Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.48
      1 /*	$NetBSD: i915_gem.c,v 1.48 2018/08/27 13:41:37 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright  2008-2015 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  * Authors:
     26  *    Eric Anholt <eric (at) anholt.net>
     27  *
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: i915_gem.c,v 1.48 2018/08/27 13:41:37 riastradh Exp $");
     32 
     33 #ifdef __NetBSD__
     34 #if 0				/* XXX uvmhist option?  */
     35 #include "opt_uvmhist.h"
     36 #endif
     37 
     38 #include <sys/types.h>
     39 #include <sys/param.h>
     40 
     41 #include <uvm/uvm.h>
     42 #include <uvm/uvm_extern.h>
     43 #include <uvm/uvm_fault.h>
     44 #include <uvm/uvm_page.h>
     45 #include <uvm/uvm_pmap.h>
     46 #include <uvm/uvm_prot.h>
     47 
     48 #include <drm/bus_dma_hacks.h>
     49 #endif
     50 
     51 #include <drm/drmP.h>
     52 #include <drm/drm_vma_manager.h>
     53 #include <drm/i915_drm.h>
     54 #include "i915_drv.h"
     55 #include "i915_vgpu.h"
     56 #include "i915_trace.h"
     57 #include "intel_drv.h"
     58 #include <linux/shmem_fs.h>
     59 #include <linux/slab.h>
     60 #include <linux/swap.h>
     61 #include <linux/pci.h>
     62 #include <linux/dma-buf.h>
     63 #include <linux/errno.h>
     64 #include <linux/time.h>
     65 #include <linux/err.h>
     66 #include <linux/bitops.h>
     67 #include <linux/printk.h>
     68 #include <asm/param.h>
     69 #include <asm/page.h>
     70 
     71 #define RQ_BUG_ON(expr)
     72 
     73 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
     74 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
     75 static void
     76 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
     77 static void
     78 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
     79 
     80 static bool cpu_cache_is_coherent(struct drm_device *dev,
     81 				  enum i915_cache_level level)
     82 {
     83 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
     84 }
     85 
     86 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
     87 {
     88 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
     89 		return true;
     90 
     91 	return obj->pin_display;
     92 }
     93 
     94 /* some bookkeeping */
     95 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
     96 				  size_t size)
     97 {
     98 	spin_lock(&dev_priv->mm.object_stat_lock);
     99 	dev_priv->mm.object_count++;
    100 	dev_priv->mm.object_memory += size;
    101 	spin_unlock(&dev_priv->mm.object_stat_lock);
    102 }
    103 
    104 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
    105 				     size_t size)
    106 {
    107 	spin_lock(&dev_priv->mm.object_stat_lock);
    108 	dev_priv->mm.object_count--;
    109 	dev_priv->mm.object_memory -= size;
    110 	spin_unlock(&dev_priv->mm.object_stat_lock);
    111 }
    112 
    113 static int
    114 i915_gem_wait_for_error(struct i915_gpu_error *error)
    115 {
    116 	int ret;
    117 
    118 #define EXIT_COND (!i915_reset_in_progress(error) || \
    119 		   i915_terminally_wedged(error))
    120 	if (EXIT_COND)
    121 		return 0;
    122 
    123 	/*
    124 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
    125 	 * userspace. If it takes that long something really bad is going on and
    126 	 * we should simply try to bail out and fail as gracefully as possible.
    127 	 */
    128 #ifdef __NetBSD__
    129 	spin_lock(&error->reset_lock);
    130 	DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
    131 	    10*HZ, EXIT_COND);
    132 	spin_unlock(&error->reset_lock);
    133 #else
    134 	ret = wait_event_interruptible_timeout(error->reset_queue,
    135 					       EXIT_COND,
    136 					       10*HZ);
    137 #endif
    138 	if (ret == 0) {
    139 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
    140 		return -EIO;
    141 	} else if (ret < 0) {
    142 		return ret;
    143 	}
    144 #undef EXIT_COND
    145 
    146 	return 0;
    147 }
    148 
    149 int i915_mutex_lock_interruptible(struct drm_device *dev)
    150 {
    151 	struct drm_i915_private *dev_priv = dev->dev_private;
    152 	int ret;
    153 
    154 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
    155 	if (ret)
    156 		return ret;
    157 
    158 	ret = mutex_lock_interruptible(&dev->struct_mutex);
    159 	if (ret)
    160 		return ret;
    161 
    162 	WARN_ON(i915_verify_lists(dev));
    163 	return 0;
    164 }
    165 
    166 int
    167 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    168 			    struct drm_file *file)
    169 {
    170 	struct drm_i915_private *dev_priv = dev->dev_private;
    171 	struct drm_i915_gem_get_aperture *args = data;
    172 	struct i915_gtt *ggtt = &dev_priv->gtt;
    173 	struct i915_vma *vma;
    174 	size_t pinned;
    175 
    176 	pinned = 0;
    177 	mutex_lock(&dev->struct_mutex);
    178 	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
    179 		if (vma->pin_count)
    180 			pinned += vma->node.size;
    181 	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
    182 		if (vma->pin_count)
    183 			pinned += vma->node.size;
    184 	mutex_unlock(&dev->struct_mutex);
    185 
    186 	args->aper_size = dev_priv->gtt.base.total;
    187 	args->aper_available_size = args->aper_size - pinned;
    188 
    189 	return 0;
    190 }
    191 
    192 static int
    193 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
    194 {
    195 #ifndef __NetBSD__
    196 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    197 #endif
    198 	char *vaddr = obj->phys_handle->vaddr;
    199 #ifndef __NetBSD__
    200 	struct sg_table *st;
    201 	struct scatterlist *sg;
    202 #endif
    203 	int i;
    204 
    205 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
    206 		return -EINVAL;
    207 
    208 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    209 		struct page *page;
    210 		char *src;
    211 
    212 #ifdef __NetBSD__
    213 		struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
    214 		int ret;
    215 		/* XXX errno NetBSD->Linux */
    216 		ret = -uvm_obj_wirepages(obj->base.filp, i*PAGE_SIZE,
    217 		    (i + 1)*PAGE_SIZE, &pages);
    218 		if (ret)
    219 			return ret;
    220 		page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
    221 #else
    222 		page = shmem_read_mapping_page(mapping, i);
    223 		if (IS_ERR(page))
    224 			return PTR_ERR(page);
    225 #endif
    226 
    227 		src = kmap_atomic(page);
    228 		memcpy(vaddr, src, PAGE_SIZE);
    229 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
    230 		kunmap_atomic(src);
    231 
    232 #ifdef __NetBSD__
    233 		uvm_obj_unwirepages(obj->base.filp, i*PAGE_SIZE,
    234 		    (i + 1)*PAGE_SIZE);
    235 #else
    236 		page_cache_release(page);
    237 #endif
    238 		vaddr += PAGE_SIZE;
    239 	}
    240 
    241 	i915_gem_chipset_flush(obj->base.dev);
    242 
    243 #ifdef __NetBSD__
    244 	obj->pages = obj->phys_handle->dmah_map;
    245 #else
    246 	st = kmalloc(sizeof(*st), GFP_KERNEL);
    247 	if (st == NULL)
    248 		return -ENOMEM;
    249 
    250 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
    251 		kfree(st);
    252 		return -ENOMEM;
    253 	}
    254 
    255 	sg = st->sgl;
    256 	sg->offset = 0;
    257 	sg->length = obj->base.size;
    258 
    259 	sg_dma_address(sg) = obj->phys_handle->busaddr;
    260 	sg_dma_len(sg) = obj->base.size;
    261 
    262 	obj->pages = st;
    263 #endif
    264 	return 0;
    265 }
    266 
    267 static void
    268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
    269 {
    270 	int ret;
    271 
    272 	BUG_ON(obj->madv == __I915_MADV_PURGED);
    273 
    274 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
    275 	if (ret) {
    276 		/* In the event of a disaster, abandon all caches and
    277 		 * hope for the best.
    278 		 */
    279 		WARN_ON(ret != -EIO);
    280 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
    281 	}
    282 
    283 	if (obj->madv == I915_MADV_DONTNEED)
    284 		obj->dirty = 0;
    285 
    286 	if (obj->dirty) {
    287 #ifndef __NetBSD__
    288 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    289 #endif
    290 		const char *vaddr = obj->phys_handle->vaddr;
    291 		int i;
    292 
    293 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    294 			struct page *page;
    295 			char *dst;
    296 
    297 #ifdef __NetBSD__
    298 			struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
    299 			/* XXX errno NetBSD->Linux */
    300 			ret = -uvm_obj_wirepages(obj->base.filp,
    301 			    i*PAGE_SIZE, (i + 1)*PAGE_SIZE, &pages);
    302 			if (ret)
    303 				continue;
    304 			page = container_of(TAILQ_FIRST(&pages), struct page,
    305 			    p_vmp);
    306 #endif
    307 
    308 			dst = kmap_atomic(page);
    309 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
    310 			memcpy(dst, vaddr, PAGE_SIZE);
    311 			kunmap_atomic(dst);
    312 
    313 			set_page_dirty(page);
    314 #ifdef __NetBSD__
    315 			/* XXX mark page accessed */
    316 			uvm_obj_unwirepages(obj->base.filp, i*PAGE_SIZE,
    317 			    (i+1)*PAGE_SIZE);
    318 #else
    319 			if (obj->madv == I915_MADV_WILLNEED)
    320 				mark_page_accessed(page);
    321 			page_cache_release(page);
    322 #endif
    323 			vaddr += PAGE_SIZE;
    324 		}
    325 		obj->dirty = 0;
    326 	}
    327 
    328 #ifdef __NetBSD__
    329 	obj->pages = NULL;
    330 #else
    331 	sg_free_table(obj->pages);
    332 	kfree(obj->pages);
    333 #endif
    334 }
    335 
    336 static void
    337 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
    338 {
    339 	drm_pci_free(obj->base.dev, obj->phys_handle);
    340 }
    341 
    342 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
    343 	.get_pages = i915_gem_object_get_pages_phys,
    344 	.put_pages = i915_gem_object_put_pages_phys,
    345 	.release = i915_gem_object_release_phys,
    346 };
    347 
    348 static int
    349 drop_pages(struct drm_i915_gem_object *obj)
    350 {
    351 	struct i915_vma *vma, *next;
    352 	int ret;
    353 
    354 	drm_gem_object_reference(&obj->base);
    355 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
    356 		if (i915_vma_unbind(vma))
    357 			break;
    358 
    359 	ret = i915_gem_object_put_pages(obj);
    360 	drm_gem_object_unreference(&obj->base);
    361 
    362 	return ret;
    363 }
    364 
    365 int
    366 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
    367 			    int align)
    368 {
    369 	drm_dma_handle_t *phys;
    370 	int ret;
    371 
    372 	if (obj->phys_handle) {
    373 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
    374 			return -EBUSY;
    375 
    376 		return 0;
    377 	}
    378 
    379 	if (obj->madv != I915_MADV_WILLNEED)
    380 		return -EFAULT;
    381 
    382 	if (obj->base.filp == NULL)
    383 		return -EINVAL;
    384 
    385 	ret = drop_pages(obj);
    386 	if (ret)
    387 		return ret;
    388 
    389 	/* create a new object */
    390 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
    391 	if (!phys)
    392 		return -ENOMEM;
    393 
    394 	obj->phys_handle = phys;
    395 	obj->ops = &i915_gem_phys_ops;
    396 
    397 	return i915_gem_object_get_pages(obj);
    398 }
    399 
    400 static int
    401 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
    402 		     struct drm_i915_gem_pwrite *args,
    403 		     struct drm_file *file_priv)
    404 {
    405 	struct drm_device *dev = obj->base.dev;
    406 	void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
    407 	char __user *user_data = to_user_ptr(args->data_ptr);
    408 	int ret = 0;
    409 
    410 	/* We manually control the domain here and pretend that it
    411 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
    412 	 */
    413 	ret = i915_gem_object_wait_rendering(obj, false);
    414 	if (ret)
    415 		return ret;
    416 
    417 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
    418 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
    419 		unsigned long unwritten;
    420 
    421 		/* The physical object once assigned is fixed for the lifetime
    422 		 * of the obj, so we can safely drop the lock and continue
    423 		 * to access vaddr.
    424 		 */
    425 		mutex_unlock(&dev->struct_mutex);
    426 		unwritten = copy_from_user(vaddr, user_data, args->size);
    427 		mutex_lock(&dev->struct_mutex);
    428 		if (unwritten) {
    429 			ret = -EFAULT;
    430 			goto out;
    431 		}
    432 	}
    433 
    434 	drm_clflush_virt_range(vaddr, args->size);
    435 	i915_gem_chipset_flush(dev);
    436 
    437 out:
    438 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
    439 	return ret;
    440 }
    441 
    442 void *i915_gem_object_alloc(struct drm_device *dev)
    443 {
    444 	struct drm_i915_private *dev_priv = dev->dev_private;
    445 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
    446 }
    447 
    448 void i915_gem_object_free(struct drm_i915_gem_object *obj)
    449 {
    450 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
    451 	kmem_cache_free(dev_priv->objects, obj);
    452 }
    453 
    454 static int
    455 i915_gem_create(struct drm_file *file,
    456 		struct drm_device *dev,
    457 		uint64_t size,
    458 		uint32_t *handle_p)
    459 {
    460 	struct drm_i915_gem_object *obj;
    461 	int ret;
    462 	u32 handle;
    463 
    464 	size = roundup(size, PAGE_SIZE);
    465 	if (size == 0)
    466 		return -EINVAL;
    467 
    468 	/* Allocate the new object */
    469 	obj = i915_gem_alloc_object(dev, size);
    470 	if (obj == NULL)
    471 		return -ENOMEM;
    472 
    473 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    474 	/* drop reference from allocate - handle holds it now */
    475 	drm_gem_object_unreference_unlocked(&obj->base);
    476 	if (ret)
    477 		return ret;
    478 
    479 	*handle_p = handle;
    480 	return 0;
    481 }
    482 
    483 int
    484 i915_gem_dumb_create(struct drm_file *file,
    485 		     struct drm_device *dev,
    486 		     struct drm_mode_create_dumb *args)
    487 {
    488 	/* have to work out size/pitch and return them */
    489 #ifdef __NetBSD__		/* ALIGN means something else.  */
    490 	args->pitch = round_up(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    491 #else
    492 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    493 #endif
    494 	args->size = args->pitch * args->height;
    495 	return i915_gem_create(file, dev,
    496 			       args->size, &args->handle);
    497 }
    498 
    499 /**
    500  * Creates a new mm object and returns a handle to it.
    501  */
    502 int
    503 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    504 		      struct drm_file *file)
    505 {
    506 	struct drm_i915_gem_create *args = data;
    507 
    508 	return i915_gem_create(file, dev,
    509 			       args->size, &args->handle);
    510 }
    511 
    512 static inline int
    513 __copy_to_user_swizzled(char __user *cpu_vaddr,
    514 			const char *gpu_vaddr, int gpu_offset,
    515 			int length)
    516 {
    517 	int ret, cpu_offset = 0;
    518 
    519 	while (length > 0) {
    520 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    521 		int cacheline_end = round_up(gpu_offset + 1, 64);
    522 #else
    523 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    524 #endif
    525 		int this_length = min(cacheline_end - gpu_offset, length);
    526 		int swizzled_gpu_offset = gpu_offset ^ 64;
    527 
    528 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
    529 				     gpu_vaddr + swizzled_gpu_offset,
    530 				     this_length);
    531 		if (ret)
    532 			return ret + length;
    533 
    534 		cpu_offset += this_length;
    535 		gpu_offset += this_length;
    536 		length -= this_length;
    537 	}
    538 
    539 	return 0;
    540 }
    541 
    542 static inline int
    543 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
    544 			  const char __user *cpu_vaddr,
    545 			  int length)
    546 {
    547 	int ret, cpu_offset = 0;
    548 
    549 	while (length > 0) {
    550 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    551 		int cacheline_end = round_up(gpu_offset + 1, 64);
    552 #else
    553 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    554 #endif
    555 		int this_length = min(cacheline_end - gpu_offset, length);
    556 		int swizzled_gpu_offset = gpu_offset ^ 64;
    557 
    558 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
    559 				       cpu_vaddr + cpu_offset,
    560 				       this_length);
    561 		if (ret)
    562 			return ret + length;
    563 
    564 		cpu_offset += this_length;
    565 		gpu_offset += this_length;
    566 		length -= this_length;
    567 	}
    568 
    569 	return 0;
    570 }
    571 
    572 /*
    573  * Pins the specified object's pages and synchronizes the object with
    574  * GPU accesses. Sets needs_clflush to non-zero if the caller should
    575  * flush the object from the CPU cache.
    576  */
    577 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
    578 				    int *needs_clflush)
    579 {
    580 	int ret;
    581 
    582 	*needs_clflush = 0;
    583 
    584 	if (!obj->base.filp)
    585 		return -EINVAL;
    586 
    587 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
    588 		/* If we're not in the cpu read domain, set ourself into the gtt
    589 		 * read domain and manually flush cachelines (if required). This
    590 		 * optimizes for the case when the gpu will dirty the data
    591 		 * anyway again before the next pread happens. */
    592 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
    593 							obj->cache_level);
    594 		ret = i915_gem_object_wait_rendering(obj, true);
    595 		if (ret)
    596 			return ret;
    597 	}
    598 
    599 	ret = i915_gem_object_get_pages(obj);
    600 	if (ret)
    601 		return ret;
    602 
    603 	i915_gem_object_pin_pages(obj);
    604 
    605 	return ret;
    606 }
    607 
    608 /* Per-page copy function for the shmem pread fastpath.
    609  * Flushes invalid cachelines before reading the target if
    610  * needs_clflush is set. */
    611 static int
    612 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
    613 		 char __user *user_data,
    614 		 bool page_do_bit17_swizzling, bool needs_clflush)
    615 {
    616 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    617 	return -EFAULT;
    618 #else
    619 	char *vaddr;
    620 	int ret;
    621 
    622 	if (unlikely(page_do_bit17_swizzling))
    623 		return -EINVAL;
    624 
    625 	vaddr = kmap_atomic(page);
    626 	if (needs_clflush)
    627 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    628 				       page_length);
    629 	ret = __copy_to_user_inatomic(user_data,
    630 				      vaddr + shmem_page_offset,
    631 				      page_length);
    632 	kunmap_atomic(vaddr);
    633 
    634 	return ret ? -EFAULT : 0;
    635 #endif
    636 }
    637 
    638 static void
    639 shmem_clflush_swizzled_range(char *addr, unsigned long length,
    640 			     bool swizzled)
    641 {
    642 	if (unlikely(swizzled)) {
    643 		unsigned long start = (unsigned long) addr;
    644 		unsigned long end = (unsigned long) addr + length;
    645 
    646 		/* For swizzling simply ensure that we always flush both
    647 		 * channels. Lame, but simple and it works. Swizzled
    648 		 * pwrite/pread is far from a hotpath - current userspace
    649 		 * doesn't use it at all. */
    650 		start = round_down(start, 128);
    651 		end = round_up(end, 128);
    652 
    653 		drm_clflush_virt_range((void *)start, end - start);
    654 	} else {
    655 		drm_clflush_virt_range(addr, length);
    656 	}
    657 
    658 }
    659 
    660 /* Only difference to the fast-path function is that this can handle bit17
    661  * and uses non-atomic copy and kmap functions. */
    662 static int
    663 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
    664 		 char __user *user_data,
    665 		 bool page_do_bit17_swizzling, bool needs_clflush)
    666 {
    667 	char *vaddr;
    668 	int ret;
    669 
    670 	vaddr = kmap(page);
    671 	if (needs_clflush)
    672 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    673 					     page_length,
    674 					     page_do_bit17_swizzling);
    675 
    676 	if (page_do_bit17_swizzling)
    677 		ret = __copy_to_user_swizzled(user_data,
    678 					      vaddr, shmem_page_offset,
    679 					      page_length);
    680 	else
    681 		ret = __copy_to_user(user_data,
    682 				     vaddr + shmem_page_offset,
    683 				     page_length);
    684 	kunmap(page);
    685 
    686 	return ret ? - EFAULT : 0;
    687 }
    688 
    689 static int
    690 i915_gem_shmem_pread(struct drm_device *dev,
    691 		     struct drm_i915_gem_object *obj,
    692 		     struct drm_i915_gem_pread *args,
    693 		     struct drm_file *file)
    694 {
    695 	char __user *user_data;
    696 	ssize_t remain;
    697 	loff_t offset;
    698 	int shmem_page_offset, page_length, ret = 0;
    699 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    700 #ifndef __NetBSD__		/* XXX */
    701 	int prefaulted = 0;
    702 #endif
    703 	int needs_clflush = 0;
    704 #ifndef __NetBSD__
    705 	struct sg_page_iter sg_iter;
    706 #endif
    707 
    708 	user_data = to_user_ptr(args->data_ptr);
    709 	remain = args->size;
    710 
    711 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    712 
    713 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
    714 	if (ret)
    715 		return ret;
    716 
    717 	offset = args->offset;
    718 
    719 #ifdef __NetBSD__
    720 	while (0 < remain)
    721 #else
    722 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
    723 			 offset >> PAGE_SHIFT)
    724 #endif
    725 	{
    726 #ifdef __NetBSD__
    727 		struct page *const page = i915_gem_object_get_page(obj,
    728 		    atop(offset));
    729 #else
    730 		struct page *page = sg_page_iter_page(&sg_iter);
    731 
    732 		if (remain <= 0)
    733 			break;
    734 #endif
    735 
    736 		/* Operation in this page
    737 		 *
    738 		 * shmem_page_offset = offset within page in shmem file
    739 		 * page_length = bytes to copy for this page
    740 		 */
    741 		shmem_page_offset = offset_in_page(offset);
    742 		page_length = remain;
    743 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    744 			page_length = PAGE_SIZE - shmem_page_offset;
    745 
    746 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    747 			(page_to_phys(page) & (1 << 17)) != 0;
    748 
    749 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    750 				       user_data, page_do_bit17_swizzling,
    751 				       needs_clflush);
    752 		if (ret == 0)
    753 			goto next_page;
    754 
    755 		mutex_unlock(&dev->struct_mutex);
    756 #ifndef __NetBSD__
    757 		if (likely(!i915.prefault_disable) && !prefaulted) {
    758 			ret = fault_in_multipages_writeable(user_data, remain);
    759 			/* Userspace is tricking us, but we've already clobbered
    760 			 * its pages with the prefault and promised to write the
    761 			 * data up to the first fault. Hence ignore any errors
    762 			 * and just continue. */
    763 			(void)ret;
    764 			prefaulted = 1;
    765 		}
    766 #endif
    767 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    768 				       user_data, page_do_bit17_swizzling,
    769 				       needs_clflush);
    770 
    771 		mutex_lock(&dev->struct_mutex);
    772 
    773 		if (ret)
    774 			goto out;
    775 
    776 next_page:
    777 		remain -= page_length;
    778 		user_data += page_length;
    779 		offset += page_length;
    780 	}
    781 
    782 out:
    783 	i915_gem_object_unpin_pages(obj);
    784 
    785 	return ret;
    786 }
    787 
    788 /**
    789  * Reads data from the object referenced by handle.
    790  *
    791  * On error, the contents of *data are undefined.
    792  */
    793 int
    794 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    795 		     struct drm_file *file)
    796 {
    797 	struct drm_i915_gem_pread *args = data;
    798 	struct drm_gem_object *gobj;
    799 	struct drm_i915_gem_object *obj;
    800 	int ret = 0;
    801 
    802 	if (args->size == 0)
    803 		return 0;
    804 
    805 	if (!access_ok(VERIFY_WRITE,
    806 		       to_user_ptr(args->data_ptr),
    807 		       args->size))
    808 		return -EFAULT;
    809 
    810 	ret = i915_mutex_lock_interruptible(dev);
    811 	if (ret)
    812 		return ret;
    813 
    814 	gobj = drm_gem_object_lookup(dev, file, args->handle);
    815 	if (gobj == NULL) {
    816 		ret = -ENOENT;
    817 		goto unlock;
    818 	}
    819 	obj = to_intel_bo(gobj);
    820 
    821 	/* Bounds check source.  */
    822 	if (args->offset > obj->base.size ||
    823 	    args->size > obj->base.size - args->offset) {
    824 		ret = -EINVAL;
    825 		goto out;
    826 	}
    827 
    828 	/* prime objects have no backing filp to GEM pread/pwrite
    829 	 * pages from.
    830 	 */
    831 	if (!obj->base.filp) {
    832 		ret = -EINVAL;
    833 		goto out;
    834 	}
    835 
    836 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    837 
    838 	ret = i915_gem_shmem_pread(dev, obj, args, file);
    839 
    840 out:
    841 	drm_gem_object_unreference(&obj->base);
    842 unlock:
    843 	mutex_unlock(&dev->struct_mutex);
    844 	return ret;
    845 }
    846 
    847 /* This is the fast write path which cannot handle
    848  * page faults in the source data
    849  */
    850 
    851 static inline int
    852 fast_user_write(struct io_mapping *mapping,
    853 		loff_t page_base, int page_offset,
    854 		char __user *user_data,
    855 		int length)
    856 {
    857 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    858 	return -EFAULT;
    859 #else
    860 	void __iomem *vaddr_atomic;
    861 	void *vaddr;
    862 	unsigned long unwritten;
    863 
    864 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
    865 	/* We can use the cpu mem copy function because this is X86. */
    866 	vaddr = (void __force*)vaddr_atomic + page_offset;
    867 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
    868 						      user_data, length);
    869 	io_mapping_unmap_atomic(vaddr_atomic);
    870 	return unwritten;
    871 #endif
    872 }
    873 
    874 /**
    875  * This is the fast pwrite path, where we copy the data directly from the
    876  * user into the GTT, uncached.
    877  */
    878 static int
    879 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
    880 			 struct drm_i915_gem_object *obj,
    881 			 struct drm_i915_gem_pwrite *args,
    882 			 struct drm_file *file)
    883 {
    884 	struct drm_i915_private *dev_priv = dev->dev_private;
    885 	ssize_t remain;
    886 	loff_t offset, page_base;
    887 	char __user *user_data;
    888 	int page_offset, page_length, ret;
    889 
    890 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
    891 	if (ret)
    892 		goto out;
    893 
    894 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    895 	if (ret)
    896 		goto out_unpin;
    897 
    898 	ret = i915_gem_object_put_fence(obj);
    899 	if (ret)
    900 		goto out_unpin;
    901 
    902 	user_data = to_user_ptr(args->data_ptr);
    903 	remain = args->size;
    904 
    905 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
    906 
    907 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
    908 
    909 	while (remain > 0) {
    910 		/* Operation in this page
    911 		 *
    912 		 * page_base = page offset within aperture
    913 		 * page_offset = offset within page
    914 		 * page_length = bytes to copy for this page
    915 		 */
    916 		page_base = offset & PAGE_MASK;
    917 		page_offset = offset_in_page(offset);
    918 		page_length = remain;
    919 		if ((page_offset + remain) > PAGE_SIZE)
    920 			page_length = PAGE_SIZE - page_offset;
    921 
    922 		/* If we get a fault while copying data, then (presumably) our
    923 		 * source page isn't available.  Return the error and we'll
    924 		 * retry in the slow path.
    925 		 */
    926 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
    927 				    page_offset, user_data, page_length)) {
    928 			ret = -EFAULT;
    929 			goto out_flush;
    930 		}
    931 
    932 		remain -= page_length;
    933 		user_data += page_length;
    934 		offset += page_length;
    935 	}
    936 
    937 out_flush:
    938 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
    939 out_unpin:
    940 	i915_gem_object_ggtt_unpin(obj);
    941 out:
    942 	return ret;
    943 }
    944 
    945 /* Per-page copy function for the shmem pwrite fastpath.
    946  * Flushes invalid cachelines before writing to the target if
    947  * needs_clflush_before is set and flushes out any written cachelines after
    948  * writing if needs_clflush is set. */
    949 static int
    950 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
    951 		  char __user *user_data,
    952 		  bool page_do_bit17_swizzling,
    953 		  bool needs_clflush_before,
    954 		  bool needs_clflush_after)
    955 {
    956 #ifdef __NetBSD__
    957 	return -EFAULT;
    958 #else
    959 	char *vaddr;
    960 	int ret;
    961 
    962 	if (unlikely(page_do_bit17_swizzling))
    963 		return -EINVAL;
    964 
    965 	vaddr = kmap_atomic(page);
    966 	if (needs_clflush_before)
    967 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    968 				       page_length);
    969 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
    970 					user_data, page_length);
    971 	if (needs_clflush_after)
    972 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    973 				       page_length);
    974 	kunmap_atomic(vaddr);
    975 
    976 	return ret ? -EFAULT : 0;
    977 #endif
    978 }
    979 
    980 /* Only difference to the fast-path function is that this can handle bit17
    981  * and uses non-atomic copy and kmap functions. */
    982 static int
    983 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
    984 		  char __user *user_data,
    985 		  bool page_do_bit17_swizzling,
    986 		  bool needs_clflush_before,
    987 		  bool needs_clflush_after)
    988 {
    989 	char *vaddr;
    990 	int ret;
    991 
    992 	vaddr = kmap(page);
    993 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
    994 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    995 					     page_length,
    996 					     page_do_bit17_swizzling);
    997 	if (page_do_bit17_swizzling)
    998 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
    999 						user_data,
   1000 						page_length);
   1001 	else
   1002 		ret = __copy_from_user(vaddr + shmem_page_offset,
   1003 				       user_data,
   1004 				       page_length);
   1005 	if (needs_clflush_after)
   1006 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
   1007 					     page_length,
   1008 					     page_do_bit17_swizzling);
   1009 	kunmap(page);
   1010 
   1011 	return ret ? -EFAULT : 0;
   1012 }
   1013 
   1014 static int
   1015 i915_gem_shmem_pwrite(struct drm_device *dev,
   1016 		      struct drm_i915_gem_object *obj,
   1017 		      struct drm_i915_gem_pwrite *args,
   1018 		      struct drm_file *file)
   1019 {
   1020 	ssize_t remain;
   1021 	loff_t offset;
   1022 	char __user *user_data;
   1023 	int shmem_page_offset, page_length, ret = 0;
   1024 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
   1025 	int hit_slowpath = 0;
   1026 	int needs_clflush_after = 0;
   1027 	int needs_clflush_before = 0;
   1028 #ifndef __NetBSD__
   1029 	struct sg_page_iter sg_iter;
   1030 	int flush_mask = boot_cpu_data.x86_clflush_size - 1;
   1031 #else
   1032 	int flush_mask = cpu_info_primary.ci_cflush_lsize - 1;
   1033 #endif
   1034 
   1035 	user_data = to_user_ptr(args->data_ptr);
   1036 	remain = args->size;
   1037 
   1038 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
   1039 
   1040 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1041 		/* If we're not in the cpu write domain, set ourself into the gtt
   1042 		 * write domain and manually flush cachelines (if required). This
   1043 		 * optimizes for the case when the gpu will use the data
   1044 		 * right away and we therefore have to clflush anyway. */
   1045 		needs_clflush_after = cpu_write_needs_clflush(obj);
   1046 		ret = i915_gem_object_wait_rendering(obj, false);
   1047 		if (ret)
   1048 			return ret;
   1049 	}
   1050 	/* Same trick applies to invalidate partially written cachelines read
   1051 	 * before writing. */
   1052 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
   1053 		needs_clflush_before =
   1054 			!cpu_cache_is_coherent(dev, obj->cache_level);
   1055 
   1056 	ret = i915_gem_object_get_pages(obj);
   1057 	if (ret)
   1058 		return ret;
   1059 
   1060 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
   1061 
   1062 	i915_gem_object_pin_pages(obj);
   1063 
   1064 	offset = args->offset;
   1065 	obj->dirty = 1;
   1066 
   1067 #ifdef __NetBSD__
   1068 	while (0 < remain)
   1069 #else
   1070 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
   1071 			 offset >> PAGE_SHIFT)
   1072 #endif
   1073 	{
   1074 #ifdef __NetBSD__
   1075 		struct page *const page = i915_gem_object_get_page(obj,
   1076 		    atop(offset));
   1077 #else
   1078 		struct page *page = sg_page_iter_page(&sg_iter);
   1079 
   1080 		if (remain <= 0)
   1081 			break;
   1082 #endif
   1083 
   1084 		/* Operation in this page
   1085 		 *
   1086 		 * shmem_page_offset = offset within page in shmem file
   1087 		 * page_length = bytes to copy for this page
   1088 		 */
   1089 		shmem_page_offset = offset_in_page(offset);
   1090 
   1091 		page_length = remain;
   1092 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
   1093 			page_length = PAGE_SIZE - shmem_page_offset;
   1094 
   1095 		/* If we don't overwrite a cacheline completely we need to be
   1096 		 * careful to have up-to-date data by first clflushing. Don't
   1097 		 * overcomplicate things and flush the entire patch. */
   1098 		const int partial_cacheline_write = needs_clflush_before &&
   1099 			((shmem_page_offset | page_length) & flush_mask);
   1100 
   1101 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
   1102 			(page_to_phys(page) & (1 << 17)) != 0;
   1103 
   1104 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
   1105 					user_data, page_do_bit17_swizzling,
   1106 					partial_cacheline_write,
   1107 					needs_clflush_after);
   1108 		if (ret == 0)
   1109 			goto next_page;
   1110 
   1111 		hit_slowpath = 1;
   1112 		mutex_unlock(&dev->struct_mutex);
   1113 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
   1114 					user_data, page_do_bit17_swizzling,
   1115 					partial_cacheline_write,
   1116 					needs_clflush_after);
   1117 
   1118 		mutex_lock(&dev->struct_mutex);
   1119 
   1120 		if (ret)
   1121 			goto out;
   1122 
   1123 next_page:
   1124 		remain -= page_length;
   1125 		user_data += page_length;
   1126 		offset += page_length;
   1127 	}
   1128 
   1129 out:
   1130 	i915_gem_object_unpin_pages(obj);
   1131 
   1132 	if (hit_slowpath) {
   1133 		/*
   1134 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
   1135 		 * cachelines in-line while writing and the object moved
   1136 		 * out of the cpu write domain while we've dropped the lock.
   1137 		 */
   1138 		if (!needs_clflush_after &&
   1139 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1140 			if (i915_gem_clflush_object(obj, obj->pin_display))
   1141 				needs_clflush_after = true;
   1142 		}
   1143 	}
   1144 
   1145 	if (needs_clflush_after)
   1146 		i915_gem_chipset_flush(dev);
   1147 	else
   1148 		obj->cache_dirty = true;
   1149 
   1150 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
   1151 	return ret;
   1152 }
   1153 
   1154 /**
   1155  * Writes data to the object referenced by handle.
   1156  *
   1157  * On error, the contents of the buffer that were to be modified are undefined.
   1158  */
   1159 int
   1160 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
   1161 		      struct drm_file *file)
   1162 {
   1163 	struct drm_i915_private *dev_priv = dev->dev_private;
   1164 	struct drm_i915_gem_pwrite *args = data;
   1165 	struct drm_gem_object *gobj;
   1166 	struct drm_i915_gem_object *obj;
   1167 	int ret;
   1168 
   1169 	if (args->size == 0)
   1170 		return 0;
   1171 
   1172 	if (!access_ok(VERIFY_READ,
   1173 		       to_user_ptr(args->data_ptr),
   1174 		       args->size))
   1175 		return -EFAULT;
   1176 
   1177 #ifndef __NetBSD__		/* XXX prefault */
   1178 	if (likely(!i915.prefault_disable)) {
   1179 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
   1180 						   args->size);
   1181 		if (ret)
   1182 			return -EFAULT;
   1183 	}
   1184 #endif
   1185 
   1186 	intel_runtime_pm_get(dev_priv);
   1187 
   1188 	ret = i915_mutex_lock_interruptible(dev);
   1189 	if (ret)
   1190 		goto put_rpm;
   1191 
   1192 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1193 	if (gobj == NULL) {
   1194 		ret = -ENOENT;
   1195 		goto unlock;
   1196 	}
   1197 	obj = to_intel_bo(gobj);
   1198 
   1199 	/* Bounds check destination. */
   1200 	if (args->offset > obj->base.size ||
   1201 	    args->size > obj->base.size - args->offset) {
   1202 		ret = -EINVAL;
   1203 		goto out;
   1204 	}
   1205 
   1206 	/* prime objects have no backing filp to GEM pread/pwrite
   1207 	 * pages from.
   1208 	 */
   1209 	if (!obj->base.filp) {
   1210 		ret = -EINVAL;
   1211 		goto out;
   1212 	}
   1213 
   1214 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
   1215 
   1216 	ret = -EFAULT;
   1217 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
   1218 	 * it would end up going through the fenced access, and we'll get
   1219 	 * different detiling behavior between reading and writing.
   1220 	 * pread/pwrite currently are reading and writing from the CPU
   1221 	 * perspective, requiring manual detiling by the client.
   1222 	 */
   1223 	if (obj->tiling_mode == I915_TILING_NONE &&
   1224 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
   1225 	    cpu_write_needs_clflush(obj)) {
   1226 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
   1227 		/* Note that the gtt paths might fail with non-page-backed user
   1228 		 * pointers (e.g. gtt mappings when moving data between
   1229 		 * textures). Fallback to the shmem path in that case. */
   1230 	}
   1231 
   1232 	if (ret == -EFAULT || ret == -ENOSPC) {
   1233 		if (obj->phys_handle)
   1234 			ret = i915_gem_phys_pwrite(obj, args, file);
   1235 		else
   1236 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
   1237 	}
   1238 
   1239 out:
   1240 	drm_gem_object_unreference(&obj->base);
   1241 unlock:
   1242 	mutex_unlock(&dev->struct_mutex);
   1243 put_rpm:
   1244 	intel_runtime_pm_put(dev_priv);
   1245 
   1246 	return ret;
   1247 }
   1248 
   1249 int
   1250 i915_gem_check_wedge(struct i915_gpu_error *error,
   1251 		     bool interruptible)
   1252 {
   1253 	if (i915_reset_in_progress(error)) {
   1254 		/* Non-interruptible callers can't handle -EAGAIN, hence return
   1255 		 * -EIO unconditionally for these. */
   1256 		if (!interruptible)
   1257 			return -EIO;
   1258 
   1259 		/* Recovery complete, but the reset failed ... */
   1260 		if (i915_terminally_wedged(error))
   1261 			return -EIO;
   1262 
   1263 		/*
   1264 		 * Check if GPU Reset is in progress - we need intel_ring_begin
   1265 		 * to work properly to reinit the hw state while the gpu is
   1266 		 * still marked as reset-in-progress. Handle this with a flag.
   1267 		 */
   1268 		if (!error->reload_in_reset)
   1269 			return -EAGAIN;
   1270 	}
   1271 
   1272 	return 0;
   1273 }
   1274 
   1275 #ifndef __NetBSD__
   1276 static void fake_irq(unsigned long data)
   1277 {
   1278 	wake_up_process((struct task_struct *)data);
   1279 }
   1280 #endif
   1281 
   1282 static bool missed_irq(struct drm_i915_private *dev_priv,
   1283 		       struct intel_engine_cs *ring)
   1284 {
   1285 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
   1286 }
   1287 
   1288 #ifndef __NetBSD__
   1289 static unsigned long local_clock_us(unsigned *cpu)
   1290 {
   1291 	unsigned long t;
   1292 
   1293 	/* Cheaply and approximately convert from nanoseconds to microseconds.
   1294 	 * The result and subsequent calculations are also defined in the same
   1295 	 * approximate microseconds units. The principal source of timing
   1296 	 * error here is from the simple truncation.
   1297 	 *
   1298 	 * Note that local_clock() is only defined wrt to the current CPU;
   1299 	 * the comparisons are no longer valid if we switch CPUs. Instead of
   1300 	 * blocking preemption for the entire busywait, we can detect the CPU
   1301 	 * switch and use that as indicator of system load and a reason to
   1302 	 * stop busywaiting, see busywait_stop().
   1303 	 */
   1304 	*cpu = get_cpu();
   1305 	t = local_clock() >> 10;
   1306 	put_cpu();
   1307 
   1308 	return t;
   1309 }
   1310 
   1311 static bool busywait_stop(unsigned long timeout, unsigned cpu)
   1312 {
   1313 	unsigned this_cpu;
   1314 
   1315 	if (time_after(local_clock_us(&this_cpu), timeout))
   1316 		return true;
   1317 
   1318 	return this_cpu != cpu;
   1319 }
   1320 #endif
   1321 
   1322 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
   1323 {
   1324 #ifndef __NetBSD__
   1325 	unsigned long timeout;
   1326 	unsigned cpu;
   1327 #endif
   1328 
   1329 	/* When waiting for high frequency requests, e.g. during synchronous
   1330 	 * rendering split between the CPU and GPU, the finite amount of time
   1331 	 * required to set up the irq and wait upon it limits the response
   1332 	 * rate. By busywaiting on the request completion for a short while we
   1333 	 * can service the high frequency waits as quick as possible. However,
   1334 	 * if it is a slow request, we want to sleep as quickly as possible.
   1335 	 * The tradeoff between waiting and sleeping is roughly the time it
   1336 	 * takes to sleep on a request, on the order of a microsecond.
   1337 	 */
   1338 
   1339 	if (req->ring->irq_refcount)
   1340 		return -EBUSY;
   1341 
   1342 	/* Only spin if we know the GPU is processing this request */
   1343 	if (!i915_gem_request_started(req, true))
   1344 		return -EAGAIN;
   1345 
   1346 #ifndef __NetBSD__		/* XXX No local clock in usec.  */
   1347 	timeout = local_clock_us(&cpu) + 5;
   1348 	while (!need_resched()) {
   1349 		if (i915_gem_request_completed(req, true))
   1350 			return 0;
   1351 
   1352 		if (signal_pending_state(state, current))
   1353 			break;
   1354 
   1355 		if (busywait_stop(timeout, cpu))
   1356 			break;
   1357 
   1358 		cpu_relax_lowlatency();
   1359 	}
   1360 #endif
   1361 
   1362 	if (i915_gem_request_completed(req, false))
   1363 		return 0;
   1364 
   1365 	return -EAGAIN;
   1366 }
   1367 
   1368 /**
   1369  * __i915_wait_request - wait until execution of request has finished
   1370  * @req: duh!
   1371  * @reset_counter: reset sequence associated with the given request
   1372  * @interruptible: do an interruptible wait (normally yes)
   1373  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
   1374  *
   1375  * Note: It is of utmost importance that the passed in seqno and reset_counter
   1376  * values have been read by the caller in an smp safe manner. Where read-side
   1377  * locks are involved, it is sufficient to read the reset_counter before
   1378  * unlocking the lock that protects the seqno. For lockless tricks, the
   1379  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
   1380  * inserted.
   1381  *
   1382  * Returns 0 if the request was found within the alloted time. Else returns the
   1383  * errno with remaining time filled in timeout argument.
   1384  */
   1385 int __i915_wait_request(struct drm_i915_gem_request *req,
   1386 			unsigned reset_counter,
   1387 			bool interruptible,
   1388 			s64 *timeout,
   1389 			struct intel_rps_client *rps)
   1390 {
   1391 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
   1392 	struct drm_device *dev = ring->dev;
   1393 	struct drm_i915_private *dev_priv = dev->dev_private;
   1394 	const bool irq_test_in_progress =
   1395 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
   1396 #ifdef __NetBSD__
   1397 	int state = 0;
   1398 	bool wedged;
   1399 #else
   1400 	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
   1401 	DEFINE_WAIT(wait);
   1402 	unsigned long timeout_expire;
   1403 #endif
   1404 	s64 before, now;
   1405 	int ret;
   1406 
   1407 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
   1408 
   1409 	if (list_empty(&req->list))
   1410 		return 0;
   1411 
   1412 	if (i915_gem_request_completed(req, true))
   1413 		return 0;
   1414 
   1415 #ifndef __NetBSD__
   1416 	timeout_expire = 0;
   1417 	if (timeout) {
   1418 		if (WARN_ON(*timeout < 0))
   1419 			return -EINVAL;
   1420 
   1421 		if (*timeout == 0)
   1422 			return -ETIME;
   1423 
   1424 		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
   1425 	}
   1426 #endif
   1427 
   1428 	if (INTEL_INFO(dev_priv)->gen >= 6)
   1429 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
   1430 
   1431 	/* Record current time in case interrupted by signal, or wedged */
   1432 	trace_i915_gem_request_wait_begin(req);
   1433 	before = ktime_get_raw_ns();
   1434 
   1435 	/* Optimistic spin for the next jiffie before touching IRQs */
   1436 	ret = __i915_spin_request(req, state);
   1437 	if (ret == 0)
   1438 		goto out;
   1439 
   1440 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
   1441 		ret = -ENODEV;
   1442 		goto out;
   1443 	}
   1444 
   1445 #ifdef __NetBSD__
   1446 #  define	EXIT_COND						      \
   1447 	((wedged = (reset_counter !=					      \
   1448 		atomic_read(&dev_priv->gpu_error.reset_counter))) ||	      \
   1449 	    i915_gem_request_completed(req, false))
   1450 	if (timeout) {
   1451 		int ticks = missed_irq(dev_priv, ring) ? 1 :
   1452 		    nsecs_to_jiffies_timeout(*timeout);
   1453 		if (interruptible) {
   1454 			DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
   1455 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1456 		} else {
   1457 			DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1458 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1459 		}
   1460 		if (ret < 0)	/* Failure: return negative error as is.  */
   1461 			;
   1462 		else if (ret == 0) /* Timed out: return -ETIME.  */
   1463 			ret = -ETIME;
   1464 		else		/* Succeeded (ret > 0): return 0.  */
   1465 			ret = 0;
   1466 	} else {
   1467 		if (interruptible) {
   1468 			DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
   1469 			    &dev_priv->irq_lock, EXIT_COND);
   1470 		} else {
   1471 			DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1472 			    &dev_priv->irq_lock, EXIT_COND);
   1473 		}
   1474 		/* ret is negative on failure or zero on success.  */
   1475 	}
   1476 	if (wedged) {
   1477 		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1478 		if (ret == 0)
   1479 			ret = -EAGAIN;
   1480 	}
   1481 #else
   1482 	for (;;) {
   1483 		struct timer_list timer;
   1484 
   1485 		prepare_to_wait(&ring->irq_queue, &wait, state);
   1486 
   1487 		/* We need to check whether any gpu reset happened in between
   1488 		 * the caller grabbing the seqno and now ... */
   1489 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
   1490 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
   1491 			 * is truely gone. */
   1492 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1493 			if (ret == 0)
   1494 				ret = -EAGAIN;
   1495 			break;
   1496 		}
   1497 
   1498 		if (i915_gem_request_completed(req, false)) {
   1499 			ret = 0;
   1500 			break;
   1501 		}
   1502 
   1503 		if (signal_pending_state(state, current)) {
   1504 			ret = -ERESTARTSYS;
   1505 			break;
   1506 		}
   1507 
   1508 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
   1509 			ret = -ETIME;
   1510 			break;
   1511 		}
   1512 
   1513 		timer.function = NULL;
   1514 		if (timeout || missed_irq(dev_priv, ring)) {
   1515 			unsigned long expire;
   1516 
   1517 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
   1518 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
   1519 			mod_timer(&timer, expire);
   1520 		}
   1521 
   1522 		io_schedule();
   1523 
   1524 		if (timer.function) {
   1525 			del_singleshot_timer_sync(&timer);
   1526 			destroy_timer_on_stack(&timer);
   1527 		}
   1528 	}
   1529 #endif
   1530 	if (!irq_test_in_progress)
   1531 		ring->irq_put(ring);
   1532 
   1533 #ifndef __NetBSD__
   1534 	finish_wait(&ring->irq_queue, &wait);
   1535 #endif
   1536 
   1537 out:
   1538 	now = ktime_get_raw_ns();
   1539 	trace_i915_gem_request_wait_end(req);
   1540 
   1541 	if (timeout) {
   1542 		s64 tres = *timeout - (now - before);
   1543 
   1544 		*timeout = tres < 0 ? 0 : tres;
   1545 
   1546 		/*
   1547 		 * Apparently ktime isn't accurate enough and occasionally has a
   1548 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
   1549 		 * things up to make the test happy. We allow up to 1 jiffy.
   1550 		 *
   1551 		 * This is a regrssion from the timespec->ktime conversion.
   1552 		 */
   1553 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
   1554 			*timeout = 0;
   1555 	}
   1556 
   1557 	return ret;
   1558 }
   1559 
   1560 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
   1561 				   struct drm_file *file)
   1562 {
   1563 	struct drm_i915_private *dev_private __unused;
   1564 	struct drm_i915_file_private *file_priv;
   1565 
   1566 	WARN_ON(!req || !file || req->file_priv);
   1567 
   1568 	if (!req || !file)
   1569 		return -EINVAL;
   1570 
   1571 	if (req->file_priv)
   1572 		return -EINVAL;
   1573 
   1574 	dev_private = req->ring->dev->dev_private;
   1575 	file_priv = file->driver_priv;
   1576 
   1577 	spin_lock(&file_priv->mm.lock);
   1578 	req->file_priv = file_priv;
   1579 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
   1580 	spin_unlock(&file_priv->mm.lock);
   1581 
   1582 #ifndef __NetBSD__
   1583 	req->pid = get_pid(task_pid(current));
   1584 #endif
   1585 
   1586 	return 0;
   1587 }
   1588 
   1589 static inline void
   1590 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
   1591 {
   1592 	struct drm_i915_file_private *file_priv = request->file_priv;
   1593 
   1594 	if (!file_priv)
   1595 		return;
   1596 
   1597 	spin_lock(&file_priv->mm.lock);
   1598 	list_del(&request->client_list);
   1599 	request->file_priv = NULL;
   1600 	spin_unlock(&file_priv->mm.lock);
   1601 
   1602 #ifndef __NetBSD__
   1603 	put_pid(request->pid);
   1604 	request->pid = NULL;
   1605 #endif
   1606 }
   1607 
   1608 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
   1609 {
   1610 	trace_i915_gem_request_retire(request);
   1611 
   1612 	/* We know the GPU must have read the request to have
   1613 	 * sent us the seqno + interrupt, so use the position
   1614 	 * of tail of the request to update the last known position
   1615 	 * of the GPU head.
   1616 	 *
   1617 	 * Note this requires that we are always called in request
   1618 	 * completion order.
   1619 	 */
   1620 	request->ringbuf->last_retired_head = request->postfix;
   1621 
   1622 	list_del_init(&request->list);
   1623 	i915_gem_request_remove_from_client(request);
   1624 
   1625 	i915_gem_request_unreference(request);
   1626 }
   1627 
   1628 static void
   1629 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
   1630 {
   1631 	struct intel_engine_cs *engine = req->ring;
   1632 	struct drm_i915_gem_request *tmp;
   1633 
   1634 	lockdep_assert_held(&engine->dev->struct_mutex);
   1635 
   1636 	if (list_empty(&req->list))
   1637 		return;
   1638 
   1639 	do {
   1640 		tmp = list_first_entry(&engine->request_list,
   1641 				       typeof(*tmp), list);
   1642 
   1643 		i915_gem_request_retire(tmp);
   1644 	} while (tmp != req);
   1645 
   1646 	WARN_ON(i915_verify_lists(engine->dev));
   1647 }
   1648 
   1649 /**
   1650  * Waits for a request to be signaled, and cleans up the
   1651  * request and object lists appropriately for that event.
   1652  */
   1653 int
   1654 i915_wait_request(struct drm_i915_gem_request *req)
   1655 {
   1656 	struct drm_device *dev;
   1657 	struct drm_i915_private *dev_priv;
   1658 	bool interruptible;
   1659 	int ret;
   1660 
   1661 	BUG_ON(req == NULL);
   1662 
   1663 	dev = req->ring->dev;
   1664 	dev_priv = dev->dev_private;
   1665 	interruptible = dev_priv->mm.interruptible;
   1666 
   1667 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1668 
   1669 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1670 	if (ret)
   1671 		return ret;
   1672 
   1673 	ret = __i915_wait_request(req,
   1674 				  atomic_read(&dev_priv->gpu_error.reset_counter),
   1675 				  interruptible, NULL, NULL);
   1676 	if (ret)
   1677 		return ret;
   1678 
   1679 	__i915_gem_request_retire__upto(req);
   1680 	return 0;
   1681 }
   1682 
   1683 /**
   1684  * Ensures that all rendering to the object has completed and the object is
   1685  * safe to unbind from the GTT or access from the CPU.
   1686  */
   1687 int
   1688 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
   1689 			       bool readonly)
   1690 {
   1691 	int ret, i;
   1692 
   1693 	if (!obj->active)
   1694 		return 0;
   1695 
   1696 	if (readonly) {
   1697 		if (obj->last_write_req != NULL) {
   1698 			ret = i915_wait_request(obj->last_write_req);
   1699 			if (ret)
   1700 				return ret;
   1701 
   1702 			i = obj->last_write_req->ring->id;
   1703 			if (obj->last_read_req[i] == obj->last_write_req)
   1704 				i915_gem_object_retire__read(obj, i);
   1705 			else
   1706 				i915_gem_object_retire__write(obj);
   1707 		}
   1708 	} else {
   1709 		for (i = 0; i < I915_NUM_RINGS; i++) {
   1710 			if (obj->last_read_req[i] == NULL)
   1711 				continue;
   1712 
   1713 			ret = i915_wait_request(obj->last_read_req[i]);
   1714 			if (ret)
   1715 				return ret;
   1716 
   1717 			i915_gem_object_retire__read(obj, i);
   1718 		}
   1719 		RQ_BUG_ON(obj->active);
   1720 	}
   1721 
   1722 	return 0;
   1723 }
   1724 
   1725 static void
   1726 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
   1727 			       struct drm_i915_gem_request *req)
   1728 {
   1729 	int ring = req->ring->id;
   1730 
   1731 	if (obj->last_read_req[ring] == req)
   1732 		i915_gem_object_retire__read(obj, ring);
   1733 	else if (obj->last_write_req == req)
   1734 		i915_gem_object_retire__write(obj);
   1735 
   1736 	__i915_gem_request_retire__upto(req);
   1737 }
   1738 
   1739 /* A nonblocking variant of the above wait. This is a highly dangerous routine
   1740  * as the object state may change during this call.
   1741  */
   1742 static __must_check int
   1743 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
   1744 					    struct intel_rps_client *rps,
   1745 					    bool readonly)
   1746 {
   1747 	struct drm_device *dev = obj->base.dev;
   1748 	struct drm_i915_private *dev_priv = dev->dev_private;
   1749 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
   1750 	unsigned reset_counter;
   1751 	int ret, i, n = 0;
   1752 
   1753 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1754 	BUG_ON(!dev_priv->mm.interruptible);
   1755 
   1756 	if (!obj->active)
   1757 		return 0;
   1758 
   1759 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
   1760 	if (ret)
   1761 		return ret;
   1762 
   1763 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   1764 
   1765 	if (readonly) {
   1766 		struct drm_i915_gem_request *req;
   1767 
   1768 		req = obj->last_write_req;
   1769 		if (req == NULL)
   1770 			return 0;
   1771 
   1772 		requests[n++] = i915_gem_request_reference(req);
   1773 	} else {
   1774 		for (i = 0; i < I915_NUM_RINGS; i++) {
   1775 			struct drm_i915_gem_request *req;
   1776 
   1777 			req = obj->last_read_req[i];
   1778 			if (req == NULL)
   1779 				continue;
   1780 
   1781 			requests[n++] = i915_gem_request_reference(req);
   1782 		}
   1783 	}
   1784 
   1785 	mutex_unlock(&dev->struct_mutex);
   1786 	for (i = 0; ret == 0 && i < n; i++)
   1787 		ret = __i915_wait_request(requests[i], reset_counter, true,
   1788 					  NULL, rps);
   1789 	mutex_lock(&dev->struct_mutex);
   1790 
   1791 	for (i = 0; i < n; i++) {
   1792 		if (ret == 0)
   1793 			i915_gem_object_retire_request(obj, requests[i]);
   1794 		i915_gem_request_unreference(requests[i]);
   1795 	}
   1796 
   1797 	return ret;
   1798 }
   1799 
   1800 static struct intel_rps_client *to_rps_client(struct drm_file *file)
   1801 {
   1802 	struct drm_i915_file_private *fpriv = file->driver_priv;
   1803 	return &fpriv->rps;
   1804 }
   1805 
   1806 /**
   1807  * Called when user space prepares to use an object with the CPU, either
   1808  * through the mmap ioctl's mapping or a GTT mapping.
   1809  */
   1810 int
   1811 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
   1812 			  struct drm_file *file)
   1813 {
   1814 	struct drm_i915_gem_set_domain *args = data;
   1815 	struct drm_gem_object *gobj;
   1816 	struct drm_i915_gem_object *obj;
   1817 	uint32_t read_domains = args->read_domains;
   1818 	uint32_t write_domain = args->write_domain;
   1819 	int ret;
   1820 
   1821 	/* Only handle setting domains to types used by the CPU. */
   1822 	if (write_domain & I915_GEM_GPU_DOMAINS)
   1823 		return -EINVAL;
   1824 
   1825 	if (read_domains & I915_GEM_GPU_DOMAINS)
   1826 		return -EINVAL;
   1827 
   1828 	/* Having something in the write domain implies it's in the read
   1829 	 * domain, and only that read domain.  Enforce that in the request.
   1830 	 */
   1831 	if (write_domain != 0 && read_domains != write_domain)
   1832 		return -EINVAL;
   1833 
   1834 	ret = i915_mutex_lock_interruptible(dev);
   1835 	if (ret)
   1836 		return ret;
   1837 
   1838 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1839 	if (gobj == NULL) {
   1840 		ret = -ENOENT;
   1841 		goto unlock;
   1842 	}
   1843 	obj = to_intel_bo(gobj);
   1844 
   1845 	/* Try to flush the object off the GPU without holding the lock.
   1846 	 * We will repeat the flush holding the lock in the normal manner
   1847 	 * to catch cases where we are gazumped.
   1848 	 */
   1849 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
   1850 							  to_rps_client(file),
   1851 							  !write_domain);
   1852 	if (ret)
   1853 		goto unref;
   1854 
   1855 	if (read_domains & I915_GEM_DOMAIN_GTT)
   1856 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
   1857 	else
   1858 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
   1859 
   1860 	if (write_domain != 0)
   1861 		intel_fb_obj_invalidate(obj,
   1862 					write_domain == I915_GEM_DOMAIN_GTT ?
   1863 					ORIGIN_GTT : ORIGIN_CPU);
   1864 
   1865 unref:
   1866 	drm_gem_object_unreference(&obj->base);
   1867 unlock:
   1868 	mutex_unlock(&dev->struct_mutex);
   1869 	return ret;
   1870 }
   1871 
   1872 /**
   1873  * Called when user space has done writes to this buffer
   1874  */
   1875 int
   1876 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
   1877 			 struct drm_file *file)
   1878 {
   1879 	struct drm_i915_gem_sw_finish *args = data;
   1880 	struct drm_gem_object *gobj;
   1881 	struct drm_i915_gem_object *obj;
   1882 	int ret = 0;
   1883 
   1884 	ret = i915_mutex_lock_interruptible(dev);
   1885 	if (ret)
   1886 		return ret;
   1887 
   1888 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1889 	if (gobj == NULL) {
   1890 		ret = -ENOENT;
   1891 		goto unlock;
   1892 	}
   1893 	obj = to_intel_bo(gobj);
   1894 
   1895 	/* Pinned buffers may be scanout, so flush the cache */
   1896 	if (obj->pin_display)
   1897 		i915_gem_object_flush_cpu_write_domain(obj);
   1898 
   1899 	drm_gem_object_unreference(&obj->base);
   1900 unlock:
   1901 	mutex_unlock(&dev->struct_mutex);
   1902 	return ret;
   1903 }
   1904 
   1905 /**
   1906  * Maps the contents of an object, returning the address it is mapped
   1907  * into.
   1908  *
   1909  * While the mapping holds a reference on the contents of the object, it doesn't
   1910  * imply a ref on the object itself.
   1911  *
   1912  * IMPORTANT:
   1913  *
   1914  * DRM driver writers who look a this function as an example for how to do GEM
   1915  * mmap support, please don't implement mmap support like here. The modern way
   1916  * to implement DRM mmap support is with an mmap offset ioctl (like
   1917  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
   1918  * That way debug tooling like valgrind will understand what's going on, hiding
   1919  * the mmap call in a driver private ioctl will break that. The i915 driver only
   1920  * does cpu mmaps this way because we didn't know better.
   1921  */
   1922 int
   1923 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
   1924 		    struct drm_file *file)
   1925 {
   1926 	struct drm_i915_gem_mmap *args = data;
   1927 	struct drm_gem_object *obj;
   1928 	unsigned long addr;
   1929 #ifdef __NetBSD__
   1930 	int ret;
   1931 #endif
   1932 
   1933 	if (args->flags & ~(I915_MMAP_WC))
   1934 		return -EINVAL;
   1935 
   1936 #if 0
   1937 	/* XXX cpu_has_pat == CPUID_PAT, do we care to do this check */
   1938 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
   1939 		return -ENODEV;
   1940 #endif
   1941 
   1942 	obj = drm_gem_object_lookup(dev, file, args->handle);
   1943 	if (obj == NULL)
   1944 		return -ENOENT;
   1945 
   1946 	/* prime objects have no backing filp to GEM mmap
   1947 	 * pages from.
   1948 	 */
   1949 	if (!obj->filp) {
   1950 		drm_gem_object_unreference_unlocked(obj);
   1951 		return -EINVAL;
   1952 	}
   1953 
   1954 #ifdef __NetBSD__
   1955 	addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
   1956 	    (vaddr_t)curproc->p_vmspace->vm_daddr, args->size,
   1957 	    curproc->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1958 	/* XXX errno NetBSD->Linux */
   1959 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
   1960 	    obj->filp, args->offset, 0,
   1961 	    UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
   1962 		(VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
   1963 		0));
   1964 	if (ret) {
   1965 		drm_gem_object_unreference_unlocked(obj);
   1966 		return ret;
   1967 	}
   1968 	uao_reference(obj->filp);
   1969 	drm_gem_object_unreference_unlocked(obj);
   1970 #else
   1971 	addr = vm_mmap(obj->filp, 0, args->size,
   1972 		       PROT_READ | PROT_WRITE, MAP_SHARED,
   1973 		       args->offset);
   1974 	if (args->flags & I915_MMAP_WC) {
   1975 		struct mm_struct *mm = current->mm;
   1976 		struct vm_area_struct *vma;
   1977 
   1978 		down_write(&mm->mmap_sem);
   1979 		vma = find_vma(mm, addr);
   1980 		if (vma)
   1981 			vma->vm_page_prot =
   1982 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
   1983 		else
   1984 			addr = -ENOMEM;
   1985 		up_write(&mm->mmap_sem);
   1986 	}
   1987 	drm_gem_object_unreference_unlocked(obj);
   1988 	if (IS_ERR((void *)addr))
   1989 		return addr;
   1990 #endif
   1991 
   1992 	args->addr_ptr = (uint64_t) addr;
   1993 
   1994 	return 0;
   1995 }
   1996 
   1997 #ifdef __NetBSD__		/* XXX gem gtt fault */
   1998 static int	i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
   1999 		    struct vm_page **, int, int, vm_prot_t, int, paddr_t);
   2000 
   2001 int
   2002 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   2003     int npages, int centeridx, vm_prot_t access_type, int flags)
   2004 {
   2005 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   2006 	struct drm_gem_object *gem_obj =
   2007 	    container_of(uobj, struct drm_gem_object, gemo_uvmobj);
   2008 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   2009 	struct drm_device *dev = obj->base.dev;
   2010 	struct drm_i915_private *dev_priv = dev->dev_private;
   2011 	voff_t byte_offset;
   2012 	pgoff_t page_offset;
   2013 	int ret = 0;
   2014 	bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
   2015 
   2016 	byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
   2017 	KASSERT(byte_offset <= obj->base.size);
   2018 	page_offset = (byte_offset >> PAGE_SHIFT);
   2019 
   2020 	intel_runtime_pm_get(dev_priv);
   2021 
   2022 	/* Thanks, uvm, but we don't need this lock.  */
   2023 	mutex_exit(uobj->vmobjlock);
   2024 
   2025 	ret = i915_mutex_lock_interruptible(dev);
   2026 	if (ret)
   2027 		goto out;
   2028 
   2029 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   2030 
   2031 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   2032 	if (ret)
   2033 		goto unlock;
   2034 
   2035 	if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
   2036 		ret = -EINVAL;
   2037 		goto unlock;
   2038 	}
   2039 
   2040 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
   2041 	if (ret)
   2042 		goto unlock;
   2043 
   2044 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   2045 	if (ret)
   2046 		goto unpin;
   2047 
   2048 	ret = i915_gem_object_get_fence(obj);
   2049 	if (ret)
   2050 		goto unpin;
   2051 
   2052 	obj->fault_mappable = true;
   2053 
   2054 	/* XXX errno NetBSD->Linux */
   2055 	ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
   2056 	    flags,
   2057 	    (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
   2058 unpin:
   2059 	i915_gem_object_ggtt_unpin(obj);
   2060 unlock:
   2061 	mutex_unlock(&dev->struct_mutex);
   2062 out:
   2063 	mutex_enter(uobj->vmobjlock);
   2064 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
   2065 	if (ret == -ERESTART)
   2066 		uvm_wait("i915flt");
   2067 
   2068 	/*
   2069 	 * Remap EINTR to success, so that we return to userland.
   2070 	 * On the way out, we'll deliver the signal, and if the signal
   2071 	 * is not fatal then the user code which faulted will most likely
   2072 	 * fault again, and we'll come back here for another try.
   2073 	 */
   2074 	if (ret == -EINTR)
   2075 		ret = 0;
   2076 	/* XXX Deal with GPU hangs here...  */
   2077 	intel_runtime_pm_put(dev_priv);
   2078 	/* XXX errno Linux->NetBSD */
   2079 	return -ret;
   2080 }
   2081 
   2082 /*
   2083  * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
   2084  *
   2085  * XXX pmap_enter_default instead of pmap_enter because of a problem
   2086  * with using weak aliases in kernel modules or something.
   2087  */
   2088 int	pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
   2089 
   2090 static int
   2091 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   2092     int npages, int centeridx, vm_prot_t access_type, int flags,
   2093     paddr_t gtt_paddr)
   2094 {
   2095 	struct vm_map_entry *entry = ufi->entry;
   2096 	vaddr_t curr_va;
   2097 	off_t curr_offset;
   2098 	paddr_t paddr;
   2099 	u_int mmapflags;
   2100 	int lcv, retval;
   2101 	vm_prot_t mapprot;
   2102 	UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
   2103 	UVMHIST_LOG(maphist,"  flags=%jd", flags,0,0,0);
   2104 
   2105 	/*
   2106 	 * we do not allow device mappings to be mapped copy-on-write
   2107 	 * so we kill any attempt to do so here.
   2108 	 */
   2109 
   2110 	if (UVM_ET_ISCOPYONWRITE(entry)) {
   2111 		UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%jx)",
   2112 		entry->etype, 0,0,0);
   2113 		return(EIO);
   2114 	}
   2115 
   2116 	/*
   2117 	 * now we must determine the offset in udv to use and the VA to
   2118 	 * use for pmap_enter.  note that we always use orig_map's pmap
   2119 	 * for pmap_enter (even if we have a submap).   since virtual
   2120 	 * addresses in a submap must match the main map, this is ok.
   2121 	 */
   2122 
   2123 	/* udv offset = (offset from start of entry) + entry's offset */
   2124 	curr_offset = entry->offset + (vaddr - entry->start);
   2125 	/* pmap va = vaddr (virtual address of pps[0]) */
   2126 	curr_va = vaddr;
   2127 
   2128 	/*
   2129 	 * loop over the page range entering in as needed
   2130 	 */
   2131 
   2132 	retval = 0;
   2133 	for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
   2134 	    curr_va += PAGE_SIZE) {
   2135 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
   2136 			continue;
   2137 
   2138 		if (pps[lcv] == PGO_DONTCARE)
   2139 			continue;
   2140 
   2141 		paddr = (gtt_paddr + curr_offset);
   2142 		mmapflags = 0;
   2143 		mapprot = ufi->entry->protection;
   2144 		UVMHIST_LOG(maphist,
   2145 		    "  MAPPING: device: pm=0x%#jx, va=0x%jx, pa=0x%jx, at=%jd",
   2146 		    (uintptr_t)ufi->orig_map->pmap, curr_va, paddr, mapprot);
   2147 		if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
   2148 		    PMAP_CANFAIL | mapprot | mmapflags) != 0) {
   2149 			/*
   2150 			 * pmap_enter() didn't have the resource to
   2151 			 * enter this mapping.  Unlock everything,
   2152 			 * wait for the pagedaemon to free up some
   2153 			 * pages, and then tell uvm_fault() to start
   2154 			 * the fault again.
   2155 			 *
   2156 			 * XXX Needs some rethinking for the PGO_ALLPAGES
   2157 			 * XXX case.
   2158 			 */
   2159 			pmap_update(ufi->orig_map->pmap);	/* sync what we have so far */
   2160 			return (ERESTART);
   2161 		}
   2162 	}
   2163 
   2164 	pmap_update(ufi->orig_map->pmap);
   2165 	return (retval);
   2166 }
   2167 #else
   2168 /**
   2169  * i915_gem_fault - fault a page into the GTT
   2170  * @vma: VMA in question
   2171  * @vmf: fault info
   2172  *
   2173  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
   2174  * from userspace.  The fault handler takes care of binding the object to
   2175  * the GTT (if needed), allocating and programming a fence register (again,
   2176  * only if needed based on whether the old reg is still valid or the object
   2177  * is tiled) and inserting a new PTE into the faulting process.
   2178  *
   2179  * Note that the faulting process may involve evicting existing objects
   2180  * from the GTT and/or fence registers to make room.  So performance may
   2181  * suffer if the GTT working set is large or there are few fence registers
   2182  * left.
   2183  */
   2184 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
   2185 {
   2186 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
   2187 	struct drm_device *dev = obj->base.dev;
   2188 	struct drm_i915_private *dev_priv = dev->dev_private;
   2189 	struct i915_ggtt_view view = i915_ggtt_view_normal;
   2190 	pgoff_t page_offset;
   2191 	unsigned long pfn;
   2192 	int ret = 0;
   2193 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
   2194 
   2195 	intel_runtime_pm_get(dev_priv);
   2196 
   2197 	/* We don't use vmf->pgoff since that has the fake offset */
   2198 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
   2199 		PAGE_SHIFT;
   2200 
   2201 	ret = i915_mutex_lock_interruptible(dev);
   2202 	if (ret)
   2203 		goto out;
   2204 
   2205 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   2206 
   2207 	/* Try to flush the object off the GPU first without holding the lock.
   2208 	 * Upon reacquiring the lock, we will perform our sanity checks and then
   2209 	 * repeat the flush holding the lock in the normal manner to catch cases
   2210 	 * where we are gazumped.
   2211 	 */
   2212 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   2213 	if (ret)
   2214 		goto unlock;
   2215 
   2216 	/* Access to snoopable pages through the GTT is incoherent. */
   2217 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
   2218 		ret = -EFAULT;
   2219 		goto unlock;
   2220 	}
   2221 
   2222 	/* Use a partial view if the object is bigger than the aperture. */
   2223 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
   2224 	    obj->tiling_mode == I915_TILING_NONE) {
   2225 		static const unsigned int chunk_size = 256; // 1 MiB
   2226 
   2227 		memset(&view, 0, sizeof(view));
   2228 		view.type = I915_GGTT_VIEW_PARTIAL;
   2229 		view.params.partial.offset = rounddown(page_offset, chunk_size);
   2230 		view.params.partial.size =
   2231 			min_t(unsigned int,
   2232 			      chunk_size,
   2233 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
   2234 			      view.params.partial.offset);
   2235 	}
   2236 
   2237 	/* Now pin it into the GTT if needed */
   2238 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
   2239 	if (ret)
   2240 		goto unlock;
   2241 
   2242 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   2243 	if (ret)
   2244 		goto unpin;
   2245 
   2246 	ret = i915_gem_object_get_fence(obj);
   2247 	if (ret)
   2248 		goto unpin;
   2249 
   2250 	/* Finally, remap it using the new GTT offset */
   2251 	pfn = dev_priv->gtt.mappable_base +
   2252 		i915_gem_obj_ggtt_offset_view(obj, &view);
   2253 	pfn >>= PAGE_SHIFT;
   2254 
   2255 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
   2256 		/* Overriding existing pages in partial view does not cause
   2257 		 * us any trouble as TLBs are still valid because the fault
   2258 		 * is due to userspace losing part of the mapping or never
   2259 		 * having accessed it before (at this partials' range).
   2260 		 */
   2261 		unsigned long base = vma->vm_start +
   2262 				     (view.params.partial.offset << PAGE_SHIFT);
   2263 		unsigned int i;
   2264 
   2265 		for (i = 0; i < view.params.partial.size; i++) {
   2266 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
   2267 			if (ret)
   2268 				break;
   2269 		}
   2270 
   2271 		obj->fault_mappable = true;
   2272 	} else {
   2273 		if (!obj->fault_mappable) {
   2274 			unsigned long size = min_t(unsigned long,
   2275 						   vma->vm_end - vma->vm_start,
   2276 						   obj->base.size);
   2277 			int i;
   2278 
   2279 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
   2280 				ret = vm_insert_pfn(vma,
   2281 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
   2282 						    pfn + i);
   2283 				if (ret)
   2284 					break;
   2285 			}
   2286 
   2287 			obj->fault_mappable = true;
   2288 		} else
   2289 			ret = vm_insert_pfn(vma,
   2290 					    (unsigned long)vmf->virtual_address,
   2291 					    pfn + page_offset);
   2292 	}
   2293 unpin:
   2294 	i915_gem_object_ggtt_unpin_view(obj, &view);
   2295 unlock:
   2296 	mutex_unlock(&dev->struct_mutex);
   2297 out:
   2298 	switch (ret) {
   2299 	case -EIO:
   2300 		/*
   2301 		 * We eat errors when the gpu is terminally wedged to avoid
   2302 		 * userspace unduly crashing (gl has no provisions for mmaps to
   2303 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
   2304 		 * and so needs to be reported.
   2305 		 */
   2306 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
   2307 			ret = VM_FAULT_SIGBUS;
   2308 			break;
   2309 		}
   2310 	case -EAGAIN:
   2311 		/*
   2312 		 * EAGAIN means the gpu is hung and we'll wait for the error
   2313 		 * handler to reset everything when re-faulting in
   2314 		 * i915_mutex_lock_interruptible.
   2315 		 */
   2316 	case 0:
   2317 	case -ERESTARTSYS:
   2318 	case -EINTR:
   2319 	case -EBUSY:
   2320 		/*
   2321 		 * EBUSY is ok: this just means that another thread
   2322 		 * already did the job.
   2323 		 */
   2324 		ret = VM_FAULT_NOPAGE;
   2325 		break;
   2326 	case -ENOMEM:
   2327 		ret = VM_FAULT_OOM;
   2328 		break;
   2329 	case -ENOSPC:
   2330 	case -EFAULT:
   2331 		ret = VM_FAULT_SIGBUS;
   2332 		break;
   2333 	default:
   2334 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
   2335 		ret = VM_FAULT_SIGBUS;
   2336 		break;
   2337 	}
   2338 
   2339 	intel_runtime_pm_put(dev_priv);
   2340 	return ret;
   2341 }
   2342 #endif
   2343 
   2344 /**
   2345  * i915_gem_release_mmap - remove physical page mappings
   2346  * @obj: obj in question
   2347  *
   2348  * Preserve the reservation of the mmapping with the DRM core code, but
   2349  * relinquish ownership of the pages back to the system.
   2350  *
   2351  * It is vital that we remove the page mapping if we have mapped a tiled
   2352  * object through the GTT and then lose the fence register due to
   2353  * resource pressure. Similarly if the object has been moved out of the
   2354  * aperture, than pages mapped into userspace must be revoked. Removing the
   2355  * mapping will then trigger a page fault on the next user access, allowing
   2356  * fixup by i915_gem_fault().
   2357  */
   2358 void
   2359 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
   2360 {
   2361 	if (!obj->fault_mappable)
   2362 		return;
   2363 
   2364 #ifdef __NetBSD__		/* XXX gem gtt fault */
   2365 	{
   2366 		struct drm_device *const dev = obj->base.dev;
   2367 		struct drm_i915_private *const dev_priv = dev->dev_private;
   2368 		const paddr_t start = dev_priv->gtt.mappable_base +
   2369 		    i915_gem_obj_ggtt_offset(obj);
   2370 		const size_t size = obj->base.size;
   2371 		const paddr_t end = start + size;
   2372 		paddr_t pa;
   2373 
   2374 		KASSERT((start & (PAGE_SIZE - 1)) == 0);
   2375 		KASSERT((size & (PAGE_SIZE - 1)) == 0);
   2376 
   2377 		for (pa = start; pa < end; pa += PAGE_SIZE)
   2378 			pmap_pv_protect(pa, VM_PROT_NONE);
   2379 	}
   2380 #else
   2381 	drm_vma_node_unmap(&obj->base.vma_node,
   2382 			   obj->base.dev->anon_inode->i_mapping);
   2383 #endif
   2384 	obj->fault_mappable = false;
   2385 }
   2386 
   2387 void
   2388 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
   2389 {
   2390 	struct drm_i915_gem_object *obj;
   2391 
   2392 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
   2393 		i915_gem_release_mmap(obj);
   2394 }
   2395 
   2396 uint32_t
   2397 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
   2398 {
   2399 	uint32_t gtt_size;
   2400 
   2401 	if (INTEL_INFO(dev)->gen >= 4 ||
   2402 	    tiling_mode == I915_TILING_NONE)
   2403 		return size;
   2404 
   2405 	/* Previous chips need a power-of-two fence region when tiling */
   2406 	if (INTEL_INFO(dev)->gen == 3)
   2407 		gtt_size = 1024*1024;
   2408 	else
   2409 		gtt_size = 512*1024;
   2410 
   2411 	while (gtt_size < size)
   2412 		gtt_size <<= 1;
   2413 
   2414 	return gtt_size;
   2415 }
   2416 
   2417 /**
   2418  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
   2419  * @obj: object to check
   2420  *
   2421  * Return the required GTT alignment for an object, taking into account
   2422  * potential fence register mapping.
   2423  */
   2424 uint32_t
   2425 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
   2426 			   int tiling_mode, bool fenced)
   2427 {
   2428 	/*
   2429 	 * Minimum alignment is 4k (GTT page size), but might be greater
   2430 	 * if a fence register is needed for the object.
   2431 	 */
   2432 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
   2433 	    tiling_mode == I915_TILING_NONE)
   2434 		return 4096;
   2435 
   2436 	/*
   2437 	 * Previous chips need to be aligned to the size of the smallest
   2438 	 * fence register that can contain the object.
   2439 	 */
   2440 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
   2441 }
   2442 
   2443 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
   2444 {
   2445 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2446 	int ret;
   2447 
   2448 	if (drm_vma_node_has_offset(&obj->base.vma_node))
   2449 		return 0;
   2450 
   2451 	dev_priv->mm.shrinker_no_lock_stealing = true;
   2452 
   2453 	ret = drm_gem_create_mmap_offset(&obj->base);
   2454 	if (ret != -ENOSPC)
   2455 		goto out;
   2456 
   2457 	/* Badly fragmented mmap space? The only way we can recover
   2458 	 * space is by destroying unwanted objects. We can't randomly release
   2459 	 * mmap_offsets as userspace expects them to be persistent for the
   2460 	 * lifetime of the objects. The closest we can is to release the
   2461 	 * offsets on purgeable objects by truncating it and marking it purged,
   2462 	 * which prevents userspace from ever using that object again.
   2463 	 */
   2464 	i915_gem_shrink(dev_priv,
   2465 			obj->base.size >> PAGE_SHIFT,
   2466 			I915_SHRINK_BOUND |
   2467 			I915_SHRINK_UNBOUND |
   2468 			I915_SHRINK_PURGEABLE);
   2469 	ret = drm_gem_create_mmap_offset(&obj->base);
   2470 	if (ret != -ENOSPC)
   2471 		goto out;
   2472 
   2473 	i915_gem_shrink_all(dev_priv);
   2474 	ret = drm_gem_create_mmap_offset(&obj->base);
   2475 out:
   2476 	dev_priv->mm.shrinker_no_lock_stealing = false;
   2477 
   2478 	return ret;
   2479 }
   2480 
   2481 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
   2482 {
   2483 	drm_gem_free_mmap_offset(&obj->base);
   2484 }
   2485 
   2486 int
   2487 i915_gem_mmap_gtt(struct drm_file *file,
   2488 		  struct drm_device *dev,
   2489 		  uint32_t handle,
   2490 		  uint64_t *offset)
   2491 {
   2492 	struct drm_gem_object *gobj;
   2493 	struct drm_i915_gem_object *obj;
   2494 	int ret;
   2495 
   2496 	ret = i915_mutex_lock_interruptible(dev);
   2497 	if (ret)
   2498 		return ret;
   2499 
   2500 	gobj = drm_gem_object_lookup(dev, file, handle);
   2501 	if (gobj == NULL) {
   2502 		ret = -ENOENT;
   2503 		goto unlock;
   2504 	}
   2505 	obj = to_intel_bo(gobj);
   2506 
   2507 	if (obj->madv != I915_MADV_WILLNEED) {
   2508 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
   2509 		ret = -EFAULT;
   2510 		goto out;
   2511 	}
   2512 
   2513 	ret = i915_gem_object_create_mmap_offset(obj);
   2514 	if (ret)
   2515 		goto out;
   2516 
   2517 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
   2518 
   2519 out:
   2520 	drm_gem_object_unreference(&obj->base);
   2521 unlock:
   2522 	mutex_unlock(&dev->struct_mutex);
   2523 	return ret;
   2524 }
   2525 
   2526 /**
   2527  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
   2528  * @dev: DRM device
   2529  * @data: GTT mapping ioctl data
   2530  * @file: GEM object info
   2531  *
   2532  * Simply returns the fake offset to userspace so it can mmap it.
   2533  * The mmap call will end up in drm_gem_mmap(), which will set things
   2534  * up so we can get faults in the handler above.
   2535  *
   2536  * The fault handler will take care of binding the object into the GTT
   2537  * (since it may have been evicted to make room for something), allocating
   2538  * a fence register, and mapping the appropriate aperture address into
   2539  * userspace.
   2540  */
   2541 int
   2542 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
   2543 			struct drm_file *file)
   2544 {
   2545 	struct drm_i915_gem_mmap_gtt *args = data;
   2546 
   2547 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
   2548 }
   2549 
   2550 /* Immediately discard the backing storage */
   2551 static void
   2552 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
   2553 {
   2554 	i915_gem_object_free_mmap_offset(obj);
   2555 
   2556 	if (obj->base.filp == NULL)
   2557 		return;
   2558 
   2559 #ifdef __NetBSD__
   2560 	{
   2561 		struct uvm_object *const uobj = obj->base.filp;
   2562 
   2563 		if (uobj != NULL) {
   2564 			/* XXX Calling pgo_put like this is bogus.  */
   2565 			mutex_enter(uobj->vmobjlock);
   2566 			(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   2567 			    (PGO_ALLPAGES | PGO_FREE));
   2568 		}
   2569 	}
   2570 #else
   2571 	/* Our goal here is to return as much of the memory as
   2572 	 * is possible back to the system as we are called from OOM.
   2573 	 * To do this we must instruct the shmfs to drop all of its
   2574 	 * backing pages, *now*.
   2575 	 */
   2576 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
   2577 #endif
   2578 	obj->madv = __I915_MADV_PURGED;
   2579 }
   2580 
   2581 /* Try to discard unwanted pages */
   2582 static void
   2583 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
   2584 {
   2585 #ifdef __NetBSD__
   2586 	struct uvm_object *uobj;
   2587 #else
   2588 	struct address_space *mapping;
   2589 #endif
   2590 
   2591 	switch (obj->madv) {
   2592 	case I915_MADV_DONTNEED:
   2593 		i915_gem_object_truncate(obj);
   2594 	case __I915_MADV_PURGED:
   2595 		return;
   2596 	}
   2597 
   2598 	if (obj->base.filp == NULL)
   2599 		return;
   2600 
   2601 #ifdef __NetBSD__
   2602 	uobj = obj->base.filp;
   2603 	mutex_enter(uobj->vmobjlock);
   2604 	(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   2605 	    PGO_ALLPAGES|PGO_DEACTIVATE|PGO_CLEANIT);
   2606 #else
   2607 	mapping = file_inode(obj->base.filp)->i_mapping,
   2608 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
   2609 #endif
   2610 }
   2611 
   2612 static void
   2613 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2614 {
   2615 #ifdef __NetBSD__
   2616 	struct drm_device *const dev = obj->base.dev;
   2617 	struct vm_page *page;
   2618 	int ret;
   2619 
   2620 	/* XXX Cargo-culted from the Linux code.  */
   2621 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2622 
   2623 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2624 	if (ret) {
   2625 		WARN_ON(ret != -EIO);
   2626 		i915_gem_clflush_object(obj, true);
   2627 		obj->base.read_domains = obj->base.write_domain =
   2628 		    I915_GEM_DOMAIN_CPU;
   2629 	}
   2630 
   2631 	i915_gem_gtt_finish_object(obj);
   2632 
   2633 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2634 		i915_gem_object_save_bit_17_swizzle(obj);
   2635 
   2636 	if (obj->madv == I915_MADV_DONTNEED)
   2637 		obj->dirty = 0;
   2638 
   2639 	if (obj->dirty) {
   2640 		TAILQ_FOREACH(page, &obj->pageq, pageq.queue) {
   2641 			page->flags &= ~PG_CLEAN;
   2642 			/* XXX mark page accessed */
   2643 		}
   2644 	}
   2645 	obj->dirty = 0;
   2646 
   2647 	uvm_obj_unwirepages(obj->base.filp, 0, obj->base.size);
   2648 	bus_dmamap_destroy(dev->dmat, obj->pages);
   2649 #else
   2650 	struct sg_page_iter sg_iter;
   2651 	int ret;
   2652 
   2653 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2654 
   2655 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2656 	if (ret) {
   2657 		/* In the event of a disaster, abandon all caches and
   2658 		 * hope for the best.
   2659 		 */
   2660 		WARN_ON(ret != -EIO);
   2661 		i915_gem_clflush_object(obj, true);
   2662 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   2663 	}
   2664 
   2665 	i915_gem_gtt_finish_object(obj);
   2666 
   2667 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2668 		i915_gem_object_save_bit_17_swizzle(obj);
   2669 
   2670 	if (obj->madv == I915_MADV_DONTNEED)
   2671 		obj->dirty = 0;
   2672 
   2673 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
   2674 		struct page *page = sg_page_iter_page(&sg_iter);
   2675 
   2676 		if (obj->dirty)
   2677 			set_page_dirty(page);
   2678 
   2679 		if (obj->madv == I915_MADV_WILLNEED)
   2680 			mark_page_accessed(page);
   2681 
   2682 		page_cache_release(page);
   2683 	}
   2684 	obj->dirty = 0;
   2685 
   2686 	sg_free_table(obj->pages);
   2687 	kfree(obj->pages);
   2688 #endif
   2689 }
   2690 
   2691 int
   2692 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
   2693 {
   2694 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2695 
   2696 	if (obj->pages == NULL)
   2697 		return 0;
   2698 
   2699 	if (obj->pages_pin_count)
   2700 		return -EBUSY;
   2701 
   2702 	BUG_ON(i915_gem_obj_bound_any(obj));
   2703 
   2704 	/* ->put_pages might need to allocate memory for the bit17 swizzle
   2705 	 * array, hence protect them from being reaped by removing them from gtt
   2706 	 * lists early. */
   2707 	list_del(&obj->global_list);
   2708 
   2709 	ops->put_pages(obj);
   2710 	obj->pages = NULL;
   2711 
   2712 	i915_gem_object_invalidate(obj);
   2713 
   2714 	return 0;
   2715 }
   2716 
   2717 static int
   2718 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2719 {
   2720 #ifdef __NetBSD__
   2721 	struct drm_device *const dev = obj->base.dev;
   2722 	struct drm_i915_private *dev_priv = dev->dev_private;
   2723 	struct vm_page *page;
   2724 	int ret;
   2725 
   2726 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2727 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2728 
   2729 	KASSERT(obj->pages == NULL);
   2730 	TAILQ_INIT(&obj->pageq);
   2731 
   2732 	/* XXX errno NetBSD->Linux */
   2733 	ret = -bus_dmamap_create(dev->dmat, obj->base.size,
   2734 	    obj->base.size/PAGE_SIZE, PAGE_SIZE, 0, BUS_DMA_NOWAIT,
   2735 	    &obj->pages);
   2736 	if (ret)
   2737 		goto fail0;
   2738 
   2739 	/* XXX errno NetBSD->Linux */
   2740 	ret = -uvm_obj_wirepages(obj->base.filp, 0, obj->base.size,
   2741 	    &obj->pageq);
   2742 	if (ret)		/* XXX Try purge, shrink.  */
   2743 		goto fail1;
   2744 
   2745 	/*
   2746 	 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
   2747 	 *
   2748 	 * XXX This should be unnecessary: the uao should guarantee
   2749 	 * this constraint after uao_set_pgfl.
   2750 	 *
   2751 	 * XXX This should also be expanded for newer devices.
   2752 	 */
   2753 	TAILQ_FOREACH(page, &obj->pageq, pageq.queue) {
   2754 		const uint64_t mask =
   2755 		    (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
   2756 			0xffffffffULL : 0xffffffffffULL);
   2757 		if (VM_PAGE_TO_PHYS(page) & ~mask) {
   2758 			DRM_ERROR("GEM physical address exceeds %u bits"
   2759 			    ": %"PRIxMAX"\n",
   2760 			    popcount64(mask),
   2761 			    (uintmax_t)VM_PAGE_TO_PHYS(page));
   2762 			ret = -EIO;
   2763 			goto fail2;
   2764 		}
   2765 	}
   2766 
   2767 	ret = i915_gem_gtt_prepare_object(obj);
   2768 	if (ret)
   2769 		goto fail2;
   2770 
   2771 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2772 		i915_gem_object_do_bit_17_swizzle(obj);
   2773 
   2774 	if (obj->tiling_mode != I915_TILING_NONE &&
   2775 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
   2776 		i915_gem_object_pin_pages(obj);
   2777 
   2778 	/* Success!  */
   2779 	return 0;
   2780 
   2781 fail3: __unused
   2782 	i915_gem_gtt_finish_object(obj);
   2783 fail2:	uvm_obj_unwirepages(obj->base.filp, 0, obj->base.size);
   2784 fail1:	bus_dmamap_destroy(dev->dmat, obj->pages);
   2785 	obj->pages = NULL;
   2786 fail0:	KASSERT(ret);
   2787 	return ret;
   2788 #else
   2789 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2790 	int page_count, i;
   2791 	struct address_space *mapping;
   2792 	struct sg_table *st;
   2793 	struct scatterlist *sg;
   2794 	struct sg_page_iter sg_iter;
   2795 	struct page *page;
   2796 	unsigned long last_pfn = 0;	/* suppress gcc warning */
   2797 	int ret;
   2798 	gfp_t gfp;
   2799 
   2800 	/* Assert that the object is not currently in any GPU domain. As it
   2801 	 * wasn't in the GTT, there shouldn't be any way it could have been in
   2802 	 * a GPU cache
   2803 	 */
   2804 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2805 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2806 
   2807 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   2808 	if (st == NULL)
   2809 		return -ENOMEM;
   2810 
   2811 	page_count = obj->base.size / PAGE_SIZE;
   2812 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
   2813 		kfree(st);
   2814 		return -ENOMEM;
   2815 	}
   2816 
   2817 	/* Get the list of pages out of our struct file.  They'll be pinned
   2818 	 * at this point until we release them.
   2819 	 *
   2820 	 * Fail silently without starting the shrinker
   2821 	 */
   2822 	mapping = file_inode(obj->base.filp)->i_mapping;
   2823 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
   2824 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
   2825 	sg = st->sgl;
   2826 	st->nents = 0;
   2827 	for (i = 0; i < page_count; i++) {
   2828 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2829 		if (IS_ERR(page)) {
   2830 			i915_gem_shrink(dev_priv,
   2831 					page_count,
   2832 					I915_SHRINK_BOUND |
   2833 					I915_SHRINK_UNBOUND |
   2834 					I915_SHRINK_PURGEABLE);
   2835 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2836 		}
   2837 		if (IS_ERR(page)) {
   2838 			/* We've tried hard to allocate the memory by reaping
   2839 			 * our own buffer, now let the real VM do its job and
   2840 			 * go down in flames if truly OOM.
   2841 			 */
   2842 			i915_gem_shrink_all(dev_priv);
   2843 			page = shmem_read_mapping_page(mapping, i);
   2844 			if (IS_ERR(page)) {
   2845 				ret = PTR_ERR(page);
   2846 				goto err_pages;
   2847 			}
   2848 		}
   2849 #ifdef CONFIG_SWIOTLB
   2850 		if (swiotlb_nr_tbl()) {
   2851 			st->nents++;
   2852 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2853 			sg = sg_next(sg);
   2854 			continue;
   2855 		}
   2856 #endif
   2857 		if (!i || page_to_pfn(page) != last_pfn + 1) {
   2858 			if (i)
   2859 				sg = sg_next(sg);
   2860 			st->nents++;
   2861 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2862 		} else {
   2863 			sg->length += PAGE_SIZE;
   2864 		}
   2865 		last_pfn = page_to_pfn(page);
   2866 
   2867 		/* Check that the i965g/gm workaround works. */
   2868 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
   2869 	}
   2870 #ifdef CONFIG_SWIOTLB
   2871 	if (!swiotlb_nr_tbl())
   2872 #endif
   2873 		sg_mark_end(sg);
   2874 	obj->pages = st;
   2875 
   2876 	ret = i915_gem_gtt_prepare_object(obj);
   2877 	if (ret)
   2878 		goto err_pages;
   2879 
   2880 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2881 		i915_gem_object_do_bit_17_swizzle(obj);
   2882 
   2883 	if (obj->tiling_mode != I915_TILING_NONE &&
   2884 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
   2885 		i915_gem_object_pin_pages(obj);
   2886 
   2887 	return 0;
   2888 
   2889 err_pages:
   2890 	sg_mark_end(sg);
   2891 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
   2892 		page_cache_release(sg_page_iter_page(&sg_iter));
   2893 	sg_free_table(st);
   2894 	kfree(st);
   2895 
   2896 	/* shmemfs first checks if there is enough memory to allocate the page
   2897 	 * and reports ENOSPC should there be insufficient, along with the usual
   2898 	 * ENOMEM for a genuine allocation failure.
   2899 	 *
   2900 	 * We use ENOSPC in our driver to mean that we have run out of aperture
   2901 	 * space and so want to translate the error from shmemfs back to our
   2902 	 * usual understanding of ENOMEM.
   2903 	 */
   2904 	if (ret == -ENOSPC)
   2905 		ret = -ENOMEM;
   2906 
   2907 	return ret;
   2908 #endif
   2909 }
   2910 
   2911 /* Ensure that the associated pages are gathered from the backing storage
   2912  * and pinned into our object. i915_gem_object_get_pages() may be called
   2913  * multiple times before they are released by a single call to
   2914  * i915_gem_object_put_pages() - once the pages are no longer referenced
   2915  * either as a result of memory pressure (reaping pages under the shrinker)
   2916  * or as the object is itself released.
   2917  */
   2918 int
   2919 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
   2920 {
   2921 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2922 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2923 	int ret;
   2924 
   2925 	if (obj->pages)
   2926 		return 0;
   2927 
   2928 	if (obj->madv != I915_MADV_WILLNEED) {
   2929 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
   2930 		return -EFAULT;
   2931 	}
   2932 
   2933 	BUG_ON(obj->pages_pin_count);
   2934 
   2935 	ret = ops->get_pages(obj);
   2936 	if (ret)
   2937 		return ret;
   2938 
   2939 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   2940 
   2941 #ifndef __NetBSD__
   2942 	obj->get_page.sg = obj->pages->sgl;
   2943 	obj->get_page.last = 0;
   2944 #endif
   2945 
   2946 	return 0;
   2947 }
   2948 
   2949 void i915_vma_move_to_active(struct i915_vma *vma,
   2950 			     struct drm_i915_gem_request *req)
   2951 {
   2952 	struct drm_i915_gem_object *obj = vma->obj;
   2953 	struct intel_engine_cs *ring;
   2954 
   2955 	ring = i915_gem_request_get_ring(req);
   2956 
   2957 	/* Add a reference if we're newly entering the active list. */
   2958 	if (obj->active == 0)
   2959 		drm_gem_object_reference(&obj->base);
   2960 	obj->active |= intel_ring_flag(ring);
   2961 
   2962 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
   2963 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
   2964 
   2965 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
   2966 }
   2967 
   2968 static void
   2969 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
   2970 {
   2971 	RQ_BUG_ON(obj->last_write_req == NULL);
   2972 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
   2973 
   2974 	i915_gem_request_assign(&obj->last_write_req, NULL);
   2975 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
   2976 }
   2977 
   2978 static void
   2979 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
   2980 {
   2981 	struct i915_vma *vma;
   2982 
   2983 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
   2984 	RQ_BUG_ON(!(obj->active & (1 << ring)));
   2985 
   2986 	list_del_init(&obj->ring_list[ring]);
   2987 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
   2988 
   2989 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
   2990 		i915_gem_object_retire__write(obj);
   2991 
   2992 	obj->active &= ~(1 << ring);
   2993 	if (obj->active)
   2994 		return;
   2995 
   2996 	/* Bump our place on the bound list to keep it roughly in LRU order
   2997 	 * so that we don't steal from recently used but inactive objects
   2998 	 * (unless we are forced to ofc!)
   2999 	 */
   3000 	list_move_tail(&obj->global_list,
   3001 		       &to_i915(obj->base.dev)->mm.bound_list);
   3002 
   3003 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
   3004 		if (!list_empty(&vma->mm_list))
   3005 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
   3006 	}
   3007 
   3008 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
   3009 	drm_gem_object_unreference(&obj->base);
   3010 }
   3011 
   3012 static int
   3013 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
   3014 {
   3015 	struct drm_i915_private *dev_priv = dev->dev_private;
   3016 	struct intel_engine_cs *ring;
   3017 	int ret, i, j;
   3018 
   3019 	/* Carefully retire all requests without writing to the rings */
   3020 	for_each_ring(ring, dev_priv, i) {
   3021 		ret = intel_ring_idle(ring);
   3022 		if (ret)
   3023 			return ret;
   3024 	}
   3025 	i915_gem_retire_requests(dev);
   3026 
   3027 	/* Finally reset hw state */
   3028 	for_each_ring(ring, dev_priv, i) {
   3029 		intel_ring_init_seqno(ring, seqno);
   3030 
   3031 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
   3032 			ring->semaphore.sync_seqno[j] = 0;
   3033 	}
   3034 
   3035 	return 0;
   3036 }
   3037 
   3038 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
   3039 {
   3040 	struct drm_i915_private *dev_priv = dev->dev_private;
   3041 	int ret;
   3042 
   3043 	if (seqno == 0)
   3044 		return -EINVAL;
   3045 
   3046 	/* HWS page needs to be set less than what we
   3047 	 * will inject to ring
   3048 	 */
   3049 	ret = i915_gem_init_seqno(dev, seqno - 1);
   3050 	if (ret)
   3051 		return ret;
   3052 
   3053 	/* Carefully set the last_seqno value so that wrap
   3054 	 * detection still works
   3055 	 */
   3056 	dev_priv->next_seqno = seqno;
   3057 	dev_priv->last_seqno = seqno - 1;
   3058 	if (dev_priv->last_seqno == 0)
   3059 		dev_priv->last_seqno--;
   3060 
   3061 	return 0;
   3062 }
   3063 
   3064 int
   3065 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
   3066 {
   3067 	struct drm_i915_private *dev_priv = dev->dev_private;
   3068 
   3069 	/* reserve 0 for non-seqno */
   3070 	if (dev_priv->next_seqno == 0) {
   3071 		int ret = i915_gem_init_seqno(dev, 0);
   3072 		if (ret)
   3073 			return ret;
   3074 
   3075 		dev_priv->next_seqno = 1;
   3076 	}
   3077 
   3078 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
   3079 	return 0;
   3080 }
   3081 
   3082 /*
   3083  * NB: This function is not allowed to fail. Doing so would mean the the
   3084  * request is not being tracked for completion but the work itself is
   3085  * going to happen on the hardware. This would be a Bad Thing(tm).
   3086  */
   3087 void __i915_add_request(struct drm_i915_gem_request *request,
   3088 			struct drm_i915_gem_object *obj,
   3089 			bool flush_caches)
   3090 {
   3091 	struct intel_engine_cs *ring;
   3092 	struct drm_i915_private *dev_priv;
   3093 	struct intel_ringbuffer *ringbuf;
   3094 	u32 request_start;
   3095 	int ret;
   3096 
   3097 	if (WARN_ON(request == NULL))
   3098 		return;
   3099 
   3100 	ring = request->ring;
   3101 	dev_priv = ring->dev->dev_private;
   3102 	ringbuf = request->ringbuf;
   3103 
   3104 	/*
   3105 	 * To ensure that this call will not fail, space for its emissions
   3106 	 * should already have been reserved in the ring buffer. Let the ring
   3107 	 * know that it is time to use that space up.
   3108 	 */
   3109 	intel_ring_reserved_space_use(ringbuf);
   3110 
   3111 	request_start = intel_ring_get_tail(ringbuf);
   3112 	/*
   3113 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
   3114 	 * after having emitted the batchbuffer command. Hence we need to fix
   3115 	 * things up similar to emitting the lazy request. The difference here
   3116 	 * is that the flush _must_ happen before the next request, no matter
   3117 	 * what.
   3118 	 */
   3119 	if (flush_caches) {
   3120 		if (i915.enable_execlists)
   3121 			ret = logical_ring_flush_all_caches(request);
   3122 		else
   3123 			ret = intel_ring_flush_all_caches(request);
   3124 		/* Not allowed to fail! */
   3125 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
   3126 	}
   3127 
   3128 	/* Record the position of the start of the request so that
   3129 	 * should we detect the updated seqno part-way through the
   3130 	 * GPU processing the request, we never over-estimate the
   3131 	 * position of the head.
   3132 	 */
   3133 	request->postfix = intel_ring_get_tail(ringbuf);
   3134 
   3135 	if (i915.enable_execlists)
   3136 		ret = ring->emit_request(request);
   3137 	else {
   3138 		ret = ring->add_request(request);
   3139 
   3140 		request->tail = intel_ring_get_tail(ringbuf);
   3141 	}
   3142 	/* Not allowed to fail! */
   3143 	WARN(ret, "emit|add_request failed: %d!\n", ret);
   3144 
   3145 	request->head = request_start;
   3146 
   3147 	/* Whilst this request exists, batch_obj will be on the
   3148 	 * active_list, and so will hold the active reference. Only when this
   3149 	 * request is retired will the the batch_obj be moved onto the
   3150 	 * inactive_list and lose its active reference. Hence we do not need
   3151 	 * to explicitly hold another reference here.
   3152 	 */
   3153 	request->batch_obj = obj;
   3154 
   3155 	request->emitted_jiffies = jiffies;
   3156 	request->previous_seqno = ring->last_submitted_seqno;
   3157 	ring->last_submitted_seqno = request->seqno;
   3158 	list_add_tail(&request->list, &ring->request_list);
   3159 
   3160 	trace_i915_gem_request_add(request);
   3161 
   3162 	i915_queue_hangcheck(ring->dev);
   3163 
   3164 	queue_delayed_work(dev_priv->wq,
   3165 			   &dev_priv->mm.retire_work,
   3166 			   round_jiffies_up_relative(HZ));
   3167 	intel_mark_busy(dev_priv->dev);
   3168 
   3169 	/* Sanity check that the reserved size was large enough. */
   3170 	intel_ring_reserved_space_end(ringbuf);
   3171 }
   3172 
   3173 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
   3174 				   const struct intel_context *ctx)
   3175 {
   3176 	unsigned long elapsed;
   3177 
   3178 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
   3179 
   3180 	if (ctx->hang_stats.banned)
   3181 		return true;
   3182 
   3183 	if (ctx->hang_stats.ban_period_seconds &&
   3184 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
   3185 		if (!i915_gem_context_is_default(ctx)) {
   3186 			DRM_DEBUG("context hanging too fast, banning!\n");
   3187 			return true;
   3188 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
   3189 			if (i915_stop_ring_allow_warn(dev_priv))
   3190 				DRM_ERROR("gpu hanging too fast, banning!\n");
   3191 			return true;
   3192 		}
   3193 	}
   3194 
   3195 	return false;
   3196 }
   3197 
   3198 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
   3199 				  struct intel_context *ctx,
   3200 				  const bool guilty)
   3201 {
   3202 	struct i915_ctx_hang_stats *hs;
   3203 
   3204 	if (WARN_ON(!ctx))
   3205 		return;
   3206 
   3207 	hs = &ctx->hang_stats;
   3208 
   3209 	if (guilty) {
   3210 		hs->banned = i915_context_is_banned(dev_priv, ctx);
   3211 		hs->batch_active++;
   3212 		hs->guilty_ts = get_seconds();
   3213 	} else {
   3214 		hs->batch_pending++;
   3215 	}
   3216 }
   3217 
   3218 void i915_gem_request_free(struct kref *req_ref)
   3219 {
   3220 	struct drm_i915_gem_request *req = container_of(req_ref,
   3221 						 typeof(*req), ref);
   3222 	struct intel_context *ctx = req->ctx;
   3223 
   3224 	if (req->file_priv)
   3225 		i915_gem_request_remove_from_client(req);
   3226 
   3227 	if (ctx) {
   3228 		if (i915.enable_execlists) {
   3229 			if (ctx != req->ring->default_context)
   3230 				intel_lr_context_unpin(req);
   3231 		}
   3232 
   3233 		i915_gem_context_unreference(ctx);
   3234 	}
   3235 
   3236 	kmem_cache_free(req->i915->requests, req);
   3237 }
   3238 
   3239 int i915_gem_request_alloc(struct intel_engine_cs *ring,
   3240 			   struct intel_context *ctx,
   3241 			   struct drm_i915_gem_request **req_out)
   3242 {
   3243 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
   3244 	struct drm_i915_gem_request *req;
   3245 	int ret;
   3246 
   3247 	if (!req_out)
   3248 		return -EINVAL;
   3249 
   3250 	*req_out = NULL;
   3251 
   3252 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
   3253 	if (req == NULL)
   3254 		return -ENOMEM;
   3255 
   3256 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
   3257 	if (ret)
   3258 		goto err;
   3259 
   3260 	kref_init(&req->ref);
   3261 	req->i915 = dev_priv;
   3262 	req->ring = ring;
   3263 	req->ctx  = ctx;
   3264 	i915_gem_context_reference(req->ctx);
   3265 
   3266 	if (i915.enable_execlists)
   3267 		ret = intel_logical_ring_alloc_request_extras(req);
   3268 	else
   3269 		ret = intel_ring_alloc_request_extras(req);
   3270 	if (ret) {
   3271 		i915_gem_context_unreference(req->ctx);
   3272 		goto err;
   3273 	}
   3274 
   3275 	/*
   3276 	 * Reserve space in the ring buffer for all the commands required to
   3277 	 * eventually emit this request. This is to guarantee that the
   3278 	 * i915_add_request() call can't fail. Note that the reserve may need
   3279 	 * to be redone if the request is not actually submitted straight
   3280 	 * away, e.g. because a GPU scheduler has deferred it.
   3281 	 */
   3282 	if (i915.enable_execlists)
   3283 		ret = intel_logical_ring_reserve_space(req);
   3284 	else
   3285 		ret = intel_ring_reserve_space(req);
   3286 	if (ret) {
   3287 		/*
   3288 		 * At this point, the request is fully allocated even if not
   3289 		 * fully prepared. Thus it can be cleaned up using the proper
   3290 		 * free code.
   3291 		 */
   3292 		i915_gem_request_cancel(req);
   3293 		return ret;
   3294 	}
   3295 
   3296 	*req_out = req;
   3297 	return 0;
   3298 
   3299 err:
   3300 	kmem_cache_free(dev_priv->requests, req);
   3301 	return ret;
   3302 }
   3303 
   3304 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
   3305 {
   3306 	intel_ring_reserved_space_cancel(req->ringbuf);
   3307 
   3308 	i915_gem_request_unreference(req);
   3309 }
   3310 
   3311 struct drm_i915_gem_request *
   3312 i915_gem_find_active_request(struct intel_engine_cs *ring)
   3313 {
   3314 	struct drm_i915_gem_request *request;
   3315 
   3316 	list_for_each_entry(request, &ring->request_list, list) {
   3317 		if (i915_gem_request_completed(request, false))
   3318 			continue;
   3319 
   3320 		return request;
   3321 	}
   3322 
   3323 	return NULL;
   3324 }
   3325 
   3326 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
   3327 				       struct intel_engine_cs *ring)
   3328 {
   3329 	struct drm_i915_gem_request *request;
   3330 	bool ring_hung;
   3331 
   3332 	request = i915_gem_find_active_request(ring);
   3333 
   3334 	if (request == NULL)
   3335 		return;
   3336 
   3337 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
   3338 
   3339 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
   3340 
   3341 	list_for_each_entry_continue(request, &ring->request_list, list)
   3342 		i915_set_reset_status(dev_priv, request->ctx, false);
   3343 }
   3344 
   3345 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
   3346 					struct intel_engine_cs *ring)
   3347 {
   3348 	while (!list_empty(&ring->active_list)) {
   3349 		struct drm_i915_gem_object *obj;
   3350 
   3351 		obj = list_first_entry(&ring->active_list,
   3352 				       struct drm_i915_gem_object,
   3353 				       ring_list[ring->id]);
   3354 
   3355 		i915_gem_object_retire__read(obj, ring->id);
   3356 	}
   3357 
   3358 	/*
   3359 	 * Clear the execlists queue up before freeing the requests, as those
   3360 	 * are the ones that keep the context and ringbuffer backing objects
   3361 	 * pinned in place.
   3362 	 */
   3363 	while (!list_empty(&ring->execlist_queue)) {
   3364 		struct drm_i915_gem_request *submit_req;
   3365 
   3366 		submit_req = list_first_entry(&ring->execlist_queue,
   3367 				struct drm_i915_gem_request,
   3368 				execlist_link);
   3369 		list_del(&submit_req->execlist_link);
   3370 
   3371 		if (submit_req->ctx != ring->default_context)
   3372 			intel_lr_context_unpin(submit_req);
   3373 
   3374 		i915_gem_request_unreference(submit_req);
   3375 	}
   3376 
   3377 	/*
   3378 	 * We must free the requests after all the corresponding objects have
   3379 	 * been moved off active lists. Which is the same order as the normal
   3380 	 * retire_requests function does. This is important if object hold
   3381 	 * implicit references on things like e.g. ppgtt address spaces through
   3382 	 * the request.
   3383 	 */
   3384 	while (!list_empty(&ring->request_list)) {
   3385 		struct drm_i915_gem_request *request;
   3386 
   3387 		request = list_first_entry(&ring->request_list,
   3388 					   struct drm_i915_gem_request,
   3389 					   list);
   3390 
   3391 		i915_gem_request_retire(request);
   3392 	}
   3393 }
   3394 
   3395 void i915_gem_reset(struct drm_device *dev)
   3396 {
   3397 	struct drm_i915_private *dev_priv = dev->dev_private;
   3398 	struct intel_engine_cs *ring;
   3399 	int i;
   3400 
   3401 	/*
   3402 	 * Before we free the objects from the requests, we need to inspect
   3403 	 * them for finding the guilty party. As the requests only borrow
   3404 	 * their reference to the objects, the inspection must be done first.
   3405 	 */
   3406 	for_each_ring(ring, dev_priv, i)
   3407 		i915_gem_reset_ring_status(dev_priv, ring);
   3408 
   3409 	for_each_ring(ring, dev_priv, i)
   3410 		i915_gem_reset_ring_cleanup(dev_priv, ring);
   3411 
   3412 	i915_gem_context_reset(dev);
   3413 
   3414 	i915_gem_restore_fences(dev);
   3415 
   3416 	WARN_ON(i915_verify_lists(dev));
   3417 }
   3418 
   3419 /**
   3420  * This function clears the request list as sequence numbers are passed.
   3421  */
   3422 void
   3423 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
   3424 {
   3425 	WARN_ON(i915_verify_lists(ring->dev));
   3426 
   3427 	/* Retire requests first as we use it above for the early return.
   3428 	 * If we retire requests last, we may use a later seqno and so clear
   3429 	 * the requests lists without clearing the active list, leading to
   3430 	 * confusion.
   3431 	 */
   3432 	while (!list_empty(&ring->request_list)) {
   3433 		struct drm_i915_gem_request *request;
   3434 
   3435 		request = list_first_entry(&ring->request_list,
   3436 					   struct drm_i915_gem_request,
   3437 					   list);
   3438 
   3439 		if (!i915_gem_request_completed(request, true))
   3440 			break;
   3441 
   3442 		i915_gem_request_retire(request);
   3443 	}
   3444 
   3445 	/* Move any buffers on the active list that are no longer referenced
   3446 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
   3447 	 * before we free the context associated with the requests.
   3448 	 */
   3449 	while (!list_empty(&ring->active_list)) {
   3450 		struct drm_i915_gem_object *obj;
   3451 
   3452 		obj = list_first_entry(&ring->active_list,
   3453 				      struct drm_i915_gem_object,
   3454 				      ring_list[ring->id]);
   3455 
   3456 		if (!list_empty(&obj->last_read_req[ring->id]->list))
   3457 			break;
   3458 
   3459 		i915_gem_object_retire__read(obj, ring->id);
   3460 	}
   3461 
   3462 	if (unlikely(ring->trace_irq_req &&
   3463 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
   3464 		ring->irq_put(ring);
   3465 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
   3466 	}
   3467 
   3468 	WARN_ON(i915_verify_lists(ring->dev));
   3469 }
   3470 
   3471 bool
   3472 i915_gem_retire_requests(struct drm_device *dev)
   3473 {
   3474 	struct drm_i915_private *dev_priv = dev->dev_private;
   3475 	struct intel_engine_cs *ring;
   3476 	bool idle = true;
   3477 	int i;
   3478 
   3479 	for_each_ring(ring, dev_priv, i) {
   3480 		i915_gem_retire_requests_ring(ring);
   3481 		idle &= list_empty(&ring->request_list);
   3482 		if (i915.enable_execlists) {
   3483 			unsigned long flags;
   3484 
   3485 			spin_lock_irqsave(&ring->execlist_lock, flags);
   3486 			idle &= list_empty(&ring->execlist_queue);
   3487 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
   3488 
   3489 			intel_execlists_retire_requests(ring);
   3490 		}
   3491 	}
   3492 
   3493 	if (idle)
   3494 		mod_delayed_work(dev_priv->wq,
   3495 				   &dev_priv->mm.idle_work,
   3496 				   msecs_to_jiffies(100));
   3497 
   3498 	return idle;
   3499 }
   3500 
   3501 static void
   3502 i915_gem_retire_work_handler(struct work_struct *work)
   3503 {
   3504 	struct drm_i915_private *dev_priv =
   3505 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
   3506 	struct drm_device *dev = dev_priv->dev;
   3507 	bool idle;
   3508 
   3509 	/* Come back later if the device is busy... */
   3510 	idle = false;
   3511 	if (mutex_trylock(&dev->struct_mutex)) {
   3512 		idle = i915_gem_retire_requests(dev);
   3513 		mutex_unlock(&dev->struct_mutex);
   3514 	}
   3515 	if (!idle)
   3516 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
   3517 				   round_jiffies_up_relative(HZ));
   3518 }
   3519 
   3520 static void
   3521 i915_gem_idle_work_handler(struct work_struct *work)
   3522 {
   3523 	struct drm_i915_private *dev_priv =
   3524 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
   3525 	struct drm_device *dev = dev_priv->dev;
   3526 	struct intel_engine_cs *ring;
   3527 	int i;
   3528 
   3529 	for_each_ring(ring, dev_priv, i)
   3530 		if (!list_empty(&ring->request_list))
   3531 			return;
   3532 
   3533 	intel_mark_idle(dev);
   3534 
   3535 	if (mutex_trylock(&dev->struct_mutex)) {
   3536 		struct intel_engine_cs *ring;
   3537 		int i;
   3538 
   3539 		for_each_ring(ring, dev_priv, i)
   3540 			i915_gem_batch_pool_fini(&ring->batch_pool);
   3541 
   3542 		mutex_unlock(&dev->struct_mutex);
   3543 	}
   3544 }
   3545 
   3546 /**
   3547  * Ensures that an object will eventually get non-busy by flushing any required
   3548  * write domains, emitting any outstanding lazy request and retiring and
   3549  * completed requests.
   3550  */
   3551 static int
   3552 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
   3553 {
   3554 	int i;
   3555 
   3556 	if (!obj->active)
   3557 		return 0;
   3558 
   3559 	for (i = 0; i < I915_NUM_RINGS; i++) {
   3560 		struct drm_i915_gem_request *req;
   3561 
   3562 		req = obj->last_read_req[i];
   3563 		if (req == NULL)
   3564 			continue;
   3565 
   3566 		if (list_empty(&req->list))
   3567 			goto retire;
   3568 
   3569 		if (i915_gem_request_completed(req, true)) {
   3570 			__i915_gem_request_retire__upto(req);
   3571 retire:
   3572 			i915_gem_object_retire__read(obj, i);
   3573 		}
   3574 	}
   3575 
   3576 	return 0;
   3577 }
   3578 
   3579 /**
   3580  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
   3581  * @DRM_IOCTL_ARGS: standard ioctl arguments
   3582  *
   3583  * Returns 0 if successful, else an error is returned with the remaining time in
   3584  * the timeout parameter.
   3585  *  -ETIME: object is still busy after timeout
   3586  *  -ERESTARTSYS: signal interrupted the wait
   3587  *  -ENONENT: object doesn't exist
   3588  * Also possible, but rare:
   3589  *  -EAGAIN: GPU wedged
   3590  *  -ENOMEM: damn
   3591  *  -ENODEV: Internal IRQ fail
   3592  *  -E?: The add request failed
   3593  *
   3594  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
   3595  * non-zero timeout parameter the wait ioctl will wait for the given number of
   3596  * nanoseconds on an object becoming unbusy. Since the wait itself does so
   3597  * without holding struct_mutex the object may become re-busied before this
   3598  * function completes. A similar but shorter * race condition exists in the busy
   3599  * ioctl
   3600  */
   3601 int
   3602 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
   3603 {
   3604 	struct drm_i915_private *dev_priv = dev->dev_private;
   3605 	struct drm_i915_gem_wait *args = data;
   3606 	struct drm_gem_object *gobj;
   3607 	struct drm_i915_gem_object *obj;
   3608 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
   3609 	unsigned reset_counter;
   3610 	int i, n = 0;
   3611 	int ret;
   3612 
   3613 	if (args->flags != 0)
   3614 		return -EINVAL;
   3615 
   3616 	ret = i915_mutex_lock_interruptible(dev);
   3617 	if (ret)
   3618 		return ret;
   3619 
   3620 	gobj = drm_gem_object_lookup(dev, file, args->bo_handle);
   3621 	if (gobj == NULL) {
   3622 		mutex_unlock(&dev->struct_mutex);
   3623 		return -ENOENT;
   3624 	}
   3625 	obj = to_intel_bo(gobj);
   3626 
   3627 	/* Need to make sure the object gets inactive eventually. */
   3628 	ret = i915_gem_object_flush_active(obj);
   3629 	if (ret)
   3630 		goto out;
   3631 
   3632 	if (!obj->active)
   3633 		goto out;
   3634 
   3635 	/* Do this after OLR check to make sure we make forward progress polling
   3636 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
   3637 	 */
   3638 	if (args->timeout_ns == 0) {
   3639 		ret = -ETIME;
   3640 		goto out;
   3641 	}
   3642 
   3643 	drm_gem_object_unreference(&obj->base);
   3644 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   3645 
   3646 	for (i = 0; i < I915_NUM_RINGS; i++) {
   3647 		if (obj->last_read_req[i] == NULL)
   3648 			continue;
   3649 
   3650 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
   3651 	}
   3652 
   3653 	mutex_unlock(&dev->struct_mutex);
   3654 
   3655 	for (i = 0; i < n; i++) {
   3656 		if (ret == 0)
   3657 			ret = __i915_wait_request(req[i], reset_counter, true,
   3658 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
   3659 						  file->driver_priv);
   3660 		i915_gem_request_unreference__unlocked(req[i]);
   3661 	}
   3662 	return ret;
   3663 
   3664 out:
   3665 	drm_gem_object_unreference(&obj->base);
   3666 	mutex_unlock(&dev->struct_mutex);
   3667 	return ret;
   3668 }
   3669 
   3670 static int
   3671 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
   3672 		       struct intel_engine_cs *to,
   3673 		       struct drm_i915_gem_request *from_req,
   3674 		       struct drm_i915_gem_request **to_req)
   3675 {
   3676 	struct intel_engine_cs *from;
   3677 	int ret;
   3678 
   3679 	from = i915_gem_request_get_ring(from_req);
   3680 	if (to == from)
   3681 		return 0;
   3682 
   3683 	if (i915_gem_request_completed(from_req, true))
   3684 		return 0;
   3685 
   3686 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
   3687 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
   3688 		ret = __i915_wait_request(from_req,
   3689 					  atomic_read(&i915->gpu_error.reset_counter),
   3690 					  i915->mm.interruptible,
   3691 					  NULL,
   3692 					  &i915->rps.semaphores);
   3693 		if (ret)
   3694 			return ret;
   3695 
   3696 		i915_gem_object_retire_request(obj, from_req);
   3697 	} else {
   3698 		int idx = intel_ring_sync_index(from, to);
   3699 		u32 seqno = i915_gem_request_get_seqno(from_req);
   3700 
   3701 		WARN_ON(!to_req);
   3702 
   3703 		if (seqno <= from->semaphore.sync_seqno[idx])
   3704 			return 0;
   3705 
   3706 		if (*to_req == NULL) {
   3707 			ret = i915_gem_request_alloc(to, to->default_context, to_req);
   3708 			if (ret)
   3709 				return ret;
   3710 		}
   3711 
   3712 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
   3713 		ret = to->semaphore.sync_to(*to_req, from, seqno);
   3714 		if (ret)
   3715 			return ret;
   3716 
   3717 		/* We use last_read_req because sync_to()
   3718 		 * might have just caused seqno wrap under
   3719 		 * the radar.
   3720 		 */
   3721 		from->semaphore.sync_seqno[idx] =
   3722 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
   3723 	}
   3724 
   3725 	return 0;
   3726 }
   3727 
   3728 /**
   3729  * i915_gem_object_sync - sync an object to a ring.
   3730  *
   3731  * @obj: object which may be in use on another ring.
   3732  * @to: ring we wish to use the object on. May be NULL.
   3733  * @to_req: request we wish to use the object for. See below.
   3734  *          This will be allocated and returned if a request is
   3735  *          required but not passed in.
   3736  *
   3737  * This code is meant to abstract object synchronization with the GPU.
   3738  * Calling with NULL implies synchronizing the object with the CPU
   3739  * rather than a particular GPU ring. Conceptually we serialise writes
   3740  * between engines inside the GPU. We only allow one engine to write
   3741  * into a buffer at any time, but multiple readers. To ensure each has
   3742  * a coherent view of memory, we must:
   3743  *
   3744  * - If there is an outstanding write request to the object, the new
   3745  *   request must wait for it to complete (either CPU or in hw, requests
   3746  *   on the same ring will be naturally ordered).
   3747  *
   3748  * - If we are a write request (pending_write_domain is set), the new
   3749  *   request must wait for outstanding read requests to complete.
   3750  *
   3751  * For CPU synchronisation (NULL to) no request is required. For syncing with
   3752  * rings to_req must be non-NULL. However, a request does not have to be
   3753  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
   3754  * request will be allocated automatically and returned through *to_req. Note
   3755  * that it is not guaranteed that commands will be emitted (because the system
   3756  * might already be idle). Hence there is no need to create a request that
   3757  * might never have any work submitted. Note further that if a request is
   3758  * returned in *to_req, it is the responsibility of the caller to submit
   3759  * that request (after potentially adding more work to it).
   3760  *
   3761  * Returns 0 if successful, else propagates up the lower layer error.
   3762  */
   3763 int
   3764 i915_gem_object_sync(struct drm_i915_gem_object *obj,
   3765 		     struct intel_engine_cs *to,
   3766 		     struct drm_i915_gem_request **to_req)
   3767 {
   3768 	const bool readonly = obj->base.pending_write_domain == 0;
   3769 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
   3770 	int ret, i, n;
   3771 
   3772 	if (!obj->active)
   3773 		return 0;
   3774 
   3775 	if (to == NULL)
   3776 		return i915_gem_object_wait_rendering(obj, readonly);
   3777 
   3778 	n = 0;
   3779 	if (readonly) {
   3780 		if (obj->last_write_req)
   3781 			req[n++] = obj->last_write_req;
   3782 	} else {
   3783 		for (i = 0; i < I915_NUM_RINGS; i++)
   3784 			if (obj->last_read_req[i])
   3785 				req[n++] = obj->last_read_req[i];
   3786 	}
   3787 	for (i = 0; i < n; i++) {
   3788 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
   3789 		if (ret)
   3790 			return ret;
   3791 	}
   3792 
   3793 	return 0;
   3794 }
   3795 
   3796 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
   3797 {
   3798 	u32 old_write_domain, old_read_domains;
   3799 
   3800 	/* Force a pagefault for domain tracking on next user access */
   3801 	i915_gem_release_mmap(obj);
   3802 
   3803 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   3804 		return;
   3805 
   3806 	/* Wait for any direct GTT access to complete */
   3807 	mb();
   3808 
   3809 	old_read_domains = obj->base.read_domains;
   3810 	old_write_domain = obj->base.write_domain;
   3811 
   3812 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
   3813 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
   3814 
   3815 	trace_i915_gem_object_change_domain(obj,
   3816 					    old_read_domains,
   3817 					    old_write_domain);
   3818 }
   3819 
   3820 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
   3821 {
   3822 	struct drm_i915_gem_object *obj = vma->obj;
   3823 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3824 	int ret;
   3825 
   3826 	if (list_empty(&vma->vma_link))
   3827 		return 0;
   3828 
   3829 	if (!drm_mm_node_allocated(&vma->node)) {
   3830 		i915_gem_vma_destroy(vma);
   3831 		return 0;
   3832 	}
   3833 
   3834 	if (vma->pin_count)
   3835 		return -EBUSY;
   3836 
   3837 	BUG_ON(obj->pages == NULL);
   3838 
   3839 	if (wait) {
   3840 		ret = i915_gem_object_wait_rendering(obj, false);
   3841 		if (ret)
   3842 			return ret;
   3843 	}
   3844 
   3845 	if (i915_is_ggtt(vma->vm) &&
   3846 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
   3847 		i915_gem_object_finish_gtt(obj);
   3848 
   3849 		/* release the fence reg _after_ flushing */
   3850 		ret = i915_gem_object_put_fence(obj);
   3851 		if (ret)
   3852 			return ret;
   3853 	}
   3854 
   3855 	trace_i915_vma_unbind(vma);
   3856 
   3857 	vma->vm->unbind_vma(vma);
   3858 	vma->bound = 0;
   3859 
   3860 	list_del_init(&vma->mm_list);
   3861 	if (i915_is_ggtt(vma->vm)) {
   3862 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
   3863 			obj->map_and_fenceable = false;
   3864 		} else if (vma->ggtt_view.pages) {
   3865 #ifdef __NetBSD__
   3866 			panic("rotated/partial views can't happen");
   3867 #else
   3868 			sg_free_table(vma->ggtt_view.pages);
   3869 			kfree(vma->ggtt_view.pages);
   3870 #endif
   3871 		}
   3872 		vma->ggtt_view.pages = NULL;
   3873 	}
   3874 
   3875 	drm_mm_remove_node(&vma->node);
   3876 	i915_gem_vma_destroy(vma);
   3877 
   3878 	/* Since the unbound list is global, only move to that list if
   3879 	 * no more VMAs exist. */
   3880 	if (list_empty(&obj->vma_list))
   3881 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   3882 
   3883 	/* And finally now the object is completely decoupled from this vma,
   3884 	 * we can drop its hold on the backing storage and allow it to be
   3885 	 * reaped by the shrinker.
   3886 	 */
   3887 	i915_gem_object_unpin_pages(obj);
   3888 
   3889 	return 0;
   3890 }
   3891 
   3892 int i915_vma_unbind(struct i915_vma *vma)
   3893 {
   3894 	return __i915_vma_unbind(vma, true);
   3895 }
   3896 
   3897 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
   3898 {
   3899 	return __i915_vma_unbind(vma, false);
   3900 }
   3901 
   3902 int i915_gpu_idle(struct drm_device *dev)
   3903 {
   3904 	struct drm_i915_private *dev_priv = dev->dev_private;
   3905 	struct intel_engine_cs *ring;
   3906 	int ret, i;
   3907 
   3908 	/* Flush everything onto the inactive list. */
   3909 	for_each_ring(ring, dev_priv, i) {
   3910 		if (!i915.enable_execlists) {
   3911 			struct drm_i915_gem_request *req;
   3912 
   3913 			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
   3914 			if (ret)
   3915 				return ret;
   3916 
   3917 			ret = i915_switch_context(req);
   3918 			if (ret) {
   3919 				i915_gem_request_cancel(req);
   3920 				return ret;
   3921 			}
   3922 
   3923 			i915_add_request_no_flush(req);
   3924 		}
   3925 
   3926 		ret = intel_ring_idle(ring);
   3927 		if (ret)
   3928 			return ret;
   3929 	}
   3930 
   3931 	WARN_ON(i915_verify_lists(dev));
   3932 	return 0;
   3933 }
   3934 
   3935 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
   3936 				     unsigned long cache_level)
   3937 {
   3938 	struct drm_mm_node *gtt_space = &vma->node;
   3939 	struct drm_mm_node *other;
   3940 
   3941 	/*
   3942 	 * On some machines we have to be careful when putting differing types
   3943 	 * of snoopable memory together to avoid the prefetcher crossing memory
   3944 	 * domains and dying. During vm initialisation, we decide whether or not
   3945 	 * these constraints apply and set the drm_mm.color_adjust
   3946 	 * appropriately.
   3947 	 */
   3948 	if (vma->vm->mm.color_adjust == NULL)
   3949 		return true;
   3950 
   3951 	if (!drm_mm_node_allocated(gtt_space))
   3952 		return true;
   3953 
   3954 	if (list_empty(&gtt_space->node_list))
   3955 		return true;
   3956 
   3957 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
   3958 	if (other->allocated && !other->hole_follows && other->color != cache_level)
   3959 		return false;
   3960 
   3961 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
   3962 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
   3963 		return false;
   3964 
   3965 	return true;
   3966 }
   3967 
   3968 /**
   3969  * Finds free space in the GTT aperture and binds the object or a view of it
   3970  * there.
   3971  */
   3972 static struct i915_vma *
   3973 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
   3974 			   struct i915_address_space *vm,
   3975 			   const struct i915_ggtt_view *ggtt_view,
   3976 			   unsigned alignment,
   3977 			   uint64_t flags)
   3978 {
   3979 	struct drm_device *dev = obj->base.dev;
   3980 	struct drm_i915_private *dev_priv = dev->dev_private;
   3981 	u32 fence_alignment, unfenced_alignment;
   3982 	u32 search_flag, alloc_flag;
   3983 	u64 start, end;
   3984 	u64 size, fence_size;
   3985 	struct i915_vma *vma;
   3986 	int ret;
   3987 
   3988 	if (i915_is_ggtt(vm)) {
   3989 		u32 view_size;
   3990 
   3991 		if (WARN_ON(!ggtt_view))
   3992 			return ERR_PTR(-EINVAL);
   3993 
   3994 		view_size = i915_ggtt_view_size(obj, ggtt_view);
   3995 
   3996 		fence_size = i915_gem_get_gtt_size(dev,
   3997 						   view_size,
   3998 						   obj->tiling_mode);
   3999 		fence_alignment = i915_gem_get_gtt_alignment(dev,
   4000 							     view_size,
   4001 							     obj->tiling_mode,
   4002 							     true);
   4003 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
   4004 								view_size,
   4005 								obj->tiling_mode,
   4006 								false);
   4007 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
   4008 	} else {
   4009 		fence_size = i915_gem_get_gtt_size(dev,
   4010 						   obj->base.size,
   4011 						   obj->tiling_mode);
   4012 		fence_alignment = i915_gem_get_gtt_alignment(dev,
   4013 							     obj->base.size,
   4014 							     obj->tiling_mode,
   4015 							     true);
   4016 		unfenced_alignment =
   4017 			i915_gem_get_gtt_alignment(dev,
   4018 						   obj->base.size,
   4019 						   obj->tiling_mode,
   4020 						   false);
   4021 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
   4022 	}
   4023 
   4024 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
   4025 	end = vm->total;
   4026 	if (flags & PIN_MAPPABLE)
   4027 		end = min_t(u64, end, dev_priv->gtt.mappable_end);
   4028 	if (flags & PIN_ZONE_4G)
   4029 		end = min_t(u64, end, (1ULL << 32));
   4030 
   4031 	if (alignment == 0)
   4032 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
   4033 						unfenced_alignment;
   4034 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
   4035 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
   4036 			  ggtt_view ? ggtt_view->type : 0,
   4037 			  alignment);
   4038 		return ERR_PTR(-EINVAL);
   4039 	}
   4040 
   4041 	/* If binding the object/GGTT view requires more space than the entire
   4042 	 * aperture has, reject it early before evicting everything in a vain
   4043 	 * attempt to find space.
   4044 	 */
   4045 	if (size > end) {
   4046 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%"PRIx64" > %s aperture=%"PRIx64"\n",
   4047 			  ggtt_view ? ggtt_view->type : 0,
   4048 			  size,
   4049 			  flags & PIN_MAPPABLE ? "mappable" : "total",
   4050 			  end);
   4051 		return ERR_PTR(-E2BIG);
   4052 	}
   4053 
   4054 	ret = i915_gem_object_get_pages(obj);
   4055 	if (ret)
   4056 		return ERR_PTR(ret);
   4057 
   4058 	i915_gem_object_pin_pages(obj);
   4059 
   4060 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
   4061 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
   4062 
   4063 	if (IS_ERR(vma))
   4064 		goto err_unpin;
   4065 
   4066 	if (flags & PIN_HIGH) {
   4067 		search_flag = DRM_MM_SEARCH_BELOW;
   4068 		alloc_flag = DRM_MM_CREATE_TOP;
   4069 	} else {
   4070 		search_flag = DRM_MM_SEARCH_DEFAULT;
   4071 		alloc_flag = DRM_MM_CREATE_DEFAULT;
   4072 	}
   4073 
   4074 search_free:
   4075 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
   4076 						  size, alignment,
   4077 						  obj->cache_level,
   4078 						  start, end,
   4079 						  search_flag,
   4080 						  alloc_flag);
   4081 	if (ret) {
   4082 		ret = i915_gem_evict_something(dev, vm, size, alignment,
   4083 					       obj->cache_level,
   4084 					       start, end,
   4085 					       flags);
   4086 		if (ret == 0)
   4087 			goto search_free;
   4088 
   4089 		goto err_free_vma;
   4090 	}
   4091 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
   4092 		ret = -EINVAL;
   4093 		goto err_remove_node;
   4094 	}
   4095 
   4096 	trace_i915_vma_bind(vma, flags);
   4097 	ret = i915_vma_bind(vma, obj->cache_level, flags);
   4098 	if (ret)
   4099 		goto err_remove_node;
   4100 
   4101 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
   4102 	list_add_tail(&vma->mm_list, &vm->inactive_list);
   4103 
   4104 	return vma;
   4105 
   4106 err_remove_node:
   4107 	drm_mm_remove_node(&vma->node);
   4108 err_free_vma:
   4109 	i915_gem_vma_destroy(vma);
   4110 	vma = ERR_PTR(ret);
   4111 err_unpin:
   4112 	i915_gem_object_unpin_pages(obj);
   4113 	return vma;
   4114 }
   4115 
   4116 bool
   4117 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
   4118 			bool force)
   4119 {
   4120 	/* If we don't have a page list set up, then we're not pinned
   4121 	 * to GPU, and we can ignore the cache flush because it'll happen
   4122 	 * again at bind time.
   4123 	 */
   4124 	if (obj->pages == NULL)
   4125 		return false;
   4126 
   4127 	/*
   4128 	 * Stolen memory is always coherent with the GPU as it is explicitly
   4129 	 * marked as wc by the system, or the system is cache-coherent.
   4130 	 */
   4131 	if (obj->stolen || obj->phys_handle)
   4132 		return false;
   4133 
   4134 	/* If the GPU is snooping the contents of the CPU cache,
   4135 	 * we do not need to manually clear the CPU cache lines.  However,
   4136 	 * the caches are only snooped when the render cache is
   4137 	 * flushed/invalidated.  As we always have to emit invalidations
   4138 	 * and flushes when moving into and out of the RENDER domain, correct
   4139 	 * snooping behaviour occurs naturally as the result of our domain
   4140 	 * tracking.
   4141 	 */
   4142 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
   4143 		obj->cache_dirty = true;
   4144 		return false;
   4145 	}
   4146 
   4147 	trace_i915_gem_object_clflush(obj);
   4148 #ifdef __NetBSD__
   4149 	drm_clflush_pglist(&obj->pageq);
   4150 #else
   4151 	drm_clflush_sg(obj->pages);
   4152 #endif
   4153 	obj->cache_dirty = false;
   4154 
   4155 	return true;
   4156 }
   4157 
   4158 /** Flushes the GTT write domain for the object if it's dirty. */
   4159 static void
   4160 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
   4161 {
   4162 	uint32_t old_write_domain;
   4163 
   4164 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
   4165 		return;
   4166 
   4167 	/* No actual flushing is required for the GTT write domain.  Writes
   4168 	 * to it immediately go to main memory as far as we know, so there's
   4169 	 * no chipset flush.  It also doesn't land in render cache.
   4170 	 *
   4171 	 * However, we do have to enforce the order so that all writes through
   4172 	 * the GTT land before any writes to the device, such as updates to
   4173 	 * the GATT itself.
   4174 	 */
   4175 	wmb();
   4176 
   4177 	old_write_domain = obj->base.write_domain;
   4178 	obj->base.write_domain = 0;
   4179 
   4180 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
   4181 
   4182 	trace_i915_gem_object_change_domain(obj,
   4183 					    obj->base.read_domains,
   4184 					    old_write_domain);
   4185 }
   4186 
   4187 /** Flushes the CPU write domain for the object if it's dirty. */
   4188 static void
   4189 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
   4190 {
   4191 	uint32_t old_write_domain;
   4192 
   4193 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
   4194 		return;
   4195 
   4196 	if (i915_gem_clflush_object(obj, obj->pin_display))
   4197 		i915_gem_chipset_flush(obj->base.dev);
   4198 
   4199 	old_write_domain = obj->base.write_domain;
   4200 	obj->base.write_domain = 0;
   4201 
   4202 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
   4203 
   4204 	trace_i915_gem_object_change_domain(obj,
   4205 					    obj->base.read_domains,
   4206 					    old_write_domain);
   4207 }
   4208 
   4209 /**
   4210  * Moves a single object to the GTT read, and possibly write domain.
   4211  *
   4212  * This function returns when the move is complete, including waiting on
   4213  * flushes to occur.
   4214  */
   4215 int
   4216 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
   4217 {
   4218 	uint32_t old_write_domain, old_read_domains;
   4219 	struct i915_vma *vma;
   4220 	int ret;
   4221 
   4222 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
   4223 		return 0;
   4224 
   4225 	ret = i915_gem_object_wait_rendering(obj, !write);
   4226 	if (ret)
   4227 		return ret;
   4228 
   4229 	/* Flush and acquire obj->pages so that we are coherent through
   4230 	 * direct access in memory with previous cached writes through
   4231 	 * shmemfs and that our cache domain tracking remains valid.
   4232 	 * For example, if the obj->filp was moved to swap without us
   4233 	 * being notified and releasing the pages, we would mistakenly
   4234 	 * continue to assume that the obj remained out of the CPU cached
   4235 	 * domain.
   4236 	 */
   4237 	ret = i915_gem_object_get_pages(obj);
   4238 	if (ret)
   4239 		return ret;
   4240 
   4241 	i915_gem_object_flush_cpu_write_domain(obj);
   4242 
   4243 	/* Serialise direct access to this object with the barriers for
   4244 	 * coherent writes from the GPU, by effectively invalidating the
   4245 	 * GTT domain upon first access.
   4246 	 */
   4247 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   4248 		mb();
   4249 
   4250 	old_write_domain = obj->base.write_domain;
   4251 	old_read_domains = obj->base.read_domains;
   4252 
   4253 	/* It should now be out of any other write domains, and we can update
   4254 	 * the domain values for our changes.
   4255 	 */
   4256 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
   4257 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4258 	if (write) {
   4259 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
   4260 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
   4261 		obj->dirty = 1;
   4262 	}
   4263 
   4264 	trace_i915_gem_object_change_domain(obj,
   4265 					    old_read_domains,
   4266 					    old_write_domain);
   4267 
   4268 	/* And bump the LRU for this access */
   4269 	vma = i915_gem_obj_to_ggtt(obj);
   4270 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
   4271 		list_move_tail(&vma->mm_list,
   4272 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
   4273 
   4274 	return 0;
   4275 }
   4276 
   4277 /**
   4278  * Changes the cache-level of an object across all VMA.
   4279  *
   4280  * After this function returns, the object will be in the new cache-level
   4281  * across all GTT and the contents of the backing storage will be coherent,
   4282  * with respect to the new cache-level. In order to keep the backing storage
   4283  * coherent for all users, we only allow a single cache level to be set
   4284  * globally on the object and prevent it from being changed whilst the
   4285  * hardware is reading from the object. That is if the object is currently
   4286  * on the scanout it will be set to uncached (or equivalent display
   4287  * cache coherency) and all non-MOCS GPU access will also be uncached so
   4288  * that all direct access to the scanout remains coherent.
   4289  */
   4290 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
   4291 				    enum i915_cache_level cache_level)
   4292 {
   4293 	struct drm_device *dev = obj->base.dev;
   4294 	struct i915_vma *vma, *next;
   4295 	bool bound = false;
   4296 	int ret = 0;
   4297 
   4298 	if (obj->cache_level == cache_level)
   4299 		goto out;
   4300 
   4301 	/* Inspect the list of currently bound VMA and unbind any that would
   4302 	 * be invalid given the new cache-level. This is principally to
   4303 	 * catch the issue of the CS prefetch crossing page boundaries and
   4304 	 * reading an invalid PTE on older architectures.
   4305 	 */
   4306 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   4307 		if (!drm_mm_node_allocated(&vma->node))
   4308 			continue;
   4309 
   4310 		if (vma->pin_count) {
   4311 			DRM_DEBUG("can not change the cache level of pinned objects\n");
   4312 			return -EBUSY;
   4313 		}
   4314 
   4315 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
   4316 			ret = i915_vma_unbind(vma);
   4317 			if (ret)
   4318 				return ret;
   4319 		} else
   4320 			bound = true;
   4321 	}
   4322 
   4323 	/* We can reuse the existing drm_mm nodes but need to change the
   4324 	 * cache-level on the PTE. We could simply unbind them all and
   4325 	 * rebind with the correct cache-level on next use. However since
   4326 	 * we already have a valid slot, dma mapping, pages etc, we may as
   4327 	 * rewrite the PTE in the belief that doing so tramples upon less
   4328 	 * state and so involves less work.
   4329 	 */
   4330 	if (bound) {
   4331 		/* Before we change the PTE, the GPU must not be accessing it.
   4332 		 * If we wait upon the object, we know that all the bound
   4333 		 * VMA are no longer active.
   4334 		 */
   4335 		ret = i915_gem_object_wait_rendering(obj, false);
   4336 		if (ret)
   4337 			return ret;
   4338 
   4339 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
   4340 			/* Access to snoopable pages through the GTT is
   4341 			 * incoherent and on some machines causes a hard
   4342 			 * lockup. Relinquish the CPU mmaping to force
   4343 			 * userspace to refault in the pages and we can
   4344 			 * then double check if the GTT mapping is still
   4345 			 * valid for that pointer access.
   4346 			 */
   4347 			i915_gem_release_mmap(obj);
   4348 
   4349 			/* As we no longer need a fence for GTT access,
   4350 			 * we can relinquish it now (and so prevent having
   4351 			 * to steal a fence from someone else on the next
   4352 			 * fence request). Note GPU activity would have
   4353 			 * dropped the fence as all snoopable access is
   4354 			 * supposed to be linear.
   4355 			 */
   4356 			ret = i915_gem_object_put_fence(obj);
   4357 			if (ret)
   4358 				return ret;
   4359 		} else {
   4360 			/* We either have incoherent backing store and
   4361 			 * so no GTT access or the architecture is fully
   4362 			 * coherent. In such cases, existing GTT mmaps
   4363 			 * ignore the cache bit in the PTE and we can
   4364 			 * rewrite it without confusing the GPU or having
   4365 			 * to force userspace to fault back in its mmaps.
   4366 			 */
   4367 		}
   4368 
   4369 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
   4370 			if (!drm_mm_node_allocated(&vma->node))
   4371 				continue;
   4372 
   4373 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
   4374 			if (ret)
   4375 				return ret;
   4376 		}
   4377 	}
   4378 
   4379 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   4380 		vma->node.color = cache_level;
   4381 	obj->cache_level = cache_level;
   4382 
   4383 out:
   4384 	/* Flush the dirty CPU caches to the backing storage so that the
   4385 	 * object is now coherent at its new cache level (with respect
   4386 	 * to the access domain).
   4387 	 */
   4388 	if (obj->cache_dirty &&
   4389 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
   4390 	    cpu_write_needs_clflush(obj)) {
   4391 		if (i915_gem_clflush_object(obj, true))
   4392 			i915_gem_chipset_flush(obj->base.dev);
   4393 	}
   4394 
   4395 	return 0;
   4396 }
   4397 
   4398 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
   4399 			       struct drm_file *file)
   4400 {
   4401 	struct drm_i915_gem_caching *args = data;
   4402 	struct drm_gem_object *gobj;
   4403 	struct drm_i915_gem_object *obj;
   4404 
   4405 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4406 	if (gobj == NULL)
   4407 		return -ENOENT;
   4408 	obj = to_intel_bo(gobj);
   4409 
   4410 	switch (obj->cache_level) {
   4411 	case I915_CACHE_LLC:
   4412 	case I915_CACHE_L3_LLC:
   4413 		args->caching = I915_CACHING_CACHED;
   4414 		break;
   4415 
   4416 	case I915_CACHE_WT:
   4417 		args->caching = I915_CACHING_DISPLAY;
   4418 		break;
   4419 
   4420 	default:
   4421 		args->caching = I915_CACHING_NONE;
   4422 		break;
   4423 	}
   4424 
   4425 	drm_gem_object_unreference_unlocked(&obj->base);
   4426 	return 0;
   4427 }
   4428 
   4429 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
   4430 			       struct drm_file *file)
   4431 {
   4432 	struct drm_i915_private *dev_priv = dev->dev_private;
   4433 	struct drm_i915_gem_caching *args = data;
   4434 	struct drm_gem_object *gobj;
   4435 	struct drm_i915_gem_object *obj;
   4436 	enum i915_cache_level level;
   4437 	int ret;
   4438 
   4439 	switch (args->caching) {
   4440 	case I915_CACHING_NONE:
   4441 		level = I915_CACHE_NONE;
   4442 		break;
   4443 	case I915_CACHING_CACHED:
   4444 		/*
   4445 		 * Due to a HW issue on BXT A stepping, GPU stores via a
   4446 		 * snooped mapping may leave stale data in a corresponding CPU
   4447 		 * cacheline, whereas normally such cachelines would get
   4448 		 * invalidated.
   4449 		 */
   4450 		if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
   4451 			return -ENODEV;
   4452 
   4453 		level = I915_CACHE_LLC;
   4454 		break;
   4455 	case I915_CACHING_DISPLAY:
   4456 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
   4457 		break;
   4458 	default:
   4459 		return -EINVAL;
   4460 	}
   4461 
   4462 	intel_runtime_pm_get(dev_priv);
   4463 
   4464 	ret = i915_mutex_lock_interruptible(dev);
   4465 	if (ret)
   4466 		goto rpm_put;
   4467 
   4468 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4469 	if (gobj == NULL) {
   4470 		ret = -ENOENT;
   4471 		goto unlock;
   4472 	}
   4473 	obj = to_intel_bo(gobj);
   4474 
   4475 	ret = i915_gem_object_set_cache_level(obj, level);
   4476 
   4477 	drm_gem_object_unreference(&obj->base);
   4478 unlock:
   4479 	mutex_unlock(&dev->struct_mutex);
   4480 rpm_put:
   4481 	intel_runtime_pm_put(dev_priv);
   4482 
   4483 	return ret;
   4484 }
   4485 
   4486 /*
   4487  * Prepare buffer for display plane (scanout, cursors, etc).
   4488  * Can be called from an uninterruptible phase (modesetting) and allows
   4489  * any flushes to be pipelined (for pageflips).
   4490  */
   4491 int
   4492 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
   4493 				     u32 alignment,
   4494 				     struct intel_engine_cs *pipelined,
   4495 				     struct drm_i915_gem_request **pipelined_request,
   4496 				     const struct i915_ggtt_view *view)
   4497 {
   4498 	u32 old_read_domains, old_write_domain;
   4499 	int ret;
   4500 
   4501 	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
   4502 	if (ret)
   4503 		return ret;
   4504 
   4505 	/* Mark the pin_display early so that we account for the
   4506 	 * display coherency whilst setting up the cache domains.
   4507 	 */
   4508 	obj->pin_display++;
   4509 
   4510 	/* The display engine is not coherent with the LLC cache on gen6.  As
   4511 	 * a result, we make sure that the pinning that is about to occur is
   4512 	 * done with uncached PTEs. This is lowest common denominator for all
   4513 	 * chipsets.
   4514 	 *
   4515 	 * However for gen6+, we could do better by using the GFDT bit instead
   4516 	 * of uncaching, which would allow us to flush all the LLC-cached data
   4517 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
   4518 	 */
   4519 	ret = i915_gem_object_set_cache_level(obj,
   4520 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
   4521 	if (ret)
   4522 		goto err_unpin_display;
   4523 
   4524 	/* As the user may map the buffer once pinned in the display plane
   4525 	 * (e.g. libkms for the bootup splash), we have to ensure that we
   4526 	 * always use map_and_fenceable for all scanout buffers.
   4527 	 */
   4528 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
   4529 				       view->type == I915_GGTT_VIEW_NORMAL ?
   4530 				       PIN_MAPPABLE : 0);
   4531 	if (ret)
   4532 		goto err_unpin_display;
   4533 
   4534 	i915_gem_object_flush_cpu_write_domain(obj);
   4535 
   4536 	old_write_domain = obj->base.write_domain;
   4537 	old_read_domains = obj->base.read_domains;
   4538 
   4539 	/* It should now be out of any other write domains, and we can update
   4540 	 * the domain values for our changes.
   4541 	 */
   4542 	obj->base.write_domain = 0;
   4543 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4544 
   4545 	trace_i915_gem_object_change_domain(obj,
   4546 					    old_read_domains,
   4547 					    old_write_domain);
   4548 
   4549 	return 0;
   4550 
   4551 err_unpin_display:
   4552 	obj->pin_display--;
   4553 	return ret;
   4554 }
   4555 
   4556 void
   4557 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
   4558 					 const struct i915_ggtt_view *view)
   4559 {
   4560 	if (WARN_ON(obj->pin_display == 0))
   4561 		return;
   4562 
   4563 	i915_gem_object_ggtt_unpin_view(obj, view);
   4564 
   4565 	obj->pin_display--;
   4566 }
   4567 
   4568 /**
   4569  * Moves a single object to the CPU read, and possibly write domain.
   4570  *
   4571  * This function returns when the move is complete, including waiting on
   4572  * flushes to occur.
   4573  */
   4574 int
   4575 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
   4576 {
   4577 	uint32_t old_write_domain, old_read_domains;
   4578 	int ret;
   4579 
   4580 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
   4581 		return 0;
   4582 
   4583 	ret = i915_gem_object_wait_rendering(obj, !write);
   4584 	if (ret)
   4585 		return ret;
   4586 
   4587 	i915_gem_object_flush_gtt_write_domain(obj);
   4588 
   4589 	old_write_domain = obj->base.write_domain;
   4590 	old_read_domains = obj->base.read_domains;
   4591 
   4592 	/* Flush the CPU cache if it's still invalid. */
   4593 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
   4594 		i915_gem_clflush_object(obj, false);
   4595 
   4596 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
   4597 	}
   4598 
   4599 	/* It should now be out of any other write domains, and we can update
   4600 	 * the domain values for our changes.
   4601 	 */
   4602 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
   4603 
   4604 	/* If we're writing through the CPU, then the GPU read domains will
   4605 	 * need to be invalidated at next use.
   4606 	 */
   4607 	if (write) {
   4608 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4609 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4610 	}
   4611 
   4612 	trace_i915_gem_object_change_domain(obj,
   4613 					    old_read_domains,
   4614 					    old_write_domain);
   4615 
   4616 	return 0;
   4617 }
   4618 
   4619 /* Throttle our rendering by waiting until the ring has completed our requests
   4620  * emitted over 20 msec ago.
   4621  *
   4622  * Note that if we were to use the current jiffies each time around the loop,
   4623  * we wouldn't escape the function with any frames outstanding if the time to
   4624  * render a frame was over 20ms.
   4625  *
   4626  * This should get us reasonable parallelism between CPU and GPU but also
   4627  * relatively low latency when blocking on a particular request to finish.
   4628  */
   4629 static int
   4630 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
   4631 {
   4632 	struct drm_i915_private *dev_priv = dev->dev_private;
   4633 	struct drm_i915_file_private *file_priv = file->driver_priv;
   4634 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
   4635 	struct drm_i915_gem_request *request, *target = NULL;
   4636 	unsigned reset_counter;
   4637 	int ret;
   4638 
   4639 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
   4640 	if (ret)
   4641 		return ret;
   4642 
   4643 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
   4644 	if (ret)
   4645 		return ret;
   4646 
   4647 	spin_lock(&file_priv->mm.lock);
   4648 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
   4649 		if (time_after_eq(request->emitted_jiffies, recent_enough))
   4650 			break;
   4651 
   4652 		/*
   4653 		 * Note that the request might not have been submitted yet.
   4654 		 * In which case emitted_jiffies will be zero.
   4655 		 */
   4656 		if (!request->emitted_jiffies)
   4657 			continue;
   4658 
   4659 		target = request;
   4660 	}
   4661 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   4662 	if (target)
   4663 		i915_gem_request_reference(target);
   4664 	spin_unlock(&file_priv->mm.lock);
   4665 
   4666 	if (target == NULL)
   4667 		return 0;
   4668 
   4669 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
   4670 	if (ret == 0)
   4671 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
   4672 
   4673 	i915_gem_request_unreference__unlocked(target);
   4674 
   4675 	return ret;
   4676 }
   4677 
   4678 static bool
   4679 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
   4680 {
   4681 	struct drm_i915_gem_object *obj = vma->obj;
   4682 
   4683 	if (alignment &&
   4684 	    vma->node.start & (alignment - 1))
   4685 		return true;
   4686 
   4687 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
   4688 		return true;
   4689 
   4690 	if (flags & PIN_OFFSET_BIAS &&
   4691 	    vma->node.start < (flags & PIN_OFFSET_MASK))
   4692 		return true;
   4693 
   4694 	return false;
   4695 }
   4696 
   4697 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
   4698 {
   4699 	struct drm_i915_gem_object *obj = vma->obj;
   4700 	bool mappable, fenceable;
   4701 	u32 fence_size, fence_alignment;
   4702 
   4703 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
   4704 					   obj->base.size,
   4705 					   obj->tiling_mode);
   4706 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
   4707 						     obj->base.size,
   4708 						     obj->tiling_mode,
   4709 						     true);
   4710 
   4711 	fenceable = (vma->node.size == fence_size &&
   4712 		     (vma->node.start & (fence_alignment - 1)) == 0);
   4713 
   4714 	mappable = (vma->node.start + fence_size <=
   4715 		    to_i915(obj->base.dev)->gtt.mappable_end);
   4716 
   4717 	obj->map_and_fenceable = mappable && fenceable;
   4718 }
   4719 
   4720 static int
   4721 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
   4722 		       struct i915_address_space *vm,
   4723 		       const struct i915_ggtt_view *ggtt_view,
   4724 		       uint32_t alignment,
   4725 		       uint64_t flags)
   4726 {
   4727 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   4728 	struct i915_vma *vma;
   4729 	unsigned bound;
   4730 	int ret;
   4731 
   4732 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
   4733 		return -ENODEV;
   4734 
   4735 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
   4736 		return -EINVAL;
   4737 
   4738 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
   4739 		return -EINVAL;
   4740 
   4741 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
   4742 		return -EINVAL;
   4743 
   4744 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
   4745 			  i915_gem_obj_to_vma(obj, vm);
   4746 
   4747 	if (IS_ERR(vma))
   4748 		return PTR_ERR(vma);
   4749 
   4750 	if (vma) {
   4751 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
   4752 			return -EBUSY;
   4753 
   4754 		if (i915_vma_misplaced(vma, alignment, flags)) {
   4755 			WARN(vma->pin_count,
   4756 			     "bo is already pinned in %s with incorrect alignment:"
   4757 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
   4758 			     " obj->map_and_fenceable=%d\n",
   4759 			     ggtt_view ? "ggtt" : "ppgtt",
   4760 			     upper_32_bits(vma->node.start),
   4761 			     lower_32_bits(vma->node.start),
   4762 			     alignment,
   4763 			     !!(flags & PIN_MAPPABLE),
   4764 			     obj->map_and_fenceable);
   4765 			ret = i915_vma_unbind(vma);
   4766 			if (ret)
   4767 				return ret;
   4768 
   4769 			vma = NULL;
   4770 		}
   4771 	}
   4772 
   4773 	bound = vma ? vma->bound : 0;
   4774 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
   4775 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
   4776 						 flags);
   4777 		if (IS_ERR(vma))
   4778 			return PTR_ERR(vma);
   4779 	} else {
   4780 		ret = i915_vma_bind(vma, obj->cache_level, flags);
   4781 		if (ret)
   4782 			return ret;
   4783 	}
   4784 
   4785 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
   4786 	    (bound ^ vma->bound) & GLOBAL_BIND) {
   4787 		__i915_vma_set_map_and_fenceable(vma);
   4788 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
   4789 	}
   4790 
   4791 	vma->pin_count++;
   4792 	return 0;
   4793 }
   4794 
   4795 int
   4796 i915_gem_object_pin(struct drm_i915_gem_object *obj,
   4797 		    struct i915_address_space *vm,
   4798 		    uint32_t alignment,
   4799 		    uint64_t flags)
   4800 {
   4801 	return i915_gem_object_do_pin(obj, vm,
   4802 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
   4803 				      alignment, flags);
   4804 }
   4805 
   4806 int
   4807 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
   4808 			 const struct i915_ggtt_view *view,
   4809 			 uint32_t alignment,
   4810 			 uint64_t flags)
   4811 {
   4812 	if (WARN_ONCE(!view, "no view specified"))
   4813 		return -EINVAL;
   4814 
   4815 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
   4816 				      alignment, flags | PIN_GLOBAL);
   4817 }
   4818 
   4819 void
   4820 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
   4821 				const struct i915_ggtt_view *view)
   4822 {
   4823 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
   4824 
   4825 	BUG_ON(!vma);
   4826 	WARN_ON(vma->pin_count == 0);
   4827 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
   4828 
   4829 	--vma->pin_count;
   4830 }
   4831 
   4832 int
   4833 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
   4834 		    struct drm_file *file)
   4835 {
   4836 	struct drm_i915_gem_busy *args = data;
   4837 	struct drm_gem_object *gobj;
   4838 	struct drm_i915_gem_object *obj;
   4839 	int ret;
   4840 
   4841 	ret = i915_mutex_lock_interruptible(dev);
   4842 	if (ret)
   4843 		return ret;
   4844 
   4845 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4846 	if (gobj == NULL) {
   4847 		ret = -ENOENT;
   4848 		goto unlock;
   4849 	}
   4850 	obj = to_intel_bo(gobj);
   4851 
   4852 	/* Count all active objects as busy, even if they are currently not used
   4853 	 * by the gpu. Users of this interface expect objects to eventually
   4854 	 * become non-busy without any further actions, therefore emit any
   4855 	 * necessary flushes here.
   4856 	 */
   4857 	ret = i915_gem_object_flush_active(obj);
   4858 	if (ret)
   4859 		goto unref;
   4860 
   4861 	BUILD_BUG_ON(I915_NUM_RINGS > 16);
   4862 	args->busy = obj->active << 16;
   4863 	if (obj->last_write_req)
   4864 		args->busy |= obj->last_write_req->ring->id;
   4865 
   4866 unref:
   4867 	drm_gem_object_unreference(&obj->base);
   4868 unlock:
   4869 	mutex_unlock(&dev->struct_mutex);
   4870 	return ret;
   4871 }
   4872 
   4873 int
   4874 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
   4875 			struct drm_file *file_priv)
   4876 {
   4877 	return i915_gem_ring_throttle(dev, file_priv);
   4878 }
   4879 
   4880 int
   4881 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   4882 		       struct drm_file *file_priv)
   4883 {
   4884 	struct drm_i915_private *dev_priv = dev->dev_private;
   4885 	struct drm_i915_gem_madvise *args = data;
   4886 	struct drm_gem_object *gobj;
   4887 	struct drm_i915_gem_object *obj;
   4888 	int ret;
   4889 
   4890 	switch (args->madv) {
   4891 	case I915_MADV_DONTNEED:
   4892 	case I915_MADV_WILLNEED:
   4893 	    break;
   4894 	default:
   4895 	    return -EINVAL;
   4896 	}
   4897 
   4898 	ret = i915_mutex_lock_interruptible(dev);
   4899 	if (ret)
   4900 		return ret;
   4901 
   4902 	gobj = drm_gem_object_lookup(dev, file_priv, args->handle);
   4903 	if (gobj == NULL) {
   4904 		ret = -ENOENT;
   4905 		goto unlock;
   4906 	}
   4907 	obj = to_intel_bo(gobj);
   4908 
   4909 	if (i915_gem_obj_is_pinned(obj)) {
   4910 		ret = -EINVAL;
   4911 		goto out;
   4912 	}
   4913 
   4914 	if (obj->pages &&
   4915 	    obj->tiling_mode != I915_TILING_NONE &&
   4916 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
   4917 		if (obj->madv == I915_MADV_WILLNEED)
   4918 			i915_gem_object_unpin_pages(obj);
   4919 		if (args->madv == I915_MADV_WILLNEED)
   4920 			i915_gem_object_pin_pages(obj);
   4921 	}
   4922 
   4923 	if (obj->madv != __I915_MADV_PURGED)
   4924 		obj->madv = args->madv;
   4925 
   4926 	/* if the object is no longer attached, discard its backing storage */
   4927 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
   4928 		i915_gem_object_truncate(obj);
   4929 
   4930 	args->retained = obj->madv != __I915_MADV_PURGED;
   4931 
   4932 out:
   4933 	drm_gem_object_unreference(&obj->base);
   4934 unlock:
   4935 	mutex_unlock(&dev->struct_mutex);
   4936 	return ret;
   4937 }
   4938 
   4939 void i915_gem_object_init(struct drm_i915_gem_object *obj,
   4940 			  const struct drm_i915_gem_object_ops *ops)
   4941 {
   4942 	int i;
   4943 
   4944 	INIT_LIST_HEAD(&obj->global_list);
   4945 	for (i = 0; i < I915_NUM_RINGS; i++)
   4946 		INIT_LIST_HEAD(&obj->ring_list[i]);
   4947 	INIT_LIST_HEAD(&obj->obj_exec_link);
   4948 	INIT_LIST_HEAD(&obj->vma_list);
   4949 	INIT_LIST_HEAD(&obj->batch_pool_link);
   4950 
   4951 	obj->ops = ops;
   4952 
   4953 	obj->fence_reg = I915_FENCE_REG_NONE;
   4954 	obj->madv = I915_MADV_WILLNEED;
   4955 
   4956 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
   4957 }
   4958 
   4959 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
   4960 	.get_pages = i915_gem_object_get_pages_gtt,
   4961 	.put_pages = i915_gem_object_put_pages_gtt,
   4962 };
   4963 
   4964 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
   4965 						  size_t size)
   4966 {
   4967 #ifdef __NetBSD__
   4968 	struct drm_i915_private *const dev_priv = dev->dev_private;
   4969 #endif
   4970 	struct drm_i915_gem_object *obj;
   4971 #ifndef __NetBSD__
   4972 	struct address_space *mapping;
   4973 	gfp_t mask;
   4974 #endif
   4975 
   4976 	obj = i915_gem_object_alloc(dev);
   4977 	if (obj == NULL)
   4978 		return NULL;
   4979 
   4980 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
   4981 		i915_gem_object_free(obj);
   4982 		return NULL;
   4983 	}
   4984 
   4985 #ifdef __NetBSD__
   4986 	uao_set_pgfl(obj->base.filp, dev_priv->gtt.pgfl);
   4987 #else
   4988 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
   4989 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
   4990 		/* 965gm cannot relocate objects above 4GiB. */
   4991 		mask &= ~__GFP_HIGHMEM;
   4992 		mask |= __GFP_DMA32;
   4993 	}
   4994 
   4995 	mapping = file_inode(obj->base.filp)->i_mapping;
   4996 	mapping_set_gfp_mask(mapping, mask);
   4997 #endif
   4998 
   4999 	i915_gem_object_init(obj, &i915_gem_object_ops);
   5000 
   5001 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   5002 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   5003 
   5004 	if (HAS_LLC(dev)) {
   5005 		/* On some devices, we can have the GPU use the LLC (the CPU
   5006 		 * cache) for about a 10% performance improvement
   5007 		 * compared to uncached.  Graphics requests other than
   5008 		 * display scanout are coherent with the CPU in
   5009 		 * accessing this cache.  This means in this mode we
   5010 		 * don't need to clflush on the CPU side, and on the
   5011 		 * GPU side we only need to flush internal caches to
   5012 		 * get data visible to the CPU.
   5013 		 *
   5014 		 * However, we maintain the display planes as UC, and so
   5015 		 * need to rebind when first used as such.
   5016 		 */
   5017 		obj->cache_level = I915_CACHE_LLC;
   5018 	} else
   5019 		obj->cache_level = I915_CACHE_NONE;
   5020 
   5021 	trace_i915_gem_object_create(obj);
   5022 
   5023 	return obj;
   5024 }
   5025 
   5026 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
   5027 {
   5028 	/* If we are the last user of the backing storage (be it shmemfs
   5029 	 * pages or stolen etc), we know that the pages are going to be
   5030 	 * immediately released. In this case, we can then skip copying
   5031 	 * back the contents from the GPU.
   5032 	 */
   5033 
   5034 	if (obj->madv != I915_MADV_WILLNEED)
   5035 		return false;
   5036 
   5037 	if (obj->base.filp == NULL)
   5038 		return true;
   5039 
   5040 	/* At first glance, this looks racy, but then again so would be
   5041 	 * userspace racing mmap against close. However, the first external
   5042 	 * reference to the filp can only be obtained through the
   5043 	 * i915_gem_mmap_ioctl() which safeguards us against the user
   5044 	 * acquiring such a reference whilst we are in the middle of
   5045 	 * freeing the object.
   5046 	 */
   5047 #ifdef __NetBSD__
   5048 	/* XXX This number might be a fencepost.  */
   5049 	return obj->base.filp->uo_refs == 1;
   5050 #else
   5051 	return atomic_long_read(&obj->base.filp->f_count) == 1;
   5052 #endif
   5053 }
   5054 
   5055 void i915_gem_free_object(struct drm_gem_object *gem_obj)
   5056 {
   5057 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   5058 	struct drm_device *dev = obj->base.dev;
   5059 	struct drm_i915_private *dev_priv = dev->dev_private;
   5060 	struct i915_vma *vma, *next;
   5061 
   5062 	intel_runtime_pm_get(dev_priv);
   5063 
   5064 	trace_i915_gem_object_destroy(obj);
   5065 
   5066 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   5067 		int ret;
   5068 
   5069 		vma->pin_count = 0;
   5070 		ret = i915_vma_unbind(vma);
   5071 		if (WARN_ON(ret == -ERESTARTSYS)) {
   5072 			bool was_interruptible;
   5073 
   5074 			was_interruptible = dev_priv->mm.interruptible;
   5075 			dev_priv->mm.interruptible = false;
   5076 
   5077 			WARN_ON(i915_vma_unbind(vma));
   5078 
   5079 			dev_priv->mm.interruptible = was_interruptible;
   5080 		}
   5081 	}
   5082 
   5083 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
   5084 	 * before progressing. */
   5085 	if (obj->stolen)
   5086 		i915_gem_object_unpin_pages(obj);
   5087 
   5088 	WARN_ON(obj->frontbuffer_bits);
   5089 
   5090 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
   5091 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
   5092 	    obj->tiling_mode != I915_TILING_NONE)
   5093 		i915_gem_object_unpin_pages(obj);
   5094 
   5095 	if (WARN_ON(obj->pages_pin_count))
   5096 		obj->pages_pin_count = 0;
   5097 	if (discard_backing_storage(obj))
   5098 		obj->madv = I915_MADV_DONTNEED;
   5099 	i915_gem_object_put_pages(obj);
   5100 	i915_gem_object_free_mmap_offset(obj);
   5101 
   5102 	BUG_ON(obj->pages);
   5103 
   5104 #ifndef __NetBSD__		/* XXX drm prime */
   5105 	if (obj->base.import_attach)
   5106 		drm_prime_gem_destroy(&obj->base, NULL);
   5107 #endif
   5108 
   5109 	if (obj->ops->release)
   5110 		obj->ops->release(obj);
   5111 
   5112 	drm_gem_object_release(&obj->base);
   5113 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
   5114 
   5115 	kfree(obj->bit_17);
   5116 	i915_gem_object_free(obj);
   5117 
   5118 	intel_runtime_pm_put(dev_priv);
   5119 }
   5120 
   5121 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
   5122 				     struct i915_address_space *vm)
   5123 {
   5124 	struct i915_vma *vma;
   5125 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
   5126 		if (i915_is_ggtt(vma->vm) &&
   5127 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5128 			continue;
   5129 		if (vma->vm == vm)
   5130 			return vma;
   5131 	}
   5132 	return NULL;
   5133 }
   5134 
   5135 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
   5136 					   const struct i915_ggtt_view *view)
   5137 {
   5138 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
   5139 	struct i915_vma *vma;
   5140 
   5141 	if (WARN_ONCE(!view, "no view specified"))
   5142 		return ERR_PTR(-EINVAL);
   5143 
   5144 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   5145 		if (vma->vm == ggtt &&
   5146 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
   5147 			return vma;
   5148 	return NULL;
   5149 }
   5150 
   5151 void i915_gem_vma_destroy(struct i915_vma *vma)
   5152 {
   5153 	struct i915_address_space *vm = NULL;
   5154 	WARN_ON(vma->node.allocated);
   5155 
   5156 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
   5157 	if (!list_empty(&vma->exec_list))
   5158 		return;
   5159 
   5160 	vm = vma->vm;
   5161 
   5162 	if (!i915_is_ggtt(vm))
   5163 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
   5164 
   5165 	list_del(&vma->vma_link);
   5166 
   5167 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
   5168 }
   5169 
   5170 static void
   5171 i915_gem_stop_ringbuffers(struct drm_device *dev)
   5172 {
   5173 	struct drm_i915_private *dev_priv = dev->dev_private;
   5174 	struct intel_engine_cs *ring;
   5175 	int i;
   5176 
   5177 	for_each_ring(ring, dev_priv, i)
   5178 		dev_priv->gt.stop_ring(ring);
   5179 }
   5180 
   5181 int
   5182 i915_gem_suspend(struct drm_device *dev)
   5183 {
   5184 	struct drm_i915_private *dev_priv = dev->dev_private;
   5185 	int ret = 0;
   5186 
   5187 	mutex_lock(&dev->struct_mutex);
   5188 	ret = i915_gpu_idle(dev);
   5189 	if (ret)
   5190 		goto err;
   5191 
   5192 	i915_gem_retire_requests(dev);
   5193 
   5194 	i915_gem_stop_ringbuffers(dev);
   5195 	mutex_unlock(&dev->struct_mutex);
   5196 
   5197 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
   5198 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
   5199 	flush_delayed_work(&dev_priv->mm.idle_work);
   5200 
   5201 	/* Assert that we sucessfully flushed all the work and
   5202 	 * reset the GPU back to its idle, low power state.
   5203 	 */
   5204 	WARN_ON(dev_priv->mm.busy);
   5205 
   5206 	return 0;
   5207 
   5208 err:
   5209 	mutex_unlock(&dev->struct_mutex);
   5210 	return ret;
   5211 }
   5212 
   5213 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
   5214 {
   5215 	struct intel_engine_cs *ring = req->ring;
   5216 	struct drm_device *dev = ring->dev;
   5217 	struct drm_i915_private *dev_priv = dev->dev_private;
   5218 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
   5219 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
   5220 	int i, ret;
   5221 
   5222 	if (!HAS_L3_DPF(dev) || !remap_info)
   5223 		return 0;
   5224 
   5225 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
   5226 	if (ret)
   5227 		return ret;
   5228 
   5229 	/*
   5230 	 * Note: We do not worry about the concurrent register cacheline hang
   5231 	 * here because no other code should access these registers other than
   5232 	 * at initialization time.
   5233 	 */
   5234 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
   5235 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
   5236 		intel_ring_emit(ring, reg_base + i);
   5237 		intel_ring_emit(ring, remap_info[i/4]);
   5238 	}
   5239 
   5240 	intel_ring_advance(ring);
   5241 
   5242 	return ret;
   5243 }
   5244 
   5245 void i915_gem_init_swizzling(struct drm_device *dev)
   5246 {
   5247 	struct drm_i915_private *dev_priv = dev->dev_private;
   5248 
   5249 	if (INTEL_INFO(dev)->gen < 5 ||
   5250 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
   5251 		return;
   5252 
   5253 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
   5254 				 DISP_TILE_SURFACE_SWIZZLING);
   5255 
   5256 	if (IS_GEN5(dev))
   5257 		return;
   5258 
   5259 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
   5260 	if (IS_GEN6(dev))
   5261 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
   5262 	else if (IS_GEN7(dev))
   5263 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
   5264 	else if (IS_GEN8(dev))
   5265 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
   5266 	else
   5267 		BUG();
   5268 }
   5269 
   5270 static void init_unused_ring(struct drm_device *dev, u32 base)
   5271 {
   5272 	struct drm_i915_private *dev_priv = dev->dev_private;
   5273 
   5274 	I915_WRITE(RING_CTL(base), 0);
   5275 	I915_WRITE(RING_HEAD(base), 0);
   5276 	I915_WRITE(RING_TAIL(base), 0);
   5277 	I915_WRITE(RING_START(base), 0);
   5278 }
   5279 
   5280 static void init_unused_rings(struct drm_device *dev)
   5281 {
   5282 	if (IS_I830(dev)) {
   5283 		init_unused_ring(dev, PRB1_BASE);
   5284 		init_unused_ring(dev, SRB0_BASE);
   5285 		init_unused_ring(dev, SRB1_BASE);
   5286 		init_unused_ring(dev, SRB2_BASE);
   5287 		init_unused_ring(dev, SRB3_BASE);
   5288 	} else if (IS_GEN2(dev)) {
   5289 		init_unused_ring(dev, SRB0_BASE);
   5290 		init_unused_ring(dev, SRB1_BASE);
   5291 	} else if (IS_GEN3(dev)) {
   5292 		init_unused_ring(dev, PRB1_BASE);
   5293 		init_unused_ring(dev, PRB2_BASE);
   5294 	}
   5295 }
   5296 
   5297 int i915_gem_init_rings(struct drm_device *dev)
   5298 {
   5299 	struct drm_i915_private *dev_priv = dev->dev_private;
   5300 	int ret;
   5301 
   5302 	ret = intel_init_render_ring_buffer(dev);
   5303 	if (ret)
   5304 		return ret;
   5305 
   5306 	if (HAS_BSD(dev)) {
   5307 		ret = intel_init_bsd_ring_buffer(dev);
   5308 		if (ret)
   5309 			goto cleanup_render_ring;
   5310 	}
   5311 
   5312 	if (HAS_BLT(dev)) {
   5313 		ret = intel_init_blt_ring_buffer(dev);
   5314 		if (ret)
   5315 			goto cleanup_bsd_ring;
   5316 	}
   5317 
   5318 	if (HAS_VEBOX(dev)) {
   5319 		ret = intel_init_vebox_ring_buffer(dev);
   5320 		if (ret)
   5321 			goto cleanup_blt_ring;
   5322 	}
   5323 
   5324 	if (HAS_BSD2(dev)) {
   5325 		ret = intel_init_bsd2_ring_buffer(dev);
   5326 		if (ret)
   5327 			goto cleanup_vebox_ring;
   5328 	}
   5329 
   5330 	return 0;
   5331 
   5332 cleanup_vebox_ring:
   5333 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
   5334 cleanup_blt_ring:
   5335 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
   5336 cleanup_bsd_ring:
   5337 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
   5338 cleanup_render_ring:
   5339 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
   5340 
   5341 	return ret;
   5342 }
   5343 
   5344 int
   5345 i915_gem_init_hw(struct drm_device *dev)
   5346 {
   5347 	struct drm_i915_private *dev_priv = dev->dev_private;
   5348 	struct intel_engine_cs *ring;
   5349 	int ret, i, j;
   5350 
   5351 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
   5352 		return -EIO;
   5353 
   5354 	/* Double layer security blanket, see i915_gem_init() */
   5355 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5356 
   5357 	if (dev_priv->ellc_size)
   5358 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
   5359 
   5360 	if (IS_HASWELL(dev))
   5361 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
   5362 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
   5363 
   5364 	if (HAS_PCH_NOP(dev)) {
   5365 		if (IS_IVYBRIDGE(dev)) {
   5366 			u32 temp = I915_READ(GEN7_MSG_CTL);
   5367 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
   5368 			I915_WRITE(GEN7_MSG_CTL, temp);
   5369 		} else if (INTEL_INFO(dev)->gen >= 7) {
   5370 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
   5371 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
   5372 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
   5373 		}
   5374 	}
   5375 
   5376 	i915_gem_init_swizzling(dev);
   5377 
   5378 	/*
   5379 	 * At least 830 can leave some of the unused rings
   5380 	 * "active" (ie. head != tail) after resume which
   5381 	 * will prevent c3 entry. Makes sure all unused rings
   5382 	 * are totally idle.
   5383 	 */
   5384 	init_unused_rings(dev);
   5385 
   5386 	BUG_ON(!dev_priv->ring[RCS].default_context);
   5387 
   5388 	ret = i915_ppgtt_init_hw(dev);
   5389 	if (ret) {
   5390 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
   5391 		goto out;
   5392 	}
   5393 
   5394 	/* Need to do basic initialisation of all rings first: */
   5395 	for_each_ring(ring, dev_priv, i) {
   5396 		ret = ring->init_hw(ring);
   5397 		if (ret)
   5398 			goto out;
   5399 	}
   5400 
   5401 	/* We can't enable contexts until all firmware is loaded */
   5402 	if (HAS_GUC_UCODE(dev)) {
   5403 		ret = intel_guc_ucode_load(dev);
   5404 		if (ret) {
   5405 			/*
   5406 			 * If we got an error and GuC submission is enabled, map
   5407 			 * the error to -EIO so the GPU will be declared wedged.
   5408 			 * OTOH, if we didn't intend to use the GuC anyway, just
   5409 			 * discard the error and carry on.
   5410 			 */
   5411 			DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
   5412 				  i915.enable_guc_submission ? "" :
   5413 				  " (ignored)");
   5414 			ret = i915.enable_guc_submission ? -EIO : 0;
   5415 			if (ret)
   5416 				goto out;
   5417 		}
   5418 	}
   5419 
   5420 	/*
   5421 	 * Increment the next seqno by 0x100 so we have a visible break
   5422 	 * on re-initialisation
   5423 	 */
   5424 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
   5425 	if (ret)
   5426 		goto out;
   5427 
   5428 	/* Now it is safe to go back round and do everything else: */
   5429 	for_each_ring(ring, dev_priv, i) {
   5430 		struct drm_i915_gem_request *req;
   5431 
   5432 		WARN_ON(!ring->default_context);
   5433 
   5434 		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
   5435 		if (ret) {
   5436 			i915_gem_cleanup_ringbuffer(dev);
   5437 			goto out;
   5438 		}
   5439 
   5440 		if (ring->id == RCS) {
   5441 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
   5442 				i915_gem_l3_remap(req, j);
   5443 		}
   5444 
   5445 		ret = i915_ppgtt_init_ring(req);
   5446 		if (ret && ret != -EIO) {
   5447 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
   5448 			i915_gem_request_cancel(req);
   5449 			i915_gem_cleanup_ringbuffer(dev);
   5450 			goto out;
   5451 		}
   5452 
   5453 		ret = i915_gem_context_enable(req);
   5454 		if (ret && ret != -EIO) {
   5455 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
   5456 			i915_gem_request_cancel(req);
   5457 			i915_gem_cleanup_ringbuffer(dev);
   5458 			goto out;
   5459 		}
   5460 
   5461 		i915_add_request_no_flush(req);
   5462 	}
   5463 
   5464 out:
   5465 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5466 	return ret;
   5467 }
   5468 
   5469 int i915_gem_init(struct drm_device *dev)
   5470 {
   5471 	struct drm_i915_private *dev_priv = dev->dev_private;
   5472 	int ret;
   5473 
   5474 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
   5475 			i915.enable_execlists);
   5476 
   5477 	mutex_lock(&dev->struct_mutex);
   5478 
   5479 	if (IS_VALLEYVIEW(dev)) {
   5480 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
   5481 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
   5482 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
   5483 			      VLV_GTLC_ALLOWWAKEACK), 10))
   5484 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
   5485 	}
   5486 
   5487 	if (!i915.enable_execlists) {
   5488 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
   5489 		dev_priv->gt.init_rings = i915_gem_init_rings;
   5490 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
   5491 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
   5492 	} else {
   5493 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
   5494 		dev_priv->gt.init_rings = intel_logical_rings_init;
   5495 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
   5496 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
   5497 	}
   5498 
   5499 	/* This is just a security blanket to placate dragons.
   5500 	 * On some systems, we very sporadically observe that the first TLBs
   5501 	 * used by the CS may be stale, despite us poking the TLB reset. If
   5502 	 * we hold the forcewake during initialisation these problems
   5503 	 * just magically go away.
   5504 	 */
   5505 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5506 
   5507 	ret = i915_gem_init_userptr(dev);
   5508 	if (ret)
   5509 		goto out_unlock;
   5510 
   5511 	i915_gem_init_global_gtt(dev);
   5512 
   5513 	ret = i915_gem_context_init(dev);
   5514 	if (ret)
   5515 		goto out_unlock;
   5516 
   5517 	ret = dev_priv->gt.init_rings(dev);
   5518 	if (ret)
   5519 		goto out_unlock;
   5520 
   5521 	ret = i915_gem_init_hw(dev);
   5522 	if (ret == -EIO) {
   5523 		/* Allow ring initialisation to fail by marking the GPU as
   5524 		 * wedged. But we only want to do this where the GPU is angry,
   5525 		 * for all other failure, such as an allocation failure, bail.
   5526 		 */
   5527 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
   5528 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
   5529 		ret = 0;
   5530 	}
   5531 
   5532 out_unlock:
   5533 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5534 	mutex_unlock(&dev->struct_mutex);
   5535 
   5536 	return ret;
   5537 }
   5538 
   5539 void
   5540 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
   5541 {
   5542 	struct drm_i915_private *dev_priv = dev->dev_private;
   5543 	struct intel_engine_cs *ring;
   5544 	int i;
   5545 
   5546 	for_each_ring(ring, dev_priv, i)
   5547 		dev_priv->gt.cleanup_ring(ring);
   5548 
   5549     if (i915.enable_execlists)
   5550             /*
   5551              * Neither the BIOS, ourselves or any other kernel
   5552              * expects the system to be in execlists mode on startup,
   5553              * so we need to reset the GPU back to legacy mode.
   5554              */
   5555             intel_gpu_reset(dev);
   5556 }
   5557 
   5558 static void
   5559 init_ring_lists(struct intel_engine_cs *ring)
   5560 {
   5561 	INIT_LIST_HEAD(&ring->active_list);
   5562 	INIT_LIST_HEAD(&ring->request_list);
   5563 }
   5564 
   5565 void
   5566 i915_gem_load(struct drm_device *dev)
   5567 {
   5568 	struct drm_i915_private *dev_priv = dev->dev_private;
   5569 	int i;
   5570 
   5571 	dev_priv->objects =
   5572 		kmem_cache_create("i915_gem_object",
   5573 				  sizeof(struct drm_i915_gem_object), 0,
   5574 				  SLAB_HWCACHE_ALIGN,
   5575 				  NULL);
   5576 	dev_priv->vmas =
   5577 		kmem_cache_create("i915_gem_vma",
   5578 				  sizeof(struct i915_vma), 0,
   5579 				  SLAB_HWCACHE_ALIGN,
   5580 				  NULL);
   5581 	dev_priv->requests =
   5582 		kmem_cache_create("i915_gem_request",
   5583 				  sizeof(struct drm_i915_gem_request), 0,
   5584 				  SLAB_HWCACHE_ALIGN,
   5585 				  NULL);
   5586 
   5587 	INIT_LIST_HEAD(&dev_priv->vm_list);
   5588 	INIT_LIST_HEAD(&dev_priv->context_list);
   5589 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
   5590 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
   5591 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5592 	for (i = 0; i < I915_NUM_RINGS; i++)
   5593 		init_ring_lists(&dev_priv->ring[i]);
   5594 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
   5595 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
   5596 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
   5597 			  i915_gem_retire_work_handler);
   5598 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
   5599 			  i915_gem_idle_work_handler);
   5600 #ifdef __NetBSD__
   5601 	spin_lock_init(&dev_priv->gpu_error.reset_lock);
   5602 	DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
   5603 #else
   5604 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
   5605 #endif
   5606 
   5607 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
   5608 
   5609 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
   5610 		dev_priv->num_fence_regs = 32;
   5611 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
   5612 		dev_priv->num_fence_regs = 16;
   5613 	else
   5614 		dev_priv->num_fence_regs = 8;
   5615 
   5616 	if (intel_vgpu_active(dev))
   5617 		dev_priv->num_fence_regs =
   5618 				I915_READ(vgtif_reg(avail_rs.fence_num));
   5619 
   5620 	/*
   5621 	 * Set initial sequence number for requests.
   5622 	 * Using this number allows the wraparound to happen early,
   5623 	 * catching any obvious problems.
   5624 	 */
   5625 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
   5626 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
   5627 
   5628 	/* Initialize fence registers to zero */
   5629 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5630 	i915_gem_restore_fences(dev);
   5631 
   5632 	i915_gem_detect_bit_6_swizzle(dev);
   5633 #ifdef __NetBSD__
   5634 	DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
   5635 	spin_lock_init(&dev_priv->pending_flip_lock);
   5636 #else
   5637 	init_waitqueue_head(&dev_priv->pending_flip_queue);
   5638 #endif
   5639 
   5640 	dev_priv->mm.interruptible = true;
   5641 
   5642 	i915_gem_shrinker_init(dev_priv);
   5643 #ifdef __NetBSD__
   5644 	linux_mutex_init(&dev_priv->fb_tracking.lock);
   5645 #else
   5646 	mutex_init(&dev_priv->fb_tracking.lock);
   5647 #endif
   5648 }
   5649 
   5650 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   5651 {
   5652 	struct drm_i915_file_private *file_priv = file->driver_priv;
   5653 
   5654 	/* Clean up our request list when the client is going away, so that
   5655 	 * later retire_requests won't dereference our soon-to-be-gone
   5656 	 * file_priv.
   5657 	 */
   5658 	spin_lock(&file_priv->mm.lock);
   5659 	while (!list_empty(&file_priv->mm.request_list)) {
   5660 		struct drm_i915_gem_request *request;
   5661 
   5662 		request = list_first_entry(&file_priv->mm.request_list,
   5663 					   struct drm_i915_gem_request,
   5664 					   client_list);
   5665 		list_del(&request->client_list);
   5666 		request->file_priv = NULL;
   5667 	}
   5668 	spin_unlock(&file_priv->mm.lock);
   5669 
   5670 	if (!list_empty(&file_priv->rps.link)) {
   5671 		spin_lock(&to_i915(dev)->rps.client_lock);
   5672 		list_del(&file_priv->rps.link);
   5673 		spin_unlock(&to_i915(dev)->rps.client_lock);
   5674 	}
   5675 }
   5676 
   5677 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
   5678 {
   5679 	struct drm_i915_file_private *file_priv;
   5680 	int ret;
   5681 
   5682 	DRM_DEBUG_DRIVER("\n");
   5683 
   5684 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
   5685 	if (!file_priv)
   5686 		return -ENOMEM;
   5687 
   5688 	file->driver_priv = file_priv;
   5689 	file_priv->dev_priv = dev->dev_private;
   5690 	file_priv->file = file;
   5691 	INIT_LIST_HEAD(&file_priv->rps.link);
   5692 
   5693 	spin_lock_init(&file_priv->mm.lock);
   5694 	INIT_LIST_HEAD(&file_priv->mm.request_list);
   5695 
   5696 	ret = i915_gem_context_open(dev, file);
   5697 	if (ret)
   5698 		kfree(file_priv);
   5699 
   5700 	return ret;
   5701 }
   5702 
   5703 /**
   5704  * i915_gem_track_fb - update frontbuffer tracking
   5705  * @old: current GEM buffer for the frontbuffer slots
   5706  * @new: new GEM buffer for the frontbuffer slots
   5707  * @frontbuffer_bits: bitmask of frontbuffer slots
   5708  *
   5709  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
   5710  * from @old and setting them in @new. Both @old and @new can be NULL.
   5711  */
   5712 void i915_gem_track_fb(struct drm_i915_gem_object *old,
   5713 		       struct drm_i915_gem_object *new,
   5714 		       unsigned frontbuffer_bits)
   5715 {
   5716 	if (old) {
   5717 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
   5718 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
   5719 		old->frontbuffer_bits &= ~frontbuffer_bits;
   5720 	}
   5721 
   5722 	if (new) {
   5723 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
   5724 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
   5725 		new->frontbuffer_bits |= frontbuffer_bits;
   5726 	}
   5727 }
   5728 
   5729 /* All the new VM stuff */
   5730 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
   5731 			struct i915_address_space *vm)
   5732 {
   5733 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5734 	struct i915_vma *vma;
   5735 
   5736 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
   5737 
   5738 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5739 		if (i915_is_ggtt(vma->vm) &&
   5740 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5741 			continue;
   5742 		if (vma->vm == vm)
   5743 			return vma->node.start;
   5744 	}
   5745 
   5746 	WARN(1, "%s vma for this object not found.\n",
   5747 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
   5748 	return -1;
   5749 }
   5750 
   5751 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
   5752 				  const struct i915_ggtt_view *view)
   5753 {
   5754 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
   5755 	struct i915_vma *vma;
   5756 
   5757 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5758 		if (vma->vm == ggtt &&
   5759 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
   5760 			return vma->node.start;
   5761 
   5762 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
   5763 	return -1;
   5764 }
   5765 
   5766 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
   5767 			struct i915_address_space *vm)
   5768 {
   5769 	struct i915_vma *vma;
   5770 
   5771 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5772 		if (i915_is_ggtt(vma->vm) &&
   5773 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5774 			continue;
   5775 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
   5776 			return true;
   5777 	}
   5778 
   5779 	return false;
   5780 }
   5781 
   5782 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
   5783 				  const struct i915_ggtt_view *view)
   5784 {
   5785 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
   5786 	struct i915_vma *vma;
   5787 
   5788 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5789 		if (vma->vm == ggtt &&
   5790 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
   5791 		    drm_mm_node_allocated(&vma->node))
   5792 			return true;
   5793 
   5794 	return false;
   5795 }
   5796 
   5797 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
   5798 {
   5799 	struct i915_vma *vma;
   5800 
   5801 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5802 		if (drm_mm_node_allocated(&vma->node))
   5803 			return true;
   5804 
   5805 	return false;
   5806 }
   5807 
   5808 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
   5809 				struct i915_address_space *vm)
   5810 {
   5811 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5812 	struct i915_vma *vma;
   5813 
   5814 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
   5815 
   5816 	BUG_ON(list_empty(&o->vma_list));
   5817 
   5818 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5819 		if (i915_is_ggtt(vma->vm) &&
   5820 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5821 			continue;
   5822 		if (vma->vm == vm)
   5823 			return vma->node.size;
   5824 	}
   5825 	return 0;
   5826 }
   5827 
   5828 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
   5829 {
   5830 	struct i915_vma *vma;
   5831 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   5832 		if (vma->pin_count > 0)
   5833 			return true;
   5834 
   5835 	return false;
   5836 }
   5837 
   5838 /* Allocate a new GEM object and fill it with the supplied data */
   5839 struct drm_i915_gem_object *
   5840 i915_gem_object_create_from_data(struct drm_device *dev,
   5841 			         const void *data, size_t size)
   5842 {
   5843 	struct drm_i915_gem_object *obj;
   5844 #ifdef __NetBSD__
   5845 	struct iovec iov = { .iov_base = __UNCONST(data), .iov_len = size };
   5846 	struct uio uio = {
   5847 	    .uio_iov = &iov,
   5848 	    .uio_iovcnt = 1,
   5849 	    .uio_offset = 0,
   5850 	    .uio_resid = size,
   5851 	    .uio_rw = UIO_WRITE,
   5852 	};
   5853 #else
   5854 	struct sg_table *sg;
   5855 #endif
   5856 	size_t bytes;
   5857 	int ret;
   5858 
   5859 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
   5860 	if (IS_ERR_OR_NULL(obj))
   5861 		return obj;
   5862 
   5863 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   5864 	if (ret)
   5865 		goto fail;
   5866 
   5867 	ret = i915_gem_object_get_pages(obj);
   5868 	if (ret)
   5869 		goto fail;
   5870 
   5871 	i915_gem_object_pin_pages(obj);
   5872 #ifdef __NetBSD__
   5873 	UIO_SETUP_SYSSPACE(&uio);
   5874 	/* XXX errno NetBSD->Linux */
   5875 	ret = -ubc_uiomove(obj->base.filp, &uio, size, UVM_ADV_NORMAL,
   5876 	    UBC_WRITE);
   5877 	if (ret)
   5878 		goto fail;
   5879 	bytes = size - uio.uio_resid;
   5880 #else
   5881 	sg = obj->pages;
   5882 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
   5883 #endif
   5884 	i915_gem_object_unpin_pages(obj);
   5885 
   5886 	if (WARN_ON(bytes != size)) {
   5887 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
   5888 		ret = -EFAULT;
   5889 		goto fail;
   5890 	}
   5891 
   5892 	return obj;
   5893 
   5894 fail:
   5895 	drm_gem_object_unreference(&obj->base);
   5896 	return ERR_PTR(ret);
   5897 }
   5898