Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.36
      1 /*	$NetBSD: i915_gem.c,v 1.36 2018/08/27 04:58:23 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright  2008-2015 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  * Authors:
     26  *    Eric Anholt <eric (at) anholt.net>
     27  *
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: i915_gem.c,v 1.36 2018/08/27 04:58:23 riastradh Exp $");
     32 
     33 #ifdef __NetBSD__
     34 #if 0				/* XXX uvmhist option?  */
     35 #include "opt_uvmhist.h"
     36 #endif
     37 
     38 #include <sys/types.h>
     39 #include <sys/param.h>
     40 
     41 #include <uvm/uvm.h>
     42 #include <uvm/uvm_extern.h>
     43 #include <uvm/uvm_fault.h>
     44 #include <uvm/uvm_page.h>
     45 #include <uvm/uvm_pmap.h>
     46 #include <uvm/uvm_prot.h>
     47 
     48 #include <drm/bus_dma_hacks.h>
     49 #endif
     50 
     51 #include <drm/drmP.h>
     52 #include <drm/drm_vma_manager.h>
     53 #include <drm/i915_drm.h>
     54 #include "i915_drv.h"
     55 #include "i915_vgpu.h"
     56 #include "i915_trace.h"
     57 #include "intel_drv.h"
     58 #include <linux/shmem_fs.h>
     59 #include <linux/slab.h>
     60 #include <linux/swap.h>
     61 #include <linux/pci.h>
     62 #include <linux/dma-buf.h>
     63 #include <linux/errno.h>
     64 #include <linux/time.h>
     65 #include <linux/err.h>
     66 #include <linux/bitops.h>
     67 #include <linux/printk.h>
     68 #include <asm/param.h>
     69 #include <asm/page.h>
     70 
     71 #define RQ_BUG_ON(expr)
     72 
     73 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
     74 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
     75 static void
     76 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
     77 static void
     78 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
     79 
     80 static bool cpu_cache_is_coherent(struct drm_device *dev,
     81 				  enum i915_cache_level level)
     82 {
     83 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
     84 }
     85 
     86 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
     87 {
     88 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
     89 		return true;
     90 
     91 	return obj->pin_display;
     92 }
     93 
     94 /* some bookkeeping */
     95 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
     96 				  size_t size)
     97 {
     98 	spin_lock(&dev_priv->mm.object_stat_lock);
     99 	dev_priv->mm.object_count++;
    100 	dev_priv->mm.object_memory += size;
    101 	spin_unlock(&dev_priv->mm.object_stat_lock);
    102 }
    103 
    104 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
    105 				     size_t size)
    106 {
    107 	spin_lock(&dev_priv->mm.object_stat_lock);
    108 	dev_priv->mm.object_count--;
    109 	dev_priv->mm.object_memory -= size;
    110 	spin_unlock(&dev_priv->mm.object_stat_lock);
    111 }
    112 
    113 static int
    114 i915_gem_wait_for_error(struct i915_gpu_error *error)
    115 {
    116 	int ret;
    117 
    118 #define EXIT_COND (!i915_reset_in_progress(error) || \
    119 		   i915_terminally_wedged(error))
    120 	if (EXIT_COND)
    121 		return 0;
    122 
    123 	/*
    124 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
    125 	 * userspace. If it takes that long something really bad is going on and
    126 	 * we should simply try to bail out and fail as gracefully as possible.
    127 	 */
    128 #ifdef __NetBSD__
    129 	spin_lock(&error->reset_lock);
    130 	DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
    131 	    10*HZ, EXIT_COND);
    132 	spin_unlock(&error->reset_lock);
    133 #else
    134 	ret = wait_event_interruptible_timeout(error->reset_queue,
    135 					       EXIT_COND,
    136 					       10*HZ);
    137 #endif
    138 	if (ret == 0) {
    139 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
    140 		return -EIO;
    141 	} else if (ret < 0) {
    142 		return ret;
    143 	}
    144 #undef EXIT_COND
    145 
    146 	return 0;
    147 }
    148 
    149 int i915_mutex_lock_interruptible(struct drm_device *dev)
    150 {
    151 	struct drm_i915_private *dev_priv = dev->dev_private;
    152 	int ret;
    153 
    154 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
    155 	if (ret)
    156 		return ret;
    157 
    158 	ret = mutex_lock_interruptible(&dev->struct_mutex);
    159 	if (ret)
    160 		return ret;
    161 
    162 	WARN_ON(i915_verify_lists(dev));
    163 	return 0;
    164 }
    165 
    166 int
    167 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    168 			    struct drm_file *file)
    169 {
    170 	struct drm_i915_private *dev_priv = dev->dev_private;
    171 	struct drm_i915_gem_get_aperture *args = data;
    172 	struct i915_gtt *ggtt = &dev_priv->gtt;
    173 	struct i915_vma *vma;
    174 	size_t pinned;
    175 
    176 	pinned = 0;
    177 	mutex_lock(&dev->struct_mutex);
    178 	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
    179 		if (vma->pin_count)
    180 			pinned += vma->node.size;
    181 	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
    182 		if (vma->pin_count)
    183 			pinned += vma->node.size;
    184 	mutex_unlock(&dev->struct_mutex);
    185 
    186 	args->aper_size = dev_priv->gtt.base.total;
    187 	args->aper_available_size = args->aper_size - pinned;
    188 
    189 	return 0;
    190 }
    191 
    192 static int
    193 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
    194 {
    195 #ifndef __NetBSD__
    196 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    197 #endif
    198 	char *vaddr = obj->phys_handle->vaddr;
    199 #ifndef __NetBSD__
    200 	struct sg_table *st;
    201 	struct scatterlist *sg;
    202 #endif
    203 	int i;
    204 
    205 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
    206 		return -EINVAL;
    207 
    208 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    209 		struct page *page;
    210 		char *src;
    211 
    212 #ifdef __NetBSD__
    213 		struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
    214 		int ret;
    215 		/* XXX errno NetBSD->Linux */
    216 		ret = -uvm_obj_wirepages(obj->base.gemo_shm_uao,
    217 		    i*PAGE_SIZE, (i + 1)*PAGE_SIZE, &pages);
    218 		if (ret)
    219 			return ret;
    220 		page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
    221 #else
    222 		page = shmem_read_mapping_page(mapping, i);
    223 		if (IS_ERR(page))
    224 			return PTR_ERR(page);
    225 #endif
    226 
    227 		src = kmap_atomic(page);
    228 		memcpy(vaddr, src, PAGE_SIZE);
    229 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
    230 		kunmap_atomic(src);
    231 
    232 #ifdef __NetBSD__
    233 		uvm_obj_unwirepages(obj->base.gemo_shm_uao,
    234 		    i*PAGE_SIZE, (i + 1)*PAGE_SIZE);
    235 #else
    236 		page_cache_release(page);
    237 #endif
    238 		vaddr += PAGE_SIZE;
    239 	}
    240 
    241 	i915_gem_chipset_flush(obj->base.dev);
    242 
    243 #ifdef __NetBSD__
    244 	/*
    245 	 * We don't need to store anything here -- the phys handle is
    246 	 * enough.  But obj->pages can't be null while the pages are
    247 	 * mapped.
    248 	 */
    249 	obj->pages = (void *)1;
    250 #else
    251 	st = kmalloc(sizeof(*st), GFP_KERNEL);
    252 	if (st == NULL)
    253 		return -ENOMEM;
    254 
    255 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
    256 		kfree(st);
    257 		return -ENOMEM;
    258 	}
    259 
    260 	sg = st->sgl;
    261 	sg->offset = 0;
    262 	sg->length = obj->base.size;
    263 
    264 	sg_dma_address(sg) = obj->phys_handle->busaddr;
    265 	sg_dma_len(sg) = obj->base.size;
    266 
    267 	obj->pages = st;
    268 #endif
    269 	return 0;
    270 }
    271 
    272 static void
    273 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
    274 {
    275 	int ret;
    276 
    277 	BUG_ON(obj->madv == __I915_MADV_PURGED);
    278 
    279 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
    280 	if (ret) {
    281 		/* In the event of a disaster, abandon all caches and
    282 		 * hope for the best.
    283 		 */
    284 		WARN_ON(ret != -EIO);
    285 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
    286 	}
    287 
    288 	if (obj->madv == I915_MADV_DONTNEED)
    289 		obj->dirty = 0;
    290 
    291 	if (obj->dirty) {
    292 #ifndef __NetBSD__
    293 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    294 #endif
    295 		const char *vaddr = obj->phys_handle->vaddr;
    296 		int i;
    297 
    298 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    299 			struct page *page;
    300 			char *dst;
    301 
    302 #ifdef __NetBSD__
    303 			struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
    304 			int ret;
    305 			/* XXX errno NetBSD->Linux */
    306 			ret = -uvm_obj_wirepages(obj->base.gemo_shm_uao,
    307 			    i*PAGE_SIZE, (i + 1)*PAGE_SIZE, &pages);
    308 			if (ret)
    309 				continue;
    310 			page = container_of(TAILQ_FIRST(&pages), struct page,
    311 			    p_vmp);
    312 #endif
    313 
    314 			dst = kmap_atomic(page);
    315 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
    316 			memcpy(dst, vaddr, PAGE_SIZE);
    317 			kunmap_atomic(dst);
    318 
    319 #ifdef __NetBSD__
    320 			vm_page->flags &= ~PG_CLEAN;
    321 			/* XXX mark page accessed */
    322 			uvm_obj_unwirepages(obj->base.gemo_shm_uao,
    323 			    i*PAGE_SIZE, (i+1)*PAGE_SIZE);
    324 #else
    325 			set_page_dirty(page);
    326 			if (obj->madv == I915_MADV_WILLNEED)
    327 				mark_page_accessed(page);
    328 			page_cache_release(page);
    329 #endif
    330 			vaddr += PAGE_SIZE;
    331 		}
    332 		obj->dirty = 0;
    333 	}
    334 
    335 	sg_free_table(obj->pages);
    336 	kfree(obj->pages);
    337 }
    338 
    339 static void
    340 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
    341 {
    342 	drm_pci_free(obj->base.dev, obj->phys_handle);
    343 }
    344 
    345 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
    346 	.get_pages = i915_gem_object_get_pages_phys,
    347 	.put_pages = i915_gem_object_put_pages_phys,
    348 	.release = i915_gem_object_release_phys,
    349 };
    350 
    351 static int
    352 drop_pages(struct drm_i915_gem_object *obj)
    353 {
    354 	struct i915_vma *vma, *next;
    355 	int ret;
    356 
    357 	drm_gem_object_reference(&obj->base);
    358 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
    359 		if (i915_vma_unbind(vma))
    360 			break;
    361 
    362 	ret = i915_gem_object_put_pages(obj);
    363 	drm_gem_object_unreference(&obj->base);
    364 
    365 	return ret;
    366 }
    367 
    368 int
    369 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
    370 			    int align)
    371 {
    372 	drm_dma_handle_t *phys;
    373 	int ret;
    374 
    375 	if (obj->phys_handle) {
    376 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
    377 			return -EBUSY;
    378 
    379 		return 0;
    380 	}
    381 
    382 	if (obj->madv != I915_MADV_WILLNEED)
    383 		return -EFAULT;
    384 
    385 #ifdef __NetBSD__
    386 	if (obj->base.gemo_shm_uao == NULL)
    387 		return -EINVAL;
    388 #else
    389 	if (obj->base.filp == NULL)
    390 		return -EINVAL;
    391 #endif
    392 
    393 	ret = drop_pages(obj);
    394 	if (ret)
    395 		return ret;
    396 
    397 	/* create a new object */
    398 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
    399 	if (!phys)
    400 		return -ENOMEM;
    401 
    402 	obj->phys_handle = phys;
    403 	obj->ops = &i915_gem_phys_ops;
    404 
    405 	return i915_gem_object_get_pages(obj);
    406 }
    407 
    408 static int
    409 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
    410 		     struct drm_i915_gem_pwrite *args,
    411 		     struct drm_file *file_priv)
    412 {
    413 	struct drm_device *dev = obj->base.dev;
    414 	void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
    415 	char __user *user_data = to_user_ptr(args->data_ptr);
    416 	int ret = 0;
    417 
    418 	/* We manually control the domain here and pretend that it
    419 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
    420 	 */
    421 	ret = i915_gem_object_wait_rendering(obj, false);
    422 	if (ret)
    423 		return ret;
    424 
    425 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
    426 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
    427 		unsigned long unwritten;
    428 
    429 		/* The physical object once assigned is fixed for the lifetime
    430 		 * of the obj, so we can safely drop the lock and continue
    431 		 * to access vaddr.
    432 		 */
    433 		mutex_unlock(&dev->struct_mutex);
    434 		unwritten = copy_from_user(vaddr, user_data, args->size);
    435 		mutex_lock(&dev->struct_mutex);
    436 		if (unwritten) {
    437 			ret = -EFAULT;
    438 			goto out;
    439 		}
    440 	}
    441 
    442 	drm_clflush_virt_range(vaddr, args->size);
    443 	i915_gem_chipset_flush(dev);
    444 
    445 out:
    446 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
    447 	return ret;
    448 }
    449 
    450 void *i915_gem_object_alloc(struct drm_device *dev)
    451 {
    452 	struct drm_i915_private *dev_priv = dev->dev_private;
    453 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
    454 }
    455 
    456 void i915_gem_object_free(struct drm_i915_gem_object *obj)
    457 {
    458 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
    459 	kmem_cache_free(dev_priv->objects, obj);
    460 }
    461 
    462 static int
    463 i915_gem_create(struct drm_file *file,
    464 		struct drm_device *dev,
    465 		uint64_t size,
    466 		uint32_t *handle_p)
    467 {
    468 	struct drm_i915_gem_object *obj;
    469 	int ret;
    470 	u32 handle;
    471 
    472 	size = roundup(size, PAGE_SIZE);
    473 	if (size == 0)
    474 		return -EINVAL;
    475 
    476 	/* Allocate the new object */
    477 	obj = i915_gem_alloc_object(dev, size);
    478 	if (obj == NULL)
    479 		return -ENOMEM;
    480 
    481 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    482 	/* drop reference from allocate - handle holds it now */
    483 	drm_gem_object_unreference_unlocked(&obj->base);
    484 	if (ret)
    485 		return ret;
    486 
    487 	*handle_p = handle;
    488 	return 0;
    489 }
    490 
    491 int
    492 i915_gem_dumb_create(struct drm_file *file,
    493 		     struct drm_device *dev,
    494 		     struct drm_mode_create_dumb *args)
    495 {
    496 	/* have to work out size/pitch and return them */
    497 #ifdef __NetBSD__		/* ALIGN means something else.  */
    498 	args->pitch = round_up(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    499 #else
    500 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    501 #endif
    502 	args->size = args->pitch * args->height;
    503 	return i915_gem_create(file, dev,
    504 			       args->size, &args->handle);
    505 }
    506 
    507 /**
    508  * Creates a new mm object and returns a handle to it.
    509  */
    510 int
    511 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    512 		      struct drm_file *file)
    513 {
    514 	struct drm_i915_gem_create *args = data;
    515 
    516 	return i915_gem_create(file, dev,
    517 			       args->size, &args->handle);
    518 }
    519 
    520 static inline int
    521 __copy_to_user_swizzled(char __user *cpu_vaddr,
    522 			const char *gpu_vaddr, int gpu_offset,
    523 			int length)
    524 {
    525 	int ret, cpu_offset = 0;
    526 
    527 	while (length > 0) {
    528 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    529 		int cacheline_end = round_up(gpu_offset + 1, 64);
    530 #else
    531 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    532 #endif
    533 		int this_length = min(cacheline_end - gpu_offset, length);
    534 		int swizzled_gpu_offset = gpu_offset ^ 64;
    535 
    536 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
    537 				     gpu_vaddr + swizzled_gpu_offset,
    538 				     this_length);
    539 		if (ret)
    540 			return ret + length;
    541 
    542 		cpu_offset += this_length;
    543 		gpu_offset += this_length;
    544 		length -= this_length;
    545 	}
    546 
    547 	return 0;
    548 }
    549 
    550 static inline int
    551 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
    552 			  const char __user *cpu_vaddr,
    553 			  int length)
    554 {
    555 	int ret, cpu_offset = 0;
    556 
    557 	while (length > 0) {
    558 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    559 		int cacheline_end = round_up(gpu_offset + 1, 64);
    560 #else
    561 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    562 #endif
    563 		int this_length = min(cacheline_end - gpu_offset, length);
    564 		int swizzled_gpu_offset = gpu_offset ^ 64;
    565 
    566 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
    567 				       cpu_vaddr + cpu_offset,
    568 				       this_length);
    569 		if (ret)
    570 			return ret + length;
    571 
    572 		cpu_offset += this_length;
    573 		gpu_offset += this_length;
    574 		length -= this_length;
    575 	}
    576 
    577 	return 0;
    578 }
    579 
    580 /*
    581  * Pins the specified object's pages and synchronizes the object with
    582  * GPU accesses. Sets needs_clflush to non-zero if the caller should
    583  * flush the object from the CPU cache.
    584  */
    585 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
    586 				    int *needs_clflush)
    587 {
    588 	int ret;
    589 
    590 	*needs_clflush = 0;
    591 
    592 #ifdef __NetBSD__
    593 	if (obj->base.gemo_shm_uao == NULL)
    594 		return -EINVAL;
    595 #else
    596 	if (!obj->base.filp)
    597 		return -EINVAL;
    598 #endif
    599 
    600 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
    601 		/* If we're not in the cpu read domain, set ourself into the gtt
    602 		 * read domain and manually flush cachelines (if required). This
    603 		 * optimizes for the case when the gpu will dirty the data
    604 		 * anyway again before the next pread happens. */
    605 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
    606 							obj->cache_level);
    607 		ret = i915_gem_object_wait_rendering(obj, true);
    608 		if (ret)
    609 			return ret;
    610 	}
    611 
    612 	ret = i915_gem_object_get_pages(obj);
    613 	if (ret)
    614 		return ret;
    615 
    616 	i915_gem_object_pin_pages(obj);
    617 
    618 	return ret;
    619 }
    620 
    621 /* Per-page copy function for the shmem pread fastpath.
    622  * Flushes invalid cachelines before reading the target if
    623  * needs_clflush is set. */
    624 static int
    625 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
    626 		 char __user *user_data,
    627 		 bool page_do_bit17_swizzling, bool needs_clflush)
    628 {
    629 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    630 	return -EFAULT;
    631 #else
    632 	char *vaddr;
    633 	int ret;
    634 
    635 	if (unlikely(page_do_bit17_swizzling))
    636 		return -EINVAL;
    637 
    638 	vaddr = kmap_atomic(page);
    639 	if (needs_clflush)
    640 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    641 				       page_length);
    642 	ret = __copy_to_user_inatomic(user_data,
    643 				      vaddr + shmem_page_offset,
    644 				      page_length);
    645 	kunmap_atomic(vaddr);
    646 
    647 	return ret ? -EFAULT : 0;
    648 #endif
    649 }
    650 
    651 static void
    652 shmem_clflush_swizzled_range(char *addr, unsigned long length,
    653 			     bool swizzled)
    654 {
    655 	if (unlikely(swizzled)) {
    656 		unsigned long start = (unsigned long) addr;
    657 		unsigned long end = (unsigned long) addr + length;
    658 
    659 		/* For swizzling simply ensure that we always flush both
    660 		 * channels. Lame, but simple and it works. Swizzled
    661 		 * pwrite/pread is far from a hotpath - current userspace
    662 		 * doesn't use it at all. */
    663 		start = round_down(start, 128);
    664 		end = round_up(end, 128);
    665 
    666 		drm_clflush_virt_range((void *)start, end - start);
    667 	} else {
    668 		drm_clflush_virt_range(addr, length);
    669 	}
    670 
    671 }
    672 
    673 /* Only difference to the fast-path function is that this can handle bit17
    674  * and uses non-atomic copy and kmap functions. */
    675 static int
    676 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
    677 		 char __user *user_data,
    678 		 bool page_do_bit17_swizzling, bool needs_clflush)
    679 {
    680 	char *vaddr;
    681 	int ret;
    682 
    683 	vaddr = kmap(page);
    684 	if (needs_clflush)
    685 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    686 					     page_length,
    687 					     page_do_bit17_swizzling);
    688 
    689 	if (page_do_bit17_swizzling)
    690 		ret = __copy_to_user_swizzled(user_data,
    691 					      vaddr, shmem_page_offset,
    692 					      page_length);
    693 	else
    694 		ret = __copy_to_user(user_data,
    695 				     vaddr + shmem_page_offset,
    696 				     page_length);
    697 	kunmap(page);
    698 
    699 	return ret ? - EFAULT : 0;
    700 }
    701 
    702 static int
    703 i915_gem_shmem_pread(struct drm_device *dev,
    704 		     struct drm_i915_gem_object *obj,
    705 		     struct drm_i915_gem_pread *args,
    706 		     struct drm_file *file)
    707 {
    708 	char __user *user_data;
    709 	ssize_t remain;
    710 	loff_t offset;
    711 	int shmem_page_offset, page_length, ret = 0;
    712 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    713 #ifndef __NetBSD__		/* XXX */
    714 	int prefaulted = 0;
    715 #endif
    716 	int needs_clflush = 0;
    717 #ifndef __NetBSD__
    718 	struct sg_page_iter sg_iter;
    719 #endif
    720 
    721 	user_data = to_user_ptr(args->data_ptr);
    722 	remain = args->size;
    723 
    724 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    725 
    726 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
    727 	if (ret)
    728 		return ret;
    729 
    730 	offset = args->offset;
    731 
    732 #ifdef __NetBSD__
    733 	while (0 < remain)
    734 #else
    735 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
    736 			 offset >> PAGE_SHIFT)
    737 #endif
    738 	{
    739 #ifdef __NetBSD__
    740 		struct page *const page = i915_gem_object_get_page(obj,
    741 		    atop(offset));
    742 #else
    743 		struct page *page = sg_page_iter_page(&sg_iter);
    744 
    745 		if (remain <= 0)
    746 			break;
    747 #endif
    748 
    749 		/* Operation in this page
    750 		 *
    751 		 * shmem_page_offset = offset within page in shmem file
    752 		 * page_length = bytes to copy for this page
    753 		 */
    754 		shmem_page_offset = offset_in_page(offset);
    755 		page_length = remain;
    756 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    757 			page_length = PAGE_SIZE - shmem_page_offset;
    758 
    759 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    760 			(page_to_phys(page) & (1 << 17)) != 0;
    761 
    762 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    763 				       user_data, page_do_bit17_swizzling,
    764 				       needs_clflush);
    765 		if (ret == 0)
    766 			goto next_page;
    767 
    768 		mutex_unlock(&dev->struct_mutex);
    769 #ifndef __NetBSD__
    770 		if (likely(!i915.prefault_disable) && !prefaulted) {
    771 			ret = fault_in_multipages_writeable(user_data, remain);
    772 			/* Userspace is tricking us, but we've already clobbered
    773 			 * its pages with the prefault and promised to write the
    774 			 * data up to the first fault. Hence ignore any errors
    775 			 * and just continue. */
    776 			(void)ret;
    777 			prefaulted = 1;
    778 		}
    779 #endif
    780 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    781 				       user_data, page_do_bit17_swizzling,
    782 				       needs_clflush);
    783 
    784 		mutex_lock(&dev->struct_mutex);
    785 
    786 		if (ret)
    787 			goto out;
    788 
    789 next_page:
    790 		remain -= page_length;
    791 		user_data += page_length;
    792 		offset += page_length;
    793 	}
    794 
    795 out:
    796 	i915_gem_object_unpin_pages(obj);
    797 
    798 	return ret;
    799 }
    800 
    801 /**
    802  * Reads data from the object referenced by handle.
    803  *
    804  * On error, the contents of *data are undefined.
    805  */
    806 int
    807 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    808 		     struct drm_file *file)
    809 {
    810 	struct drm_i915_gem_pread *args = data;
    811 	struct drm_gem_object *gobj;
    812 	struct drm_i915_gem_object *obj;
    813 	int ret = 0;
    814 
    815 	if (args->size == 0)
    816 		return 0;
    817 
    818 	if (!access_ok(VERIFY_WRITE,
    819 		       to_user_ptr(args->data_ptr),
    820 		       args->size))
    821 		return -EFAULT;
    822 
    823 	ret = i915_mutex_lock_interruptible(dev);
    824 	if (ret)
    825 		return ret;
    826 
    827 	gobj = drm_gem_object_lookup(dev, file, args->handle);
    828 	if (gobj == NULL) {
    829 		ret = -ENOENT;
    830 		goto unlock;
    831 	}
    832 	obj = to_intel_bo(gobj);
    833 
    834 	/* Bounds check source.  */
    835 	if (args->offset > obj->base.size ||
    836 	    args->size > obj->base.size - args->offset) {
    837 		ret = -EINVAL;
    838 		goto out;
    839 	}
    840 
    841 	/* prime objects have no backing filp to GEM pread/pwrite
    842 	 * pages from.
    843 	 */
    844 #ifdef __NetBSD__
    845 	/* Also stolen objects.  */
    846 	if (obj->base.gemo_shm_uao == NULL) {
    847 		ret = -EINVAL;
    848 		goto out;
    849 	}
    850 #else
    851 	if (!obj->base.filp) {
    852 		ret = -EINVAL;
    853 		goto out;
    854 	}
    855 #endif
    856 
    857 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    858 
    859 	ret = i915_gem_shmem_pread(dev, obj, args, file);
    860 
    861 out:
    862 	drm_gem_object_unreference(&obj->base);
    863 unlock:
    864 	mutex_unlock(&dev->struct_mutex);
    865 	return ret;
    866 }
    867 
    868 /* This is the fast write path which cannot handle
    869  * page faults in the source data
    870  */
    871 
    872 static inline int
    873 fast_user_write(struct io_mapping *mapping,
    874 		loff_t page_base, int page_offset,
    875 		char __user *user_data,
    876 		int length)
    877 {
    878 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    879 	return -EFAULT;
    880 #else
    881 	void __iomem *vaddr_atomic;
    882 	void *vaddr;
    883 	unsigned long unwritten;
    884 
    885 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
    886 	/* We can use the cpu mem copy function because this is X86. */
    887 	vaddr = (void __force*)vaddr_atomic + page_offset;
    888 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
    889 						      user_data, length);
    890 	io_mapping_unmap_atomic(vaddr_atomic);
    891 	return unwritten;
    892 #endif
    893 }
    894 
    895 /**
    896  * This is the fast pwrite path, where we copy the data directly from the
    897  * user into the GTT, uncached.
    898  */
    899 static int
    900 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
    901 			 struct drm_i915_gem_object *obj,
    902 			 struct drm_i915_gem_pwrite *args,
    903 			 struct drm_file *file)
    904 {
    905 	struct drm_i915_private *dev_priv = dev->dev_private;
    906 	ssize_t remain;
    907 	loff_t offset, page_base;
    908 	char __user *user_data;
    909 	int page_offset, page_length, ret;
    910 
    911 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
    912 	if (ret)
    913 		goto out;
    914 
    915 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    916 	if (ret)
    917 		goto out_unpin;
    918 
    919 	ret = i915_gem_object_put_fence(obj);
    920 	if (ret)
    921 		goto out_unpin;
    922 
    923 	user_data = to_user_ptr(args->data_ptr);
    924 	remain = args->size;
    925 
    926 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
    927 
    928 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
    929 
    930 	while (remain > 0) {
    931 		/* Operation in this page
    932 		 *
    933 		 * page_base = page offset within aperture
    934 		 * page_offset = offset within page
    935 		 * page_length = bytes to copy for this page
    936 		 */
    937 		page_base = offset & PAGE_MASK;
    938 		page_offset = offset_in_page(offset);
    939 		page_length = remain;
    940 		if ((page_offset + remain) > PAGE_SIZE)
    941 			page_length = PAGE_SIZE - page_offset;
    942 
    943 		/* If we get a fault while copying data, then (presumably) our
    944 		 * source page isn't available.  Return the error and we'll
    945 		 * retry in the slow path.
    946 		 */
    947 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
    948 				    page_offset, user_data, page_length)) {
    949 			ret = -EFAULT;
    950 			goto out_flush;
    951 		}
    952 
    953 		remain -= page_length;
    954 		user_data += page_length;
    955 		offset += page_length;
    956 	}
    957 
    958 out_flush:
    959 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
    960 out_unpin:
    961 	i915_gem_object_ggtt_unpin(obj);
    962 out:
    963 	return ret;
    964 }
    965 
    966 /* Per-page copy function for the shmem pwrite fastpath.
    967  * Flushes invalid cachelines before writing to the target if
    968  * needs_clflush_before is set and flushes out any written cachelines after
    969  * writing if needs_clflush is set. */
    970 static int
    971 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
    972 		  char __user *user_data,
    973 		  bool page_do_bit17_swizzling,
    974 		  bool needs_clflush_before,
    975 		  bool needs_clflush_after)
    976 {
    977 #ifdef __NetBSD__
    978 	return -EFAULT;
    979 #else
    980 	char *vaddr;
    981 	int ret;
    982 
    983 	if (unlikely(page_do_bit17_swizzling))
    984 		return -EINVAL;
    985 
    986 	vaddr = kmap_atomic(page);
    987 	if (needs_clflush_before)
    988 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    989 				       page_length);
    990 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
    991 					user_data, page_length);
    992 	if (needs_clflush_after)
    993 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    994 				       page_length);
    995 	kunmap_atomic(vaddr);
    996 
    997 	return ret ? -EFAULT : 0;
    998 #endif
    999 }
   1000 
   1001 /* Only difference to the fast-path function is that this can handle bit17
   1002  * and uses non-atomic copy and kmap functions. */
   1003 static int
   1004 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
   1005 		  char __user *user_data,
   1006 		  bool page_do_bit17_swizzling,
   1007 		  bool needs_clflush_before,
   1008 		  bool needs_clflush_after)
   1009 {
   1010 	char *vaddr;
   1011 	int ret;
   1012 
   1013 	vaddr = kmap(page);
   1014 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
   1015 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
   1016 					     page_length,
   1017 					     page_do_bit17_swizzling);
   1018 	if (page_do_bit17_swizzling)
   1019 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
   1020 						user_data,
   1021 						page_length);
   1022 	else
   1023 		ret = __copy_from_user(vaddr + shmem_page_offset,
   1024 				       user_data,
   1025 				       page_length);
   1026 	if (needs_clflush_after)
   1027 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
   1028 					     page_length,
   1029 					     page_do_bit17_swizzling);
   1030 	kunmap(page);
   1031 
   1032 	return ret ? -EFAULT : 0;
   1033 }
   1034 
   1035 static int
   1036 i915_gem_shmem_pwrite(struct drm_device *dev,
   1037 		      struct drm_i915_gem_object *obj,
   1038 		      struct drm_i915_gem_pwrite *args,
   1039 		      struct drm_file *file)
   1040 {
   1041 	ssize_t remain;
   1042 	loff_t offset;
   1043 	char __user *user_data;
   1044 	int shmem_page_offset, page_length, ret = 0;
   1045 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
   1046 	int hit_slowpath = 0;
   1047 	int needs_clflush_after = 0;
   1048 	int needs_clflush_before = 0;
   1049 #ifndef __NetBSD__
   1050 	struct sg_page_iter sg_iter;
   1051 	int flush_mask = boot_cpu_data.x86_clflush_size - 1;
   1052 #else
   1053 	int flush_mask = cpu_info_primary.ci_cflush_lsize - 1;
   1054 #endif
   1055 
   1056 	user_data = to_user_ptr(args->data_ptr);
   1057 	remain = args->size;
   1058 
   1059 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
   1060 
   1061 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1062 		/* If we're not in the cpu write domain, set ourself into the gtt
   1063 		 * write domain and manually flush cachelines (if required). This
   1064 		 * optimizes for the case when the gpu will use the data
   1065 		 * right away and we therefore have to clflush anyway. */
   1066 		needs_clflush_after = cpu_write_needs_clflush(obj);
   1067 		ret = i915_gem_object_wait_rendering(obj, false);
   1068 		if (ret)
   1069 			return ret;
   1070 	}
   1071 	/* Same trick applies to invalidate partially written cachelines read
   1072 	 * before writing. */
   1073 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
   1074 		needs_clflush_before =
   1075 			!cpu_cache_is_coherent(dev, obj->cache_level);
   1076 
   1077 	ret = i915_gem_object_get_pages(obj);
   1078 	if (ret)
   1079 		return ret;
   1080 
   1081 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
   1082 
   1083 	i915_gem_object_pin_pages(obj);
   1084 
   1085 	offset = args->offset;
   1086 	obj->dirty = 1;
   1087 
   1088 #ifdef __NetBSD__
   1089 	while (0 < remain)
   1090 #else
   1091 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
   1092 			 offset >> PAGE_SHIFT)
   1093 #endif
   1094 	{
   1095 #ifdef __NetBSD__
   1096 		struct page *const page = i915_gem_object_get_page(obj,
   1097 		    atop(offset));
   1098 #else
   1099 		struct page *page = sg_page_iter_page(&sg_iter);
   1100 #endif
   1101 
   1102 		if (remain <= 0)
   1103 			break;
   1104 
   1105 		/* Operation in this page
   1106 		 *
   1107 		 * shmem_page_offset = offset within page in shmem file
   1108 		 * page_length = bytes to copy for this page
   1109 		 */
   1110 		shmem_page_offset = offset_in_page(offset);
   1111 
   1112 		page_length = remain;
   1113 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
   1114 			page_length = PAGE_SIZE - shmem_page_offset;
   1115 
   1116 		/* If we don't overwrite a cacheline completely we need to be
   1117 		 * careful to have up-to-date data by first clflushing. Don't
   1118 		 * overcomplicate things and flush the entire patch. */
   1119 		const int partial_cacheline_write = needs_clflush_before &&
   1120 			((shmem_page_offset | page_length) & flush_mask);
   1121 
   1122 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
   1123 			(page_to_phys(page) & (1 << 17)) != 0;
   1124 
   1125 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
   1126 					user_data, page_do_bit17_swizzling,
   1127 					partial_cacheline_write,
   1128 					needs_clflush_after);
   1129 		if (ret == 0)
   1130 			goto next_page;
   1131 
   1132 		hit_slowpath = 1;
   1133 		mutex_unlock(&dev->struct_mutex);
   1134 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
   1135 					user_data, page_do_bit17_swizzling,
   1136 					partial_cacheline_write,
   1137 					needs_clflush_after);
   1138 
   1139 		mutex_lock(&dev->struct_mutex);
   1140 
   1141 		if (ret)
   1142 			goto out;
   1143 
   1144 next_page:
   1145 		remain -= page_length;
   1146 		user_data += page_length;
   1147 		offset += page_length;
   1148 	}
   1149 
   1150 out:
   1151 	i915_gem_object_unpin_pages(obj);
   1152 
   1153 	if (hit_slowpath) {
   1154 		/*
   1155 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
   1156 		 * cachelines in-line while writing and the object moved
   1157 		 * out of the cpu write domain while we've dropped the lock.
   1158 		 */
   1159 		if (!needs_clflush_after &&
   1160 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1161 			if (i915_gem_clflush_object(obj, obj->pin_display))
   1162 				needs_clflush_after = true;
   1163 		}
   1164 	}
   1165 
   1166 	if (needs_clflush_after)
   1167 		i915_gem_chipset_flush(dev);
   1168 	else
   1169 		obj->cache_dirty = true;
   1170 
   1171 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
   1172 	return ret;
   1173 }
   1174 
   1175 /**
   1176  * Writes data to the object referenced by handle.
   1177  *
   1178  * On error, the contents of the buffer that were to be modified are undefined.
   1179  */
   1180 int
   1181 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
   1182 		      struct drm_file *file)
   1183 {
   1184 	struct drm_i915_private *dev_priv = dev->dev_private;
   1185 	struct drm_i915_gem_pwrite *args = data;
   1186 	struct drm_gem_object *gobj;
   1187 	struct drm_i915_gem_object *obj;
   1188 	int ret;
   1189 
   1190 	if (args->size == 0)
   1191 		return 0;
   1192 
   1193 	if (!access_ok(VERIFY_READ,
   1194 		       to_user_ptr(args->data_ptr),
   1195 		       args->size))
   1196 		return -EFAULT;
   1197 
   1198 #ifndef __NetBSD__		/* XXX prefault */
   1199 	if (likely(!i915.prefault_disable)) {
   1200 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
   1201 						   args->size);
   1202 		if (ret)
   1203 			return -EFAULT;
   1204 	}
   1205 #endif
   1206 
   1207 	intel_runtime_pm_get(dev_priv);
   1208 
   1209 	ret = i915_mutex_lock_interruptible(dev);
   1210 	if (ret)
   1211 		goto put_rpm;
   1212 
   1213 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1214 	if (gobj == NULL) {
   1215 		ret = -ENOENT;
   1216 		goto unlock;
   1217 	}
   1218 	obj = to_intel_bo(gobj);
   1219 
   1220 	/* Bounds check destination. */
   1221 	if (args->offset > obj->base.size ||
   1222 	    args->size > obj->base.size - args->offset) {
   1223 		ret = -EINVAL;
   1224 		goto out;
   1225 	}
   1226 
   1227 	/* prime objects have no backing filp to GEM pread/pwrite
   1228 	 * pages from.
   1229 	 */
   1230 #ifdef __NetBSD__
   1231 	/* Also stolen objects.  */
   1232 	if (obj->base.gemo_shm_uao == NULL) {
   1233 		ret = -EINVAL;
   1234 		goto out;
   1235 	}
   1236 #else
   1237 	if (!obj->base.filp) {
   1238 		ret = -EINVAL;
   1239 		goto out;
   1240 	}
   1241 #endif
   1242 
   1243 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
   1244 
   1245 	ret = -EFAULT;
   1246 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
   1247 	 * it would end up going through the fenced access, and we'll get
   1248 	 * different detiling behavior between reading and writing.
   1249 	 * pread/pwrite currently are reading and writing from the CPU
   1250 	 * perspective, requiring manual detiling by the client.
   1251 	 */
   1252 	if (obj->tiling_mode == I915_TILING_NONE &&
   1253 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
   1254 	    cpu_write_needs_clflush(obj)) {
   1255 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
   1256 		/* Note that the gtt paths might fail with non-page-backed user
   1257 		 * pointers (e.g. gtt mappings when moving data between
   1258 		 * textures). Fallback to the shmem path in that case. */
   1259 	}
   1260 
   1261 	if (ret == -EFAULT || ret == -ENOSPC) {
   1262 		if (obj->phys_handle)
   1263 			ret = i915_gem_phys_pwrite(obj, args, file);
   1264 		else
   1265 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
   1266 	}
   1267 
   1268 out:
   1269 	drm_gem_object_unreference(&obj->base);
   1270 unlock:
   1271 	mutex_unlock(&dev->struct_mutex);
   1272 put_rpm:
   1273 	intel_runtime_pm_put(dev_priv);
   1274 
   1275 	return ret;
   1276 }
   1277 
   1278 int
   1279 i915_gem_check_wedge(struct i915_gpu_error *error,
   1280 		     bool interruptible)
   1281 {
   1282 	if (i915_reset_in_progress(error)) {
   1283 		/* Non-interruptible callers can't handle -EAGAIN, hence return
   1284 		 * -EIO unconditionally for these. */
   1285 		if (!interruptible)
   1286 			return -EIO;
   1287 
   1288 		/* Recovery complete, but the reset failed ... */
   1289 		if (i915_terminally_wedged(error))
   1290 			return -EIO;
   1291 
   1292 		/*
   1293 		 * Check if GPU Reset is in progress - we need intel_ring_begin
   1294 		 * to work properly to reinit the hw state while the gpu is
   1295 		 * still marked as reset-in-progress. Handle this with a flag.
   1296 		 */
   1297 		if (!error->reload_in_reset)
   1298 			return -EAGAIN;
   1299 	}
   1300 
   1301 	return 0;
   1302 }
   1303 
   1304 #ifndef __NetBSD__
   1305 static void fake_irq(unsigned long data)
   1306 {
   1307 	wake_up_process((struct task_struct *)data);
   1308 }
   1309 #endif
   1310 
   1311 static bool missed_irq(struct drm_i915_private *dev_priv,
   1312 		       struct intel_engine_cs *ring)
   1313 {
   1314 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
   1315 }
   1316 
   1317 static unsigned long local_clock_us(unsigned *cpu)
   1318 {
   1319 	unsigned long t;
   1320 
   1321 	/* Cheaply and approximately convert from nanoseconds to microseconds.
   1322 	 * The result and subsequent calculations are also defined in the same
   1323 	 * approximate microseconds units. The principal source of timing
   1324 	 * error here is from the simple truncation.
   1325 	 *
   1326 	 * Note that local_clock() is only defined wrt to the current CPU;
   1327 	 * the comparisons are no longer valid if we switch CPUs. Instead of
   1328 	 * blocking preemption for the entire busywait, we can detect the CPU
   1329 	 * switch and use that as indicator of system load and a reason to
   1330 	 * stop busywaiting, see busywait_stop().
   1331 	 */
   1332 	*cpu = get_cpu();
   1333 	t = local_clock() >> 10;
   1334 	put_cpu();
   1335 
   1336 	return t;
   1337 }
   1338 
   1339 static bool busywait_stop(unsigned long timeout, unsigned cpu)
   1340 {
   1341 	unsigned this_cpu;
   1342 
   1343 	if (time_after(local_clock_us(&this_cpu), timeout))
   1344 		return true;
   1345 
   1346 	return this_cpu != cpu;
   1347 }
   1348 
   1349 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
   1350 {
   1351 #ifndef __NetBSD__
   1352 	unsigned long timeout;
   1353 	unsigned cpu;
   1354 #endif
   1355 
   1356 	/* When waiting for high frequency requests, e.g. during synchronous
   1357 	 * rendering split between the CPU and GPU, the finite amount of time
   1358 	 * required to set up the irq and wait upon it limits the response
   1359 	 * rate. By busywaiting on the request completion for a short while we
   1360 	 * can service the high frequency waits as quick as possible. However,
   1361 	 * if it is a slow request, we want to sleep as quickly as possible.
   1362 	 * The tradeoff between waiting and sleeping is roughly the time it
   1363 	 * takes to sleep on a request, on the order of a microsecond.
   1364 	 */
   1365 
   1366 	if (req->ring->irq_refcount)
   1367 		return -EBUSY;
   1368 
   1369 	/* Only spin if we know the GPU is processing this request */
   1370 	if (!i915_gem_request_started(req, true))
   1371 		return -EAGAIN;
   1372 
   1373 #ifndef __NetBSD__		/* XXX No local clock in usec.  */
   1374 	timeout = local_clock_us(&cpu) + 5;
   1375 	while (!need_resched()) {
   1376 		if (i915_gem_request_completed(req, true))
   1377 			return 0;
   1378 
   1379 		if (signal_pending_state(state, current))
   1380 			break;
   1381 
   1382 		if (busywait_stop(timeout, cpu))
   1383 			break;
   1384 
   1385 		cpu_relax_lowlatency();
   1386 	}
   1387 #endif
   1388 
   1389 	if (i915_gem_request_completed(req, false))
   1390 		return 0;
   1391 
   1392 	return -EAGAIN;
   1393 }
   1394 
   1395 /**
   1396  * __i915_wait_request - wait until execution of request has finished
   1397  * @req: duh!
   1398  * @reset_counter: reset sequence associated with the given request
   1399  * @interruptible: do an interruptible wait (normally yes)
   1400  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
   1401  *
   1402  * Note: It is of utmost importance that the passed in seqno and reset_counter
   1403  * values have been read by the caller in an smp safe manner. Where read-side
   1404  * locks are involved, it is sufficient to read the reset_counter before
   1405  * unlocking the lock that protects the seqno. For lockless tricks, the
   1406  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
   1407  * inserted.
   1408  *
   1409  * Returns 0 if the request was found within the alloted time. Else returns the
   1410  * errno with remaining time filled in timeout argument.
   1411  */
   1412 int __i915_wait_request(struct drm_i915_gem_request *req,
   1413 			unsigned reset_counter,
   1414 			bool interruptible,
   1415 			s64 *timeout,
   1416 			struct intel_rps_client *rps)
   1417 {
   1418 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
   1419 	struct drm_device *dev = ring->dev;
   1420 	struct drm_i915_private *dev_priv = dev->dev_private;
   1421 	const bool irq_test_in_progress =
   1422 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
   1423 	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
   1424 #ifndef __NetBSD__
   1425 	DEFINE_WAIT(wait);
   1426 #endif
   1427 	unsigned long timeout_expire;
   1428 	s64 before, now;
   1429 	int ret;
   1430 
   1431 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
   1432 
   1433 	if (list_empty(&req->list))
   1434 		return 0;
   1435 
   1436 	if (i915_gem_request_completed(req, true))
   1437 		return 0;
   1438 
   1439 	timeout_expire = 0;
   1440 	if (timeout) {
   1441 		if (WARN_ON(*timeout < 0))
   1442 			return -EINVAL;
   1443 
   1444 		if (*timeout == 0)
   1445 			return -ETIME;
   1446 
   1447 		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
   1448 	}
   1449 
   1450 	if (INTEL_INFO(dev_priv)->gen >= 6)
   1451 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
   1452 
   1453 	/* Record current time in case interrupted by signal, or wedged */
   1454 	trace_i915_gem_request_wait_begin(req);
   1455 	before = ktime_get_raw_ns();
   1456 
   1457 	/* Optimistic spin for the next jiffie before touching IRQs */
   1458 	ret = __i915_spin_request(req, state);
   1459 	if (ret == 0)
   1460 		goto out;
   1461 
   1462 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
   1463 		ret = -ENODEV;
   1464 		goto out;
   1465 	}
   1466 
   1467 #ifdef __NetBSD__
   1468 #  define	EXIT_COND						      \
   1469 	((wedged = (reset_counter !=					      \
   1470 		atomic_read(&dev_priv->gpu_error.reset_counter))) ||	      \
   1471 	    i915_request_completed(req, false))
   1472 	if (timeout) {
   1473 		int ticks = nsecs_to_jiffies_timeout(*timeout);
   1474 		if (interruptible) {
   1475 			DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
   1476 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1477 		} else {
   1478 			DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1479 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1480 		}
   1481 		if (ret < 0)	/* Failure: return negative error as is.  */
   1482 			;
   1483 		else if (ret == 0) /* Timed out: return -ETIME.  */
   1484 			ret = -ETIME;
   1485 		else		/* Succeeded (ret > 0): return 0.  */
   1486 			ret = 0;
   1487 	} else {
   1488 		if (interruptible) {
   1489 			DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
   1490 			    &dev_priv->irq_lock, EXIT_COND);
   1491 		} else {
   1492 			DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1493 			    &dev_priv->irq_lock, EXIT_COND);
   1494 		}
   1495 		/* ret is negative on failure or zero on success.  */
   1496 	}
   1497 #else
   1498 	for (;;) {
   1499 		struct timer_list timer;
   1500 
   1501 		prepare_to_wait(&ring->irq_queue, &wait, state);
   1502 
   1503 		/* We need to check whether any gpu reset happened in between
   1504 		 * the caller grabbing the seqno and now ... */
   1505 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
   1506 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
   1507 			 * is truely gone. */
   1508 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1509 			if (ret == 0)
   1510 				ret = -EAGAIN;
   1511 			break;
   1512 		}
   1513 
   1514 		if (i915_gem_request_completed(req, false)) {
   1515 			ret = 0;
   1516 			break;
   1517 		}
   1518 
   1519 		if (signal_pending_state(state, current)) {
   1520 			ret = -ERESTARTSYS;
   1521 			break;
   1522 		}
   1523 
   1524 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
   1525 			ret = -ETIME;
   1526 			break;
   1527 		}
   1528 
   1529 		timer.function = NULL;
   1530 		if (timeout || missed_irq(dev_priv, ring)) {
   1531 			unsigned long expire;
   1532 
   1533 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
   1534 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
   1535 			mod_timer(&timer, expire);
   1536 		}
   1537 
   1538 		io_schedule();
   1539 
   1540 		if (timer.function) {
   1541 			del_singleshot_timer_sync(&timer);
   1542 			destroy_timer_on_stack(&timer);
   1543 		}
   1544 	}
   1545 #endif
   1546 	if (!irq_test_in_progress)
   1547 		ring->irq_put(ring);
   1548 
   1549 #ifndef __NetBSD__
   1550 	finish_wait(&ring->irq_queue, &wait);
   1551 #endif
   1552 
   1553 out:
   1554 	now = ktime_get_raw_ns();
   1555 	trace_i915_gem_request_wait_end(req);
   1556 
   1557 	if (timeout) {
   1558 		s64 tres = *timeout - (now - before);
   1559 
   1560 		*timeout = tres < 0 ? 0 : tres;
   1561 
   1562 		/*
   1563 		 * Apparently ktime isn't accurate enough and occasionally has a
   1564 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
   1565 		 * things up to make the test happy. We allow up to 1 jiffy.
   1566 		 *
   1567 		 * This is a regrssion from the timespec->ktime conversion.
   1568 		 */
   1569 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
   1570 			*timeout = 0;
   1571 	}
   1572 
   1573 	return ret;
   1574 }
   1575 
   1576 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
   1577 				   struct drm_file *file)
   1578 {
   1579 	struct drm_i915_private *dev_private;
   1580 	struct drm_i915_file_private *file_priv;
   1581 
   1582 	WARN_ON(!req || !file || req->file_priv);
   1583 
   1584 	if (!req || !file)
   1585 		return -EINVAL;
   1586 
   1587 	if (req->file_priv)
   1588 		return -EINVAL;
   1589 
   1590 	dev_private = req->ring->dev->dev_private;
   1591 	file_priv = file->driver_priv;
   1592 
   1593 	spin_lock(&file_priv->mm.lock);
   1594 	req->file_priv = file_priv;
   1595 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
   1596 	spin_unlock(&file_priv->mm.lock);
   1597 
   1598 	req->pid = get_pid(task_pid(current));
   1599 
   1600 	return 0;
   1601 }
   1602 
   1603 static inline void
   1604 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
   1605 {
   1606 	struct drm_i915_file_private *file_priv = request->file_priv;
   1607 
   1608 	if (!file_priv)
   1609 		return;
   1610 
   1611 	spin_lock(&file_priv->mm.lock);
   1612 	list_del(&request->client_list);
   1613 	request->file_priv = NULL;
   1614 	spin_unlock(&file_priv->mm.lock);
   1615 
   1616 	put_pid(request->pid);
   1617 	request->pid = NULL;
   1618 }
   1619 
   1620 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
   1621 {
   1622 	trace_i915_gem_request_retire(request);
   1623 
   1624 	/* We know the GPU must have read the request to have
   1625 	 * sent us the seqno + interrupt, so use the position
   1626 	 * of tail of the request to update the last known position
   1627 	 * of the GPU head.
   1628 	 *
   1629 	 * Note this requires that we are always called in request
   1630 	 * completion order.
   1631 	 */
   1632 	request->ringbuf->last_retired_head = request->postfix;
   1633 
   1634 	list_del_init(&request->list);
   1635 	i915_gem_request_remove_from_client(request);
   1636 
   1637 	i915_gem_request_unreference(request);
   1638 }
   1639 
   1640 static void
   1641 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
   1642 {
   1643 	struct intel_engine_cs *engine = req->ring;
   1644 	struct drm_i915_gem_request *tmp;
   1645 
   1646 	lockdep_assert_held(&engine->dev->struct_mutex);
   1647 
   1648 	if (list_empty(&req->list))
   1649 		return;
   1650 
   1651 	do {
   1652 		tmp = list_first_entry(&engine->request_list,
   1653 				       typeof(*tmp), list);
   1654 
   1655 		i915_gem_request_retire(tmp);
   1656 	} while (tmp != req);
   1657 
   1658 	WARN_ON(i915_verify_lists(engine->dev));
   1659 }
   1660 
   1661 /**
   1662  * Waits for a request to be signaled, and cleans up the
   1663  * request and object lists appropriately for that event.
   1664  */
   1665 int
   1666 i915_wait_request(struct drm_i915_gem_request *req)
   1667 {
   1668 	struct drm_device *dev;
   1669 	struct drm_i915_private *dev_priv;
   1670 	bool interruptible;
   1671 	int ret;
   1672 
   1673 	BUG_ON(req == NULL);
   1674 
   1675 	dev = req->ring->dev;
   1676 	dev_priv = dev->dev_private;
   1677 	interruptible = dev_priv->mm.interruptible;
   1678 
   1679 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1680 
   1681 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1682 	if (ret)
   1683 		return ret;
   1684 
   1685 	ret = __i915_wait_request(req,
   1686 				  atomic_read(&dev_priv->gpu_error.reset_counter),
   1687 				  interruptible, NULL, NULL);
   1688 	if (ret)
   1689 		return ret;
   1690 
   1691 	__i915_gem_request_retire__upto(req);
   1692 	return 0;
   1693 }
   1694 
   1695 /**
   1696  * Ensures that all rendering to the object has completed and the object is
   1697  * safe to unbind from the GTT or access from the CPU.
   1698  */
   1699 int
   1700 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
   1701 			       bool readonly)
   1702 {
   1703 	int ret, i;
   1704 
   1705 	if (!obj->active)
   1706 		return 0;
   1707 
   1708 	if (readonly) {
   1709 		if (obj->last_write_req != NULL) {
   1710 			ret = i915_wait_request(obj->last_write_req);
   1711 			if (ret)
   1712 				return ret;
   1713 
   1714 			i = obj->last_write_req->ring->id;
   1715 			if (obj->last_read_req[i] == obj->last_write_req)
   1716 				i915_gem_object_retire__read(obj, i);
   1717 			else
   1718 				i915_gem_object_retire__write(obj);
   1719 		}
   1720 	} else {
   1721 		for (i = 0; i < I915_NUM_RINGS; i++) {
   1722 			if (obj->last_read_req[i] == NULL)
   1723 				continue;
   1724 
   1725 			ret = i915_wait_request(obj->last_read_req[i]);
   1726 			if (ret)
   1727 				return ret;
   1728 
   1729 			i915_gem_object_retire__read(obj, i);
   1730 		}
   1731 		RQ_BUG_ON(obj->active);
   1732 	}
   1733 
   1734 	return 0;
   1735 }
   1736 
   1737 static void
   1738 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
   1739 			       struct drm_i915_gem_request *req)
   1740 {
   1741 	int ring = req->ring->id;
   1742 
   1743 	if (obj->last_read_req[ring] == req)
   1744 		i915_gem_object_retire__read(obj, ring);
   1745 	else if (obj->last_write_req == req)
   1746 		i915_gem_object_retire__write(obj);
   1747 
   1748 	__i915_gem_request_retire__upto(req);
   1749 }
   1750 
   1751 /* A nonblocking variant of the above wait. This is a highly dangerous routine
   1752  * as the object state may change during this call.
   1753  */
   1754 static __must_check int
   1755 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
   1756 					    struct intel_rps_client *rps,
   1757 					    bool readonly)
   1758 {
   1759 	struct drm_device *dev = obj->base.dev;
   1760 	struct drm_i915_private *dev_priv = dev->dev_private;
   1761 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
   1762 	unsigned reset_counter;
   1763 	int ret, i, n = 0;
   1764 
   1765 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1766 	BUG_ON(!dev_priv->mm.interruptible);
   1767 
   1768 	if (!obj->active)
   1769 		return 0;
   1770 
   1771 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
   1772 	if (ret)
   1773 		return ret;
   1774 
   1775 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   1776 
   1777 	if (readonly) {
   1778 		struct drm_i915_gem_request *req;
   1779 
   1780 		req = obj->last_write_req;
   1781 		if (req == NULL)
   1782 			return 0;
   1783 
   1784 		requests[n++] = i915_gem_request_reference(req);
   1785 	} else {
   1786 		for (i = 0; i < I915_NUM_RINGS; i++) {
   1787 			struct drm_i915_gem_request *req;
   1788 
   1789 			req = obj->last_read_req[i];
   1790 			if (req == NULL)
   1791 				continue;
   1792 
   1793 			requests[n++] = i915_gem_request_reference(req);
   1794 		}
   1795 	}
   1796 
   1797 	mutex_unlock(&dev->struct_mutex);
   1798 	for (i = 0; ret == 0 && i < n; i++)
   1799 		ret = __i915_wait_request(requests[i], reset_counter, true,
   1800 					  NULL, rps);
   1801 	mutex_lock(&dev->struct_mutex);
   1802 
   1803 	for (i = 0; i < n; i++) {
   1804 		if (ret == 0)
   1805 			i915_gem_object_retire_request(obj, requests[i]);
   1806 		i915_gem_request_unreference(requests[i]);
   1807 	}
   1808 
   1809 	return ret;
   1810 }
   1811 
   1812 static struct intel_rps_client *to_rps_client(struct drm_file *file)
   1813 {
   1814 	struct drm_i915_file_private *fpriv = file->driver_priv;
   1815 	return &fpriv->rps;
   1816 }
   1817 
   1818 /**
   1819  * Called when user space prepares to use an object with the CPU, either
   1820  * through the mmap ioctl's mapping or a GTT mapping.
   1821  */
   1822 int
   1823 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
   1824 			  struct drm_file *file)
   1825 {
   1826 	struct drm_i915_gem_set_domain *args = data;
   1827 	struct drm_gem_object *gobj;
   1828 	struct drm_i915_gem_object *obj;
   1829 	uint32_t read_domains = args->read_domains;
   1830 	uint32_t write_domain = args->write_domain;
   1831 	int ret;
   1832 
   1833 	/* Only handle setting domains to types used by the CPU. */
   1834 	if (write_domain & I915_GEM_GPU_DOMAINS)
   1835 		return -EINVAL;
   1836 
   1837 	if (read_domains & I915_GEM_GPU_DOMAINS)
   1838 		return -EINVAL;
   1839 
   1840 	/* Having something in the write domain implies it's in the read
   1841 	 * domain, and only that read domain.  Enforce that in the request.
   1842 	 */
   1843 	if (write_domain != 0 && read_domains != write_domain)
   1844 		return -EINVAL;
   1845 
   1846 	ret = i915_mutex_lock_interruptible(dev);
   1847 	if (ret)
   1848 		return ret;
   1849 
   1850 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1851 	if (gobj == NULL) {
   1852 		ret = -ENOENT;
   1853 		goto unlock;
   1854 	}
   1855 	obj = to_intel_bo(gobj);
   1856 
   1857 	/* Try to flush the object off the GPU without holding the lock.
   1858 	 * We will repeat the flush holding the lock in the normal manner
   1859 	 * to catch cases where we are gazumped.
   1860 	 */
   1861 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
   1862 							  to_rps_client(file),
   1863 							  !write_domain);
   1864 	if (ret)
   1865 		goto unref;
   1866 
   1867 	if (read_domains & I915_GEM_DOMAIN_GTT)
   1868 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
   1869 	else
   1870 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
   1871 
   1872 	if (write_domain != 0)
   1873 		intel_fb_obj_invalidate(obj,
   1874 					write_domain == I915_GEM_DOMAIN_GTT ?
   1875 					ORIGIN_GTT : ORIGIN_CPU);
   1876 
   1877 unref:
   1878 	drm_gem_object_unreference(&obj->base);
   1879 unlock:
   1880 	mutex_unlock(&dev->struct_mutex);
   1881 	return ret;
   1882 }
   1883 
   1884 /**
   1885  * Called when user space has done writes to this buffer
   1886  */
   1887 int
   1888 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
   1889 			 struct drm_file *file)
   1890 {
   1891 	struct drm_i915_gem_sw_finish *args = data;
   1892 	struct drm_gem_object *gobj;
   1893 	struct drm_i915_gem_object *obj;
   1894 	int ret = 0;
   1895 
   1896 	ret = i915_mutex_lock_interruptible(dev);
   1897 	if (ret)
   1898 		return ret;
   1899 
   1900 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1901 	if (gobj == NULL) {
   1902 		ret = -ENOENT;
   1903 		goto unlock;
   1904 	}
   1905 	obj = to_intel_bo(gobj);
   1906 
   1907 	/* Pinned buffers may be scanout, so flush the cache */
   1908 	if (obj->pin_display)
   1909 		i915_gem_object_flush_cpu_write_domain(obj);
   1910 
   1911 	drm_gem_object_unreference(&obj->base);
   1912 unlock:
   1913 	mutex_unlock(&dev->struct_mutex);
   1914 	return ret;
   1915 }
   1916 
   1917 /**
   1918  * Maps the contents of an object, returning the address it is mapped
   1919  * into.
   1920  *
   1921  * While the mapping holds a reference on the contents of the object, it doesn't
   1922  * imply a ref on the object itself.
   1923  *
   1924  * IMPORTANT:
   1925  *
   1926  * DRM driver writers who look a this function as an example for how to do GEM
   1927  * mmap support, please don't implement mmap support like here. The modern way
   1928  * to implement DRM mmap support is with an mmap offset ioctl (like
   1929  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
   1930  * That way debug tooling like valgrind will understand what's going on, hiding
   1931  * the mmap call in a driver private ioctl will break that. The i915 driver only
   1932  * does cpu mmaps this way because we didn't know better.
   1933  */
   1934 int
   1935 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
   1936 		    struct drm_file *file)
   1937 {
   1938 	struct drm_i915_gem_mmap *args = data;
   1939 	struct drm_gem_object *obj;
   1940 	unsigned long addr;
   1941 #ifdef __NetBSD__
   1942 	int ret;
   1943 #endif
   1944 
   1945 	if (args->flags & ~(I915_MMAP_WC))
   1946 		return -EINVAL;
   1947 
   1948 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
   1949 		return -ENODEV;
   1950 
   1951 	obj = drm_gem_object_lookup(dev, file, args->handle);
   1952 	if (obj == NULL)
   1953 		return -ENOENT;
   1954 
   1955 	/* prime objects have no backing filp to GEM mmap
   1956 	 * pages from.
   1957 	 */
   1958 #ifdef __NetBSD__
   1959 	/* Also stolen objects (XXX can we get them here?)  */
   1960 	if (obj->gemo_shm_uao == NULL) {
   1961 		drm_gem_object_unreference_unlocked(obj);
   1962 		return -EINVAL;
   1963 	}
   1964 #else
   1965 	if (!obj->filp) {
   1966 		drm_gem_object_unreference_unlocked(obj);
   1967 		return -EINVAL;
   1968 	}
   1969 #endif
   1970 
   1971 #ifdef __NetBSD__
   1972 	addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
   1973 	    (vaddr_t)curproc->p_vmspace->vm_daddr, args->size,
   1974 	    curproc->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1975 	/* XXX errno NetBSD->Linux */
   1976 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
   1977 	    obj->gemo_shm_uao, args->offset, 0,
   1978 	    UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
   1979 		(VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
   1980 		0));
   1981 	if (ret) {
   1982 		drm_gem_object_unreference_unlocked(obj);
   1983 		return ret;
   1984 	}
   1985 	uao_reference(obj->gemo_shm_uao);
   1986 	drm_gem_object_unreference_unlocked(obj);
   1987 #else
   1988 	addr = vm_mmap(obj->filp, 0, args->size,
   1989 		       PROT_READ | PROT_WRITE, MAP_SHARED,
   1990 		       args->offset);
   1991 	if (args->flags & I915_MMAP_WC) {
   1992 		struct mm_struct *mm = current->mm;
   1993 		struct vm_area_struct *vma;
   1994 
   1995 		down_write(&mm->mmap_sem);
   1996 		vma = find_vma(mm, addr);
   1997 		if (vma)
   1998 			vma->vm_page_prot =
   1999 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
   2000 		else
   2001 			addr = -ENOMEM;
   2002 		up_write(&mm->mmap_sem);
   2003 	}
   2004 	drm_gem_object_unreference_unlocked(obj);
   2005 	if (IS_ERR((void *)addr))
   2006 		return addr;
   2007 #endif
   2008 
   2009 	args->addr_ptr = (uint64_t) addr;
   2010 
   2011 	return 0;
   2012 }
   2013 
   2014 #ifdef __NetBSD__		/* XXX gem gtt fault */
   2015 static int	i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
   2016 		    struct vm_page **, int, int, vm_prot_t, int, paddr_t);
   2017 
   2018 int
   2019 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   2020     int npages, int centeridx, vm_prot_t access_type, int flags)
   2021 {
   2022 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   2023 	struct drm_gem_object *gem_obj =
   2024 	    container_of(uobj, struct drm_gem_object, gemo_uvmobj);
   2025 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   2026 	struct drm_device *dev = obj->base.dev;
   2027 	struct drm_i915_private *dev_priv = dev->dev_private;
   2028 	voff_t byte_offset;
   2029 	pgoff_t page_offset;
   2030 	int ret = 0;
   2031 	bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
   2032 
   2033 	byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
   2034 	KASSERT(byte_offset <= obj->base.size);
   2035 	page_offset = (byte_offset >> PAGE_SHIFT);
   2036 
   2037 	intel_runtime_pm_get(dev_priv);
   2038 
   2039 	/* Thanks, uvm, but we don't need this lock.  */
   2040 	mutex_exit(uobj->vmobjlock);
   2041 
   2042 	ret = i915_mutex_lock_interruptible(dev);
   2043 	if (ret)
   2044 		goto out;
   2045 
   2046 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   2047 
   2048 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   2049 	if (ret)
   2050 		goto unlock;
   2051 
   2052 	if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
   2053 		ret = -EINVAL;
   2054 		goto unlock;
   2055 	}
   2056 
   2057 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
   2058 	if (ret)
   2059 		goto unlock;
   2060 
   2061 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   2062 	if (ret)
   2063 		goto unpin;
   2064 
   2065 	ret = i915_gem_object_get_fence(obj);
   2066 	if (ret)
   2067 		goto unpin;
   2068 
   2069 	obj->fault_mappable = true;
   2070 
   2071 	/* XXX errno NetBSD->Linux */
   2072 	ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
   2073 	    flags,
   2074 	    (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
   2075 unpin:
   2076 	i915_gem_object_ggtt_unpin(obj);
   2077 unlock:
   2078 	mutex_unlock(&dev->struct_mutex);
   2079 out:
   2080 	mutex_enter(uobj->vmobjlock);
   2081 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
   2082 	if (ret == -ERESTART)
   2083 		uvm_wait("i915flt");
   2084 
   2085 	/*
   2086 	 * Remap EINTR to success, so that we return to userland.
   2087 	 * On the way out, we'll deliver the signal, and if the signal
   2088 	 * is not fatal then the user code which faulted will most likely
   2089 	 * fault again, and we'll come back here for another try.
   2090 	 */
   2091 	if (ret == -EINTR)
   2092 		ret = 0;
   2093 	/* XXX Deal with GPU hangs here...  */
   2094 	intel_runtime_pm_put(dev_priv);
   2095 	/* XXX errno Linux->NetBSD */
   2096 	return -ret;
   2097 }
   2098 
   2099 /*
   2100  * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
   2101  *
   2102  * XXX pmap_enter_default instead of pmap_enter because of a problem
   2103  * with using weak aliases in kernel modules or something.
   2104  */
   2105 int	pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
   2106 
   2107 static int
   2108 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   2109     int npages, int centeridx, vm_prot_t access_type, int flags,
   2110     paddr_t gtt_paddr)
   2111 {
   2112 	struct vm_map_entry *entry = ufi->entry;
   2113 	vaddr_t curr_va;
   2114 	off_t curr_offset;
   2115 	paddr_t paddr;
   2116 	u_int mmapflags;
   2117 	int lcv, retval;
   2118 	vm_prot_t mapprot;
   2119 	UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
   2120 	UVMHIST_LOG(maphist,"  flags=%jd", flags,0,0,0);
   2121 
   2122 	/*
   2123 	 * we do not allow device mappings to be mapped copy-on-write
   2124 	 * so we kill any attempt to do so here.
   2125 	 */
   2126 
   2127 	if (UVM_ET_ISCOPYONWRITE(entry)) {
   2128 		UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%jx)",
   2129 		entry->etype, 0,0,0);
   2130 		return(EIO);
   2131 	}
   2132 
   2133 	/*
   2134 	 * now we must determine the offset in udv to use and the VA to
   2135 	 * use for pmap_enter.  note that we always use orig_map's pmap
   2136 	 * for pmap_enter (even if we have a submap).   since virtual
   2137 	 * addresses in a submap must match the main map, this is ok.
   2138 	 */
   2139 
   2140 	/* udv offset = (offset from start of entry) + entry's offset */
   2141 	curr_offset = entry->offset + (vaddr - entry->start);
   2142 	/* pmap va = vaddr (virtual address of pps[0]) */
   2143 	curr_va = vaddr;
   2144 
   2145 	/*
   2146 	 * loop over the page range entering in as needed
   2147 	 */
   2148 
   2149 	retval = 0;
   2150 	for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
   2151 	    curr_va += PAGE_SIZE) {
   2152 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
   2153 			continue;
   2154 
   2155 		if (pps[lcv] == PGO_DONTCARE)
   2156 			continue;
   2157 
   2158 		paddr = (gtt_paddr + curr_offset);
   2159 		mmapflags = 0;
   2160 		mapprot = ufi->entry->protection;
   2161 		UVMHIST_LOG(maphist,
   2162 		    "  MAPPING: device: pm=0x%#jx, va=0x%jx, pa=0x%jx, at=%jd",
   2163 		    (uintptr_t)ufi->orig_map->pmap, curr_va, paddr, mapprot);
   2164 		if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
   2165 		    PMAP_CANFAIL | mapprot | mmapflags) != 0) {
   2166 			/*
   2167 			 * pmap_enter() didn't have the resource to
   2168 			 * enter this mapping.  Unlock everything,
   2169 			 * wait for the pagedaemon to free up some
   2170 			 * pages, and then tell uvm_fault() to start
   2171 			 * the fault again.
   2172 			 *
   2173 			 * XXX Needs some rethinking for the PGO_ALLPAGES
   2174 			 * XXX case.
   2175 			 */
   2176 			pmap_update(ufi->orig_map->pmap);	/* sync what we have so far */
   2177 			return (ERESTART);
   2178 		}
   2179 	}
   2180 
   2181 	pmap_update(ufi->orig_map->pmap);
   2182 	return (retval);
   2183 }
   2184 #else
   2185 /**
   2186  * i915_gem_fault - fault a page into the GTT
   2187  * @vma: VMA in question
   2188  * @vmf: fault info
   2189  *
   2190  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
   2191  * from userspace.  The fault handler takes care of binding the object to
   2192  * the GTT (if needed), allocating and programming a fence register (again,
   2193  * only if needed based on whether the old reg is still valid or the object
   2194  * is tiled) and inserting a new PTE into the faulting process.
   2195  *
   2196  * Note that the faulting process may involve evicting existing objects
   2197  * from the GTT and/or fence registers to make room.  So performance may
   2198  * suffer if the GTT working set is large or there are few fence registers
   2199  * left.
   2200  */
   2201 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
   2202 {
   2203 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
   2204 	struct drm_device *dev = obj->base.dev;
   2205 	struct drm_i915_private *dev_priv = dev->dev_private;
   2206 	struct i915_ggtt_view view = i915_ggtt_view_normal;
   2207 	pgoff_t page_offset;
   2208 	unsigned long pfn;
   2209 	int ret = 0;
   2210 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
   2211 
   2212 	intel_runtime_pm_get(dev_priv);
   2213 
   2214 	/* We don't use vmf->pgoff since that has the fake offset */
   2215 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
   2216 		PAGE_SHIFT;
   2217 
   2218 	ret = i915_mutex_lock_interruptible(dev);
   2219 	if (ret)
   2220 		goto out;
   2221 
   2222 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   2223 
   2224 	/* Try to flush the object off the GPU first without holding the lock.
   2225 	 * Upon reacquiring the lock, we will perform our sanity checks and then
   2226 	 * repeat the flush holding the lock in the normal manner to catch cases
   2227 	 * where we are gazumped.
   2228 	 */
   2229 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   2230 	if (ret)
   2231 		goto unlock;
   2232 
   2233 	/* Access to snoopable pages through the GTT is incoherent. */
   2234 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
   2235 		ret = -EFAULT;
   2236 		goto unlock;
   2237 	}
   2238 
   2239 	/* Use a partial view if the object is bigger than the aperture. */
   2240 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
   2241 	    obj->tiling_mode == I915_TILING_NONE) {
   2242 		static const unsigned int chunk_size = 256; // 1 MiB
   2243 
   2244 		memset(&view, 0, sizeof(view));
   2245 		view.type = I915_GGTT_VIEW_PARTIAL;
   2246 		view.params.partial.offset = rounddown(page_offset, chunk_size);
   2247 		view.params.partial.size =
   2248 			min_t(unsigned int,
   2249 			      chunk_size,
   2250 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
   2251 			      view.params.partial.offset);
   2252 	}
   2253 
   2254 	/* Now pin it into the GTT if needed */
   2255 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
   2256 	if (ret)
   2257 		goto unlock;
   2258 
   2259 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   2260 	if (ret)
   2261 		goto unpin;
   2262 
   2263 	ret = i915_gem_object_get_fence(obj);
   2264 	if (ret)
   2265 		goto unpin;
   2266 
   2267 	/* Finally, remap it using the new GTT offset */
   2268 	pfn = dev_priv->gtt.mappable_base +
   2269 		i915_gem_obj_ggtt_offset_view(obj, &view);
   2270 	pfn >>= PAGE_SHIFT;
   2271 
   2272 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
   2273 		/* Overriding existing pages in partial view does not cause
   2274 		 * us any trouble as TLBs are still valid because the fault
   2275 		 * is due to userspace losing part of the mapping or never
   2276 		 * having accessed it before (at this partials' range).
   2277 		 */
   2278 		unsigned long base = vma->vm_start +
   2279 				     (view.params.partial.offset << PAGE_SHIFT);
   2280 		unsigned int i;
   2281 
   2282 		for (i = 0; i < view.params.partial.size; i++) {
   2283 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
   2284 			if (ret)
   2285 				break;
   2286 		}
   2287 
   2288 		obj->fault_mappable = true;
   2289 	} else {
   2290 		if (!obj->fault_mappable) {
   2291 			unsigned long size = min_t(unsigned long,
   2292 						   vma->vm_end - vma->vm_start,
   2293 						   obj->base.size);
   2294 			int i;
   2295 
   2296 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
   2297 				ret = vm_insert_pfn(vma,
   2298 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
   2299 						    pfn + i);
   2300 				if (ret)
   2301 					break;
   2302 			}
   2303 
   2304 			obj->fault_mappable = true;
   2305 		} else
   2306 			ret = vm_insert_pfn(vma,
   2307 					    (unsigned long)vmf->virtual_address,
   2308 					    pfn + page_offset);
   2309 	}
   2310 unpin:
   2311 	i915_gem_object_ggtt_unpin_view(obj, &view);
   2312 unlock:
   2313 	mutex_unlock(&dev->struct_mutex);
   2314 out:
   2315 	switch (ret) {
   2316 	case -EIO:
   2317 		/*
   2318 		 * We eat errors when the gpu is terminally wedged to avoid
   2319 		 * userspace unduly crashing (gl has no provisions for mmaps to
   2320 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
   2321 		 * and so needs to be reported.
   2322 		 */
   2323 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
   2324 			ret = VM_FAULT_SIGBUS;
   2325 			break;
   2326 		}
   2327 	case -EAGAIN:
   2328 		/*
   2329 		 * EAGAIN means the gpu is hung and we'll wait for the error
   2330 		 * handler to reset everything when re-faulting in
   2331 		 * i915_mutex_lock_interruptible.
   2332 		 */
   2333 	case 0:
   2334 	case -ERESTARTSYS:
   2335 	case -EINTR:
   2336 	case -EBUSY:
   2337 		/*
   2338 		 * EBUSY is ok: this just means that another thread
   2339 		 * already did the job.
   2340 		 */
   2341 		ret = VM_FAULT_NOPAGE;
   2342 		break;
   2343 	case -ENOMEM:
   2344 		ret = VM_FAULT_OOM;
   2345 		break;
   2346 	case -ENOSPC:
   2347 	case -EFAULT:
   2348 		ret = VM_FAULT_SIGBUS;
   2349 		break;
   2350 	default:
   2351 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
   2352 		ret = VM_FAULT_SIGBUS;
   2353 		break;
   2354 	}
   2355 
   2356 	intel_runtime_pm_put(dev_priv);
   2357 	return ret;
   2358 }
   2359 #endif
   2360 
   2361 /**
   2362  * i915_gem_release_mmap - remove physical page mappings
   2363  * @obj: obj in question
   2364  *
   2365  * Preserve the reservation of the mmapping with the DRM core code, but
   2366  * relinquish ownership of the pages back to the system.
   2367  *
   2368  * It is vital that we remove the page mapping if we have mapped a tiled
   2369  * object through the GTT and then lose the fence register due to
   2370  * resource pressure. Similarly if the object has been moved out of the
   2371  * aperture, than pages mapped into userspace must be revoked. Removing the
   2372  * mapping will then trigger a page fault on the next user access, allowing
   2373  * fixup by i915_gem_fault().
   2374  */
   2375 void
   2376 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
   2377 {
   2378 	if (!obj->fault_mappable)
   2379 		return;
   2380 
   2381 #ifdef __NetBSD__		/* XXX gem gtt fault */
   2382 	{
   2383 		struct drm_device *const dev = obj->base.dev;
   2384 		struct drm_i915_private *const dev_priv = dev->dev_private;
   2385 		const paddr_t start = dev_priv->gtt.mappable_base +
   2386 		    i915_gem_obj_ggtt_offset(obj);
   2387 		const size_t size = obj->base.size;
   2388 		const paddr_t end = start + size;
   2389 		paddr_t pa;
   2390 
   2391 		KASSERT((start & (PAGE_SIZE - 1)) == 0);
   2392 		KASSERT((size & (PAGE_SIZE - 1)) == 0);
   2393 
   2394 		for (pa = start; pa < end; pa += PAGE_SIZE)
   2395 			pmap_pv_protect(pa, VM_PROT_NONE);
   2396 	}
   2397 #else
   2398 	drm_vma_node_unmap(&obj->base.vma_node,
   2399 			   obj->base.dev->anon_inode->i_mapping);
   2400 #endif
   2401 	obj->fault_mappable = false;
   2402 }
   2403 
   2404 void
   2405 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
   2406 {
   2407 	struct drm_i915_gem_object *obj;
   2408 
   2409 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
   2410 		i915_gem_release_mmap(obj);
   2411 }
   2412 
   2413 uint32_t
   2414 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
   2415 {
   2416 	uint32_t gtt_size;
   2417 
   2418 	if (INTEL_INFO(dev)->gen >= 4 ||
   2419 	    tiling_mode == I915_TILING_NONE)
   2420 		return size;
   2421 
   2422 	/* Previous chips need a power-of-two fence region when tiling */
   2423 	if (INTEL_INFO(dev)->gen == 3)
   2424 		gtt_size = 1024*1024;
   2425 	else
   2426 		gtt_size = 512*1024;
   2427 
   2428 	while (gtt_size < size)
   2429 		gtt_size <<= 1;
   2430 
   2431 	return gtt_size;
   2432 }
   2433 
   2434 /**
   2435  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
   2436  * @obj: object to check
   2437  *
   2438  * Return the required GTT alignment for an object, taking into account
   2439  * potential fence register mapping.
   2440  */
   2441 uint32_t
   2442 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
   2443 			   int tiling_mode, bool fenced)
   2444 {
   2445 	/*
   2446 	 * Minimum alignment is 4k (GTT page size), but might be greater
   2447 	 * if a fence register is needed for the object.
   2448 	 */
   2449 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
   2450 	    tiling_mode == I915_TILING_NONE)
   2451 		return 4096;
   2452 
   2453 	/*
   2454 	 * Previous chips need to be aligned to the size of the smallest
   2455 	 * fence register that can contain the object.
   2456 	 */
   2457 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
   2458 }
   2459 
   2460 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
   2461 {
   2462 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2463 	int ret;
   2464 
   2465 	if (drm_vma_node_has_offset(&obj->base.vma_node))
   2466 		return 0;
   2467 
   2468 	dev_priv->mm.shrinker_no_lock_stealing = true;
   2469 
   2470 	ret = drm_gem_create_mmap_offset(&obj->base);
   2471 	if (ret != -ENOSPC)
   2472 		goto out;
   2473 
   2474 	/* Badly fragmented mmap space? The only way we can recover
   2475 	 * space is by destroying unwanted objects. We can't randomly release
   2476 	 * mmap_offsets as userspace expects them to be persistent for the
   2477 	 * lifetime of the objects. The closest we can is to release the
   2478 	 * offsets on purgeable objects by truncating it and marking it purged,
   2479 	 * which prevents userspace from ever using that object again.
   2480 	 */
   2481 	i915_gem_shrink(dev_priv,
   2482 			obj->base.size >> PAGE_SHIFT,
   2483 			I915_SHRINK_BOUND |
   2484 			I915_SHRINK_UNBOUND |
   2485 			I915_SHRINK_PURGEABLE);
   2486 	ret = drm_gem_create_mmap_offset(&obj->base);
   2487 	if (ret != -ENOSPC)
   2488 		goto out;
   2489 
   2490 	i915_gem_shrink_all(dev_priv);
   2491 	ret = drm_gem_create_mmap_offset(&obj->base);
   2492 out:
   2493 	dev_priv->mm.shrinker_no_lock_stealing = false;
   2494 
   2495 	return ret;
   2496 }
   2497 
   2498 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
   2499 {
   2500 	drm_gem_free_mmap_offset(&obj->base);
   2501 }
   2502 
   2503 int
   2504 i915_gem_mmap_gtt(struct drm_file *file,
   2505 		  struct drm_device *dev,
   2506 		  uint32_t handle,
   2507 		  uint64_t *offset)
   2508 {
   2509 	struct drm_gem_object *gobj;
   2510 	struct drm_i915_gem_object *obj;
   2511 	int ret;
   2512 
   2513 	ret = i915_mutex_lock_interruptible(dev);
   2514 	if (ret)
   2515 		return ret;
   2516 
   2517 	gobj = drm_gem_object_lookup(dev, file, handle);
   2518 	if (gobj == NULL) {
   2519 		ret = -ENOENT;
   2520 		goto unlock;
   2521 	}
   2522 	obj = to_intel_bo(gobj);
   2523 
   2524 	if (obj->madv != I915_MADV_WILLNEED) {
   2525 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
   2526 		ret = -EFAULT;
   2527 		goto out;
   2528 	}
   2529 
   2530 	ret = i915_gem_object_create_mmap_offset(obj);
   2531 	if (ret)
   2532 		goto out;
   2533 
   2534 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
   2535 
   2536 out:
   2537 	drm_gem_object_unreference(&obj->base);
   2538 unlock:
   2539 	mutex_unlock(&dev->struct_mutex);
   2540 	return ret;
   2541 }
   2542 
   2543 /**
   2544  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
   2545  * @dev: DRM device
   2546  * @data: GTT mapping ioctl data
   2547  * @file: GEM object info
   2548  *
   2549  * Simply returns the fake offset to userspace so it can mmap it.
   2550  * The mmap call will end up in drm_gem_mmap(), which will set things
   2551  * up so we can get faults in the handler above.
   2552  *
   2553  * The fault handler will take care of binding the object into the GTT
   2554  * (since it may have been evicted to make room for something), allocating
   2555  * a fence register, and mapping the appropriate aperture address into
   2556  * userspace.
   2557  */
   2558 int
   2559 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
   2560 			struct drm_file *file)
   2561 {
   2562 	struct drm_i915_gem_mmap_gtt *args = data;
   2563 
   2564 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
   2565 }
   2566 
   2567 /* Immediately discard the backing storage */
   2568 static void
   2569 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
   2570 {
   2571 	i915_gem_object_free_mmap_offset(obj);
   2572 
   2573 #ifdef __NetBSD__
   2574 	if (obj->base.gemo_shm_uao == NULL)
   2575 		return;
   2576 
   2577 	{
   2578 		struct uvm_object *const uobj = obj->base.gemo_shm_uao;
   2579 
   2580 		if (uobj != NULL) {
   2581 			/* XXX Calling pgo_put like this is bogus.  */
   2582 			mutex_enter(uobj->vmobjlock);
   2583 			(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   2584 			    (PGO_ALLPAGES | PGO_FREE));
   2585 		}
   2586 	}
   2587 #else
   2588 	if (obj->base.filp == NULL)
   2589 		return;
   2590 
   2591 	/* Our goal here is to return as much of the memory as
   2592 	 * is possible back to the system as we are called from OOM.
   2593 	 * To do this we must instruct the shmfs to drop all of its
   2594 	 * backing pages, *now*.
   2595 	 */
   2596 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
   2597 #endif
   2598 	obj->madv = __I915_MADV_PURGED;
   2599 }
   2600 
   2601 /* Try to discard unwanted pages */
   2602 static void
   2603 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
   2604 {
   2605 	struct address_space *mapping;
   2606 
   2607 	switch (obj->madv) {
   2608 	case I915_MADV_DONTNEED:
   2609 		i915_gem_object_truncate(obj);
   2610 	case __I915_MADV_PURGED:
   2611 		return;
   2612 	}
   2613 
   2614 	if (obj->base.filp == NULL)
   2615 		return;
   2616 
   2617 	mapping = file_inode(obj->base.filp)->i_mapping,
   2618 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
   2619 }
   2620 
   2621 #ifdef __NetBSD__
   2622 static void
   2623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2624 {
   2625 	struct drm_device *const dev = obj->base.dev;
   2626 	struct vm_page *page;
   2627 	int ret;
   2628 
   2629 	/* XXX Cargo-culted from the Linux code.  */
   2630 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2631 
   2632 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2633 	if (ret) {
   2634 		WARN_ON(ret != -EIO);
   2635 		i915_gem_clflush_object(obj, true);
   2636 		obj->base.read_domains = obj->base.write_domain =
   2637 		    I915_GEM_DOMAIN_CPU;
   2638 	}
   2639 
   2640 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2641 		i915_gem_object_save_bit_17_swizzle(obj);
   2642 
   2643 	if (obj->madv == I915_MADV_DONTNEED)
   2644 		obj->dirty = 0;
   2645 
   2646 	if (obj->dirty) {
   2647 		TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
   2648 			page->flags &= ~PG_CLEAN;
   2649 			/* XXX mark page accessed */
   2650 		}
   2651 	}
   2652 
   2653 	bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
   2654 	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
   2655 	    obj->base.size, obj->pages, obj->igo_nsegs);
   2656 
   2657 	kfree(obj->pages);
   2658 }
   2659 #else
   2660 static void
   2661 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2662 {
   2663 	struct sg_page_iter sg_iter;
   2664 	int ret;
   2665 
   2666 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2667 
   2668 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2669 	if (ret) {
   2670 		/* In the event of a disaster, abandon all caches and
   2671 		 * hope for the best.
   2672 		 */
   2673 		WARN_ON(ret != -EIO);
   2674 		i915_gem_clflush_object(obj, true);
   2675 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   2676 	}
   2677 
   2678 	i915_gem_gtt_finish_object(obj);
   2679 
   2680 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2681 		i915_gem_object_save_bit_17_swizzle(obj);
   2682 
   2683 	if (obj->madv == I915_MADV_DONTNEED)
   2684 		obj->dirty = 0;
   2685 
   2686 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
   2687 		struct page *page = sg_page_iter_page(&sg_iter);
   2688 
   2689 		if (obj->dirty)
   2690 			set_page_dirty(page);
   2691 
   2692 		if (obj->madv == I915_MADV_WILLNEED)
   2693 			mark_page_accessed(page);
   2694 
   2695 		page_cache_release(page);
   2696 	}
   2697 	obj->dirty = 0;
   2698 
   2699 	sg_free_table(obj->pages);
   2700 	kfree(obj->pages);
   2701 }
   2702 #endif
   2703 
   2704 int
   2705 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
   2706 {
   2707 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2708 
   2709 	if (obj->pages == NULL)
   2710 		return 0;
   2711 
   2712 	if (obj->pages_pin_count)
   2713 		return -EBUSY;
   2714 
   2715 	BUG_ON(i915_gem_obj_bound_any(obj));
   2716 
   2717 	/* ->put_pages might need to allocate memory for the bit17 swizzle
   2718 	 * array, hence protect them from being reaped by removing them from gtt
   2719 	 * lists early. */
   2720 	list_del(&obj->global_list);
   2721 
   2722 	ops->put_pages(obj);
   2723 	obj->pages = NULL;
   2724 
   2725 	i915_gem_object_invalidate(obj);
   2726 
   2727 	return 0;
   2728 }
   2729 
   2730 #ifdef __NetBSD__
   2731 static int
   2732 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2733 {
   2734 	struct drm_device *const dev = obj->base.dev;
   2735 	struct vm_page *page;
   2736 	int error;
   2737 
   2738 	/* XXX Cargo-culted from the Linux code.  */
   2739 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2740 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2741 
   2742 	KASSERT(obj->pages == NULL);
   2743 	TAILQ_INIT(&obj->igo_pageq);
   2744 	obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
   2745 	    sizeof(obj->pages[0]), GFP_KERNEL);
   2746 	if (obj->pages == NULL) {
   2747 		error = -ENOMEM;
   2748 		goto fail0;
   2749 	}
   2750 
   2751 	/* XXX errno NetBSD->Linux */
   2752 	error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
   2753 	    0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
   2754 	    (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
   2755 	if (error)
   2756 		/* XXX Try i915_gem_purge, i915_gem_shrink_all.  */
   2757 		goto fail1;
   2758 	KASSERT(0 < obj->igo_nsegs);
   2759 	KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
   2760 
   2761 	/*
   2762 	 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
   2763 	 *
   2764 	 * XXX This is wrong; we ought to pass this constraint to
   2765 	 * bus_dmamem_wire_uvm_object instead.
   2766 	 */
   2767 	TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
   2768 		const uint64_t mask =
   2769 		    (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
   2770 			0xffffffffULL : 0xffffffffffULL);
   2771 		if (VM_PAGE_TO_PHYS(page) & ~mask) {
   2772 			DRM_ERROR("GEM physical address exceeds %u bits"
   2773 			    ": %"PRIxMAX"\n",
   2774 			    popcount64(mask),
   2775 			    (uintmax_t)VM_PAGE_TO_PHYS(page));
   2776 			error = -EIO;
   2777 			goto fail2;
   2778 		}
   2779 	}
   2780 
   2781 	/* XXX Should create the DMA map when creating the object.  */
   2782 
   2783 	/* XXX errno NetBSD->Linux */
   2784 	error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
   2785 	    PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
   2786 	if (error)
   2787 		goto fail2;
   2788 
   2789 	/* XXX Cargo-culted from the Linux code.  */
   2790 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2791 		i915_gem_object_do_bit_17_swizzle(obj);
   2792 
   2793 	/* Success!  */
   2794 	return 0;
   2795 
   2796 fail2:	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
   2797 	    obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
   2798 fail1:	kfree(obj->pages);
   2799 	obj->pages = NULL;
   2800 fail0:	KASSERT(error);
   2801 	return error;
   2802 }
   2803 #else
   2804 static int
   2805 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2806 {
   2807 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2808 	int page_count, i;
   2809 	struct address_space *mapping;
   2810 	struct sg_table *st;
   2811 	struct scatterlist *sg;
   2812 	struct sg_page_iter sg_iter;
   2813 	struct page *page;
   2814 	unsigned long last_pfn = 0;	/* suppress gcc warning */
   2815 	int ret;
   2816 	gfp_t gfp;
   2817 
   2818 	/* Assert that the object is not currently in any GPU domain. As it
   2819 	 * wasn't in the GTT, there shouldn't be any way it could have been in
   2820 	 * a GPU cache
   2821 	 */
   2822 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2823 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2824 
   2825 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   2826 	if (st == NULL)
   2827 		return -ENOMEM;
   2828 
   2829 	page_count = obj->base.size / PAGE_SIZE;
   2830 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
   2831 		kfree(st);
   2832 		return -ENOMEM;
   2833 	}
   2834 
   2835 	/* Get the list of pages out of our struct file.  They'll be pinned
   2836 	 * at this point until we release them.
   2837 	 *
   2838 	 * Fail silently without starting the shrinker
   2839 	 */
   2840 	mapping = file_inode(obj->base.filp)->i_mapping;
   2841 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
   2842 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
   2843 	sg = st->sgl;
   2844 	st->nents = 0;
   2845 	for (i = 0; i < page_count; i++) {
   2846 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2847 		if (IS_ERR(page)) {
   2848 			i915_gem_shrink(dev_priv,
   2849 					page_count,
   2850 					I915_SHRINK_BOUND |
   2851 					I915_SHRINK_UNBOUND |
   2852 					I915_SHRINK_PURGEABLE);
   2853 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2854 		}
   2855 		if (IS_ERR(page)) {
   2856 			/* We've tried hard to allocate the memory by reaping
   2857 			 * our own buffer, now let the real VM do its job and
   2858 			 * go down in flames if truly OOM.
   2859 			 */
   2860 			i915_gem_shrink_all(dev_priv);
   2861 			page = shmem_read_mapping_page(mapping, i);
   2862 			if (IS_ERR(page)) {
   2863 				ret = PTR_ERR(page);
   2864 				goto err_pages;
   2865 			}
   2866 		}
   2867 #ifdef CONFIG_SWIOTLB
   2868 		if (swiotlb_nr_tbl()) {
   2869 			st->nents++;
   2870 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2871 			sg = sg_next(sg);
   2872 			continue;
   2873 		}
   2874 #endif
   2875 		if (!i || page_to_pfn(page) != last_pfn + 1) {
   2876 			if (i)
   2877 				sg = sg_next(sg);
   2878 			st->nents++;
   2879 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2880 		} else {
   2881 			sg->length += PAGE_SIZE;
   2882 		}
   2883 		last_pfn = page_to_pfn(page);
   2884 
   2885 		/* Check that the i965g/gm workaround works. */
   2886 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
   2887 	}
   2888 #ifdef CONFIG_SWIOTLB
   2889 	if (!swiotlb_nr_tbl())
   2890 #endif
   2891 		sg_mark_end(sg);
   2892 	obj->pages = st;
   2893 
   2894 	ret = i915_gem_gtt_prepare_object(obj);
   2895 	if (ret)
   2896 		goto err_pages;
   2897 
   2898 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2899 		i915_gem_object_do_bit_17_swizzle(obj);
   2900 
   2901 	if (obj->tiling_mode != I915_TILING_NONE &&
   2902 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
   2903 		i915_gem_object_pin_pages(obj);
   2904 
   2905 	return 0;
   2906 
   2907 err_pages:
   2908 	sg_mark_end(sg);
   2909 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
   2910 		page_cache_release(sg_page_iter_page(&sg_iter));
   2911 	sg_free_table(st);
   2912 	kfree(st);
   2913 
   2914 	/* shmemfs first checks if there is enough memory to allocate the page
   2915 	 * and reports ENOSPC should there be insufficient, along with the usual
   2916 	 * ENOMEM for a genuine allocation failure.
   2917 	 *
   2918 	 * We use ENOSPC in our driver to mean that we have run out of aperture
   2919 	 * space and so want to translate the error from shmemfs back to our
   2920 	 * usual understanding of ENOMEM.
   2921 	 */
   2922 	if (ret == -ENOSPC)
   2923 		ret = -ENOMEM;
   2924 
   2925 	return ret;
   2926 }
   2927 #endif
   2928 
   2929 /* Ensure that the associated pages are gathered from the backing storage
   2930  * and pinned into our object. i915_gem_object_get_pages() may be called
   2931  * multiple times before they are released by a single call to
   2932  * i915_gem_object_put_pages() - once the pages are no longer referenced
   2933  * either as a result of memory pressure (reaping pages under the shrinker)
   2934  * or as the object is itself released.
   2935  */
   2936 int
   2937 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
   2938 {
   2939 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2940 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2941 	int ret;
   2942 
   2943 	if (obj->pages)
   2944 		return 0;
   2945 
   2946 	if (obj->madv != I915_MADV_WILLNEED) {
   2947 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
   2948 		return -EFAULT;
   2949 	}
   2950 
   2951 	BUG_ON(obj->pages_pin_count);
   2952 
   2953 	ret = ops->get_pages(obj);
   2954 	if (ret)
   2955 		return ret;
   2956 
   2957 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   2958 
   2959 	obj->get_page.sg = obj->pages->sgl;
   2960 	obj->get_page.last = 0;
   2961 
   2962 	return 0;
   2963 }
   2964 
   2965 void i915_vma_move_to_active(struct i915_vma *vma,
   2966 			     struct drm_i915_gem_request *req)
   2967 {
   2968 	struct drm_i915_gem_object *obj = vma->obj;
   2969 	struct intel_engine_cs *ring;
   2970 
   2971 	ring = i915_gem_request_get_ring(req);
   2972 
   2973 	/* Add a reference if we're newly entering the active list. */
   2974 	if (obj->active == 0)
   2975 		drm_gem_object_reference(&obj->base);
   2976 	obj->active |= intel_ring_flag(ring);
   2977 
   2978 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
   2979 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
   2980 
   2981 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
   2982 }
   2983 
   2984 static void
   2985 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
   2986 {
   2987 	RQ_BUG_ON(obj->last_write_req == NULL);
   2988 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
   2989 
   2990 	i915_gem_request_assign(&obj->last_write_req, NULL);
   2991 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
   2992 }
   2993 
   2994 static void
   2995 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
   2996 {
   2997 	struct i915_vma *vma;
   2998 
   2999 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
   3000 	RQ_BUG_ON(!(obj->active & (1 << ring)));
   3001 
   3002 	list_del_init(&obj->ring_list[ring]);
   3003 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
   3004 
   3005 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
   3006 		i915_gem_object_retire__write(obj);
   3007 
   3008 	obj->active &= ~(1 << ring);
   3009 	if (obj->active)
   3010 		return;
   3011 
   3012 	/* Bump our place on the bound list to keep it roughly in LRU order
   3013 	 * so that we don't steal from recently used but inactive objects
   3014 	 * (unless we are forced to ofc!)
   3015 	 */
   3016 	list_move_tail(&obj->global_list,
   3017 		       &to_i915(obj->base.dev)->mm.bound_list);
   3018 
   3019 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
   3020 		if (!list_empty(&vma->mm_list))
   3021 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
   3022 	}
   3023 
   3024 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
   3025 	drm_gem_object_unreference(&obj->base);
   3026 }
   3027 
   3028 static int
   3029 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
   3030 {
   3031 	struct drm_i915_private *dev_priv = dev->dev_private;
   3032 	struct intel_engine_cs *ring;
   3033 	int ret, i, j;
   3034 
   3035 	/* Carefully retire all requests without writing to the rings */
   3036 	for_each_ring(ring, dev_priv, i) {
   3037 		ret = intel_ring_idle(ring);
   3038 		if (ret)
   3039 			return ret;
   3040 	}
   3041 	i915_gem_retire_requests(dev);
   3042 
   3043 	/* Finally reset hw state */
   3044 	for_each_ring(ring, dev_priv, i) {
   3045 		intel_ring_init_seqno(ring, seqno);
   3046 
   3047 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
   3048 			ring->semaphore.sync_seqno[j] = 0;
   3049 	}
   3050 
   3051 	return 0;
   3052 }
   3053 
   3054 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
   3055 {
   3056 	struct drm_i915_private *dev_priv = dev->dev_private;
   3057 	int ret;
   3058 
   3059 	if (seqno == 0)
   3060 		return -EINVAL;
   3061 
   3062 	/* HWS page needs to be set less than what we
   3063 	 * will inject to ring
   3064 	 */
   3065 	ret = i915_gem_init_seqno(dev, seqno - 1);
   3066 	if (ret)
   3067 		return ret;
   3068 
   3069 	/* Carefully set the last_seqno value so that wrap
   3070 	 * detection still works
   3071 	 */
   3072 	dev_priv->next_seqno = seqno;
   3073 	dev_priv->last_seqno = seqno - 1;
   3074 	if (dev_priv->last_seqno == 0)
   3075 		dev_priv->last_seqno--;
   3076 
   3077 	return 0;
   3078 }
   3079 
   3080 int
   3081 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
   3082 {
   3083 	struct drm_i915_private *dev_priv = dev->dev_private;
   3084 
   3085 	/* reserve 0 for non-seqno */
   3086 	if (dev_priv->next_seqno == 0) {
   3087 		int ret = i915_gem_init_seqno(dev, 0);
   3088 		if (ret)
   3089 			return ret;
   3090 
   3091 		dev_priv->next_seqno = 1;
   3092 	}
   3093 
   3094 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
   3095 	return 0;
   3096 }
   3097 
   3098 /*
   3099  * NB: This function is not allowed to fail. Doing so would mean the the
   3100  * request is not being tracked for completion but the work itself is
   3101  * going to happen on the hardware. This would be a Bad Thing(tm).
   3102  */
   3103 void __i915_add_request(struct drm_i915_gem_request *request,
   3104 			struct drm_i915_gem_object *obj,
   3105 			bool flush_caches)
   3106 {
   3107 	struct intel_engine_cs *ring;
   3108 	struct drm_i915_private *dev_priv;
   3109 	struct intel_ringbuffer *ringbuf;
   3110 	u32 request_start;
   3111 	int ret;
   3112 
   3113 	if (WARN_ON(request == NULL))
   3114 		return;
   3115 
   3116 	ring = request->ring;
   3117 	dev_priv = ring->dev->dev_private;
   3118 	ringbuf = request->ringbuf;
   3119 
   3120 	/*
   3121 	 * To ensure that this call will not fail, space for its emissions
   3122 	 * should already have been reserved in the ring buffer. Let the ring
   3123 	 * know that it is time to use that space up.
   3124 	 */
   3125 	intel_ring_reserved_space_use(ringbuf);
   3126 
   3127 	request_start = intel_ring_get_tail(ringbuf);
   3128 	/*
   3129 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
   3130 	 * after having emitted the batchbuffer command. Hence we need to fix
   3131 	 * things up similar to emitting the lazy request. The difference here
   3132 	 * is that the flush _must_ happen before the next request, no matter
   3133 	 * what.
   3134 	 */
   3135 	if (flush_caches) {
   3136 		if (i915.enable_execlists)
   3137 			ret = logical_ring_flush_all_caches(request);
   3138 		else
   3139 			ret = intel_ring_flush_all_caches(request);
   3140 		/* Not allowed to fail! */
   3141 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
   3142 	}
   3143 
   3144 	/* Record the position of the start of the request so that
   3145 	 * should we detect the updated seqno part-way through the
   3146 	 * GPU processing the request, we never over-estimate the
   3147 	 * position of the head.
   3148 	 */
   3149 	request->postfix = intel_ring_get_tail(ringbuf);
   3150 
   3151 	if (i915.enable_execlists)
   3152 		ret = ring->emit_request(request);
   3153 	else {
   3154 		ret = ring->add_request(request);
   3155 
   3156 		request->tail = intel_ring_get_tail(ringbuf);
   3157 	}
   3158 	/* Not allowed to fail! */
   3159 	WARN(ret, "emit|add_request failed: %d!\n", ret);
   3160 
   3161 	request->head = request_start;
   3162 
   3163 	/* Whilst this request exists, batch_obj will be on the
   3164 	 * active_list, and so will hold the active reference. Only when this
   3165 	 * request is retired will the the batch_obj be moved onto the
   3166 	 * inactive_list and lose its active reference. Hence we do not need
   3167 	 * to explicitly hold another reference here.
   3168 	 */
   3169 	request->batch_obj = obj;
   3170 
   3171 	request->emitted_jiffies = jiffies;
   3172 	request->previous_seqno = ring->last_submitted_seqno;
   3173 	ring->last_submitted_seqno = request->seqno;
   3174 	list_add_tail(&request->list, &ring->request_list);
   3175 
   3176 	trace_i915_gem_request_add(request);
   3177 
   3178 	i915_queue_hangcheck(ring->dev);
   3179 
   3180 	queue_delayed_work(dev_priv->wq,
   3181 			   &dev_priv->mm.retire_work,
   3182 			   round_jiffies_up_relative(HZ));
   3183 	intel_mark_busy(dev_priv->dev);
   3184 
   3185 	/* Sanity check that the reserved size was large enough. */
   3186 	intel_ring_reserved_space_end(ringbuf);
   3187 }
   3188 
   3189 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
   3190 				   const struct intel_context *ctx)
   3191 {
   3192 	unsigned long elapsed;
   3193 
   3194 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
   3195 
   3196 	if (ctx->hang_stats.banned)
   3197 		return true;
   3198 
   3199 	if (ctx->hang_stats.ban_period_seconds &&
   3200 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
   3201 		if (!i915_gem_context_is_default(ctx)) {
   3202 			DRM_DEBUG("context hanging too fast, banning!\n");
   3203 			return true;
   3204 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
   3205 			if (i915_stop_ring_allow_warn(dev_priv))
   3206 				DRM_ERROR("gpu hanging too fast, banning!\n");
   3207 			return true;
   3208 		}
   3209 	}
   3210 
   3211 	return false;
   3212 }
   3213 
   3214 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
   3215 				  struct intel_context *ctx,
   3216 				  const bool guilty)
   3217 {
   3218 	struct i915_ctx_hang_stats *hs;
   3219 
   3220 	if (WARN_ON(!ctx))
   3221 		return;
   3222 
   3223 	hs = &ctx->hang_stats;
   3224 
   3225 	if (guilty) {
   3226 		hs->banned = i915_context_is_banned(dev_priv, ctx);
   3227 		hs->batch_active++;
   3228 		hs->guilty_ts = get_seconds();
   3229 	} else {
   3230 		hs->batch_pending++;
   3231 	}
   3232 }
   3233 
   3234 void i915_gem_request_free(struct kref *req_ref)
   3235 {
   3236 	struct drm_i915_gem_request *req = container_of(req_ref,
   3237 						 typeof(*req), ref);
   3238 	struct intel_context *ctx = req->ctx;
   3239 
   3240 	if (req->file_priv)
   3241 		i915_gem_request_remove_from_client(req);
   3242 
   3243 	if (ctx) {
   3244 		if (i915.enable_execlists) {
   3245 			if (ctx != req->ring->default_context)
   3246 				intel_lr_context_unpin(req);
   3247 		}
   3248 
   3249 		i915_gem_context_unreference(ctx);
   3250 	}
   3251 
   3252 	kmem_cache_free(req->i915->requests, req);
   3253 }
   3254 
   3255 int i915_gem_request_alloc(struct intel_engine_cs *ring,
   3256 			   struct intel_context *ctx,
   3257 			   struct drm_i915_gem_request **req_out)
   3258 {
   3259 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
   3260 	struct drm_i915_gem_request *req;
   3261 	int ret;
   3262 
   3263 	if (!req_out)
   3264 		return -EINVAL;
   3265 
   3266 	*req_out = NULL;
   3267 
   3268 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
   3269 	if (req == NULL)
   3270 		return -ENOMEM;
   3271 
   3272 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
   3273 	if (ret)
   3274 		goto err;
   3275 
   3276 	kref_init(&req->ref);
   3277 	req->i915 = dev_priv;
   3278 	req->ring = ring;
   3279 	req->ctx  = ctx;
   3280 	i915_gem_context_reference(req->ctx);
   3281 
   3282 	if (i915.enable_execlists)
   3283 		ret = intel_logical_ring_alloc_request_extras(req);
   3284 	else
   3285 		ret = intel_ring_alloc_request_extras(req);
   3286 	if (ret) {
   3287 		i915_gem_context_unreference(req->ctx);
   3288 		goto err;
   3289 	}
   3290 
   3291 	/*
   3292 	 * Reserve space in the ring buffer for all the commands required to
   3293 	 * eventually emit this request. This is to guarantee that the
   3294 	 * i915_add_request() call can't fail. Note that the reserve may need
   3295 	 * to be redone if the request is not actually submitted straight
   3296 	 * away, e.g. because a GPU scheduler has deferred it.
   3297 	 */
   3298 	if (i915.enable_execlists)
   3299 		ret = intel_logical_ring_reserve_space(req);
   3300 	else
   3301 		ret = intel_ring_reserve_space(req);
   3302 	if (ret) {
   3303 		/*
   3304 		 * At this point, the request is fully allocated even if not
   3305 		 * fully prepared. Thus it can be cleaned up using the proper
   3306 		 * free code.
   3307 		 */
   3308 		i915_gem_request_cancel(req);
   3309 		return ret;
   3310 	}
   3311 
   3312 	*req_out = req;
   3313 	return 0;
   3314 
   3315 err:
   3316 	kmem_cache_free(dev_priv->requests, req);
   3317 	return ret;
   3318 }
   3319 
   3320 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
   3321 {
   3322 	intel_ring_reserved_space_cancel(req->ringbuf);
   3323 
   3324 	i915_gem_request_unreference(req);
   3325 }
   3326 
   3327 struct drm_i915_gem_request *
   3328 i915_gem_find_active_request(struct intel_engine_cs *ring)
   3329 {
   3330 	struct drm_i915_gem_request *request;
   3331 
   3332 	list_for_each_entry(request, &ring->request_list, list) {
   3333 		if (i915_gem_request_completed(request, false))
   3334 			continue;
   3335 
   3336 		return request;
   3337 	}
   3338 
   3339 	return NULL;
   3340 }
   3341 
   3342 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
   3343 				       struct intel_engine_cs *ring)
   3344 {
   3345 	struct drm_i915_gem_request *request;
   3346 	bool ring_hung;
   3347 
   3348 	request = i915_gem_find_active_request(ring);
   3349 
   3350 	if (request == NULL)
   3351 		return;
   3352 
   3353 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
   3354 
   3355 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
   3356 
   3357 	list_for_each_entry_continue(request, &ring->request_list, list)
   3358 		i915_set_reset_status(dev_priv, request->ctx, false);
   3359 }
   3360 
   3361 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
   3362 					struct intel_engine_cs *ring)
   3363 {
   3364 	while (!list_empty(&ring->active_list)) {
   3365 		struct drm_i915_gem_object *obj;
   3366 
   3367 		obj = list_first_entry(&ring->active_list,
   3368 				       struct drm_i915_gem_object,
   3369 				       ring_list[ring->id]);
   3370 
   3371 		i915_gem_object_retire__read(obj, ring->id);
   3372 	}
   3373 
   3374 	/*
   3375 	 * Clear the execlists queue up before freeing the requests, as those
   3376 	 * are the ones that keep the context and ringbuffer backing objects
   3377 	 * pinned in place.
   3378 	 */
   3379 	while (!list_empty(&ring->execlist_queue)) {
   3380 		struct drm_i915_gem_request *submit_req;
   3381 
   3382 		submit_req = list_first_entry(&ring->execlist_queue,
   3383 				struct drm_i915_gem_request,
   3384 				execlist_link);
   3385 		list_del(&submit_req->execlist_link);
   3386 
   3387 		if (submit_req->ctx != ring->default_context)
   3388 			intel_lr_context_unpin(submit_req);
   3389 
   3390 		i915_gem_request_unreference(submit_req);
   3391 	}
   3392 
   3393 	/*
   3394 	 * We must free the requests after all the corresponding objects have
   3395 	 * been moved off active lists. Which is the same order as the normal
   3396 	 * retire_requests function does. This is important if object hold
   3397 	 * implicit references on things like e.g. ppgtt address spaces through
   3398 	 * the request.
   3399 	 */
   3400 	while (!list_empty(&ring->request_list)) {
   3401 		struct drm_i915_gem_request *request;
   3402 
   3403 		request = list_first_entry(&ring->request_list,
   3404 					   struct drm_i915_gem_request,
   3405 					   list);
   3406 
   3407 		i915_gem_request_retire(request);
   3408 	}
   3409 }
   3410 
   3411 void i915_gem_reset(struct drm_device *dev)
   3412 {
   3413 	struct drm_i915_private *dev_priv = dev->dev_private;
   3414 	struct intel_engine_cs *ring;
   3415 	int i;
   3416 
   3417 	/*
   3418 	 * Before we free the objects from the requests, we need to inspect
   3419 	 * them for finding the guilty party. As the requests only borrow
   3420 	 * their reference to the objects, the inspection must be done first.
   3421 	 */
   3422 	for_each_ring(ring, dev_priv, i)
   3423 		i915_gem_reset_ring_status(dev_priv, ring);
   3424 
   3425 	for_each_ring(ring, dev_priv, i)
   3426 		i915_gem_reset_ring_cleanup(dev_priv, ring);
   3427 
   3428 	i915_gem_context_reset(dev);
   3429 
   3430 	i915_gem_restore_fences(dev);
   3431 
   3432 	WARN_ON(i915_verify_lists(dev));
   3433 }
   3434 
   3435 /**
   3436  * This function clears the request list as sequence numbers are passed.
   3437  */
   3438 void
   3439 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
   3440 {
   3441 	WARN_ON(i915_verify_lists(ring->dev));
   3442 
   3443 	/* Retire requests first as we use it above for the early return.
   3444 	 * If we retire requests last, we may use a later seqno and so clear
   3445 	 * the requests lists without clearing the active list, leading to
   3446 	 * confusion.
   3447 	 */
   3448 	while (!list_empty(&ring->request_list)) {
   3449 		struct drm_i915_gem_request *request;
   3450 
   3451 		request = list_first_entry(&ring->request_list,
   3452 					   struct drm_i915_gem_request,
   3453 					   list);
   3454 
   3455 		if (!i915_gem_request_completed(request, true))
   3456 			break;
   3457 
   3458 		i915_gem_request_retire(request);
   3459 	}
   3460 
   3461 	/* Move any buffers on the active list that are no longer referenced
   3462 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
   3463 	 * before we free the context associated with the requests.
   3464 	 */
   3465 	while (!list_empty(&ring->active_list)) {
   3466 		struct drm_i915_gem_object *obj;
   3467 
   3468 		obj = list_first_entry(&ring->active_list,
   3469 				      struct drm_i915_gem_object,
   3470 				      ring_list[ring->id]);
   3471 
   3472 		if (!list_empty(&obj->last_read_req[ring->id]->list))
   3473 			break;
   3474 
   3475 		i915_gem_object_retire__read(obj, ring->id);
   3476 	}
   3477 
   3478 	if (unlikely(ring->trace_irq_req &&
   3479 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
   3480 		ring->irq_put(ring);
   3481 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
   3482 	}
   3483 
   3484 	WARN_ON(i915_verify_lists(ring->dev));
   3485 }
   3486 
   3487 bool
   3488 i915_gem_retire_requests(struct drm_device *dev)
   3489 {
   3490 	struct drm_i915_private *dev_priv = dev->dev_private;
   3491 	struct intel_engine_cs *ring;
   3492 	bool idle = true;
   3493 	int i;
   3494 
   3495 	for_each_ring(ring, dev_priv, i) {
   3496 		i915_gem_retire_requests_ring(ring);
   3497 		idle &= list_empty(&ring->request_list);
   3498 		if (i915.enable_execlists) {
   3499 			unsigned long flags;
   3500 
   3501 			spin_lock_irqsave(&ring->execlist_lock, flags);
   3502 			idle &= list_empty(&ring->execlist_queue);
   3503 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
   3504 
   3505 			intel_execlists_retire_requests(ring);
   3506 		}
   3507 	}
   3508 
   3509 	if (idle)
   3510 		mod_delayed_work(dev_priv->wq,
   3511 				   &dev_priv->mm.idle_work,
   3512 				   msecs_to_jiffies(100));
   3513 
   3514 	return idle;
   3515 }
   3516 
   3517 static void
   3518 i915_gem_retire_work_handler(struct work_struct *work)
   3519 {
   3520 	struct drm_i915_private *dev_priv =
   3521 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
   3522 	struct drm_device *dev = dev_priv->dev;
   3523 	bool idle;
   3524 
   3525 	/* Come back later if the device is busy... */
   3526 	idle = false;
   3527 	if (mutex_trylock(&dev->struct_mutex)) {
   3528 		idle = i915_gem_retire_requests(dev);
   3529 		mutex_unlock(&dev->struct_mutex);
   3530 	}
   3531 	if (!idle)
   3532 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
   3533 				   round_jiffies_up_relative(HZ));
   3534 }
   3535 
   3536 static void
   3537 i915_gem_idle_work_handler(struct work_struct *work)
   3538 {
   3539 	struct drm_i915_private *dev_priv =
   3540 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
   3541 	struct drm_device *dev = dev_priv->dev;
   3542 	struct intel_engine_cs *ring;
   3543 	int i;
   3544 
   3545 	for_each_ring(ring, dev_priv, i)
   3546 		if (!list_empty(&ring->request_list))
   3547 			return;
   3548 
   3549 	intel_mark_idle(dev);
   3550 
   3551 	if (mutex_trylock(&dev->struct_mutex)) {
   3552 		struct intel_engine_cs *ring;
   3553 		int i;
   3554 
   3555 		for_each_ring(ring, dev_priv, i)
   3556 			i915_gem_batch_pool_fini(&ring->batch_pool);
   3557 
   3558 		mutex_unlock(&dev->struct_mutex);
   3559 	}
   3560 }
   3561 
   3562 /**
   3563  * Ensures that an object will eventually get non-busy by flushing any required
   3564  * write domains, emitting any outstanding lazy request and retiring and
   3565  * completed requests.
   3566  */
   3567 static int
   3568 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
   3569 {
   3570 	int i;
   3571 
   3572 	if (!obj->active)
   3573 		return 0;
   3574 
   3575 	for (i = 0; i < I915_NUM_RINGS; i++) {
   3576 		struct drm_i915_gem_request *req;
   3577 
   3578 		req = obj->last_read_req[i];
   3579 		if (req == NULL)
   3580 			continue;
   3581 
   3582 		if (list_empty(&req->list))
   3583 			goto retire;
   3584 
   3585 		if (i915_gem_request_completed(req, true)) {
   3586 			__i915_gem_request_retire__upto(req);
   3587 retire:
   3588 			i915_gem_object_retire__read(obj, i);
   3589 		}
   3590 	}
   3591 
   3592 	return 0;
   3593 }
   3594 
   3595 /**
   3596  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
   3597  * @DRM_IOCTL_ARGS: standard ioctl arguments
   3598  *
   3599  * Returns 0 if successful, else an error is returned with the remaining time in
   3600  * the timeout parameter.
   3601  *  -ETIME: object is still busy after timeout
   3602  *  -ERESTARTSYS: signal interrupted the wait
   3603  *  -ENONENT: object doesn't exist
   3604  * Also possible, but rare:
   3605  *  -EAGAIN: GPU wedged
   3606  *  -ENOMEM: damn
   3607  *  -ENODEV: Internal IRQ fail
   3608  *  -E?: The add request failed
   3609  *
   3610  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
   3611  * non-zero timeout parameter the wait ioctl will wait for the given number of
   3612  * nanoseconds on an object becoming unbusy. Since the wait itself does so
   3613  * without holding struct_mutex the object may become re-busied before this
   3614  * function completes. A similar but shorter * race condition exists in the busy
   3615  * ioctl
   3616  */
   3617 int
   3618 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
   3619 {
   3620 	struct drm_i915_private *dev_priv = dev->dev_private;
   3621 	struct drm_i915_gem_wait *args = data;
   3622 	struct drm_gem_object *gobj;
   3623 	struct drm_i915_gem_object *obj;
   3624 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
   3625 	unsigned reset_counter;
   3626 	int i, n = 0;
   3627 	int ret;
   3628 
   3629 	if (args->flags != 0)
   3630 		return -EINVAL;
   3631 
   3632 	ret = i915_mutex_lock_interruptible(dev);
   3633 	if (ret)
   3634 		return ret;
   3635 
   3636 	gobj = drm_gem_object_lookup(dev, file, args->bo_handle);
   3637 	if (gobj == NULL) {
   3638 		mutex_unlock(&dev->struct_mutex);
   3639 		return -ENOENT;
   3640 	}
   3641 	obj = to_intel_bo(gobj);
   3642 
   3643 	/* Need to make sure the object gets inactive eventually. */
   3644 	ret = i915_gem_object_flush_active(obj);
   3645 	if (ret)
   3646 		goto out;
   3647 
   3648 	if (!obj->active)
   3649 		goto out;
   3650 
   3651 	/* Do this after OLR check to make sure we make forward progress polling
   3652 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
   3653 	 */
   3654 	if (args->timeout_ns == 0) {
   3655 		ret = -ETIME;
   3656 		goto out;
   3657 	}
   3658 
   3659 	drm_gem_object_unreference(&obj->base);
   3660 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   3661 
   3662 	for (i = 0; i < I915_NUM_RINGS; i++) {
   3663 		if (obj->last_read_req[i] == NULL)
   3664 			continue;
   3665 
   3666 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
   3667 	}
   3668 
   3669 	mutex_unlock(&dev->struct_mutex);
   3670 
   3671 	for (i = 0; i < n; i++) {
   3672 		if (ret == 0)
   3673 			ret = __i915_wait_request(req[i], reset_counter, true,
   3674 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
   3675 						  file->driver_priv);
   3676 		i915_gem_request_unreference__unlocked(req[i]);
   3677 	}
   3678 	return ret;
   3679 
   3680 out:
   3681 	drm_gem_object_unreference(&obj->base);
   3682 	mutex_unlock(&dev->struct_mutex);
   3683 	return ret;
   3684 }
   3685 
   3686 static int
   3687 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
   3688 		       struct intel_engine_cs *to,
   3689 		       struct drm_i915_gem_request *from_req,
   3690 		       struct drm_i915_gem_request **to_req)
   3691 {
   3692 	struct intel_engine_cs *from;
   3693 	int ret;
   3694 
   3695 	from = i915_gem_request_get_ring(from_req);
   3696 	if (to == from)
   3697 		return 0;
   3698 
   3699 	if (i915_gem_request_completed(from_req, true))
   3700 		return 0;
   3701 
   3702 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
   3703 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
   3704 		ret = __i915_wait_request(from_req,
   3705 					  atomic_read(&i915->gpu_error.reset_counter),
   3706 					  i915->mm.interruptible,
   3707 					  NULL,
   3708 					  &i915->rps.semaphores);
   3709 		if (ret)
   3710 			return ret;
   3711 
   3712 		i915_gem_object_retire_request(obj, from_req);
   3713 	} else {
   3714 		int idx = intel_ring_sync_index(from, to);
   3715 		u32 seqno = i915_gem_request_get_seqno(from_req);
   3716 
   3717 		WARN_ON(!to_req);
   3718 
   3719 		if (seqno <= from->semaphore.sync_seqno[idx])
   3720 			return 0;
   3721 
   3722 		if (*to_req == NULL) {
   3723 			ret = i915_gem_request_alloc(to, to->default_context, to_req);
   3724 			if (ret)
   3725 				return ret;
   3726 		}
   3727 
   3728 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
   3729 		ret = to->semaphore.sync_to(*to_req, from, seqno);
   3730 		if (ret)
   3731 			return ret;
   3732 
   3733 		/* We use last_read_req because sync_to()
   3734 		 * might have just caused seqno wrap under
   3735 		 * the radar.
   3736 		 */
   3737 		from->semaphore.sync_seqno[idx] =
   3738 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
   3739 	}
   3740 
   3741 	return 0;
   3742 }
   3743 
   3744 /**
   3745  * i915_gem_object_sync - sync an object to a ring.
   3746  *
   3747  * @obj: object which may be in use on another ring.
   3748  * @to: ring we wish to use the object on. May be NULL.
   3749  * @to_req: request we wish to use the object for. See below.
   3750  *          This will be allocated and returned if a request is
   3751  *          required but not passed in.
   3752  *
   3753  * This code is meant to abstract object synchronization with the GPU.
   3754  * Calling with NULL implies synchronizing the object with the CPU
   3755  * rather than a particular GPU ring. Conceptually we serialise writes
   3756  * between engines inside the GPU. We only allow one engine to write
   3757  * into a buffer at any time, but multiple readers. To ensure each has
   3758  * a coherent view of memory, we must:
   3759  *
   3760  * - If there is an outstanding write request to the object, the new
   3761  *   request must wait for it to complete (either CPU or in hw, requests
   3762  *   on the same ring will be naturally ordered).
   3763  *
   3764  * - If we are a write request (pending_write_domain is set), the new
   3765  *   request must wait for outstanding read requests to complete.
   3766  *
   3767  * For CPU synchronisation (NULL to) no request is required. For syncing with
   3768  * rings to_req must be non-NULL. However, a request does not have to be
   3769  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
   3770  * request will be allocated automatically and returned through *to_req. Note
   3771  * that it is not guaranteed that commands will be emitted (because the system
   3772  * might already be idle). Hence there is no need to create a request that
   3773  * might never have any work submitted. Note further that if a request is
   3774  * returned in *to_req, it is the responsibility of the caller to submit
   3775  * that request (after potentially adding more work to it).
   3776  *
   3777  * Returns 0 if successful, else propagates up the lower layer error.
   3778  */
   3779 int
   3780 i915_gem_object_sync(struct drm_i915_gem_object *obj,
   3781 		     struct intel_engine_cs *to,
   3782 		     struct drm_i915_gem_request **to_req)
   3783 {
   3784 	const bool readonly = obj->base.pending_write_domain == 0;
   3785 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
   3786 	int ret, i, n;
   3787 
   3788 	if (!obj->active)
   3789 		return 0;
   3790 
   3791 	if (to == NULL)
   3792 		return i915_gem_object_wait_rendering(obj, readonly);
   3793 
   3794 	n = 0;
   3795 	if (readonly) {
   3796 		if (obj->last_write_req)
   3797 			req[n++] = obj->last_write_req;
   3798 	} else {
   3799 		for (i = 0; i < I915_NUM_RINGS; i++)
   3800 			if (obj->last_read_req[i])
   3801 				req[n++] = obj->last_read_req[i];
   3802 	}
   3803 	for (i = 0; i < n; i++) {
   3804 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
   3805 		if (ret)
   3806 			return ret;
   3807 	}
   3808 
   3809 	return 0;
   3810 }
   3811 
   3812 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
   3813 {
   3814 	u32 old_write_domain, old_read_domains;
   3815 
   3816 	/* Force a pagefault for domain tracking on next user access */
   3817 	i915_gem_release_mmap(obj);
   3818 
   3819 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   3820 		return;
   3821 
   3822 	/* Wait for any direct GTT access to complete */
   3823 	mb();
   3824 
   3825 	old_read_domains = obj->base.read_domains;
   3826 	old_write_domain = obj->base.write_domain;
   3827 
   3828 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
   3829 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
   3830 
   3831 	trace_i915_gem_object_change_domain(obj,
   3832 					    old_read_domains,
   3833 					    old_write_domain);
   3834 }
   3835 
   3836 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
   3837 {
   3838 	struct drm_i915_gem_object *obj = vma->obj;
   3839 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3840 	int ret;
   3841 
   3842 	if (list_empty(&vma->vma_link))
   3843 		return 0;
   3844 
   3845 	if (!drm_mm_node_allocated(&vma->node)) {
   3846 		i915_gem_vma_destroy(vma);
   3847 		return 0;
   3848 	}
   3849 
   3850 	if (vma->pin_count)
   3851 		return -EBUSY;
   3852 
   3853 	BUG_ON(obj->pages == NULL);
   3854 
   3855 	if (wait) {
   3856 		ret = i915_gem_object_wait_rendering(obj, false);
   3857 		if (ret)
   3858 			return ret;
   3859 	}
   3860 
   3861 	if (i915_is_ggtt(vma->vm) &&
   3862 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
   3863 		i915_gem_object_finish_gtt(obj);
   3864 
   3865 		/* release the fence reg _after_ flushing */
   3866 		ret = i915_gem_object_put_fence(obj);
   3867 		if (ret)
   3868 			return ret;
   3869 	}
   3870 
   3871 	trace_i915_vma_unbind(vma);
   3872 
   3873 	vma->vm->unbind_vma(vma);
   3874 	vma->bound = 0;
   3875 
   3876 	list_del_init(&vma->mm_list);
   3877 	if (i915_is_ggtt(vma->vm)) {
   3878 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
   3879 			obj->map_and_fenceable = false;
   3880 		} else if (vma->ggtt_view.pages) {
   3881 			sg_free_table(vma->ggtt_view.pages);
   3882 			kfree(vma->ggtt_view.pages);
   3883 		}
   3884 		vma->ggtt_view.pages = NULL;
   3885 	}
   3886 
   3887 	drm_mm_remove_node(&vma->node);
   3888 	i915_gem_vma_destroy(vma);
   3889 
   3890 	/* Since the unbound list is global, only move to that list if
   3891 	 * no more VMAs exist. */
   3892 	if (list_empty(&obj->vma_list))
   3893 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   3894 
   3895 	/* And finally now the object is completely decoupled from this vma,
   3896 	 * we can drop its hold on the backing storage and allow it to be
   3897 	 * reaped by the shrinker.
   3898 	 */
   3899 	i915_gem_object_unpin_pages(obj);
   3900 
   3901 	return 0;
   3902 }
   3903 
   3904 int i915_vma_unbind(struct i915_vma *vma)
   3905 {
   3906 	return __i915_vma_unbind(vma, true);
   3907 }
   3908 
   3909 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
   3910 {
   3911 	return __i915_vma_unbind(vma, false);
   3912 }
   3913 
   3914 int i915_gpu_idle(struct drm_device *dev)
   3915 {
   3916 	struct drm_i915_private *dev_priv = dev->dev_private;
   3917 	struct intel_engine_cs *ring;
   3918 	int ret, i;
   3919 
   3920 	/* Flush everything onto the inactive list. */
   3921 	for_each_ring(ring, dev_priv, i) {
   3922 		if (!i915.enable_execlists) {
   3923 			struct drm_i915_gem_request *req;
   3924 
   3925 			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
   3926 			if (ret)
   3927 				return ret;
   3928 
   3929 			ret = i915_switch_context(req);
   3930 			if (ret) {
   3931 				i915_gem_request_cancel(req);
   3932 				return ret;
   3933 			}
   3934 
   3935 			i915_add_request_no_flush(req);
   3936 		}
   3937 
   3938 		ret = intel_ring_idle(ring);
   3939 		if (ret)
   3940 			return ret;
   3941 	}
   3942 
   3943 	WARN_ON(i915_verify_lists(dev));
   3944 	return 0;
   3945 }
   3946 
   3947 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
   3948 				     unsigned long cache_level)
   3949 {
   3950 	struct drm_mm_node *gtt_space = &vma->node;
   3951 	struct drm_mm_node *other;
   3952 
   3953 	/*
   3954 	 * On some machines we have to be careful when putting differing types
   3955 	 * of snoopable memory together to avoid the prefetcher crossing memory
   3956 	 * domains and dying. During vm initialisation, we decide whether or not
   3957 	 * these constraints apply and set the drm_mm.color_adjust
   3958 	 * appropriately.
   3959 	 */
   3960 	if (vma->vm->mm.color_adjust == NULL)
   3961 		return true;
   3962 
   3963 	if (!drm_mm_node_allocated(gtt_space))
   3964 		return true;
   3965 
   3966 	if (list_empty(&gtt_space->node_list))
   3967 		return true;
   3968 
   3969 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
   3970 	if (other->allocated && !other->hole_follows && other->color != cache_level)
   3971 		return false;
   3972 
   3973 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
   3974 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
   3975 		return false;
   3976 
   3977 	return true;
   3978 }
   3979 
   3980 /**
   3981  * Finds free space in the GTT aperture and binds the object or a view of it
   3982  * there.
   3983  */
   3984 static struct i915_vma *
   3985 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
   3986 			   struct i915_address_space *vm,
   3987 			   const struct i915_ggtt_view *ggtt_view,
   3988 			   unsigned alignment,
   3989 			   uint64_t flags)
   3990 {
   3991 	struct drm_device *dev = obj->base.dev;
   3992 	struct drm_i915_private *dev_priv = dev->dev_private;
   3993 	u32 fence_alignment, unfenced_alignment;
   3994 	u32 search_flag, alloc_flag;
   3995 	u64 start, end;
   3996 	u64 size, fence_size;
   3997 	struct i915_vma *vma;
   3998 	int ret;
   3999 
   4000 	if (i915_is_ggtt(vm)) {
   4001 		u32 view_size;
   4002 
   4003 		if (WARN_ON(!ggtt_view))
   4004 			return ERR_PTR(-EINVAL);
   4005 
   4006 		view_size = i915_ggtt_view_size(obj, ggtt_view);
   4007 
   4008 		fence_size = i915_gem_get_gtt_size(dev,
   4009 						   view_size,
   4010 						   obj->tiling_mode);
   4011 		fence_alignment = i915_gem_get_gtt_alignment(dev,
   4012 							     view_size,
   4013 							     obj->tiling_mode,
   4014 							     true);
   4015 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
   4016 								view_size,
   4017 								obj->tiling_mode,
   4018 								false);
   4019 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
   4020 	} else {
   4021 		fence_size = i915_gem_get_gtt_size(dev,
   4022 						   obj->base.size,
   4023 						   obj->tiling_mode);
   4024 		fence_alignment = i915_gem_get_gtt_alignment(dev,
   4025 							     obj->base.size,
   4026 							     obj->tiling_mode,
   4027 							     true);
   4028 		unfenced_alignment =
   4029 			i915_gem_get_gtt_alignment(dev,
   4030 						   obj->base.size,
   4031 						   obj->tiling_mode,
   4032 						   false);
   4033 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
   4034 	}
   4035 
   4036 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
   4037 	end = vm->total;
   4038 	if (flags & PIN_MAPPABLE)
   4039 		end = min_t(u64, end, dev_priv->gtt.mappable_end);
   4040 	if (flags & PIN_ZONE_4G)
   4041 		end = min_t(u64, end, (1ULL << 32));
   4042 
   4043 	if (alignment == 0)
   4044 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
   4045 						unfenced_alignment;
   4046 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
   4047 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
   4048 			  ggtt_view ? ggtt_view->type : 0,
   4049 			  alignment);
   4050 		return ERR_PTR(-EINVAL);
   4051 	}
   4052 
   4053 	/* If binding the object/GGTT view requires more space than the entire
   4054 	 * aperture has, reject it early before evicting everything in a vain
   4055 	 * attempt to find space.
   4056 	 */
   4057 	if (size > end) {
   4058 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
   4059 			  ggtt_view ? ggtt_view->type : 0,
   4060 			  size,
   4061 			  flags & PIN_MAPPABLE ? "mappable" : "total",
   4062 			  end);
   4063 		return ERR_PTR(-E2BIG);
   4064 	}
   4065 
   4066 	ret = i915_gem_object_get_pages(obj);
   4067 	if (ret)
   4068 		return ERR_PTR(ret);
   4069 
   4070 	i915_gem_object_pin_pages(obj);
   4071 
   4072 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
   4073 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
   4074 
   4075 	if (IS_ERR(vma))
   4076 		goto err_unpin;
   4077 
   4078 	if (flags & PIN_HIGH) {
   4079 		search_flag = DRM_MM_SEARCH_BELOW;
   4080 		alloc_flag = DRM_MM_CREATE_TOP;
   4081 	} else {
   4082 		search_flag = DRM_MM_SEARCH_DEFAULT;
   4083 		alloc_flag = DRM_MM_CREATE_DEFAULT;
   4084 	}
   4085 
   4086 search_free:
   4087 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
   4088 						  size, alignment,
   4089 						  obj->cache_level,
   4090 						  start, end,
   4091 						  search_flag,
   4092 						  alloc_flag);
   4093 	if (ret) {
   4094 		ret = i915_gem_evict_something(dev, vm, size, alignment,
   4095 					       obj->cache_level,
   4096 					       start, end,
   4097 					       flags);
   4098 		if (ret == 0)
   4099 			goto search_free;
   4100 
   4101 		goto err_free_vma;
   4102 	}
   4103 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
   4104 		ret = -EINVAL;
   4105 		goto err_remove_node;
   4106 	}
   4107 
   4108 	trace_i915_vma_bind(vma, flags);
   4109 	ret = i915_vma_bind(vma, obj->cache_level, flags);
   4110 	if (ret)
   4111 		goto err_remove_node;
   4112 
   4113 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
   4114 	list_add_tail(&vma->mm_list, &vm->inactive_list);
   4115 
   4116 	return vma;
   4117 
   4118 err_remove_node:
   4119 	drm_mm_remove_node(&vma->node);
   4120 err_free_vma:
   4121 	i915_gem_vma_destroy(vma);
   4122 	vma = ERR_PTR(ret);
   4123 err_unpin:
   4124 	i915_gem_object_unpin_pages(obj);
   4125 	return vma;
   4126 }
   4127 
   4128 bool
   4129 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
   4130 			bool force)
   4131 {
   4132 	/* If we don't have a page list set up, then we're not pinned
   4133 	 * to GPU, and we can ignore the cache flush because it'll happen
   4134 	 * again at bind time.
   4135 	 */
   4136 	if (obj->pages == NULL)
   4137 		return false;
   4138 
   4139 	/*
   4140 	 * Stolen memory is always coherent with the GPU as it is explicitly
   4141 	 * marked as wc by the system, or the system is cache-coherent.
   4142 	 */
   4143 	if (obj->stolen || obj->phys_handle)
   4144 		return false;
   4145 
   4146 	/* If the GPU is snooping the contents of the CPU cache,
   4147 	 * we do not need to manually clear the CPU cache lines.  However,
   4148 	 * the caches are only snooped when the render cache is
   4149 	 * flushed/invalidated.  As we always have to emit invalidations
   4150 	 * and flushes when moving into and out of the RENDER domain, correct
   4151 	 * snooping behaviour occurs naturally as the result of our domain
   4152 	 * tracking.
   4153 	 */
   4154 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
   4155 		obj->cache_dirty = true;
   4156 		return false;
   4157 	}
   4158 
   4159 	trace_i915_gem_object_clflush(obj);
   4160 #ifdef __NetBSD__
   4161 	drm_clflush_pglist(&obj->igo_pageq);
   4162 #else
   4163 	drm_clflush_sg(obj->pages);
   4164 #endif
   4165 	obj->cache_dirty = false;
   4166 
   4167 	return true;
   4168 }
   4169 
   4170 /** Flushes the GTT write domain for the object if it's dirty. */
   4171 static void
   4172 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
   4173 {
   4174 	uint32_t old_write_domain;
   4175 
   4176 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
   4177 		return;
   4178 
   4179 	/* No actual flushing is required for the GTT write domain.  Writes
   4180 	 * to it immediately go to main memory as far as we know, so there's
   4181 	 * no chipset flush.  It also doesn't land in render cache.
   4182 	 *
   4183 	 * However, we do have to enforce the order so that all writes through
   4184 	 * the GTT land before any writes to the device, such as updates to
   4185 	 * the GATT itself.
   4186 	 */
   4187 	wmb();
   4188 
   4189 	old_write_domain = obj->base.write_domain;
   4190 	obj->base.write_domain = 0;
   4191 
   4192 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
   4193 
   4194 	trace_i915_gem_object_change_domain(obj,
   4195 					    obj->base.read_domains,
   4196 					    old_write_domain);
   4197 }
   4198 
   4199 /** Flushes the CPU write domain for the object if it's dirty. */
   4200 static void
   4201 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
   4202 {
   4203 	uint32_t old_write_domain;
   4204 
   4205 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
   4206 		return;
   4207 
   4208 	if (i915_gem_clflush_object(obj, obj->pin_display))
   4209 		i915_gem_chipset_flush(obj->base.dev);
   4210 
   4211 	old_write_domain = obj->base.write_domain;
   4212 	obj->base.write_domain = 0;
   4213 
   4214 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
   4215 
   4216 	trace_i915_gem_object_change_domain(obj,
   4217 					    obj->base.read_domains,
   4218 					    old_write_domain);
   4219 }
   4220 
   4221 /**
   4222  * Moves a single object to the GTT read, and possibly write domain.
   4223  *
   4224  * This function returns when the move is complete, including waiting on
   4225  * flushes to occur.
   4226  */
   4227 int
   4228 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
   4229 {
   4230 	uint32_t old_write_domain, old_read_domains;
   4231 	struct i915_vma *vma;
   4232 	int ret;
   4233 
   4234 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
   4235 		return 0;
   4236 
   4237 	ret = i915_gem_object_wait_rendering(obj, !write);
   4238 	if (ret)
   4239 		return ret;
   4240 
   4241 	/* Flush and acquire obj->pages so that we are coherent through
   4242 	 * direct access in memory with previous cached writes through
   4243 	 * shmemfs and that our cache domain tracking remains valid.
   4244 	 * For example, if the obj->filp was moved to swap without us
   4245 	 * being notified and releasing the pages, we would mistakenly
   4246 	 * continue to assume that the obj remained out of the CPU cached
   4247 	 * domain.
   4248 	 */
   4249 	ret = i915_gem_object_get_pages(obj);
   4250 	if (ret)
   4251 		return ret;
   4252 
   4253 	i915_gem_object_flush_cpu_write_domain(obj);
   4254 
   4255 	/* Serialise direct access to this object with the barriers for
   4256 	 * coherent writes from the GPU, by effectively invalidating the
   4257 	 * GTT domain upon first access.
   4258 	 */
   4259 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   4260 		mb();
   4261 
   4262 	old_write_domain = obj->base.write_domain;
   4263 	old_read_domains = obj->base.read_domains;
   4264 
   4265 	/* It should now be out of any other write domains, and we can update
   4266 	 * the domain values for our changes.
   4267 	 */
   4268 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
   4269 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4270 	if (write) {
   4271 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
   4272 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
   4273 		obj->dirty = 1;
   4274 	}
   4275 
   4276 	trace_i915_gem_object_change_domain(obj,
   4277 					    old_read_domains,
   4278 					    old_write_domain);
   4279 
   4280 	/* And bump the LRU for this access */
   4281 	vma = i915_gem_obj_to_ggtt(obj);
   4282 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
   4283 		list_move_tail(&vma->mm_list,
   4284 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
   4285 
   4286 	return 0;
   4287 }
   4288 
   4289 /**
   4290  * Changes the cache-level of an object across all VMA.
   4291  *
   4292  * After this function returns, the object will be in the new cache-level
   4293  * across all GTT and the contents of the backing storage will be coherent,
   4294  * with respect to the new cache-level. In order to keep the backing storage
   4295  * coherent for all users, we only allow a single cache level to be set
   4296  * globally on the object and prevent it from being changed whilst the
   4297  * hardware is reading from the object. That is if the object is currently
   4298  * on the scanout it will be set to uncached (or equivalent display
   4299  * cache coherency) and all non-MOCS GPU access will also be uncached so
   4300  * that all direct access to the scanout remains coherent.
   4301  */
   4302 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
   4303 				    enum i915_cache_level cache_level)
   4304 {
   4305 	struct drm_device *dev = obj->base.dev;
   4306 	struct i915_vma *vma, *next;
   4307 	bool bound = false;
   4308 	int ret = 0;
   4309 
   4310 	if (obj->cache_level == cache_level)
   4311 		goto out;
   4312 
   4313 	/* Inspect the list of currently bound VMA and unbind any that would
   4314 	 * be invalid given the new cache-level. This is principally to
   4315 	 * catch the issue of the CS prefetch crossing page boundaries and
   4316 	 * reading an invalid PTE on older architectures.
   4317 	 */
   4318 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   4319 		if (!drm_mm_node_allocated(&vma->node))
   4320 			continue;
   4321 
   4322 		if (vma->pin_count) {
   4323 			DRM_DEBUG("can not change the cache level of pinned objects\n");
   4324 			return -EBUSY;
   4325 		}
   4326 
   4327 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
   4328 			ret = i915_vma_unbind(vma);
   4329 			if (ret)
   4330 				return ret;
   4331 		} else
   4332 			bound = true;
   4333 	}
   4334 
   4335 	/* We can reuse the existing drm_mm nodes but need to change the
   4336 	 * cache-level on the PTE. We could simply unbind them all and
   4337 	 * rebind with the correct cache-level on next use. However since
   4338 	 * we already have a valid slot, dma mapping, pages etc, we may as
   4339 	 * rewrite the PTE in the belief that doing so tramples upon less
   4340 	 * state and so involves less work.
   4341 	 */
   4342 	if (bound) {
   4343 		/* Before we change the PTE, the GPU must not be accessing it.
   4344 		 * If we wait upon the object, we know that all the bound
   4345 		 * VMA are no longer active.
   4346 		 */
   4347 		ret = i915_gem_object_wait_rendering(obj, false);
   4348 		if (ret)
   4349 			return ret;
   4350 
   4351 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
   4352 			/* Access to snoopable pages through the GTT is
   4353 			 * incoherent and on some machines causes a hard
   4354 			 * lockup. Relinquish the CPU mmaping to force
   4355 			 * userspace to refault in the pages and we can
   4356 			 * then double check if the GTT mapping is still
   4357 			 * valid for that pointer access.
   4358 			 */
   4359 			i915_gem_release_mmap(obj);
   4360 
   4361 			/* As we no longer need a fence for GTT access,
   4362 			 * we can relinquish it now (and so prevent having
   4363 			 * to steal a fence from someone else on the next
   4364 			 * fence request). Note GPU activity would have
   4365 			 * dropped the fence as all snoopable access is
   4366 			 * supposed to be linear.
   4367 			 */
   4368 			ret = i915_gem_object_put_fence(obj);
   4369 			if (ret)
   4370 				return ret;
   4371 		} else {
   4372 			/* We either have incoherent backing store and
   4373 			 * so no GTT access or the architecture is fully
   4374 			 * coherent. In such cases, existing GTT mmaps
   4375 			 * ignore the cache bit in the PTE and we can
   4376 			 * rewrite it without confusing the GPU or having
   4377 			 * to force userspace to fault back in its mmaps.
   4378 			 */
   4379 		}
   4380 
   4381 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
   4382 			if (!drm_mm_node_allocated(&vma->node))
   4383 				continue;
   4384 
   4385 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
   4386 			if (ret)
   4387 				return ret;
   4388 		}
   4389 	}
   4390 
   4391 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   4392 		vma->node.color = cache_level;
   4393 	obj->cache_level = cache_level;
   4394 
   4395 out:
   4396 	/* Flush the dirty CPU caches to the backing storage so that the
   4397 	 * object is now coherent at its new cache level (with respect
   4398 	 * to the access domain).
   4399 	 */
   4400 	if (obj->cache_dirty &&
   4401 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
   4402 	    cpu_write_needs_clflush(obj)) {
   4403 		if (i915_gem_clflush_object(obj, true))
   4404 			i915_gem_chipset_flush(obj->base.dev);
   4405 	}
   4406 
   4407 	return 0;
   4408 }
   4409 
   4410 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
   4411 			       struct drm_file *file)
   4412 {
   4413 	struct drm_i915_gem_caching *args = data;
   4414 	struct drm_gem_object *gobj;
   4415 	struct drm_i915_gem_object *obj;
   4416 
   4417 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4418 	if (gobj == NULL)
   4419 		return -ENOENT;
   4420 	obj = to_intel_bo(gobj);
   4421 
   4422 	switch (obj->cache_level) {
   4423 	case I915_CACHE_LLC:
   4424 	case I915_CACHE_L3_LLC:
   4425 		args->caching = I915_CACHING_CACHED;
   4426 		break;
   4427 
   4428 	case I915_CACHE_WT:
   4429 		args->caching = I915_CACHING_DISPLAY;
   4430 		break;
   4431 
   4432 	default:
   4433 		args->caching = I915_CACHING_NONE;
   4434 		break;
   4435 	}
   4436 
   4437 	drm_gem_object_unreference_unlocked(&obj->base);
   4438 	return 0;
   4439 }
   4440 
   4441 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
   4442 			       struct drm_file *file)
   4443 {
   4444 	struct drm_i915_private *dev_priv = dev->dev_private;
   4445 	struct drm_i915_gem_caching *args = data;
   4446 	struct drm_gem_object *gobj;
   4447 	struct drm_i915_gem_object *obj;
   4448 	enum i915_cache_level level;
   4449 	int ret;
   4450 
   4451 	switch (args->caching) {
   4452 	case I915_CACHING_NONE:
   4453 		level = I915_CACHE_NONE;
   4454 		break;
   4455 	case I915_CACHING_CACHED:
   4456 		/*
   4457 		 * Due to a HW issue on BXT A stepping, GPU stores via a
   4458 		 * snooped mapping may leave stale data in a corresponding CPU
   4459 		 * cacheline, whereas normally such cachelines would get
   4460 		 * invalidated.
   4461 		 */
   4462 		if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
   4463 			return -ENODEV;
   4464 
   4465 		level = I915_CACHE_LLC;
   4466 		break;
   4467 	case I915_CACHING_DISPLAY:
   4468 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
   4469 		break;
   4470 	default:
   4471 		return -EINVAL;
   4472 	}
   4473 
   4474 	intel_runtime_pm_get(dev_priv);
   4475 
   4476 	ret = i915_mutex_lock_interruptible(dev);
   4477 	if (ret)
   4478 		goto rpm_put;
   4479 
   4480 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4481 	if (gobj == NULL) {
   4482 		ret = -ENOENT;
   4483 		goto unlock;
   4484 	}
   4485 	obj = to_intel_bo(gobj);
   4486 
   4487 	ret = i915_gem_object_set_cache_level(obj, level);
   4488 
   4489 	drm_gem_object_unreference(&obj->base);
   4490 unlock:
   4491 	mutex_unlock(&dev->struct_mutex);
   4492 rpm_put:
   4493 	intel_runtime_pm_put(dev_priv);
   4494 
   4495 /*
   4496  * Prepare buffer for display plane (scanout, cursors, etc).
   4497  * Can be called from an uninterruptible phase (modesetting) and allows
   4498  * any flushes to be pipelined (for pageflips).
   4499  */
   4500 int
   4501 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
   4502 				     u32 alignment,
   4503 				     struct intel_engine_cs *pipelined,
   4504 				     struct drm_i915_gem_request **pipelined_request,
   4505 				     const struct i915_ggtt_view *view)
   4506 {
   4507 	u32 old_read_domains, old_write_domain;
   4508 	int ret;
   4509 
   4510 	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
   4511 	if (ret)
   4512 		return ret;
   4513 
   4514 	/* Mark the pin_display early so that we account for the
   4515 	 * display coherency whilst setting up the cache domains.
   4516 	 */
   4517 	obj->pin_display++;
   4518 
   4519 	/* The display engine is not coherent with the LLC cache on gen6.  As
   4520 	 * a result, we make sure that the pinning that is about to occur is
   4521 	 * done with uncached PTEs. This is lowest common denominator for all
   4522 	 * chipsets.
   4523 	 *
   4524 	 * However for gen6+, we could do better by using the GFDT bit instead
   4525 	 * of uncaching, which would allow us to flush all the LLC-cached data
   4526 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
   4527 	 */
   4528 	ret = i915_gem_object_set_cache_level(obj,
   4529 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
   4530 	if (ret)
   4531 		goto err_unpin_display;
   4532 
   4533 	/* As the user may map the buffer once pinned in the display plane
   4534 	 * (e.g. libkms for the bootup splash), we have to ensure that we
   4535 	 * always use map_and_fenceable for all scanout buffers.
   4536 	 */
   4537 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
   4538 				       view->type == I915_GGTT_VIEW_NORMAL ?
   4539 				       PIN_MAPPABLE : 0);
   4540 	if (ret)
   4541 		goto err_unpin_display;
   4542 
   4543 	i915_gem_object_flush_cpu_write_domain(obj);
   4544 
   4545 	old_write_domain = obj->base.write_domain;
   4546 	old_read_domains = obj->base.read_domains;
   4547 
   4548 	/* It should now be out of any other write domains, and we can update
   4549 	 * the domain values for our changes.
   4550 	 */
   4551 	obj->base.write_domain = 0;
   4552 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4553 
   4554 	trace_i915_gem_object_change_domain(obj,
   4555 					    old_read_domains,
   4556 					    old_write_domain);
   4557 
   4558 	return 0;
   4559 
   4560 err_unpin_display:
   4561 	obj->pin_display--;
   4562 	return ret;
   4563 }
   4564 
   4565 void
   4566 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
   4567 					 const struct i915_ggtt_view *view)
   4568 {
   4569 	if (WARN_ON(obj->pin_display == 0))
   4570 		return;
   4571 
   4572 	i915_gem_object_ggtt_unpin_view(obj, view);
   4573 
   4574 	obj->pin_display--;
   4575 }
   4576 
   4577 /**
   4578  * Moves a single object to the CPU read, and possibly write domain.
   4579  *
   4580  * This function returns when the move is complete, including waiting on
   4581  * flushes to occur.
   4582  */
   4583 int
   4584 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
   4585 {
   4586 	uint32_t old_write_domain, old_read_domains;
   4587 	int ret;
   4588 
   4589 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
   4590 		return 0;
   4591 
   4592 	ret = i915_gem_object_wait_rendering(obj, !write);
   4593 	if (ret)
   4594 		return ret;
   4595 
   4596 	i915_gem_object_flush_gtt_write_domain(obj);
   4597 
   4598 	old_write_domain = obj->base.write_domain;
   4599 	old_read_domains = obj->base.read_domains;
   4600 
   4601 	/* Flush the CPU cache if it's still invalid. */
   4602 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
   4603 		i915_gem_clflush_object(obj, false);
   4604 
   4605 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
   4606 	}
   4607 
   4608 	/* It should now be out of any other write domains, and we can update
   4609 	 * the domain values for our changes.
   4610 	 */
   4611 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
   4612 
   4613 	/* If we're writing through the CPU, then the GPU read domains will
   4614 	 * need to be invalidated at next use.
   4615 	 */
   4616 	if (write) {
   4617 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4618 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4619 	}
   4620 
   4621 	trace_i915_gem_object_change_domain(obj,
   4622 					    old_read_domains,
   4623 					    old_write_domain);
   4624 
   4625 	return 0;
   4626 }
   4627 
   4628 /* Throttle our rendering by waiting until the ring has completed our requests
   4629  * emitted over 20 msec ago.
   4630  *
   4631  * Note that if we were to use the current jiffies each time around the loop,
   4632  * we wouldn't escape the function with any frames outstanding if the time to
   4633  * render a frame was over 20ms.
   4634  *
   4635  * This should get us reasonable parallelism between CPU and GPU but also
   4636  * relatively low latency when blocking on a particular request to finish.
   4637  */
   4638 static int
   4639 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
   4640 {
   4641 	struct drm_i915_private *dev_priv = dev->dev_private;
   4642 	struct drm_i915_file_private *file_priv = file->driver_priv;
   4643 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
   4644 	struct drm_i915_gem_request *request, *target = NULL;
   4645 	unsigned reset_counter;
   4646 	int ret;
   4647 
   4648 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
   4649 	if (ret)
   4650 		return ret;
   4651 
   4652 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
   4653 	if (ret)
   4654 		return ret;
   4655 
   4656 	spin_lock(&file_priv->mm.lock);
   4657 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
   4658 		if (time_after_eq(request->emitted_jiffies, recent_enough))
   4659 			break;
   4660 
   4661 		/*
   4662 		 * Note that the request might not have been submitted yet.
   4663 		 * In which case emitted_jiffies will be zero.
   4664 		 */
   4665 		if (!request->emitted_jiffies)
   4666 			continue;
   4667 
   4668 		target = request;
   4669 	}
   4670 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   4671 	if (target)
   4672 		i915_gem_request_reference(target);
   4673 	spin_unlock(&file_priv->mm.lock);
   4674 
   4675 	if (target == NULL)
   4676 		return 0;
   4677 
   4678 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
   4679 	if (ret == 0)
   4680 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
   4681 
   4682 	i915_gem_request_unreference__unlocked(target);
   4683 
   4684 	return ret;
   4685 }
   4686 
   4687 static bool
   4688 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
   4689 {
   4690 	struct drm_i915_gem_object *obj = vma->obj;
   4691 
   4692 	if (alignment &&
   4693 	    vma->node.start & (alignment - 1))
   4694 		return true;
   4695 
   4696 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
   4697 		return true;
   4698 
   4699 	if (flags & PIN_OFFSET_BIAS &&
   4700 	    vma->node.start < (flags & PIN_OFFSET_MASK))
   4701 		return true;
   4702 
   4703 	return false;
   4704 }
   4705 
   4706 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
   4707 {
   4708 	struct drm_i915_gem_object *obj = vma->obj;
   4709 	bool mappable, fenceable;
   4710 	u32 fence_size, fence_alignment;
   4711 
   4712 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
   4713 					   obj->base.size,
   4714 					   obj->tiling_mode);
   4715 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
   4716 						     obj->base.size,
   4717 						     obj->tiling_mode,
   4718 						     true);
   4719 
   4720 	fenceable = (vma->node.size == fence_size &&
   4721 		     (vma->node.start & (fence_alignment - 1)) == 0);
   4722 
   4723 	mappable = (vma->node.start + fence_size <=
   4724 		    to_i915(obj->base.dev)->gtt.mappable_end);
   4725 
   4726 	obj->map_and_fenceable = mappable && fenceable;
   4727 }
   4728 
   4729 static int
   4730 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
   4731 		       struct i915_address_space *vm,
   4732 		       const struct i915_ggtt_view *ggtt_view,
   4733 		       uint32_t alignment,
   4734 		       uint64_t flags)
   4735 {
   4736 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   4737 	struct i915_vma *vma;
   4738 	unsigned bound;
   4739 	int ret;
   4740 
   4741 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
   4742 		return -ENODEV;
   4743 
   4744 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
   4745 		return -EINVAL;
   4746 
   4747 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
   4748 		return -EINVAL;
   4749 
   4750 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
   4751 		return -EINVAL;
   4752 
   4753 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
   4754 			  i915_gem_obj_to_vma(obj, vm);
   4755 
   4756 	if (IS_ERR(vma))
   4757 		return PTR_ERR(vma);
   4758 
   4759 	if (vma) {
   4760 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
   4761 			return -EBUSY;
   4762 
   4763 		if (i915_vma_misplaced(vma, alignment, flags)) {
   4764 			WARN(vma->pin_count,
   4765 			     "bo is already pinned in %s with incorrect alignment:"
   4766 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
   4767 			     " obj->map_and_fenceable=%d\n",
   4768 			     ggtt_view ? "ggtt" : "ppgtt",
   4769 			     upper_32_bits(vma->node.start),
   4770 			     lower_32_bits(vma->node.start),
   4771 			     alignment,
   4772 			     !!(flags & PIN_MAPPABLE),
   4773 			     obj->map_and_fenceable);
   4774 			ret = i915_vma_unbind(vma);
   4775 			if (ret)
   4776 				return ret;
   4777 
   4778 			vma = NULL;
   4779 		}
   4780 	}
   4781 
   4782 	bound = vma ? vma->bound : 0;
   4783 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
   4784 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
   4785 						 flags);
   4786 		if (IS_ERR(vma))
   4787 			return PTR_ERR(vma);
   4788 	} else {
   4789 		ret = i915_vma_bind(vma, obj->cache_level, flags);
   4790 		if (ret)
   4791 			return ret;
   4792 	}
   4793 
   4794 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
   4795 	    (bound ^ vma->bound) & GLOBAL_BIND) {
   4796 		__i915_vma_set_map_and_fenceable(vma);
   4797 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
   4798 	}
   4799 
   4800 	vma->pin_count++;
   4801 	return 0;
   4802 }
   4803 
   4804 int
   4805 i915_gem_object_pin(struct drm_i915_gem_object *obj,
   4806 		    struct i915_address_space *vm,
   4807 		    uint32_t alignment,
   4808 		    uint64_t flags)
   4809 {
   4810 	return i915_gem_object_do_pin(obj, vm,
   4811 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
   4812 				      alignment, flags);
   4813 }
   4814 
   4815 int
   4816 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
   4817 			 const struct i915_ggtt_view *view,
   4818 			 uint32_t alignment,
   4819 			 uint64_t flags)
   4820 {
   4821 	if (WARN_ONCE(!view, "no view specified"))
   4822 		return -EINVAL;
   4823 
   4824 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
   4825 				      alignment, flags | PIN_GLOBAL);
   4826 }
   4827 
   4828 void
   4829 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
   4830 				const struct i915_ggtt_view *view)
   4831 {
   4832 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
   4833 
   4834 	BUG_ON(!vma);
   4835 	WARN_ON(vma->pin_count == 0);
   4836 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
   4837 
   4838 	--vma->pin_count;
   4839 }
   4840 
   4841 int
   4842 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
   4843 		    struct drm_file *file)
   4844 {
   4845 	struct drm_i915_gem_busy *args = data;
   4846 	struct drm_gem_object *gobj;
   4847 	struct drm_i915_gem_object *obj;
   4848 	int ret;
   4849 
   4850 	ret = i915_mutex_lock_interruptible(dev);
   4851 	if (ret)
   4852 		return ret;
   4853 
   4854 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4855 	if (gobj == NULL) {
   4856 		ret = -ENOENT;
   4857 		goto unlock;
   4858 	}
   4859 	obj = to_intel_bo(gobj);
   4860 
   4861 	/* Count all active objects as busy, even if they are currently not used
   4862 	 * by the gpu. Users of this interface expect objects to eventually
   4863 	 * become non-busy without any further actions, therefore emit any
   4864 	 * necessary flushes here.
   4865 	 */
   4866 	ret = i915_gem_object_flush_active(obj);
   4867 	if (ret)
   4868 		goto unref;
   4869 
   4870 	BUILD_BUG_ON(I915_NUM_RINGS > 16);
   4871 	args->busy = obj->active << 16;
   4872 	if (obj->last_write_req)
   4873 		args->busy |= obj->last_write_req->ring->id;
   4874 
   4875 unref:
   4876 	drm_gem_object_unreference(&obj->base);
   4877 unlock:
   4878 	mutex_unlock(&dev->struct_mutex);
   4879 	return ret;
   4880 }
   4881 
   4882 int
   4883 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
   4884 			struct drm_file *file_priv)
   4885 {
   4886 	return i915_gem_ring_throttle(dev, file_priv);
   4887 }
   4888 
   4889 int
   4890 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   4891 		       struct drm_file *file_priv)
   4892 {
   4893 	struct drm_i915_private *dev_priv = dev->dev_private;
   4894 	struct drm_i915_gem_madvise *args = data;
   4895 	struct drm_gem_object *gobj;
   4896 	struct drm_i915_gem_object *obj;
   4897 	int ret;
   4898 
   4899 	switch (args->madv) {
   4900 	case I915_MADV_DONTNEED:
   4901 	case I915_MADV_WILLNEED:
   4902 	    break;
   4903 	default:
   4904 	    return -EINVAL;
   4905 	}
   4906 
   4907 	ret = i915_mutex_lock_interruptible(dev);
   4908 	if (ret)
   4909 		return ret;
   4910 
   4911 	gobj = drm_gem_object_lookup(dev, file_priv, args->handle);
   4912 	if (gobj == NULL) {
   4913 		ret = -ENOENT;
   4914 		goto unlock;
   4915 	}
   4916 	obj = to_intel_bo(gobj);
   4917 
   4918 	if (i915_gem_obj_is_pinned(obj)) {
   4919 		ret = -EINVAL;
   4920 		goto out;
   4921 	}
   4922 
   4923 	if (obj->pages &&
   4924 	    obj->tiling_mode != I915_TILING_NONE &&
   4925 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
   4926 		if (obj->madv == I915_MADV_WILLNEED)
   4927 			i915_gem_object_unpin_pages(obj);
   4928 		if (args->madv == I915_MADV_WILLNEED)
   4929 			i915_gem_object_pin_pages(obj);
   4930 	}
   4931 
   4932 	if (obj->madv != __I915_MADV_PURGED)
   4933 		obj->madv = args->madv;
   4934 
   4935 	/* if the object is no longer attached, discard its backing storage */
   4936 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
   4937 		i915_gem_object_truncate(obj);
   4938 
   4939 	args->retained = obj->madv != __I915_MADV_PURGED;
   4940 
   4941 out:
   4942 	drm_gem_object_unreference(&obj->base);
   4943 unlock:
   4944 	mutex_unlock(&dev->struct_mutex);
   4945 	return ret;
   4946 }
   4947 
   4948 void i915_gem_object_init(struct drm_i915_gem_object *obj,
   4949 			  const struct drm_i915_gem_object_ops *ops)
   4950 {
   4951 	int i;
   4952 
   4953 	INIT_LIST_HEAD(&obj->global_list);
   4954 	for (i = 0; i < I915_NUM_RINGS; i++)
   4955 		INIT_LIST_HEAD(&obj->ring_list[i]);
   4956 	INIT_LIST_HEAD(&obj->obj_exec_link);
   4957 	INIT_LIST_HEAD(&obj->vma_list);
   4958 	INIT_LIST_HEAD(&obj->batch_pool_link);
   4959 
   4960 	obj->ops = ops;
   4961 
   4962 	obj->fence_reg = I915_FENCE_REG_NONE;
   4963 	obj->madv = I915_MADV_WILLNEED;
   4964 
   4965 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
   4966 }
   4967 
   4968 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
   4969 	.get_pages = i915_gem_object_get_pages_gtt,
   4970 	.put_pages = i915_gem_object_put_pages_gtt,
   4971 };
   4972 
   4973 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
   4974 						  size_t size)
   4975 {
   4976 #ifdef __NetBSD__
   4977 	struct drm_i915_private *const dev_priv = dev->dev_private;
   4978 #endif
   4979 	struct drm_i915_gem_object *obj;
   4980 #ifndef __NetBSD__
   4981 	struct address_space *mapping;
   4982 	gfp_t mask;
   4983 #endif
   4984 
   4985 	obj = i915_gem_object_alloc(dev);
   4986 	if (obj == NULL)
   4987 		return NULL;
   4988 
   4989 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
   4990 		i915_gem_object_free(obj);
   4991 		return NULL;
   4992 	}
   4993 
   4994 #ifdef __NetBSD__
   4995 	uao_set_pgfl(obj->base.gemo_shm_uao, dev_priv->gtt.pgfl);
   4996 #else
   4997 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
   4998 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
   4999 		/* 965gm cannot relocate objects above 4GiB. */
   5000 		mask &= ~__GFP_HIGHMEM;
   5001 		mask |= __GFP_DMA32;
   5002 	}
   5003 
   5004 	mapping = file_inode(obj->base.filp)->i_mapping;
   5005 	mapping_set_gfp_mask(mapping, mask);
   5006 #endif
   5007 
   5008 	i915_gem_object_init(obj, &i915_gem_object_ops);
   5009 
   5010 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   5011 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   5012 
   5013 	if (HAS_LLC(dev)) {
   5014 		/* On some devices, we can have the GPU use the LLC (the CPU
   5015 		 * cache) for about a 10% performance improvement
   5016 		 * compared to uncached.  Graphics requests other than
   5017 		 * display scanout are coherent with the CPU in
   5018 		 * accessing this cache.  This means in this mode we
   5019 		 * don't need to clflush on the CPU side, and on the
   5020 		 * GPU side we only need to flush internal caches to
   5021 		 * get data visible to the CPU.
   5022 		 *
   5023 		 * However, we maintain the display planes as UC, and so
   5024 		 * need to rebind when first used as such.
   5025 		 */
   5026 		obj->cache_level = I915_CACHE_LLC;
   5027 	} else
   5028 		obj->cache_level = I915_CACHE_NONE;
   5029 
   5030 	trace_i915_gem_object_create(obj);
   5031 
   5032 	return obj;
   5033 }
   5034 
   5035 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
   5036 {
   5037 	/* If we are the last user of the backing storage (be it shmemfs
   5038 	 * pages or stolen etc), we know that the pages are going to be
   5039 	 * immediately released. In this case, we can then skip copying
   5040 	 * back the contents from the GPU.
   5041 	 */
   5042 
   5043 	if (obj->madv != I915_MADV_WILLNEED)
   5044 		return false;
   5045 
   5046 	if (obj->base.filp == NULL)
   5047 		return true;
   5048 
   5049 	/* At first glance, this looks racy, but then again so would be
   5050 	 * userspace racing mmap against close. However, the first external
   5051 	 * reference to the filp can only be obtained through the
   5052 	 * i915_gem_mmap_ioctl() which safeguards us against the user
   5053 	 * acquiring such a reference whilst we are in the middle of
   5054 	 * freeing the object.
   5055 	 */
   5056 	return atomic_long_read(&obj->base.filp->f_count) == 1;
   5057 }
   5058 
   5059 void i915_gem_free_object(struct drm_gem_object *gem_obj)
   5060 {
   5061 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   5062 	struct drm_device *dev = obj->base.dev;
   5063 	struct drm_i915_private *dev_priv = dev->dev_private;
   5064 	struct i915_vma *vma, *next;
   5065 
   5066 	intel_runtime_pm_get(dev_priv);
   5067 
   5068 	trace_i915_gem_object_destroy(obj);
   5069 
   5070 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   5071 		int ret;
   5072 
   5073 		vma->pin_count = 0;
   5074 		ret = i915_vma_unbind(vma);
   5075 		if (WARN_ON(ret == -ERESTARTSYS)) {
   5076 			bool was_interruptible;
   5077 
   5078 			was_interruptible = dev_priv->mm.interruptible;
   5079 			dev_priv->mm.interruptible = false;
   5080 
   5081 			WARN_ON(i915_vma_unbind(vma));
   5082 
   5083 			dev_priv->mm.interruptible = was_interruptible;
   5084 		}
   5085 	}
   5086 
   5087 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
   5088 	 * before progressing. */
   5089 	if (obj->stolen)
   5090 		i915_gem_object_unpin_pages(obj);
   5091 
   5092 	WARN_ON(obj->frontbuffer_bits);
   5093 
   5094 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
   5095 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
   5096 	    obj->tiling_mode != I915_TILING_NONE)
   5097 		i915_gem_object_unpin_pages(obj);
   5098 
   5099 	if (WARN_ON(obj->pages_pin_count))
   5100 		obj->pages_pin_count = 0;
   5101 	if (discard_backing_storage(obj))
   5102 		obj->madv = I915_MADV_DONTNEED;
   5103 	i915_gem_object_put_pages(obj);
   5104 	i915_gem_object_free_mmap_offset(obj);
   5105 
   5106 	BUG_ON(obj->pages);
   5107 
   5108 #ifndef __NetBSD__		/* XXX drm prime */
   5109 	if (obj->base.import_attach)
   5110 		drm_prime_gem_destroy(&obj->base, NULL);
   5111 #endif
   5112 
   5113 	if (obj->ops->release)
   5114 		obj->ops->release(obj);
   5115 
   5116 	drm_gem_object_release(&obj->base);
   5117 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
   5118 
   5119 	kfree(obj->bit_17);
   5120 	i915_gem_object_free(obj);
   5121 
   5122 	intel_runtime_pm_put(dev_priv);
   5123 }
   5124 
   5125 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
   5126 				     struct i915_address_space *vm)
   5127 {
   5128 	struct i915_vma *vma;
   5129 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
   5130 		if (i915_is_ggtt(vma->vm) &&
   5131 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5132 			continue;
   5133 		if (vma->vm == vm)
   5134 			return vma;
   5135 	}
   5136 	return NULL;
   5137 }
   5138 
   5139 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
   5140 					   const struct i915_ggtt_view *view)
   5141 {
   5142 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
   5143 	struct i915_vma *vma;
   5144 
   5145 	if (WARN_ONCE(!view, "no view specified"))
   5146 		return ERR_PTR(-EINVAL);
   5147 
   5148 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   5149 		if (vma->vm == ggtt &&
   5150 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
   5151 			return vma;
   5152 	return NULL;
   5153 }
   5154 
   5155 void i915_gem_vma_destroy(struct i915_vma *vma)
   5156 {
   5157 	struct i915_address_space *vm = NULL;
   5158 	WARN_ON(vma->node.allocated);
   5159 
   5160 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
   5161 	if (!list_empty(&vma->exec_list))
   5162 		return;
   5163 
   5164 	vm = vma->vm;
   5165 
   5166 	if (!i915_is_ggtt(vm))
   5167 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
   5168 
   5169 	list_del(&vma->vma_link);
   5170 
   5171 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
   5172 }
   5173 
   5174 static void
   5175 i915_gem_stop_ringbuffers(struct drm_device *dev)
   5176 {
   5177 	struct drm_i915_private *dev_priv = dev->dev_private;
   5178 	struct intel_engine_cs *ring;
   5179 	int i;
   5180 
   5181 	for_each_ring(ring, dev_priv, i)
   5182 		dev_priv->gt.stop_ring(ring);
   5183 }
   5184 
   5185 int
   5186 i915_gem_suspend(struct drm_device *dev)
   5187 {
   5188 	struct drm_i915_private *dev_priv = dev->dev_private;
   5189 	int ret = 0;
   5190 
   5191 	mutex_lock(&dev->struct_mutex);
   5192 	ret = i915_gpu_idle(dev);
   5193 	if (ret)
   5194 		goto err;
   5195 
   5196 	i915_gem_retire_requests(dev);
   5197 
   5198 	i915_gem_stop_ringbuffers(dev);
   5199 	mutex_unlock(&dev->struct_mutex);
   5200 
   5201 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
   5202 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
   5203 	flush_delayed_work(&dev_priv->mm.idle_work);
   5204 
   5205 	/* Assert that we sucessfully flushed all the work and
   5206 	 * reset the GPU back to its idle, low power state.
   5207 	 */
   5208 	WARN_ON(dev_priv->mm.busy);
   5209 
   5210 	return 0;
   5211 
   5212 err:
   5213 	mutex_unlock(&dev->struct_mutex);
   5214 	return ret;
   5215 }
   5216 
   5217 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
   5218 {
   5219 	struct intel_engine_cs *ring = req->ring;
   5220 	struct drm_device *dev = ring->dev;
   5221 	struct drm_i915_private *dev_priv = dev->dev_private;
   5222 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
   5223 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
   5224 	int i, ret;
   5225 
   5226 	if (!HAS_L3_DPF(dev) || !remap_info)
   5227 		return 0;
   5228 
   5229 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
   5230 	if (ret)
   5231 		return ret;
   5232 
   5233 	/*
   5234 	 * Note: We do not worry about the concurrent register cacheline hang
   5235 	 * here because no other code should access these registers other than
   5236 	 * at initialization time.
   5237 	 */
   5238 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
   5239 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
   5240 		intel_ring_emit(ring, reg_base + i);
   5241 		intel_ring_emit(ring, remap_info[i/4]);
   5242 	}
   5243 
   5244 	intel_ring_advance(ring);
   5245 
   5246 	return ret;
   5247 }
   5248 
   5249 void i915_gem_init_swizzling(struct drm_device *dev)
   5250 {
   5251 	struct drm_i915_private *dev_priv = dev->dev_private;
   5252 
   5253 	if (INTEL_INFO(dev)->gen < 5 ||
   5254 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
   5255 		return;
   5256 
   5257 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
   5258 				 DISP_TILE_SURFACE_SWIZZLING);
   5259 
   5260 	if (IS_GEN5(dev))
   5261 		return;
   5262 
   5263 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
   5264 	if (IS_GEN6(dev))
   5265 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
   5266 	else if (IS_GEN7(dev))
   5267 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
   5268 	else if (IS_GEN8(dev))
   5269 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
   5270 	else
   5271 		BUG();
   5272 }
   5273 
   5274 static void init_unused_ring(struct drm_device *dev, u32 base)
   5275 {
   5276 	struct drm_i915_private *dev_priv = dev->dev_private;
   5277 
   5278 	I915_WRITE(RING_CTL(base), 0);
   5279 	I915_WRITE(RING_HEAD(base), 0);
   5280 	I915_WRITE(RING_TAIL(base), 0);
   5281 	I915_WRITE(RING_START(base), 0);
   5282 }
   5283 
   5284 static void init_unused_rings(struct drm_device *dev)
   5285 {
   5286 	if (IS_I830(dev)) {
   5287 		init_unused_ring(dev, PRB1_BASE);
   5288 		init_unused_ring(dev, SRB0_BASE);
   5289 		init_unused_ring(dev, SRB1_BASE);
   5290 		init_unused_ring(dev, SRB2_BASE);
   5291 		init_unused_ring(dev, SRB3_BASE);
   5292 	} else if (IS_GEN2(dev)) {
   5293 		init_unused_ring(dev, SRB0_BASE);
   5294 		init_unused_ring(dev, SRB1_BASE);
   5295 	} else if (IS_GEN3(dev)) {
   5296 		init_unused_ring(dev, PRB1_BASE);
   5297 		init_unused_ring(dev, PRB2_BASE);
   5298 	}
   5299 }
   5300 
   5301 int i915_gem_init_rings(struct drm_device *dev)
   5302 {
   5303 	struct drm_i915_private *dev_priv = dev->dev_private;
   5304 	int ret;
   5305 
   5306 	ret = intel_init_render_ring_buffer(dev);
   5307 	if (ret)
   5308 		return ret;
   5309 
   5310 	if (HAS_BSD(dev)) {
   5311 		ret = intel_init_bsd_ring_buffer(dev);
   5312 		if (ret)
   5313 			goto cleanup_render_ring;
   5314 	}
   5315 
   5316 	if (HAS_BLT(dev)) {
   5317 		ret = intel_init_blt_ring_buffer(dev);
   5318 		if (ret)
   5319 			goto cleanup_bsd_ring;
   5320 	}
   5321 
   5322 	if (HAS_VEBOX(dev)) {
   5323 		ret = intel_init_vebox_ring_buffer(dev);
   5324 		if (ret)
   5325 			goto cleanup_blt_ring;
   5326 	}
   5327 
   5328 	if (HAS_BSD2(dev)) {
   5329 		ret = intel_init_bsd2_ring_buffer(dev);
   5330 		if (ret)
   5331 			goto cleanup_vebox_ring;
   5332 	}
   5333 
   5334 	return 0;
   5335 
   5336 cleanup_vebox_ring:
   5337 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
   5338 cleanup_blt_ring:
   5339 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
   5340 cleanup_bsd_ring:
   5341 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
   5342 cleanup_render_ring:
   5343 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
   5344 
   5345 	return ret;
   5346 }
   5347 
   5348 int
   5349 i915_gem_init_hw(struct drm_device *dev)
   5350 {
   5351 	struct drm_i915_private *dev_priv = dev->dev_private;
   5352 	struct intel_engine_cs *ring;
   5353 	int ret, i, j;
   5354 
   5355 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
   5356 		return -EIO;
   5357 
   5358 	/* Double layer security blanket, see i915_gem_init() */
   5359 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5360 
   5361 	if (dev_priv->ellc_size)
   5362 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
   5363 
   5364 	if (IS_HASWELL(dev))
   5365 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
   5366 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
   5367 
   5368 	if (HAS_PCH_NOP(dev)) {
   5369 		if (IS_IVYBRIDGE(dev)) {
   5370 			u32 temp = I915_READ(GEN7_MSG_CTL);
   5371 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
   5372 			I915_WRITE(GEN7_MSG_CTL, temp);
   5373 		} else if (INTEL_INFO(dev)->gen >= 7) {
   5374 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
   5375 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
   5376 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
   5377 		}
   5378 	}
   5379 
   5380 	i915_gem_init_swizzling(dev);
   5381 
   5382 	/*
   5383 	 * At least 830 can leave some of the unused rings
   5384 	 * "active" (ie. head != tail) after resume which
   5385 	 * will prevent c3 entry. Makes sure all unused rings
   5386 	 * are totally idle.
   5387 	 */
   5388 	init_unused_rings(dev);
   5389 
   5390 	BUG_ON(!dev_priv->ring[RCS].default_context);
   5391 
   5392 	ret = i915_ppgtt_init_hw(dev);
   5393 	if (ret) {
   5394 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
   5395 		goto out;
   5396 	}
   5397 
   5398 	/* Need to do basic initialisation of all rings first: */
   5399 	for_each_ring(ring, dev_priv, i) {
   5400 		ret = ring->init_hw(ring);
   5401 		if (ret)
   5402 			goto out;
   5403 	}
   5404 
   5405 	/* We can't enable contexts until all firmware is loaded */
   5406 	if (HAS_GUC_UCODE(dev)) {
   5407 		ret = intel_guc_ucode_load(dev);
   5408 		if (ret) {
   5409 			/*
   5410 			 * If we got an error and GuC submission is enabled, map
   5411 			 * the error to -EIO so the GPU will be declared wedged.
   5412 			 * OTOH, if we didn't intend to use the GuC anyway, just
   5413 			 * discard the error and carry on.
   5414 			 */
   5415 			DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
   5416 				  i915.enable_guc_submission ? "" :
   5417 				  " (ignored)");
   5418 			ret = i915.enable_guc_submission ? -EIO : 0;
   5419 			if (ret)
   5420 				goto out;
   5421 		}
   5422 	}
   5423 
   5424 	/*
   5425 	 * Increment the next seqno by 0x100 so we have a visible break
   5426 	 * on re-initialisation
   5427 	 */
   5428 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
   5429 	if (ret)
   5430 		goto out;
   5431 
   5432 	/* Now it is safe to go back round and do everything else: */
   5433 	for_each_ring(ring, dev_priv, i) {
   5434 		struct drm_i915_gem_request *req;
   5435 
   5436 		WARN_ON(!ring->default_context);
   5437 
   5438 		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
   5439 		if (ret) {
   5440 			i915_gem_cleanup_ringbuffer(dev);
   5441 			goto out;
   5442 		}
   5443 
   5444 		if (ring->id == RCS) {
   5445 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
   5446 				i915_gem_l3_remap(req, j);
   5447 		}
   5448 
   5449 		ret = i915_ppgtt_init_ring(req);
   5450 		if (ret && ret != -EIO) {
   5451 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
   5452 			i915_gem_request_cancel(req);
   5453 			i915_gem_cleanup_ringbuffer(dev);
   5454 			goto out;
   5455 		}
   5456 
   5457 		ret = i915_gem_context_enable(req);
   5458 		if (ret && ret != -EIO) {
   5459 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
   5460 			i915_gem_request_cancel(req);
   5461 			i915_gem_cleanup_ringbuffer(dev);
   5462 			goto out;
   5463 		}
   5464 
   5465 		i915_add_request_no_flush(req);
   5466 	}
   5467 
   5468 out:
   5469 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5470 	return ret;
   5471 }
   5472 
   5473 int i915_gem_init(struct drm_device *dev)
   5474 {
   5475 	struct drm_i915_private *dev_priv = dev->dev_private;
   5476 	int ret;
   5477 
   5478 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
   5479 			i915.enable_execlists);
   5480 
   5481 	mutex_lock(&dev->struct_mutex);
   5482 
   5483 	if (IS_VALLEYVIEW(dev)) {
   5484 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
   5485 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
   5486 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
   5487 			      VLV_GTLC_ALLOWWAKEACK), 10))
   5488 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
   5489 	}
   5490 
   5491 	if (!i915.enable_execlists) {
   5492 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
   5493 		dev_priv->gt.init_rings = i915_gem_init_rings;
   5494 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
   5495 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
   5496 	} else {
   5497 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
   5498 		dev_priv->gt.init_rings = intel_logical_rings_init;
   5499 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
   5500 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
   5501 	}
   5502 
   5503 	/* This is just a security blanket to placate dragons.
   5504 	 * On some systems, we very sporadically observe that the first TLBs
   5505 	 * used by the CS may be stale, despite us poking the TLB reset. If
   5506 	 * we hold the forcewake during initialisation these problems
   5507 	 * just magically go away.
   5508 	 */
   5509 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5510 
   5511 	ret = i915_gem_init_userptr(dev);
   5512 	if (ret)
   5513 		goto out_unlock;
   5514 
   5515 	i915_gem_init_global_gtt(dev);
   5516 
   5517 	ret = i915_gem_context_init(dev);
   5518 	if (ret)
   5519 		goto out_unlock;
   5520 
   5521 	ret = dev_priv->gt.init_rings(dev);
   5522 	if (ret)
   5523 		goto out_unlock;
   5524 
   5525 	ret = i915_gem_init_hw(dev);
   5526 	if (ret == -EIO) {
   5527 		/* Allow ring initialisation to fail by marking the GPU as
   5528 		 * wedged. But we only want to do this where the GPU is angry,
   5529 		 * for all other failure, such as an allocation failure, bail.
   5530 		 */
   5531 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
   5532 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
   5533 		ret = 0;
   5534 	}
   5535 
   5536 out_unlock:
   5537 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5538 	mutex_unlock(&dev->struct_mutex);
   5539 
   5540 	return ret;
   5541 }
   5542 
   5543 void
   5544 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
   5545 {
   5546 	struct drm_i915_private *dev_priv = dev->dev_private;
   5547 	struct intel_engine_cs *ring;
   5548 	int i;
   5549 
   5550 	for_each_ring(ring, dev_priv, i)
   5551 		dev_priv->gt.cleanup_ring(ring);
   5552 
   5553     if (i915.enable_execlists)
   5554             /*
   5555              * Neither the BIOS, ourselves or any other kernel
   5556              * expects the system to be in execlists mode on startup,
   5557              * so we need to reset the GPU back to legacy mode.
   5558              */
   5559             intel_gpu_reset(dev);
   5560 }
   5561 
   5562 static void
   5563 init_ring_lists(struct intel_engine_cs *ring)
   5564 {
   5565 	INIT_LIST_HEAD(&ring->active_list);
   5566 	INIT_LIST_HEAD(&ring->request_list);
   5567 }
   5568 
   5569 void
   5570 i915_gem_load(struct drm_device *dev)
   5571 {
   5572 	struct drm_i915_private *dev_priv = dev->dev_private;
   5573 	int i;
   5574 
   5575 	dev_priv->objects =
   5576 		kmem_cache_create("i915_gem_object",
   5577 				  sizeof(struct drm_i915_gem_object), 0,
   5578 				  SLAB_HWCACHE_ALIGN,
   5579 				  NULL);
   5580 	dev_priv->vmas =
   5581 		kmem_cache_create("i915_gem_vma",
   5582 				  sizeof(struct i915_vma), 0,
   5583 				  SLAB_HWCACHE_ALIGN,
   5584 				  NULL);
   5585 	dev_priv->requests =
   5586 		kmem_cache_create("i915_gem_request",
   5587 				  sizeof(struct drm_i915_gem_request), 0,
   5588 				  SLAB_HWCACHE_ALIGN,
   5589 				  NULL);
   5590 
   5591 	INIT_LIST_HEAD(&dev_priv->vm_list);
   5592 	INIT_LIST_HEAD(&dev_priv->context_list);
   5593 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
   5594 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
   5595 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5596 	for (i = 0; i < I915_NUM_RINGS; i++)
   5597 		init_ring_lists(&dev_priv->ring[i]);
   5598 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
   5599 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
   5600 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
   5601 			  i915_gem_retire_work_handler);
   5602 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
   5603 			  i915_gem_idle_work_handler);
   5604 #ifdef __NetBSD__
   5605 	spin_lock_init(&dev_priv->gpu_error.reset_lock);
   5606 	DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
   5607 #else
   5608 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
   5609 #endif
   5610 
   5611 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
   5612 
   5613 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
   5614 		dev_priv->num_fence_regs = 32;
   5615 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
   5616 		dev_priv->num_fence_regs = 16;
   5617 	else
   5618 		dev_priv->num_fence_regs = 8;
   5619 
   5620 	if (intel_vgpu_active(dev))
   5621 		dev_priv->num_fence_regs =
   5622 				I915_READ(vgtif_reg(avail_rs.fence_num));
   5623 
   5624 	/*
   5625 	 * Set initial sequence number for requests.
   5626 	 * Using this number allows the wraparound to happen early,
   5627 	 * catching any obvious problems.
   5628 	 */
   5629 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
   5630 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
   5631 
   5632 	/* Initialize fence registers to zero */
   5633 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5634 	i915_gem_restore_fences(dev);
   5635 
   5636 	i915_gem_detect_bit_6_swizzle(dev);
   5637 #ifdef __NetBSD__
   5638 	DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
   5639 	spin_lock_init(&dev_priv->pending_flip_lock);
   5640 #else
   5641 	init_waitqueue_head(&dev_priv->pending_flip_queue);
   5642 #endif
   5643 
   5644 	dev_priv->mm.interruptible = true;
   5645 
   5646 	i915_gem_shrinker_init(dev_priv);
   5647 
   5648 	mutex_init(&dev_priv->fb_tracking.lock);
   5649 }
   5650 
   5651 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   5652 {
   5653 	struct drm_i915_file_private *file_priv = file->driver_priv;
   5654 
   5655 	/* Clean up our request list when the client is going away, so that
   5656 	 * later retire_requests won't dereference our soon-to-be-gone
   5657 	 * file_priv.
   5658 	 */
   5659 	spin_lock(&file_priv->mm.lock);
   5660 	while (!list_empty(&file_priv->mm.request_list)) {
   5661 		struct drm_i915_gem_request *request;
   5662 
   5663 		request = list_first_entry(&file_priv->mm.request_list,
   5664 					   struct drm_i915_gem_request,
   5665 					   client_list);
   5666 		list_del(&request->client_list);
   5667 		request->file_priv = NULL;
   5668 	}
   5669 	spin_unlock(&file_priv->mm.lock);
   5670 
   5671 	if (!list_empty(&file_priv->rps.link)) {
   5672 		spin_lock(&to_i915(dev)->rps.client_lock);
   5673 		list_del(&file_priv->rps.link);
   5674 		spin_unlock(&to_i915(dev)->rps.client_lock);
   5675 	}
   5676 }
   5677 
   5678 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
   5679 {
   5680 	struct drm_i915_file_private *file_priv;
   5681 	int ret;
   5682 
   5683 	DRM_DEBUG_DRIVER("\n");
   5684 
   5685 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
   5686 	if (!file_priv)
   5687 		return -ENOMEM;
   5688 
   5689 	file->driver_priv = file_priv;
   5690 	file_priv->dev_priv = dev->dev_private;
   5691 	file_priv->file = file;
   5692 	INIT_LIST_HEAD(&file_priv->rps.link);
   5693 
   5694 	spin_lock_init(&file_priv->mm.lock);
   5695 	INIT_LIST_HEAD(&file_priv->mm.request_list);
   5696 
   5697 	ret = i915_gem_context_open(dev, file);
   5698 	if (ret)
   5699 		kfree(file_priv);
   5700 
   5701 	return ret;
   5702 }
   5703 
   5704 /**
   5705  * i915_gem_track_fb - update frontbuffer tracking
   5706  * @old: current GEM buffer for the frontbuffer slots
   5707  * @new: new GEM buffer for the frontbuffer slots
   5708  * @frontbuffer_bits: bitmask of frontbuffer slots
   5709  *
   5710  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
   5711  * from @old and setting them in @new. Both @old and @new can be NULL.
   5712  */
   5713 void i915_gem_track_fb(struct drm_i915_gem_object *old,
   5714 		       struct drm_i915_gem_object *new,
   5715 		       unsigned frontbuffer_bits)
   5716 {
   5717 	if (old) {
   5718 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
   5719 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
   5720 		old->frontbuffer_bits &= ~frontbuffer_bits;
   5721 	}
   5722 
   5723 	if (new) {
   5724 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
   5725 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
   5726 		new->frontbuffer_bits |= frontbuffer_bits;
   5727 	}
   5728 }
   5729 #endif
   5730 
   5731 /* All the new VM stuff */
   5732 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
   5733 			struct i915_address_space *vm)
   5734 {
   5735 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5736 	struct i915_vma *vma;
   5737 
   5738 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
   5739 
   5740 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5741 		if (i915_is_ggtt(vma->vm) &&
   5742 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5743 			continue;
   5744 		if (vma->vm == vm)
   5745 			return vma->node.start;
   5746 	}
   5747 
   5748 	WARN(1, "%s vma for this object not found.\n",
   5749 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
   5750 	return -1;
   5751 }
   5752 
   5753 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
   5754 				  const struct i915_ggtt_view *view)
   5755 {
   5756 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
   5757 	struct i915_vma *vma;
   5758 
   5759 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5760 		if (vma->vm == ggtt &&
   5761 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
   5762 			return vma->node.start;
   5763 
   5764 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
   5765 	return -1;
   5766 }
   5767 
   5768 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
   5769 			struct i915_address_space *vm)
   5770 {
   5771 	struct i915_vma *vma;
   5772 
   5773 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5774 		if (i915_is_ggtt(vma->vm) &&
   5775 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5776 			continue;
   5777 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
   5778 			return true;
   5779 	}
   5780 
   5781 	return false;
   5782 }
   5783 
   5784 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
   5785 				  const struct i915_ggtt_view *view)
   5786 {
   5787 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
   5788 	struct i915_vma *vma;
   5789 
   5790 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5791 		if (vma->vm == ggtt &&
   5792 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
   5793 		    drm_mm_node_allocated(&vma->node))
   5794 			return true;
   5795 
   5796 	return false;
   5797 }
   5798 
   5799 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
   5800 {
   5801 	struct i915_vma *vma;
   5802 
   5803 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5804 		if (drm_mm_node_allocated(&vma->node))
   5805 			return true;
   5806 
   5807 	return false;
   5808 }
   5809 
   5810 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
   5811 				struct i915_address_space *vm)
   5812 {
   5813 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5814 	struct i915_vma *vma;
   5815 
   5816 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
   5817 
   5818 	BUG_ON(list_empty(&o->vma_list));
   5819 
   5820 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5821 		if (i915_is_ggtt(vma->vm) &&
   5822 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5823 			continue;
   5824 		if (vma->vm == vm)
   5825 			return vma->node.size;
   5826 	}
   5827 	return 0;
   5828 }
   5829 
   5830 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
   5831 {
   5832 	struct i915_vma *vma;
   5833 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   5834 		if (vma->pin_count > 0)
   5835 			return true;
   5836 
   5837 	return false;
   5838 }
   5839 
   5840 /* Allocate a new GEM object and fill it with the supplied data */
   5841 struct drm_i915_gem_object *
   5842 i915_gem_object_create_from_data(struct drm_device *dev,
   5843 			         const void *data, size_t size)
   5844 {
   5845 	struct drm_i915_gem_object *obj;
   5846 	struct sg_table *sg;
   5847 	size_t bytes;
   5848 	int ret;
   5849 
   5850 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
   5851 	if (IS_ERR_OR_NULL(obj))
   5852 		return obj;
   5853 
   5854 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   5855 	if (ret)
   5856 		goto fail;
   5857 
   5858 	ret = i915_gem_object_get_pages(obj);
   5859 	if (ret)
   5860 		goto fail;
   5861 
   5862 	i915_gem_object_pin_pages(obj);
   5863 	sg = obj->pages;
   5864 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
   5865 	i915_gem_object_unpin_pages(obj);
   5866 
   5867 	if (WARN_ON(bytes != size)) {
   5868 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
   5869 		ret = -EFAULT;
   5870 		goto fail;
   5871 	}
   5872 
   5873 	return obj;
   5874 
   5875 fail:
   5876 	drm_gem_object_unreference(&obj->base);
   5877 	return ERR_PTR(ret);
   5878 }
   5879