413 interruptible);
1414 if (ret == 0)
1415 ret = -EAGAIN;
1416 }
1417 return ret;
1418 }
1419 #else
1420 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1421 unsigned reset_counter,
1422 bool interruptible,
1423 struct timespec *timeout,
1424 struct drm_i915_file_private *file_priv)
1425 {
1426 struct drm_device *dev = ring->dev;
1427 struct drm_i915_private *dev_priv = dev->dev_private;
1428 const bool irq_test_in_progress =
1429 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1430 struct timespec before, now;
1431 DEFINE_WAIT(wait);
1432 unsigned long timeout_expire;
1433 int ret;
1434
1435 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1436
1437 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1438 return 0;
1439
1440 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1441
1442 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1443 gen6_rps_boost(dev_priv);
1444 if (file_priv)
1445 mod_delayed_work(dev_priv->wq,
1446 &file_priv->mm.idle_work,
1447 msecs_to_jiffies(100));
1448 }
1449
1450 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1451 return -ENODEV;
1452
1453 /* Record current time in case interrupted by signal, or wedged */
1454 trace_i915_gem_request_wait_begin(ring, seqno);
1455 getrawmonotonic(&before);
1456 for (;;) {
1457 struct timer_list timer;
1458
1459 prepare_to_wait(&ring->irq_queue, &wait,
1460 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1461
1462 /* We need to check whether any gpu reset happened in between
1463 * the caller grabbing the seqno and now ... */
1464 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1465 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1466 * is truely gone. */
1467 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1468 if (ret == 0)
1469 ret = -EAGAIN;
1470 break;
1471 }
1472
1473 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1474 ret = 0;
1475 break;
1476 }
1477
1478 if (interruptible && signal_pending(current)) {
1479 ret = -ERESTARTSYS;
1480 break;
1481 }
1482
1483 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1484 ret = -ETIME;
1485 break;
1486 }
1487
1488 timer.function = NULL;
1489 if (timeout || missed_irq(dev_priv, ring)) {
1490 unsigned long expire;
1491
1492 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1493 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1494 mod_timer(&timer, expire);
1495 }
1496
1497 io_schedule();
1498
1499 if (timer.function) {
1500 del_singleshot_timer_sync(&timer);
1501 destroy_timer_on_stack(&timer);
1502 }
1503 }
1504 getrawmonotonic(&now);
1505 trace_i915_gem_request_wait_end(ring, seqno);
1506
1507 if (!irq_test_in_progress)
1508 ring->irq_put(ring);
1509
1510 finish_wait(&ring->irq_queue, &wait);
1511
1512 if (timeout) {
1513 struct timespec sleep_time = timespec_sub(now, before);
1514 *timeout = timespec_sub(*timeout, sleep_time);
1515 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1516 set_normalized_timespec(timeout, 0, 0);
1517 }
1518
1519 return ret;
1520 }
1521 #endif
1522
1523 /**
1524 * Waits for a sequence number to be signaled, and cleans up the
1525 * request and object lists appropriately for that event.
1526 */
1527 int
1528 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1529 {
1530 struct drm_device *dev = ring->dev;
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 bool interruptible = dev_priv->mm.interruptible;
1533 int ret;
1534
1535 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1536 BUG_ON(seqno == 0);
1537
1538 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1539 if (ret)
1540 return ret;
1541
1542 ret = i915_gem_check_olr(ring, seqno);
1543 if (ret)
1544 return ret;
1545
1546 return __wait_seqno(ring, seqno,
1547 atomic_read(&dev_priv->gpu_error.reset_counter),
1548 interruptible, NULL, NULL);
1549 }
1550
1551 static int
1552 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1553 struct intel_ring_buffer *ring)
1554 {
1555 i915_gem_retire_requests_ring(ring);
1556
1557 /* Manually manage the write flush as we may have not yet
1558 * retired the buffer.
1559 *
1560 * Note that the last_write_seqno is always the earlier of
1561 * the two (read/write) seqno, so if we haved successfully waited,
1562 * we know we have passed the last write.
1563 */
1564 obj->last_write_seqno = 0;
1565 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1566
1567 return 0;
1568 }
1569
1570 /**
1571 * Ensures that all rendering to the object has completed and the object is
1572 * safe to unbind from the GTT or access from the CPU.
1573 */
1574 static __must_check int
1575 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1576 bool readonly)
1577 {
1578 struct intel_ring_buffer *ring = obj->ring;
1579 u32 seqno;
1580 int ret;
1581
1582 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1583 if (seqno == 0)
1584 return 0;
1585
1586 ret = i915_wait_seqno(ring, seqno);
1587 if (ret)
1588 return ret;
1589
1590 return i915_gem_object_wait_rendering__tail(obj, ring);
1591 }
1592
1593 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1594 * as the object state may change during this call.
1595 */
1596 static __must_check int
1597 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1598 struct drm_i915_file_private *file_priv,
1599 bool readonly)
1600 {
1601 struct drm_device *dev = obj->base.dev;
1602 struct drm_i915_private *dev_priv = dev->dev_private;
1603 struct intel_ring_buffer *ring = obj->ring;
1604 unsigned reset_counter;
1605 u32 seqno;
1606 int ret;
1607
1608 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1609 BUG_ON(!dev_priv->mm.interruptible);
1610
1611 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1612 if (seqno == 0)
1613 return 0;
1614
1615 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1616 if (ret)
1617 return ret;
1618
1619 ret = i915_gem_check_olr(ring, seqno);
1620 if (ret)
1621 return ret;
1622
1623 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1624 mutex_unlock(&dev->struct_mutex);
1625 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1626 mutex_lock(&dev->struct_mutex);
1627 if (ret)
1628 return ret;
1629
1630 return i915_gem_object_wait_rendering__tail(obj, ring);
1631 }
1632
1633 /**
1634 * Called when user space prepares to use an object with the CPU, either
1635 * through the mmap ioctl's mapping or a GTT mapping.
1636 */
1637 int
1638 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1639 struct drm_file *file)
1640 {
1641 struct drm_i915_gem_set_domain *args = data;
1642 struct drm_gem_object *gobj;
1643 struct drm_i915_gem_object *obj;
1644 uint32_t read_domains = args->read_domains;
1645 uint32_t write_domain = args->write_domain;
1646 int ret;
1647
1648 /* Only handle setting domains to types used by the CPU. */
1649 if (write_domain & I915_GEM_GPU_DOMAINS)
1650 return -EINVAL;
1651
1652 if (read_domains & I915_GEM_GPU_DOMAINS)
1653 return -EINVAL;
1654
1655 /* Having something in the write domain implies it's in the read
1656 * domain, and only that read domain. Enforce that in the request.
1657 */
1658 if (write_domain != 0 && read_domains != write_domain)
1659 return -EINVAL;
1660
1661 ret = i915_mutex_lock_interruptible(dev);
1662 if (ret)
1663 return ret;
1664
1665 gobj = drm_gem_object_lookup(dev, file, args->handle);
1666 if (gobj == NULL) {
1667 ret = -ENOENT;
1668 goto unlock;
1669 }
1670 obj = to_intel_bo(gobj);
1671
1672 /* Try to flush the object off the GPU without holding the lock.
1673 * We will repeat the flush holding the lock in the normal manner
1674 * to catch cases where we are gazumped.
1675 */
1676 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1677 file->driver_priv,
1678 !write_domain);
1679 if (ret)
1680 goto unref;
1681
1682 if (read_domains & I915_GEM_DOMAIN_GTT) {
1683 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1684
1685 /* Silently promote "you're not bound, there was nothing to do"
1686 * to success, since the client was just asking us to
1687 * make sure everything was done.
1688 */
1689 if (ret == -EINVAL)
1690 ret = 0;
1691 } else {
1692 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1693 }
1694
1695 unref:
1696 drm_gem_object_unreference(&obj->base);
1697 unlock:
1698 mutex_unlock(&dev->struct_mutex);
1699 return ret;
1700 }
1701
1702 /**
1703 * Called when user space has done writes to this buffer
1704 */
1705 int
1706 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1707 struct drm_file *file)
1708 {
1709 struct drm_i915_gem_sw_finish *args = data;
1710 struct drm_gem_object *gobj;
1711 struct drm_i915_gem_object *obj;
1712 int ret = 0;
1713
1714 ret = i915_mutex_lock_interruptible(dev);
1715 if (ret)
1716 return ret;
1717
1718 gobj = drm_gem_object_lookup(dev, file, args->handle);
1719 if (gobj == NULL) {
1720 ret = -ENOENT;
1721 goto unlock;
1722 }
1723 obj = to_intel_bo(gobj);
1724
1725 /* Pinned buffers may be scanout, so flush the cache */
1726 if (obj->pin_display)
1727 i915_gem_object_flush_cpu_write_domain(obj, true);
1728
1729 drm_gem_object_unreference(&obj->base);
1730 unlock:
1731 mutex_unlock(&dev->struct_mutex);
1732 return ret;
1733 }
1734
1735 /**
1736 * Maps the contents of an object, returning the address it is mapped
1737 * into.
1738 *
1739 * While the mapping holds a reference on the contents of the object, it doesn't
1740 * imply a ref on the object itself.
1741 */
1742 int
1743 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1744 struct drm_file *file)
1745 {
1746 struct drm_i915_gem_mmap *args = data;
1747 struct drm_gem_object *obj;
1748 unsigned long addr;
1749 #ifdef __NetBSD__
1750 int ret;
1751 #endif
1752
1753 obj = drm_gem_object_lookup(dev, file, args->handle);
1754 if (obj == NULL)
1755 return -ENOENT;
1756
1757 /* prime objects have no backing filp to GEM mmap
1758 * pages from.
1759 */
1760 #ifdef __NetBSD__
1761 /* Also stolen objects (XXX can we get them here?) */
1762 if (obj->gemo_shm_uao == NULL) {
1763 drm_gem_object_unreference_unlocked(obj);
1764 return -EINVAL;
1765 }
1766 #else
1767 if (!obj->filp) {
1768 drm_gem_object_unreference_unlocked(obj);
1769 return -EINVAL;
1770 }
1771 #endif
1772
1773 #ifdef __NetBSD__
1774 addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
1775 (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
1776 /* XXX errno NetBSD->Linux */
1777 ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
1778 obj->gemo_shm_uao, args->offset, 0,
1779 UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
1780 (VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
1781 0));
1782 if (ret) {
1783 drm_gem_object_unreference_unlocked(obj);
1784 return ret;
1785 }
1786 uao_reference(obj->gemo_shm_uao);
1787 drm_gem_object_unreference_unlocked(obj);
1788 #else
1789 addr = vm_mmap(obj->filp, 0, args->size,
1790 PROT_READ | PROT_WRITE, MAP_SHARED,
1791 args->offset);
1792 drm_gem_object_unreference_unlocked(obj);
1793 if (IS_ERR((void *)addr))
1794 return addr;
1795 #endif
1796
1797 args->addr_ptr = (uint64_t) addr;
1798
1799 return 0;
1800 }
1801
1802 #ifdef __NetBSD__ /* XXX gem gtt fault */
1803 static int i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
1804 struct vm_page **, int, int, vm_prot_t, int, paddr_t);
1805
1806 int
1807 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1808 int npages, int centeridx, vm_prot_t access_type, int flags)
1809 {
1810 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1811 struct drm_gem_object *gem_obj =
1812 container_of(uobj, struct drm_gem_object, gemo_uvmobj);
1813 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
1814 struct drm_device *dev = obj->base.dev;
1815 struct drm_i915_private *dev_priv = dev->dev_private;
1816 voff_t byte_offset;
1817 pgoff_t page_offset;
1818 int ret = 0;
1819 bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
1820
1821 byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
1822 KASSERT(byte_offset <= obj->base.size);
1823 page_offset = (byte_offset >> PAGE_SHIFT);
1824
1825 intel_runtime_pm_get(dev_priv);
1826
1827 /* Thanks, uvm, but we don't need this lock. */
1828 mutex_exit(uobj->vmobjlock);
1829
1830 ret = i915_mutex_lock_interruptible(dev);
1831 if (ret)
1832 goto out;
1833
1834 trace_i915_gem_object_fault(obj, page_offset, true, write);
1835
1836 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1837 if (ret)
1838 goto unlock;
1839
1840 if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
1841 ret = -EINVAL;
1842 goto unlock;
1843 }
1844
1845 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1846 if (ret)
1847 goto unlock;
1848
1849 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850 if (ret)
1851 goto unpin;
1852
1853 ret = i915_gem_object_get_fence(obj);
1854 if (ret)
1855 goto unpin;
1856
1857 obj->fault_mappable = true;
1858
1859 /* XXX errno NetBSD->Linux */
1860 ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
1861 flags,
1862 (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
1863 unpin:
1864 i915_gem_object_ggtt_unpin(obj);
1865 unlock:
1866 mutex_unlock(&dev->struct_mutex);
1867 out:
1868 mutex_enter(uobj->vmobjlock);
1869 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
1870 if (ret == -ERESTART)
1871 uvm_wait("i915flt");
1872 /* XXX Deal with GPU hangs here... */
1873 intel_runtime_pm_put(dev_priv);
1874 /* XXX errno Linux->NetBSD */
1875 return -ret;
1876 }
1877
1878 /*
1879 * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
1880 *
1881 * XXX pmap_enter_default instead of pmap_enter because of a problem
1882 * with using weak aliases in kernel modules or something.
1883 */
1884 int pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
1885
1886 static int
1887 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1888 int npages, int centeridx, vm_prot_t access_type, int flags,
1889 paddr_t gtt_paddr)
1890 {
1891 struct vm_map_entry *entry = ufi->entry;
1892 vaddr_t curr_va;
1893 off_t curr_offset;
1894 paddr_t paddr;
1895 u_int mmapflags;
1896 int lcv, retval;
1897 vm_prot_t mapprot;
1898 UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
1899 UVMHIST_LOG(maphist," flags=%d", flags,0,0,0);
1900
1901 /*
1902 * we do not allow device mappings to be mapped copy-on-write
1903 * so we kill any attempt to do so here.
1904 */
1905
1906 if (UVM_ET_ISCOPYONWRITE(entry)) {
1907 UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
1908 entry->etype, 0,0,0);
1909 return(EIO);
1910 }
1911
1912 /*
1913 * now we must determine the offset in udv to use and the VA to
1914 * use for pmap_enter. note that we always use orig_map's pmap
1915 * for pmap_enter (even if we have a submap). since virtual
1916 * addresses in a submap must match the main map, this is ok.
1917 */
1918
1919 /* udv offset = (offset from start of entry) + entry's offset */
1920 curr_offset = entry->offset + (vaddr - entry->start);
1921 /* pmap va = vaddr (virtual address of pps[0]) */
1922 curr_va = vaddr;
1923
1924 /*
1925 * loop over the page range entering in as needed
1926 */
1927
1928 retval = 0;
1929 for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
1930 curr_va += PAGE_SIZE) {
1931 if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
1932 continue;
1933
1934 if (pps[lcv] == PGO_DONTCARE)
1935 continue;
1936
1937 paddr = (gtt_paddr + curr_offset);
1938 mmapflags = 0;
1939 mapprot = ufi->entry->protection;
1940 UVMHIST_LOG(maphist,
1941 " MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
1942 ufi->orig_map->pmap, curr_va, paddr, mapprot);
1943 if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
1944 PMAP_CANFAIL | mapprot | mmapflags) != 0) {
1945 /*
1946 * pmap_enter() didn't have the resource to
1947 * enter this mapping. Unlock everything,
1948 * wait for the pagedaemon to free up some
1949 * pages, and then tell uvm_fault() to start
1950 * the fault again.
1951 *
1952 * XXX Needs some rethinking for the PGO_ALLPAGES
1953 * XXX case.
1954 */
1955 pmap_update(ufi->orig_map->pmap); /* sync what we have so far */
1956 return (ERESTART);
1957 }
1958 }
1959
1960 pmap_update(ufi->orig_map->pmap);
1961 return (retval);
1962 }
1963 #else
1964 /**
1965 * i915_gem_fault - fault a page into the GTT
1966 * vma: VMA in question
1967 * vmf: fault info
1968 *
1969 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1970 * from userspace. The fault handler takes care of binding the object to
1971 * the GTT (if needed), allocating and programming a fence register (again,
1972 * only if needed based on whether the old reg is still valid or the object
1973 * is tiled) and inserting a new PTE into the faulting process.
1974 *
1975 * Note that the faulting process may involve evicting existing objects
1976 * from the GTT and/or fence registers to make room. So performance may
1977 * suffer if the GTT working set is large or there are few fence registers
1978 * left.
1979 */
1980 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1981 {
1982 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1983 struct drm_device *dev = obj->base.dev;
1984 struct drm_i915_private *dev_priv = dev->dev_private;
1985 pgoff_t page_offset;
1986 unsigned long pfn;
1987 int ret = 0;
1988 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1989
1990 intel_runtime_pm_get(dev_priv);
1991
1992 /* We don't use vmf->pgoff since that has the fake offset */
1993 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1994 PAGE_SHIFT;
1995
1996 ret = i915_mutex_lock_interruptible(dev);
1997 if (ret)
1998 goto out;
1999
2000 trace_i915_gem_object_fault(obj, page_offset, true, write);
2001
2002 /* Try to flush the object off the GPU first without holding the lock.
2003 * Upon reacquiring the lock, we will perform our sanity checks and then
2004 * repeat the flush holding the lock in the normal manner to catch cases
2005 * where we are gazumped.
2006 */
2007 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2008 if (ret)
2009 goto unlock;
2010
2011 /* Access to snoopable pages through the GTT is incoherent. */
2012 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2013 ret = -EINVAL;
2014 goto unlock;
2015 }
2016
2017 /* Now bind it into the GTT if needed */
2018 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
2019 if (ret)
2020 goto unlock;
2021
2022 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2023 if (ret)
2024 goto unpin;
2025
2026 ret = i915_gem_object_get_fence(obj);
2027 if (ret)
2028 goto unpin;
2029
2030 obj->fault_mappable = true;
2031
2032 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
2033 pfn >>= PAGE_SHIFT;
2034 pfn += page_offset;
2035
2036 /* Finally, remap it using the new GTT offset */
2037 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
2038 unpin:
2039 i915_gem_object_ggtt_unpin(obj);
2040 unlock:
2041 mutex_unlock(&dev->struct_mutex);
2042 out:
2043 switch (ret) {
2044 case -EIO:
2045 /* If this -EIO is due to a gpu hang, give the reset code a
2046 * chance to clean up the mess. Otherwise return the proper
2047 * SIGBUS. */
2048 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
2049 ret = VM_FAULT_SIGBUS;
2050 break;
2051 }
2052 case -EAGAIN:
2053 /*
2054 * EAGAIN means the gpu is hung and we'll wait for the error
2055 * handler to reset everything when re-faulting in
2056 * i915_mutex_lock_interruptible.
2057 */
2058 case 0:
2059 case -ERESTARTSYS:
2060 case -EINTR:
2061 case -EBUSY:
2062 /*
2063 * EBUSY is ok: this just means that another thread
2064 * already did the job.
2065 */
2066 ret = VM_FAULT_NOPAGE;
2067 break;
2068 case -ENOMEM:
2069 ret = VM_FAULT_OOM;
2070 break;
2071 case -ENOSPC:
2072 case -EFAULT:
2073 ret = VM_FAULT_SIGBUS;
2074 break;
2075 default:
2076 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2077 ret = VM_FAULT_SIGBUS;
2078 break;
2079 }
2080
2081 intel_runtime_pm_put(dev_priv);
2082 return ret;
2083 }
2084
2085 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2086 {
2087 struct i915_vma *vma;
2088
2089 /*
2090 * Only the global gtt is relevant for gtt memory mappings, so restrict
2091 * list traversal to objects bound into the global address space. Note
2092 * that the active list should be empty, but better safe than sorry.
2093 */
2094 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
2095 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
2096 i915_gem_release_mmap(vma->obj);
2097 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
2098 i915_gem_release_mmap(vma->obj);
2099 }
2100 #endif
2101
2102 /**
2103 * i915_gem_release_mmap - remove physical page mappings
2104 * @obj: obj in question
2105 *
2106 * Preserve the reservation of the mmapping with the DRM core code, but
2107 * relinquish ownership of the pages back to the system.
2108 *
2109 * It is vital that we remove the page mapping if we have mapped a tiled
2110 * object through the GTT and then lose the fence register due to
2111 * resource pressure. Similarly if the object has been moved out of the
2112 * aperture, than pages mapped into userspace must be revoked. Removing the
2113 * mapping will then trigger a page fault on the next user access, allowing
2114 * fixup by i915_gem_fault().
2115 */
2116 void
2117 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2118 {
2119 if (!obj->fault_mappable)
2120 return;
2121
2122 #ifdef __NetBSD__ /* XXX gem gtt fault */
2123 {
2124 struct drm_device *const dev = obj->base.dev;
2125 struct drm_i915_private *const dev_priv = dev->dev_private;
2126 const paddr_t start = dev_priv->gtt.mappable_base +
2127 i915_gem_obj_ggtt_offset(obj);
2128 const size_t size = obj->base.size;
2129 const paddr_t end = start + size;
2130 paddr_t pa;
2131
2132 KASSERT((start & (PAGE_SIZE - 1)) == 0);
2133 KASSERT((size & (PAGE_SIZE - 1)) == 0);
2134
2135 for (pa = start; pa < end; pa += PAGE_SIZE)
2136 pmap_pv_protect(pa, VM_PROT_NONE);
2137 }
2138 #else
2139 drm_vma_node_unmap(&obj->base.vma_node,
2140 obj->base.dev->anon_inode->i_mapping);
2141 #endif
2142 obj->fault_mappable = false;
2143 }
2144
2145 uint32_t
2146 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2147 {
2148 uint32_t gtt_size;
2149
2150 if (INTEL_INFO(dev)->gen >= 4 ||
2151 tiling_mode == I915_TILING_NONE)
2152 return size;
2153
2154 /* Previous chips need a power-of-two fence region when tiling */
2155 if (INTEL_INFO(dev)->gen == 3)
2156 gtt_size = 1024*1024;
2157 else
2158 gtt_size = 512*1024;
2159
2160 while (gtt_size < size)
2161 gtt_size <<= 1;
2162
2163 return gtt_size;
2164 }
2165
2166 /**
2167 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2168 * @obj: object to check
2169 *
2170 * Return the required GTT alignment for an object, taking into account
2171 * potential fence register mapping.
2172 */
2173 uint32_t
2174 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2175 int tiling_mode, bool fenced)
2176 {
2177 /*
2178 * Minimum alignment is 4k (GTT page size), but might be greater
2179 * if a fence register is needed for the object.
2180 */
2181 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2182 tiling_mode == I915_TILING_NONE)
2183 return 4096;
2184
2185 /*
2186 * Previous chips need to be aligned to the size of the smallest
2187 * fence register that can contain the object.
2188 */
2189 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2190 }
2191
2192 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2193 {
2194 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2195 int ret;
2196
2197 if (drm_vma_node_has_offset(&obj->base.vma_node))
2198 return 0;
2199
2200 dev_priv->mm.shrinker_no_lock_stealing = true;
2201
2202 ret = drm_gem_create_mmap_offset(&obj->base);
2203 if (ret != -ENOSPC)
2204 goto out;
2205
2206 /* Badly fragmented mmap space? The only way we can recover
2207 * space is by destroying unwanted objects. We can't randomly release
2208 * mmap_offsets as userspace expects them to be persistent for the
2209 * lifetime of the objects. The closest we can is to release the
2210 * offsets on purgeable objects by truncating it and marking it purged,
2211 * which prevents userspace from ever using that object again.
2212 */
2213 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
2214 ret = drm_gem_create_mmap_offset(&obj->base);
2215 if (ret != -ENOSPC)
2216 goto out;
2217
2218 i915_gem_shrink_all(dev_priv);
2219 ret = drm_gem_create_mmap_offset(&obj->base);
2220 out:
2221 dev_priv->mm.shrinker_no_lock_stealing = false;
2222
2223 return ret;
2224 }
2225
2226 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2227 {
2228 drm_gem_free_mmap_offset(&obj->base);
2229 }
2230
2231 int
2232 i915_gem_mmap_gtt(struct drm_file *file,
2233 struct drm_device *dev,
2234 uint32_t handle,
2235 uint64_t *offset)
2236 {
2237 struct drm_i915_private *dev_priv = dev->dev_private;
2238 struct drm_gem_object *gobj;
2239 struct drm_i915_gem_object *obj;
2240 int ret;
2241
2242 ret = i915_mutex_lock_interruptible(dev);
2243 if (ret)
2244 return ret;
2245
2246 gobj = drm_gem_object_lookup(dev, file, handle);
2247 if (gobj == NULL) {
2248 ret = -ENOENT;
2249 goto unlock;
2250 }
2251 obj = to_intel_bo(gobj);
2252
2253 if (obj->base.size > dev_priv->gtt.mappable_end) {
2254 ret = -E2BIG;
2255 goto out;
2256 }
2257
2258 if (obj->madv != I915_MADV_WILLNEED) {
2259 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2260 ret = -EFAULT;
2261 goto out;
2262 }
2263
2264 ret = i915_gem_object_create_mmap_offset(obj);
2265 if (ret)
2266 goto out;
2267
2268 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2269
2270 out:
2271 drm_gem_object_unreference(&obj->base);
2272 unlock:
2273 mutex_unlock(&dev->struct_mutex);
2274 return ret;
2275 }
2276
2277 /**
2278 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2279 * @dev: DRM device
2280 * @data: GTT mapping ioctl data
2281 * @file: GEM object info
2282 *
2283 * Simply returns the fake offset to userspace so it can mmap it.
2284 * The mmap call will end up in drm_gem_mmap(), which will set things
2285 * up so we can get faults in the handler above.
2286 *
2287 * The fault handler will take care of binding the object into the GTT
2288 * (since it may have been evicted to make room for something), allocating
2289 * a fence register, and mapping the appropriate aperture address into
2290 * userspace.
2291 */
2292 int
2293 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2294 struct drm_file *file)
2295 {
2296 struct drm_i915_gem_mmap_gtt *args = data;
2297
2298 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2299 }
2300
2301 /* Immediately discard the backing storage */
2302 static void
2303 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2304 {
2305 #ifndef __NetBSD__
2306 struct inode *inode;
2307 #endif
2308
2309 i915_gem_object_free_mmap_offset(obj);
2310
2311 #ifdef __NetBSD__
2312 if (obj->base.gemo_shm_uao == NULL)
2313 return;
2314
2315 {
2316 struct uvm_object *const uobj = obj->base.gemo_shm_uao;
2317
2318 if (uobj != NULL) {
2319 /* XXX Calling pgo_put like this is bogus. */
2320 mutex_enter(uobj->vmobjlock);
2321 (*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
2322 (PGO_ALLPAGES | PGO_FREE));
2323 }
2324 }
2325 #else
2326 if (obj->base.filp == NULL)
2327 return;
2328
2329 /* Our goal here is to return as much of the memory as
2330 * is possible back to the system as we are called from OOM.
2331 * To do this we must instruct the shmfs to drop all of its
2332 * backing pages, *now*.
2333 */
2334 inode = file_inode(obj->base.filp);
2335 shmem_truncate_range(inode, 0, (loff_t)-1);
2336 #endif
2337
2338 obj->madv = __I915_MADV_PURGED;
2339 }
2340
2341 static inline int
2342 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
2343 {
2344 return obj->madv == I915_MADV_DONTNEED;
2345 }
2346
2347 #ifdef __NetBSD__
2348 static void
2349 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2350 {
2351 struct drm_device *const dev = obj->base.dev;
2352 struct vm_page *page;
2353 int ret;
2354
2355 /* XXX Cargo-culted from the Linux code. */
2356 BUG_ON(obj->madv == __I915_MADV_PURGED);
2357
2358 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2359 if (ret) {
2360 WARN_ON(ret != -EIO);
2361 i915_gem_clflush_object(obj, true);
2362 obj->base.read_domains = obj->base.write_domain =
2363 I915_GEM_DOMAIN_CPU;
2364 }
2365
2366 if (i915_gem_object_needs_bit17_swizzle(obj))
2367 i915_gem_object_save_bit_17_swizzle(obj);
2368
2369 if (obj->madv == I915_MADV_DONTNEED)
2370 obj->dirty = 0;
2371
2372 if (obj->dirty) {
2373 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
2374 page->flags &= ~PG_CLEAN;
2375 /* XXX mark page accessed */
2376 }
2377 }
2378
2379 bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
2380 bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2381 obj->base.size, obj->pages, obj->igo_nsegs);
2382
2383 kfree(obj->pages);
2384 }
2385 #else
2386 static void
2387 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2388 {
2389 struct sg_page_iter sg_iter;
2390 int ret;
2391
2392 BUG_ON(obj->madv == __I915_MADV_PURGED);
2393
2394 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2395 if (ret) {
2396 /* In the event of a disaster, abandon all caches and
2397 * hope for the best.
2398 */
2399 WARN_ON(ret != -EIO);
2400 i915_gem_clflush_object(obj, true);
2401 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2402 }
2403
2404 if (i915_gem_object_needs_bit17_swizzle(obj))
2405 i915_gem_object_save_bit_17_swizzle(obj);
2406
2407 if (obj->madv == I915_MADV_DONTNEED)
2408 obj->dirty = 0;
2409
2410 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2411 struct page *page = sg_page_iter_page(&sg_iter);
2412
2413 if (obj->dirty)
2414 set_page_dirty(page);
2415
2416 if (obj->madv == I915_MADV_WILLNEED)
2417 mark_page_accessed(page);
2418
2419 page_cache_release(page);
2420 }
2421 obj->dirty = 0;
2422
2423 sg_free_table(obj->pages);
2424 kfree(obj->pages);
2425 }
2426 #endif
2427
2428 int
2429 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2430 {
2431 const struct drm_i915_gem_object_ops *ops = obj->ops;
2432
2433 if (obj->pages == NULL)
2434 return 0;
2435
2436 if (obj->pages_pin_count)
2437 return -EBUSY;
2438
2439 BUG_ON(i915_gem_obj_bound_any(obj));
2440
2441 /* ->put_pages might need to allocate memory for the bit17 swizzle
2442 * array, hence protect them from being reaped by removing them from gtt
2443 * lists early. */
2444 list_del(&obj->global_list);
2445
2446 ops->put_pages(obj);
2447 obj->pages = NULL;
2448
2449 if (i915_gem_object_is_purgeable(obj))
2450 i915_gem_object_truncate(obj);
2451
2452 return 0;
2453 }
2454
2455 static unsigned long
2456 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
2457 bool purgeable_only)
2458 {
2459 struct list_head still_bound_list;
2460 struct drm_i915_gem_object *obj, *next;
2461 unsigned long count = 0;
2462
2463 list_for_each_entry_safe(obj, next,
2464 &dev_priv->mm.unbound_list,
2465 global_list) {
2466 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2467 i915_gem_object_put_pages(obj) == 0) {
2468 count += obj->base.size >> PAGE_SHIFT;
2469 if (count >= target)
2470 return count;
2471 }
2472 }
2473
2474 /*
2475 * As we may completely rewrite the bound list whilst unbinding
2476 * (due to retiring requests) we have to strictly process only
2477 * one element of the list at the time, and recheck the list
2478 * on every iteration.
2479 */
2480 INIT_LIST_HEAD(&still_bound_list);
2481 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
2482 struct i915_vma *vma, *v;
2483
2484 obj = list_first_entry(&dev_priv->mm.bound_list,
2485 typeof(*obj), global_list);
2486 list_move_tail(&obj->global_list, &still_bound_list);
2487
2488 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
2489 continue;
2490
2491 /*
2492 * Hold a reference whilst we unbind this object, as we may
2493 * end up waiting for and retiring requests. This might
2494 * release the final reference (held by the active list)
2495 * and result in the object being freed from under us.
2496 * in this object being freed.
2497 *
2498 * Note 1: Shrinking the bound list is special since only active
2499 * (and hence bound objects) can contain such limbo objects, so
2500 * we don't need special tricks for shrinking the unbound list.
2501 * The only other place where we have to be careful with active
2502 * objects suddenly disappearing due to retiring requests is the
2503 * eviction code.
2504 *
2505 * Note 2: Even though the bound list doesn't hold a reference
2506 * to the object we can safely grab one here: The final object
2507 * unreferencing and the bound_list are both protected by the
2508 * dev->struct_mutex and so we won't ever be able to observe an
2509 * object on the bound_list with a reference count equals 0.
2510 */
2511 drm_gem_object_reference(&obj->base);
2512
2513 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
2514 if (i915_vma_unbind(vma))
2515 break;
2516
2517 if (i915_gem_object_put_pages(obj) == 0)
2518 count += obj->base.size >> PAGE_SHIFT;
2519
2520 drm_gem_object_unreference(&obj->base);
2521 }
2522 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
2523
2524 return count;
2525 }
2526
2527 static unsigned long
2528 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2529 {
2530 return __i915_gem_shrink(dev_priv, target, true);
2531 }
2532
2533 static unsigned long
2534 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2535 {
2536 struct drm_i915_gem_object *obj, *next;
2537 long freed = 0;
2538
2539 i915_gem_evict_everything(dev_priv->dev);
2540
2541 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
2542 global_list) {
2543 if (i915_gem_object_put_pages(obj) == 0)
2544 freed += obj->base.size >> PAGE_SHIFT;
2545 }
2546 return freed;
2547 }
2548
2549 #ifdef __NetBSD__
2550 static int
2551 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2552 {
2553 struct drm_device *const dev = obj->base.dev;
2554 struct vm_page *page;
2555 int error;
2556
2557 /* XXX Cargo-culted from the Linux code. */
2558 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2559 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2560
2561 KASSERT(obj->pages == NULL);
2562 TAILQ_INIT(&obj->igo_pageq);
2563 obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
2564 sizeof(obj->pages[0]), GFP_KERNEL);
2565 if (obj->pages == NULL) {
2566 error = -ENOMEM;
2567 goto fail0;
2568 }
2569
2570 /* XXX errno NetBSD->Linux */
2571 error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
2572 0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
2573 (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
2574 if (error)
2575 /* XXX Try i915_gem_purge, i915_gem_shrink_all. */
2576 goto fail1;
2577 KASSERT(0 < obj->igo_nsegs);
2578 KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
2579
2580 /*
2581 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
2582 *
2583 * XXX This is wrong; we ought to pass this constraint to
2584 * bus_dmamem_wire_uvm_object instead.
2585 */
2586 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
2587 const uint64_t mask =
2588 (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
2589 0xffffffffULL : 0xffffffffffULL);
2590 if (VM_PAGE_TO_PHYS(page) & ~mask) {
2591 DRM_ERROR("GEM physical address exceeds %u bits"
2592 ": %"PRIxMAX"\n",
2593 popcount64(mask),
2594 (uintmax_t)VM_PAGE_TO_PHYS(page));
2595 error = -EIO;
2596 goto fail2;
2597 }
2598 }
2599
2600 /* XXX Should create the DMA map when creating the object. */
2601
2602 /* XXX errno NetBSD->Linux */
2603 error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
2604 PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
2605 if (error)
2606 goto fail2;
2607
2608 /* XXX Cargo-culted from the Linux code. */
2609 if (i915_gem_object_needs_bit17_swizzle(obj))
2610 i915_gem_object_do_bit_17_swizzle(obj);
2611
2612 /* Success! */
2613 return 0;
2614
2615 fail2: bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2616 obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
2617 fail1: kfree(obj->pages);
2618 obj->pages = NULL;
2619 fail0: KASSERT(error);
2620 return error;
2621 }
2622 #else
2623 static int
2624 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2625 {
2626 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2627 int page_count, i;
2628 struct address_space *mapping;
2629 struct sg_table *st;
2630 struct scatterlist *sg;
2631 struct sg_page_iter sg_iter;
2632 struct page *page;
2633 unsigned long last_pfn = 0; /* suppress gcc warning */
2634 gfp_t gfp;
2635
2636 /* Assert that the object is not currently in any GPU domain. As it
2637 * wasn't in the GTT, there shouldn't be any way it could have been in
2638 * a GPU cache
2639 */
2640 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2641 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2642
2643 st = kmalloc(sizeof(*st), GFP_KERNEL);
2644 if (st == NULL)
2645 return -ENOMEM;
2646
2647 page_count = obj->base.size / PAGE_SIZE;
2648 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2649 kfree(st);
2650 return -ENOMEM;
2651 }
2652
2653 /* Get the list of pages out of our struct file. They'll be pinned
2654 * at this point until we release them.
2655 *
2656 * Fail silently without starting the shrinker
2657 */
2658 mapping = file_inode(obj->base.filp)->i_mapping;
2659 gfp = mapping_gfp_mask(mapping);
2660 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2661 gfp &= ~(__GFP_IO | __GFP_WAIT);
2662 sg = st->sgl;
2663 st->nents = 0;
2664 for (i = 0; i < page_count; i++) {
2665 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2666 if (IS_ERR(page)) {
2667 i915_gem_purge(dev_priv, page_count);
2668 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2669 }
2670 if (IS_ERR(page)) {
2671 /* We've tried hard to allocate the memory by reaping
2672 * our own buffer, now let the real VM do its job and
2673 * go down in flames if truly OOM.
2674 */
2675 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2676 gfp |= __GFP_IO | __GFP_WAIT;
2677
2678 i915_gem_shrink_all(dev_priv);
2679 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2680 if (IS_ERR(page))
2681 goto err_pages;
2682
2683 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2684 gfp &= ~(__GFP_IO | __GFP_WAIT);
2685 }
2686 #ifdef CONFIG_SWIOTLB
2687 if (swiotlb_nr_tbl()) {
2688 st->nents++;
2689 sg_set_page(sg, page, PAGE_SIZE, 0);
2690 sg = sg_next(sg);
2691 continue;
2692 }
2693 #endif
2694 if (!i || page_to_pfn(page) != last_pfn + 1) {
2695 if (i)
2696 sg = sg_next(sg);
2697 st->nents++;
2698 sg_set_page(sg, page, PAGE_SIZE, 0);
2699 } else {
2700 sg->length += PAGE_SIZE;
2701 }
2702 last_pfn = page_to_pfn(page);
2703
2704 /* Check that the i965g/gm workaround works. */
2705 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2706 }
2707 #ifdef CONFIG_SWIOTLB
2708 if (!swiotlb_nr_tbl())
2709 #endif
2710 sg_mark_end(sg);
2711 obj->pages = st;
2712
2713 if (i915_gem_object_needs_bit17_swizzle(obj))
2714 i915_gem_object_do_bit_17_swizzle(obj);
2715
2716 return 0;
2717
2718 err_pages:
2719 sg_mark_end(sg);
2720 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2721 page_cache_release(sg_page_iter_page(&sg_iter));
2722 sg_free_table(st);
2723 kfree(st);
2724 return PTR_ERR(page);
2725 }
2726 #endif
2727
2728 /* Ensure that the associated pages are gathered from the backing storage
2729 * and pinned into our object. i915_gem_object_get_pages() may be called
2730 * multiple times before they are released by a single call to
2731 * i915_gem_object_put_pages() - once the pages are no longer referenced
2732 * either as a result of memory pressure (reaping pages under the shrinker)
2733 * or as the object is itself released.
2734 */
2735 int
2736 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2737 {
2738 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2739 const struct drm_i915_gem_object_ops *ops = obj->ops;
2740 int ret;
2741
2742 if (obj->pages)
2743 return 0;
2744
2745 if (obj->madv != I915_MADV_WILLNEED) {
2746 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2747 return -EFAULT;
2748 }
2749
2750 BUG_ON(obj->pages_pin_count);
2751
2752 ret = ops->get_pages(obj);
2753 if (ret)
2754 return ret;
2755
2756 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2757 return 0;
2758 }
2759
2760 static void
2761 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2762 struct intel_ring_buffer *ring)
2763 {
2764 struct drm_device *dev = obj->base.dev;
2765 struct drm_i915_private *dev_priv = dev->dev_private;
2766 u32 seqno = intel_ring_get_seqno(ring);
2767
2768 BUG_ON(ring == NULL);
2769 if (obj->ring != ring && obj->last_write_seqno) {
2770 /* Keep the seqno relative to the current ring */
2771 obj->last_write_seqno = seqno;
2772 }
2773 obj->ring = ring;
2774
2775 /* Add a reference if we're newly entering the active list. */
2776 if (!obj->active) {
2777 drm_gem_object_reference(&obj->base);
2778 obj->active = 1;
2779 }
2780
2781 list_move_tail(&obj->ring_list, &ring->active_list);
2782
2783 obj->last_read_seqno = seqno;
2784
2785 if (obj->fenced_gpu_access) {
2786 obj->last_fenced_seqno = seqno;
2787
2788 /* Bump MRU to take account of the delayed flush */
2789 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2790 struct drm_i915_fence_reg *reg;
2791
2792 reg = &dev_priv->fence_regs[obj->fence_reg];
2793 list_move_tail(®->lru_list,
2794 &dev_priv->mm.fence_list);
2795 }
2796 }
2797 }
2798
2799 void i915_vma_move_to_active(struct i915_vma *vma,
2800 struct intel_ring_buffer *ring)
2801 {
2802 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2803 return i915_gem_object_move_to_active(vma->obj, ring);
2804 }
2805
2806 static void
2807 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2808 {
2809 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2810 struct i915_address_space *vm;
2811 struct i915_vma *vma;
2812
2813 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2814 BUG_ON(!obj->active);
2815
2816 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2817 vma = i915_gem_obj_to_vma(obj, vm);
2818 if (vma && !list_empty(&vma->mm_list))
2819 list_move_tail(&vma->mm_list, &vm->inactive_list);
2820 }
2821
2822 list_del_init(&obj->ring_list);
2823 obj->ring = NULL;
2824
2825 obj->last_read_seqno = 0;
2826 obj->last_write_seqno = 0;
2827 obj->base.write_domain = 0;
2828
2829 obj->last_fenced_seqno = 0;
2830 obj->fenced_gpu_access = false;
2831
2832 obj->active = 0;
2833 drm_gem_object_unreference(&obj->base);
2834
2835 WARN_ON(i915_verify_lists(dev));
2836 }
2837
2838 static int
2839 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2840 {
2841 struct drm_i915_private *dev_priv = dev->dev_private;
2842 struct intel_ring_buffer *ring;
2843 int ret, i, j;
2844
2845 /* Carefully retire all requests without writing to the rings */
2846 for_each_ring(ring, dev_priv, i) {
2847 ret = intel_ring_idle(ring);
2848 if (ret)
2849 return ret;
2850 }
2851 i915_gem_retire_requests(dev);
2852
2853 /* Finally reset hw state */
2854 for_each_ring(ring, dev_priv, i) {
2855 intel_ring_init_seqno(ring, seqno);
2856
2857 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2858 ring->sync_seqno[j] = 0;
2859 }
2860
2861 return 0;
2862 }
2863
2864 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2865 {
2866 struct drm_i915_private *dev_priv = dev->dev_private;
2867 int ret;
2868
2869 if (seqno == 0)
2870 return -EINVAL;
2871
2872 /* HWS page needs to be set less than what we
2873 * will inject to ring
2874 */
2875 ret = i915_gem_init_seqno(dev, seqno - 1);
2876 if (ret)
2877 return ret;
2878
2879 /* Carefully set the last_seqno value so that wrap
2880 * detection still works
2881 */
2882 dev_priv->next_seqno = seqno;
2883 dev_priv->last_seqno = seqno - 1;
2884 if (dev_priv->last_seqno == 0)
2885 dev_priv->last_seqno--;
2886
2887 return 0;
2888 }
2889
2890 int
2891 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2892 {
2893 struct drm_i915_private *dev_priv = dev->dev_private;
2894
2895 /* reserve 0 for non-seqno */
2896 if (dev_priv->next_seqno == 0) {
2897 int ret = i915_gem_init_seqno(dev, 0);
2898 if (ret)
2899 return ret;
2900
2901 dev_priv->next_seqno = 1;
2902 }
2903
2904 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2905 return 0;
2906 }
2907
2908 int __i915_add_request(struct intel_ring_buffer *ring,
2909 struct drm_file *file,
2910 struct drm_i915_gem_object *obj,
2911 u32 *out_seqno)
2912 {
2913 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2914 struct drm_i915_gem_request *request;
2915 u32 request_ring_position, request_start;
2916 int ret;
2917
2918 request_start = intel_ring_get_tail(ring);
2919 /*
2920 * Emit any outstanding flushes - execbuf can fail to emit the flush
2921 * after having emitted the batchbuffer command. Hence we need to fix
2922 * things up similar to emitting the lazy request. The difference here
2923 * is that the flush _must_ happen before the next request, no matter
2924 * what.
2925 */
2926 ret = intel_ring_flush_all_caches(ring);
2927 if (ret)
2928 return ret;
2929
2930 request = ring->preallocated_lazy_request;
2931 if (WARN_ON(request == NULL))
2932 return -ENOMEM;
2933
2934 /* Record the position of the start of the request so that
2935 * should we detect the updated seqno part-way through the
2936 * GPU processing the request, we never over-estimate the
2937 * position of the head.
2938 */
2939 request_ring_position = intel_ring_get_tail(ring);
2940
2941 ret = ring->add_request(ring);
2942 if (ret)
2943 return ret;
2944
2945 request->seqno = intel_ring_get_seqno(ring);
2946 request->ring = ring;
2947 request->head = request_start;
2948 request->tail = request_ring_position;
2949
2950 /* Whilst this request exists, batch_obj will be on the
2951 * active_list, and so will hold the active reference. Only when this
2952 * request is retired will the the batch_obj be moved onto the
2953 * inactive_list and lose its active reference. Hence we do not need
2954 * to explicitly hold another reference here.
2955 */
2956 request->batch_obj = obj;
2957
2958 /* Hold a reference to the current context so that we can inspect
2959 * it later in case a hangcheck error event fires.
2960 */
2961 request->ctx = ring->last_context;
2962 if (request->ctx)
2963 i915_gem_context_reference(request->ctx);
2964
2965 request->emitted_jiffies = jiffies;
2966 list_add_tail(&request->list, &ring->request_list);
2967 request->file_priv = NULL;
2968
2969 if (file) {
2970 struct drm_i915_file_private *file_priv = file->driver_priv;
2971
2972 spin_lock(&file_priv->mm.lock);
2973 request->file_priv = file_priv;
2974 list_add_tail(&request->client_list,
2975 &file_priv->mm.request_list);
2976 spin_unlock(&file_priv->mm.lock);
2977 }
2978
2979 trace_i915_gem_request_add(ring, request->seqno);
2980 ring->outstanding_lazy_seqno = 0;
2981 ring->preallocated_lazy_request = NULL;
2982
2983 if (!dev_priv->ums.mm_suspended) {
2984 i915_queue_hangcheck(ring->dev);
2985
2986 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2987 queue_delayed_work(dev_priv->wq,
2988 &dev_priv->mm.retire_work,
2989 round_jiffies_up_relative(HZ));
2990 intel_mark_busy(dev_priv->dev);
2991 }
2992
2993 if (out_seqno)
2994 *out_seqno = request->seqno;
2995 return 0;
2996 }
2997
2998 static inline void
2999 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
3000 {
3001 struct drm_i915_file_private *file_priv = request->file_priv;
3002
3003 if (!file_priv)
3004 return;
3005
3006 spin_lock(&file_priv->mm.lock);
3007 list_del(&request->client_list);
3008 request->file_priv = NULL;
3009 spin_unlock(&file_priv->mm.lock);
3010 }
3011
3012 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
3013 const struct i915_hw_context *ctx)
3014 {
3015 unsigned long elapsed;
3016
3017 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
3018
3019 if (ctx->hang_stats.banned)
3020 return true;
3021
3022 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
3023 if (!i915_gem_context_is_default(ctx)) {
3024 DRM_DEBUG("context hanging too fast, banning!\n");
3025 return true;
3026 } else if (dev_priv->gpu_error.stop_rings == 0) {
3027 DRM_ERROR("gpu hanging too fast, banning!\n");
3028 return true;
3029 }
3030 }
3031
3032 return false;
3033 }
3034
3035 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
3036 struct i915_hw_context *ctx,
3037 const bool guilty)
3038 {
3039 struct i915_ctx_hang_stats *hs;
3040
3041 if (WARN_ON(!ctx))
3042 return;
3043
3044 hs = &ctx->hang_stats;
3045
3046 if (guilty) {
3047 hs->banned = i915_context_is_banned(dev_priv, ctx);
3048 hs->batch_active++;
3049 hs->guilty_ts = get_seconds();
3050 } else {
3051 hs->batch_pending++;
3052 }
3053 }
3054
3055 static void i915_gem_free_request(struct drm_i915_gem_request *request)
3056 {
3057 list_del(&request->list);
3058 i915_gem_request_remove_from_client(request);
3059
3060 if (request->ctx)
3061 i915_gem_context_unreference(request->ctx);
3062
3063 kfree(request);
3064 }
3065
3066 struct drm_i915_gem_request *
3067 i915_gem_find_active_request(struct intel_ring_buffer *ring)
3068 {
3069 struct drm_i915_gem_request *request;
3070 u32 completed_seqno;
3071
3072 completed_seqno = ring->get_seqno(ring, false);
3073
3074 list_for_each_entry(request, &ring->request_list, list) {
3075 if (i915_seqno_passed(completed_seqno, request->seqno))
3076 continue;
3077
3078 return request;
3079 }
3080
3081 return NULL;
3082 }
3083
3084 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
3085 struct intel_ring_buffer *ring)
3086 {
3087 struct drm_i915_gem_request *request;
3088 bool ring_hung;
3089
3090 request = i915_gem_find_active_request(ring);
3091
3092 if (request == NULL)
3093 return;
3094
3095 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3096
3097 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3098
3099 list_for_each_entry_continue(request, &ring->request_list, list)
3100 i915_set_reset_status(dev_priv, request->ctx, false);
3101 }
3102
3103 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
3104 struct intel_ring_buffer *ring)
3105 {
3106 while (!list_empty(&ring->active_list)) {
3107 struct drm_i915_gem_object *obj;
3108
3109 obj = list_first_entry(&ring->active_list,
3110 struct drm_i915_gem_object,
3111 ring_list);
3112
3113 i915_gem_object_move_to_inactive(obj);
3114 }
3115
3116 /*
3117 * We must free the requests after all the corresponding objects have
3118 * been moved off active lists. Which is the same order as the normal
3119 * retire_requests function does. This is important if object hold
3120 * implicit references on things like e.g. ppgtt address spaces through
3121 * the request.
3122 */
3123 while (!list_empty(&ring->request_list)) {
3124 struct drm_i915_gem_request *request;
3125
3126 request = list_first_entry(&ring->request_list,
3127 struct drm_i915_gem_request,
3128 list);
3129
3130 i915_gem_free_request(request);
3131 }
3132 }
3133
3134 void i915_gem_restore_fences(struct drm_device *dev)
3135 {
3136 struct drm_i915_private *dev_priv = dev->dev_private;
3137 int i;
3138
3139 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3140 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
3141
3142 /*
3143 * Commit delayed tiling changes if we have an object still
3144 * attached to the fence, otherwise just clear the fence.
3145 */
3146 if (reg->obj) {
3147 i915_gem_object_update_fence(reg->obj, reg,
3148 reg->obj->tiling_mode);
3149 } else {
3150 i915_gem_write_fence(dev, i, NULL);
3151 }
3152 }
3153 }
3154
3155 void i915_gem_reset(struct drm_device *dev)
3156 {
3157 struct drm_i915_private *dev_priv = dev->dev_private;
3158 struct intel_ring_buffer *ring;
3159 int i;
3160
3161 /*
3162 * Before we free the objects from the requests, we need to inspect
3163 * them for finding the guilty party. As the requests only borrow
3164 * their reference to the objects, the inspection must be done first.
3165 */
3166 for_each_ring(ring, dev_priv, i)
3167 i915_gem_reset_ring_status(dev_priv, ring);
3168
3169 for_each_ring(ring, dev_priv, i)
3170 i915_gem_reset_ring_cleanup(dev_priv, ring);
3171
3172 i915_gem_cleanup_ringbuffer(dev);
3173
3174 i915_gem_context_reset(dev);
3175
3176 i915_gem_restore_fences(dev);
3177 }
3178
3179 /**
3180 * This function clears the request list as sequence numbers are passed.
3181 */
3182 static void
3183 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
3184 {
3185 uint32_t seqno;
3186
3187 if (list_empty(&ring->request_list))
3188 return;
3189
3190 WARN_ON(i915_verify_lists(ring->dev));
3191
3192 seqno = ring->get_seqno(ring, true);
3193
3194 /* Move any buffers on the active list that are no longer referenced
3195 * by the ringbuffer to the flushing/inactive lists as appropriate,
3196 * before we free the context associated with the requests.
3197 */
3198 while (!list_empty(&ring->active_list)) {
3199 struct drm_i915_gem_object *obj;
3200
3201 obj = list_first_entry(&ring->active_list,
3202 struct drm_i915_gem_object,
3203 ring_list);
3204
3205 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
3206 break;
3207
3208 i915_gem_object_move_to_inactive(obj);
3209 }
3210
3211
3212 while (!list_empty(&ring->request_list)) {
3213 struct drm_i915_gem_request *request;
3214
3215 request = list_first_entry(&ring->request_list,
3216 struct drm_i915_gem_request,
3217 list);
3218
3219 if (!i915_seqno_passed(seqno, request->seqno))
3220 break;
3221
3222 trace_i915_gem_request_retire(ring, request->seqno);
3223 /* We know the GPU must have read the request to have
3224 * sent us the seqno + interrupt, so use the position
3225 * of tail of the request to update the last known position
3226 * of the GPU head.
3227 */
3228 ring->last_retired_head = request->tail;
3229
3230 i915_gem_free_request(request);
3231 }
3232
3233 if (unlikely(ring->trace_irq_seqno &&
3234 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
3235 ring->irq_put(ring);
3236 ring->trace_irq_seqno = 0;
3237 }
3238
3239 WARN_ON(i915_verify_lists(ring->dev));
3240 }
3241
3242 bool
3243 i915_gem_retire_requests(struct drm_device *dev)
3244 {
3245 struct drm_i915_private *dev_priv = dev->dev_private;
3246 struct intel_ring_buffer *ring;
3247 bool idle = true;
3248 int i;
3249
3250 for_each_ring(ring, dev_priv, i) {
3251 i915_gem_retire_requests_ring(ring);
3252 idle &= list_empty(&ring->request_list);
3253 }
3254
3255 if (idle)
3256 mod_delayed_work(dev_priv->wq,
3257 &dev_priv->mm.idle_work,
3258 msecs_to_jiffies(100));
3259
3260 return idle;
3261 }
3262
3263 static void
3264 i915_gem_retire_work_handler(struct work_struct *work)
3265 {
3266 struct drm_i915_private *dev_priv =
3267 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3268 struct drm_device *dev = dev_priv->dev;
3269 bool idle;
3270
3271 /* Come back later if the device is busy... */
3272 idle = false;
3273 if (mutex_trylock(&dev->struct_mutex)) {
3274 idle = i915_gem_retire_requests(dev);
3275 mutex_unlock(&dev->struct_mutex);
3276 }
3277 if (!idle)
3278 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3279 round_jiffies_up_relative(HZ));
3280 }
3281
3282 static void
3283 i915_gem_idle_work_handler(struct work_struct *work)
3284 {
3285 struct drm_i915_private *dev_priv =
3286 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3287
3288 intel_mark_idle(dev_priv->dev);
3289 }
3290
3291 /**
3292 * Ensures that an object will eventually get non-busy by flushing any required
3293 * write domains, emitting any outstanding lazy request and retiring and
3294 * completed requests.
3295 */
3296 static int
3297 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3298 {
3299 int ret;
3300
3301 if (obj->active) {
3302 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
3303 if (ret)
3304 return ret;
3305
3306 i915_gem_retire_requests_ring(obj->ring);
3307 }
3308
3309 return 0;
3310 }
3311
3312 /**
3313 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3314 * @DRM_IOCTL_ARGS: standard ioctl arguments
3315 *
3316 * Returns 0 if successful, else an error is returned with the remaining time in
3317 * the timeout parameter.
3318 * -ETIME: object is still busy after timeout
3319 * -ERESTARTSYS: signal interrupted the wait
3320 * -ENONENT: object doesn't exist
3321 * Also possible, but rare:
3322 * -EAGAIN: GPU wedged
3323 * -ENOMEM: damn
3324 * -ENODEV: Internal IRQ fail
3325 * -E?: The add request failed
3326 *
3327 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3328 * non-zero timeout parameter the wait ioctl will wait for the given number of
3329 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3330 * without holding struct_mutex the object may become re-busied before this
3331 * function completes. A similar but shorter * race condition exists in the busy
3332 * ioctl
3333 */
3334 int
3335 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3336 {
3337 struct drm_i915_private *dev_priv = dev->dev_private;
3338 struct drm_i915_gem_wait *args = data;
3339 struct drm_gem_object *gobj;
3340 struct drm_i915_gem_object *obj;
3341 struct intel_ring_buffer *ring = NULL;
3342 struct timespec timeout_stack, *timeout = NULL;
3343 unsigned reset_counter;
3344 u32 seqno = 0;
3345 int ret = 0;
3346
3347 if (args->timeout_ns >= 0) {
3348 timeout_stack = ns_to_timespec(args->timeout_ns);
3349 timeout = &timeout_stack;
3350 }
3351
3352 ret = i915_mutex_lock_interruptible(dev);
3353 if (ret)
3354 return ret;
3355
3356 gobj = drm_gem_object_lookup(dev, file, args->bo_handle);
3357 if (gobj == NULL) {
3358 mutex_unlock(&dev->struct_mutex);
3359 return -ENOENT;
3360 }
3361 obj = to_intel_bo(gobj);
3362
3363 /* Need to make sure the object gets inactive eventually. */
3364 ret = i915_gem_object_flush_active(obj);
3365 if (ret)
3366 goto out;
3367
3368 if (obj->active) {
3369 seqno = obj->last_read_seqno;
3370 ring = obj->ring;
3371 }
3372
3373 if (seqno == 0)
3374 goto out;
3375
3376 /* Do this after OLR check to make sure we make forward progress polling
3377 * on this IOCTL with a 0 timeout (like busy ioctl)
3378 */
3379 if (!args->timeout_ns) {
3380 ret = -ETIME;
3381 goto out;
3382 }
3383
3384 drm_gem_object_unreference(&obj->base);
3385 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3386 mutex_unlock(&dev->struct_mutex);
3387
3388 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
3389 if (timeout)
3390 args->timeout_ns = timespec_to_ns(timeout);
3391 return ret;
3392
3393 out:
3394 drm_gem_object_unreference(&obj->base);
3395 mutex_unlock(&dev->struct_mutex);
3396 return ret;
3397 }
3398
3399 /**
3400 * i915_gem_object_sync - sync an object to a ring.
3401 *
3402 * @obj: object which may be in use on another ring.
3403 * @to: ring we wish to use the object on. May be NULL.
3404 *
3405 * This code is meant to abstract object synchronization with the GPU.
3406 * Calling with NULL implies synchronizing the object with the CPU
3407 * rather than a particular GPU ring.
3408 *
3409 * Returns 0 if successful, else propagates up the lower layer error.
3410 */
3411 int
3412 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3413 struct intel_ring_buffer *to)
3414 {
3415 struct intel_ring_buffer *from = obj->ring;
3416 u32 seqno;
3417 int ret, idx;
3418
3419 if (from == NULL || to == from)
3420 return 0;
3421
3422 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
3423 return i915_gem_object_wait_rendering(obj, false);
3424
3425 idx = intel_ring_sync_index(from, to);
3426
3427 seqno = obj->last_read_seqno;
3428 if (seqno <= from->sync_seqno[idx])
3429 return 0;
3430
3431 ret = i915_gem_check_olr(obj->ring, seqno);
3432 if (ret)
3433 return ret;
3434
3435 trace_i915_gem_ring_sync_to(from, to, seqno);
3436 ret = to->sync_to(to, from, seqno);
3437 if (!ret)
3438 /* We use last_read_seqno because sync_to()
3439 * might have just caused seqno wrap under
3440 * the radar.
3441 */
3442 from->sync_seqno[idx] = obj->last_read_seqno;
3443
3444 return ret;
3445 }
3446
3447 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3448 {
3449 u32 old_write_domain, old_read_domains;
3450
3451 /* Force a pagefault for domain tracking on next user access */
3452 i915_gem_release_mmap(obj);
3453
3454 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3455 return;
3456
3457 /* Wait for any direct GTT access to complete */
3458 mb();
3459
3460 old_read_domains = obj->base.read_domains;
3461 old_write_domain = obj->base.write_domain;
3462
3463 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3464 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3465
3466 trace_i915_gem_object_change_domain(obj,
3467 old_read_domains,
3468 old_write_domain);
3469 }
3470
3471 int i915_vma_unbind(struct i915_vma *vma)
3472 {
3473 struct drm_i915_gem_object *obj = vma->obj;
3474 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3475 int ret;
3476
3477 if (list_empty(&vma->vma_link))
3478 return 0;
3479
3480 if (!drm_mm_node_allocated(&vma->node)) {
3481 i915_gem_vma_destroy(vma);
3482 return 0;
3483 }
3484
3485 if (vma->pin_count)
3486 return -EBUSY;
3487
3488 BUG_ON(obj->pages == NULL);
3489
3490 ret = i915_gem_object_finish_gpu(obj);
3491 if (ret)
3492 return ret;
3493 /* Continue on if we fail due to EIO, the GPU is hung so we
3494 * should be safe and we need to cleanup or else we might
3495 * cause memory corruption through use-after-free.
3496 */
3497
3498 i915_gem_object_finish_gtt(obj);
3499
3500 /* release the fence reg _after_ flushing */
3501 ret = i915_gem_object_put_fence(obj);
3502 if (ret)
3503 return ret;
3504
3505 trace_i915_vma_unbind(vma);
3506
3507 vma->unbind_vma(vma);
3508
3509 i915_gem_gtt_finish_object(obj);
3510
3511 list_del_init(&vma->mm_list);
3512 /* Avoid an unnecessary call to unbind on rebind. */
3513 if (i915_is_ggtt(vma->vm))
3514 obj->map_and_fenceable = true;
3515
3516 drm_mm_remove_node(&vma->node);
3517 i915_gem_vma_destroy(vma);
3518
3519 /* Since the unbound list is global, only move to that list if
3520 * no more VMAs exist. */
3521 if (list_empty(&obj->vma_list))
3522 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3523
3524 /* And finally now the object is completely decoupled from this vma,
3525 * we can drop its hold on the backing storage and allow it to be
3526 * reaped by the shrinker.
3527 */
3528 i915_gem_object_unpin_pages(obj);
3529
3530 return 0;
3531 }
3532
3533 int i915_gpu_idle(struct drm_device *dev)
3534 {
3535 struct drm_i915_private *dev_priv = dev->dev_private;
3536 struct intel_ring_buffer *ring;
3537 int ret, i;
3538
3539 /* Flush everything onto the inactive list. */
3540 for_each_ring(ring, dev_priv, i) {
3541 ret = i915_switch_context(ring, ring->default_context);
3542 if (ret)
3543 return ret;
3544
3545 ret = intel_ring_idle(ring);
3546 if (ret)
3547 return ret;
3548 }
3549
3550 return 0;
3551 }
3552
3553 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3554 struct drm_i915_gem_object *obj)
3555 {
3556 struct drm_i915_private *dev_priv = dev->dev_private;
3557 int fence_reg;
3558 int fence_pitch_shift;
3559
3560 if (INTEL_INFO(dev)->gen >= 6) {
3561 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3562 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3563 } else {
3564 fence_reg = FENCE_REG_965_0;
3565 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3566 }
3567
3568 fence_reg += reg * 8;
3569
3570 /* To w/a incoherency with non-atomic 64-bit register updates,
3571 * we split the 64-bit update into two 32-bit writes. In order
3572 * for a partial fence not to be evaluated between writes, we
3573 * precede the update with write to turn off the fence register,
3574 * and only enable the fence as the last step.
3575 *
3576 * For extra levels of paranoia, we make sure each step lands
3577 * before applying the next step.
3578 */
3579 I915_WRITE(fence_reg, 0);
3580 POSTING_READ(fence_reg);
3581
3582 if (obj) {
3583 u32 size = i915_gem_obj_ggtt_size(obj);
3584 uint64_t val;
3585
3586 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3587 0xfffff000) << 32;
3588 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3589 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3590 if (obj->tiling_mode == I915_TILING_Y)
3591 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3592 val |= I965_FENCE_REG_VALID;
3593
3594 I915_WRITE(fence_reg + 4, val >> 32);
3595 POSTING_READ(fence_reg + 4);
3596
3597 I915_WRITE(fence_reg + 0, val);
3598 POSTING_READ(fence_reg);
3599 } else {
3600 I915_WRITE(fence_reg + 4, 0);
3601 POSTING_READ(fence_reg + 4);
3602 }
3603 }
3604
3605 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3606 struct drm_i915_gem_object *obj)
3607 {
3608 struct drm_i915_private *dev_priv = dev->dev_private;
3609 u32 val;
3610
3611 if (obj) {
3612 u32 size = i915_gem_obj_ggtt_size(obj);
3613 int pitch_val;
3614 int tile_width;
3615
3616 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3617 (size & -size) != size ||
3618 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3619 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3620 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3621
3622 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3623 tile_width = 128;
3624 else
3625 tile_width = 512;
3626
3627 /* Note: pitch better be a power of two tile widths */
3628 pitch_val = obj->stride / tile_width;
3629 pitch_val = ffs(pitch_val) - 1;
3630
3631 val = i915_gem_obj_ggtt_offset(obj);
3632 if (obj->tiling_mode == I915_TILING_Y)
3633 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3634 val |= I915_FENCE_SIZE_BITS(size);
3635 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3636 val |= I830_FENCE_REG_VALID;
3637 } else
3638 val = 0;
3639
3640 if (reg < 8)
3641 reg = FENCE_REG_830_0 + reg * 4;
3642 else
3643 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3644
3645 I915_WRITE(reg, val);
3646 POSTING_READ(reg);
3647 }
3648
3649 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3650 struct drm_i915_gem_object *obj)
3651 {
3652 struct drm_i915_private *dev_priv = dev->dev_private;
3653 uint32_t val;
3654
3655 if (obj) {
3656 u32 size = i915_gem_obj_ggtt_size(obj);
3657 uint32_t pitch_val;
3658
3659 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3660 (size & -size) != size ||
3661 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3662 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3663 i915_gem_obj_ggtt_offset(obj), size);
3664
3665 pitch_val = obj->stride / 128;
3666 pitch_val = ffs(pitch_val) - 1;
3667
3668 val = i915_gem_obj_ggtt_offset(obj);
3669 if (obj->tiling_mode == I915_TILING_Y)
3670 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3671 val |= I830_FENCE_SIZE_BITS(size);
3672 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3673 val |= I830_FENCE_REG_VALID;
3674 } else
3675 val = 0;
3676
3677 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3678 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3679 }
3680
3681 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3682 {
3683 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3684 }
3685
3686 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3687 struct drm_i915_gem_object *obj)
3688 {
3689 struct drm_i915_private *dev_priv = dev->dev_private;
3690
3691 /* Ensure that all CPU reads are completed before installing a fence
3692 * and all writes before removing the fence.
3693 */
3694 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3695 mb();
3696
3697 WARN(obj && (!obj->stride || !obj->tiling_mode),
3698 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3699 obj->stride, obj->tiling_mode);
3700
3701 switch (INTEL_INFO(dev)->gen) {
3702 case 8:
3703 case 7:
3704 case 6:
3705 case 5:
3706 case 4: i965_write_fence_reg(dev, reg, obj); break;
3707 case 3: i915_write_fence_reg(dev, reg, obj); break;
3708 case 2: i830_write_fence_reg(dev, reg, obj); break;
3709 default: BUG();
3710 }
3711
3712 /* And similarly be paranoid that no direct access to this region
3713 * is reordered to before the fence is installed.
3714 */
3715 if (i915_gem_object_needs_mb(obj))
3716 mb();
3717 }
3718
3719 static inline int fence_number(struct drm_i915_private *dev_priv,
3720 struct drm_i915_fence_reg *fence)
3721 {
3722 return fence - dev_priv->fence_regs;
3723 }
3724
3725 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3726 struct drm_i915_fence_reg *fence,
3727 bool enable)
3728 {
3729 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3730 int reg = fence_number(dev_priv, fence);
3731
3732 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3733
3734 if (enable) {
3735 obj->fence_reg = reg;
3736 fence->obj = obj;
3737 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3738 } else {
3739 obj->fence_reg = I915_FENCE_REG_NONE;
3740 fence->obj = NULL;
3741 list_del_init(&fence->lru_list);
3742 }
3743 obj->fence_dirty = false;
3744 }
3745
3746 static int
3747 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3748 {
3749 if (obj->last_fenced_seqno) {
3750 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3751 if (ret)
3752 return ret;
3753
3754 obj->last_fenced_seqno = 0;
3755 }
3756
3757 obj->fenced_gpu_access = false;
3758 return 0;
3759 }
3760
3761 int
3762 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3763 {
3764 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3765 struct drm_i915_fence_reg *fence;
3766 int ret;
3767
3768 ret = i915_gem_object_wait_fence(obj);
3769 if (ret)
3770 return ret;
3771
3772 if (obj->fence_reg == I915_FENCE_REG_NONE)
3773 return 0;
3774
3775 fence = &dev_priv->fence_regs[obj->fence_reg];
3776
3777 i915_gem_object_fence_lost(obj);
3778 i915_gem_object_update_fence(obj, fence, false);
3779
3780 return 0;
3781 }
3782
3783 static struct drm_i915_fence_reg *
3784 i915_find_fence_reg(struct drm_device *dev)
3785 {
3786 struct drm_i915_private *dev_priv = dev->dev_private;
3787 struct drm_i915_fence_reg *reg, *avail;
3788 int i;
3789
3790 /* First try to find a free reg */
3791 avail = NULL;
3792 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3793 reg = &dev_priv->fence_regs[i];
3794 if (!reg->obj)
3795 return reg;
3796
3797 if (!reg->pin_count)
3798 avail = reg;
3799 }
3800
3801 if (avail == NULL)
3802 goto deadlock;
3803
3804 /* None available, try to steal one or wait for a user to finish */
3805 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3806 if (reg->pin_count)
3807 continue;
3808
3809 return reg;
3810 }
3811
3812 deadlock:
3813 /* Wait for completion of pending flips which consume fences */
3814 if (intel_has_pending_fb_unpin(dev))
3815 return ERR_PTR(-EAGAIN);
3816
3817 return ERR_PTR(-EDEADLK);
3818 }
3819
3820 /**
3821 * i915_gem_object_get_fence - set up fencing for an object
3822 * @obj: object to map through a fence reg
3823 *
3824 * When mapping objects through the GTT, userspace wants to be able to write
3825 * to them without having to worry about swizzling if the object is tiled.
3826 * This function walks the fence regs looking for a free one for @obj,
3827 * stealing one if it can't find any.
3828 *
3829 * It then sets up the reg based on the object's properties: address, pitch
3830 * and tiling format.
3831 *
3832 * For an untiled surface, this removes any existing fence.
3833 */
3834 int
3835 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3836 {
3837 struct drm_device *dev = obj->base.dev;
3838 struct drm_i915_private *dev_priv = dev->dev_private;
3839 bool enable = obj->tiling_mode != I915_TILING_NONE;
3840 struct drm_i915_fence_reg *reg;
3841 int ret;
3842
3843 /* Have we updated the tiling parameters upon the object and so
3844 * will need to serialise the write to the associated fence register?
3845 */
3846 if (obj->fence_dirty) {
3847 ret = i915_gem_object_wait_fence(obj);
3848 if (ret)
3849 return ret;
3850 }
3851
3852 /* Just update our place in the LRU if our fence is getting reused. */
3853 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3854 reg = &dev_priv->fence_regs[obj->fence_reg];
3855 if (!obj->fence_dirty) {
3856 list_move_tail(®->lru_list,
3857 &dev_priv->mm.fence_list);
3858 return 0;
3859 }
3860 } else if (enable) {
3861 reg = i915_find_fence_reg(dev);
3862 if (IS_ERR(reg))
3863 return PTR_ERR(reg);
3864
3865 if (reg->obj) {
3866 struct drm_i915_gem_object *old = reg->obj;
3867
3868 ret = i915_gem_object_wait_fence(old);
3869 if (ret)
3870 return ret;
3871
3872 i915_gem_object_fence_lost(old);
3873 }
3874 } else
3875 return 0;
3876
3877 i915_gem_object_update_fence(obj, reg, enable);
3878
3879 return 0;
3880 }
3881
3882 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3883 struct drm_mm_node *gtt_space,
3884 unsigned long cache_level)
3885 {
3886 struct drm_mm_node *other;
3887
3888 /* On non-LLC machines we have to be careful when putting differing
3889 * types of snoopable memory together to avoid the prefetcher
3890 * crossing memory domains and dying.
3891 */
3892 if (HAS_LLC(dev))
3893 return true;
3894
3895 if (!drm_mm_node_allocated(gtt_space))
3896 return true;
3897
3898 if (list_empty(>t_space->node_list))
3899 return true;
3900
3901 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3902 if (other->allocated && !other->hole_follows && other->color != cache_level)
3903 return false;
3904
3905 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3906 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3907 return false;
3908
3909 return true;
3910 }
3911
3912 static void i915_gem_verify_gtt(struct drm_device *dev)
3913 {
3914 #if WATCH_GTT
3915 struct drm_i915_private *dev_priv = dev->dev_private;
3916 struct drm_i915_gem_object *obj;
3917 int err = 0;
3918
3919 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3920 if (obj->gtt_space == NULL) {
3921 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3922 err++;
3923 continue;
3924 }
3925
3926 if (obj->cache_level != obj->gtt_space->color) {
3927 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3928 i915_gem_obj_ggtt_offset(obj),
3929 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3930 obj->cache_level,
3931 obj->gtt_space->color);
3932 err++;
3933 continue;
3934 }
3935
3936 if (!i915_gem_valid_gtt_space(dev,
3937 obj->gtt_space,
3938 obj->cache_level)) {
3939 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3940 i915_gem_obj_ggtt_offset(obj),
3941 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3942 obj->cache_level);
3943 err++;
3944 continue;
3945 }
3946 }
3947
3948 WARN_ON(err);
3949 #endif
3950 }
3951
3952 /**
3953 * Finds free space in the GTT aperture and binds the object there.
3954 */
3955 static struct i915_vma *
3956 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3957 struct i915_address_space *vm,
3958 unsigned alignment,
3959 uint64_t flags)
3960 {
3961 struct drm_device *dev = obj->base.dev;
3962 struct drm_i915_private *dev_priv = dev->dev_private;
3963 u32 size, fence_size, fence_alignment, unfenced_alignment;
3964 unsigned long start =
3965 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3966 unsigned long end =
3967 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3968 struct i915_vma *vma;
3969 int ret;
3970
3971 fence_size = i915_gem_get_gtt_size(dev,
3972 obj->base.size,
3973 obj->tiling_mode);
3974 fence_alignment = i915_gem_get_gtt_alignment(dev,
3975 obj->base.size,
3976 obj->tiling_mode, true);
3977 unfenced_alignment =
3978 i915_gem_get_gtt_alignment(dev,
3979 obj->base.size,
3980 obj->tiling_mode, false);
3981
3982 if (alignment == 0)
3983 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3984 unfenced_alignment;
3985 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3986 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3987 return ERR_PTR(-EINVAL);
3988 }
3989
3990 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3991
3992 /* If the object is bigger than the entire aperture, reject it early
3993 * before evicting everything in a vain attempt to find space.
3994 */
3995 if (obj->base.size > end) {
3996 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3997 obj->base.size,
3998 flags & PIN_MAPPABLE ? "mappable" : "total",
3999 end);
4000 return ERR_PTR(-E2BIG);
4001 }
4002
4003 ret = i915_gem_object_get_pages(obj);
4004 if (ret)
4005 return ERR_PTR(ret);
4006
4007 i915_gem_object_pin_pages(obj);
4008
4009 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
4010 if (IS_ERR(vma))
4011 goto err_unpin;
4012
4013 search_free:
4014 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
4015 size, alignment,
4016 obj->cache_level,
4017 start, end,
4018 DRM_MM_SEARCH_DEFAULT,
4019 DRM_MM_CREATE_DEFAULT);
4020 if (ret) {
4021 ret = i915_gem_evict_something(dev, vm, size, alignment,
4022 obj->cache_level,
4023 start, end,
4024 flags);
4025 if (ret == 0)
4026 goto search_free;
4027
4028 goto err_free_vma;
4029 }
4030 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
4031 obj->cache_level))) {
4032 ret = -EINVAL;
4033 goto err_remove_node;
4034 }
4035
4036 ret = i915_gem_gtt_prepare_object(obj);
4037 if (ret)
4038 goto err_remove_node;
4039
4040 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
4041 list_add_tail(&vma->mm_list, &vm->inactive_list);
4042
4043 if (i915_is_ggtt(vm)) {
4044 bool mappable, fenceable;
4045
4046 fenceable = (vma->node.size == fence_size &&
4047 (vma->node.start & (fence_alignment - 1)) == 0);
4048
4049 mappable = (vma->node.start + obj->base.size <=
4050 dev_priv->gtt.mappable_end);
4051
4052 obj->map_and_fenceable = mappable && fenceable;
4053 }
4054
4055 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4056
4057 trace_i915_vma_bind(vma, flags);
4058 vma->bind_vma(vma, obj->cache_level,
4059 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
4060
4061 i915_gem_verify_gtt(dev);
4062 return vma;
4063
4064 err_remove_node:
4065 drm_mm_remove_node(&vma->node);
4066 err_free_vma:
4067 i915_gem_vma_destroy(vma);
4068 vma = ERR_PTR(ret);
4069 err_unpin:
4070 i915_gem_object_unpin_pages(obj);
4071 return vma;
4072 }
4073
4074 bool
4075 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
4076 bool force)
4077 {
4078 /* If we don't have a page list set up, then we're not pinned
4079 * to GPU, and we can ignore the cache flush because it'll happen
4080 * again at bind time.
4081 */
4082 if (obj->pages == NULL)
4083 return false;
4084
4085 /*
4086 * Stolen memory is always coherent with the GPU as it is explicitly
4087 * marked as wc by the system, or the system is cache-coherent.
4088 */
4089 if (obj->stolen)
4090 return false;
4091
4092 /* If the GPU is snooping the contents of the CPU cache,
4093 * we do not need to manually clear the CPU cache lines. However,
4094 * the caches are only snooped when the render cache is
4095 * flushed/invalidated. As we always have to emit invalidations
4096 * and flushes when moving into and out of the RENDER domain, correct
4097 * snooping behaviour occurs naturally as the result of our domain
4098 * tracking.
4099 */
4100 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
4101 return false;
4102
4103 trace_i915_gem_object_clflush(obj);
4104 #ifdef __NetBSD__
4105 drm_clflush_pglist(&obj->igo_pageq);
4106 #else
4107 drm_clflush_sg(obj->pages);
4108 #endif
4109
4110 return true;
4111 }
4112
4113 /** Flushes the GTT write domain for the object if it's dirty. */
4114 static void
4115 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
4116 {
4117 uint32_t old_write_domain;
4118
4119 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
4120 return;
4121
4122 /* No actual flushing is required for the GTT write domain. Writes
4123 * to it immediately go to main memory as far as we know, so there's
4124 * no chipset flush. It also doesn't land in render cache.
4125 *
4126 * However, we do have to enforce the order so that all writes through
4127 * the GTT land before any writes to the device, such as updates to
4128 * the GATT itself.
4129 */
4130 wmb();
4131
4132 old_write_domain = obj->base.write_domain;
4133 obj->base.write_domain = 0;
4134
4135 trace_i915_gem_object_change_domain(obj,
4136 obj->base.read_domains,
4137 old_write_domain);
4138 }
4139
4140 /** Flushes the CPU write domain for the object if it's dirty. */
4141 static void
4142 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
4143 bool force)
4144 {
4145 uint32_t old_write_domain;
4146
4147 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4148 return;
4149
4150 if (i915_gem_clflush_object(obj, force))
4151 i915_gem_chipset_flush(obj->base.dev);
4152
4153 old_write_domain = obj->base.write_domain;
4154 obj->base.write_domain = 0;
4155
4156 trace_i915_gem_object_change_domain(obj,
4157 obj->base.read_domains,
4158 old_write_domain);
4159 }
4160
4161 /**
4162 * Moves a single object to the GTT read, and possibly write domain.
4163 *
4164 * This function returns when the move is complete, including waiting on
4165 * flushes to occur.
4166 */
4167 int
4168 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4169 {
4170 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4171 uint32_t old_write_domain, old_read_domains;
4172 int ret;
4173
4174 /* Not valid to be called on unbound objects. */
4175 if (!i915_gem_obj_bound_any(obj))
4176 return -EINVAL;
4177
4178 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4179 return 0;
4180
4181 ret = i915_gem_object_wait_rendering(obj, !write);
4182 if (ret)
4183 return ret;
4184
4185 i915_gem_object_flush_cpu_write_domain(obj, false);
4186
4187 /* Serialise direct access to this object with the barriers for
4188 * coherent writes from the GPU, by effectively invalidating the
4189 * GTT domain upon first access.
4190 */
4191 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4192 mb();
4193
4194 old_write_domain = obj->base.write_domain;
4195 old_read_domains = obj->base.read_domains;
4196
4197 /* It should now be out of any other write domains, and we can update
4198 * the domain values for our changes.
4199 */
4200 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4201 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4202 if (write) {
4203 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4204 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4205 obj->dirty = 1;
4206 }
4207
4208 trace_i915_gem_object_change_domain(obj,
4209 old_read_domains,
4210 old_write_domain);
4211
4212 /* And bump the LRU for this access */
4213 if (i915_gem_object_is_inactive(obj)) {
4214 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4215 if (vma)
4216 list_move_tail(&vma->mm_list,
4217 &dev_priv->gtt.base.inactive_list);
4218
4219 }
4220
4221 return 0;
4222 }
4223
4224 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4225 enum i915_cache_level cache_level)
4226 {
4227 struct drm_device *dev = obj->base.dev;
4228 struct i915_vma *vma, *next;
4229 int ret;
4230
4231 if (obj->cache_level == cache_level)
4232 return 0;
4233
4234 if (i915_gem_obj_is_pinned(obj)) {
4235 DRM_DEBUG("can not change the cache level of pinned objects\n");
4236 return -EBUSY;
4237 }
4238
4239 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4240 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
4241 ret = i915_vma_unbind(vma);
4242 if (ret)
4243 return ret;
4244 }
4245 }
4246
4247 if (i915_gem_obj_bound_any(obj)) {
4248 ret = i915_gem_object_finish_gpu(obj);
4249 if (ret)
4250 return ret;
4251
4252 i915_gem_object_finish_gtt(obj);
4253
4254 /* Before SandyBridge, you could not use tiling or fence
4255 * registers with snooped memory, so relinquish any fences
4256 * currently pointing to our region in the aperture.
4257 */
4258 if (INTEL_INFO(dev)->gen < 6) {
4259 ret = i915_gem_object_put_fence(obj);
4260 if (ret)
4261 return ret;
4262 }
4263
4264 list_for_each_entry(vma, &obj->vma_list, vma_link)
4265 if (drm_mm_node_allocated(&vma->node))
4266 vma->bind_vma(vma, cache_level,
4267 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
4268 }
4269
4270 list_for_each_entry(vma, &obj->vma_list, vma_link)
4271 vma->node.color = cache_level;
4272 obj->cache_level = cache_level;
4273
4274 if (cpu_write_needs_clflush(obj)) {
4275 u32 old_read_domains, old_write_domain;
4276
4277 /* If we're coming from LLC cached, then we haven't
4278 * actually been tracking whether the data is in the
4279 * CPU cache or not, since we only allow one bit set
4280 * in obj->write_domain and have been skipping the clflushes.
4281 * Just set it to the CPU cache for now.
4282 */
4283 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
4284
4285 old_read_domains = obj->base.read_domains;
4286 old_write_domain = obj->base.write_domain;
4287
4288 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4289 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4290
4291 trace_i915_gem_object_change_domain(obj,
4292 old_read_domains,
4293 old_write_domain);
4294 }
4295
4296 i915_gem_verify_gtt(dev);
4297 return 0;
4298 }
4299
4300 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4301 struct drm_file *file)
4302 {
4303 struct drm_i915_gem_caching *args = data;
4304 struct drm_gem_object *gobj;
4305 struct drm_i915_gem_object *obj;
4306 int ret;
4307
4308 ret = i915_mutex_lock_interruptible(dev);
4309 if (ret)
4310 return ret;
4311
4312 gobj = drm_gem_object_lookup(dev, file, args->handle);
4313 if (gobj == NULL) {
4314 ret = -ENOENT;
4315 goto unlock;
4316 }
4317 obj = to_intel_bo(gobj);
4318
4319 switch (obj->cache_level) {
4320 case I915_CACHE_LLC:
4321 case I915_CACHE_L3_LLC:
4322 args->caching = I915_CACHING_CACHED;
4323 break;
4324
4325 case I915_CACHE_WT:
4326 args->caching = I915_CACHING_DISPLAY;
4327 break;
4328
4329 default:
4330 args->caching = I915_CACHING_NONE;
4331 break;
4332 }
4333
4334 drm_gem_object_unreference(&obj->base);
4335 unlock:
4336 mutex_unlock(&dev->struct_mutex);
4337 return ret;
4338 }
4339
4340 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4341 struct drm_file *file)
4342 {
4343 struct drm_i915_gem_caching *args = data;
4344 struct drm_gem_object *gobj;
4345 struct drm_i915_gem_object *obj;
4346 enum i915_cache_level level;
4347 int ret;
4348
4349 switch (args->caching) {
4350 case I915_CACHING_NONE:
4351 level = I915_CACHE_NONE;
4352 break;
4353 case I915_CACHING_CACHED:
4354 level = I915_CACHE_LLC;
4355 break;
4356 case I915_CACHING_DISPLAY:
4357 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4358 break;
4359 default:
4360 return -EINVAL;
4361 }
4362
4363 ret = i915_mutex_lock_interruptible(dev);
4364 if (ret)
4365 return ret;
4366
4367 gobj = drm_gem_object_lookup(dev, file, args->handle);
4368 if (gobj == NULL) {
4369 ret = -ENOENT;
4370 goto unlock;
4371 }
4372 obj = to_intel_bo(gobj);
4373
4374 ret = i915_gem_object_set_cache_level(obj, level);
4375
4376 drm_gem_object_unreference(&obj->base);
4377 unlock:
4378 mutex_unlock(&dev->struct_mutex);
4379 return ret;
4380 }
4381
4382 static bool is_pin_display(struct drm_i915_gem_object *obj)
4383 {
4384 /* There are 3 sources that pin objects:
4385 * 1. The display engine (scanouts, sprites, cursors);
4386 * 2. Reservations for execbuffer;
4387 * 3. The user.
4388 *
4389 * We can ignore reservations as we hold the struct_mutex and
4390 * are only called outside of the reservation path. The user
4391 * can only increment pin_count once, and so if after
4392 * subtracting the potential reference by the user, any pin_count
4393 * remains, it must be due to another use by the display engine.
4394 */
4395 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
4396 }
4397
4398 /*
4399 * Prepare buffer for display plane (scanout, cursors, etc).
4400 * Can be called from an uninterruptible phase (modesetting) and allows
4401 * any flushes to be pipelined (for pageflips).
4402 */
4403 int
4404 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4405 u32 alignment,
4406 struct intel_ring_buffer *pipelined)
4407 {
4408 u32 old_read_domains, old_write_domain;
4409 int ret;
4410
4411 if (pipelined != obj->ring) {
4412 ret = i915_gem_object_sync(obj, pipelined);
4413 if (ret)
4414 return ret;
4415 }
4416
4417 /* Mark the pin_display early so that we account for the
4418 * display coherency whilst setting up the cache domains.
4419 */
4420 obj->pin_display = true;
4421
4422 /* The display engine is not coherent with the LLC cache on gen6. As
4423 * a result, we make sure that the pinning that is about to occur is
4424 * done with uncached PTEs. This is lowest common denominator for all
4425 * chipsets.
4426 *
4427 * However for gen6+, we could do better by using the GFDT bit instead
4428 * of uncaching, which would allow us to flush all the LLC-cached data
4429 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4430 */
4431 ret = i915_gem_object_set_cache_level(obj,
4432 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4433 if (ret)
4434 goto err_unpin_display;
4435
4436 /* As the user may map the buffer once pinned in the display plane
4437 * (e.g. libkms for the bootup splash), we have to ensure that we
4438 * always use map_and_fenceable for all scanout buffers.
4439 */
4440 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
4441 if (ret)
4442 goto err_unpin_display;
4443
4444 i915_gem_object_flush_cpu_write_domain(obj, true);
4445
4446 old_write_domain = obj->base.write_domain;
4447 old_read_domains = obj->base.read_domains;
4448
4449 /* It should now be out of any other write domains, and we can update
4450 * the domain values for our changes.
4451 */
4452 obj->base.write_domain = 0;
4453 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4454
4455 trace_i915_gem_object_change_domain(obj,
4456 old_read_domains,
4457 old_write_domain);
4458
4459 return 0;
4460
4461 err_unpin_display:
4462 obj->pin_display = is_pin_display(obj);
4463 return ret;
4464 }
4465
4466 void
4467 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4468 {
4469 i915_gem_object_ggtt_unpin(obj);
4470 obj->pin_display = is_pin_display(obj);
4471 }
4472
4473 int
4474 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4475 {
4476 int ret;
4477
4478 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4479 return 0;
4480
4481 ret = i915_gem_object_wait_rendering(obj, false);
4482 if (ret)
4483 return ret;
4484
4485 /* Ensure that we invalidate the GPU's caches and TLBs. */
4486 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4487 return 0;
4488 }
4489
4490 /**
4491 * Moves a single object to the CPU read, and possibly write domain.
4492 *
4493 * This function returns when the move is complete, including waiting on
4494 * flushes to occur.
4495 */
4496 int
4497 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4498 {
4499 uint32_t old_write_domain, old_read_domains;
4500 int ret;
4501
4502 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4503 return 0;
4504
4505 ret = i915_gem_object_wait_rendering(obj, !write);
4506 if (ret)
4507 return ret;
4508
4509 i915_gem_object_flush_gtt_write_domain(obj);
4510
4511 old_write_domain = obj->base.write_domain;
4512 old_read_domains = obj->base.read_domains;
4513
4514 /* Flush the CPU cache if it's still invalid. */
4515 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4516 i915_gem_clflush_object(obj, false);
4517
4518 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4519 }
4520
4521 /* It should now be out of any other write domains, and we can update
4522 * the domain values for our changes.
4523 */
4524 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4525
4526 /* If we're writing through the CPU, then the GPU read domains will
4527 * need to be invalidated at next use.
4528 */
4529 if (write) {
4530 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4531 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4532 }
4533
4534 trace_i915_gem_object_change_domain(obj,
4535 old_read_domains,
4536 old_write_domain);
4537
4538 return 0;
4539 }
4540
4541 /* Throttle our rendering by waiting until the ring has completed our requests
4542 * emitted over 20 msec ago.
4543 *
4544 * Note that if we were to use the current jiffies each time around the loop,
4545 * we wouldn't escape the function with any frames outstanding if the time to
4546 * render a frame was over 20ms.
4547 *
4548 * This should get us reasonable parallelism between CPU and GPU but also
4549 * relatively low latency when blocking on a particular request to finish.
4550 */
4551 static int
4552 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4553 {
4554 struct drm_i915_private *dev_priv = dev->dev_private;
4555 struct drm_i915_file_private *file_priv = file->driver_priv;
4556 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4557 struct drm_i915_gem_request *request;
4558 struct intel_ring_buffer *ring = NULL;
4559 unsigned reset_counter;
4560 u32 seqno = 0;
4561 int ret;
4562
4563 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4564 if (ret)
4565 return ret;
4566
4567 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4568 if (ret)
4569 return ret;
4570
4571 spin_lock(&file_priv->mm.lock);
4572 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4573 if (time_after_eq(request->emitted_jiffies, recent_enough))
4574 break;
4575
4576 ring = request->ring;
4577 seqno = request->seqno;
4578 }
4579 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4580 spin_unlock(&file_priv->mm.lock);
4581
4582 if (seqno == 0)
4583 return 0;
4584
4585 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4586 if (ret == 0)
4587 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4588
4589 return ret;
4590 }
4591
4592 static bool
4593 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4594 {
4595 struct drm_i915_gem_object *obj = vma->obj;
4596
4597 if (alignment &&
4598 vma->node.start & (alignment - 1))
4599 return true;
4600
4601 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4602 return true;
4603
4604 if (flags & PIN_OFFSET_BIAS &&
4605 vma->node.start < (flags & PIN_OFFSET_MASK))
4606 return true;
4607
4608 return false;
4609 }
4610
4611 int
4612 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4613 struct i915_address_space *vm,
4614 uint32_t alignment,
4615 uint64_t flags)
4616 {
4617 struct i915_vma *vma;
4618 int ret;
4619
4620 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4621 return -EINVAL;
4622
4623 vma = i915_gem_obj_to_vma(obj, vm);
4624 if (vma) {
4625 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4626 return -EBUSY;
4627
4628 if (i915_vma_misplaced(vma, alignment, flags)) {
4629 WARN(vma->pin_count,
4630 "bo is already pinned with incorrect alignment:"
4631 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4632 " obj->map_and_fenceable=%d\n",
4633 i915_gem_obj_offset(obj, vm), alignment,
4634 !!(flags & PIN_MAPPABLE),
4635 obj->map_and_fenceable);
4636 ret = i915_vma_unbind(vma);
4637 if (ret)
4638 return ret;
4639
4640 vma = NULL;
4641 }
4642 }
4643
4644 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4645 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4646 if (IS_ERR(vma))
4647 return PTR_ERR(vma);
4648 }
4649
4650 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4651 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4652
4653 vma->pin_count++;
4654 if (flags & PIN_MAPPABLE)
4655 obj->pin_mappable |= true;
4656
4657 return 0;
4658 }
4659
4660 void
4661 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4662 {
4663 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4664
4665 BUG_ON(!vma);
4666 BUG_ON(vma->pin_count == 0);
4667 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4668
4669 if (--vma->pin_count == 0)
4670 obj->pin_mappable = false;
4671 }
4672
4673 int
4674 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4675 struct drm_file *file)
4676 {
4677 struct drm_i915_gem_pin *args = data;
4678 struct drm_gem_object *gobj;
4679 struct drm_i915_gem_object *obj;
4680 int ret;
4681
4682 if (INTEL_INFO(dev)->gen >= 6)
4683 return -ENODEV;
4684
4685 ret = i915_mutex_lock_interruptible(dev);
4686 if (ret)
4687 return ret;
4688
4689 gobj = drm_gem_object_lookup(dev, file, args->handle);
4690 if (gobj == NULL) {
4691 ret = -ENOENT;
4692 goto unlock;
4693 }
4694 obj = to_intel_bo(gobj);
4695
4696 if (obj->madv != I915_MADV_WILLNEED) {
4697 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4698 ret = -EFAULT;
4699 goto out;
4700 }
4701
4702 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4703 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4704 args->handle);
4705 ret = -EINVAL;
4706 goto out;
4707 }
4708
4709 if (obj->user_pin_count == ULONG_MAX) {
4710 ret = -EBUSY;
4711 goto out;
4712 }
4713
4714 if (obj->user_pin_count == 0) {
4715 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4716 if (ret)
4717 goto out;
4718 }
4719
4720 obj->user_pin_count++;
4721 obj->pin_filp = file;
4722
4723 args->offset = i915_gem_obj_ggtt_offset(obj);
4724 out:
4725 drm_gem_object_unreference(&obj->base);
4726 unlock:
4727 mutex_unlock(&dev->struct_mutex);
4728 return ret;
4729 }
4730
4731 int
4732 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4733 struct drm_file *file)
4734 {
4735 struct drm_i915_gem_pin *args = data;
4736 struct drm_gem_object *gobj;
4737 struct drm_i915_gem_object *obj;
4738 int ret;
4739
4740 ret = i915_mutex_lock_interruptible(dev);
4741 if (ret)
4742 return ret;
4743
4744 gobj = drm_gem_object_lookup(dev, file, args->handle);
4745 if (gobj == NULL) {
4746 ret = -ENOENT;
4747 goto unlock;
4748 }
4749 obj = to_intel_bo(gobj);
4750
4751 if (obj->pin_filp != file) {
4752 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4753 args->handle);
4754 ret = -EINVAL;
4755 goto out;
4756 }
4757 obj->user_pin_count--;
4758 if (obj->user_pin_count == 0) {
4759 obj->pin_filp = NULL;
4760 i915_gem_object_ggtt_unpin(obj);
4761 }
4762
4763 out:
4764 drm_gem_object_unreference(&obj->base);
4765 unlock:
4766 mutex_unlock(&dev->struct_mutex);
4767 return ret;
4768 }
4769
4770 int
4771 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4772 struct drm_file *file)
4773 {
4774 struct drm_i915_gem_busy *args = data;
4775 struct drm_gem_object *gobj;
4776 struct drm_i915_gem_object *obj;
4777 int ret;
4778
4779 ret = i915_mutex_lock_interruptible(dev);
4780 if (ret)
4781 return ret;
4782
4783 gobj = drm_gem_object_lookup(dev, file, args->handle);
4784 if (gobj == NULL) {
4785 ret = -ENOENT;
4786 goto unlock;
4787 }
4788 obj = to_intel_bo(gobj);
4789
4790 /* Count all active objects as busy, even if they are currently not used
4791 * by the gpu. Users of this interface expect objects to eventually
4792 * become non-busy without any further actions, therefore emit any
4793 * necessary flushes here.
4794 */
4795 ret = i915_gem_object_flush_active(obj);
4796
4797 args->busy = obj->active;
4798 if (obj->ring) {
4799 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4800 args->busy |= intel_ring_flag(obj->ring) << 16;
4801 }
4802
4803 drm_gem_object_unreference(&obj->base);
4804 unlock:
4805 mutex_unlock(&dev->struct_mutex);
4806 return ret;
4807 }
4808
4809 int
4810 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4811 struct drm_file *file_priv)
4812 {
4813 return i915_gem_ring_throttle(dev, file_priv);
4814 }
4815
4816 int
4817 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4818 struct drm_file *file_priv)
4819 {
4820 struct drm_i915_gem_madvise *args = data;
4821 struct drm_gem_object *gobj;
4822 struct drm_i915_gem_object *obj;
4823 int ret;
4824
4825 switch (args->madv) {
4826 case I915_MADV_DONTNEED:
4827 case I915_MADV_WILLNEED:
4828 break;
4829 default:
4830 return -EINVAL;
4831 }
4832
4833 ret = i915_mutex_lock_interruptible(dev);
4834 if (ret)
4835 return ret;
4836
4837 gobj = drm_gem_object_lookup(dev, file_priv, args->handle);
4838 if (gobj == NULL) {
4839 ret = -ENOENT;
4840 goto unlock;
4841 }
4842 obj = to_intel_bo(gobj);
4843
4844 if (i915_gem_obj_is_pinned(obj)) {
4845 ret = -EINVAL;
4846 goto out;
4847 }
4848
4849 if (obj->madv != __I915_MADV_PURGED)
4850 obj->madv = args->madv;
4851
4852 /* if the object is no longer attached, discard its backing storage */
4853 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4854 i915_gem_object_truncate(obj);
4855
4856 args->retained = obj->madv != __I915_MADV_PURGED;
4857
4858 out:
4859 drm_gem_object_unreference(&obj->base);
4860 unlock:
4861 mutex_unlock(&dev->struct_mutex);
4862 return ret;
4863 }
4864
4865 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4866 const struct drm_i915_gem_object_ops *ops)
4867 {
4868 INIT_LIST_HEAD(&obj->global_list);
4869 INIT_LIST_HEAD(&obj->ring_list);
4870 INIT_LIST_HEAD(&obj->obj_exec_link);
4871 INIT_LIST_HEAD(&obj->vma_list);
4872
4873 obj->ops = ops;
4874
4875 obj->fence_reg = I915_FENCE_REG_NONE;
4876 obj->madv = I915_MADV_WILLNEED;
4877 /* Avoid an unnecessary call to unbind on the first bind. */
4878 obj->map_and_fenceable = true;
4879
4880 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4881 }
4882
4883 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4884 .get_pages = i915_gem_object_get_pages_gtt,
4885 .put_pages = i915_gem_object_put_pages_gtt,
4886 };
4887
4888 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4889 size_t size)
4890 {
4891 #ifdef __NetBSD__
4892 struct drm_i915_private *const dev_priv = dev->dev_private;
4893 #endif
4894 struct drm_i915_gem_object *obj;
4895 #ifndef __NetBSD__
4896 struct address_space *mapping;
4897 gfp_t mask;
4898 #endif
4899
4900 obj = i915_gem_object_alloc(dev);
4901 if (obj == NULL)
4902 return NULL;
4903
4904 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4905 i915_gem_object_free(obj);
4906 return NULL;
4907 }
4908
4909 #ifdef __NetBSD__
4910 uao_set_pgfl(obj->base.gemo_shm_uao, dev_priv->gtt.pgfl);
4911 #else
4912 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4913 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4914 /* 965gm cannot relocate objects above 4GiB. */
4915 mask &= ~__GFP_HIGHMEM;
4916 mask |= __GFP_DMA32;
4917 }
4918
4919 mapping = file_inode(obj->base.filp)->i_mapping;
4920 mapping_set_gfp_mask(mapping, mask);
4921 #endif
4922
4923 i915_gem_object_init(obj, &i915_gem_object_ops);
4924
4925 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4926 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4927
4928 if (HAS_LLC(dev)) {
4929 /* On some devices, we can have the GPU use the LLC (the CPU
4930 * cache) for about a 10% performance improvement
4931 * compared to uncached. Graphics requests other than
4932 * display scanout are coherent with the CPU in
4933 * accessing this cache. This means in this mode we
4934 * don't need to clflush on the CPU side, and on the
4935 * GPU side we only need to flush internal caches to
4936 * get data visible to the CPU.
4937 *
4938 * However, we maintain the display planes as UC, and so
4939 * need to rebind when first used as such.
4940 */
4941 obj->cache_level = I915_CACHE_LLC;
4942 } else
4943 obj->cache_level = I915_CACHE_NONE;
4944
4945 trace_i915_gem_object_create(obj);
4946
4947 return obj;
4948 }
4949
4950 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4951 {
4952 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4953 struct drm_device *dev = obj->base.dev;
4954 struct drm_i915_private *dev_priv = dev->dev_private;
4955 struct i915_vma *vma, *next;
4956
4957 intel_runtime_pm_get(dev_priv);
4958
4959 trace_i915_gem_object_destroy(obj);
4960
4961 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4962 int ret;
4963
4964 vma->pin_count = 0;
4965 ret = i915_vma_unbind(vma);
4966 if (WARN_ON(ret == -ERESTARTSYS)) {
4967 bool was_interruptible;
4968
4969 was_interruptible = dev_priv->mm.interruptible;
4970 dev_priv->mm.interruptible = false;
4971
4972 WARN_ON(i915_vma_unbind(vma));
4973
4974 dev_priv->mm.interruptible = was_interruptible;
4975 }
4976 }
4977
4978 i915_gem_object_detach_phys(obj);
4979
4980 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4981 * before progressing. */
4982 if (obj->stolen)
4983 i915_gem_object_unpin_pages(obj);
4984
4985 if (WARN_ON(obj->pages_pin_count))
4986 obj->pages_pin_count = 0;
4987 i915_gem_object_put_pages(obj);
4988 i915_gem_object_free_mmap_offset(obj);
4989 i915_gem_object_release_stolen(obj);
4990
4991 BUG_ON(obj->pages);
4992
4993 #ifndef __NetBSD__ /* XXX drm prime */
4994 if (obj->base.import_attach)
4995 drm_prime_gem_destroy(&obj->base, NULL);
4996 #endif
4997
4998 drm_gem_object_release(&obj->base);
4999 i915_gem_info_remove_obj(dev_priv, obj->base.size);
5000
5001 kfree(obj->bit_17);
5002 i915_gem_object_free(obj);
5003
5004 intel_runtime_pm_put(dev_priv);
5005 }
5006
5007 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
5008 struct i915_address_space *vm)
5009 {
5010 struct i915_vma *vma;
5011 list_for_each_entry(vma, &obj->vma_list, vma_link)
5012 if (vma->vm == vm)
5013 return vma;
5014
5015 return NULL;
5016 }
5017
5018 void i915_gem_vma_destroy(struct i915_vma *vma)
5019 {
5020 WARN_ON(vma->node.allocated);
5021
5022 /* Keep the vma as a placeholder in the execbuffer reservation lists */
5023 if (!list_empty(&vma->exec_list))
5024 return;
5025
5026 list_del(&vma->vma_link);
5027
5028 kfree(vma);
5029 }
5030
5031 int
5032 i915_gem_suspend(struct drm_device *dev)
5033 {
5034 struct drm_i915_private *dev_priv = dev->dev_private;
5035 int ret = 0;
5036
5037 mutex_lock(&dev->struct_mutex);
5038 if (dev_priv->ums.mm_suspended)
5039 goto err;
5040
5041 ret = i915_gpu_idle(dev);
5042 if (ret)
5043 goto err;
5044
5045 i915_gem_retire_requests(dev);
5046
5047 /* Under UMS, be paranoid and evict. */
5048 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5049 i915_gem_evict_everything(dev);
5050
5051 i915_kernel_lost_context(dev);
5052 i915_gem_cleanup_ringbuffer(dev);
5053
5054 /* Hack! Don't let anybody do execbuf while we don't control the chip.
5055 * We need to replace this with a semaphore, or something.
5056 * And not confound ums.mm_suspended!
5057 */
5058 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
5059 DRIVER_MODESET);
5060 mutex_unlock(&dev->struct_mutex);
5061
5062 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
5063 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
5064 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
5065
5066 return 0;
5067
5068 err:
5069 mutex_unlock(&dev->struct_mutex);
5070 return ret;
5071 }
5072
5073 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
5074 {
5075 struct drm_device *dev = ring->dev;
5076 struct drm_i915_private *dev_priv = dev->dev_private;
5077 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
5078 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
5079 int i, ret;
5080
5081 if (!HAS_L3_DPF(dev) || !remap_info)
5082 return 0;
5083
5084 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
5085 if (ret)
5086 return ret;
5087
5088 /*
5089 * Note: We do not worry about the concurrent register cacheline hang
5090 * here because no other code should access these registers other than
5091 * at initialization time.
5092 */
5093 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
5094 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
5095 intel_ring_emit(ring, reg_base + i);
5096 intel_ring_emit(ring, remap_info[i/4]);
5097 }
5098
5099 intel_ring_advance(ring);
5100
5101 return ret;
5102 }
5103
5104 void i915_gem_init_swizzling(struct drm_device *dev)
5105 {
5106 struct drm_i915_private *dev_priv = dev->dev_private;
5107
5108 if (INTEL_INFO(dev)->gen < 5 ||
5109 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5110 return;
5111
5112 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5113 DISP_TILE_SURFACE_SWIZZLING);
5114
5115 if (IS_GEN5(dev))
5116 return;
5117
5118 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5119 if (IS_GEN6(dev))
5120 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5121 else if (IS_GEN7(dev))
5122 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5123 else if (IS_GEN8(dev))
5124 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5125 else
5126 BUG();
5127 }
5128
5129 static bool
5130 intel_enable_blt(struct drm_device *dev)
5131 {
5132 if (!HAS_BLT(dev))
5133 return false;
5134
5135 /* The blitter was dysfunctional on early prototypes */
5136 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
5137 DRM_INFO("BLT not supported on this pre-production hardware;"
5138 " graphics performance will be degraded.\n");
5139 return false;
5140 }
5141
5142 return true;
5143 }
5144
5145 static int i915_gem_init_rings(struct drm_device *dev)
5146 {
5147 struct drm_i915_private *dev_priv = dev->dev_private;
5148 int ret;
5149
5150 ret = intel_init_render_ring_buffer(dev);
5151 if (ret)
5152 return ret;
5153
5154 if (HAS_BSD(dev)) {
5155 ret = intel_init_bsd_ring_buffer(dev);
5156 if (ret)
5157 goto cleanup_render_ring;
5158 }
5159
5160 if (intel_enable_blt(dev)) {
5161 ret = intel_init_blt_ring_buffer(dev);
5162 if (ret)
5163 goto cleanup_bsd_ring;
5164 }
5165
5166 if (HAS_VEBOX(dev)) {
5167 ret = intel_init_vebox_ring_buffer(dev);
5168 if (ret)
5169 goto cleanup_blt_ring;
5170 }
5171
5172
5173 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
5174 if (ret)
5175 goto cleanup_vebox_ring;
5176
5177 return 0;
5178
5179 cleanup_vebox_ring:
5180 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5181 cleanup_blt_ring:
5182 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5183 cleanup_bsd_ring:
5184 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5185 cleanup_render_ring:
5186 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5187
5188 return ret;
5189 }
5190
5191 int
5192 i915_gem_init_hw(struct drm_device *dev)
5193 {
5194 struct drm_i915_private *dev_priv = dev->dev_private;
5195 int ret, i;
5196
5197 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5198 return -EIO;
5199
5200 if (dev_priv->ellc_size)
5201 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5202
5203 if (IS_HASWELL(dev))
5204 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5205 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5206
5207 if (HAS_PCH_NOP(dev)) {
5208 if (IS_IVYBRIDGE(dev)) {
5209 u32 temp = I915_READ(GEN7_MSG_CTL);
5210 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5211 I915_WRITE(GEN7_MSG_CTL, temp);
5212 } else if (INTEL_INFO(dev)->gen >= 7) {
5213 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5214 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5215 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5216 }
5217 }
5218
5219 i915_gem_init_swizzling(dev);
5220
5221 ret = i915_gem_init_rings(dev);
5222 if (ret)
5223 return ret;
5224
5225 for (i = 0; i < NUM_L3_SLICES(dev); i++)
5226 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
5227
5228 /*
5229 * XXX: Contexts should only be initialized once. Doing a switch to the
5230 * default context switch however is something we'd like to do after
5231 * reset or thaw (the latter may not actually be necessary for HW, but
5232 * goes with our code better). Context switching requires rings (for
5233 * the do_switch), but before enabling PPGTT. So don't move this.
5234 */
5235 ret = i915_gem_context_enable(dev_priv);
5236 if (ret) {
5237 DRM_ERROR("Context enable failed %d\n", ret);
5238 goto err_out;
5239 }
5240
5241 return 0;
5242
5243 err_out:
5244 i915_gem_cleanup_ringbuffer(dev);
5245 return ret;
5246 }
5247
5248 int i915_gem_init(struct drm_device *dev)
5249 {
5250 struct drm_i915_private *dev_priv = dev->dev_private;
5251 int ret;
5252
5253 mutex_lock(&dev->struct_mutex);
5254
5255 if (IS_VALLEYVIEW(dev)) {
5256 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5257 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
5258 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
5259 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5260 }
5261 i915_gem_init_global_gtt(dev);
5262
5263 ret = i915_gem_context_init(dev);
5264 if (ret) {
5265 mutex_unlock(&dev->struct_mutex);
5266 return ret;
5267 }
5268
5269 ret = i915_gem_init_hw(dev);
5270 mutex_unlock(&dev->struct_mutex);
5271 if (ret) {
5272 WARN_ON(dev_priv->mm.aliasing_ppgtt);
5273 i915_gem_context_fini(dev);
5274 drm_mm_takedown(&dev_priv->gtt.base.mm);
5275 return ret;
5276 }
5277
5278 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
5279 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5280 dev_priv->dri1.allow_batchbuffer = 1;
5281 return 0;
5282 }
5283
5284 void
5285 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5286 {
5287 struct drm_i915_private *dev_priv = dev->dev_private;
5288 struct intel_ring_buffer *ring;
5289 int i;
5290
5291 for_each_ring(ring, dev_priv, i)
5292 intel_cleanup_ring_buffer(ring);
5293 }
5294
5295 int
5296 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
5297 struct drm_file *file_priv)
5298 {
5299 struct drm_i915_private *dev_priv = dev->dev_private;
5300 int ret;
5301
5302 if (drm_core_check_feature(dev, DRIVER_MODESET))
5303 return 0;
5304
5305 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
5306 DRM_ERROR("Reenabling wedged hardware, good luck\n");
5307 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
5308 }
5309
5310 mutex_lock(&dev->struct_mutex);
5311 dev_priv->ums.mm_suspended = 0;
5312
5313 ret = i915_gem_init_hw(dev);
5314 if (ret != 0) {
5315 mutex_unlock(&dev->struct_mutex);
5316 return ret;
5317 }
5318
5319 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
5320 mutex_unlock(&dev->struct_mutex);
5321
5322 ret = drm_irq_install(dev);
5323 if (ret)
5324 goto cleanup_ringbuffer;
5325
5326 return 0;
5327
5328 cleanup_ringbuffer:
5329 mutex_lock(&dev->struct_mutex);
5330 i915_gem_cleanup_ringbuffer(dev);
5331 dev_priv->ums.mm_suspended = 1;
5332 mutex_unlock(&dev->struct_mutex);
5333
5334 return ret;
5335 }
5336
5337 int
5338 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
5339 struct drm_file *file_priv)
5340 {
5341 if (drm_core_check_feature(dev, DRIVER_MODESET))
5342 return 0;
5343
5344 drm_irq_uninstall(dev);
5345
5346 return i915_gem_suspend(dev);
5347 }
5348
5349 void
5350 i915_gem_lastclose(struct drm_device *dev)
5351 {
5352 int ret;
5353
5354 if (drm_core_check_feature(dev, DRIVER_MODESET))
5355 return;
5356
5357 ret = i915_gem_suspend(dev);
5358 if (ret)
5359 DRM_ERROR("failed to idle hardware: %d\n", ret);
5360 }
5361
5362 static void
5363 init_ring_lists(struct intel_ring_buffer *ring)
5364 {
5365 INIT_LIST_HEAD(&ring->active_list);
5366 INIT_LIST_HEAD(&ring->request_list);
5367 }
5368
5369 void i915_init_vm(struct drm_i915_private *dev_priv,
5370 struct i915_address_space *vm)
5371 {
5372 if (!i915_is_ggtt(vm))
5373 drm_mm_init(&vm->mm, vm->start, vm->total);
5374 vm->dev = dev_priv->dev;
5375 INIT_LIST_HEAD(&vm->active_list);
5376 INIT_LIST_HEAD(&vm->inactive_list);
5377 INIT_LIST_HEAD(&vm->global_link);
5378 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5379 }
5380
5381 void
5382 i915_gem_load(struct drm_device *dev)
5383 {
5384 struct drm_i915_private *dev_priv = dev->dev_private;
5385 int i;
5386
5387 dev_priv->slab =
5388 kmem_cache_create("i915_gem_object",
5389 sizeof(struct drm_i915_gem_object), 0,
5390 SLAB_HWCACHE_ALIGN,
5391 NULL);
5392
5393 INIT_LIST_HEAD(&dev_priv->vm_list);
5394 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5395
5396 INIT_LIST_HEAD(&dev_priv->context_list);
5397 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5398 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5399 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5400 for (i = 0; i < I915_NUM_RINGS; i++)
5401 init_ring_lists(&dev_priv->ring[i]);
5402 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5403 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5404 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5405 i915_gem_retire_work_handler);
5406 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5407 i915_gem_idle_work_handler);
5408 #ifdef __NetBSD__
5409 spin_lock_init(&dev_priv->gpu_error.reset_lock);
5410 DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
5411 #else
5412 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5413 #endif
5414
5415 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5416 if (IS_GEN3(dev)) {
5417 I915_WRITE(MI_ARB_STATE,
5418 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5419 }
5420
5421 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5422
5423 /* Old X drivers will take 0-2 for front, back, depth buffers */
5424 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5425 dev_priv->fence_reg_start = 3;
5426
5427 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5428 dev_priv->num_fence_regs = 32;
5429 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5430 dev_priv->num_fence_regs = 16;
5431 else
5432 dev_priv->num_fence_regs = 8;
5433
5434 /* Initialize fence registers to zero */
5435 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5436 i915_gem_restore_fences(dev);
5437
5438 i915_gem_detect_bit_6_swizzle(dev);
5439 #ifdef __NetBSD__
5440 DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
5441 spin_lock_init(&dev_priv->pending_flip_lock);
5442 #else
5443 init_waitqueue_head(&dev_priv->pending_flip_queue);
5444 #endif
5445
5446 dev_priv->mm.interruptible = true;
5447
5448 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
5449 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
5450 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
5451 register_shrinker(&dev_priv->mm.inactive_shrinker);
5452 }
5453
5454 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5455 {
5456 struct drm_i915_file_private *file_priv = file->driver_priv;
5457
5458 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5459
5460 /* Clean up our request list when the client is going away, so that
5461 * later retire_requests won't dereference our soon-to-be-gone
5462 * file_priv.
5463 */
5464 spin_lock(&file_priv->mm.lock);
5465 while (!list_empty(&file_priv->mm.request_list)) {
5466 struct drm_i915_gem_request *request;
5467
5468 request = list_first_entry(&file_priv->mm.request_list,
5469 struct drm_i915_gem_request,
5470 client_list);
5471 list_del(&request->client_list);
5472 request->file_priv = NULL;
5473 }
5474 spin_unlock(&file_priv->mm.lock);
5475 }
5476
5477 static void
5478 i915_gem_file_idle_work_handler(struct work_struct *work)
5479 {
5480 struct drm_i915_file_private *file_priv =
5481 container_of(work, typeof(*file_priv), mm.idle_work.work);
5482
5483 atomic_set(&file_priv->rps_wait_boost, false);
5484 }
5485
5486 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5487 {
5488 struct drm_i915_file_private *file_priv;
5489 int ret;
5490
5491 DRM_DEBUG_DRIVER("\n");
5492
5493 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5494 if (!file_priv)
5495 return -ENOMEM;
5496
5497 file->driver_priv = file_priv;
5498 file_priv->dev_priv = dev->dev_private;
5499 file_priv->file = file;
5500
5501 spin_lock_init(&file_priv->mm.lock);
5502 INIT_LIST_HEAD(&file_priv->mm.request_list);
5503 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5504 i915_gem_file_idle_work_handler);
5505
5506 ret = i915_gem_context_open(dev, file);
5507 if (ret)
5508 kfree(file_priv);
5509
5510 return ret;
5511 }
5512
5513 #ifndef __NetBSD__
5514 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5515 {
5516 if (!mutex_is_locked(mutex))
5517 return false;
5518
5519 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5520 return mutex->owner == task;
5521 #else
5522 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5523 return false;
5524 #endif
5525 }
5526 #endif
5527
5528 static unsigned long
5529 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
5530 {
5531 #ifdef __NetBSD__ /* XXX shrinkers */
5532 return 0;
5533 #else
5534 struct drm_i915_private *dev_priv =
5535 container_of(shrinker,
5536 struct drm_i915_private,
5537 mm.inactive_shrinker);
5538 struct drm_device *dev = dev_priv->dev;
5539 struct drm_i915_gem_object *obj;
5540 bool unlock = true;
5541 unsigned long count;
5542
5543 if (!mutex_trylock(&dev->struct_mutex)) {
5544 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5545 return 0;
5546
5547 if (dev_priv->mm.shrinker_no_lock_stealing)
5548 return 0;
5549
5550 unlock = false;
5551 }
5552
5553 count = 0;
5554 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5555 if (obj->pages_pin_count == 0)
5556 count += obj->base.size >> PAGE_SHIFT;
5557
5558 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5559 if (obj->active)
5560 continue;
5561
5562 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
5563 count += obj->base.size >> PAGE_SHIFT;
5564 }
5565
5566 if (unlock)
5567 mutex_unlock(&dev->struct_mutex);
5568
5569 return count;
5570 #endif
5571 }
5572
5573 /* All the new VM stuff */
5574 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5575 struct i915_address_space *vm)
5576 {
5577 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5578 struct i915_vma *vma;
5579
5580 if (!dev_priv->mm.aliasing_ppgtt ||
5581 vm == &dev_priv->mm.aliasing_ppgtt->base)
5582 vm = &dev_priv->gtt.base;
5583
5584 BUG_ON(list_empty(&o->vma_list));
5585 list_for_each_entry(vma, &o->vma_list, vma_link) {
5586 if (vma->vm == vm)
5587 return vma->node.start;
5588
5589 }
5590 return -1;
5591 }
5592
5593 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5594 struct i915_address_space *vm)
5595 {
5596 struct i915_vma *vma;
5597
5598 list_for_each_entry(vma, &o->vma_list, vma_link)
5599 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5600 return true;
5601
5602 return false;
5603 }
5604
5605 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5606 {
5607 struct i915_vma *vma;
5608
5609 list_for_each_entry(vma, &o->vma_list, vma_link)
5610 if (drm_mm_node_allocated(&vma->node))
5611 return true;
5612
5613 return false;
5614 }
5615
5616 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5617 struct i915_address_space *vm)
5618 {
5619 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5620 struct i915_vma *vma;
5621
5622 if (!dev_priv->mm.aliasing_ppgtt ||
5623 vm == &dev_priv->mm.aliasing_ppgtt->base)
5624 vm = &dev_priv->gtt.base;
5625
5626 BUG_ON(list_empty(&o->vma_list));
5627
5628 list_for_each_entry(vma, &o->vma_list, vma_link)
5629 if (vma->vm == vm)
5630 return vma->node.size;
5631
5632 return 0;
5633 }
5634
5635 static unsigned long
5636 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5637 {
5638 #ifdef __NetBSD__ /* XXX shrinkers */
5639 return 0;
5640 #else
5641 struct drm_i915_private *dev_priv =
5642 container_of(shrinker,
5643 struct drm_i915_private,
5644 mm.inactive_shrinker);
5645 struct drm_device *dev = dev_priv->dev;
5646 unsigned long freed;
5647 bool unlock = true;
5648
5649 if (!mutex_trylock(&dev->struct_mutex)) {
5650 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5651 return SHRINK_STOP;
5652
5653 if (dev_priv->mm.shrinker_no_lock_stealing)
5654 return SHRINK_STOP;
5655
5656 unlock = false;
5657 }
5658
5659 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5660 if (freed < sc->nr_to_scan)
5661 freed += __i915_gem_shrink(dev_priv,
5662 sc->nr_to_scan - freed,
5663 false);
5664 if (freed < sc->nr_to_scan)
5665 freed += i915_gem_shrink_all(dev_priv);
5666
5667 if (unlock)
5668 mutex_unlock(&dev->struct_mutex);
5669
5670 return freed;
5671 #endif
5672 }
5673
5674 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5675 {
5676 struct i915_vma *vma;
5677
5678 if (WARN_ON(list_empty(&obj->vma_list)))
5679 return NULL;
5680
5681 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5682 if (vma->vm != obj_to_ggtt(obj))
5683 return NULL;
5684
5685 return vma;
5686 }
5687