Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.43
      1 /*	$NetBSD: i915_gem.c,v 1.43 2018/08/27 07:19:01 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright  2008-2015 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  * Authors:
     26  *    Eric Anholt <eric (at) anholt.net>
     27  *
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: i915_gem.c,v 1.43 2018/08/27 07:19:01 riastradh Exp $");
     32 
     33 #ifdef __NetBSD__
     34 #if 0				/* XXX uvmhist option?  */
     35 #include "opt_uvmhist.h"
     36 #endif
     37 
     38 #include <sys/types.h>
     39 #include <sys/param.h>
     40 
     41 #include <uvm/uvm.h>
     42 #include <uvm/uvm_extern.h>
     43 #include <uvm/uvm_fault.h>
     44 #include <uvm/uvm_page.h>
     45 #include <uvm/uvm_pmap.h>
     46 #include <uvm/uvm_prot.h>
     47 
     48 #include <drm/bus_dma_hacks.h>
     49 #endif
     50 
     51 #include <drm/drmP.h>
     52 #include <drm/drm_vma_manager.h>
     53 #include <drm/i915_drm.h>
     54 #include "i915_drv.h"
     55 #include "i915_vgpu.h"
     56 #include "i915_trace.h"
     57 #include "intel_drv.h"
     58 #include <linux/shmem_fs.h>
     59 #include <linux/slab.h>
     60 #include <linux/swap.h>
     61 #include <linux/pci.h>
     62 #include <linux/dma-buf.h>
     63 #include <linux/errno.h>
     64 #include <linux/time.h>
     65 #include <linux/err.h>
     66 #include <linux/bitops.h>
     67 #include <linux/printk.h>
     68 #include <asm/param.h>
     69 #include <asm/page.h>
     70 
     71 #define RQ_BUG_ON(expr)
     72 
     73 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
     74 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
     75 static void
     76 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
     77 static void
     78 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
     79 
     80 static bool cpu_cache_is_coherent(struct drm_device *dev,
     81 				  enum i915_cache_level level)
     82 {
     83 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
     84 }
     85 
     86 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
     87 {
     88 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
     89 		return true;
     90 
     91 	return obj->pin_display;
     92 }
     93 
     94 /* some bookkeeping */
     95 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
     96 				  size_t size)
     97 {
     98 	spin_lock(&dev_priv->mm.object_stat_lock);
     99 	dev_priv->mm.object_count++;
    100 	dev_priv->mm.object_memory += size;
    101 	spin_unlock(&dev_priv->mm.object_stat_lock);
    102 }
    103 
    104 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
    105 				     size_t size)
    106 {
    107 	spin_lock(&dev_priv->mm.object_stat_lock);
    108 	dev_priv->mm.object_count--;
    109 	dev_priv->mm.object_memory -= size;
    110 	spin_unlock(&dev_priv->mm.object_stat_lock);
    111 }
    112 
    113 static int
    114 i915_gem_wait_for_error(struct i915_gpu_error *error)
    115 {
    116 	int ret;
    117 
    118 #define EXIT_COND (!i915_reset_in_progress(error) || \
    119 		   i915_terminally_wedged(error))
    120 	if (EXIT_COND)
    121 		return 0;
    122 
    123 	/*
    124 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
    125 	 * userspace. If it takes that long something really bad is going on and
    126 	 * we should simply try to bail out and fail as gracefully as possible.
    127 	 */
    128 #ifdef __NetBSD__
    129 	spin_lock(&error->reset_lock);
    130 	DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
    131 	    10*HZ, EXIT_COND);
    132 	spin_unlock(&error->reset_lock);
    133 #else
    134 	ret = wait_event_interruptible_timeout(error->reset_queue,
    135 					       EXIT_COND,
    136 					       10*HZ);
    137 #endif
    138 	if (ret == 0) {
    139 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
    140 		return -EIO;
    141 	} else if (ret < 0) {
    142 		return ret;
    143 	}
    144 #undef EXIT_COND
    145 
    146 	return 0;
    147 }
    148 
    149 int i915_mutex_lock_interruptible(struct drm_device *dev)
    150 {
    151 	struct drm_i915_private *dev_priv = dev->dev_private;
    152 	int ret;
    153 
    154 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
    155 	if (ret)
    156 		return ret;
    157 
    158 	ret = mutex_lock_interruptible(&dev->struct_mutex);
    159 	if (ret)
    160 		return ret;
    161 
    162 	WARN_ON(i915_verify_lists(dev));
    163 	return 0;
    164 }
    165 
    166 int
    167 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    168 			    struct drm_file *file)
    169 {
    170 	struct drm_i915_private *dev_priv = dev->dev_private;
    171 	struct drm_i915_gem_get_aperture *args = data;
    172 	struct i915_gtt *ggtt = &dev_priv->gtt;
    173 	struct i915_vma *vma;
    174 	size_t pinned;
    175 
    176 	pinned = 0;
    177 	mutex_lock(&dev->struct_mutex);
    178 	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
    179 		if (vma->pin_count)
    180 			pinned += vma->node.size;
    181 	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
    182 		if (vma->pin_count)
    183 			pinned += vma->node.size;
    184 	mutex_unlock(&dev->struct_mutex);
    185 
    186 	args->aper_size = dev_priv->gtt.base.total;
    187 	args->aper_available_size = args->aper_size - pinned;
    188 
    189 	return 0;
    190 }
    191 
    192 static int
    193 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
    194 {
    195 #ifndef __NetBSD__
    196 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    197 #endif
    198 	char *vaddr = obj->phys_handle->vaddr;
    199 #ifndef __NetBSD__
    200 	struct sg_table *st;
    201 	struct scatterlist *sg;
    202 #endif
    203 	int i;
    204 
    205 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
    206 		return -EINVAL;
    207 
    208 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    209 		struct page *page;
    210 		char *src;
    211 
    212 #ifdef __NetBSD__
    213 		struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
    214 		int ret;
    215 		/* XXX errno NetBSD->Linux */
    216 		ret = -uvm_obj_wirepages(obj->base.filp, i*PAGE_SIZE,
    217 		    (i + 1)*PAGE_SIZE, &pages);
    218 		if (ret)
    219 			return ret;
    220 		page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
    221 #else
    222 		page = shmem_read_mapping_page(mapping, i);
    223 		if (IS_ERR(page))
    224 			return PTR_ERR(page);
    225 #endif
    226 
    227 		src = kmap_atomic(page);
    228 		memcpy(vaddr, src, PAGE_SIZE);
    229 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
    230 		kunmap_atomic(src);
    231 
    232 #ifdef __NetBSD__
    233 		uvm_obj_unwirepages(obj->base.filp, i*PAGE_SIZE,
    234 		    (i + 1)*PAGE_SIZE);
    235 #else
    236 		page_cache_release(page);
    237 #endif
    238 		vaddr += PAGE_SIZE;
    239 	}
    240 
    241 	i915_gem_chipset_flush(obj->base.dev);
    242 
    243 #ifdef __NetBSD__
    244 	obj->pages = obj->phys_handle->dmah_map;
    245 #else
    246 	st = kmalloc(sizeof(*st), GFP_KERNEL);
    247 	if (st == NULL)
    248 		return -ENOMEM;
    249 
    250 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
    251 		kfree(st);
    252 		return -ENOMEM;
    253 	}
    254 
    255 	sg = st->sgl;
    256 	sg->offset = 0;
    257 	sg->length = obj->base.size;
    258 
    259 	sg_dma_address(sg) = obj->phys_handle->busaddr;
    260 	sg_dma_len(sg) = obj->base.size;
    261 
    262 	obj->pages = st;
    263 #endif
    264 	return 0;
    265 }
    266 
    267 static void
    268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
    269 {
    270 	int ret;
    271 
    272 	BUG_ON(obj->madv == __I915_MADV_PURGED);
    273 
    274 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
    275 	if (ret) {
    276 		/* In the event of a disaster, abandon all caches and
    277 		 * hope for the best.
    278 		 */
    279 		WARN_ON(ret != -EIO);
    280 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
    281 	}
    282 
    283 	if (obj->madv == I915_MADV_DONTNEED)
    284 		obj->dirty = 0;
    285 
    286 	if (obj->dirty) {
    287 #ifndef __NetBSD__
    288 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    289 #endif
    290 		const char *vaddr = obj->phys_handle->vaddr;
    291 		int i;
    292 
    293 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    294 			struct page *page;
    295 			char *dst;
    296 
    297 #ifdef __NetBSD__
    298 			struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
    299 			/* XXX errno NetBSD->Linux */
    300 			ret = -uvm_obj_wirepages(obj->base.filp,
    301 			    i*PAGE_SIZE, (i + 1)*PAGE_SIZE, &pages);
    302 			if (ret)
    303 				continue;
    304 			page = container_of(TAILQ_FIRST(&pages), struct page,
    305 			    p_vmp);
    306 #endif
    307 
    308 			dst = kmap_atomic(page);
    309 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
    310 			memcpy(dst, vaddr, PAGE_SIZE);
    311 			kunmap_atomic(dst);
    312 
    313 #ifdef __NetBSD__
    314 			page->p_vmp.flags &= ~PG_CLEAN;
    315 			/* XXX mark page accessed */
    316 			uvm_obj_unwirepages(obj->base.filp, i*PAGE_SIZE,
    317 			    (i+1)*PAGE_SIZE);
    318 #else
    319 			set_page_dirty(page);
    320 			if (obj->madv == I915_MADV_WILLNEED)
    321 				mark_page_accessed(page);
    322 			page_cache_release(page);
    323 #endif
    324 			vaddr += PAGE_SIZE;
    325 		}
    326 		obj->dirty = 0;
    327 	}
    328 
    329 #ifdef __NetBSD__
    330 	obj->pages = NULL;
    331 #else
    332 	sg_free_table(obj->pages);
    333 	kfree(obj->pages);
    334 #endif
    335 }
    336 
    337 static void
    338 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
    339 {
    340 	drm_pci_free(obj->base.dev, obj->phys_handle);
    341 }
    342 
    343 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
    344 	.get_pages = i915_gem_object_get_pages_phys,
    345 	.put_pages = i915_gem_object_put_pages_phys,
    346 	.release = i915_gem_object_release_phys,
    347 };
    348 
    349 static int
    350 drop_pages(struct drm_i915_gem_object *obj)
    351 {
    352 	struct i915_vma *vma, *next;
    353 	int ret;
    354 
    355 	drm_gem_object_reference(&obj->base);
    356 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
    357 		if (i915_vma_unbind(vma))
    358 			break;
    359 
    360 	ret = i915_gem_object_put_pages(obj);
    361 	drm_gem_object_unreference(&obj->base);
    362 
    363 	return ret;
    364 }
    365 
    366 int
    367 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
    368 			    int align)
    369 {
    370 	drm_dma_handle_t *phys;
    371 	int ret;
    372 
    373 	if (obj->phys_handle) {
    374 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
    375 			return -EBUSY;
    376 
    377 		return 0;
    378 	}
    379 
    380 	if (obj->madv != I915_MADV_WILLNEED)
    381 		return -EFAULT;
    382 
    383 	if (obj->base.filp == NULL)
    384 		return -EINVAL;
    385 
    386 	ret = drop_pages(obj);
    387 	if (ret)
    388 		return ret;
    389 
    390 	/* create a new object */
    391 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
    392 	if (!phys)
    393 		return -ENOMEM;
    394 
    395 	obj->phys_handle = phys;
    396 	obj->ops = &i915_gem_phys_ops;
    397 
    398 	return i915_gem_object_get_pages(obj);
    399 }
    400 
    401 static int
    402 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
    403 		     struct drm_i915_gem_pwrite *args,
    404 		     struct drm_file *file_priv)
    405 {
    406 	struct drm_device *dev = obj->base.dev;
    407 	void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
    408 	char __user *user_data = to_user_ptr(args->data_ptr);
    409 	int ret = 0;
    410 
    411 	/* We manually control the domain here and pretend that it
    412 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
    413 	 */
    414 	ret = i915_gem_object_wait_rendering(obj, false);
    415 	if (ret)
    416 		return ret;
    417 
    418 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
    419 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
    420 		unsigned long unwritten;
    421 
    422 		/* The physical object once assigned is fixed for the lifetime
    423 		 * of the obj, so we can safely drop the lock and continue
    424 		 * to access vaddr.
    425 		 */
    426 		mutex_unlock(&dev->struct_mutex);
    427 		unwritten = copy_from_user(vaddr, user_data, args->size);
    428 		mutex_lock(&dev->struct_mutex);
    429 		if (unwritten) {
    430 			ret = -EFAULT;
    431 			goto out;
    432 		}
    433 	}
    434 
    435 	drm_clflush_virt_range(vaddr, args->size);
    436 	i915_gem_chipset_flush(dev);
    437 
    438 out:
    439 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
    440 	return ret;
    441 }
    442 
    443 void *i915_gem_object_alloc(struct drm_device *dev)
    444 {
    445 	struct drm_i915_private *dev_priv = dev->dev_private;
    446 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
    447 }
    448 
    449 void i915_gem_object_free(struct drm_i915_gem_object *obj)
    450 {
    451 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
    452 	kmem_cache_free(dev_priv->objects, obj);
    453 }
    454 
    455 static int
    456 i915_gem_create(struct drm_file *file,
    457 		struct drm_device *dev,
    458 		uint64_t size,
    459 		uint32_t *handle_p)
    460 {
    461 	struct drm_i915_gem_object *obj;
    462 	int ret;
    463 	u32 handle;
    464 
    465 	size = roundup(size, PAGE_SIZE);
    466 	if (size == 0)
    467 		return -EINVAL;
    468 
    469 	/* Allocate the new object */
    470 	obj = i915_gem_alloc_object(dev, size);
    471 	if (obj == NULL)
    472 		return -ENOMEM;
    473 
    474 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    475 	/* drop reference from allocate - handle holds it now */
    476 	drm_gem_object_unreference_unlocked(&obj->base);
    477 	if (ret)
    478 		return ret;
    479 
    480 	*handle_p = handle;
    481 	return 0;
    482 }
    483 
    484 int
    485 i915_gem_dumb_create(struct drm_file *file,
    486 		     struct drm_device *dev,
    487 		     struct drm_mode_create_dumb *args)
    488 {
    489 	/* have to work out size/pitch and return them */
    490 #ifdef __NetBSD__		/* ALIGN means something else.  */
    491 	args->pitch = round_up(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    492 #else
    493 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    494 #endif
    495 	args->size = args->pitch * args->height;
    496 	return i915_gem_create(file, dev,
    497 			       args->size, &args->handle);
    498 }
    499 
    500 /**
    501  * Creates a new mm object and returns a handle to it.
    502  */
    503 int
    504 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    505 		      struct drm_file *file)
    506 {
    507 	struct drm_i915_gem_create *args = data;
    508 
    509 	return i915_gem_create(file, dev,
    510 			       args->size, &args->handle);
    511 }
    512 
    513 static inline int
    514 __copy_to_user_swizzled(char __user *cpu_vaddr,
    515 			const char *gpu_vaddr, int gpu_offset,
    516 			int length)
    517 {
    518 	int ret, cpu_offset = 0;
    519 
    520 	while (length > 0) {
    521 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    522 		int cacheline_end = round_up(gpu_offset + 1, 64);
    523 #else
    524 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    525 #endif
    526 		int this_length = min(cacheline_end - gpu_offset, length);
    527 		int swizzled_gpu_offset = gpu_offset ^ 64;
    528 
    529 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
    530 				     gpu_vaddr + swizzled_gpu_offset,
    531 				     this_length);
    532 		if (ret)
    533 			return ret + length;
    534 
    535 		cpu_offset += this_length;
    536 		gpu_offset += this_length;
    537 		length -= this_length;
    538 	}
    539 
    540 	return 0;
    541 }
    542 
    543 static inline int
    544 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
    545 			  const char __user *cpu_vaddr,
    546 			  int length)
    547 {
    548 	int ret, cpu_offset = 0;
    549 
    550 	while (length > 0) {
    551 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    552 		int cacheline_end = round_up(gpu_offset + 1, 64);
    553 #else
    554 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    555 #endif
    556 		int this_length = min(cacheline_end - gpu_offset, length);
    557 		int swizzled_gpu_offset = gpu_offset ^ 64;
    558 
    559 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
    560 				       cpu_vaddr + cpu_offset,
    561 				       this_length);
    562 		if (ret)
    563 			return ret + length;
    564 
    565 		cpu_offset += this_length;
    566 		gpu_offset += this_length;
    567 		length -= this_length;
    568 	}
    569 
    570 	return 0;
    571 }
    572 
    573 /*
    574  * Pins the specified object's pages and synchronizes the object with
    575  * GPU accesses. Sets needs_clflush to non-zero if the caller should
    576  * flush the object from the CPU cache.
    577  */
    578 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
    579 				    int *needs_clflush)
    580 {
    581 	int ret;
    582 
    583 	*needs_clflush = 0;
    584 
    585 	if (!obj->base.filp)
    586 		return -EINVAL;
    587 
    588 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
    589 		/* If we're not in the cpu read domain, set ourself into the gtt
    590 		 * read domain and manually flush cachelines (if required). This
    591 		 * optimizes for the case when the gpu will dirty the data
    592 		 * anyway again before the next pread happens. */
    593 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
    594 							obj->cache_level);
    595 		ret = i915_gem_object_wait_rendering(obj, true);
    596 		if (ret)
    597 			return ret;
    598 	}
    599 
    600 	ret = i915_gem_object_get_pages(obj);
    601 	if (ret)
    602 		return ret;
    603 
    604 	i915_gem_object_pin_pages(obj);
    605 
    606 	return ret;
    607 }
    608 
    609 /* Per-page copy function for the shmem pread fastpath.
    610  * Flushes invalid cachelines before reading the target if
    611  * needs_clflush is set. */
    612 static int
    613 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
    614 		 char __user *user_data,
    615 		 bool page_do_bit17_swizzling, bool needs_clflush)
    616 {
    617 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    618 	return -EFAULT;
    619 #else
    620 	char *vaddr;
    621 	int ret;
    622 
    623 	if (unlikely(page_do_bit17_swizzling))
    624 		return -EINVAL;
    625 
    626 	vaddr = kmap_atomic(page);
    627 	if (needs_clflush)
    628 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    629 				       page_length);
    630 	ret = __copy_to_user_inatomic(user_data,
    631 				      vaddr + shmem_page_offset,
    632 				      page_length);
    633 	kunmap_atomic(vaddr);
    634 
    635 	return ret ? -EFAULT : 0;
    636 #endif
    637 }
    638 
    639 static void
    640 shmem_clflush_swizzled_range(char *addr, unsigned long length,
    641 			     bool swizzled)
    642 {
    643 	if (unlikely(swizzled)) {
    644 		unsigned long start = (unsigned long) addr;
    645 		unsigned long end = (unsigned long) addr + length;
    646 
    647 		/* For swizzling simply ensure that we always flush both
    648 		 * channels. Lame, but simple and it works. Swizzled
    649 		 * pwrite/pread is far from a hotpath - current userspace
    650 		 * doesn't use it at all. */
    651 		start = round_down(start, 128);
    652 		end = round_up(end, 128);
    653 
    654 		drm_clflush_virt_range((void *)start, end - start);
    655 	} else {
    656 		drm_clflush_virt_range(addr, length);
    657 	}
    658 
    659 }
    660 
    661 /* Only difference to the fast-path function is that this can handle bit17
    662  * and uses non-atomic copy and kmap functions. */
    663 static int
    664 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
    665 		 char __user *user_data,
    666 		 bool page_do_bit17_swizzling, bool needs_clflush)
    667 {
    668 	char *vaddr;
    669 	int ret;
    670 
    671 	vaddr = kmap(page);
    672 	if (needs_clflush)
    673 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    674 					     page_length,
    675 					     page_do_bit17_swizzling);
    676 
    677 	if (page_do_bit17_swizzling)
    678 		ret = __copy_to_user_swizzled(user_data,
    679 					      vaddr, shmem_page_offset,
    680 					      page_length);
    681 	else
    682 		ret = __copy_to_user(user_data,
    683 				     vaddr + shmem_page_offset,
    684 				     page_length);
    685 	kunmap(page);
    686 
    687 	return ret ? - EFAULT : 0;
    688 }
    689 
    690 static int
    691 i915_gem_shmem_pread(struct drm_device *dev,
    692 		     struct drm_i915_gem_object *obj,
    693 		     struct drm_i915_gem_pread *args,
    694 		     struct drm_file *file)
    695 {
    696 	char __user *user_data;
    697 	ssize_t remain;
    698 	loff_t offset;
    699 	int shmem_page_offset, page_length, ret = 0;
    700 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    701 #ifndef __NetBSD__		/* XXX */
    702 	int prefaulted = 0;
    703 #endif
    704 	int needs_clflush = 0;
    705 #ifndef __NetBSD__
    706 	struct sg_page_iter sg_iter;
    707 #endif
    708 
    709 	user_data = to_user_ptr(args->data_ptr);
    710 	remain = args->size;
    711 
    712 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    713 
    714 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
    715 	if (ret)
    716 		return ret;
    717 
    718 	offset = args->offset;
    719 
    720 #ifdef __NetBSD__
    721 	while (0 < remain)
    722 #else
    723 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
    724 			 offset >> PAGE_SHIFT)
    725 #endif
    726 	{
    727 #ifdef __NetBSD__
    728 		struct page *const page = i915_gem_object_get_page(obj,
    729 		    atop(offset));
    730 #else
    731 		struct page *page = sg_page_iter_page(&sg_iter);
    732 
    733 		if (remain <= 0)
    734 			break;
    735 #endif
    736 
    737 		/* Operation in this page
    738 		 *
    739 		 * shmem_page_offset = offset within page in shmem file
    740 		 * page_length = bytes to copy for this page
    741 		 */
    742 		shmem_page_offset = offset_in_page(offset);
    743 		page_length = remain;
    744 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    745 			page_length = PAGE_SIZE - shmem_page_offset;
    746 
    747 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    748 			(page_to_phys(page) & (1 << 17)) != 0;
    749 
    750 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    751 				       user_data, page_do_bit17_swizzling,
    752 				       needs_clflush);
    753 		if (ret == 0)
    754 			goto next_page;
    755 
    756 		mutex_unlock(&dev->struct_mutex);
    757 #ifndef __NetBSD__
    758 		if (likely(!i915.prefault_disable) && !prefaulted) {
    759 			ret = fault_in_multipages_writeable(user_data, remain);
    760 			/* Userspace is tricking us, but we've already clobbered
    761 			 * its pages with the prefault and promised to write the
    762 			 * data up to the first fault. Hence ignore any errors
    763 			 * and just continue. */
    764 			(void)ret;
    765 			prefaulted = 1;
    766 		}
    767 #endif
    768 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    769 				       user_data, page_do_bit17_swizzling,
    770 				       needs_clflush);
    771 
    772 		mutex_lock(&dev->struct_mutex);
    773 
    774 		if (ret)
    775 			goto out;
    776 
    777 next_page:
    778 		remain -= page_length;
    779 		user_data += page_length;
    780 		offset += page_length;
    781 	}
    782 
    783 out:
    784 	i915_gem_object_unpin_pages(obj);
    785 
    786 	return ret;
    787 }
    788 
    789 /**
    790  * Reads data from the object referenced by handle.
    791  *
    792  * On error, the contents of *data are undefined.
    793  */
    794 int
    795 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    796 		     struct drm_file *file)
    797 {
    798 	struct drm_i915_gem_pread *args = data;
    799 	struct drm_gem_object *gobj;
    800 	struct drm_i915_gem_object *obj;
    801 	int ret = 0;
    802 
    803 	if (args->size == 0)
    804 		return 0;
    805 
    806 	if (!access_ok(VERIFY_WRITE,
    807 		       to_user_ptr(args->data_ptr),
    808 		       args->size))
    809 		return -EFAULT;
    810 
    811 	ret = i915_mutex_lock_interruptible(dev);
    812 	if (ret)
    813 		return ret;
    814 
    815 	gobj = drm_gem_object_lookup(dev, file, args->handle);
    816 	if (gobj == NULL) {
    817 		ret = -ENOENT;
    818 		goto unlock;
    819 	}
    820 	obj = to_intel_bo(gobj);
    821 
    822 	/* Bounds check source.  */
    823 	if (args->offset > obj->base.size ||
    824 	    args->size > obj->base.size - args->offset) {
    825 		ret = -EINVAL;
    826 		goto out;
    827 	}
    828 
    829 	/* prime objects have no backing filp to GEM pread/pwrite
    830 	 * pages from.
    831 	 */
    832 	if (!obj->base.filp) {
    833 		ret = -EINVAL;
    834 		goto out;
    835 	}
    836 
    837 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    838 
    839 	ret = i915_gem_shmem_pread(dev, obj, args, file);
    840 
    841 out:
    842 	drm_gem_object_unreference(&obj->base);
    843 unlock:
    844 	mutex_unlock(&dev->struct_mutex);
    845 	return ret;
    846 }
    847 
    848 /* This is the fast write path which cannot handle
    849  * page faults in the source data
    850  */
    851 
    852 static inline int
    853 fast_user_write(struct io_mapping *mapping,
    854 		loff_t page_base, int page_offset,
    855 		char __user *user_data,
    856 		int length)
    857 {
    858 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    859 	return -EFAULT;
    860 #else
    861 	void __iomem *vaddr_atomic;
    862 	void *vaddr;
    863 	unsigned long unwritten;
    864 
    865 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
    866 	/* We can use the cpu mem copy function because this is X86. */
    867 	vaddr = (void __force*)vaddr_atomic + page_offset;
    868 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
    869 						      user_data, length);
    870 	io_mapping_unmap_atomic(vaddr_atomic);
    871 	return unwritten;
    872 #endif
    873 }
    874 
    875 /**
    876  * This is the fast pwrite path, where we copy the data directly from the
    877  * user into the GTT, uncached.
    878  */
    879 static int
    880 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
    881 			 struct drm_i915_gem_object *obj,
    882 			 struct drm_i915_gem_pwrite *args,
    883 			 struct drm_file *file)
    884 {
    885 	struct drm_i915_private *dev_priv = dev->dev_private;
    886 	ssize_t remain;
    887 	loff_t offset, page_base;
    888 	char __user *user_data;
    889 	int page_offset, page_length, ret;
    890 
    891 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
    892 	if (ret)
    893 		goto out;
    894 
    895 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    896 	if (ret)
    897 		goto out_unpin;
    898 
    899 	ret = i915_gem_object_put_fence(obj);
    900 	if (ret)
    901 		goto out_unpin;
    902 
    903 	user_data = to_user_ptr(args->data_ptr);
    904 	remain = args->size;
    905 
    906 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
    907 
    908 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
    909 
    910 	while (remain > 0) {
    911 		/* Operation in this page
    912 		 *
    913 		 * page_base = page offset within aperture
    914 		 * page_offset = offset within page
    915 		 * page_length = bytes to copy for this page
    916 		 */
    917 		page_base = offset & PAGE_MASK;
    918 		page_offset = offset_in_page(offset);
    919 		page_length = remain;
    920 		if ((page_offset + remain) > PAGE_SIZE)
    921 			page_length = PAGE_SIZE - page_offset;
    922 
    923 		/* If we get a fault while copying data, then (presumably) our
    924 		 * source page isn't available.  Return the error and we'll
    925 		 * retry in the slow path.
    926 		 */
    927 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
    928 				    page_offset, user_data, page_length)) {
    929 			ret = -EFAULT;
    930 			goto out_flush;
    931 		}
    932 
    933 		remain -= page_length;
    934 		user_data += page_length;
    935 		offset += page_length;
    936 	}
    937 
    938 out_flush:
    939 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
    940 out_unpin:
    941 	i915_gem_object_ggtt_unpin(obj);
    942 out:
    943 	return ret;
    944 }
    945 
    946 /* Per-page copy function for the shmem pwrite fastpath.
    947  * Flushes invalid cachelines before writing to the target if
    948  * needs_clflush_before is set and flushes out any written cachelines after
    949  * writing if needs_clflush is set. */
    950 static int
    951 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
    952 		  char __user *user_data,
    953 		  bool page_do_bit17_swizzling,
    954 		  bool needs_clflush_before,
    955 		  bool needs_clflush_after)
    956 {
    957 #ifdef __NetBSD__
    958 	return -EFAULT;
    959 #else
    960 	char *vaddr;
    961 	int ret;
    962 
    963 	if (unlikely(page_do_bit17_swizzling))
    964 		return -EINVAL;
    965 
    966 	vaddr = kmap_atomic(page);
    967 	if (needs_clflush_before)
    968 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    969 				       page_length);
    970 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
    971 					user_data, page_length);
    972 	if (needs_clflush_after)
    973 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    974 				       page_length);
    975 	kunmap_atomic(vaddr);
    976 
    977 	return ret ? -EFAULT : 0;
    978 #endif
    979 }
    980 
    981 /* Only difference to the fast-path function is that this can handle bit17
    982  * and uses non-atomic copy and kmap functions. */
    983 static int
    984 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
    985 		  char __user *user_data,
    986 		  bool page_do_bit17_swizzling,
    987 		  bool needs_clflush_before,
    988 		  bool needs_clflush_after)
    989 {
    990 	char *vaddr;
    991 	int ret;
    992 
    993 	vaddr = kmap(page);
    994 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
    995 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    996 					     page_length,
    997 					     page_do_bit17_swizzling);
    998 	if (page_do_bit17_swizzling)
    999 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
   1000 						user_data,
   1001 						page_length);
   1002 	else
   1003 		ret = __copy_from_user(vaddr + shmem_page_offset,
   1004 				       user_data,
   1005 				       page_length);
   1006 	if (needs_clflush_after)
   1007 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
   1008 					     page_length,
   1009 					     page_do_bit17_swizzling);
   1010 	kunmap(page);
   1011 
   1012 	return ret ? -EFAULT : 0;
   1013 }
   1014 
   1015 static int
   1016 i915_gem_shmem_pwrite(struct drm_device *dev,
   1017 		      struct drm_i915_gem_object *obj,
   1018 		      struct drm_i915_gem_pwrite *args,
   1019 		      struct drm_file *file)
   1020 {
   1021 	ssize_t remain;
   1022 	loff_t offset;
   1023 	char __user *user_data;
   1024 	int shmem_page_offset, page_length, ret = 0;
   1025 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
   1026 	int hit_slowpath = 0;
   1027 	int needs_clflush_after = 0;
   1028 	int needs_clflush_before = 0;
   1029 #ifndef __NetBSD__
   1030 	struct sg_page_iter sg_iter;
   1031 	int flush_mask = boot_cpu_data.x86_clflush_size - 1;
   1032 #else
   1033 	int flush_mask = cpu_info_primary.ci_cflush_lsize - 1;
   1034 #endif
   1035 
   1036 	user_data = to_user_ptr(args->data_ptr);
   1037 	remain = args->size;
   1038 
   1039 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
   1040 
   1041 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1042 		/* If we're not in the cpu write domain, set ourself into the gtt
   1043 		 * write domain and manually flush cachelines (if required). This
   1044 		 * optimizes for the case when the gpu will use the data
   1045 		 * right away and we therefore have to clflush anyway. */
   1046 		needs_clflush_after = cpu_write_needs_clflush(obj);
   1047 		ret = i915_gem_object_wait_rendering(obj, false);
   1048 		if (ret)
   1049 			return ret;
   1050 	}
   1051 	/* Same trick applies to invalidate partially written cachelines read
   1052 	 * before writing. */
   1053 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
   1054 		needs_clflush_before =
   1055 			!cpu_cache_is_coherent(dev, obj->cache_level);
   1056 
   1057 	ret = i915_gem_object_get_pages(obj);
   1058 	if (ret)
   1059 		return ret;
   1060 
   1061 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
   1062 
   1063 	i915_gem_object_pin_pages(obj);
   1064 
   1065 	offset = args->offset;
   1066 	obj->dirty = 1;
   1067 
   1068 #ifdef __NetBSD__
   1069 	while (0 < remain)
   1070 #else
   1071 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
   1072 			 offset >> PAGE_SHIFT)
   1073 #endif
   1074 	{
   1075 #ifdef __NetBSD__
   1076 		struct page *const page = i915_gem_object_get_page(obj,
   1077 		    atop(offset));
   1078 #else
   1079 		struct page *page = sg_page_iter_page(&sg_iter);
   1080 
   1081 		if (remain <= 0)
   1082 			break;
   1083 #endif
   1084 
   1085 		/* Operation in this page
   1086 		 *
   1087 		 * shmem_page_offset = offset within page in shmem file
   1088 		 * page_length = bytes to copy for this page
   1089 		 */
   1090 		shmem_page_offset = offset_in_page(offset);
   1091 
   1092 		page_length = remain;
   1093 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
   1094 			page_length = PAGE_SIZE - shmem_page_offset;
   1095 
   1096 		/* If we don't overwrite a cacheline completely we need to be
   1097 		 * careful to have up-to-date data by first clflushing. Don't
   1098 		 * overcomplicate things and flush the entire patch. */
   1099 		const int partial_cacheline_write = needs_clflush_before &&
   1100 			((shmem_page_offset | page_length) & flush_mask);
   1101 
   1102 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
   1103 			(page_to_phys(page) & (1 << 17)) != 0;
   1104 
   1105 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
   1106 					user_data, page_do_bit17_swizzling,
   1107 					partial_cacheline_write,
   1108 					needs_clflush_after);
   1109 		if (ret == 0)
   1110 			goto next_page;
   1111 
   1112 		hit_slowpath = 1;
   1113 		mutex_unlock(&dev->struct_mutex);
   1114 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
   1115 					user_data, page_do_bit17_swizzling,
   1116 					partial_cacheline_write,
   1117 					needs_clflush_after);
   1118 
   1119 		mutex_lock(&dev->struct_mutex);
   1120 
   1121 		if (ret)
   1122 			goto out;
   1123 
   1124 next_page:
   1125 		remain -= page_length;
   1126 		user_data += page_length;
   1127 		offset += page_length;
   1128 	}
   1129 
   1130 out:
   1131 	i915_gem_object_unpin_pages(obj);
   1132 
   1133 	if (hit_slowpath) {
   1134 		/*
   1135 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
   1136 		 * cachelines in-line while writing and the object moved
   1137 		 * out of the cpu write domain while we've dropped the lock.
   1138 		 */
   1139 		if (!needs_clflush_after &&
   1140 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1141 			if (i915_gem_clflush_object(obj, obj->pin_display))
   1142 				needs_clflush_after = true;
   1143 		}
   1144 	}
   1145 
   1146 	if (needs_clflush_after)
   1147 		i915_gem_chipset_flush(dev);
   1148 	else
   1149 		obj->cache_dirty = true;
   1150 
   1151 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
   1152 	return ret;
   1153 }
   1154 
   1155 /**
   1156  * Writes data to the object referenced by handle.
   1157  *
   1158  * On error, the contents of the buffer that were to be modified are undefined.
   1159  */
   1160 int
   1161 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
   1162 		      struct drm_file *file)
   1163 {
   1164 	struct drm_i915_private *dev_priv = dev->dev_private;
   1165 	struct drm_i915_gem_pwrite *args = data;
   1166 	struct drm_gem_object *gobj;
   1167 	struct drm_i915_gem_object *obj;
   1168 	int ret;
   1169 
   1170 	if (args->size == 0)
   1171 		return 0;
   1172 
   1173 	if (!access_ok(VERIFY_READ,
   1174 		       to_user_ptr(args->data_ptr),
   1175 		       args->size))
   1176 		return -EFAULT;
   1177 
   1178 #ifndef __NetBSD__		/* XXX prefault */
   1179 	if (likely(!i915.prefault_disable)) {
   1180 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
   1181 						   args->size);
   1182 		if (ret)
   1183 			return -EFAULT;
   1184 	}
   1185 #endif
   1186 
   1187 	intel_runtime_pm_get(dev_priv);
   1188 
   1189 	ret = i915_mutex_lock_interruptible(dev);
   1190 	if (ret)
   1191 		goto put_rpm;
   1192 
   1193 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1194 	if (gobj == NULL) {
   1195 		ret = -ENOENT;
   1196 		goto unlock;
   1197 	}
   1198 	obj = to_intel_bo(gobj);
   1199 
   1200 	/* Bounds check destination. */
   1201 	if (args->offset > obj->base.size ||
   1202 	    args->size > obj->base.size - args->offset) {
   1203 		ret = -EINVAL;
   1204 		goto out;
   1205 	}
   1206 
   1207 	/* prime objects have no backing filp to GEM pread/pwrite
   1208 	 * pages from.
   1209 	 */
   1210 	if (!obj->base.filp) {
   1211 		ret = -EINVAL;
   1212 		goto out;
   1213 	}
   1214 
   1215 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
   1216 
   1217 	ret = -EFAULT;
   1218 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
   1219 	 * it would end up going through the fenced access, and we'll get
   1220 	 * different detiling behavior between reading and writing.
   1221 	 * pread/pwrite currently are reading and writing from the CPU
   1222 	 * perspective, requiring manual detiling by the client.
   1223 	 */
   1224 	if (obj->tiling_mode == I915_TILING_NONE &&
   1225 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
   1226 	    cpu_write_needs_clflush(obj)) {
   1227 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
   1228 		/* Note that the gtt paths might fail with non-page-backed user
   1229 		 * pointers (e.g. gtt mappings when moving data between
   1230 		 * textures). Fallback to the shmem path in that case. */
   1231 	}
   1232 
   1233 	if (ret == -EFAULT || ret == -ENOSPC) {
   1234 		if (obj->phys_handle)
   1235 			ret = i915_gem_phys_pwrite(obj, args, file);
   1236 		else
   1237 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
   1238 	}
   1239 
   1240 out:
   1241 	drm_gem_object_unreference(&obj->base);
   1242 unlock:
   1243 	mutex_unlock(&dev->struct_mutex);
   1244 put_rpm:
   1245 	intel_runtime_pm_put(dev_priv);
   1246 
   1247 	return ret;
   1248 }
   1249 
   1250 int
   1251 i915_gem_check_wedge(struct i915_gpu_error *error,
   1252 		     bool interruptible)
   1253 {
   1254 	if (i915_reset_in_progress(error)) {
   1255 		/* Non-interruptible callers can't handle -EAGAIN, hence return
   1256 		 * -EIO unconditionally for these. */
   1257 		if (!interruptible)
   1258 			return -EIO;
   1259 
   1260 		/* Recovery complete, but the reset failed ... */
   1261 		if (i915_terminally_wedged(error))
   1262 			return -EIO;
   1263 
   1264 		/*
   1265 		 * Check if GPU Reset is in progress - we need intel_ring_begin
   1266 		 * to work properly to reinit the hw state while the gpu is
   1267 		 * still marked as reset-in-progress. Handle this with a flag.
   1268 		 */
   1269 		if (!error->reload_in_reset)
   1270 			return -EAGAIN;
   1271 	}
   1272 
   1273 	return 0;
   1274 }
   1275 
   1276 #ifndef __NetBSD__
   1277 static void fake_irq(unsigned long data)
   1278 {
   1279 	wake_up_process((struct task_struct *)data);
   1280 }
   1281 #endif
   1282 
   1283 static bool missed_irq(struct drm_i915_private *dev_priv,
   1284 		       struct intel_engine_cs *ring)
   1285 {
   1286 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
   1287 }
   1288 
   1289 #ifndef __NetBSD__
   1290 static unsigned long local_clock_us(unsigned *cpu)
   1291 {
   1292 	unsigned long t;
   1293 
   1294 	/* Cheaply and approximately convert from nanoseconds to microseconds.
   1295 	 * The result and subsequent calculations are also defined in the same
   1296 	 * approximate microseconds units. The principal source of timing
   1297 	 * error here is from the simple truncation.
   1298 	 *
   1299 	 * Note that local_clock() is only defined wrt to the current CPU;
   1300 	 * the comparisons are no longer valid if we switch CPUs. Instead of
   1301 	 * blocking preemption for the entire busywait, we can detect the CPU
   1302 	 * switch and use that as indicator of system load and a reason to
   1303 	 * stop busywaiting, see busywait_stop().
   1304 	 */
   1305 	*cpu = get_cpu();
   1306 	t = local_clock() >> 10;
   1307 	put_cpu();
   1308 
   1309 	return t;
   1310 }
   1311 
   1312 static bool busywait_stop(unsigned long timeout, unsigned cpu)
   1313 {
   1314 	unsigned this_cpu;
   1315 
   1316 	if (time_after(local_clock_us(&this_cpu), timeout))
   1317 		return true;
   1318 
   1319 	return this_cpu != cpu;
   1320 }
   1321 #endif
   1322 
   1323 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
   1324 {
   1325 #ifndef __NetBSD__
   1326 	unsigned long timeout;
   1327 	unsigned cpu;
   1328 #endif
   1329 
   1330 	/* When waiting for high frequency requests, e.g. during synchronous
   1331 	 * rendering split between the CPU and GPU, the finite amount of time
   1332 	 * required to set up the irq and wait upon it limits the response
   1333 	 * rate. By busywaiting on the request completion for a short while we
   1334 	 * can service the high frequency waits as quick as possible. However,
   1335 	 * if it is a slow request, we want to sleep as quickly as possible.
   1336 	 * The tradeoff between waiting and sleeping is roughly the time it
   1337 	 * takes to sleep on a request, on the order of a microsecond.
   1338 	 */
   1339 
   1340 	if (req->ring->irq_refcount)
   1341 		return -EBUSY;
   1342 
   1343 	/* Only spin if we know the GPU is processing this request */
   1344 	if (!i915_gem_request_started(req, true))
   1345 		return -EAGAIN;
   1346 
   1347 #ifndef __NetBSD__		/* XXX No local clock in usec.  */
   1348 	timeout = local_clock_us(&cpu) + 5;
   1349 	while (!need_resched()) {
   1350 		if (i915_gem_request_completed(req, true))
   1351 			return 0;
   1352 
   1353 		if (signal_pending_state(state, current))
   1354 			break;
   1355 
   1356 		if (busywait_stop(timeout, cpu))
   1357 			break;
   1358 
   1359 		cpu_relax_lowlatency();
   1360 	}
   1361 #endif
   1362 
   1363 	if (i915_gem_request_completed(req, false))
   1364 		return 0;
   1365 
   1366 	return -EAGAIN;
   1367 }
   1368 
   1369 /**
   1370  * __i915_wait_request - wait until execution of request has finished
   1371  * @req: duh!
   1372  * @reset_counter: reset sequence associated with the given request
   1373  * @interruptible: do an interruptible wait (normally yes)
   1374  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
   1375  *
   1376  * Note: It is of utmost importance that the passed in seqno and reset_counter
   1377  * values have been read by the caller in an smp safe manner. Where read-side
   1378  * locks are involved, it is sufficient to read the reset_counter before
   1379  * unlocking the lock that protects the seqno. For lockless tricks, the
   1380  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
   1381  * inserted.
   1382  *
   1383  * Returns 0 if the request was found within the alloted time. Else returns the
   1384  * errno with remaining time filled in timeout argument.
   1385  */
   1386 int __i915_wait_request(struct drm_i915_gem_request *req,
   1387 			unsigned reset_counter,
   1388 			bool interruptible,
   1389 			s64 *timeout,
   1390 			struct intel_rps_client *rps)
   1391 {
   1392 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
   1393 	struct drm_device *dev = ring->dev;
   1394 	struct drm_i915_private *dev_priv = dev->dev_private;
   1395 	const bool irq_test_in_progress =
   1396 	    dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring);
   1397 #ifdef __NetBSD__
   1398 	int state = 0;
   1399 	bool wedged;
   1400 #else
   1401 	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
   1402 	DEFINE_WAIT(wait);
   1403 	unsigned long timeout_expire;
   1404 #endif
   1405 	s64 before, now;
   1406 	int ret;
   1407 
   1408 	__insn_barrier();	/* ACCESS_ONCE for irq_test_in_progress */
   1409 
   1410 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
   1411 
   1412 	if (list_empty(&req->list))
   1413 		return 0;
   1414 
   1415 	if (i915_gem_request_completed(req, true))
   1416 		return 0;
   1417 
   1418 #ifndef __NetBSD__
   1419 	timeout_expire = 0;
   1420 	if (timeout) {
   1421 		if (WARN_ON(*timeout < 0))
   1422 			return -EINVAL;
   1423 
   1424 		if (*timeout == 0)
   1425 			return -ETIME;
   1426 
   1427 		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
   1428 	}
   1429 #endif
   1430 
   1431 	if (INTEL_INFO(dev_priv)->gen >= 6)
   1432 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
   1433 
   1434 	/* Record current time in case interrupted by signal, or wedged */
   1435 	trace_i915_gem_request_wait_begin(req);
   1436 	before = ktime_get_raw_ns();
   1437 
   1438 	/* Optimistic spin for the next jiffie before touching IRQs */
   1439 	ret = __i915_spin_request(req, state);
   1440 	if (ret == 0)
   1441 		goto out;
   1442 
   1443 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
   1444 		ret = -ENODEV;
   1445 		goto out;
   1446 	}
   1447 
   1448 #ifdef __NetBSD__
   1449 #  define	EXIT_COND						      \
   1450 	((wedged = (reset_counter !=					      \
   1451 		atomic_read(&dev_priv->gpu_error.reset_counter))) ||	      \
   1452 	    i915_gem_request_completed(req, false))
   1453 	if (timeout) {
   1454 		int ticks = missed_irq(dev_priv, ring) ? 1 :
   1455 		    nsecs_to_jiffies_timeout(*timeout);
   1456 		if (interruptible) {
   1457 			DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
   1458 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1459 		} else {
   1460 			DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1461 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1462 		}
   1463 		if (ret < 0)	/* Failure: return negative error as is.  */
   1464 			;
   1465 		else if (ret == 0) /* Timed out: return -ETIME.  */
   1466 			ret = -ETIME;
   1467 		else		/* Succeeded (ret > 0): return 0.  */
   1468 			ret = 0;
   1469 	} else {
   1470 		if (interruptible) {
   1471 			DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
   1472 			    &dev_priv->irq_lock, EXIT_COND);
   1473 		} else {
   1474 			DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1475 			    &dev_priv->irq_lock, EXIT_COND);
   1476 		}
   1477 		/* ret is negative on failure or zero on success.  */
   1478 	}
   1479 	if (wedged) {
   1480 		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1481 		if (ret == 0)
   1482 			ret = -EAGAIN;
   1483 	}
   1484 #else
   1485 	for (;;) {
   1486 		struct timer_list timer;
   1487 
   1488 		prepare_to_wait(&ring->irq_queue, &wait, state);
   1489 
   1490 		/* We need to check whether any gpu reset happened in between
   1491 		 * the caller grabbing the seqno and now ... */
   1492 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
   1493 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
   1494 			 * is truely gone. */
   1495 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1496 			if (ret == 0)
   1497 				ret = -EAGAIN;
   1498 			break;
   1499 		}
   1500 
   1501 		if (i915_gem_request_completed(req, false)) {
   1502 			ret = 0;
   1503 			break;
   1504 		}
   1505 
   1506 		if (signal_pending_state(state, current)) {
   1507 			ret = -ERESTARTSYS;
   1508 			break;
   1509 		}
   1510 
   1511 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
   1512 			ret = -ETIME;
   1513 			break;
   1514 		}
   1515 
   1516 		timer.function = NULL;
   1517 		if (timeout || missed_irq(dev_priv, ring)) {
   1518 			unsigned long expire;
   1519 
   1520 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
   1521 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
   1522 			mod_timer(&timer, expire);
   1523 		}
   1524 
   1525 		io_schedule();
   1526 
   1527 		if (timer.function) {
   1528 			del_singleshot_timer_sync(&timer);
   1529 			destroy_timer_on_stack(&timer);
   1530 		}
   1531 	}
   1532 #endif
   1533 	if (!irq_test_in_progress)
   1534 		ring->irq_put(ring);
   1535 
   1536 #ifndef __NetBSD__
   1537 	finish_wait(&ring->irq_queue, &wait);
   1538 #endif
   1539 
   1540 out:
   1541 	now = ktime_get_raw_ns();
   1542 	trace_i915_gem_request_wait_end(req);
   1543 
   1544 	if (timeout) {
   1545 		s64 tres = *timeout - (now - before);
   1546 
   1547 		*timeout = tres < 0 ? 0 : tres;
   1548 
   1549 		/*
   1550 		 * Apparently ktime isn't accurate enough and occasionally has a
   1551 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
   1552 		 * things up to make the test happy. We allow up to 1 jiffy.
   1553 		 *
   1554 		 * This is a regrssion from the timespec->ktime conversion.
   1555 		 */
   1556 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
   1557 			*timeout = 0;
   1558 	}
   1559 
   1560 	return ret;
   1561 }
   1562 
   1563 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
   1564 				   struct drm_file *file)
   1565 {
   1566 	struct drm_i915_private *dev_private __unused;
   1567 	struct drm_i915_file_private *file_priv;
   1568 
   1569 	WARN_ON(!req || !file || req->file_priv);
   1570 
   1571 	if (!req || !file)
   1572 		return -EINVAL;
   1573 
   1574 	if (req->file_priv)
   1575 		return -EINVAL;
   1576 
   1577 	dev_private = req->ring->dev->dev_private;
   1578 	file_priv = file->driver_priv;
   1579 
   1580 	spin_lock(&file_priv->mm.lock);
   1581 	req->file_priv = file_priv;
   1582 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
   1583 	spin_unlock(&file_priv->mm.lock);
   1584 
   1585 #ifndef __NetBSD__
   1586 	req->pid = get_pid(task_pid(current));
   1587 #endif
   1588 
   1589 	return 0;
   1590 }
   1591 
   1592 static inline void
   1593 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
   1594 {
   1595 	struct drm_i915_file_private *file_priv = request->file_priv;
   1596 
   1597 	if (!file_priv)
   1598 		return;
   1599 
   1600 	spin_lock(&file_priv->mm.lock);
   1601 	list_del(&request->client_list);
   1602 	request->file_priv = NULL;
   1603 	spin_unlock(&file_priv->mm.lock);
   1604 
   1605 #ifndef __NetBSD__
   1606 	put_pid(request->pid);
   1607 	request->pid = NULL;
   1608 #endif
   1609 }
   1610 
   1611 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
   1612 {
   1613 	trace_i915_gem_request_retire(request);
   1614 
   1615 	/* We know the GPU must have read the request to have
   1616 	 * sent us the seqno + interrupt, so use the position
   1617 	 * of tail of the request to update the last known position
   1618 	 * of the GPU head.
   1619 	 *
   1620 	 * Note this requires that we are always called in request
   1621 	 * completion order.
   1622 	 */
   1623 	request->ringbuf->last_retired_head = request->postfix;
   1624 
   1625 	list_del_init(&request->list);
   1626 	i915_gem_request_remove_from_client(request);
   1627 
   1628 	i915_gem_request_unreference(request);
   1629 }
   1630 
   1631 static void
   1632 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
   1633 {
   1634 	struct intel_engine_cs *engine = req->ring;
   1635 	struct drm_i915_gem_request *tmp;
   1636 
   1637 	lockdep_assert_held(&engine->dev->struct_mutex);
   1638 
   1639 	if (list_empty(&req->list))
   1640 		return;
   1641 
   1642 	do {
   1643 		tmp = list_first_entry(&engine->request_list,
   1644 				       typeof(*tmp), list);
   1645 
   1646 		i915_gem_request_retire(tmp);
   1647 	} while (tmp != req);
   1648 
   1649 	WARN_ON(i915_verify_lists(engine->dev));
   1650 }
   1651 
   1652 /**
   1653  * Waits for a request to be signaled, and cleans up the
   1654  * request and object lists appropriately for that event.
   1655  */
   1656 int
   1657 i915_wait_request(struct drm_i915_gem_request *req)
   1658 {
   1659 	struct drm_device *dev;
   1660 	struct drm_i915_private *dev_priv;
   1661 	bool interruptible;
   1662 	int ret;
   1663 
   1664 	BUG_ON(req == NULL);
   1665 
   1666 	dev = req->ring->dev;
   1667 	dev_priv = dev->dev_private;
   1668 	interruptible = dev_priv->mm.interruptible;
   1669 
   1670 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1671 
   1672 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1673 	if (ret)
   1674 		return ret;
   1675 
   1676 	ret = __i915_wait_request(req,
   1677 				  atomic_read(&dev_priv->gpu_error.reset_counter),
   1678 				  interruptible, NULL, NULL);
   1679 	if (ret)
   1680 		return ret;
   1681 
   1682 	__i915_gem_request_retire__upto(req);
   1683 	return 0;
   1684 }
   1685 
   1686 /**
   1687  * Ensures that all rendering to the object has completed and the object is
   1688  * safe to unbind from the GTT or access from the CPU.
   1689  */
   1690 int
   1691 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
   1692 			       bool readonly)
   1693 {
   1694 	int ret, i;
   1695 
   1696 	if (!obj->active)
   1697 		return 0;
   1698 
   1699 	if (readonly) {
   1700 		if (obj->last_write_req != NULL) {
   1701 			ret = i915_wait_request(obj->last_write_req);
   1702 			if (ret)
   1703 				return ret;
   1704 
   1705 			i = obj->last_write_req->ring->id;
   1706 			if (obj->last_read_req[i] == obj->last_write_req)
   1707 				i915_gem_object_retire__read(obj, i);
   1708 			else
   1709 				i915_gem_object_retire__write(obj);
   1710 		}
   1711 	} else {
   1712 		for (i = 0; i < I915_NUM_RINGS; i++) {
   1713 			if (obj->last_read_req[i] == NULL)
   1714 				continue;
   1715 
   1716 			ret = i915_wait_request(obj->last_read_req[i]);
   1717 			if (ret)
   1718 				return ret;
   1719 
   1720 			i915_gem_object_retire__read(obj, i);
   1721 		}
   1722 		RQ_BUG_ON(obj->active);
   1723 	}
   1724 
   1725 	return 0;
   1726 }
   1727 
   1728 static void
   1729 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
   1730 			       struct drm_i915_gem_request *req)
   1731 {
   1732 	int ring = req->ring->id;
   1733 
   1734 	if (obj->last_read_req[ring] == req)
   1735 		i915_gem_object_retire__read(obj, ring);
   1736 	else if (obj->last_write_req == req)
   1737 		i915_gem_object_retire__write(obj);
   1738 
   1739 	__i915_gem_request_retire__upto(req);
   1740 }
   1741 
   1742 /* A nonblocking variant of the above wait. This is a highly dangerous routine
   1743  * as the object state may change during this call.
   1744  */
   1745 static __must_check int
   1746 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
   1747 					    struct intel_rps_client *rps,
   1748 					    bool readonly)
   1749 {
   1750 	struct drm_device *dev = obj->base.dev;
   1751 	struct drm_i915_private *dev_priv = dev->dev_private;
   1752 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
   1753 	unsigned reset_counter;
   1754 	int ret, i, n = 0;
   1755 
   1756 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1757 	BUG_ON(!dev_priv->mm.interruptible);
   1758 
   1759 	if (!obj->active)
   1760 		return 0;
   1761 
   1762 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
   1763 	if (ret)
   1764 		return ret;
   1765 
   1766 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   1767 
   1768 	if (readonly) {
   1769 		struct drm_i915_gem_request *req;
   1770 
   1771 		req = obj->last_write_req;
   1772 		if (req == NULL)
   1773 			return 0;
   1774 
   1775 		requests[n++] = i915_gem_request_reference(req);
   1776 	} else {
   1777 		for (i = 0; i < I915_NUM_RINGS; i++) {
   1778 			struct drm_i915_gem_request *req;
   1779 
   1780 			req = obj->last_read_req[i];
   1781 			if (req == NULL)
   1782 				continue;
   1783 
   1784 			requests[n++] = i915_gem_request_reference(req);
   1785 		}
   1786 	}
   1787 
   1788 	mutex_unlock(&dev->struct_mutex);
   1789 	for (i = 0; ret == 0 && i < n; i++)
   1790 		ret = __i915_wait_request(requests[i], reset_counter, true,
   1791 					  NULL, rps);
   1792 	mutex_lock(&dev->struct_mutex);
   1793 
   1794 	for (i = 0; i < n; i++) {
   1795 		if (ret == 0)
   1796 			i915_gem_object_retire_request(obj, requests[i]);
   1797 		i915_gem_request_unreference(requests[i]);
   1798 	}
   1799 
   1800 	return ret;
   1801 }
   1802 
   1803 static struct intel_rps_client *to_rps_client(struct drm_file *file)
   1804 {
   1805 	struct drm_i915_file_private *fpriv = file->driver_priv;
   1806 	return &fpriv->rps;
   1807 }
   1808 
   1809 /**
   1810  * Called when user space prepares to use an object with the CPU, either
   1811  * through the mmap ioctl's mapping or a GTT mapping.
   1812  */
   1813 int
   1814 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
   1815 			  struct drm_file *file)
   1816 {
   1817 	struct drm_i915_gem_set_domain *args = data;
   1818 	struct drm_gem_object *gobj;
   1819 	struct drm_i915_gem_object *obj;
   1820 	uint32_t read_domains = args->read_domains;
   1821 	uint32_t write_domain = args->write_domain;
   1822 	int ret;
   1823 
   1824 	/* Only handle setting domains to types used by the CPU. */
   1825 	if (write_domain & I915_GEM_GPU_DOMAINS)
   1826 		return -EINVAL;
   1827 
   1828 	if (read_domains & I915_GEM_GPU_DOMAINS)
   1829 		return -EINVAL;
   1830 
   1831 	/* Having something in the write domain implies it's in the read
   1832 	 * domain, and only that read domain.  Enforce that in the request.
   1833 	 */
   1834 	if (write_domain != 0 && read_domains != write_domain)
   1835 		return -EINVAL;
   1836 
   1837 	ret = i915_mutex_lock_interruptible(dev);
   1838 	if (ret)
   1839 		return ret;
   1840 
   1841 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1842 	if (gobj == NULL) {
   1843 		ret = -ENOENT;
   1844 		goto unlock;
   1845 	}
   1846 	obj = to_intel_bo(gobj);
   1847 
   1848 	/* Try to flush the object off the GPU without holding the lock.
   1849 	 * We will repeat the flush holding the lock in the normal manner
   1850 	 * to catch cases where we are gazumped.
   1851 	 */
   1852 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
   1853 							  to_rps_client(file),
   1854 							  !write_domain);
   1855 	if (ret)
   1856 		goto unref;
   1857 
   1858 	if (read_domains & I915_GEM_DOMAIN_GTT)
   1859 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
   1860 	else
   1861 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
   1862 
   1863 	if (write_domain != 0)
   1864 		intel_fb_obj_invalidate(obj,
   1865 					write_domain == I915_GEM_DOMAIN_GTT ?
   1866 					ORIGIN_GTT : ORIGIN_CPU);
   1867 
   1868 unref:
   1869 	drm_gem_object_unreference(&obj->base);
   1870 unlock:
   1871 	mutex_unlock(&dev->struct_mutex);
   1872 	return ret;
   1873 }
   1874 
   1875 /**
   1876  * Called when user space has done writes to this buffer
   1877  */
   1878 int
   1879 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
   1880 			 struct drm_file *file)
   1881 {
   1882 	struct drm_i915_gem_sw_finish *args = data;
   1883 	struct drm_gem_object *gobj;
   1884 	struct drm_i915_gem_object *obj;
   1885 	int ret = 0;
   1886 
   1887 	ret = i915_mutex_lock_interruptible(dev);
   1888 	if (ret)
   1889 		return ret;
   1890 
   1891 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1892 	if (gobj == NULL) {
   1893 		ret = -ENOENT;
   1894 		goto unlock;
   1895 	}
   1896 	obj = to_intel_bo(gobj);
   1897 
   1898 	/* Pinned buffers may be scanout, so flush the cache */
   1899 	if (obj->pin_display)
   1900 		i915_gem_object_flush_cpu_write_domain(obj);
   1901 
   1902 	drm_gem_object_unreference(&obj->base);
   1903 unlock:
   1904 	mutex_unlock(&dev->struct_mutex);
   1905 	return ret;
   1906 }
   1907 
   1908 /**
   1909  * Maps the contents of an object, returning the address it is mapped
   1910  * into.
   1911  *
   1912  * While the mapping holds a reference on the contents of the object, it doesn't
   1913  * imply a ref on the object itself.
   1914  *
   1915  * IMPORTANT:
   1916  *
   1917  * DRM driver writers who look a this function as an example for how to do GEM
   1918  * mmap support, please don't implement mmap support like here. The modern way
   1919  * to implement DRM mmap support is with an mmap offset ioctl (like
   1920  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
   1921  * That way debug tooling like valgrind will understand what's going on, hiding
   1922  * the mmap call in a driver private ioctl will break that. The i915 driver only
   1923  * does cpu mmaps this way because we didn't know better.
   1924  */
   1925 int
   1926 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
   1927 		    struct drm_file *file)
   1928 {
   1929 	struct drm_i915_gem_mmap *args = data;
   1930 	struct drm_gem_object *obj;
   1931 	unsigned long addr;
   1932 #ifdef __NetBSD__
   1933 	int ret;
   1934 #endif
   1935 
   1936 	if (args->flags & ~(I915_MMAP_WC))
   1937 		return -EINVAL;
   1938 
   1939 #if 0
   1940 	/* XXX cpu_has_pat == CPUID_PAT, do we care to do this check */
   1941 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
   1942 		return -ENODEV;
   1943 #endif
   1944 
   1945 	obj = drm_gem_object_lookup(dev, file, args->handle);
   1946 	if (obj == NULL)
   1947 		return -ENOENT;
   1948 
   1949 	/* prime objects have no backing filp to GEM mmap
   1950 	 * pages from.
   1951 	 */
   1952 	if (!obj->filp) {
   1953 		drm_gem_object_unreference_unlocked(obj);
   1954 		return -EINVAL;
   1955 	}
   1956 
   1957 #ifdef __NetBSD__
   1958 	addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
   1959 	    (vaddr_t)curproc->p_vmspace->vm_daddr, args->size,
   1960 	    curproc->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1961 	/* XXX errno NetBSD->Linux */
   1962 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
   1963 	    obj->filp, args->offset, 0,
   1964 	    UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
   1965 		(VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
   1966 		0));
   1967 	if (ret) {
   1968 		drm_gem_object_unreference_unlocked(obj);
   1969 		return ret;
   1970 	}
   1971 	uao_reference(obj->filp);
   1972 	drm_gem_object_unreference_unlocked(obj);
   1973 #else
   1974 	addr = vm_mmap(obj->filp, 0, args->size,
   1975 		       PROT_READ | PROT_WRITE, MAP_SHARED,
   1976 		       args->offset);
   1977 	if (args->flags & I915_MMAP_WC) {
   1978 		struct mm_struct *mm = current->mm;
   1979 		struct vm_area_struct *vma;
   1980 
   1981 		down_write(&mm->mmap_sem);
   1982 		vma = find_vma(mm, addr);
   1983 		if (vma)
   1984 			vma->vm_page_prot =
   1985 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
   1986 		else
   1987 			addr = -ENOMEM;
   1988 		up_write(&mm->mmap_sem);
   1989 	}
   1990 	drm_gem_object_unreference_unlocked(obj);
   1991 	if (IS_ERR((void *)addr))
   1992 		return addr;
   1993 #endif
   1994 
   1995 	args->addr_ptr = (uint64_t) addr;
   1996 
   1997 	return 0;
   1998 }
   1999 
   2000 #ifdef __NetBSD__		/* XXX gem gtt fault */
   2001 static int	i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
   2002 		    struct vm_page **, int, int, vm_prot_t, int, paddr_t);
   2003 
   2004 int
   2005 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   2006     int npages, int centeridx, vm_prot_t access_type, int flags)
   2007 {
   2008 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   2009 	struct drm_gem_object *gem_obj =
   2010 	    container_of(uobj, struct drm_gem_object, gemo_uvmobj);
   2011 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   2012 	struct drm_device *dev = obj->base.dev;
   2013 	struct drm_i915_private *dev_priv = dev->dev_private;
   2014 	voff_t byte_offset;
   2015 	pgoff_t page_offset;
   2016 	int ret = 0;
   2017 	bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
   2018 
   2019 	byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
   2020 	KASSERT(byte_offset <= obj->base.size);
   2021 	page_offset = (byte_offset >> PAGE_SHIFT);
   2022 
   2023 	intel_runtime_pm_get(dev_priv);
   2024 
   2025 	/* Thanks, uvm, but we don't need this lock.  */
   2026 	mutex_exit(uobj->vmobjlock);
   2027 
   2028 	ret = i915_mutex_lock_interruptible(dev);
   2029 	if (ret)
   2030 		goto out;
   2031 
   2032 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   2033 
   2034 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   2035 	if (ret)
   2036 		goto unlock;
   2037 
   2038 	if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
   2039 		ret = -EINVAL;
   2040 		goto unlock;
   2041 	}
   2042 
   2043 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
   2044 	if (ret)
   2045 		goto unlock;
   2046 
   2047 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   2048 	if (ret)
   2049 		goto unpin;
   2050 
   2051 	ret = i915_gem_object_get_fence(obj);
   2052 	if (ret)
   2053 		goto unpin;
   2054 
   2055 	obj->fault_mappable = true;
   2056 
   2057 	/* XXX errno NetBSD->Linux */
   2058 	ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
   2059 	    flags,
   2060 	    (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
   2061 unpin:
   2062 	i915_gem_object_ggtt_unpin(obj);
   2063 unlock:
   2064 	mutex_unlock(&dev->struct_mutex);
   2065 out:
   2066 	mutex_enter(uobj->vmobjlock);
   2067 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
   2068 	if (ret == -ERESTART)
   2069 		uvm_wait("i915flt");
   2070 
   2071 	/*
   2072 	 * Remap EINTR to success, so that we return to userland.
   2073 	 * On the way out, we'll deliver the signal, and if the signal
   2074 	 * is not fatal then the user code which faulted will most likely
   2075 	 * fault again, and we'll come back here for another try.
   2076 	 */
   2077 	if (ret == -EINTR)
   2078 		ret = 0;
   2079 	/* XXX Deal with GPU hangs here...  */
   2080 	intel_runtime_pm_put(dev_priv);
   2081 	/* XXX errno Linux->NetBSD */
   2082 	return -ret;
   2083 }
   2084 
   2085 /*
   2086  * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
   2087  *
   2088  * XXX pmap_enter_default instead of pmap_enter because of a problem
   2089  * with using weak aliases in kernel modules or something.
   2090  */
   2091 int	pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
   2092 
   2093 static int
   2094 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   2095     int npages, int centeridx, vm_prot_t access_type, int flags,
   2096     paddr_t gtt_paddr)
   2097 {
   2098 	struct vm_map_entry *entry = ufi->entry;
   2099 	vaddr_t curr_va;
   2100 	off_t curr_offset;
   2101 	paddr_t paddr;
   2102 	u_int mmapflags;
   2103 	int lcv, retval;
   2104 	vm_prot_t mapprot;
   2105 	UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
   2106 	UVMHIST_LOG(maphist,"  flags=%jd", flags,0,0,0);
   2107 
   2108 	/*
   2109 	 * we do not allow device mappings to be mapped copy-on-write
   2110 	 * so we kill any attempt to do so here.
   2111 	 */
   2112 
   2113 	if (UVM_ET_ISCOPYONWRITE(entry)) {
   2114 		UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%jx)",
   2115 		entry->etype, 0,0,0);
   2116 		return(EIO);
   2117 	}
   2118 
   2119 	/*
   2120 	 * now we must determine the offset in udv to use and the VA to
   2121 	 * use for pmap_enter.  note that we always use orig_map's pmap
   2122 	 * for pmap_enter (even if we have a submap).   since virtual
   2123 	 * addresses in a submap must match the main map, this is ok.
   2124 	 */
   2125 
   2126 	/* udv offset = (offset from start of entry) + entry's offset */
   2127 	curr_offset = entry->offset + (vaddr - entry->start);
   2128 	/* pmap va = vaddr (virtual address of pps[0]) */
   2129 	curr_va = vaddr;
   2130 
   2131 	/*
   2132 	 * loop over the page range entering in as needed
   2133 	 */
   2134 
   2135 	retval = 0;
   2136 	for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
   2137 	    curr_va += PAGE_SIZE) {
   2138 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
   2139 			continue;
   2140 
   2141 		if (pps[lcv] == PGO_DONTCARE)
   2142 			continue;
   2143 
   2144 		paddr = (gtt_paddr + curr_offset);
   2145 		mmapflags = 0;
   2146 		mapprot = ufi->entry->protection;
   2147 		UVMHIST_LOG(maphist,
   2148 		    "  MAPPING: device: pm=0x%#jx, va=0x%jx, pa=0x%jx, at=%jd",
   2149 		    (uintptr_t)ufi->orig_map->pmap, curr_va, paddr, mapprot);
   2150 		if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
   2151 		    PMAP_CANFAIL | mapprot | mmapflags) != 0) {
   2152 			/*
   2153 			 * pmap_enter() didn't have the resource to
   2154 			 * enter this mapping.  Unlock everything,
   2155 			 * wait for the pagedaemon to free up some
   2156 			 * pages, and then tell uvm_fault() to start
   2157 			 * the fault again.
   2158 			 *
   2159 			 * XXX Needs some rethinking for the PGO_ALLPAGES
   2160 			 * XXX case.
   2161 			 */
   2162 			pmap_update(ufi->orig_map->pmap);	/* sync what we have so far */
   2163 			return (ERESTART);
   2164 		}
   2165 	}
   2166 
   2167 	pmap_update(ufi->orig_map->pmap);
   2168 	return (retval);
   2169 }
   2170 #else
   2171 /**
   2172  * i915_gem_fault - fault a page into the GTT
   2173  * @vma: VMA in question
   2174  * @vmf: fault info
   2175  *
   2176  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
   2177  * from userspace.  The fault handler takes care of binding the object to
   2178  * the GTT (if needed), allocating and programming a fence register (again,
   2179  * only if needed based on whether the old reg is still valid or the object
   2180  * is tiled) and inserting a new PTE into the faulting process.
   2181  *
   2182  * Note that the faulting process may involve evicting existing objects
   2183  * from the GTT and/or fence registers to make room.  So performance may
   2184  * suffer if the GTT working set is large or there are few fence registers
   2185  * left.
   2186  */
   2187 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
   2188 {
   2189 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
   2190 	struct drm_device *dev = obj->base.dev;
   2191 	struct drm_i915_private *dev_priv = dev->dev_private;
   2192 	struct i915_ggtt_view view = i915_ggtt_view_normal;
   2193 	pgoff_t page_offset;
   2194 	unsigned long pfn;
   2195 	int ret = 0;
   2196 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
   2197 
   2198 	intel_runtime_pm_get(dev_priv);
   2199 
   2200 	/* We don't use vmf->pgoff since that has the fake offset */
   2201 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
   2202 		PAGE_SHIFT;
   2203 
   2204 	ret = i915_mutex_lock_interruptible(dev);
   2205 	if (ret)
   2206 		goto out;
   2207 
   2208 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   2209 
   2210 	/* Try to flush the object off the GPU first without holding the lock.
   2211 	 * Upon reacquiring the lock, we will perform our sanity checks and then
   2212 	 * repeat the flush holding the lock in the normal manner to catch cases
   2213 	 * where we are gazumped.
   2214 	 */
   2215 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   2216 	if (ret)
   2217 		goto unlock;
   2218 
   2219 	/* Access to snoopable pages through the GTT is incoherent. */
   2220 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
   2221 		ret = -EFAULT;
   2222 		goto unlock;
   2223 	}
   2224 
   2225 	/* Use a partial view if the object is bigger than the aperture. */
   2226 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
   2227 	    obj->tiling_mode == I915_TILING_NONE) {
   2228 		static const unsigned int chunk_size = 256; // 1 MiB
   2229 
   2230 		memset(&view, 0, sizeof(view));
   2231 		view.type = I915_GGTT_VIEW_PARTIAL;
   2232 		view.params.partial.offset = rounddown(page_offset, chunk_size);
   2233 		view.params.partial.size =
   2234 			min_t(unsigned int,
   2235 			      chunk_size,
   2236 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
   2237 			      view.params.partial.offset);
   2238 	}
   2239 
   2240 	/* Now pin it into the GTT if needed */
   2241 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
   2242 	if (ret)
   2243 		goto unlock;
   2244 
   2245 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   2246 	if (ret)
   2247 		goto unpin;
   2248 
   2249 	ret = i915_gem_object_get_fence(obj);
   2250 	if (ret)
   2251 		goto unpin;
   2252 
   2253 	/* Finally, remap it using the new GTT offset */
   2254 	pfn = dev_priv->gtt.mappable_base +
   2255 		i915_gem_obj_ggtt_offset_view(obj, &view);
   2256 	pfn >>= PAGE_SHIFT;
   2257 
   2258 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
   2259 		/* Overriding existing pages in partial view does not cause
   2260 		 * us any trouble as TLBs are still valid because the fault
   2261 		 * is due to userspace losing part of the mapping or never
   2262 		 * having accessed it before (at this partials' range).
   2263 		 */
   2264 		unsigned long base = vma->vm_start +
   2265 				     (view.params.partial.offset << PAGE_SHIFT);
   2266 		unsigned int i;
   2267 
   2268 		for (i = 0; i < view.params.partial.size; i++) {
   2269 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
   2270 			if (ret)
   2271 				break;
   2272 		}
   2273 
   2274 		obj->fault_mappable = true;
   2275 	} else {
   2276 		if (!obj->fault_mappable) {
   2277 			unsigned long size = min_t(unsigned long,
   2278 						   vma->vm_end - vma->vm_start,
   2279 						   obj->base.size);
   2280 			int i;
   2281 
   2282 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
   2283 				ret = vm_insert_pfn(vma,
   2284 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
   2285 						    pfn + i);
   2286 				if (ret)
   2287 					break;
   2288 			}
   2289 
   2290 			obj->fault_mappable = true;
   2291 		} else
   2292 			ret = vm_insert_pfn(vma,
   2293 					    (unsigned long)vmf->virtual_address,
   2294 					    pfn + page_offset);
   2295 	}
   2296 unpin:
   2297 	i915_gem_object_ggtt_unpin_view(obj, &view);
   2298 unlock:
   2299 	mutex_unlock(&dev->struct_mutex);
   2300 out:
   2301 	switch (ret) {
   2302 	case -EIO:
   2303 		/*
   2304 		 * We eat errors when the gpu is terminally wedged to avoid
   2305 		 * userspace unduly crashing (gl has no provisions for mmaps to
   2306 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
   2307 		 * and so needs to be reported.
   2308 		 */
   2309 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
   2310 			ret = VM_FAULT_SIGBUS;
   2311 			break;
   2312 		}
   2313 	case -EAGAIN:
   2314 		/*
   2315 		 * EAGAIN means the gpu is hung and we'll wait for the error
   2316 		 * handler to reset everything when re-faulting in
   2317 		 * i915_mutex_lock_interruptible.
   2318 		 */
   2319 	case 0:
   2320 	case -ERESTARTSYS:
   2321 	case -EINTR:
   2322 	case -EBUSY:
   2323 		/*
   2324 		 * EBUSY is ok: this just means that another thread
   2325 		 * already did the job.
   2326 		 */
   2327 		ret = VM_FAULT_NOPAGE;
   2328 		break;
   2329 	case -ENOMEM:
   2330 		ret = VM_FAULT_OOM;
   2331 		break;
   2332 	case -ENOSPC:
   2333 	case -EFAULT:
   2334 		ret = VM_FAULT_SIGBUS;
   2335 		break;
   2336 	default:
   2337 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
   2338 		ret = VM_FAULT_SIGBUS;
   2339 		break;
   2340 	}
   2341 
   2342 	intel_runtime_pm_put(dev_priv);
   2343 	return ret;
   2344 }
   2345 #endif
   2346 
   2347 /**
   2348  * i915_gem_release_mmap - remove physical page mappings
   2349  * @obj: obj in question
   2350  *
   2351  * Preserve the reservation of the mmapping with the DRM core code, but
   2352  * relinquish ownership of the pages back to the system.
   2353  *
   2354  * It is vital that we remove the page mapping if we have mapped a tiled
   2355  * object through the GTT and then lose the fence register due to
   2356  * resource pressure. Similarly if the object has been moved out of the
   2357  * aperture, than pages mapped into userspace must be revoked. Removing the
   2358  * mapping will then trigger a page fault on the next user access, allowing
   2359  * fixup by i915_gem_fault().
   2360  */
   2361 void
   2362 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
   2363 {
   2364 	if (!obj->fault_mappable)
   2365 		return;
   2366 
   2367 #ifdef __NetBSD__		/* XXX gem gtt fault */
   2368 	{
   2369 		struct drm_device *const dev = obj->base.dev;
   2370 		struct drm_i915_private *const dev_priv = dev->dev_private;
   2371 		const paddr_t start = dev_priv->gtt.mappable_base +
   2372 		    i915_gem_obj_ggtt_offset(obj);
   2373 		const size_t size = obj->base.size;
   2374 		const paddr_t end = start + size;
   2375 		paddr_t pa;
   2376 
   2377 		KASSERT((start & (PAGE_SIZE - 1)) == 0);
   2378 		KASSERT((size & (PAGE_SIZE - 1)) == 0);
   2379 
   2380 		for (pa = start; pa < end; pa += PAGE_SIZE)
   2381 			pmap_pv_protect(pa, VM_PROT_NONE);
   2382 	}
   2383 #else
   2384 	drm_vma_node_unmap(&obj->base.vma_node,
   2385 			   obj->base.dev->anon_inode->i_mapping);
   2386 #endif
   2387 	obj->fault_mappable = false;
   2388 }
   2389 
   2390 void
   2391 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
   2392 {
   2393 	struct drm_i915_gem_object *obj;
   2394 
   2395 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
   2396 		i915_gem_release_mmap(obj);
   2397 }
   2398 
   2399 uint32_t
   2400 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
   2401 {
   2402 	uint32_t gtt_size;
   2403 
   2404 	if (INTEL_INFO(dev)->gen >= 4 ||
   2405 	    tiling_mode == I915_TILING_NONE)
   2406 		return size;
   2407 
   2408 	/* Previous chips need a power-of-two fence region when tiling */
   2409 	if (INTEL_INFO(dev)->gen == 3)
   2410 		gtt_size = 1024*1024;
   2411 	else
   2412 		gtt_size = 512*1024;
   2413 
   2414 	while (gtt_size < size)
   2415 		gtt_size <<= 1;
   2416 
   2417 	return gtt_size;
   2418 }
   2419 
   2420 /**
   2421  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
   2422  * @obj: object to check
   2423  *
   2424  * Return the required GTT alignment for an object, taking into account
   2425  * potential fence register mapping.
   2426  */
   2427 uint32_t
   2428 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
   2429 			   int tiling_mode, bool fenced)
   2430 {
   2431 	/*
   2432 	 * Minimum alignment is 4k (GTT page size), but might be greater
   2433 	 * if a fence register is needed for the object.
   2434 	 */
   2435 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
   2436 	    tiling_mode == I915_TILING_NONE)
   2437 		return 4096;
   2438 
   2439 	/*
   2440 	 * Previous chips need to be aligned to the size of the smallest
   2441 	 * fence register that can contain the object.
   2442 	 */
   2443 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
   2444 }
   2445 
   2446 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
   2447 {
   2448 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2449 	int ret;
   2450 
   2451 	if (drm_vma_node_has_offset(&obj->base.vma_node))
   2452 		return 0;
   2453 
   2454 	dev_priv->mm.shrinker_no_lock_stealing = true;
   2455 
   2456 	ret = drm_gem_create_mmap_offset(&obj->base);
   2457 	if (ret != -ENOSPC)
   2458 		goto out;
   2459 
   2460 	/* Badly fragmented mmap space? The only way we can recover
   2461 	 * space is by destroying unwanted objects. We can't randomly release
   2462 	 * mmap_offsets as userspace expects them to be persistent for the
   2463 	 * lifetime of the objects. The closest we can is to release the
   2464 	 * offsets on purgeable objects by truncating it and marking it purged,
   2465 	 * which prevents userspace from ever using that object again.
   2466 	 */
   2467 	i915_gem_shrink(dev_priv,
   2468 			obj->base.size >> PAGE_SHIFT,
   2469 			I915_SHRINK_BOUND |
   2470 			I915_SHRINK_UNBOUND |
   2471 			I915_SHRINK_PURGEABLE);
   2472 	ret = drm_gem_create_mmap_offset(&obj->base);
   2473 	if (ret != -ENOSPC)
   2474 		goto out;
   2475 
   2476 	i915_gem_shrink_all(dev_priv);
   2477 	ret = drm_gem_create_mmap_offset(&obj->base);
   2478 out:
   2479 	dev_priv->mm.shrinker_no_lock_stealing = false;
   2480 
   2481 	return ret;
   2482 }
   2483 
   2484 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
   2485 {
   2486 	drm_gem_free_mmap_offset(&obj->base);
   2487 }
   2488 
   2489 int
   2490 i915_gem_mmap_gtt(struct drm_file *file,
   2491 		  struct drm_device *dev,
   2492 		  uint32_t handle,
   2493 		  uint64_t *offset)
   2494 {
   2495 	struct drm_gem_object *gobj;
   2496 	struct drm_i915_gem_object *obj;
   2497 	int ret;
   2498 
   2499 	ret = i915_mutex_lock_interruptible(dev);
   2500 	if (ret)
   2501 		return ret;
   2502 
   2503 	gobj = drm_gem_object_lookup(dev, file, handle);
   2504 	if (gobj == NULL) {
   2505 		ret = -ENOENT;
   2506 		goto unlock;
   2507 	}
   2508 	obj = to_intel_bo(gobj);
   2509 
   2510 	if (obj->madv != I915_MADV_WILLNEED) {
   2511 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
   2512 		ret = -EFAULT;
   2513 		goto out;
   2514 	}
   2515 
   2516 	ret = i915_gem_object_create_mmap_offset(obj);
   2517 	if (ret)
   2518 		goto out;
   2519 
   2520 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
   2521 
   2522 out:
   2523 	drm_gem_object_unreference(&obj->base);
   2524 unlock:
   2525 	mutex_unlock(&dev->struct_mutex);
   2526 	return ret;
   2527 }
   2528 
   2529 /**
   2530  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
   2531  * @dev: DRM device
   2532  * @data: GTT mapping ioctl data
   2533  * @file: GEM object info
   2534  *
   2535  * Simply returns the fake offset to userspace so it can mmap it.
   2536  * The mmap call will end up in drm_gem_mmap(), which will set things
   2537  * up so we can get faults in the handler above.
   2538  *
   2539  * The fault handler will take care of binding the object into the GTT
   2540  * (since it may have been evicted to make room for something), allocating
   2541  * a fence register, and mapping the appropriate aperture address into
   2542  * userspace.
   2543  */
   2544 int
   2545 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
   2546 			struct drm_file *file)
   2547 {
   2548 	struct drm_i915_gem_mmap_gtt *args = data;
   2549 
   2550 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
   2551 }
   2552 
   2553 /* Immediately discard the backing storage */
   2554 static void
   2555 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
   2556 {
   2557 	i915_gem_object_free_mmap_offset(obj);
   2558 
   2559 	if (obj->base.filp == NULL)
   2560 		return;
   2561 
   2562 #ifdef __NetBSD__
   2563 	{
   2564 		struct uvm_object *const uobj = obj->base.filp;
   2565 
   2566 		if (uobj != NULL) {
   2567 			/* XXX Calling pgo_put like this is bogus.  */
   2568 			mutex_enter(uobj->vmobjlock);
   2569 			(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   2570 			    (PGO_ALLPAGES | PGO_FREE));
   2571 		}
   2572 	}
   2573 #else
   2574 	/* Our goal here is to return as much of the memory as
   2575 	 * is possible back to the system as we are called from OOM.
   2576 	 * To do this we must instruct the shmfs to drop all of its
   2577 	 * backing pages, *now*.
   2578 	 */
   2579 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
   2580 #endif
   2581 	obj->madv = __I915_MADV_PURGED;
   2582 }
   2583 
   2584 /* Try to discard unwanted pages */
   2585 static void
   2586 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
   2587 {
   2588 #ifdef __NetBSD__
   2589 	panic("XXX");
   2590 #else
   2591 	struct address_space *mapping;
   2592 
   2593 	switch (obj->madv) {
   2594 	case I915_MADV_DONTNEED:
   2595 		i915_gem_object_truncate(obj);
   2596 	case __I915_MADV_PURGED:
   2597 		return;
   2598 	}
   2599 
   2600 	if (obj->base.filp == NULL)
   2601 		return;
   2602 
   2603 	mapping = file_inode(obj->base.filp)->i_mapping,
   2604 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
   2605 #endif
   2606 }
   2607 
   2608 static void
   2609 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2610 {
   2611 #ifdef __NetBSD__
   2612 	struct drm_device *const dev = obj->base.dev;
   2613 	struct vm_page *page;
   2614 	int ret;
   2615 
   2616 	/* XXX Cargo-culted from the Linux code.  */
   2617 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2618 
   2619 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2620 	if (ret) {
   2621 		WARN_ON(ret != -EIO);
   2622 		i915_gem_clflush_object(obj, true);
   2623 		obj->base.read_domains = obj->base.write_domain =
   2624 		    I915_GEM_DOMAIN_CPU;
   2625 	}
   2626 
   2627 	i915_gem_gtt_finish_object(obj);
   2628 
   2629 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2630 		i915_gem_object_save_bit_17_swizzle(obj);
   2631 
   2632 	if (obj->madv == I915_MADV_DONTNEED)
   2633 		obj->dirty = 0;
   2634 
   2635 	if (obj->dirty) {
   2636 		TAILQ_FOREACH(page, &obj->pageq, pageq.queue) {
   2637 			page->flags &= ~PG_CLEAN;
   2638 			/* XXX mark page accessed */
   2639 		}
   2640 	}
   2641 	obj->dirty = 0;
   2642 
   2643 	uvm_obj_unwirepages(obj->base.filp, 0, obj->base.size);
   2644 	bus_dmamap_destroy(dev->dmat, obj->pages);
   2645 #else
   2646 	struct sg_page_iter sg_iter;
   2647 	int ret;
   2648 
   2649 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2650 
   2651 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2652 	if (ret) {
   2653 		/* In the event of a disaster, abandon all caches and
   2654 		 * hope for the best.
   2655 		 */
   2656 		WARN_ON(ret != -EIO);
   2657 		i915_gem_clflush_object(obj, true);
   2658 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   2659 	}
   2660 
   2661 	i915_gem_gtt_finish_object(obj);
   2662 
   2663 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2664 		i915_gem_object_save_bit_17_swizzle(obj);
   2665 
   2666 	if (obj->madv == I915_MADV_DONTNEED)
   2667 		obj->dirty = 0;
   2668 
   2669 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
   2670 		struct page *page = sg_page_iter_page(&sg_iter);
   2671 
   2672 		if (obj->dirty)
   2673 			set_page_dirty(page);
   2674 
   2675 		if (obj->madv == I915_MADV_WILLNEED)
   2676 			mark_page_accessed(page);
   2677 
   2678 		page_cache_release(page);
   2679 	}
   2680 	obj->dirty = 0;
   2681 
   2682 	sg_free_table(obj->pages);
   2683 	kfree(obj->pages);
   2684 #endif
   2685 }
   2686 
   2687 int
   2688 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
   2689 {
   2690 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2691 
   2692 	if (obj->pages == NULL)
   2693 		return 0;
   2694 
   2695 	if (obj->pages_pin_count)
   2696 		return -EBUSY;
   2697 
   2698 	BUG_ON(i915_gem_obj_bound_any(obj));
   2699 
   2700 	/* ->put_pages might need to allocate memory for the bit17 swizzle
   2701 	 * array, hence protect them from being reaped by removing them from gtt
   2702 	 * lists early. */
   2703 	list_del(&obj->global_list);
   2704 
   2705 	ops->put_pages(obj);
   2706 	obj->pages = NULL;
   2707 
   2708 	i915_gem_object_invalidate(obj);
   2709 
   2710 	return 0;
   2711 }
   2712 
   2713 static int
   2714 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2715 {
   2716 #ifdef __NetBSD__
   2717 	struct drm_device *const dev = obj->base.dev;
   2718 	struct drm_i915_private *dev_priv = dev->dev_private;
   2719 	struct vm_page *page;
   2720 	int ret;
   2721 
   2722 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2723 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2724 
   2725 	KASSERT(obj->pages == NULL);
   2726 	TAILQ_INIT(&obj->pageq);
   2727 
   2728 	/* XXX errno NetBSD->Linux */
   2729 	ret = -bus_dmamap_create(dev->dmat, obj->base.size,
   2730 	    obj->base.size/PAGE_SIZE, PAGE_SIZE, 0, BUS_DMA_NOWAIT,
   2731 	    &obj->pages);
   2732 	if (ret)
   2733 		goto fail0;
   2734 
   2735 	/* XXX errno NetBSD->Linux */
   2736 	ret = -uvm_obj_wirepages(obj->base.filp, 0, obj->base.size,
   2737 	    &obj->pageq);
   2738 	if (ret)		/* XXX Try purge, shrink.  */
   2739 		goto fail1;
   2740 
   2741 	/*
   2742 	 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
   2743 	 *
   2744 	 * XXX This should be unnecessary: the uao should guarantee
   2745 	 * this constraint after uao_set_pgfl.
   2746 	 *
   2747 	 * XXX This should also be expanded for newer devices.
   2748 	 */
   2749 	TAILQ_FOREACH(page, &obj->pageq, pageq.queue) {
   2750 		const uint64_t mask =
   2751 		    (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
   2752 			0xffffffffULL : 0xffffffffffULL);
   2753 		if (VM_PAGE_TO_PHYS(page) & ~mask) {
   2754 			DRM_ERROR("GEM physical address exceeds %u bits"
   2755 			    ": %"PRIxMAX"\n",
   2756 			    popcount64(mask),
   2757 			    (uintmax_t)VM_PAGE_TO_PHYS(page));
   2758 			ret = -EIO;
   2759 			goto fail2;
   2760 		}
   2761 	}
   2762 
   2763 	ret = i915_gem_gtt_prepare_object(obj);
   2764 	if (ret)
   2765 		goto fail2;
   2766 
   2767 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2768 		i915_gem_object_do_bit_17_swizzle(obj);
   2769 
   2770 	if (obj->tiling_mode != I915_TILING_NONE &&
   2771 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
   2772 		i915_gem_object_pin_pages(obj);
   2773 
   2774 	/* Success!  */
   2775 	return 0;
   2776 
   2777 fail3: __unused
   2778 	i915_gem_gtt_finish_object(obj);
   2779 fail2:	uvm_obj_unwirepages(obj->base.filp, 0, obj->base.size);
   2780 fail1:	bus_dmamap_destroy(dev->dmat, obj->pages);
   2781 	obj->pages = NULL;
   2782 fail0:	KASSERT(ret);
   2783 	return ret;
   2784 #else
   2785 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2786 	int page_count, i;
   2787 	struct address_space *mapping;
   2788 	struct sg_table *st;
   2789 	struct scatterlist *sg;
   2790 	struct sg_page_iter sg_iter;
   2791 	struct page *page;
   2792 	unsigned long last_pfn = 0;	/* suppress gcc warning */
   2793 	int ret;
   2794 	gfp_t gfp;
   2795 
   2796 	/* Assert that the object is not currently in any GPU domain. As it
   2797 	 * wasn't in the GTT, there shouldn't be any way it could have been in
   2798 	 * a GPU cache
   2799 	 */
   2800 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2801 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2802 
   2803 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   2804 	if (st == NULL)
   2805 		return -ENOMEM;
   2806 
   2807 	page_count = obj->base.size / PAGE_SIZE;
   2808 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
   2809 		kfree(st);
   2810 		return -ENOMEM;
   2811 	}
   2812 
   2813 	/* Get the list of pages out of our struct file.  They'll be pinned
   2814 	 * at this point until we release them.
   2815 	 *
   2816 	 * Fail silently without starting the shrinker
   2817 	 */
   2818 	mapping = file_inode(obj->base.filp)->i_mapping;
   2819 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
   2820 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
   2821 	sg = st->sgl;
   2822 	st->nents = 0;
   2823 	for (i = 0; i < page_count; i++) {
   2824 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2825 		if (IS_ERR(page)) {
   2826 			i915_gem_shrink(dev_priv,
   2827 					page_count,
   2828 					I915_SHRINK_BOUND |
   2829 					I915_SHRINK_UNBOUND |
   2830 					I915_SHRINK_PURGEABLE);
   2831 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2832 		}
   2833 		if (IS_ERR(page)) {
   2834 			/* We've tried hard to allocate the memory by reaping
   2835 			 * our own buffer, now let the real VM do its job and
   2836 			 * go down in flames if truly OOM.
   2837 			 */
   2838 			i915_gem_shrink_all(dev_priv);
   2839 			page = shmem_read_mapping_page(mapping, i);
   2840 			if (IS_ERR(page)) {
   2841 				ret = PTR_ERR(page);
   2842 				goto err_pages;
   2843 			}
   2844 		}
   2845 #ifdef CONFIG_SWIOTLB
   2846 		if (swiotlb_nr_tbl()) {
   2847 			st->nents++;
   2848 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2849 			sg = sg_next(sg);
   2850 			continue;
   2851 		}
   2852 #endif
   2853 		if (!i || page_to_pfn(page) != last_pfn + 1) {
   2854 			if (i)
   2855 				sg = sg_next(sg);
   2856 			st->nents++;
   2857 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2858 		} else {
   2859 			sg->length += PAGE_SIZE;
   2860 		}
   2861 		last_pfn = page_to_pfn(page);
   2862 
   2863 		/* Check that the i965g/gm workaround works. */
   2864 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
   2865 	}
   2866 #ifdef CONFIG_SWIOTLB
   2867 	if (!swiotlb_nr_tbl())
   2868 #endif
   2869 		sg_mark_end(sg);
   2870 	obj->pages = st;
   2871 
   2872 	ret = i915_gem_gtt_prepare_object(obj);
   2873 	if (ret)
   2874 		goto err_pages;
   2875 
   2876 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2877 		i915_gem_object_do_bit_17_swizzle(obj);
   2878 
   2879 	if (obj->tiling_mode != I915_TILING_NONE &&
   2880 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
   2881 		i915_gem_object_pin_pages(obj);
   2882 
   2883 	return 0;
   2884 
   2885 err_pages:
   2886 	sg_mark_end(sg);
   2887 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
   2888 		page_cache_release(sg_page_iter_page(&sg_iter));
   2889 	sg_free_table(st);
   2890 	kfree(st);
   2891 
   2892 	/* shmemfs first checks if there is enough memory to allocate the page
   2893 	 * and reports ENOSPC should there be insufficient, along with the usual
   2894 	 * ENOMEM for a genuine allocation failure.
   2895 	 *
   2896 	 * We use ENOSPC in our driver to mean that we have run out of aperture
   2897 	 * space and so want to translate the error from shmemfs back to our
   2898 	 * usual understanding of ENOMEM.
   2899 	 */
   2900 	if (ret == -ENOSPC)
   2901 		ret = -ENOMEM;
   2902 
   2903 	return ret;
   2904 #endif
   2905 }
   2906 
   2907 /* Ensure that the associated pages are gathered from the backing storage
   2908  * and pinned into our object. i915_gem_object_get_pages() may be called
   2909  * multiple times before they are released by a single call to
   2910  * i915_gem_object_put_pages() - once the pages are no longer referenced
   2911  * either as a result of memory pressure (reaping pages under the shrinker)
   2912  * or as the object is itself released.
   2913  */
   2914 int
   2915 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
   2916 {
   2917 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2918 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2919 	int ret;
   2920 
   2921 	if (obj->pages)
   2922 		return 0;
   2923 
   2924 	if (obj->madv != I915_MADV_WILLNEED) {
   2925 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
   2926 		return -EFAULT;
   2927 	}
   2928 
   2929 	BUG_ON(obj->pages_pin_count);
   2930 
   2931 	ret = ops->get_pages(obj);
   2932 	if (ret)
   2933 		return ret;
   2934 
   2935 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   2936 
   2937 #ifndef __NetBSD__
   2938 	obj->get_page.sg = obj->pages->sgl;
   2939 	obj->get_page.last = 0;
   2940 #endif
   2941 
   2942 	return 0;
   2943 }
   2944 
   2945 void i915_vma_move_to_active(struct i915_vma *vma,
   2946 			     struct drm_i915_gem_request *req)
   2947 {
   2948 	struct drm_i915_gem_object *obj = vma->obj;
   2949 	struct intel_engine_cs *ring;
   2950 
   2951 	ring = i915_gem_request_get_ring(req);
   2952 
   2953 	/* Add a reference if we're newly entering the active list. */
   2954 	if (obj->active == 0)
   2955 		drm_gem_object_reference(&obj->base);
   2956 	obj->active |= intel_ring_flag(ring);
   2957 
   2958 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
   2959 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
   2960 
   2961 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
   2962 }
   2963 
   2964 static void
   2965 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
   2966 {
   2967 	RQ_BUG_ON(obj->last_write_req == NULL);
   2968 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
   2969 
   2970 	i915_gem_request_assign(&obj->last_write_req, NULL);
   2971 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
   2972 }
   2973 
   2974 static void
   2975 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
   2976 {
   2977 	struct i915_vma *vma;
   2978 
   2979 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
   2980 	RQ_BUG_ON(!(obj->active & (1 << ring)));
   2981 
   2982 	list_del_init(&obj->ring_list[ring]);
   2983 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
   2984 
   2985 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
   2986 		i915_gem_object_retire__write(obj);
   2987 
   2988 	obj->active &= ~(1 << ring);
   2989 	if (obj->active)
   2990 		return;
   2991 
   2992 	/* Bump our place on the bound list to keep it roughly in LRU order
   2993 	 * so that we don't steal from recently used but inactive objects
   2994 	 * (unless we are forced to ofc!)
   2995 	 */
   2996 	list_move_tail(&obj->global_list,
   2997 		       &to_i915(obj->base.dev)->mm.bound_list);
   2998 
   2999 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
   3000 		if (!list_empty(&vma->mm_list))
   3001 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
   3002 	}
   3003 
   3004 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
   3005 	drm_gem_object_unreference(&obj->base);
   3006 }
   3007 
   3008 static int
   3009 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
   3010 {
   3011 	struct drm_i915_private *dev_priv = dev->dev_private;
   3012 	struct intel_engine_cs *ring;
   3013 	int ret, i, j;
   3014 
   3015 	/* Carefully retire all requests without writing to the rings */
   3016 	for_each_ring(ring, dev_priv, i) {
   3017 		ret = intel_ring_idle(ring);
   3018 		if (ret)
   3019 			return ret;
   3020 	}
   3021 	i915_gem_retire_requests(dev);
   3022 
   3023 	/* Finally reset hw state */
   3024 	for_each_ring(ring, dev_priv, i) {
   3025 		intel_ring_init_seqno(ring, seqno);
   3026 
   3027 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
   3028 			ring->semaphore.sync_seqno[j] = 0;
   3029 	}
   3030 
   3031 	return 0;
   3032 }
   3033 
   3034 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
   3035 {
   3036 	struct drm_i915_private *dev_priv = dev->dev_private;
   3037 	int ret;
   3038 
   3039 	if (seqno == 0)
   3040 		return -EINVAL;
   3041 
   3042 	/* HWS page needs to be set less than what we
   3043 	 * will inject to ring
   3044 	 */
   3045 	ret = i915_gem_init_seqno(dev, seqno - 1);
   3046 	if (ret)
   3047 		return ret;
   3048 
   3049 	/* Carefully set the last_seqno value so that wrap
   3050 	 * detection still works
   3051 	 */
   3052 	dev_priv->next_seqno = seqno;
   3053 	dev_priv->last_seqno = seqno - 1;
   3054 	if (dev_priv->last_seqno == 0)
   3055 		dev_priv->last_seqno--;
   3056 
   3057 	return 0;
   3058 }
   3059 
   3060 int
   3061 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
   3062 {
   3063 	struct drm_i915_private *dev_priv = dev->dev_private;
   3064 
   3065 	/* reserve 0 for non-seqno */
   3066 	if (dev_priv->next_seqno == 0) {
   3067 		int ret = i915_gem_init_seqno(dev, 0);
   3068 		if (ret)
   3069 			return ret;
   3070 
   3071 		dev_priv->next_seqno = 1;
   3072 	}
   3073 
   3074 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
   3075 	return 0;
   3076 }
   3077 
   3078 /*
   3079  * NB: This function is not allowed to fail. Doing so would mean the the
   3080  * request is not being tracked for completion but the work itself is
   3081  * going to happen on the hardware. This would be a Bad Thing(tm).
   3082  */
   3083 void __i915_add_request(struct drm_i915_gem_request *request,
   3084 			struct drm_i915_gem_object *obj,
   3085 			bool flush_caches)
   3086 {
   3087 	struct intel_engine_cs *ring;
   3088 	struct drm_i915_private *dev_priv;
   3089 	struct intel_ringbuffer *ringbuf;
   3090 	u32 request_start;
   3091 	int ret;
   3092 
   3093 	if (WARN_ON(request == NULL))
   3094 		return;
   3095 
   3096 	ring = request->ring;
   3097 	dev_priv = ring->dev->dev_private;
   3098 	ringbuf = request->ringbuf;
   3099 
   3100 	/*
   3101 	 * To ensure that this call will not fail, space for its emissions
   3102 	 * should already have been reserved in the ring buffer. Let the ring
   3103 	 * know that it is time to use that space up.
   3104 	 */
   3105 	intel_ring_reserved_space_use(ringbuf);
   3106 
   3107 	request_start = intel_ring_get_tail(ringbuf);
   3108 	/*
   3109 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
   3110 	 * after having emitted the batchbuffer command. Hence we need to fix
   3111 	 * things up similar to emitting the lazy request. The difference here
   3112 	 * is that the flush _must_ happen before the next request, no matter
   3113 	 * what.
   3114 	 */
   3115 	if (flush_caches) {
   3116 		if (i915.enable_execlists)
   3117 			ret = logical_ring_flush_all_caches(request);
   3118 		else
   3119 			ret = intel_ring_flush_all_caches(request);
   3120 		/* Not allowed to fail! */
   3121 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
   3122 	}
   3123 
   3124 	/* Record the position of the start of the request so that
   3125 	 * should we detect the updated seqno part-way through the
   3126 	 * GPU processing the request, we never over-estimate the
   3127 	 * position of the head.
   3128 	 */
   3129 	request->postfix = intel_ring_get_tail(ringbuf);
   3130 
   3131 	if (i915.enable_execlists)
   3132 		ret = ring->emit_request(request);
   3133 	else {
   3134 		ret = ring->add_request(request);
   3135 
   3136 		request->tail = intel_ring_get_tail(ringbuf);
   3137 	}
   3138 	/* Not allowed to fail! */
   3139 	WARN(ret, "emit|add_request failed: %d!\n", ret);
   3140 
   3141 	request->head = request_start;
   3142 
   3143 	/* Whilst this request exists, batch_obj will be on the
   3144 	 * active_list, and so will hold the active reference. Only when this
   3145 	 * request is retired will the the batch_obj be moved onto the
   3146 	 * inactive_list and lose its active reference. Hence we do not need
   3147 	 * to explicitly hold another reference here.
   3148 	 */
   3149 	request->batch_obj = obj;
   3150 
   3151 	request->emitted_jiffies = jiffies;
   3152 	request->previous_seqno = ring->last_submitted_seqno;
   3153 	ring->last_submitted_seqno = request->seqno;
   3154 	list_add_tail(&request->list, &ring->request_list);
   3155 
   3156 	trace_i915_gem_request_add(request);
   3157 
   3158 	i915_queue_hangcheck(ring->dev);
   3159 
   3160 	queue_delayed_work(dev_priv->wq,
   3161 			   &dev_priv->mm.retire_work,
   3162 			   round_jiffies_up_relative(HZ));
   3163 	intel_mark_busy(dev_priv->dev);
   3164 
   3165 	/* Sanity check that the reserved size was large enough. */
   3166 	intel_ring_reserved_space_end(ringbuf);
   3167 }
   3168 
   3169 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
   3170 				   const struct intel_context *ctx)
   3171 {
   3172 	unsigned long elapsed;
   3173 
   3174 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
   3175 
   3176 	if (ctx->hang_stats.banned)
   3177 		return true;
   3178 
   3179 	if (ctx->hang_stats.ban_period_seconds &&
   3180 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
   3181 		if (!i915_gem_context_is_default(ctx)) {
   3182 			DRM_DEBUG("context hanging too fast, banning!\n");
   3183 			return true;
   3184 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
   3185 			if (i915_stop_ring_allow_warn(dev_priv))
   3186 				DRM_ERROR("gpu hanging too fast, banning!\n");
   3187 			return true;
   3188 		}
   3189 	}
   3190 
   3191 	return false;
   3192 }
   3193 
   3194 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
   3195 				  struct intel_context *ctx,
   3196 				  const bool guilty)
   3197 {
   3198 	struct i915_ctx_hang_stats *hs;
   3199 
   3200 	if (WARN_ON(!ctx))
   3201 		return;
   3202 
   3203 	hs = &ctx->hang_stats;
   3204 
   3205 	if (guilty) {
   3206 		hs->banned = i915_context_is_banned(dev_priv, ctx);
   3207 		hs->batch_active++;
   3208 		hs->guilty_ts = get_seconds();
   3209 	} else {
   3210 		hs->batch_pending++;
   3211 	}
   3212 }
   3213 
   3214 void i915_gem_request_free(struct kref *req_ref)
   3215 {
   3216 	struct drm_i915_gem_request *req = container_of(req_ref,
   3217 						 typeof(*req), ref);
   3218 	struct intel_context *ctx = req->ctx;
   3219 
   3220 	if (req->file_priv)
   3221 		i915_gem_request_remove_from_client(req);
   3222 
   3223 	if (ctx) {
   3224 		if (i915.enable_execlists) {
   3225 			if (ctx != req->ring->default_context)
   3226 				intel_lr_context_unpin(req);
   3227 		}
   3228 
   3229 		i915_gem_context_unreference(ctx);
   3230 	}
   3231 
   3232 	kmem_cache_free(req->i915->requests, req);
   3233 }
   3234 
   3235 int i915_gem_request_alloc(struct intel_engine_cs *ring,
   3236 			   struct intel_context *ctx,
   3237 			   struct drm_i915_gem_request **req_out)
   3238 {
   3239 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
   3240 	struct drm_i915_gem_request *req;
   3241 	int ret;
   3242 
   3243 	if (!req_out)
   3244 		return -EINVAL;
   3245 
   3246 	*req_out = NULL;
   3247 
   3248 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
   3249 	if (req == NULL)
   3250 		return -ENOMEM;
   3251 
   3252 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
   3253 	if (ret)
   3254 		goto err;
   3255 
   3256 	kref_init(&req->ref);
   3257 	req->i915 = dev_priv;
   3258 	req->ring = ring;
   3259 	req->ctx  = ctx;
   3260 	i915_gem_context_reference(req->ctx);
   3261 
   3262 	if (i915.enable_execlists)
   3263 		ret = intel_logical_ring_alloc_request_extras(req);
   3264 	else
   3265 		ret = intel_ring_alloc_request_extras(req);
   3266 	if (ret) {
   3267 		i915_gem_context_unreference(req->ctx);
   3268 		goto err;
   3269 	}
   3270 
   3271 	/*
   3272 	 * Reserve space in the ring buffer for all the commands required to
   3273 	 * eventually emit this request. This is to guarantee that the
   3274 	 * i915_add_request() call can't fail. Note that the reserve may need
   3275 	 * to be redone if the request is not actually submitted straight
   3276 	 * away, e.g. because a GPU scheduler has deferred it.
   3277 	 */
   3278 	if (i915.enable_execlists)
   3279 		ret = intel_logical_ring_reserve_space(req);
   3280 	else
   3281 		ret = intel_ring_reserve_space(req);
   3282 	if (ret) {
   3283 		/*
   3284 		 * At this point, the request is fully allocated even if not
   3285 		 * fully prepared. Thus it can be cleaned up using the proper
   3286 		 * free code.
   3287 		 */
   3288 		i915_gem_request_cancel(req);
   3289 		return ret;
   3290 	}
   3291 
   3292 	*req_out = req;
   3293 	return 0;
   3294 
   3295 err:
   3296 	kmem_cache_free(dev_priv->requests, req);
   3297 	return ret;
   3298 }
   3299 
   3300 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
   3301 {
   3302 	intel_ring_reserved_space_cancel(req->ringbuf);
   3303 
   3304 	i915_gem_request_unreference(req);
   3305 }
   3306 
   3307 struct drm_i915_gem_request *
   3308 i915_gem_find_active_request(struct intel_engine_cs *ring)
   3309 {
   3310 	struct drm_i915_gem_request *request;
   3311 
   3312 	list_for_each_entry(request, &ring->request_list, list) {
   3313 		if (i915_gem_request_completed(request, false))
   3314 			continue;
   3315 
   3316 		return request;
   3317 	}
   3318 
   3319 	return NULL;
   3320 }
   3321 
   3322 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
   3323 				       struct intel_engine_cs *ring)
   3324 {
   3325 	struct drm_i915_gem_request *request;
   3326 	bool ring_hung;
   3327 
   3328 	request = i915_gem_find_active_request(ring);
   3329 
   3330 	if (request == NULL)
   3331 		return;
   3332 
   3333 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
   3334 
   3335 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
   3336 
   3337 	list_for_each_entry_continue(request, &ring->request_list, list)
   3338 		i915_set_reset_status(dev_priv, request->ctx, false);
   3339 }
   3340 
   3341 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
   3342 					struct intel_engine_cs *ring)
   3343 {
   3344 	while (!list_empty(&ring->active_list)) {
   3345 		struct drm_i915_gem_object *obj;
   3346 
   3347 		obj = list_first_entry(&ring->active_list,
   3348 				       struct drm_i915_gem_object,
   3349 				       ring_list[ring->id]);
   3350 
   3351 		i915_gem_object_retire__read(obj, ring->id);
   3352 	}
   3353 
   3354 	/*
   3355 	 * Clear the execlists queue up before freeing the requests, as those
   3356 	 * are the ones that keep the context and ringbuffer backing objects
   3357 	 * pinned in place.
   3358 	 */
   3359 	while (!list_empty(&ring->execlist_queue)) {
   3360 		struct drm_i915_gem_request *submit_req;
   3361 
   3362 		submit_req = list_first_entry(&ring->execlist_queue,
   3363 				struct drm_i915_gem_request,
   3364 				execlist_link);
   3365 		list_del(&submit_req->execlist_link);
   3366 
   3367 		if (submit_req->ctx != ring->default_context)
   3368 			intel_lr_context_unpin(submit_req);
   3369 
   3370 		i915_gem_request_unreference(submit_req);
   3371 	}
   3372 
   3373 	/*
   3374 	 * We must free the requests after all the corresponding objects have
   3375 	 * been moved off active lists. Which is the same order as the normal
   3376 	 * retire_requests function does. This is important if object hold
   3377 	 * implicit references on things like e.g. ppgtt address spaces through
   3378 	 * the request.
   3379 	 */
   3380 	while (!list_empty(&ring->request_list)) {
   3381 		struct drm_i915_gem_request *request;
   3382 
   3383 		request = list_first_entry(&ring->request_list,
   3384 					   struct drm_i915_gem_request,
   3385 					   list);
   3386 
   3387 		i915_gem_request_retire(request);
   3388 	}
   3389 }
   3390 
   3391 void i915_gem_reset(struct drm_device *dev)
   3392 {
   3393 	struct drm_i915_private *dev_priv = dev->dev_private;
   3394 	struct intel_engine_cs *ring;
   3395 	int i;
   3396 
   3397 	/*
   3398 	 * Before we free the objects from the requests, we need to inspect
   3399 	 * them for finding the guilty party. As the requests only borrow
   3400 	 * their reference to the objects, the inspection must be done first.
   3401 	 */
   3402 	for_each_ring(ring, dev_priv, i)
   3403 		i915_gem_reset_ring_status(dev_priv, ring);
   3404 
   3405 	for_each_ring(ring, dev_priv, i)
   3406 		i915_gem_reset_ring_cleanup(dev_priv, ring);
   3407 
   3408 	i915_gem_context_reset(dev);
   3409 
   3410 	i915_gem_restore_fences(dev);
   3411 
   3412 	WARN_ON(i915_verify_lists(dev));
   3413 }
   3414 
   3415 /**
   3416  * This function clears the request list as sequence numbers are passed.
   3417  */
   3418 void
   3419 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
   3420 {
   3421 	WARN_ON(i915_verify_lists(ring->dev));
   3422 
   3423 	/* Retire requests first as we use it above for the early return.
   3424 	 * If we retire requests last, we may use a later seqno and so clear
   3425 	 * the requests lists without clearing the active list, leading to
   3426 	 * confusion.
   3427 	 */
   3428 	while (!list_empty(&ring->request_list)) {
   3429 		struct drm_i915_gem_request *request;
   3430 
   3431 		request = list_first_entry(&ring->request_list,
   3432 					   struct drm_i915_gem_request,
   3433 					   list);
   3434 
   3435 		if (!i915_gem_request_completed(request, true))
   3436 			break;
   3437 
   3438 		i915_gem_request_retire(request);
   3439 	}
   3440 
   3441 	/* Move any buffers on the active list that are no longer referenced
   3442 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
   3443 	 * before we free the context associated with the requests.
   3444 	 */
   3445 	while (!list_empty(&ring->active_list)) {
   3446 		struct drm_i915_gem_object *obj;
   3447 
   3448 		obj = list_first_entry(&ring->active_list,
   3449 				      struct drm_i915_gem_object,
   3450 				      ring_list[ring->id]);
   3451 
   3452 		if (!list_empty(&obj->last_read_req[ring->id]->list))
   3453 			break;
   3454 
   3455 		i915_gem_object_retire__read(obj, ring->id);
   3456 	}
   3457 
   3458 	if (unlikely(ring->trace_irq_req &&
   3459 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
   3460 		ring->irq_put(ring);
   3461 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
   3462 	}
   3463 
   3464 	WARN_ON(i915_verify_lists(ring->dev));
   3465 }
   3466 
   3467 bool
   3468 i915_gem_retire_requests(struct drm_device *dev)
   3469 {
   3470 	struct drm_i915_private *dev_priv = dev->dev_private;
   3471 	struct intel_engine_cs *ring;
   3472 	bool idle = true;
   3473 	int i;
   3474 
   3475 	for_each_ring(ring, dev_priv, i) {
   3476 		i915_gem_retire_requests_ring(ring);
   3477 		idle &= list_empty(&ring->request_list);
   3478 		if (i915.enable_execlists) {
   3479 			unsigned long flags;
   3480 
   3481 			spin_lock_irqsave(&ring->execlist_lock, flags);
   3482 			idle &= list_empty(&ring->execlist_queue);
   3483 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
   3484 
   3485 			intel_execlists_retire_requests(ring);
   3486 		}
   3487 	}
   3488 
   3489 	if (idle)
   3490 		mod_delayed_work(dev_priv->wq,
   3491 				   &dev_priv->mm.idle_work,
   3492 				   msecs_to_jiffies(100));
   3493 
   3494 	return idle;
   3495 }
   3496 
   3497 static void
   3498 i915_gem_retire_work_handler(struct work_struct *work)
   3499 {
   3500 	struct drm_i915_private *dev_priv =
   3501 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
   3502 	struct drm_device *dev = dev_priv->dev;
   3503 	bool idle;
   3504 
   3505 	/* Come back later if the device is busy... */
   3506 	idle = false;
   3507 	if (mutex_trylock(&dev->struct_mutex)) {
   3508 		idle = i915_gem_retire_requests(dev);
   3509 		mutex_unlock(&dev->struct_mutex);
   3510 	}
   3511 	if (!idle)
   3512 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
   3513 				   round_jiffies_up_relative(HZ));
   3514 }
   3515 
   3516 static void
   3517 i915_gem_idle_work_handler(struct work_struct *work)
   3518 {
   3519 	struct drm_i915_private *dev_priv =
   3520 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
   3521 	struct drm_device *dev = dev_priv->dev;
   3522 	struct intel_engine_cs *ring;
   3523 	int i;
   3524 
   3525 	for_each_ring(ring, dev_priv, i)
   3526 		if (!list_empty(&ring->request_list))
   3527 			return;
   3528 
   3529 	intel_mark_idle(dev);
   3530 
   3531 	if (mutex_trylock(&dev->struct_mutex)) {
   3532 		struct intel_engine_cs *ring;
   3533 		int i;
   3534 
   3535 		for_each_ring(ring, dev_priv, i)
   3536 			i915_gem_batch_pool_fini(&ring->batch_pool);
   3537 
   3538 		mutex_unlock(&dev->struct_mutex);
   3539 	}
   3540 }
   3541 
   3542 /**
   3543  * Ensures that an object will eventually get non-busy by flushing any required
   3544  * write domains, emitting any outstanding lazy request and retiring and
   3545  * completed requests.
   3546  */
   3547 static int
   3548 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
   3549 {
   3550 	int i;
   3551 
   3552 	if (!obj->active)
   3553 		return 0;
   3554 
   3555 	for (i = 0; i < I915_NUM_RINGS; i++) {
   3556 		struct drm_i915_gem_request *req;
   3557 
   3558 		req = obj->last_read_req[i];
   3559 		if (req == NULL)
   3560 			continue;
   3561 
   3562 		if (list_empty(&req->list))
   3563 			goto retire;
   3564 
   3565 		if (i915_gem_request_completed(req, true)) {
   3566 			__i915_gem_request_retire__upto(req);
   3567 retire:
   3568 			i915_gem_object_retire__read(obj, i);
   3569 		}
   3570 	}
   3571 
   3572 	return 0;
   3573 }
   3574 
   3575 /**
   3576  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
   3577  * @DRM_IOCTL_ARGS: standard ioctl arguments
   3578  *
   3579  * Returns 0 if successful, else an error is returned with the remaining time in
   3580  * the timeout parameter.
   3581  *  -ETIME: object is still busy after timeout
   3582  *  -ERESTARTSYS: signal interrupted the wait
   3583  *  -ENONENT: object doesn't exist
   3584  * Also possible, but rare:
   3585  *  -EAGAIN: GPU wedged
   3586  *  -ENOMEM: damn
   3587  *  -ENODEV: Internal IRQ fail
   3588  *  -E?: The add request failed
   3589  *
   3590  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
   3591  * non-zero timeout parameter the wait ioctl will wait for the given number of
   3592  * nanoseconds on an object becoming unbusy. Since the wait itself does so
   3593  * without holding struct_mutex the object may become re-busied before this
   3594  * function completes. A similar but shorter * race condition exists in the busy
   3595  * ioctl
   3596  */
   3597 int
   3598 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
   3599 {
   3600 	struct drm_i915_private *dev_priv = dev->dev_private;
   3601 	struct drm_i915_gem_wait *args = data;
   3602 	struct drm_gem_object *gobj;
   3603 	struct drm_i915_gem_object *obj;
   3604 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
   3605 	unsigned reset_counter;
   3606 	int i, n = 0;
   3607 	int ret;
   3608 
   3609 	if (args->flags != 0)
   3610 		return -EINVAL;
   3611 
   3612 	ret = i915_mutex_lock_interruptible(dev);
   3613 	if (ret)
   3614 		return ret;
   3615 
   3616 	gobj = drm_gem_object_lookup(dev, file, args->bo_handle);
   3617 	if (gobj == NULL) {
   3618 		mutex_unlock(&dev->struct_mutex);
   3619 		return -ENOENT;
   3620 	}
   3621 	obj = to_intel_bo(gobj);
   3622 
   3623 	/* Need to make sure the object gets inactive eventually. */
   3624 	ret = i915_gem_object_flush_active(obj);
   3625 	if (ret)
   3626 		goto out;
   3627 
   3628 	if (!obj->active)
   3629 		goto out;
   3630 
   3631 	/* Do this after OLR check to make sure we make forward progress polling
   3632 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
   3633 	 */
   3634 	if (args->timeout_ns == 0) {
   3635 		ret = -ETIME;
   3636 		goto out;
   3637 	}
   3638 
   3639 	drm_gem_object_unreference(&obj->base);
   3640 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   3641 
   3642 	for (i = 0; i < I915_NUM_RINGS; i++) {
   3643 		if (obj->last_read_req[i] == NULL)
   3644 			continue;
   3645 
   3646 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
   3647 	}
   3648 
   3649 	mutex_unlock(&dev->struct_mutex);
   3650 
   3651 	for (i = 0; i < n; i++) {
   3652 		if (ret == 0)
   3653 			ret = __i915_wait_request(req[i], reset_counter, true,
   3654 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
   3655 						  file->driver_priv);
   3656 		i915_gem_request_unreference__unlocked(req[i]);
   3657 	}
   3658 	return ret;
   3659 
   3660 out:
   3661 	drm_gem_object_unreference(&obj->base);
   3662 	mutex_unlock(&dev->struct_mutex);
   3663 	return ret;
   3664 }
   3665 
   3666 static int
   3667 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
   3668 		       struct intel_engine_cs *to,
   3669 		       struct drm_i915_gem_request *from_req,
   3670 		       struct drm_i915_gem_request **to_req)
   3671 {
   3672 	struct intel_engine_cs *from;
   3673 	int ret;
   3674 
   3675 	from = i915_gem_request_get_ring(from_req);
   3676 	if (to == from)
   3677 		return 0;
   3678 
   3679 	if (i915_gem_request_completed(from_req, true))
   3680 		return 0;
   3681 
   3682 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
   3683 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
   3684 		ret = __i915_wait_request(from_req,
   3685 					  atomic_read(&i915->gpu_error.reset_counter),
   3686 					  i915->mm.interruptible,
   3687 					  NULL,
   3688 					  &i915->rps.semaphores);
   3689 		if (ret)
   3690 			return ret;
   3691 
   3692 		i915_gem_object_retire_request(obj, from_req);
   3693 	} else {
   3694 		int idx = intel_ring_sync_index(from, to);
   3695 		u32 seqno = i915_gem_request_get_seqno(from_req);
   3696 
   3697 		WARN_ON(!to_req);
   3698 
   3699 		if (seqno <= from->semaphore.sync_seqno[idx])
   3700 			return 0;
   3701 
   3702 		if (*to_req == NULL) {
   3703 			ret = i915_gem_request_alloc(to, to->default_context, to_req);
   3704 			if (ret)
   3705 				return ret;
   3706 		}
   3707 
   3708 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
   3709 		ret = to->semaphore.sync_to(*to_req, from, seqno);
   3710 		if (ret)
   3711 			return ret;
   3712 
   3713 		/* We use last_read_req because sync_to()
   3714 		 * might have just caused seqno wrap under
   3715 		 * the radar.
   3716 		 */
   3717 		from->semaphore.sync_seqno[idx] =
   3718 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
   3719 	}
   3720 
   3721 	return 0;
   3722 }
   3723 
   3724 /**
   3725  * i915_gem_object_sync - sync an object to a ring.
   3726  *
   3727  * @obj: object which may be in use on another ring.
   3728  * @to: ring we wish to use the object on. May be NULL.
   3729  * @to_req: request we wish to use the object for. See below.
   3730  *          This will be allocated and returned if a request is
   3731  *          required but not passed in.
   3732  *
   3733  * This code is meant to abstract object synchronization with the GPU.
   3734  * Calling with NULL implies synchronizing the object with the CPU
   3735  * rather than a particular GPU ring. Conceptually we serialise writes
   3736  * between engines inside the GPU. We only allow one engine to write
   3737  * into a buffer at any time, but multiple readers. To ensure each has
   3738  * a coherent view of memory, we must:
   3739  *
   3740  * - If there is an outstanding write request to the object, the new
   3741  *   request must wait for it to complete (either CPU or in hw, requests
   3742  *   on the same ring will be naturally ordered).
   3743  *
   3744  * - If we are a write request (pending_write_domain is set), the new
   3745  *   request must wait for outstanding read requests to complete.
   3746  *
   3747  * For CPU synchronisation (NULL to) no request is required. For syncing with
   3748  * rings to_req must be non-NULL. However, a request does not have to be
   3749  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
   3750  * request will be allocated automatically and returned through *to_req. Note
   3751  * that it is not guaranteed that commands will be emitted (because the system
   3752  * might already be idle). Hence there is no need to create a request that
   3753  * might never have any work submitted. Note further that if a request is
   3754  * returned in *to_req, it is the responsibility of the caller to submit
   3755  * that request (after potentially adding more work to it).
   3756  *
   3757  * Returns 0 if successful, else propagates up the lower layer error.
   3758  */
   3759 int
   3760 i915_gem_object_sync(struct drm_i915_gem_object *obj,
   3761 		     struct intel_engine_cs *to,
   3762 		     struct drm_i915_gem_request **to_req)
   3763 {
   3764 	const bool readonly = obj->base.pending_write_domain == 0;
   3765 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
   3766 	int ret, i, n;
   3767 
   3768 	if (!obj->active)
   3769 		return 0;
   3770 
   3771 	if (to == NULL)
   3772 		return i915_gem_object_wait_rendering(obj, readonly);
   3773 
   3774 	n = 0;
   3775 	if (readonly) {
   3776 		if (obj->last_write_req)
   3777 			req[n++] = obj->last_write_req;
   3778 	} else {
   3779 		for (i = 0; i < I915_NUM_RINGS; i++)
   3780 			if (obj->last_read_req[i])
   3781 				req[n++] = obj->last_read_req[i];
   3782 	}
   3783 	for (i = 0; i < n; i++) {
   3784 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
   3785 		if (ret)
   3786 			return ret;
   3787 	}
   3788 
   3789 	return 0;
   3790 }
   3791 
   3792 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
   3793 {
   3794 	u32 old_write_domain, old_read_domains;
   3795 
   3796 	/* Force a pagefault for domain tracking on next user access */
   3797 	i915_gem_release_mmap(obj);
   3798 
   3799 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   3800 		return;
   3801 
   3802 	/* Wait for any direct GTT access to complete */
   3803 	mb();
   3804 
   3805 	old_read_domains = obj->base.read_domains;
   3806 	old_write_domain = obj->base.write_domain;
   3807 
   3808 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
   3809 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
   3810 
   3811 	trace_i915_gem_object_change_domain(obj,
   3812 					    old_read_domains,
   3813 					    old_write_domain);
   3814 }
   3815 
   3816 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
   3817 {
   3818 	struct drm_i915_gem_object *obj = vma->obj;
   3819 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3820 	int ret;
   3821 
   3822 	if (list_empty(&vma->vma_link))
   3823 		return 0;
   3824 
   3825 	if (!drm_mm_node_allocated(&vma->node)) {
   3826 		i915_gem_vma_destroy(vma);
   3827 		return 0;
   3828 	}
   3829 
   3830 	if (vma->pin_count)
   3831 		return -EBUSY;
   3832 
   3833 	BUG_ON(obj->pages == NULL);
   3834 
   3835 	if (wait) {
   3836 		ret = i915_gem_object_wait_rendering(obj, false);
   3837 		if (ret)
   3838 			return ret;
   3839 	}
   3840 
   3841 	if (i915_is_ggtt(vma->vm) &&
   3842 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
   3843 		i915_gem_object_finish_gtt(obj);
   3844 
   3845 		/* release the fence reg _after_ flushing */
   3846 		ret = i915_gem_object_put_fence(obj);
   3847 		if (ret)
   3848 			return ret;
   3849 	}
   3850 
   3851 	trace_i915_vma_unbind(vma);
   3852 
   3853 	vma->vm->unbind_vma(vma);
   3854 	vma->bound = 0;
   3855 
   3856 	list_del_init(&vma->mm_list);
   3857 	if (i915_is_ggtt(vma->vm)) {
   3858 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
   3859 			obj->map_and_fenceable = false;
   3860 		} else if (vma->ggtt_view.pages) {
   3861 #ifdef __NetBSD__
   3862 			panic("rotated/partial views can't happen");
   3863 #else
   3864 			sg_free_table(vma->ggtt_view.pages);
   3865 			kfree(vma->ggtt_view.pages);
   3866 #endif
   3867 		}
   3868 		vma->ggtt_view.pages = NULL;
   3869 	}
   3870 
   3871 	drm_mm_remove_node(&vma->node);
   3872 	i915_gem_vma_destroy(vma);
   3873 
   3874 	/* Since the unbound list is global, only move to that list if
   3875 	 * no more VMAs exist. */
   3876 	if (list_empty(&obj->vma_list))
   3877 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   3878 
   3879 	/* And finally now the object is completely decoupled from this vma,
   3880 	 * we can drop its hold on the backing storage and allow it to be
   3881 	 * reaped by the shrinker.
   3882 	 */
   3883 	i915_gem_object_unpin_pages(obj);
   3884 
   3885 	return 0;
   3886 }
   3887 
   3888 int i915_vma_unbind(struct i915_vma *vma)
   3889 {
   3890 	return __i915_vma_unbind(vma, true);
   3891 }
   3892 
   3893 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
   3894 {
   3895 	return __i915_vma_unbind(vma, false);
   3896 }
   3897 
   3898 int i915_gpu_idle(struct drm_device *dev)
   3899 {
   3900 	struct drm_i915_private *dev_priv = dev->dev_private;
   3901 	struct intel_engine_cs *ring;
   3902 	int ret, i;
   3903 
   3904 	/* Flush everything onto the inactive list. */
   3905 	for_each_ring(ring, dev_priv, i) {
   3906 		if (!i915.enable_execlists) {
   3907 			struct drm_i915_gem_request *req;
   3908 
   3909 			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
   3910 			if (ret)
   3911 				return ret;
   3912 
   3913 			ret = i915_switch_context(req);
   3914 			if (ret) {
   3915 				i915_gem_request_cancel(req);
   3916 				return ret;
   3917 			}
   3918 
   3919 			i915_add_request_no_flush(req);
   3920 		}
   3921 
   3922 		ret = intel_ring_idle(ring);
   3923 		if (ret)
   3924 			return ret;
   3925 	}
   3926 
   3927 	WARN_ON(i915_verify_lists(dev));
   3928 	return 0;
   3929 }
   3930 
   3931 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
   3932 				     unsigned long cache_level)
   3933 {
   3934 	struct drm_mm_node *gtt_space = &vma->node;
   3935 	struct drm_mm_node *other;
   3936 
   3937 	/*
   3938 	 * On some machines we have to be careful when putting differing types
   3939 	 * of snoopable memory together to avoid the prefetcher crossing memory
   3940 	 * domains and dying. During vm initialisation, we decide whether or not
   3941 	 * these constraints apply and set the drm_mm.color_adjust
   3942 	 * appropriately.
   3943 	 */
   3944 	if (vma->vm->mm.color_adjust == NULL)
   3945 		return true;
   3946 
   3947 	if (!drm_mm_node_allocated(gtt_space))
   3948 		return true;
   3949 
   3950 	if (list_empty(&gtt_space->node_list))
   3951 		return true;
   3952 
   3953 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
   3954 	if (other->allocated && !other->hole_follows && other->color != cache_level)
   3955 		return false;
   3956 
   3957 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
   3958 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
   3959 		return false;
   3960 
   3961 	return true;
   3962 }
   3963 
   3964 /**
   3965  * Finds free space in the GTT aperture and binds the object or a view of it
   3966  * there.
   3967  */
   3968 static struct i915_vma *
   3969 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
   3970 			   struct i915_address_space *vm,
   3971 			   const struct i915_ggtt_view *ggtt_view,
   3972 			   unsigned alignment,
   3973 			   uint64_t flags)
   3974 {
   3975 	struct drm_device *dev = obj->base.dev;
   3976 	struct drm_i915_private *dev_priv = dev->dev_private;
   3977 	u32 fence_alignment, unfenced_alignment;
   3978 	u32 search_flag, alloc_flag;
   3979 	u64 start, end;
   3980 	u64 size, fence_size;
   3981 	struct i915_vma *vma;
   3982 	int ret;
   3983 
   3984 	if (i915_is_ggtt(vm)) {
   3985 		u32 view_size;
   3986 
   3987 		if (WARN_ON(!ggtt_view))
   3988 			return ERR_PTR(-EINVAL);
   3989 
   3990 		view_size = i915_ggtt_view_size(obj, ggtt_view);
   3991 
   3992 		fence_size = i915_gem_get_gtt_size(dev,
   3993 						   view_size,
   3994 						   obj->tiling_mode);
   3995 		fence_alignment = i915_gem_get_gtt_alignment(dev,
   3996 							     view_size,
   3997 							     obj->tiling_mode,
   3998 							     true);
   3999 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
   4000 								view_size,
   4001 								obj->tiling_mode,
   4002 								false);
   4003 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
   4004 	} else {
   4005 		fence_size = i915_gem_get_gtt_size(dev,
   4006 						   obj->base.size,
   4007 						   obj->tiling_mode);
   4008 		fence_alignment = i915_gem_get_gtt_alignment(dev,
   4009 							     obj->base.size,
   4010 							     obj->tiling_mode,
   4011 							     true);
   4012 		unfenced_alignment =
   4013 			i915_gem_get_gtt_alignment(dev,
   4014 						   obj->base.size,
   4015 						   obj->tiling_mode,
   4016 						   false);
   4017 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
   4018 	}
   4019 
   4020 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
   4021 	end = vm->total;
   4022 	if (flags & PIN_MAPPABLE)
   4023 		end = min_t(u64, end, dev_priv->gtt.mappable_end);
   4024 	if (flags & PIN_ZONE_4G)
   4025 		end = min_t(u64, end, (1ULL << 32));
   4026 
   4027 	if (alignment == 0)
   4028 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
   4029 						unfenced_alignment;
   4030 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
   4031 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
   4032 			  ggtt_view ? ggtt_view->type : 0,
   4033 			  alignment);
   4034 		return ERR_PTR(-EINVAL);
   4035 	}
   4036 
   4037 	/* If binding the object/GGTT view requires more space than the entire
   4038 	 * aperture has, reject it early before evicting everything in a vain
   4039 	 * attempt to find space.
   4040 	 */
   4041 	if (size > end) {
   4042 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%"PRIx64" > %s aperture=%"PRIx64"\n",
   4043 			  ggtt_view ? ggtt_view->type : 0,
   4044 			  size,
   4045 			  flags & PIN_MAPPABLE ? "mappable" : "total",
   4046 			  end);
   4047 		return ERR_PTR(-E2BIG);
   4048 	}
   4049 
   4050 	ret = i915_gem_object_get_pages(obj);
   4051 	if (ret)
   4052 		return ERR_PTR(ret);
   4053 
   4054 	i915_gem_object_pin_pages(obj);
   4055 
   4056 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
   4057 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
   4058 
   4059 	if (IS_ERR(vma))
   4060 		goto err_unpin;
   4061 
   4062 	if (flags & PIN_HIGH) {
   4063 		search_flag = DRM_MM_SEARCH_BELOW;
   4064 		alloc_flag = DRM_MM_CREATE_TOP;
   4065 	} else {
   4066 		search_flag = DRM_MM_SEARCH_DEFAULT;
   4067 		alloc_flag = DRM_MM_CREATE_DEFAULT;
   4068 	}
   4069 
   4070 search_free:
   4071 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
   4072 						  size, alignment,
   4073 						  obj->cache_level,
   4074 						  start, end,
   4075 						  search_flag,
   4076 						  alloc_flag);
   4077 	if (ret) {
   4078 		ret = i915_gem_evict_something(dev, vm, size, alignment,
   4079 					       obj->cache_level,
   4080 					       start, end,
   4081 					       flags);
   4082 		if (ret == 0)
   4083 			goto search_free;
   4084 
   4085 		goto err_free_vma;
   4086 	}
   4087 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
   4088 		ret = -EINVAL;
   4089 		goto err_remove_node;
   4090 	}
   4091 
   4092 	trace_i915_vma_bind(vma, flags);
   4093 	ret = i915_vma_bind(vma, obj->cache_level, flags);
   4094 	if (ret)
   4095 		goto err_remove_node;
   4096 
   4097 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
   4098 	list_add_tail(&vma->mm_list, &vm->inactive_list);
   4099 
   4100 	return vma;
   4101 
   4102 err_remove_node:
   4103 	drm_mm_remove_node(&vma->node);
   4104 err_free_vma:
   4105 	i915_gem_vma_destroy(vma);
   4106 	vma = ERR_PTR(ret);
   4107 err_unpin:
   4108 	i915_gem_object_unpin_pages(obj);
   4109 	return vma;
   4110 }
   4111 
   4112 bool
   4113 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
   4114 			bool force)
   4115 {
   4116 	/* If we don't have a page list set up, then we're not pinned
   4117 	 * to GPU, and we can ignore the cache flush because it'll happen
   4118 	 * again at bind time.
   4119 	 */
   4120 	if (obj->pages == NULL)
   4121 		return false;
   4122 
   4123 	/*
   4124 	 * Stolen memory is always coherent with the GPU as it is explicitly
   4125 	 * marked as wc by the system, or the system is cache-coherent.
   4126 	 */
   4127 	if (obj->stolen || obj->phys_handle)
   4128 		return false;
   4129 
   4130 	/* If the GPU is snooping the contents of the CPU cache,
   4131 	 * we do not need to manually clear the CPU cache lines.  However,
   4132 	 * the caches are only snooped when the render cache is
   4133 	 * flushed/invalidated.  As we always have to emit invalidations
   4134 	 * and flushes when moving into and out of the RENDER domain, correct
   4135 	 * snooping behaviour occurs naturally as the result of our domain
   4136 	 * tracking.
   4137 	 */
   4138 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
   4139 		obj->cache_dirty = true;
   4140 		return false;
   4141 	}
   4142 
   4143 	trace_i915_gem_object_clflush(obj);
   4144 #ifdef __NetBSD__
   4145 	drm_clflush_pglist(&obj->pageq);
   4146 #else
   4147 	drm_clflush_sg(obj->pages);
   4148 #endif
   4149 	obj->cache_dirty = false;
   4150 
   4151 	return true;
   4152 }
   4153 
   4154 /** Flushes the GTT write domain for the object if it's dirty. */
   4155 static void
   4156 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
   4157 {
   4158 	uint32_t old_write_domain;
   4159 
   4160 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
   4161 		return;
   4162 
   4163 	/* No actual flushing is required for the GTT write domain.  Writes
   4164 	 * to it immediately go to main memory as far as we know, so there's
   4165 	 * no chipset flush.  It also doesn't land in render cache.
   4166 	 *
   4167 	 * However, we do have to enforce the order so that all writes through
   4168 	 * the GTT land before any writes to the device, such as updates to
   4169 	 * the GATT itself.
   4170 	 */
   4171 	wmb();
   4172 
   4173 	old_write_domain = obj->base.write_domain;
   4174 	obj->base.write_domain = 0;
   4175 
   4176 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
   4177 
   4178 	trace_i915_gem_object_change_domain(obj,
   4179 					    obj->base.read_domains,
   4180 					    old_write_domain);
   4181 }
   4182 
   4183 /** Flushes the CPU write domain for the object if it's dirty. */
   4184 static void
   4185 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
   4186 {
   4187 	uint32_t old_write_domain;
   4188 
   4189 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
   4190 		return;
   4191 
   4192 	if (i915_gem_clflush_object(obj, obj->pin_display))
   4193 		i915_gem_chipset_flush(obj->base.dev);
   4194 
   4195 	old_write_domain = obj->base.write_domain;
   4196 	obj->base.write_domain = 0;
   4197 
   4198 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
   4199 
   4200 	trace_i915_gem_object_change_domain(obj,
   4201 					    obj->base.read_domains,
   4202 					    old_write_domain);
   4203 }
   4204 
   4205 /**
   4206  * Moves a single object to the GTT read, and possibly write domain.
   4207  *
   4208  * This function returns when the move is complete, including waiting on
   4209  * flushes to occur.
   4210  */
   4211 int
   4212 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
   4213 {
   4214 	uint32_t old_write_domain, old_read_domains;
   4215 	struct i915_vma *vma;
   4216 	int ret;
   4217 
   4218 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
   4219 		return 0;
   4220 
   4221 	ret = i915_gem_object_wait_rendering(obj, !write);
   4222 	if (ret)
   4223 		return ret;
   4224 
   4225 	/* Flush and acquire obj->pages so that we are coherent through
   4226 	 * direct access in memory with previous cached writes through
   4227 	 * shmemfs and that our cache domain tracking remains valid.
   4228 	 * For example, if the obj->filp was moved to swap without us
   4229 	 * being notified and releasing the pages, we would mistakenly
   4230 	 * continue to assume that the obj remained out of the CPU cached
   4231 	 * domain.
   4232 	 */
   4233 	ret = i915_gem_object_get_pages(obj);
   4234 	if (ret)
   4235 		return ret;
   4236 
   4237 	i915_gem_object_flush_cpu_write_domain(obj);
   4238 
   4239 	/* Serialise direct access to this object with the barriers for
   4240 	 * coherent writes from the GPU, by effectively invalidating the
   4241 	 * GTT domain upon first access.
   4242 	 */
   4243 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   4244 		mb();
   4245 
   4246 	old_write_domain = obj->base.write_domain;
   4247 	old_read_domains = obj->base.read_domains;
   4248 
   4249 	/* It should now be out of any other write domains, and we can update
   4250 	 * the domain values for our changes.
   4251 	 */
   4252 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
   4253 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4254 	if (write) {
   4255 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
   4256 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
   4257 		obj->dirty = 1;
   4258 	}
   4259 
   4260 	trace_i915_gem_object_change_domain(obj,
   4261 					    old_read_domains,
   4262 					    old_write_domain);
   4263 
   4264 	/* And bump the LRU for this access */
   4265 	vma = i915_gem_obj_to_ggtt(obj);
   4266 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
   4267 		list_move_tail(&vma->mm_list,
   4268 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
   4269 
   4270 	return 0;
   4271 }
   4272 
   4273 /**
   4274  * Changes the cache-level of an object across all VMA.
   4275  *
   4276  * After this function returns, the object will be in the new cache-level
   4277  * across all GTT and the contents of the backing storage will be coherent,
   4278  * with respect to the new cache-level. In order to keep the backing storage
   4279  * coherent for all users, we only allow a single cache level to be set
   4280  * globally on the object and prevent it from being changed whilst the
   4281  * hardware is reading from the object. That is if the object is currently
   4282  * on the scanout it will be set to uncached (or equivalent display
   4283  * cache coherency) and all non-MOCS GPU access will also be uncached so
   4284  * that all direct access to the scanout remains coherent.
   4285  */
   4286 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
   4287 				    enum i915_cache_level cache_level)
   4288 {
   4289 	struct drm_device *dev = obj->base.dev;
   4290 	struct i915_vma *vma, *next;
   4291 	bool bound = false;
   4292 	int ret = 0;
   4293 
   4294 	if (obj->cache_level == cache_level)
   4295 		goto out;
   4296 
   4297 	/* Inspect the list of currently bound VMA and unbind any that would
   4298 	 * be invalid given the new cache-level. This is principally to
   4299 	 * catch the issue of the CS prefetch crossing page boundaries and
   4300 	 * reading an invalid PTE on older architectures.
   4301 	 */
   4302 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   4303 		if (!drm_mm_node_allocated(&vma->node))
   4304 			continue;
   4305 
   4306 		if (vma->pin_count) {
   4307 			DRM_DEBUG("can not change the cache level of pinned objects\n");
   4308 			return -EBUSY;
   4309 		}
   4310 
   4311 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
   4312 			ret = i915_vma_unbind(vma);
   4313 			if (ret)
   4314 				return ret;
   4315 		} else
   4316 			bound = true;
   4317 	}
   4318 
   4319 	/* We can reuse the existing drm_mm nodes but need to change the
   4320 	 * cache-level on the PTE. We could simply unbind them all and
   4321 	 * rebind with the correct cache-level on next use. However since
   4322 	 * we already have a valid slot, dma mapping, pages etc, we may as
   4323 	 * rewrite the PTE in the belief that doing so tramples upon less
   4324 	 * state and so involves less work.
   4325 	 */
   4326 	if (bound) {
   4327 		/* Before we change the PTE, the GPU must not be accessing it.
   4328 		 * If we wait upon the object, we know that all the bound
   4329 		 * VMA are no longer active.
   4330 		 */
   4331 		ret = i915_gem_object_wait_rendering(obj, false);
   4332 		if (ret)
   4333 			return ret;
   4334 
   4335 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
   4336 			/* Access to snoopable pages through the GTT is
   4337 			 * incoherent and on some machines causes a hard
   4338 			 * lockup. Relinquish the CPU mmaping to force
   4339 			 * userspace to refault in the pages and we can
   4340 			 * then double check if the GTT mapping is still
   4341 			 * valid for that pointer access.
   4342 			 */
   4343 			i915_gem_release_mmap(obj);
   4344 
   4345 			/* As we no longer need a fence for GTT access,
   4346 			 * we can relinquish it now (and so prevent having
   4347 			 * to steal a fence from someone else on the next
   4348 			 * fence request). Note GPU activity would have
   4349 			 * dropped the fence as all snoopable access is
   4350 			 * supposed to be linear.
   4351 			 */
   4352 			ret = i915_gem_object_put_fence(obj);
   4353 			if (ret)
   4354 				return ret;
   4355 		} else {
   4356 			/* We either have incoherent backing store and
   4357 			 * so no GTT access or the architecture is fully
   4358 			 * coherent. In such cases, existing GTT mmaps
   4359 			 * ignore the cache bit in the PTE and we can
   4360 			 * rewrite it without confusing the GPU or having
   4361 			 * to force userspace to fault back in its mmaps.
   4362 			 */
   4363 		}
   4364 
   4365 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
   4366 			if (!drm_mm_node_allocated(&vma->node))
   4367 				continue;
   4368 
   4369 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
   4370 			if (ret)
   4371 				return ret;
   4372 		}
   4373 	}
   4374 
   4375 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   4376 		vma->node.color = cache_level;
   4377 	obj->cache_level = cache_level;
   4378 
   4379 out:
   4380 	/* Flush the dirty CPU caches to the backing storage so that the
   4381 	 * object is now coherent at its new cache level (with respect
   4382 	 * to the access domain).
   4383 	 */
   4384 	if (obj->cache_dirty &&
   4385 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
   4386 	    cpu_write_needs_clflush(obj)) {
   4387 		if (i915_gem_clflush_object(obj, true))
   4388 			i915_gem_chipset_flush(obj->base.dev);
   4389 	}
   4390 
   4391 	return 0;
   4392 }
   4393 
   4394 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
   4395 			       struct drm_file *file)
   4396 {
   4397 	struct drm_i915_gem_caching *args = data;
   4398 	struct drm_gem_object *gobj;
   4399 	struct drm_i915_gem_object *obj;
   4400 
   4401 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4402 	if (gobj == NULL)
   4403 		return -ENOENT;
   4404 	obj = to_intel_bo(gobj);
   4405 
   4406 	switch (obj->cache_level) {
   4407 	case I915_CACHE_LLC:
   4408 	case I915_CACHE_L3_LLC:
   4409 		args->caching = I915_CACHING_CACHED;
   4410 		break;
   4411 
   4412 	case I915_CACHE_WT:
   4413 		args->caching = I915_CACHING_DISPLAY;
   4414 		break;
   4415 
   4416 	default:
   4417 		args->caching = I915_CACHING_NONE;
   4418 		break;
   4419 	}
   4420 
   4421 	drm_gem_object_unreference_unlocked(&obj->base);
   4422 	return 0;
   4423 }
   4424 
   4425 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
   4426 			       struct drm_file *file)
   4427 {
   4428 	struct drm_i915_private *dev_priv = dev->dev_private;
   4429 	struct drm_i915_gem_caching *args = data;
   4430 	struct drm_gem_object *gobj;
   4431 	struct drm_i915_gem_object *obj;
   4432 	enum i915_cache_level level;
   4433 	int ret;
   4434 
   4435 	switch (args->caching) {
   4436 	case I915_CACHING_NONE:
   4437 		level = I915_CACHE_NONE;
   4438 		break;
   4439 	case I915_CACHING_CACHED:
   4440 		/*
   4441 		 * Due to a HW issue on BXT A stepping, GPU stores via a
   4442 		 * snooped mapping may leave stale data in a corresponding CPU
   4443 		 * cacheline, whereas normally such cachelines would get
   4444 		 * invalidated.
   4445 		 */
   4446 		if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
   4447 			return -ENODEV;
   4448 
   4449 		level = I915_CACHE_LLC;
   4450 		break;
   4451 	case I915_CACHING_DISPLAY:
   4452 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
   4453 		break;
   4454 	default:
   4455 		return -EINVAL;
   4456 	}
   4457 
   4458 	intel_runtime_pm_get(dev_priv);
   4459 
   4460 	ret = i915_mutex_lock_interruptible(dev);
   4461 	if (ret)
   4462 		goto rpm_put;
   4463 
   4464 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4465 	if (gobj == NULL) {
   4466 		ret = -ENOENT;
   4467 		goto unlock;
   4468 	}
   4469 	obj = to_intel_bo(gobj);
   4470 
   4471 	ret = i915_gem_object_set_cache_level(obj, level);
   4472 
   4473 	drm_gem_object_unreference(&obj->base);
   4474 unlock:
   4475 	mutex_unlock(&dev->struct_mutex);
   4476 rpm_put:
   4477 	intel_runtime_pm_put(dev_priv);
   4478 
   4479 	return ret;
   4480 }
   4481 
   4482 /*
   4483  * Prepare buffer for display plane (scanout, cursors, etc).
   4484  * Can be called from an uninterruptible phase (modesetting) and allows
   4485  * any flushes to be pipelined (for pageflips).
   4486  */
   4487 int
   4488 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
   4489 				     u32 alignment,
   4490 				     struct intel_engine_cs *pipelined,
   4491 				     struct drm_i915_gem_request **pipelined_request,
   4492 				     const struct i915_ggtt_view *view)
   4493 {
   4494 	u32 old_read_domains, old_write_domain;
   4495 	int ret;
   4496 
   4497 	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
   4498 	if (ret)
   4499 		return ret;
   4500 
   4501 	/* Mark the pin_display early so that we account for the
   4502 	 * display coherency whilst setting up the cache domains.
   4503 	 */
   4504 	obj->pin_display++;
   4505 
   4506 	/* The display engine is not coherent with the LLC cache on gen6.  As
   4507 	 * a result, we make sure that the pinning that is about to occur is
   4508 	 * done with uncached PTEs. This is lowest common denominator for all
   4509 	 * chipsets.
   4510 	 *
   4511 	 * However for gen6+, we could do better by using the GFDT bit instead
   4512 	 * of uncaching, which would allow us to flush all the LLC-cached data
   4513 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
   4514 	 */
   4515 	ret = i915_gem_object_set_cache_level(obj,
   4516 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
   4517 	if (ret)
   4518 		goto err_unpin_display;
   4519 
   4520 	/* As the user may map the buffer once pinned in the display plane
   4521 	 * (e.g. libkms for the bootup splash), we have to ensure that we
   4522 	 * always use map_and_fenceable for all scanout buffers.
   4523 	 */
   4524 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
   4525 				       view->type == I915_GGTT_VIEW_NORMAL ?
   4526 				       PIN_MAPPABLE : 0);
   4527 	if (ret)
   4528 		goto err_unpin_display;
   4529 
   4530 	i915_gem_object_flush_cpu_write_domain(obj);
   4531 
   4532 	old_write_domain = obj->base.write_domain;
   4533 	old_read_domains = obj->base.read_domains;
   4534 
   4535 	/* It should now be out of any other write domains, and we can update
   4536 	 * the domain values for our changes.
   4537 	 */
   4538 	obj->base.write_domain = 0;
   4539 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4540 
   4541 	trace_i915_gem_object_change_domain(obj,
   4542 					    old_read_domains,
   4543 					    old_write_domain);
   4544 
   4545 	return 0;
   4546 
   4547 err_unpin_display:
   4548 	obj->pin_display--;
   4549 	return ret;
   4550 }
   4551 
   4552 void
   4553 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
   4554 					 const struct i915_ggtt_view *view)
   4555 {
   4556 	if (WARN_ON(obj->pin_display == 0))
   4557 		return;
   4558 
   4559 	i915_gem_object_ggtt_unpin_view(obj, view);
   4560 
   4561 	obj->pin_display--;
   4562 }
   4563 
   4564 /**
   4565  * Moves a single object to the CPU read, and possibly write domain.
   4566  *
   4567  * This function returns when the move is complete, including waiting on
   4568  * flushes to occur.
   4569  */
   4570 int
   4571 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
   4572 {
   4573 	uint32_t old_write_domain, old_read_domains;
   4574 	int ret;
   4575 
   4576 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
   4577 		return 0;
   4578 
   4579 	ret = i915_gem_object_wait_rendering(obj, !write);
   4580 	if (ret)
   4581 		return ret;
   4582 
   4583 	i915_gem_object_flush_gtt_write_domain(obj);
   4584 
   4585 	old_write_domain = obj->base.write_domain;
   4586 	old_read_domains = obj->base.read_domains;
   4587 
   4588 	/* Flush the CPU cache if it's still invalid. */
   4589 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
   4590 		i915_gem_clflush_object(obj, false);
   4591 
   4592 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
   4593 	}
   4594 
   4595 	/* It should now be out of any other write domains, and we can update
   4596 	 * the domain values for our changes.
   4597 	 */
   4598 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
   4599 
   4600 	/* If we're writing through the CPU, then the GPU read domains will
   4601 	 * need to be invalidated at next use.
   4602 	 */
   4603 	if (write) {
   4604 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4605 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4606 	}
   4607 
   4608 	trace_i915_gem_object_change_domain(obj,
   4609 					    old_read_domains,
   4610 					    old_write_domain);
   4611 
   4612 	return 0;
   4613 }
   4614 
   4615 /* Throttle our rendering by waiting until the ring has completed our requests
   4616  * emitted over 20 msec ago.
   4617  *
   4618  * Note that if we were to use the current jiffies each time around the loop,
   4619  * we wouldn't escape the function with any frames outstanding if the time to
   4620  * render a frame was over 20ms.
   4621  *
   4622  * This should get us reasonable parallelism between CPU and GPU but also
   4623  * relatively low latency when blocking on a particular request to finish.
   4624  */
   4625 static int
   4626 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
   4627 {
   4628 	struct drm_i915_private *dev_priv = dev->dev_private;
   4629 	struct drm_i915_file_private *file_priv = file->driver_priv;
   4630 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
   4631 	struct drm_i915_gem_request *request, *target = NULL;
   4632 	unsigned reset_counter;
   4633 	int ret;
   4634 
   4635 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
   4636 	if (ret)
   4637 		return ret;
   4638 
   4639 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
   4640 	if (ret)
   4641 		return ret;
   4642 
   4643 	spin_lock(&file_priv->mm.lock);
   4644 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
   4645 		if (time_after_eq(request->emitted_jiffies, recent_enough))
   4646 			break;
   4647 
   4648 		/*
   4649 		 * Note that the request might not have been submitted yet.
   4650 		 * In which case emitted_jiffies will be zero.
   4651 		 */
   4652 		if (!request->emitted_jiffies)
   4653 			continue;
   4654 
   4655 		target = request;
   4656 	}
   4657 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   4658 	if (target)
   4659 		i915_gem_request_reference(target);
   4660 	spin_unlock(&file_priv->mm.lock);
   4661 
   4662 	if (target == NULL)
   4663 		return 0;
   4664 
   4665 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
   4666 	if (ret == 0)
   4667 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
   4668 
   4669 	i915_gem_request_unreference__unlocked(target);
   4670 
   4671 	return ret;
   4672 }
   4673 
   4674 static bool
   4675 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
   4676 {
   4677 	struct drm_i915_gem_object *obj = vma->obj;
   4678 
   4679 	if (alignment &&
   4680 	    vma->node.start & (alignment - 1))
   4681 		return true;
   4682 
   4683 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
   4684 		return true;
   4685 
   4686 	if (flags & PIN_OFFSET_BIAS &&
   4687 	    vma->node.start < (flags & PIN_OFFSET_MASK))
   4688 		return true;
   4689 
   4690 	return false;
   4691 }
   4692 
   4693 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
   4694 {
   4695 	struct drm_i915_gem_object *obj = vma->obj;
   4696 	bool mappable, fenceable;
   4697 	u32 fence_size, fence_alignment;
   4698 
   4699 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
   4700 					   obj->base.size,
   4701 					   obj->tiling_mode);
   4702 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
   4703 						     obj->base.size,
   4704 						     obj->tiling_mode,
   4705 						     true);
   4706 
   4707 	fenceable = (vma->node.size == fence_size &&
   4708 		     (vma->node.start & (fence_alignment - 1)) == 0);
   4709 
   4710 	mappable = (vma->node.start + fence_size <=
   4711 		    to_i915(obj->base.dev)->gtt.mappable_end);
   4712 
   4713 	obj->map_and_fenceable = mappable && fenceable;
   4714 }
   4715 
   4716 static int
   4717 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
   4718 		       struct i915_address_space *vm,
   4719 		       const struct i915_ggtt_view *ggtt_view,
   4720 		       uint32_t alignment,
   4721 		       uint64_t flags)
   4722 {
   4723 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   4724 	struct i915_vma *vma;
   4725 	unsigned bound;
   4726 	int ret;
   4727 
   4728 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
   4729 		return -ENODEV;
   4730 
   4731 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
   4732 		return -EINVAL;
   4733 
   4734 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
   4735 		return -EINVAL;
   4736 
   4737 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
   4738 		return -EINVAL;
   4739 
   4740 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
   4741 			  i915_gem_obj_to_vma(obj, vm);
   4742 
   4743 	if (IS_ERR(vma))
   4744 		return PTR_ERR(vma);
   4745 
   4746 	if (vma) {
   4747 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
   4748 			return -EBUSY;
   4749 
   4750 		if (i915_vma_misplaced(vma, alignment, flags)) {
   4751 			WARN(vma->pin_count,
   4752 			     "bo is already pinned in %s with incorrect alignment:"
   4753 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
   4754 			     " obj->map_and_fenceable=%d\n",
   4755 			     ggtt_view ? "ggtt" : "ppgtt",
   4756 			     upper_32_bits(vma->node.start),
   4757 			     lower_32_bits(vma->node.start),
   4758 			     alignment,
   4759 			     !!(flags & PIN_MAPPABLE),
   4760 			     obj->map_and_fenceable);
   4761 			ret = i915_vma_unbind(vma);
   4762 			if (ret)
   4763 				return ret;
   4764 
   4765 			vma = NULL;
   4766 		}
   4767 	}
   4768 
   4769 	bound = vma ? vma->bound : 0;
   4770 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
   4771 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
   4772 						 flags);
   4773 		if (IS_ERR(vma))
   4774 			return PTR_ERR(vma);
   4775 	} else {
   4776 		ret = i915_vma_bind(vma, obj->cache_level, flags);
   4777 		if (ret)
   4778 			return ret;
   4779 	}
   4780 
   4781 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
   4782 	    (bound ^ vma->bound) & GLOBAL_BIND) {
   4783 		__i915_vma_set_map_and_fenceable(vma);
   4784 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
   4785 	}
   4786 
   4787 	vma->pin_count++;
   4788 	return 0;
   4789 }
   4790 
   4791 int
   4792 i915_gem_object_pin(struct drm_i915_gem_object *obj,
   4793 		    struct i915_address_space *vm,
   4794 		    uint32_t alignment,
   4795 		    uint64_t flags)
   4796 {
   4797 	return i915_gem_object_do_pin(obj, vm,
   4798 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
   4799 				      alignment, flags);
   4800 }
   4801 
   4802 int
   4803 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
   4804 			 const struct i915_ggtt_view *view,
   4805 			 uint32_t alignment,
   4806 			 uint64_t flags)
   4807 {
   4808 	if (WARN_ONCE(!view, "no view specified"))
   4809 		return -EINVAL;
   4810 
   4811 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
   4812 				      alignment, flags | PIN_GLOBAL);
   4813 }
   4814 
   4815 void
   4816 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
   4817 				const struct i915_ggtt_view *view)
   4818 {
   4819 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
   4820 
   4821 	BUG_ON(!vma);
   4822 	WARN_ON(vma->pin_count == 0);
   4823 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
   4824 
   4825 	--vma->pin_count;
   4826 }
   4827 
   4828 int
   4829 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
   4830 		    struct drm_file *file)
   4831 {
   4832 	struct drm_i915_gem_busy *args = data;
   4833 	struct drm_gem_object *gobj;
   4834 	struct drm_i915_gem_object *obj;
   4835 	int ret;
   4836 
   4837 	ret = i915_mutex_lock_interruptible(dev);
   4838 	if (ret)
   4839 		return ret;
   4840 
   4841 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4842 	if (gobj == NULL) {
   4843 		ret = -ENOENT;
   4844 		goto unlock;
   4845 	}
   4846 	obj = to_intel_bo(gobj);
   4847 
   4848 	/* Count all active objects as busy, even if they are currently not used
   4849 	 * by the gpu. Users of this interface expect objects to eventually
   4850 	 * become non-busy without any further actions, therefore emit any
   4851 	 * necessary flushes here.
   4852 	 */
   4853 	ret = i915_gem_object_flush_active(obj);
   4854 	if (ret)
   4855 		goto unref;
   4856 
   4857 	BUILD_BUG_ON(I915_NUM_RINGS > 16);
   4858 	args->busy = obj->active << 16;
   4859 	if (obj->last_write_req)
   4860 		args->busy |= obj->last_write_req->ring->id;
   4861 
   4862 unref:
   4863 	drm_gem_object_unreference(&obj->base);
   4864 unlock:
   4865 	mutex_unlock(&dev->struct_mutex);
   4866 	return ret;
   4867 }
   4868 
   4869 int
   4870 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
   4871 			struct drm_file *file_priv)
   4872 {
   4873 	return i915_gem_ring_throttle(dev, file_priv);
   4874 }
   4875 
   4876 int
   4877 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   4878 		       struct drm_file *file_priv)
   4879 {
   4880 	struct drm_i915_private *dev_priv = dev->dev_private;
   4881 	struct drm_i915_gem_madvise *args = data;
   4882 	struct drm_gem_object *gobj;
   4883 	struct drm_i915_gem_object *obj;
   4884 	int ret;
   4885 
   4886 	switch (args->madv) {
   4887 	case I915_MADV_DONTNEED:
   4888 	case I915_MADV_WILLNEED:
   4889 	    break;
   4890 	default:
   4891 	    return -EINVAL;
   4892 	}
   4893 
   4894 	ret = i915_mutex_lock_interruptible(dev);
   4895 	if (ret)
   4896 		return ret;
   4897 
   4898 	gobj = drm_gem_object_lookup(dev, file_priv, args->handle);
   4899 	if (gobj == NULL) {
   4900 		ret = -ENOENT;
   4901 		goto unlock;
   4902 	}
   4903 	obj = to_intel_bo(gobj);
   4904 
   4905 	if (i915_gem_obj_is_pinned(obj)) {
   4906 		ret = -EINVAL;
   4907 		goto out;
   4908 	}
   4909 
   4910 	if (obj->pages &&
   4911 	    obj->tiling_mode != I915_TILING_NONE &&
   4912 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
   4913 		if (obj->madv == I915_MADV_WILLNEED)
   4914 			i915_gem_object_unpin_pages(obj);
   4915 		if (args->madv == I915_MADV_WILLNEED)
   4916 			i915_gem_object_pin_pages(obj);
   4917 	}
   4918 
   4919 	if (obj->madv != __I915_MADV_PURGED)
   4920 		obj->madv = args->madv;
   4921 
   4922 	/* if the object is no longer attached, discard its backing storage */
   4923 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
   4924 		i915_gem_object_truncate(obj);
   4925 
   4926 	args->retained = obj->madv != __I915_MADV_PURGED;
   4927 
   4928 out:
   4929 	drm_gem_object_unreference(&obj->base);
   4930 unlock:
   4931 	mutex_unlock(&dev->struct_mutex);
   4932 	return ret;
   4933 }
   4934 
   4935 void i915_gem_object_init(struct drm_i915_gem_object *obj,
   4936 			  const struct drm_i915_gem_object_ops *ops)
   4937 {
   4938 	int i;
   4939 
   4940 	INIT_LIST_HEAD(&obj->global_list);
   4941 	for (i = 0; i < I915_NUM_RINGS; i++)
   4942 		INIT_LIST_HEAD(&obj->ring_list[i]);
   4943 	INIT_LIST_HEAD(&obj->obj_exec_link);
   4944 	INIT_LIST_HEAD(&obj->vma_list);
   4945 	INIT_LIST_HEAD(&obj->batch_pool_link);
   4946 
   4947 	obj->ops = ops;
   4948 
   4949 	obj->fence_reg = I915_FENCE_REG_NONE;
   4950 	obj->madv = I915_MADV_WILLNEED;
   4951 
   4952 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
   4953 }
   4954 
   4955 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
   4956 	.get_pages = i915_gem_object_get_pages_gtt,
   4957 	.put_pages = i915_gem_object_put_pages_gtt,
   4958 };
   4959 
   4960 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
   4961 						  size_t size)
   4962 {
   4963 #ifdef __NetBSD__
   4964 	struct drm_i915_private *const dev_priv = dev->dev_private;
   4965 #endif
   4966 	struct drm_i915_gem_object *obj;
   4967 #ifndef __NetBSD__
   4968 	struct address_space *mapping;
   4969 	gfp_t mask;
   4970 #endif
   4971 
   4972 	obj = i915_gem_object_alloc(dev);
   4973 	if (obj == NULL)
   4974 		return NULL;
   4975 
   4976 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
   4977 		i915_gem_object_free(obj);
   4978 		return NULL;
   4979 	}
   4980 
   4981 #ifdef __NetBSD__
   4982 	uao_set_pgfl(obj->base.filp, dev_priv->gtt.pgfl);
   4983 #else
   4984 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
   4985 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
   4986 		/* 965gm cannot relocate objects above 4GiB. */
   4987 		mask &= ~__GFP_HIGHMEM;
   4988 		mask |= __GFP_DMA32;
   4989 	}
   4990 
   4991 	mapping = file_inode(obj->base.filp)->i_mapping;
   4992 	mapping_set_gfp_mask(mapping, mask);
   4993 #endif
   4994 
   4995 	i915_gem_object_init(obj, &i915_gem_object_ops);
   4996 
   4997 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4998 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4999 
   5000 	if (HAS_LLC(dev)) {
   5001 		/* On some devices, we can have the GPU use the LLC (the CPU
   5002 		 * cache) for about a 10% performance improvement
   5003 		 * compared to uncached.  Graphics requests other than
   5004 		 * display scanout are coherent with the CPU in
   5005 		 * accessing this cache.  This means in this mode we
   5006 		 * don't need to clflush on the CPU side, and on the
   5007 		 * GPU side we only need to flush internal caches to
   5008 		 * get data visible to the CPU.
   5009 		 *
   5010 		 * However, we maintain the display planes as UC, and so
   5011 		 * need to rebind when first used as such.
   5012 		 */
   5013 		obj->cache_level = I915_CACHE_LLC;
   5014 	} else
   5015 		obj->cache_level = I915_CACHE_NONE;
   5016 
   5017 	trace_i915_gem_object_create(obj);
   5018 
   5019 	return obj;
   5020 }
   5021 
   5022 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
   5023 {
   5024 #ifdef __NetBSD__
   5025 	panic("XXX");
   5026 #else
   5027 	/* If we are the last user of the backing storage (be it shmemfs
   5028 	 * pages or stolen etc), we know that the pages are going to be
   5029 	 * immediately released. In this case, we can then skip copying
   5030 	 * back the contents from the GPU.
   5031 	 */
   5032 
   5033 	if (obj->madv != I915_MADV_WILLNEED)
   5034 		return false;
   5035 
   5036 	if (obj->base.filp == NULL)
   5037 		return true;
   5038 
   5039 	/* At first glance, this looks racy, but then again so would be
   5040 	 * userspace racing mmap against close. However, the first external
   5041 	 * reference to the filp can only be obtained through the
   5042 	 * i915_gem_mmap_ioctl() which safeguards us against the user
   5043 	 * acquiring such a reference whilst we are in the middle of
   5044 	 * freeing the object.
   5045 	 */
   5046 	return atomic_long_read(&obj->base.filp->f_count) == 1;
   5047 #endif
   5048 }
   5049 
   5050 void i915_gem_free_object(struct drm_gem_object *gem_obj)
   5051 {
   5052 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   5053 	struct drm_device *dev = obj->base.dev;
   5054 	struct drm_i915_private *dev_priv = dev->dev_private;
   5055 	struct i915_vma *vma, *next;
   5056 
   5057 	intel_runtime_pm_get(dev_priv);
   5058 
   5059 	trace_i915_gem_object_destroy(obj);
   5060 
   5061 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   5062 		int ret;
   5063 
   5064 		vma->pin_count = 0;
   5065 		ret = i915_vma_unbind(vma);
   5066 		if (WARN_ON(ret == -ERESTARTSYS)) {
   5067 			bool was_interruptible;
   5068 
   5069 			was_interruptible = dev_priv->mm.interruptible;
   5070 			dev_priv->mm.interruptible = false;
   5071 
   5072 			WARN_ON(i915_vma_unbind(vma));
   5073 
   5074 			dev_priv->mm.interruptible = was_interruptible;
   5075 		}
   5076 	}
   5077 
   5078 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
   5079 	 * before progressing. */
   5080 	if (obj->stolen)
   5081 		i915_gem_object_unpin_pages(obj);
   5082 
   5083 	WARN_ON(obj->frontbuffer_bits);
   5084 
   5085 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
   5086 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
   5087 	    obj->tiling_mode != I915_TILING_NONE)
   5088 		i915_gem_object_unpin_pages(obj);
   5089 
   5090 	if (WARN_ON(obj->pages_pin_count))
   5091 		obj->pages_pin_count = 0;
   5092 	if (discard_backing_storage(obj))
   5093 		obj->madv = I915_MADV_DONTNEED;
   5094 	i915_gem_object_put_pages(obj);
   5095 	i915_gem_object_free_mmap_offset(obj);
   5096 
   5097 	BUG_ON(obj->pages);
   5098 
   5099 #ifndef __NetBSD__		/* XXX drm prime */
   5100 	if (obj->base.import_attach)
   5101 		drm_prime_gem_destroy(&obj->base, NULL);
   5102 #endif
   5103 
   5104 	if (obj->ops->release)
   5105 		obj->ops->release(obj);
   5106 
   5107 	drm_gem_object_release(&obj->base);
   5108 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
   5109 
   5110 	kfree(obj->bit_17);
   5111 	i915_gem_object_free(obj);
   5112 
   5113 	intel_runtime_pm_put(dev_priv);
   5114 }
   5115 
   5116 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
   5117 				     struct i915_address_space *vm)
   5118 {
   5119 	struct i915_vma *vma;
   5120 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
   5121 		if (i915_is_ggtt(vma->vm) &&
   5122 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5123 			continue;
   5124 		if (vma->vm == vm)
   5125 			return vma;
   5126 	}
   5127 	return NULL;
   5128 }
   5129 
   5130 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
   5131 					   const struct i915_ggtt_view *view)
   5132 {
   5133 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
   5134 	struct i915_vma *vma;
   5135 
   5136 	if (WARN_ONCE(!view, "no view specified"))
   5137 		return ERR_PTR(-EINVAL);
   5138 
   5139 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   5140 		if (vma->vm == ggtt &&
   5141 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
   5142 			return vma;
   5143 	return NULL;
   5144 }
   5145 
   5146 void i915_gem_vma_destroy(struct i915_vma *vma)
   5147 {
   5148 	struct i915_address_space *vm = NULL;
   5149 	WARN_ON(vma->node.allocated);
   5150 
   5151 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
   5152 	if (!list_empty(&vma->exec_list))
   5153 		return;
   5154 
   5155 	vm = vma->vm;
   5156 
   5157 	if (!i915_is_ggtt(vm))
   5158 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
   5159 
   5160 	list_del(&vma->vma_link);
   5161 
   5162 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
   5163 }
   5164 
   5165 static void
   5166 i915_gem_stop_ringbuffers(struct drm_device *dev)
   5167 {
   5168 	struct drm_i915_private *dev_priv = dev->dev_private;
   5169 	struct intel_engine_cs *ring;
   5170 	int i;
   5171 
   5172 	for_each_ring(ring, dev_priv, i)
   5173 		dev_priv->gt.stop_ring(ring);
   5174 }
   5175 
   5176 int
   5177 i915_gem_suspend(struct drm_device *dev)
   5178 {
   5179 	struct drm_i915_private *dev_priv = dev->dev_private;
   5180 	int ret = 0;
   5181 
   5182 	mutex_lock(&dev->struct_mutex);
   5183 	ret = i915_gpu_idle(dev);
   5184 	if (ret)
   5185 		goto err;
   5186 
   5187 	i915_gem_retire_requests(dev);
   5188 
   5189 	i915_gem_stop_ringbuffers(dev);
   5190 	mutex_unlock(&dev->struct_mutex);
   5191 
   5192 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
   5193 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
   5194 	flush_delayed_work(&dev_priv->mm.idle_work);
   5195 
   5196 	/* Assert that we sucessfully flushed all the work and
   5197 	 * reset the GPU back to its idle, low power state.
   5198 	 */
   5199 	WARN_ON(dev_priv->mm.busy);
   5200 
   5201 	return 0;
   5202 
   5203 err:
   5204 	mutex_unlock(&dev->struct_mutex);
   5205 	return ret;
   5206 }
   5207 
   5208 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
   5209 {
   5210 	struct intel_engine_cs *ring = req->ring;
   5211 	struct drm_device *dev = ring->dev;
   5212 	struct drm_i915_private *dev_priv = dev->dev_private;
   5213 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
   5214 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
   5215 	int i, ret;
   5216 
   5217 	if (!HAS_L3_DPF(dev) || !remap_info)
   5218 		return 0;
   5219 
   5220 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
   5221 	if (ret)
   5222 		return ret;
   5223 
   5224 	/*
   5225 	 * Note: We do not worry about the concurrent register cacheline hang
   5226 	 * here because no other code should access these registers other than
   5227 	 * at initialization time.
   5228 	 */
   5229 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
   5230 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
   5231 		intel_ring_emit(ring, reg_base + i);
   5232 		intel_ring_emit(ring, remap_info[i/4]);
   5233 	}
   5234 
   5235 	intel_ring_advance(ring);
   5236 
   5237 	return ret;
   5238 }
   5239 
   5240 void i915_gem_init_swizzling(struct drm_device *dev)
   5241 {
   5242 	struct drm_i915_private *dev_priv = dev->dev_private;
   5243 
   5244 	if (INTEL_INFO(dev)->gen < 5 ||
   5245 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
   5246 		return;
   5247 
   5248 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
   5249 				 DISP_TILE_SURFACE_SWIZZLING);
   5250 
   5251 	if (IS_GEN5(dev))
   5252 		return;
   5253 
   5254 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
   5255 	if (IS_GEN6(dev))
   5256 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
   5257 	else if (IS_GEN7(dev))
   5258 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
   5259 	else if (IS_GEN8(dev))
   5260 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
   5261 	else
   5262 		BUG();
   5263 }
   5264 
   5265 static void init_unused_ring(struct drm_device *dev, u32 base)
   5266 {
   5267 	struct drm_i915_private *dev_priv = dev->dev_private;
   5268 
   5269 	I915_WRITE(RING_CTL(base), 0);
   5270 	I915_WRITE(RING_HEAD(base), 0);
   5271 	I915_WRITE(RING_TAIL(base), 0);
   5272 	I915_WRITE(RING_START(base), 0);
   5273 }
   5274 
   5275 static void init_unused_rings(struct drm_device *dev)
   5276 {
   5277 	if (IS_I830(dev)) {
   5278 		init_unused_ring(dev, PRB1_BASE);
   5279 		init_unused_ring(dev, SRB0_BASE);
   5280 		init_unused_ring(dev, SRB1_BASE);
   5281 		init_unused_ring(dev, SRB2_BASE);
   5282 		init_unused_ring(dev, SRB3_BASE);
   5283 	} else if (IS_GEN2(dev)) {
   5284 		init_unused_ring(dev, SRB0_BASE);
   5285 		init_unused_ring(dev, SRB1_BASE);
   5286 	} else if (IS_GEN3(dev)) {
   5287 		init_unused_ring(dev, PRB1_BASE);
   5288 		init_unused_ring(dev, PRB2_BASE);
   5289 	}
   5290 }
   5291 
   5292 int i915_gem_init_rings(struct drm_device *dev)
   5293 {
   5294 	struct drm_i915_private *dev_priv = dev->dev_private;
   5295 	int ret;
   5296 
   5297 	ret = intel_init_render_ring_buffer(dev);
   5298 	if (ret)
   5299 		return ret;
   5300 
   5301 	if (HAS_BSD(dev)) {
   5302 		ret = intel_init_bsd_ring_buffer(dev);
   5303 		if (ret)
   5304 			goto cleanup_render_ring;
   5305 	}
   5306 
   5307 	if (HAS_BLT(dev)) {
   5308 		ret = intel_init_blt_ring_buffer(dev);
   5309 		if (ret)
   5310 			goto cleanup_bsd_ring;
   5311 	}
   5312 
   5313 	if (HAS_VEBOX(dev)) {
   5314 		ret = intel_init_vebox_ring_buffer(dev);
   5315 		if (ret)
   5316 			goto cleanup_blt_ring;
   5317 	}
   5318 
   5319 	if (HAS_BSD2(dev)) {
   5320 		ret = intel_init_bsd2_ring_buffer(dev);
   5321 		if (ret)
   5322 			goto cleanup_vebox_ring;
   5323 	}
   5324 
   5325 	return 0;
   5326 
   5327 cleanup_vebox_ring:
   5328 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
   5329 cleanup_blt_ring:
   5330 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
   5331 cleanup_bsd_ring:
   5332 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
   5333 cleanup_render_ring:
   5334 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
   5335 
   5336 	return ret;
   5337 }
   5338 
   5339 int
   5340 i915_gem_init_hw(struct drm_device *dev)
   5341 {
   5342 	struct drm_i915_private *dev_priv = dev->dev_private;
   5343 	struct intel_engine_cs *ring;
   5344 	int ret, i, j;
   5345 
   5346 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
   5347 		return -EIO;
   5348 
   5349 	/* Double layer security blanket, see i915_gem_init() */
   5350 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5351 
   5352 	if (dev_priv->ellc_size)
   5353 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
   5354 
   5355 	if (IS_HASWELL(dev))
   5356 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
   5357 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
   5358 
   5359 	if (HAS_PCH_NOP(dev)) {
   5360 		if (IS_IVYBRIDGE(dev)) {
   5361 			u32 temp = I915_READ(GEN7_MSG_CTL);
   5362 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
   5363 			I915_WRITE(GEN7_MSG_CTL, temp);
   5364 		} else if (INTEL_INFO(dev)->gen >= 7) {
   5365 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
   5366 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
   5367 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
   5368 		}
   5369 	}
   5370 
   5371 	i915_gem_init_swizzling(dev);
   5372 
   5373 	/*
   5374 	 * At least 830 can leave some of the unused rings
   5375 	 * "active" (ie. head != tail) after resume which
   5376 	 * will prevent c3 entry. Makes sure all unused rings
   5377 	 * are totally idle.
   5378 	 */
   5379 	init_unused_rings(dev);
   5380 
   5381 	BUG_ON(!dev_priv->ring[RCS].default_context);
   5382 
   5383 	ret = i915_ppgtt_init_hw(dev);
   5384 	if (ret) {
   5385 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
   5386 		goto out;
   5387 	}
   5388 
   5389 	/* Need to do basic initialisation of all rings first: */
   5390 	for_each_ring(ring, dev_priv, i) {
   5391 		ret = ring->init_hw(ring);
   5392 		if (ret)
   5393 			goto out;
   5394 	}
   5395 
   5396 	/* We can't enable contexts until all firmware is loaded */
   5397 	if (HAS_GUC_UCODE(dev)) {
   5398 		ret = intel_guc_ucode_load(dev);
   5399 		if (ret) {
   5400 			/*
   5401 			 * If we got an error and GuC submission is enabled, map
   5402 			 * the error to -EIO so the GPU will be declared wedged.
   5403 			 * OTOH, if we didn't intend to use the GuC anyway, just
   5404 			 * discard the error and carry on.
   5405 			 */
   5406 			DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
   5407 				  i915.enable_guc_submission ? "" :
   5408 				  " (ignored)");
   5409 			ret = i915.enable_guc_submission ? -EIO : 0;
   5410 			if (ret)
   5411 				goto out;
   5412 		}
   5413 	}
   5414 
   5415 	/*
   5416 	 * Increment the next seqno by 0x100 so we have a visible break
   5417 	 * on re-initialisation
   5418 	 */
   5419 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
   5420 	if (ret)
   5421 		goto out;
   5422 
   5423 	/* Now it is safe to go back round and do everything else: */
   5424 	for_each_ring(ring, dev_priv, i) {
   5425 		struct drm_i915_gem_request *req;
   5426 
   5427 		WARN_ON(!ring->default_context);
   5428 
   5429 		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
   5430 		if (ret) {
   5431 			i915_gem_cleanup_ringbuffer(dev);
   5432 			goto out;
   5433 		}
   5434 
   5435 		if (ring->id == RCS) {
   5436 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
   5437 				i915_gem_l3_remap(req, j);
   5438 		}
   5439 
   5440 		ret = i915_ppgtt_init_ring(req);
   5441 		if (ret && ret != -EIO) {
   5442 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
   5443 			i915_gem_request_cancel(req);
   5444 			i915_gem_cleanup_ringbuffer(dev);
   5445 			goto out;
   5446 		}
   5447 
   5448 		ret = i915_gem_context_enable(req);
   5449 		if (ret && ret != -EIO) {
   5450 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
   5451 			i915_gem_request_cancel(req);
   5452 			i915_gem_cleanup_ringbuffer(dev);
   5453 			goto out;
   5454 		}
   5455 
   5456 		i915_add_request_no_flush(req);
   5457 	}
   5458 
   5459 out:
   5460 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5461 	return ret;
   5462 }
   5463 
   5464 int i915_gem_init(struct drm_device *dev)
   5465 {
   5466 	struct drm_i915_private *dev_priv = dev->dev_private;
   5467 	int ret;
   5468 
   5469 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
   5470 			i915.enable_execlists);
   5471 
   5472 	mutex_lock(&dev->struct_mutex);
   5473 
   5474 	if (IS_VALLEYVIEW(dev)) {
   5475 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
   5476 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
   5477 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
   5478 			      VLV_GTLC_ALLOWWAKEACK), 10))
   5479 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
   5480 	}
   5481 
   5482 	if (!i915.enable_execlists) {
   5483 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
   5484 		dev_priv->gt.init_rings = i915_gem_init_rings;
   5485 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
   5486 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
   5487 	} else {
   5488 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
   5489 		dev_priv->gt.init_rings = intel_logical_rings_init;
   5490 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
   5491 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
   5492 	}
   5493 
   5494 	/* This is just a security blanket to placate dragons.
   5495 	 * On some systems, we very sporadically observe that the first TLBs
   5496 	 * used by the CS may be stale, despite us poking the TLB reset. If
   5497 	 * we hold the forcewake during initialisation these problems
   5498 	 * just magically go away.
   5499 	 */
   5500 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5501 
   5502 	ret = i915_gem_init_userptr(dev);
   5503 	if (ret)
   5504 		goto out_unlock;
   5505 
   5506 	i915_gem_init_global_gtt(dev);
   5507 
   5508 	ret = i915_gem_context_init(dev);
   5509 	if (ret)
   5510 		goto out_unlock;
   5511 
   5512 	ret = dev_priv->gt.init_rings(dev);
   5513 	if (ret)
   5514 		goto out_unlock;
   5515 
   5516 	ret = i915_gem_init_hw(dev);
   5517 	if (ret == -EIO) {
   5518 		/* Allow ring initialisation to fail by marking the GPU as
   5519 		 * wedged. But we only want to do this where the GPU is angry,
   5520 		 * for all other failure, such as an allocation failure, bail.
   5521 		 */
   5522 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
   5523 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
   5524 		ret = 0;
   5525 	}
   5526 
   5527 out_unlock:
   5528 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5529 	mutex_unlock(&dev->struct_mutex);
   5530 
   5531 	return ret;
   5532 }
   5533 
   5534 void
   5535 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
   5536 {
   5537 	struct drm_i915_private *dev_priv = dev->dev_private;
   5538 	struct intel_engine_cs *ring;
   5539 	int i;
   5540 
   5541 	for_each_ring(ring, dev_priv, i)
   5542 		dev_priv->gt.cleanup_ring(ring);
   5543 
   5544     if (i915.enable_execlists)
   5545             /*
   5546              * Neither the BIOS, ourselves or any other kernel
   5547              * expects the system to be in execlists mode on startup,
   5548              * so we need to reset the GPU back to legacy mode.
   5549              */
   5550             intel_gpu_reset(dev);
   5551 }
   5552 
   5553 static void
   5554 init_ring_lists(struct intel_engine_cs *ring)
   5555 {
   5556 	INIT_LIST_HEAD(&ring->active_list);
   5557 	INIT_LIST_HEAD(&ring->request_list);
   5558 }
   5559 
   5560 void
   5561 i915_gem_load(struct drm_device *dev)
   5562 {
   5563 	struct drm_i915_private *dev_priv = dev->dev_private;
   5564 	int i;
   5565 
   5566 	dev_priv->objects =
   5567 		kmem_cache_create("i915_gem_object",
   5568 				  sizeof(struct drm_i915_gem_object), 0,
   5569 				  SLAB_HWCACHE_ALIGN,
   5570 				  NULL);
   5571 	dev_priv->vmas =
   5572 		kmem_cache_create("i915_gem_vma",
   5573 				  sizeof(struct i915_vma), 0,
   5574 				  SLAB_HWCACHE_ALIGN,
   5575 				  NULL);
   5576 	dev_priv->requests =
   5577 		kmem_cache_create("i915_gem_request",
   5578 				  sizeof(struct drm_i915_gem_request), 0,
   5579 				  SLAB_HWCACHE_ALIGN,
   5580 				  NULL);
   5581 
   5582 	INIT_LIST_HEAD(&dev_priv->vm_list);
   5583 	INIT_LIST_HEAD(&dev_priv->context_list);
   5584 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
   5585 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
   5586 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5587 	for (i = 0; i < I915_NUM_RINGS; i++)
   5588 		init_ring_lists(&dev_priv->ring[i]);
   5589 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
   5590 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
   5591 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
   5592 			  i915_gem_retire_work_handler);
   5593 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
   5594 			  i915_gem_idle_work_handler);
   5595 #ifdef __NetBSD__
   5596 	spin_lock_init(&dev_priv->gpu_error.reset_lock);
   5597 	DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
   5598 #else
   5599 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
   5600 #endif
   5601 
   5602 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
   5603 
   5604 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
   5605 		dev_priv->num_fence_regs = 32;
   5606 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
   5607 		dev_priv->num_fence_regs = 16;
   5608 	else
   5609 		dev_priv->num_fence_regs = 8;
   5610 
   5611 	if (intel_vgpu_active(dev))
   5612 		dev_priv->num_fence_regs =
   5613 				I915_READ(vgtif_reg(avail_rs.fence_num));
   5614 
   5615 	/*
   5616 	 * Set initial sequence number for requests.
   5617 	 * Using this number allows the wraparound to happen early,
   5618 	 * catching any obvious problems.
   5619 	 */
   5620 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
   5621 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
   5622 
   5623 	/* Initialize fence registers to zero */
   5624 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5625 	i915_gem_restore_fences(dev);
   5626 
   5627 	i915_gem_detect_bit_6_swizzle(dev);
   5628 #ifdef __NetBSD__
   5629 	DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
   5630 	spin_lock_init(&dev_priv->pending_flip_lock);
   5631 #else
   5632 	init_waitqueue_head(&dev_priv->pending_flip_queue);
   5633 #endif
   5634 
   5635 	dev_priv->mm.interruptible = true;
   5636 
   5637 	i915_gem_shrinker_init(dev_priv);
   5638 #ifdef __NetBSD__
   5639 	linux_mutex_init(&dev_priv->fb_tracking.lock);
   5640 #else
   5641 	mutex_init(&dev_priv->fb_tracking.lock);
   5642 #endif
   5643 }
   5644 
   5645 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   5646 {
   5647 	struct drm_i915_file_private *file_priv = file->driver_priv;
   5648 
   5649 	/* Clean up our request list when the client is going away, so that
   5650 	 * later retire_requests won't dereference our soon-to-be-gone
   5651 	 * file_priv.
   5652 	 */
   5653 	spin_lock(&file_priv->mm.lock);
   5654 	while (!list_empty(&file_priv->mm.request_list)) {
   5655 		struct drm_i915_gem_request *request;
   5656 
   5657 		request = list_first_entry(&file_priv->mm.request_list,
   5658 					   struct drm_i915_gem_request,
   5659 					   client_list);
   5660 		list_del(&request->client_list);
   5661 		request->file_priv = NULL;
   5662 	}
   5663 	spin_unlock(&file_priv->mm.lock);
   5664 
   5665 	if (!list_empty(&file_priv->rps.link)) {
   5666 		spin_lock(&to_i915(dev)->rps.client_lock);
   5667 		list_del(&file_priv->rps.link);
   5668 		spin_unlock(&to_i915(dev)->rps.client_lock);
   5669 	}
   5670 }
   5671 
   5672 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
   5673 {
   5674 	struct drm_i915_file_private *file_priv;
   5675 	int ret;
   5676 
   5677 	DRM_DEBUG_DRIVER("\n");
   5678 
   5679 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
   5680 	if (!file_priv)
   5681 		return -ENOMEM;
   5682 
   5683 	file->driver_priv = file_priv;
   5684 	file_priv->dev_priv = dev->dev_private;
   5685 	file_priv->file = file;
   5686 	INIT_LIST_HEAD(&file_priv->rps.link);
   5687 
   5688 	spin_lock_init(&file_priv->mm.lock);
   5689 	INIT_LIST_HEAD(&file_priv->mm.request_list);
   5690 
   5691 	ret = i915_gem_context_open(dev, file);
   5692 	if (ret)
   5693 		kfree(file_priv);
   5694 
   5695 	return ret;
   5696 }
   5697 
   5698 /**
   5699  * i915_gem_track_fb - update frontbuffer tracking
   5700  * @old: current GEM buffer for the frontbuffer slots
   5701  * @new: new GEM buffer for the frontbuffer slots
   5702  * @frontbuffer_bits: bitmask of frontbuffer slots
   5703  *
   5704  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
   5705  * from @old and setting them in @new. Both @old and @new can be NULL.
   5706  */
   5707 void i915_gem_track_fb(struct drm_i915_gem_object *old,
   5708 		       struct drm_i915_gem_object *new,
   5709 		       unsigned frontbuffer_bits)
   5710 {
   5711 	if (old) {
   5712 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
   5713 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
   5714 		old->frontbuffer_bits &= ~frontbuffer_bits;
   5715 	}
   5716 
   5717 	if (new) {
   5718 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
   5719 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
   5720 		new->frontbuffer_bits |= frontbuffer_bits;
   5721 	}
   5722 }
   5723 
   5724 /* All the new VM stuff */
   5725 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
   5726 			struct i915_address_space *vm)
   5727 {
   5728 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5729 	struct i915_vma *vma;
   5730 
   5731 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
   5732 
   5733 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5734 		if (i915_is_ggtt(vma->vm) &&
   5735 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5736 			continue;
   5737 		if (vma->vm == vm)
   5738 			return vma->node.start;
   5739 	}
   5740 
   5741 	WARN(1, "%s vma for this object not found.\n",
   5742 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
   5743 	return -1;
   5744 }
   5745 
   5746 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
   5747 				  const struct i915_ggtt_view *view)
   5748 {
   5749 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
   5750 	struct i915_vma *vma;
   5751 
   5752 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5753 		if (vma->vm == ggtt &&
   5754 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
   5755 			return vma->node.start;
   5756 
   5757 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
   5758 	return -1;
   5759 }
   5760 
   5761 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
   5762 			struct i915_address_space *vm)
   5763 {
   5764 	struct i915_vma *vma;
   5765 
   5766 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5767 		if (i915_is_ggtt(vma->vm) &&
   5768 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5769 			continue;
   5770 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
   5771 			return true;
   5772 	}
   5773 
   5774 	return false;
   5775 }
   5776 
   5777 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
   5778 				  const struct i915_ggtt_view *view)
   5779 {
   5780 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
   5781 	struct i915_vma *vma;
   5782 
   5783 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5784 		if (vma->vm == ggtt &&
   5785 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
   5786 		    drm_mm_node_allocated(&vma->node))
   5787 			return true;
   5788 
   5789 	return false;
   5790 }
   5791 
   5792 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
   5793 {
   5794 	struct i915_vma *vma;
   5795 
   5796 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5797 		if (drm_mm_node_allocated(&vma->node))
   5798 			return true;
   5799 
   5800 	return false;
   5801 }
   5802 
   5803 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
   5804 				struct i915_address_space *vm)
   5805 {
   5806 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5807 	struct i915_vma *vma;
   5808 
   5809 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
   5810 
   5811 	BUG_ON(list_empty(&o->vma_list));
   5812 
   5813 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5814 		if (i915_is_ggtt(vma->vm) &&
   5815 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5816 			continue;
   5817 		if (vma->vm == vm)
   5818 			return vma->node.size;
   5819 	}
   5820 	return 0;
   5821 }
   5822 
   5823 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
   5824 {
   5825 	struct i915_vma *vma;
   5826 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   5827 		if (vma->pin_count > 0)
   5828 			return true;
   5829 
   5830 	return false;
   5831 }
   5832 
   5833 /* Allocate a new GEM object and fill it with the supplied data */
   5834 struct drm_i915_gem_object *
   5835 i915_gem_object_create_from_data(struct drm_device *dev,
   5836 			         const void *data, size_t size)
   5837 {
   5838 	struct drm_i915_gem_object *obj;
   5839 #ifdef __NetBSD__
   5840 	struct iovec iov = { .iov_base = __UNCONST(data), .iov_len = size };
   5841 	struct uio uio = {
   5842 	    .uio_iov = &iov,
   5843 	    .uio_iovcnt = 1,
   5844 	    .uio_resid = size,
   5845 	    .uio_rw = UIO_WRITE,
   5846 	};
   5847 #else
   5848 	struct sg_table *sg;
   5849 #endif
   5850 	size_t bytes;
   5851 	int ret;
   5852 
   5853 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
   5854 	if (IS_ERR_OR_NULL(obj))
   5855 		return obj;
   5856 
   5857 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   5858 	if (ret)
   5859 		goto fail;
   5860 
   5861 	ret = i915_gem_object_get_pages(obj);
   5862 	if (ret)
   5863 		goto fail;
   5864 
   5865 	i915_gem_object_pin_pages(obj);
   5866 #ifdef __NetBSD__
   5867 	/* XXX errno NetBSD->Linux */
   5868 	ret = -ubc_uiomove(obj->base.filp, &uio, size, UVM_ADV_NORMAL,
   5869 	    UBC_WRITE);
   5870 	if (ret)
   5871 		goto fail;
   5872 	bytes = size - uio.uio_resid;
   5873 #else
   5874 	sg = obj->pages;
   5875 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
   5876 #endif
   5877 	i915_gem_object_unpin_pages(obj);
   5878 
   5879 	if (WARN_ON(bytes != size)) {
   5880 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
   5881 		ret = -EFAULT;
   5882 		goto fail;
   5883 	}
   5884 
   5885 	return obj;
   5886 
   5887 fail:
   5888 	drm_gem_object_unreference(&obj->base);
   5889 	return ERR_PTR(ret);
   5890 }
   5891