Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.50
      1 /*	$NetBSD: i915_gem.c,v 1.50 2018/08/27 14:14:29 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright  2008-2015 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  * Authors:
     26  *    Eric Anholt <eric (at) anholt.net>
     27  *
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: i915_gem.c,v 1.50 2018/08/27 14:14:29 riastradh Exp $");
     32 
     33 #ifdef __NetBSD__
     34 #if 0				/* XXX uvmhist option?  */
     35 #include "opt_uvmhist.h"
     36 #endif
     37 
     38 #include <sys/types.h>
     39 #include <sys/param.h>
     40 
     41 #include <uvm/uvm.h>
     42 #include <uvm/uvm_extern.h>
     43 #include <uvm/uvm_fault.h>
     44 #include <uvm/uvm_page.h>
     45 #include <uvm/uvm_pmap.h>
     46 #include <uvm/uvm_prot.h>
     47 
     48 #include <drm/bus_dma_hacks.h>
     49 #endif
     50 
     51 #include <drm/drmP.h>
     52 #include <drm/drm_vma_manager.h>
     53 #include <drm/i915_drm.h>
     54 #include "i915_drv.h"
     55 #include "i915_vgpu.h"
     56 #include "i915_trace.h"
     57 #include "intel_drv.h"
     58 #include <linux/shmem_fs.h>
     59 #include <linux/slab.h>
     60 #include <linux/swap.h>
     61 #include <linux/pci.h>
     62 #include <linux/dma-buf.h>
     63 #include <linux/errno.h>
     64 #include <linux/time.h>
     65 #include <linux/err.h>
     66 #include <linux/bitops.h>
     67 #include <linux/printk.h>
     68 #include <asm/param.h>
     69 #include <asm/page.h>
     70 #include <asm/cpufeature.h>
     71 
     72 #define RQ_BUG_ON(expr)
     73 
     74 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
     75 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
     76 static void
     77 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
     78 static void
     79 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
     80 
     81 static bool cpu_cache_is_coherent(struct drm_device *dev,
     82 				  enum i915_cache_level level)
     83 {
     84 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
     85 }
     86 
     87 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
     88 {
     89 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
     90 		return true;
     91 
     92 	return obj->pin_display;
     93 }
     94 
     95 /* some bookkeeping */
     96 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
     97 				  size_t size)
     98 {
     99 	spin_lock(&dev_priv->mm.object_stat_lock);
    100 	dev_priv->mm.object_count++;
    101 	dev_priv->mm.object_memory += size;
    102 	spin_unlock(&dev_priv->mm.object_stat_lock);
    103 }
    104 
    105 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
    106 				     size_t size)
    107 {
    108 	spin_lock(&dev_priv->mm.object_stat_lock);
    109 	dev_priv->mm.object_count--;
    110 	dev_priv->mm.object_memory -= size;
    111 	spin_unlock(&dev_priv->mm.object_stat_lock);
    112 }
    113 
    114 static int
    115 i915_gem_wait_for_error(struct i915_gpu_error *error)
    116 {
    117 	int ret;
    118 
    119 #define EXIT_COND (!i915_reset_in_progress(error) || \
    120 		   i915_terminally_wedged(error))
    121 	if (EXIT_COND)
    122 		return 0;
    123 
    124 	/*
    125 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
    126 	 * userspace. If it takes that long something really bad is going on and
    127 	 * we should simply try to bail out and fail as gracefully as possible.
    128 	 */
    129 #ifdef __NetBSD__
    130 	spin_lock(&error->reset_lock);
    131 	DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
    132 	    10*HZ, EXIT_COND);
    133 	spin_unlock(&error->reset_lock);
    134 #else
    135 	ret = wait_event_interruptible_timeout(error->reset_queue,
    136 					       EXIT_COND,
    137 					       10*HZ);
    138 #endif
    139 	if (ret == 0) {
    140 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
    141 		return -EIO;
    142 	} else if (ret < 0) {
    143 		return ret;
    144 	}
    145 #undef EXIT_COND
    146 
    147 	return 0;
    148 }
    149 
    150 int i915_mutex_lock_interruptible(struct drm_device *dev)
    151 {
    152 	struct drm_i915_private *dev_priv = dev->dev_private;
    153 	int ret;
    154 
    155 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
    156 	if (ret)
    157 		return ret;
    158 
    159 	ret = mutex_lock_interruptible(&dev->struct_mutex);
    160 	if (ret)
    161 		return ret;
    162 
    163 	WARN_ON(i915_verify_lists(dev));
    164 	return 0;
    165 }
    166 
    167 int
    168 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    169 			    struct drm_file *file)
    170 {
    171 	struct drm_i915_private *dev_priv = dev->dev_private;
    172 	struct drm_i915_gem_get_aperture *args = data;
    173 	struct i915_gtt *ggtt = &dev_priv->gtt;
    174 	struct i915_vma *vma;
    175 	size_t pinned;
    176 
    177 	pinned = 0;
    178 	mutex_lock(&dev->struct_mutex);
    179 	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
    180 		if (vma->pin_count)
    181 			pinned += vma->node.size;
    182 	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
    183 		if (vma->pin_count)
    184 			pinned += vma->node.size;
    185 	mutex_unlock(&dev->struct_mutex);
    186 
    187 	args->aper_size = dev_priv->gtt.base.total;
    188 	args->aper_available_size = args->aper_size - pinned;
    189 
    190 	return 0;
    191 }
    192 
    193 static int
    194 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
    195 {
    196 #ifndef __NetBSD__
    197 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    198 #endif
    199 	char *vaddr = obj->phys_handle->vaddr;
    200 #ifndef __NetBSD__
    201 	struct sg_table *st;
    202 	struct scatterlist *sg;
    203 #endif
    204 	int i;
    205 
    206 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
    207 		return -EINVAL;
    208 
    209 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    210 		struct page *page;
    211 		char *src;
    212 
    213 #ifdef __NetBSD__
    214 		struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
    215 		int ret;
    216 		/* XXX errno NetBSD->Linux */
    217 		ret = -uvm_obj_wirepages(obj->base.filp, i*PAGE_SIZE,
    218 		    (i + 1)*PAGE_SIZE, &pages);
    219 		if (ret)
    220 			return ret;
    221 		page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
    222 #else
    223 		page = shmem_read_mapping_page(mapping, i);
    224 		if (IS_ERR(page))
    225 			return PTR_ERR(page);
    226 #endif
    227 
    228 		src = kmap_atomic(page);
    229 		memcpy(vaddr, src, PAGE_SIZE);
    230 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
    231 		kunmap_atomic(src);
    232 
    233 #ifdef __NetBSD__
    234 		uvm_obj_unwirepages(obj->base.filp, i*PAGE_SIZE,
    235 		    (i + 1)*PAGE_SIZE);
    236 #else
    237 		page_cache_release(page);
    238 #endif
    239 		vaddr += PAGE_SIZE;
    240 	}
    241 
    242 	i915_gem_chipset_flush(obj->base.dev);
    243 
    244 #ifdef __NetBSD__
    245 	obj->pages = obj->phys_handle->dmah_map;
    246 #else
    247 	st = kmalloc(sizeof(*st), GFP_KERNEL);
    248 	if (st == NULL)
    249 		return -ENOMEM;
    250 
    251 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
    252 		kfree(st);
    253 		return -ENOMEM;
    254 	}
    255 
    256 	sg = st->sgl;
    257 	sg->offset = 0;
    258 	sg->length = obj->base.size;
    259 
    260 	sg_dma_address(sg) = obj->phys_handle->busaddr;
    261 	sg_dma_len(sg) = obj->base.size;
    262 
    263 	obj->pages = st;
    264 #endif
    265 	return 0;
    266 }
    267 
    268 static void
    269 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
    270 {
    271 	int ret;
    272 
    273 	BUG_ON(obj->madv == __I915_MADV_PURGED);
    274 
    275 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
    276 	if (ret) {
    277 		/* In the event of a disaster, abandon all caches and
    278 		 * hope for the best.
    279 		 */
    280 		WARN_ON(ret != -EIO);
    281 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
    282 	}
    283 
    284 	if (obj->madv == I915_MADV_DONTNEED)
    285 		obj->dirty = 0;
    286 
    287 	if (obj->dirty) {
    288 #ifndef __NetBSD__
    289 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    290 #endif
    291 		const char *vaddr = obj->phys_handle->vaddr;
    292 		int i;
    293 
    294 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    295 			struct page *page;
    296 			char *dst;
    297 
    298 #ifdef __NetBSD__
    299 			struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
    300 			/* XXX errno NetBSD->Linux */
    301 			ret = -uvm_obj_wirepages(obj->base.filp,
    302 			    i*PAGE_SIZE, (i + 1)*PAGE_SIZE, &pages);
    303 			if (ret)
    304 				continue;
    305 			page = container_of(TAILQ_FIRST(&pages), struct page,
    306 			    p_vmp);
    307 #endif
    308 
    309 			dst = kmap_atomic(page);
    310 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
    311 			memcpy(dst, vaddr, PAGE_SIZE);
    312 			kunmap_atomic(dst);
    313 
    314 			set_page_dirty(page);
    315 #ifdef __NetBSD__
    316 			/* XXX mark page accessed */
    317 			uvm_obj_unwirepages(obj->base.filp, i*PAGE_SIZE,
    318 			    (i+1)*PAGE_SIZE);
    319 #else
    320 			if (obj->madv == I915_MADV_WILLNEED)
    321 				mark_page_accessed(page);
    322 			page_cache_release(page);
    323 #endif
    324 			vaddr += PAGE_SIZE;
    325 		}
    326 		obj->dirty = 0;
    327 	}
    328 
    329 #ifdef __NetBSD__
    330 	obj->pages = NULL;
    331 #else
    332 	sg_free_table(obj->pages);
    333 	kfree(obj->pages);
    334 #endif
    335 }
    336 
    337 static void
    338 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
    339 {
    340 	drm_pci_free(obj->base.dev, obj->phys_handle);
    341 }
    342 
    343 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
    344 	.get_pages = i915_gem_object_get_pages_phys,
    345 	.put_pages = i915_gem_object_put_pages_phys,
    346 	.release = i915_gem_object_release_phys,
    347 };
    348 
    349 static int
    350 drop_pages(struct drm_i915_gem_object *obj)
    351 {
    352 	struct i915_vma *vma, *next;
    353 	int ret;
    354 
    355 	drm_gem_object_reference(&obj->base);
    356 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
    357 		if (i915_vma_unbind(vma))
    358 			break;
    359 
    360 	ret = i915_gem_object_put_pages(obj);
    361 	drm_gem_object_unreference(&obj->base);
    362 
    363 	return ret;
    364 }
    365 
    366 int
    367 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
    368 			    int align)
    369 {
    370 	drm_dma_handle_t *phys;
    371 	int ret;
    372 
    373 	if (obj->phys_handle) {
    374 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
    375 			return -EBUSY;
    376 
    377 		return 0;
    378 	}
    379 
    380 	if (obj->madv != I915_MADV_WILLNEED)
    381 		return -EFAULT;
    382 
    383 	if (obj->base.filp == NULL)
    384 		return -EINVAL;
    385 
    386 	ret = drop_pages(obj);
    387 	if (ret)
    388 		return ret;
    389 
    390 	/* create a new object */
    391 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
    392 	if (!phys)
    393 		return -ENOMEM;
    394 
    395 	obj->phys_handle = phys;
    396 	obj->ops = &i915_gem_phys_ops;
    397 
    398 	return i915_gem_object_get_pages(obj);
    399 }
    400 
    401 static int
    402 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
    403 		     struct drm_i915_gem_pwrite *args,
    404 		     struct drm_file *file_priv)
    405 {
    406 	struct drm_device *dev = obj->base.dev;
    407 	void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
    408 	char __user *user_data = to_user_ptr(args->data_ptr);
    409 	int ret = 0;
    410 
    411 	/* We manually control the domain here and pretend that it
    412 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
    413 	 */
    414 	ret = i915_gem_object_wait_rendering(obj, false);
    415 	if (ret)
    416 		return ret;
    417 
    418 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
    419 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
    420 		unsigned long unwritten;
    421 
    422 		/* The physical object once assigned is fixed for the lifetime
    423 		 * of the obj, so we can safely drop the lock and continue
    424 		 * to access vaddr.
    425 		 */
    426 		mutex_unlock(&dev->struct_mutex);
    427 		unwritten = copy_from_user(vaddr, user_data, args->size);
    428 		mutex_lock(&dev->struct_mutex);
    429 		if (unwritten) {
    430 			ret = -EFAULT;
    431 			goto out;
    432 		}
    433 	}
    434 
    435 	drm_clflush_virt_range(vaddr, args->size);
    436 	i915_gem_chipset_flush(dev);
    437 
    438 out:
    439 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
    440 	return ret;
    441 }
    442 
    443 void *i915_gem_object_alloc(struct drm_device *dev)
    444 {
    445 	struct drm_i915_private *dev_priv = dev->dev_private;
    446 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
    447 }
    448 
    449 void i915_gem_object_free(struct drm_i915_gem_object *obj)
    450 {
    451 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
    452 	kmem_cache_free(dev_priv->objects, obj);
    453 }
    454 
    455 static int
    456 i915_gem_create(struct drm_file *file,
    457 		struct drm_device *dev,
    458 		uint64_t size,
    459 		uint32_t *handle_p)
    460 {
    461 	struct drm_i915_gem_object *obj;
    462 	int ret;
    463 	u32 handle;
    464 
    465 	size = roundup(size, PAGE_SIZE);
    466 	if (size == 0)
    467 		return -EINVAL;
    468 
    469 	/* Allocate the new object */
    470 	obj = i915_gem_alloc_object(dev, size);
    471 	if (obj == NULL)
    472 		return -ENOMEM;
    473 
    474 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    475 	/* drop reference from allocate - handle holds it now */
    476 	drm_gem_object_unreference_unlocked(&obj->base);
    477 	if (ret)
    478 		return ret;
    479 
    480 	*handle_p = handle;
    481 	return 0;
    482 }
    483 
    484 int
    485 i915_gem_dumb_create(struct drm_file *file,
    486 		     struct drm_device *dev,
    487 		     struct drm_mode_create_dumb *args)
    488 {
    489 	/* have to work out size/pitch and return them */
    490 #ifdef __NetBSD__		/* ALIGN means something else.  */
    491 	args->pitch = round_up(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    492 #else
    493 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    494 #endif
    495 	args->size = args->pitch * args->height;
    496 	return i915_gem_create(file, dev,
    497 			       args->size, &args->handle);
    498 }
    499 
    500 /**
    501  * Creates a new mm object and returns a handle to it.
    502  */
    503 int
    504 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    505 		      struct drm_file *file)
    506 {
    507 	struct drm_i915_gem_create *args = data;
    508 
    509 	return i915_gem_create(file, dev,
    510 			       args->size, &args->handle);
    511 }
    512 
    513 static inline int
    514 __copy_to_user_swizzled(char __user *cpu_vaddr,
    515 			const char *gpu_vaddr, int gpu_offset,
    516 			int length)
    517 {
    518 	int ret, cpu_offset = 0;
    519 
    520 	while (length > 0) {
    521 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    522 		int cacheline_end = round_up(gpu_offset + 1, 64);
    523 #else
    524 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    525 #endif
    526 		int this_length = min(cacheline_end - gpu_offset, length);
    527 		int swizzled_gpu_offset = gpu_offset ^ 64;
    528 
    529 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
    530 				     gpu_vaddr + swizzled_gpu_offset,
    531 				     this_length);
    532 		if (ret)
    533 			return ret + length;
    534 
    535 		cpu_offset += this_length;
    536 		gpu_offset += this_length;
    537 		length -= this_length;
    538 	}
    539 
    540 	return 0;
    541 }
    542 
    543 static inline int
    544 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
    545 			  const char __user *cpu_vaddr,
    546 			  int length)
    547 {
    548 	int ret, cpu_offset = 0;
    549 
    550 	while (length > 0) {
    551 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    552 		int cacheline_end = round_up(gpu_offset + 1, 64);
    553 #else
    554 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    555 #endif
    556 		int this_length = min(cacheline_end - gpu_offset, length);
    557 		int swizzled_gpu_offset = gpu_offset ^ 64;
    558 
    559 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
    560 				       cpu_vaddr + cpu_offset,
    561 				       this_length);
    562 		if (ret)
    563 			return ret + length;
    564 
    565 		cpu_offset += this_length;
    566 		gpu_offset += this_length;
    567 		length -= this_length;
    568 	}
    569 
    570 	return 0;
    571 }
    572 
    573 /*
    574  * Pins the specified object's pages and synchronizes the object with
    575  * GPU accesses. Sets needs_clflush to non-zero if the caller should
    576  * flush the object from the CPU cache.
    577  */
    578 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
    579 				    int *needs_clflush)
    580 {
    581 	int ret;
    582 
    583 	*needs_clflush = 0;
    584 
    585 	if (!obj->base.filp)
    586 		return -EINVAL;
    587 
    588 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
    589 		/* If we're not in the cpu read domain, set ourself into the gtt
    590 		 * read domain and manually flush cachelines (if required). This
    591 		 * optimizes for the case when the gpu will dirty the data
    592 		 * anyway again before the next pread happens. */
    593 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
    594 							obj->cache_level);
    595 		ret = i915_gem_object_wait_rendering(obj, true);
    596 		if (ret)
    597 			return ret;
    598 	}
    599 
    600 	ret = i915_gem_object_get_pages(obj);
    601 	if (ret)
    602 		return ret;
    603 
    604 	i915_gem_object_pin_pages(obj);
    605 
    606 	return ret;
    607 }
    608 
    609 /* Per-page copy function for the shmem pread fastpath.
    610  * Flushes invalid cachelines before reading the target if
    611  * needs_clflush is set. */
    612 static int
    613 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
    614 		 char __user *user_data,
    615 		 bool page_do_bit17_swizzling, bool needs_clflush)
    616 {
    617 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    618 	return -EFAULT;
    619 #else
    620 	char *vaddr;
    621 	int ret;
    622 
    623 	if (unlikely(page_do_bit17_swizzling))
    624 		return -EINVAL;
    625 
    626 	vaddr = kmap_atomic(page);
    627 	if (needs_clflush)
    628 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    629 				       page_length);
    630 	ret = __copy_to_user_inatomic(user_data,
    631 				      vaddr + shmem_page_offset,
    632 				      page_length);
    633 	kunmap_atomic(vaddr);
    634 
    635 	return ret ? -EFAULT : 0;
    636 #endif
    637 }
    638 
    639 static void
    640 shmem_clflush_swizzled_range(char *addr, unsigned long length,
    641 			     bool swizzled)
    642 {
    643 	if (unlikely(swizzled)) {
    644 		unsigned long start = (unsigned long) addr;
    645 		unsigned long end = (unsigned long) addr + length;
    646 
    647 		/* For swizzling simply ensure that we always flush both
    648 		 * channels. Lame, but simple and it works. Swizzled
    649 		 * pwrite/pread is far from a hotpath - current userspace
    650 		 * doesn't use it at all. */
    651 		start = round_down(start, 128);
    652 		end = round_up(end, 128);
    653 
    654 		drm_clflush_virt_range((void *)start, end - start);
    655 	} else {
    656 		drm_clflush_virt_range(addr, length);
    657 	}
    658 
    659 }
    660 
    661 /* Only difference to the fast-path function is that this can handle bit17
    662  * and uses non-atomic copy and kmap functions. */
    663 static int
    664 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
    665 		 char __user *user_data,
    666 		 bool page_do_bit17_swizzling, bool needs_clflush)
    667 {
    668 	char *vaddr;
    669 	int ret;
    670 
    671 	vaddr = kmap(page);
    672 	if (needs_clflush)
    673 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    674 					     page_length,
    675 					     page_do_bit17_swizzling);
    676 
    677 	if (page_do_bit17_swizzling)
    678 		ret = __copy_to_user_swizzled(user_data,
    679 					      vaddr, shmem_page_offset,
    680 					      page_length);
    681 	else
    682 		ret = __copy_to_user(user_data,
    683 				     vaddr + shmem_page_offset,
    684 				     page_length);
    685 	kunmap(page);
    686 
    687 	return ret ? - EFAULT : 0;
    688 }
    689 
    690 static int
    691 i915_gem_shmem_pread(struct drm_device *dev,
    692 		     struct drm_i915_gem_object *obj,
    693 		     struct drm_i915_gem_pread *args,
    694 		     struct drm_file *file)
    695 {
    696 	char __user *user_data;
    697 	ssize_t remain;
    698 	loff_t offset;
    699 	int shmem_page_offset, page_length, ret = 0;
    700 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    701 #ifndef __NetBSD__		/* XXX */
    702 	int prefaulted = 0;
    703 #endif
    704 	int needs_clflush = 0;
    705 #ifndef __NetBSD__
    706 	struct sg_page_iter sg_iter;
    707 #endif
    708 
    709 	user_data = to_user_ptr(args->data_ptr);
    710 	remain = args->size;
    711 
    712 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    713 
    714 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
    715 	if (ret)
    716 		return ret;
    717 
    718 	offset = args->offset;
    719 
    720 #ifdef __NetBSD__
    721 	while (0 < remain)
    722 #else
    723 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
    724 			 offset >> PAGE_SHIFT)
    725 #endif
    726 	{
    727 #ifdef __NetBSD__
    728 		struct page *const page = i915_gem_object_get_page(obj,
    729 		    atop(offset));
    730 #else
    731 		struct page *page = sg_page_iter_page(&sg_iter);
    732 
    733 		if (remain <= 0)
    734 			break;
    735 #endif
    736 
    737 		/* Operation in this page
    738 		 *
    739 		 * shmem_page_offset = offset within page in shmem file
    740 		 * page_length = bytes to copy for this page
    741 		 */
    742 		shmem_page_offset = offset_in_page(offset);
    743 		page_length = remain;
    744 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    745 			page_length = PAGE_SIZE - shmem_page_offset;
    746 
    747 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    748 			(page_to_phys(page) & (1 << 17)) != 0;
    749 
    750 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    751 				       user_data, page_do_bit17_swizzling,
    752 				       needs_clflush);
    753 		if (ret == 0)
    754 			goto next_page;
    755 
    756 		mutex_unlock(&dev->struct_mutex);
    757 #ifndef __NetBSD__
    758 		if (likely(!i915.prefault_disable) && !prefaulted) {
    759 			ret = fault_in_multipages_writeable(user_data, remain);
    760 			/* Userspace is tricking us, but we've already clobbered
    761 			 * its pages with the prefault and promised to write the
    762 			 * data up to the first fault. Hence ignore any errors
    763 			 * and just continue. */
    764 			(void)ret;
    765 			prefaulted = 1;
    766 		}
    767 #endif
    768 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    769 				       user_data, page_do_bit17_swizzling,
    770 				       needs_clflush);
    771 
    772 		mutex_lock(&dev->struct_mutex);
    773 
    774 		if (ret)
    775 			goto out;
    776 
    777 next_page:
    778 		remain -= page_length;
    779 		user_data += page_length;
    780 		offset += page_length;
    781 	}
    782 
    783 out:
    784 	i915_gem_object_unpin_pages(obj);
    785 
    786 	return ret;
    787 }
    788 
    789 /**
    790  * Reads data from the object referenced by handle.
    791  *
    792  * On error, the contents of *data are undefined.
    793  */
    794 int
    795 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    796 		     struct drm_file *file)
    797 {
    798 	struct drm_i915_gem_pread *args = data;
    799 	struct drm_gem_object *gobj;
    800 	struct drm_i915_gem_object *obj;
    801 	int ret = 0;
    802 
    803 	if (args->size == 0)
    804 		return 0;
    805 
    806 	if (!access_ok(VERIFY_WRITE,
    807 		       to_user_ptr(args->data_ptr),
    808 		       args->size))
    809 		return -EFAULT;
    810 
    811 	ret = i915_mutex_lock_interruptible(dev);
    812 	if (ret)
    813 		return ret;
    814 
    815 	gobj = drm_gem_object_lookup(dev, file, args->handle);
    816 	if (gobj == NULL) {
    817 		ret = -ENOENT;
    818 		goto unlock;
    819 	}
    820 	obj = to_intel_bo(gobj);
    821 
    822 	/* Bounds check source.  */
    823 	if (args->offset > obj->base.size ||
    824 	    args->size > obj->base.size - args->offset) {
    825 		ret = -EINVAL;
    826 		goto out;
    827 	}
    828 
    829 	/* prime objects have no backing filp to GEM pread/pwrite
    830 	 * pages from.
    831 	 */
    832 	if (!obj->base.filp) {
    833 		ret = -EINVAL;
    834 		goto out;
    835 	}
    836 
    837 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    838 
    839 	ret = i915_gem_shmem_pread(dev, obj, args, file);
    840 
    841 out:
    842 	drm_gem_object_unreference(&obj->base);
    843 unlock:
    844 	mutex_unlock(&dev->struct_mutex);
    845 	return ret;
    846 }
    847 
    848 /* This is the fast write path which cannot handle
    849  * page faults in the source data
    850  */
    851 
    852 static inline int
    853 fast_user_write(struct io_mapping *mapping,
    854 		loff_t page_base, int page_offset,
    855 		char __user *user_data,
    856 		int length)
    857 {
    858 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    859 	return -EFAULT;
    860 #else
    861 	void __iomem *vaddr_atomic;
    862 	void *vaddr;
    863 	unsigned long unwritten;
    864 
    865 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
    866 	/* We can use the cpu mem copy function because this is X86. */
    867 	vaddr = (void __force*)vaddr_atomic + page_offset;
    868 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
    869 						      user_data, length);
    870 	io_mapping_unmap_atomic(vaddr_atomic);
    871 	return unwritten;
    872 #endif
    873 }
    874 
    875 /**
    876  * This is the fast pwrite path, where we copy the data directly from the
    877  * user into the GTT, uncached.
    878  */
    879 static int
    880 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
    881 			 struct drm_i915_gem_object *obj,
    882 			 struct drm_i915_gem_pwrite *args,
    883 			 struct drm_file *file)
    884 {
    885 	struct drm_i915_private *dev_priv = dev->dev_private;
    886 	ssize_t remain;
    887 	loff_t offset, page_base;
    888 	char __user *user_data;
    889 	int page_offset, page_length, ret;
    890 
    891 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
    892 	if (ret)
    893 		goto out;
    894 
    895 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    896 	if (ret)
    897 		goto out_unpin;
    898 
    899 	ret = i915_gem_object_put_fence(obj);
    900 	if (ret)
    901 		goto out_unpin;
    902 
    903 	user_data = to_user_ptr(args->data_ptr);
    904 	remain = args->size;
    905 
    906 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
    907 
    908 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
    909 
    910 	while (remain > 0) {
    911 		/* Operation in this page
    912 		 *
    913 		 * page_base = page offset within aperture
    914 		 * page_offset = offset within page
    915 		 * page_length = bytes to copy for this page
    916 		 */
    917 		page_base = offset & PAGE_MASK;
    918 		page_offset = offset_in_page(offset);
    919 		page_length = remain;
    920 		if ((page_offset + remain) > PAGE_SIZE)
    921 			page_length = PAGE_SIZE - page_offset;
    922 
    923 		/* If we get a fault while copying data, then (presumably) our
    924 		 * source page isn't available.  Return the error and we'll
    925 		 * retry in the slow path.
    926 		 */
    927 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
    928 				    page_offset, user_data, page_length)) {
    929 			ret = -EFAULT;
    930 			goto out_flush;
    931 		}
    932 
    933 		remain -= page_length;
    934 		user_data += page_length;
    935 		offset += page_length;
    936 	}
    937 
    938 out_flush:
    939 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
    940 out_unpin:
    941 	i915_gem_object_ggtt_unpin(obj);
    942 out:
    943 	return ret;
    944 }
    945 
    946 /* Per-page copy function for the shmem pwrite fastpath.
    947  * Flushes invalid cachelines before writing to the target if
    948  * needs_clflush_before is set and flushes out any written cachelines after
    949  * writing if needs_clflush is set. */
    950 static int
    951 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
    952 		  char __user *user_data,
    953 		  bool page_do_bit17_swizzling,
    954 		  bool needs_clflush_before,
    955 		  bool needs_clflush_after)
    956 {
    957 #ifdef __NetBSD__
    958 	return -EFAULT;
    959 #else
    960 	char *vaddr;
    961 	int ret;
    962 
    963 	if (unlikely(page_do_bit17_swizzling))
    964 		return -EINVAL;
    965 
    966 	vaddr = kmap_atomic(page);
    967 	if (needs_clflush_before)
    968 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    969 				       page_length);
    970 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
    971 					user_data, page_length);
    972 	if (needs_clflush_after)
    973 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    974 				       page_length);
    975 	kunmap_atomic(vaddr);
    976 
    977 	return ret ? -EFAULT : 0;
    978 #endif
    979 }
    980 
    981 /* Only difference to the fast-path function is that this can handle bit17
    982  * and uses non-atomic copy and kmap functions. */
    983 static int
    984 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
    985 		  char __user *user_data,
    986 		  bool page_do_bit17_swizzling,
    987 		  bool needs_clflush_before,
    988 		  bool needs_clflush_after)
    989 {
    990 	char *vaddr;
    991 	int ret;
    992 
    993 	vaddr = kmap(page);
    994 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
    995 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    996 					     page_length,
    997 					     page_do_bit17_swizzling);
    998 	if (page_do_bit17_swizzling)
    999 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
   1000 						user_data,
   1001 						page_length);
   1002 	else
   1003 		ret = __copy_from_user(vaddr + shmem_page_offset,
   1004 				       user_data,
   1005 				       page_length);
   1006 	if (needs_clflush_after)
   1007 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
   1008 					     page_length,
   1009 					     page_do_bit17_swizzling);
   1010 	kunmap(page);
   1011 
   1012 	return ret ? -EFAULT : 0;
   1013 }
   1014 
   1015 static int
   1016 i915_gem_shmem_pwrite(struct drm_device *dev,
   1017 		      struct drm_i915_gem_object *obj,
   1018 		      struct drm_i915_gem_pwrite *args,
   1019 		      struct drm_file *file)
   1020 {
   1021 	ssize_t remain;
   1022 	loff_t offset;
   1023 	char __user *user_data;
   1024 	int shmem_page_offset, page_length, ret = 0;
   1025 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
   1026 	int hit_slowpath = 0;
   1027 	int needs_clflush_after = 0;
   1028 	int needs_clflush_before = 0;
   1029 #ifndef __NetBSD__
   1030 	struct sg_page_iter sg_iter;
   1031 	int flush_mask = boot_cpu_data.x86_clflush_size - 1;
   1032 #else
   1033 	int flush_mask = cpu_info_primary.ci_cflush_lsize - 1;
   1034 #endif
   1035 
   1036 	user_data = to_user_ptr(args->data_ptr);
   1037 	remain = args->size;
   1038 
   1039 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
   1040 
   1041 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1042 		/* If we're not in the cpu write domain, set ourself into the gtt
   1043 		 * write domain and manually flush cachelines (if required). This
   1044 		 * optimizes for the case when the gpu will use the data
   1045 		 * right away and we therefore have to clflush anyway. */
   1046 		needs_clflush_after = cpu_write_needs_clflush(obj);
   1047 		ret = i915_gem_object_wait_rendering(obj, false);
   1048 		if (ret)
   1049 			return ret;
   1050 	}
   1051 	/* Same trick applies to invalidate partially written cachelines read
   1052 	 * before writing. */
   1053 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
   1054 		needs_clflush_before =
   1055 			!cpu_cache_is_coherent(dev, obj->cache_level);
   1056 
   1057 	ret = i915_gem_object_get_pages(obj);
   1058 	if (ret)
   1059 		return ret;
   1060 
   1061 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
   1062 
   1063 	i915_gem_object_pin_pages(obj);
   1064 
   1065 	offset = args->offset;
   1066 	obj->dirty = 1;
   1067 
   1068 #ifdef __NetBSD__
   1069 	while (0 < remain)
   1070 #else
   1071 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
   1072 			 offset >> PAGE_SHIFT)
   1073 #endif
   1074 	{
   1075 #ifdef __NetBSD__
   1076 		struct page *const page = i915_gem_object_get_page(obj,
   1077 		    atop(offset));
   1078 #else
   1079 		struct page *page = sg_page_iter_page(&sg_iter);
   1080 
   1081 		if (remain <= 0)
   1082 			break;
   1083 #endif
   1084 
   1085 		/* Operation in this page
   1086 		 *
   1087 		 * shmem_page_offset = offset within page in shmem file
   1088 		 * page_length = bytes to copy for this page
   1089 		 */
   1090 		shmem_page_offset = offset_in_page(offset);
   1091 
   1092 		page_length = remain;
   1093 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
   1094 			page_length = PAGE_SIZE - shmem_page_offset;
   1095 
   1096 		/* If we don't overwrite a cacheline completely we need to be
   1097 		 * careful to have up-to-date data by first clflushing. Don't
   1098 		 * overcomplicate things and flush the entire patch. */
   1099 		const int partial_cacheline_write = needs_clflush_before &&
   1100 			((shmem_page_offset | page_length) & flush_mask);
   1101 
   1102 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
   1103 			(page_to_phys(page) & (1 << 17)) != 0;
   1104 
   1105 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
   1106 					user_data, page_do_bit17_swizzling,
   1107 					partial_cacheline_write,
   1108 					needs_clflush_after);
   1109 		if (ret == 0)
   1110 			goto next_page;
   1111 
   1112 		hit_slowpath = 1;
   1113 		mutex_unlock(&dev->struct_mutex);
   1114 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
   1115 					user_data, page_do_bit17_swizzling,
   1116 					partial_cacheline_write,
   1117 					needs_clflush_after);
   1118 
   1119 		mutex_lock(&dev->struct_mutex);
   1120 
   1121 		if (ret)
   1122 			goto out;
   1123 
   1124 next_page:
   1125 		remain -= page_length;
   1126 		user_data += page_length;
   1127 		offset += page_length;
   1128 	}
   1129 
   1130 out:
   1131 	i915_gem_object_unpin_pages(obj);
   1132 
   1133 	if (hit_slowpath) {
   1134 		/*
   1135 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
   1136 		 * cachelines in-line while writing and the object moved
   1137 		 * out of the cpu write domain while we've dropped the lock.
   1138 		 */
   1139 		if (!needs_clflush_after &&
   1140 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1141 			if (i915_gem_clflush_object(obj, obj->pin_display))
   1142 				needs_clflush_after = true;
   1143 		}
   1144 	}
   1145 
   1146 	if (needs_clflush_after)
   1147 		i915_gem_chipset_flush(dev);
   1148 	else
   1149 		obj->cache_dirty = true;
   1150 
   1151 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
   1152 	return ret;
   1153 }
   1154 
   1155 /**
   1156  * Writes data to the object referenced by handle.
   1157  *
   1158  * On error, the contents of the buffer that were to be modified are undefined.
   1159  */
   1160 int
   1161 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
   1162 		      struct drm_file *file)
   1163 {
   1164 	struct drm_i915_private *dev_priv = dev->dev_private;
   1165 	struct drm_i915_gem_pwrite *args = data;
   1166 	struct drm_gem_object *gobj;
   1167 	struct drm_i915_gem_object *obj;
   1168 	int ret;
   1169 
   1170 	if (args->size == 0)
   1171 		return 0;
   1172 
   1173 	if (!access_ok(VERIFY_READ,
   1174 		       to_user_ptr(args->data_ptr),
   1175 		       args->size))
   1176 		return -EFAULT;
   1177 
   1178 #ifndef __NetBSD__		/* XXX prefault */
   1179 	if (likely(!i915.prefault_disable)) {
   1180 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
   1181 						   args->size);
   1182 		if (ret)
   1183 			return -EFAULT;
   1184 	}
   1185 #endif
   1186 
   1187 	intel_runtime_pm_get(dev_priv);
   1188 
   1189 	ret = i915_mutex_lock_interruptible(dev);
   1190 	if (ret)
   1191 		goto put_rpm;
   1192 
   1193 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1194 	if (gobj == NULL) {
   1195 		ret = -ENOENT;
   1196 		goto unlock;
   1197 	}
   1198 	obj = to_intel_bo(gobj);
   1199 
   1200 	/* Bounds check destination. */
   1201 	if (args->offset > obj->base.size ||
   1202 	    args->size > obj->base.size - args->offset) {
   1203 		ret = -EINVAL;
   1204 		goto out;
   1205 	}
   1206 
   1207 	/* prime objects have no backing filp to GEM pread/pwrite
   1208 	 * pages from.
   1209 	 */
   1210 	if (!obj->base.filp) {
   1211 		ret = -EINVAL;
   1212 		goto out;
   1213 	}
   1214 
   1215 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
   1216 
   1217 	ret = -EFAULT;
   1218 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
   1219 	 * it would end up going through the fenced access, and we'll get
   1220 	 * different detiling behavior between reading and writing.
   1221 	 * pread/pwrite currently are reading and writing from the CPU
   1222 	 * perspective, requiring manual detiling by the client.
   1223 	 */
   1224 	if (obj->tiling_mode == I915_TILING_NONE &&
   1225 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
   1226 	    cpu_write_needs_clflush(obj)) {
   1227 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
   1228 		/* Note that the gtt paths might fail with non-page-backed user
   1229 		 * pointers (e.g. gtt mappings when moving data between
   1230 		 * textures). Fallback to the shmem path in that case. */
   1231 	}
   1232 
   1233 	if (ret == -EFAULT || ret == -ENOSPC) {
   1234 		if (obj->phys_handle)
   1235 			ret = i915_gem_phys_pwrite(obj, args, file);
   1236 		else
   1237 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
   1238 	}
   1239 
   1240 out:
   1241 	drm_gem_object_unreference(&obj->base);
   1242 unlock:
   1243 	mutex_unlock(&dev->struct_mutex);
   1244 put_rpm:
   1245 	intel_runtime_pm_put(dev_priv);
   1246 
   1247 	return ret;
   1248 }
   1249 
   1250 int
   1251 i915_gem_check_wedge(struct i915_gpu_error *error,
   1252 		     bool interruptible)
   1253 {
   1254 	if (i915_reset_in_progress(error)) {
   1255 		/* Non-interruptible callers can't handle -EAGAIN, hence return
   1256 		 * -EIO unconditionally for these. */
   1257 		if (!interruptible)
   1258 			return -EIO;
   1259 
   1260 		/* Recovery complete, but the reset failed ... */
   1261 		if (i915_terminally_wedged(error))
   1262 			return -EIO;
   1263 
   1264 		/*
   1265 		 * Check if GPU Reset is in progress - we need intel_ring_begin
   1266 		 * to work properly to reinit the hw state while the gpu is
   1267 		 * still marked as reset-in-progress. Handle this with a flag.
   1268 		 */
   1269 		if (!error->reload_in_reset)
   1270 			return -EAGAIN;
   1271 	}
   1272 
   1273 	return 0;
   1274 }
   1275 
   1276 #ifndef __NetBSD__
   1277 static void fake_irq(unsigned long data)
   1278 {
   1279 	wake_up_process((struct task_struct *)data);
   1280 }
   1281 #endif
   1282 
   1283 static bool missed_irq(struct drm_i915_private *dev_priv,
   1284 		       struct intel_engine_cs *ring)
   1285 {
   1286 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
   1287 }
   1288 
   1289 #ifndef __NetBSD__
   1290 static unsigned long local_clock_us(unsigned *cpu)
   1291 {
   1292 	unsigned long t;
   1293 
   1294 	/* Cheaply and approximately convert from nanoseconds to microseconds.
   1295 	 * The result and subsequent calculations are also defined in the same
   1296 	 * approximate microseconds units. The principal source of timing
   1297 	 * error here is from the simple truncation.
   1298 	 *
   1299 	 * Note that local_clock() is only defined wrt to the current CPU;
   1300 	 * the comparisons are no longer valid if we switch CPUs. Instead of
   1301 	 * blocking preemption for the entire busywait, we can detect the CPU
   1302 	 * switch and use that as indicator of system load and a reason to
   1303 	 * stop busywaiting, see busywait_stop().
   1304 	 */
   1305 	*cpu = get_cpu();
   1306 	t = local_clock() >> 10;
   1307 	put_cpu();
   1308 
   1309 	return t;
   1310 }
   1311 
   1312 static bool busywait_stop(unsigned long timeout, unsigned cpu)
   1313 {
   1314 	unsigned this_cpu;
   1315 
   1316 	if (time_after(local_clock_us(&this_cpu), timeout))
   1317 		return true;
   1318 
   1319 	return this_cpu != cpu;
   1320 }
   1321 #endif
   1322 
   1323 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
   1324 {
   1325 #ifndef __NetBSD__
   1326 	unsigned long timeout;
   1327 	unsigned cpu;
   1328 #endif
   1329 
   1330 	/* When waiting for high frequency requests, e.g. during synchronous
   1331 	 * rendering split between the CPU and GPU, the finite amount of time
   1332 	 * required to set up the irq and wait upon it limits the response
   1333 	 * rate. By busywaiting on the request completion for a short while we
   1334 	 * can service the high frequency waits as quick as possible. However,
   1335 	 * if it is a slow request, we want to sleep as quickly as possible.
   1336 	 * The tradeoff between waiting and sleeping is roughly the time it
   1337 	 * takes to sleep on a request, on the order of a microsecond.
   1338 	 */
   1339 
   1340 	if (req->ring->irq_refcount)
   1341 		return -EBUSY;
   1342 
   1343 	/* Only spin if we know the GPU is processing this request */
   1344 	if (!i915_gem_request_started(req, true))
   1345 		return -EAGAIN;
   1346 
   1347 #ifndef __NetBSD__		/* XXX No local clock in usec.  */
   1348 	timeout = local_clock_us(&cpu) + 5;
   1349 	while (!need_resched()) {
   1350 		if (i915_gem_request_completed(req, true))
   1351 			return 0;
   1352 
   1353 		if (signal_pending_state(state, current))
   1354 			break;
   1355 
   1356 		if (busywait_stop(timeout, cpu))
   1357 			break;
   1358 
   1359 		cpu_relax_lowlatency();
   1360 	}
   1361 #endif
   1362 
   1363 	if (i915_gem_request_completed(req, false))
   1364 		return 0;
   1365 
   1366 	return -EAGAIN;
   1367 }
   1368 
   1369 /**
   1370  * __i915_wait_request - wait until execution of request has finished
   1371  * @req: duh!
   1372  * @reset_counter: reset sequence associated with the given request
   1373  * @interruptible: do an interruptible wait (normally yes)
   1374  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
   1375  *
   1376  * Note: It is of utmost importance that the passed in seqno and reset_counter
   1377  * values have been read by the caller in an smp safe manner. Where read-side
   1378  * locks are involved, it is sufficient to read the reset_counter before
   1379  * unlocking the lock that protects the seqno. For lockless tricks, the
   1380  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
   1381  * inserted.
   1382  *
   1383  * Returns 0 if the request was found within the alloted time. Else returns the
   1384  * errno with remaining time filled in timeout argument.
   1385  */
   1386 int __i915_wait_request(struct drm_i915_gem_request *req,
   1387 			unsigned reset_counter,
   1388 			bool interruptible,
   1389 			s64 *timeout,
   1390 			struct intel_rps_client *rps)
   1391 {
   1392 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
   1393 	struct drm_device *dev = ring->dev;
   1394 	struct drm_i915_private *dev_priv = dev->dev_private;
   1395 	const bool irq_test_in_progress =
   1396 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
   1397 #ifdef __NetBSD__
   1398 	int state = 0;
   1399 	bool wedged;
   1400 #else
   1401 	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
   1402 	DEFINE_WAIT(wait);
   1403 	unsigned long timeout_expire;
   1404 #endif
   1405 	s64 before, now;
   1406 	int ret;
   1407 
   1408 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
   1409 
   1410 	if (list_empty(&req->list))
   1411 		return 0;
   1412 
   1413 	if (i915_gem_request_completed(req, true))
   1414 		return 0;
   1415 
   1416 #ifndef __NetBSD__
   1417 	timeout_expire = 0;
   1418 	if (timeout) {
   1419 		if (WARN_ON(*timeout < 0))
   1420 			return -EINVAL;
   1421 
   1422 		if (*timeout == 0)
   1423 			return -ETIME;
   1424 
   1425 		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
   1426 	}
   1427 #endif
   1428 
   1429 	if (INTEL_INFO(dev_priv)->gen >= 6)
   1430 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
   1431 
   1432 	/* Record current time in case interrupted by signal, or wedged */
   1433 	trace_i915_gem_request_wait_begin(req);
   1434 	before = ktime_get_raw_ns();
   1435 
   1436 	/* Optimistic spin for the next jiffie before touching IRQs */
   1437 	ret = __i915_spin_request(req, state);
   1438 	if (ret == 0)
   1439 		goto out;
   1440 
   1441 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
   1442 		ret = -ENODEV;
   1443 		goto out;
   1444 	}
   1445 
   1446 #ifdef __NetBSD__
   1447 #  define	EXIT_COND						      \
   1448 	((wedged = (reset_counter !=					      \
   1449 		atomic_read(&dev_priv->gpu_error.reset_counter))) ||	      \
   1450 	    i915_gem_request_completed(req, false))
   1451 	if (timeout) {
   1452 		int ticks = missed_irq(dev_priv, ring) ? 1 :
   1453 		    nsecs_to_jiffies_timeout(*timeout);
   1454 		if (interruptible) {
   1455 			DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
   1456 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1457 		} else {
   1458 			DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1459 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1460 		}
   1461 		if (ret < 0)	/* Failure: return negative error as is.  */
   1462 			;
   1463 		else if (ret == 0) /* Timed out: return -ETIME.  */
   1464 			ret = -ETIME;
   1465 		else		/* Succeeded (ret > 0): return 0.  */
   1466 			ret = 0;
   1467 	} else {
   1468 		if (interruptible) {
   1469 			DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
   1470 			    &dev_priv->irq_lock, EXIT_COND);
   1471 		} else {
   1472 			DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1473 			    &dev_priv->irq_lock, EXIT_COND);
   1474 		}
   1475 		/* ret is negative on failure or zero on success.  */
   1476 	}
   1477 	if (wedged) {
   1478 		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1479 		if (ret == 0)
   1480 			ret = -EAGAIN;
   1481 	}
   1482 #else
   1483 	for (;;) {
   1484 		struct timer_list timer;
   1485 
   1486 		prepare_to_wait(&ring->irq_queue, &wait, state);
   1487 
   1488 		/* We need to check whether any gpu reset happened in between
   1489 		 * the caller grabbing the seqno and now ... */
   1490 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
   1491 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
   1492 			 * is truely gone. */
   1493 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1494 			if (ret == 0)
   1495 				ret = -EAGAIN;
   1496 			break;
   1497 		}
   1498 
   1499 		if (i915_gem_request_completed(req, false)) {
   1500 			ret = 0;
   1501 			break;
   1502 		}
   1503 
   1504 		if (signal_pending_state(state, current)) {
   1505 			ret = -ERESTARTSYS;
   1506 			break;
   1507 		}
   1508 
   1509 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
   1510 			ret = -ETIME;
   1511 			break;
   1512 		}
   1513 
   1514 		timer.function = NULL;
   1515 		if (timeout || missed_irq(dev_priv, ring)) {
   1516 			unsigned long expire;
   1517 
   1518 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
   1519 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
   1520 			mod_timer(&timer, expire);
   1521 		}
   1522 
   1523 		io_schedule();
   1524 
   1525 		if (timer.function) {
   1526 			del_singleshot_timer_sync(&timer);
   1527 			destroy_timer_on_stack(&timer);
   1528 		}
   1529 	}
   1530 #endif
   1531 	if (!irq_test_in_progress)
   1532 		ring->irq_put(ring);
   1533 
   1534 #ifndef __NetBSD__
   1535 	finish_wait(&ring->irq_queue, &wait);
   1536 #endif
   1537 
   1538 out:
   1539 	now = ktime_get_raw_ns();
   1540 	trace_i915_gem_request_wait_end(req);
   1541 
   1542 	if (timeout) {
   1543 		s64 tres = *timeout - (now - before);
   1544 
   1545 		*timeout = tres < 0 ? 0 : tres;
   1546 
   1547 		/*
   1548 		 * Apparently ktime isn't accurate enough and occasionally has a
   1549 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
   1550 		 * things up to make the test happy. We allow up to 1 jiffy.
   1551 		 *
   1552 		 * This is a regrssion from the timespec->ktime conversion.
   1553 		 */
   1554 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
   1555 			*timeout = 0;
   1556 	}
   1557 
   1558 	return ret;
   1559 }
   1560 
   1561 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
   1562 				   struct drm_file *file)
   1563 {
   1564 	struct drm_i915_private *dev_private __unused;
   1565 	struct drm_i915_file_private *file_priv;
   1566 
   1567 	WARN_ON(!req || !file || req->file_priv);
   1568 
   1569 	if (!req || !file)
   1570 		return -EINVAL;
   1571 
   1572 	if (req->file_priv)
   1573 		return -EINVAL;
   1574 
   1575 	dev_private = req->ring->dev->dev_private;
   1576 	file_priv = file->driver_priv;
   1577 
   1578 	spin_lock(&file_priv->mm.lock);
   1579 	req->file_priv = file_priv;
   1580 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
   1581 	spin_unlock(&file_priv->mm.lock);
   1582 
   1583 #ifndef __NetBSD__
   1584 	req->pid = get_pid(task_pid(current));
   1585 #endif
   1586 
   1587 	return 0;
   1588 }
   1589 
   1590 static inline void
   1591 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
   1592 {
   1593 	struct drm_i915_file_private *file_priv = request->file_priv;
   1594 
   1595 	if (!file_priv)
   1596 		return;
   1597 
   1598 	spin_lock(&file_priv->mm.lock);
   1599 	list_del(&request->client_list);
   1600 	request->file_priv = NULL;
   1601 	spin_unlock(&file_priv->mm.lock);
   1602 
   1603 #ifndef __NetBSD__
   1604 	put_pid(request->pid);
   1605 	request->pid = NULL;
   1606 #endif
   1607 }
   1608 
   1609 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
   1610 {
   1611 	trace_i915_gem_request_retire(request);
   1612 
   1613 	/* We know the GPU must have read the request to have
   1614 	 * sent us the seqno + interrupt, so use the position
   1615 	 * of tail of the request to update the last known position
   1616 	 * of the GPU head.
   1617 	 *
   1618 	 * Note this requires that we are always called in request
   1619 	 * completion order.
   1620 	 */
   1621 	request->ringbuf->last_retired_head = request->postfix;
   1622 
   1623 	list_del_init(&request->list);
   1624 	i915_gem_request_remove_from_client(request);
   1625 
   1626 	i915_gem_request_unreference(request);
   1627 }
   1628 
   1629 static void
   1630 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
   1631 {
   1632 	struct intel_engine_cs *engine = req->ring;
   1633 	struct drm_i915_gem_request *tmp;
   1634 
   1635 	lockdep_assert_held(&engine->dev->struct_mutex);
   1636 
   1637 	if (list_empty(&req->list))
   1638 		return;
   1639 
   1640 	do {
   1641 		tmp = list_first_entry(&engine->request_list,
   1642 				       typeof(*tmp), list);
   1643 
   1644 		i915_gem_request_retire(tmp);
   1645 	} while (tmp != req);
   1646 
   1647 	WARN_ON(i915_verify_lists(engine->dev));
   1648 }
   1649 
   1650 /**
   1651  * Waits for a request to be signaled, and cleans up the
   1652  * request and object lists appropriately for that event.
   1653  */
   1654 int
   1655 i915_wait_request(struct drm_i915_gem_request *req)
   1656 {
   1657 	struct drm_device *dev;
   1658 	struct drm_i915_private *dev_priv;
   1659 	bool interruptible;
   1660 	int ret;
   1661 
   1662 	BUG_ON(req == NULL);
   1663 
   1664 	dev = req->ring->dev;
   1665 	dev_priv = dev->dev_private;
   1666 	interruptible = dev_priv->mm.interruptible;
   1667 
   1668 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1669 
   1670 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1671 	if (ret)
   1672 		return ret;
   1673 
   1674 	ret = __i915_wait_request(req,
   1675 				  atomic_read(&dev_priv->gpu_error.reset_counter),
   1676 				  interruptible, NULL, NULL);
   1677 	if (ret)
   1678 		return ret;
   1679 
   1680 	__i915_gem_request_retire__upto(req);
   1681 	return 0;
   1682 }
   1683 
   1684 /**
   1685  * Ensures that all rendering to the object has completed and the object is
   1686  * safe to unbind from the GTT or access from the CPU.
   1687  */
   1688 int
   1689 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
   1690 			       bool readonly)
   1691 {
   1692 	int ret, i;
   1693 
   1694 	if (!obj->active)
   1695 		return 0;
   1696 
   1697 	if (readonly) {
   1698 		if (obj->last_write_req != NULL) {
   1699 			ret = i915_wait_request(obj->last_write_req);
   1700 			if (ret)
   1701 				return ret;
   1702 
   1703 			i = obj->last_write_req->ring->id;
   1704 			if (obj->last_read_req[i] == obj->last_write_req)
   1705 				i915_gem_object_retire__read(obj, i);
   1706 			else
   1707 				i915_gem_object_retire__write(obj);
   1708 		}
   1709 	} else {
   1710 		for (i = 0; i < I915_NUM_RINGS; i++) {
   1711 			if (obj->last_read_req[i] == NULL)
   1712 				continue;
   1713 
   1714 			ret = i915_wait_request(obj->last_read_req[i]);
   1715 			if (ret)
   1716 				return ret;
   1717 
   1718 			i915_gem_object_retire__read(obj, i);
   1719 		}
   1720 		RQ_BUG_ON(obj->active);
   1721 	}
   1722 
   1723 	return 0;
   1724 }
   1725 
   1726 static void
   1727 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
   1728 			       struct drm_i915_gem_request *req)
   1729 {
   1730 	int ring = req->ring->id;
   1731 
   1732 	if (obj->last_read_req[ring] == req)
   1733 		i915_gem_object_retire__read(obj, ring);
   1734 	else if (obj->last_write_req == req)
   1735 		i915_gem_object_retire__write(obj);
   1736 
   1737 	__i915_gem_request_retire__upto(req);
   1738 }
   1739 
   1740 /* A nonblocking variant of the above wait. This is a highly dangerous routine
   1741  * as the object state may change during this call.
   1742  */
   1743 static __must_check int
   1744 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
   1745 					    struct intel_rps_client *rps,
   1746 					    bool readonly)
   1747 {
   1748 	struct drm_device *dev = obj->base.dev;
   1749 	struct drm_i915_private *dev_priv = dev->dev_private;
   1750 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
   1751 	unsigned reset_counter;
   1752 	int ret, i, n = 0;
   1753 
   1754 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1755 	BUG_ON(!dev_priv->mm.interruptible);
   1756 
   1757 	if (!obj->active)
   1758 		return 0;
   1759 
   1760 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
   1761 	if (ret)
   1762 		return ret;
   1763 
   1764 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   1765 
   1766 	if (readonly) {
   1767 		struct drm_i915_gem_request *req;
   1768 
   1769 		req = obj->last_write_req;
   1770 		if (req == NULL)
   1771 			return 0;
   1772 
   1773 		requests[n++] = i915_gem_request_reference(req);
   1774 	} else {
   1775 		for (i = 0; i < I915_NUM_RINGS; i++) {
   1776 			struct drm_i915_gem_request *req;
   1777 
   1778 			req = obj->last_read_req[i];
   1779 			if (req == NULL)
   1780 				continue;
   1781 
   1782 			requests[n++] = i915_gem_request_reference(req);
   1783 		}
   1784 	}
   1785 
   1786 	mutex_unlock(&dev->struct_mutex);
   1787 	for (i = 0; ret == 0 && i < n; i++)
   1788 		ret = __i915_wait_request(requests[i], reset_counter, true,
   1789 					  NULL, rps);
   1790 	mutex_lock(&dev->struct_mutex);
   1791 
   1792 	for (i = 0; i < n; i++) {
   1793 		if (ret == 0)
   1794 			i915_gem_object_retire_request(obj, requests[i]);
   1795 		i915_gem_request_unreference(requests[i]);
   1796 	}
   1797 
   1798 	return ret;
   1799 }
   1800 
   1801 static struct intel_rps_client *to_rps_client(struct drm_file *file)
   1802 {
   1803 	struct drm_i915_file_private *fpriv = file->driver_priv;
   1804 	return &fpriv->rps;
   1805 }
   1806 
   1807 /**
   1808  * Called when user space prepares to use an object with the CPU, either
   1809  * through the mmap ioctl's mapping or a GTT mapping.
   1810  */
   1811 int
   1812 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
   1813 			  struct drm_file *file)
   1814 {
   1815 	struct drm_i915_gem_set_domain *args = data;
   1816 	struct drm_gem_object *gobj;
   1817 	struct drm_i915_gem_object *obj;
   1818 	uint32_t read_domains = args->read_domains;
   1819 	uint32_t write_domain = args->write_domain;
   1820 	int ret;
   1821 
   1822 	/* Only handle setting domains to types used by the CPU. */
   1823 	if (write_domain & I915_GEM_GPU_DOMAINS)
   1824 		return -EINVAL;
   1825 
   1826 	if (read_domains & I915_GEM_GPU_DOMAINS)
   1827 		return -EINVAL;
   1828 
   1829 	/* Having something in the write domain implies it's in the read
   1830 	 * domain, and only that read domain.  Enforce that in the request.
   1831 	 */
   1832 	if (write_domain != 0 && read_domains != write_domain)
   1833 		return -EINVAL;
   1834 
   1835 	ret = i915_mutex_lock_interruptible(dev);
   1836 	if (ret)
   1837 		return ret;
   1838 
   1839 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1840 	if (gobj == NULL) {
   1841 		ret = -ENOENT;
   1842 		goto unlock;
   1843 	}
   1844 	obj = to_intel_bo(gobj);
   1845 
   1846 	/* Try to flush the object off the GPU without holding the lock.
   1847 	 * We will repeat the flush holding the lock in the normal manner
   1848 	 * to catch cases where we are gazumped.
   1849 	 */
   1850 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
   1851 							  to_rps_client(file),
   1852 							  !write_domain);
   1853 	if (ret)
   1854 		goto unref;
   1855 
   1856 	if (read_domains & I915_GEM_DOMAIN_GTT)
   1857 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
   1858 	else
   1859 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
   1860 
   1861 	if (write_domain != 0)
   1862 		intel_fb_obj_invalidate(obj,
   1863 					write_domain == I915_GEM_DOMAIN_GTT ?
   1864 					ORIGIN_GTT : ORIGIN_CPU);
   1865 
   1866 unref:
   1867 	drm_gem_object_unreference(&obj->base);
   1868 unlock:
   1869 	mutex_unlock(&dev->struct_mutex);
   1870 	return ret;
   1871 }
   1872 
   1873 /**
   1874  * Called when user space has done writes to this buffer
   1875  */
   1876 int
   1877 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
   1878 			 struct drm_file *file)
   1879 {
   1880 	struct drm_i915_gem_sw_finish *args = data;
   1881 	struct drm_gem_object *gobj;
   1882 	struct drm_i915_gem_object *obj;
   1883 	int ret = 0;
   1884 
   1885 	ret = i915_mutex_lock_interruptible(dev);
   1886 	if (ret)
   1887 		return ret;
   1888 
   1889 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1890 	if (gobj == NULL) {
   1891 		ret = -ENOENT;
   1892 		goto unlock;
   1893 	}
   1894 	obj = to_intel_bo(gobj);
   1895 
   1896 	/* Pinned buffers may be scanout, so flush the cache */
   1897 	if (obj->pin_display)
   1898 		i915_gem_object_flush_cpu_write_domain(obj);
   1899 
   1900 	drm_gem_object_unreference(&obj->base);
   1901 unlock:
   1902 	mutex_unlock(&dev->struct_mutex);
   1903 	return ret;
   1904 }
   1905 
   1906 /**
   1907  * Maps the contents of an object, returning the address it is mapped
   1908  * into.
   1909  *
   1910  * While the mapping holds a reference on the contents of the object, it doesn't
   1911  * imply a ref on the object itself.
   1912  *
   1913  * IMPORTANT:
   1914  *
   1915  * DRM driver writers who look a this function as an example for how to do GEM
   1916  * mmap support, please don't implement mmap support like here. The modern way
   1917  * to implement DRM mmap support is with an mmap offset ioctl (like
   1918  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
   1919  * That way debug tooling like valgrind will understand what's going on, hiding
   1920  * the mmap call in a driver private ioctl will break that. The i915 driver only
   1921  * does cpu mmaps this way because we didn't know better.
   1922  */
   1923 int
   1924 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
   1925 		    struct drm_file *file)
   1926 {
   1927 	struct drm_i915_gem_mmap *args = data;
   1928 	struct drm_gem_object *obj;
   1929 	unsigned long addr;
   1930 #ifdef __NetBSD__
   1931 	int ret;
   1932 #endif
   1933 
   1934 	if (args->flags & ~(I915_MMAP_WC))
   1935 		return -EINVAL;
   1936 
   1937 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
   1938 		return -ENODEV;
   1939 
   1940 	obj = drm_gem_object_lookup(dev, file, args->handle);
   1941 	if (obj == NULL)
   1942 		return -ENOENT;
   1943 
   1944 	/* prime objects have no backing filp to GEM mmap
   1945 	 * pages from.
   1946 	 */
   1947 	if (!obj->filp) {
   1948 		drm_gem_object_unreference_unlocked(obj);
   1949 		return -EINVAL;
   1950 	}
   1951 
   1952 #ifdef __NetBSD__
   1953 	addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
   1954 	    (vaddr_t)curproc->p_vmspace->vm_daddr, args->size,
   1955 	    curproc->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1956 	/* XXX errno NetBSD->Linux */
   1957 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
   1958 	    obj->filp, args->offset, 0,
   1959 	    UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
   1960 		(VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
   1961 		0));
   1962 	if (ret) {
   1963 		drm_gem_object_unreference_unlocked(obj);
   1964 		return ret;
   1965 	}
   1966 	uao_reference(obj->filp);
   1967 	drm_gem_object_unreference_unlocked(obj);
   1968 #else
   1969 	addr = vm_mmap(obj->filp, 0, args->size,
   1970 		       PROT_READ | PROT_WRITE, MAP_SHARED,
   1971 		       args->offset);
   1972 	if (args->flags & I915_MMAP_WC) {
   1973 		struct mm_struct *mm = current->mm;
   1974 		struct vm_area_struct *vma;
   1975 
   1976 		down_write(&mm->mmap_sem);
   1977 		vma = find_vma(mm, addr);
   1978 		if (vma)
   1979 			vma->vm_page_prot =
   1980 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
   1981 		else
   1982 			addr = -ENOMEM;
   1983 		up_write(&mm->mmap_sem);
   1984 	}
   1985 	drm_gem_object_unreference_unlocked(obj);
   1986 	if (IS_ERR((void *)addr))
   1987 		return addr;
   1988 #endif
   1989 
   1990 	args->addr_ptr = (uint64_t) addr;
   1991 
   1992 	return 0;
   1993 }
   1994 
   1995 #ifdef __NetBSD__		/* XXX gem gtt fault */
   1996 static int	i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
   1997 		    struct vm_page **, int, int, vm_prot_t, int, paddr_t);
   1998 
   1999 int
   2000 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   2001     int npages, int centeridx, vm_prot_t access_type, int flags)
   2002 {
   2003 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   2004 	struct drm_gem_object *gem_obj =
   2005 	    container_of(uobj, struct drm_gem_object, gemo_uvmobj);
   2006 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   2007 	struct drm_device *dev = obj->base.dev;
   2008 	struct drm_i915_private *dev_priv = dev->dev_private;
   2009 	voff_t byte_offset;
   2010 	pgoff_t page_offset;
   2011 	int ret = 0;
   2012 	bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
   2013 
   2014 	byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
   2015 	KASSERT(byte_offset <= obj->base.size);
   2016 	page_offset = (byte_offset >> PAGE_SHIFT);
   2017 
   2018 	intel_runtime_pm_get(dev_priv);
   2019 
   2020 	/* Thanks, uvm, but we don't need this lock.  */
   2021 	mutex_exit(uobj->vmobjlock);
   2022 
   2023 	ret = i915_mutex_lock_interruptible(dev);
   2024 	if (ret)
   2025 		goto out;
   2026 
   2027 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   2028 
   2029 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   2030 	if (ret)
   2031 		goto unlock;
   2032 
   2033 	if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
   2034 		ret = -EINVAL;
   2035 		goto unlock;
   2036 	}
   2037 
   2038 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
   2039 	if (ret)
   2040 		goto unlock;
   2041 
   2042 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   2043 	if (ret)
   2044 		goto unpin;
   2045 
   2046 	ret = i915_gem_object_get_fence(obj);
   2047 	if (ret)
   2048 		goto unpin;
   2049 
   2050 	obj->fault_mappable = true;
   2051 
   2052 	/* XXX errno NetBSD->Linux */
   2053 	ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
   2054 	    flags,
   2055 	    (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
   2056 unpin:
   2057 	i915_gem_object_ggtt_unpin(obj);
   2058 unlock:
   2059 	mutex_unlock(&dev->struct_mutex);
   2060 out:
   2061 	mutex_enter(uobj->vmobjlock);
   2062 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
   2063 	if (ret == -ERESTART)
   2064 		uvm_wait("i915flt");
   2065 
   2066 	/*
   2067 	 * Remap EINTR to success, so that we return to userland.
   2068 	 * On the way out, we'll deliver the signal, and if the signal
   2069 	 * is not fatal then the user code which faulted will most likely
   2070 	 * fault again, and we'll come back here for another try.
   2071 	 */
   2072 	if (ret == -EINTR)
   2073 		ret = 0;
   2074 	/* XXX Deal with GPU hangs here...  */
   2075 	intel_runtime_pm_put(dev_priv);
   2076 	/* XXX errno Linux->NetBSD */
   2077 	return -ret;
   2078 }
   2079 
   2080 /*
   2081  * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
   2082  *
   2083  * XXX pmap_enter_default instead of pmap_enter because of a problem
   2084  * with using weak aliases in kernel modules or something.
   2085  */
   2086 int	pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
   2087 
   2088 static int
   2089 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   2090     int npages, int centeridx, vm_prot_t access_type, int flags,
   2091     paddr_t gtt_paddr)
   2092 {
   2093 	struct vm_map_entry *entry = ufi->entry;
   2094 	vaddr_t curr_va;
   2095 	off_t curr_offset;
   2096 	paddr_t paddr;
   2097 	u_int mmapflags;
   2098 	int lcv, retval;
   2099 	vm_prot_t mapprot;
   2100 	UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
   2101 	UVMHIST_LOG(maphist,"  flags=%jd", flags,0,0,0);
   2102 
   2103 	/*
   2104 	 * we do not allow device mappings to be mapped copy-on-write
   2105 	 * so we kill any attempt to do so here.
   2106 	 */
   2107 
   2108 	if (UVM_ET_ISCOPYONWRITE(entry)) {
   2109 		UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%jx)",
   2110 		entry->etype, 0,0,0);
   2111 		return(EIO);
   2112 	}
   2113 
   2114 	/*
   2115 	 * now we must determine the offset in udv to use and the VA to
   2116 	 * use for pmap_enter.  note that we always use orig_map's pmap
   2117 	 * for pmap_enter (even if we have a submap).   since virtual
   2118 	 * addresses in a submap must match the main map, this is ok.
   2119 	 */
   2120 
   2121 	/* udv offset = (offset from start of entry) + entry's offset */
   2122 	curr_offset = entry->offset + (vaddr - entry->start);
   2123 	/* pmap va = vaddr (virtual address of pps[0]) */
   2124 	curr_va = vaddr;
   2125 
   2126 	/*
   2127 	 * loop over the page range entering in as needed
   2128 	 */
   2129 
   2130 	retval = 0;
   2131 	for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
   2132 	    curr_va += PAGE_SIZE) {
   2133 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
   2134 			continue;
   2135 
   2136 		if (pps[lcv] == PGO_DONTCARE)
   2137 			continue;
   2138 
   2139 		paddr = (gtt_paddr + curr_offset);
   2140 		mmapflags = 0;
   2141 		mapprot = ufi->entry->protection;
   2142 		UVMHIST_LOG(maphist,
   2143 		    "  MAPPING: device: pm=0x%#jx, va=0x%jx, pa=0x%jx, at=%jd",
   2144 		    (uintptr_t)ufi->orig_map->pmap, curr_va, paddr, mapprot);
   2145 		if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
   2146 		    PMAP_CANFAIL | mapprot | mmapflags) != 0) {
   2147 			/*
   2148 			 * pmap_enter() didn't have the resource to
   2149 			 * enter this mapping.  Unlock everything,
   2150 			 * wait for the pagedaemon to free up some
   2151 			 * pages, and then tell uvm_fault() to start
   2152 			 * the fault again.
   2153 			 *
   2154 			 * XXX Needs some rethinking for the PGO_ALLPAGES
   2155 			 * XXX case.
   2156 			 */
   2157 			pmap_update(ufi->orig_map->pmap);	/* sync what we have so far */
   2158 			return (ERESTART);
   2159 		}
   2160 	}
   2161 
   2162 	pmap_update(ufi->orig_map->pmap);
   2163 	return (retval);
   2164 }
   2165 #else
   2166 /**
   2167  * i915_gem_fault - fault a page into the GTT
   2168  * @vma: VMA in question
   2169  * @vmf: fault info
   2170  *
   2171  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
   2172  * from userspace.  The fault handler takes care of binding the object to
   2173  * the GTT (if needed), allocating and programming a fence register (again,
   2174  * only if needed based on whether the old reg is still valid or the object
   2175  * is tiled) and inserting a new PTE into the faulting process.
   2176  *
   2177  * Note that the faulting process may involve evicting existing objects
   2178  * from the GTT and/or fence registers to make room.  So performance may
   2179  * suffer if the GTT working set is large or there are few fence registers
   2180  * left.
   2181  */
   2182 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
   2183 {
   2184 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
   2185 	struct drm_device *dev = obj->base.dev;
   2186 	struct drm_i915_private *dev_priv = dev->dev_private;
   2187 	struct i915_ggtt_view view = i915_ggtt_view_normal;
   2188 	pgoff_t page_offset;
   2189 	unsigned long pfn;
   2190 	int ret = 0;
   2191 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
   2192 
   2193 	intel_runtime_pm_get(dev_priv);
   2194 
   2195 	/* We don't use vmf->pgoff since that has the fake offset */
   2196 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
   2197 		PAGE_SHIFT;
   2198 
   2199 	ret = i915_mutex_lock_interruptible(dev);
   2200 	if (ret)
   2201 		goto out;
   2202 
   2203 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   2204 
   2205 	/* Try to flush the object off the GPU first without holding the lock.
   2206 	 * Upon reacquiring the lock, we will perform our sanity checks and then
   2207 	 * repeat the flush holding the lock in the normal manner to catch cases
   2208 	 * where we are gazumped.
   2209 	 */
   2210 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   2211 	if (ret)
   2212 		goto unlock;
   2213 
   2214 	/* Access to snoopable pages through the GTT is incoherent. */
   2215 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
   2216 		ret = -EFAULT;
   2217 		goto unlock;
   2218 	}
   2219 
   2220 	/* Use a partial view if the object is bigger than the aperture. */
   2221 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
   2222 	    obj->tiling_mode == I915_TILING_NONE) {
   2223 		static const unsigned int chunk_size = 256; // 1 MiB
   2224 
   2225 		memset(&view, 0, sizeof(view));
   2226 		view.type = I915_GGTT_VIEW_PARTIAL;
   2227 		view.params.partial.offset = rounddown(page_offset, chunk_size);
   2228 		view.params.partial.size =
   2229 			min_t(unsigned int,
   2230 			      chunk_size,
   2231 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
   2232 			      view.params.partial.offset);
   2233 	}
   2234 
   2235 	/* Now pin it into the GTT if needed */
   2236 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
   2237 	if (ret)
   2238 		goto unlock;
   2239 
   2240 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   2241 	if (ret)
   2242 		goto unpin;
   2243 
   2244 	ret = i915_gem_object_get_fence(obj);
   2245 	if (ret)
   2246 		goto unpin;
   2247 
   2248 	/* Finally, remap it using the new GTT offset */
   2249 	pfn = dev_priv->gtt.mappable_base +
   2250 		i915_gem_obj_ggtt_offset_view(obj, &view);
   2251 	pfn >>= PAGE_SHIFT;
   2252 
   2253 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
   2254 		/* Overriding existing pages in partial view does not cause
   2255 		 * us any trouble as TLBs are still valid because the fault
   2256 		 * is due to userspace losing part of the mapping or never
   2257 		 * having accessed it before (at this partials' range).
   2258 		 */
   2259 		unsigned long base = vma->vm_start +
   2260 				     (view.params.partial.offset << PAGE_SHIFT);
   2261 		unsigned int i;
   2262 
   2263 		for (i = 0; i < view.params.partial.size; i++) {
   2264 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
   2265 			if (ret)
   2266 				break;
   2267 		}
   2268 
   2269 		obj->fault_mappable = true;
   2270 	} else {
   2271 		if (!obj->fault_mappable) {
   2272 			unsigned long size = min_t(unsigned long,
   2273 						   vma->vm_end - vma->vm_start,
   2274 						   obj->base.size);
   2275 			int i;
   2276 
   2277 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
   2278 				ret = vm_insert_pfn(vma,
   2279 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
   2280 						    pfn + i);
   2281 				if (ret)
   2282 					break;
   2283 			}
   2284 
   2285 			obj->fault_mappable = true;
   2286 		} else
   2287 			ret = vm_insert_pfn(vma,
   2288 					    (unsigned long)vmf->virtual_address,
   2289 					    pfn + page_offset);
   2290 	}
   2291 unpin:
   2292 	i915_gem_object_ggtt_unpin_view(obj, &view);
   2293 unlock:
   2294 	mutex_unlock(&dev->struct_mutex);
   2295 out:
   2296 	switch (ret) {
   2297 	case -EIO:
   2298 		/*
   2299 		 * We eat errors when the gpu is terminally wedged to avoid
   2300 		 * userspace unduly crashing (gl has no provisions for mmaps to
   2301 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
   2302 		 * and so needs to be reported.
   2303 		 */
   2304 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
   2305 			ret = VM_FAULT_SIGBUS;
   2306 			break;
   2307 		}
   2308 	case -EAGAIN:
   2309 		/*
   2310 		 * EAGAIN means the gpu is hung and we'll wait for the error
   2311 		 * handler to reset everything when re-faulting in
   2312 		 * i915_mutex_lock_interruptible.
   2313 		 */
   2314 	case 0:
   2315 	case -ERESTARTSYS:
   2316 	case -EINTR:
   2317 	case -EBUSY:
   2318 		/*
   2319 		 * EBUSY is ok: this just means that another thread
   2320 		 * already did the job.
   2321 		 */
   2322 		ret = VM_FAULT_NOPAGE;
   2323 		break;
   2324 	case -ENOMEM:
   2325 		ret = VM_FAULT_OOM;
   2326 		break;
   2327 	case -ENOSPC:
   2328 	case -EFAULT:
   2329 		ret = VM_FAULT_SIGBUS;
   2330 		break;
   2331 	default:
   2332 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
   2333 		ret = VM_FAULT_SIGBUS;
   2334 		break;
   2335 	}
   2336 
   2337 	intel_runtime_pm_put(dev_priv);
   2338 	return ret;
   2339 }
   2340 #endif
   2341 
   2342 /**
   2343  * i915_gem_release_mmap - remove physical page mappings
   2344  * @obj: obj in question
   2345  *
   2346  * Preserve the reservation of the mmapping with the DRM core code, but
   2347  * relinquish ownership of the pages back to the system.
   2348  *
   2349  * It is vital that we remove the page mapping if we have mapped a tiled
   2350  * object through the GTT and then lose the fence register due to
   2351  * resource pressure. Similarly if the object has been moved out of the
   2352  * aperture, than pages mapped into userspace must be revoked. Removing the
   2353  * mapping will then trigger a page fault on the next user access, allowing
   2354  * fixup by i915_gem_fault().
   2355  */
   2356 void
   2357 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
   2358 {
   2359 	if (!obj->fault_mappable)
   2360 		return;
   2361 
   2362 #ifdef __NetBSD__		/* XXX gem gtt fault */
   2363 	{
   2364 		struct drm_device *const dev = obj->base.dev;
   2365 		struct drm_i915_private *const dev_priv = dev->dev_private;
   2366 		const paddr_t start = dev_priv->gtt.mappable_base +
   2367 		    i915_gem_obj_ggtt_offset(obj);
   2368 		const size_t size = obj->base.size;
   2369 		const paddr_t end = start + size;
   2370 		paddr_t pa;
   2371 
   2372 		KASSERT((start & (PAGE_SIZE - 1)) == 0);
   2373 		KASSERT((size & (PAGE_SIZE - 1)) == 0);
   2374 
   2375 		for (pa = start; pa < end; pa += PAGE_SIZE)
   2376 			pmap_pv_protect(pa, VM_PROT_NONE);
   2377 	}
   2378 #else
   2379 	drm_vma_node_unmap(&obj->base.vma_node,
   2380 			   obj->base.dev->anon_inode->i_mapping);
   2381 #endif
   2382 	obj->fault_mappable = false;
   2383 }
   2384 
   2385 void
   2386 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
   2387 {
   2388 	struct drm_i915_gem_object *obj;
   2389 
   2390 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
   2391 		i915_gem_release_mmap(obj);
   2392 }
   2393 
   2394 uint32_t
   2395 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
   2396 {
   2397 	uint32_t gtt_size;
   2398 
   2399 	if (INTEL_INFO(dev)->gen >= 4 ||
   2400 	    tiling_mode == I915_TILING_NONE)
   2401 		return size;
   2402 
   2403 	/* Previous chips need a power-of-two fence region when tiling */
   2404 	if (INTEL_INFO(dev)->gen == 3)
   2405 		gtt_size = 1024*1024;
   2406 	else
   2407 		gtt_size = 512*1024;
   2408 
   2409 	while (gtt_size < size)
   2410 		gtt_size <<= 1;
   2411 
   2412 	return gtt_size;
   2413 }
   2414 
   2415 /**
   2416  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
   2417  * @obj: object to check
   2418  *
   2419  * Return the required GTT alignment for an object, taking into account
   2420  * potential fence register mapping.
   2421  */
   2422 uint32_t
   2423 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
   2424 			   int tiling_mode, bool fenced)
   2425 {
   2426 	/*
   2427 	 * Minimum alignment is 4k (GTT page size), but might be greater
   2428 	 * if a fence register is needed for the object.
   2429 	 */
   2430 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
   2431 	    tiling_mode == I915_TILING_NONE)
   2432 		return 4096;
   2433 
   2434 	/*
   2435 	 * Previous chips need to be aligned to the size of the smallest
   2436 	 * fence register that can contain the object.
   2437 	 */
   2438 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
   2439 }
   2440 
   2441 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
   2442 {
   2443 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2444 	int ret;
   2445 
   2446 	if (drm_vma_node_has_offset(&obj->base.vma_node))
   2447 		return 0;
   2448 
   2449 	dev_priv->mm.shrinker_no_lock_stealing = true;
   2450 
   2451 	ret = drm_gem_create_mmap_offset(&obj->base);
   2452 	if (ret != -ENOSPC)
   2453 		goto out;
   2454 
   2455 	/* Badly fragmented mmap space? The only way we can recover
   2456 	 * space is by destroying unwanted objects. We can't randomly release
   2457 	 * mmap_offsets as userspace expects them to be persistent for the
   2458 	 * lifetime of the objects. The closest we can is to release the
   2459 	 * offsets on purgeable objects by truncating it and marking it purged,
   2460 	 * which prevents userspace from ever using that object again.
   2461 	 */
   2462 	i915_gem_shrink(dev_priv,
   2463 			obj->base.size >> PAGE_SHIFT,
   2464 			I915_SHRINK_BOUND |
   2465 			I915_SHRINK_UNBOUND |
   2466 			I915_SHRINK_PURGEABLE);
   2467 	ret = drm_gem_create_mmap_offset(&obj->base);
   2468 	if (ret != -ENOSPC)
   2469 		goto out;
   2470 
   2471 	i915_gem_shrink_all(dev_priv);
   2472 	ret = drm_gem_create_mmap_offset(&obj->base);
   2473 out:
   2474 	dev_priv->mm.shrinker_no_lock_stealing = false;
   2475 
   2476 	return ret;
   2477 }
   2478 
   2479 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
   2480 {
   2481 	drm_gem_free_mmap_offset(&obj->base);
   2482 }
   2483 
   2484 int
   2485 i915_gem_mmap_gtt(struct drm_file *file,
   2486 		  struct drm_device *dev,
   2487 		  uint32_t handle,
   2488 		  uint64_t *offset)
   2489 {
   2490 	struct drm_gem_object *gobj;
   2491 	struct drm_i915_gem_object *obj;
   2492 	int ret;
   2493 
   2494 	ret = i915_mutex_lock_interruptible(dev);
   2495 	if (ret)
   2496 		return ret;
   2497 
   2498 	gobj = drm_gem_object_lookup(dev, file, handle);
   2499 	if (gobj == NULL) {
   2500 		ret = -ENOENT;
   2501 		goto unlock;
   2502 	}
   2503 	obj = to_intel_bo(gobj);
   2504 
   2505 	if (obj->madv != I915_MADV_WILLNEED) {
   2506 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
   2507 		ret = -EFAULT;
   2508 		goto out;
   2509 	}
   2510 
   2511 	ret = i915_gem_object_create_mmap_offset(obj);
   2512 	if (ret)
   2513 		goto out;
   2514 
   2515 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
   2516 
   2517 out:
   2518 	drm_gem_object_unreference(&obj->base);
   2519 unlock:
   2520 	mutex_unlock(&dev->struct_mutex);
   2521 	return ret;
   2522 }
   2523 
   2524 /**
   2525  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
   2526  * @dev: DRM device
   2527  * @data: GTT mapping ioctl data
   2528  * @file: GEM object info
   2529  *
   2530  * Simply returns the fake offset to userspace so it can mmap it.
   2531  * The mmap call will end up in drm_gem_mmap(), which will set things
   2532  * up so we can get faults in the handler above.
   2533  *
   2534  * The fault handler will take care of binding the object into the GTT
   2535  * (since it may have been evicted to make room for something), allocating
   2536  * a fence register, and mapping the appropriate aperture address into
   2537  * userspace.
   2538  */
   2539 int
   2540 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
   2541 			struct drm_file *file)
   2542 {
   2543 	struct drm_i915_gem_mmap_gtt *args = data;
   2544 
   2545 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
   2546 }
   2547 
   2548 /* Immediately discard the backing storage */
   2549 static void
   2550 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
   2551 {
   2552 	i915_gem_object_free_mmap_offset(obj);
   2553 
   2554 	if (obj->base.filp == NULL)
   2555 		return;
   2556 
   2557 #ifdef __NetBSD__
   2558 	{
   2559 		struct uvm_object *const uobj = obj->base.filp;
   2560 
   2561 		if (uobj != NULL) {
   2562 			/* XXX Calling pgo_put like this is bogus.  */
   2563 			mutex_enter(uobj->vmobjlock);
   2564 			(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   2565 			    (PGO_ALLPAGES | PGO_FREE));
   2566 		}
   2567 	}
   2568 #else
   2569 	/* Our goal here is to return as much of the memory as
   2570 	 * is possible back to the system as we are called from OOM.
   2571 	 * To do this we must instruct the shmfs to drop all of its
   2572 	 * backing pages, *now*.
   2573 	 */
   2574 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
   2575 #endif
   2576 	obj->madv = __I915_MADV_PURGED;
   2577 }
   2578 
   2579 /* Try to discard unwanted pages */
   2580 static void
   2581 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
   2582 {
   2583 #ifdef __NetBSD__
   2584 	struct uvm_object *uobj;
   2585 #else
   2586 	struct address_space *mapping;
   2587 #endif
   2588 
   2589 	switch (obj->madv) {
   2590 	case I915_MADV_DONTNEED:
   2591 		i915_gem_object_truncate(obj);
   2592 	case __I915_MADV_PURGED:
   2593 		return;
   2594 	}
   2595 
   2596 	if (obj->base.filp == NULL)
   2597 		return;
   2598 
   2599 #ifdef __NetBSD__
   2600 	uobj = obj->base.filp;
   2601 	mutex_enter(uobj->vmobjlock);
   2602 	(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   2603 	    PGO_ALLPAGES|PGO_DEACTIVATE|PGO_CLEANIT);
   2604 #else
   2605 	mapping = file_inode(obj->base.filp)->i_mapping,
   2606 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
   2607 #endif
   2608 }
   2609 
   2610 static void
   2611 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2612 {
   2613 #ifdef __NetBSD__
   2614 	struct drm_device *const dev = obj->base.dev;
   2615 	struct vm_page *page;
   2616 	int ret;
   2617 
   2618 	/* XXX Cargo-culted from the Linux code.  */
   2619 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2620 
   2621 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2622 	if (ret) {
   2623 		WARN_ON(ret != -EIO);
   2624 		i915_gem_clflush_object(obj, true);
   2625 		obj->base.read_domains = obj->base.write_domain =
   2626 		    I915_GEM_DOMAIN_CPU;
   2627 	}
   2628 
   2629 	i915_gem_gtt_finish_object(obj);
   2630 
   2631 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2632 		i915_gem_object_save_bit_17_swizzle(obj);
   2633 
   2634 	if (obj->madv == I915_MADV_DONTNEED)
   2635 		obj->dirty = 0;
   2636 
   2637 	if (obj->dirty) {
   2638 		TAILQ_FOREACH(page, &obj->pageq, pageq.queue) {
   2639 			page->flags &= ~PG_CLEAN;
   2640 			/* XXX mark page accessed */
   2641 		}
   2642 	}
   2643 	obj->dirty = 0;
   2644 
   2645 	uvm_obj_unwirepages(obj->base.filp, 0, obj->base.size);
   2646 	bus_dmamap_destroy(dev->dmat, obj->pages);
   2647 #else
   2648 	struct sg_page_iter sg_iter;
   2649 	int ret;
   2650 
   2651 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2652 
   2653 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2654 	if (ret) {
   2655 		/* In the event of a disaster, abandon all caches and
   2656 		 * hope for the best.
   2657 		 */
   2658 		WARN_ON(ret != -EIO);
   2659 		i915_gem_clflush_object(obj, true);
   2660 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   2661 	}
   2662 
   2663 	i915_gem_gtt_finish_object(obj);
   2664 
   2665 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2666 		i915_gem_object_save_bit_17_swizzle(obj);
   2667 
   2668 	if (obj->madv == I915_MADV_DONTNEED)
   2669 		obj->dirty = 0;
   2670 
   2671 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
   2672 		struct page *page = sg_page_iter_page(&sg_iter);
   2673 
   2674 		if (obj->dirty)
   2675 			set_page_dirty(page);
   2676 
   2677 		if (obj->madv == I915_MADV_WILLNEED)
   2678 			mark_page_accessed(page);
   2679 
   2680 		page_cache_release(page);
   2681 	}
   2682 	obj->dirty = 0;
   2683 
   2684 	sg_free_table(obj->pages);
   2685 	kfree(obj->pages);
   2686 #endif
   2687 }
   2688 
   2689 int
   2690 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
   2691 {
   2692 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2693 
   2694 	if (obj->pages == NULL)
   2695 		return 0;
   2696 
   2697 	if (obj->pages_pin_count)
   2698 		return -EBUSY;
   2699 
   2700 	BUG_ON(i915_gem_obj_bound_any(obj));
   2701 
   2702 	/* ->put_pages might need to allocate memory for the bit17 swizzle
   2703 	 * array, hence protect them from being reaped by removing them from gtt
   2704 	 * lists early. */
   2705 	list_del(&obj->global_list);
   2706 
   2707 	ops->put_pages(obj);
   2708 	obj->pages = NULL;
   2709 
   2710 	i915_gem_object_invalidate(obj);
   2711 
   2712 	return 0;
   2713 }
   2714 
   2715 static int
   2716 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2717 {
   2718 #ifdef __NetBSD__
   2719 	struct drm_device *const dev = obj->base.dev;
   2720 	struct drm_i915_private *dev_priv = dev->dev_private;
   2721 	struct vm_page *page;
   2722 	int ret;
   2723 
   2724 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2725 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2726 
   2727 	KASSERT(obj->pages == NULL);
   2728 	TAILQ_INIT(&obj->pageq);
   2729 
   2730 	/* XXX errno NetBSD->Linux */
   2731 	ret = -bus_dmamap_create(dev->dmat, obj->base.size,
   2732 	    obj->base.size/PAGE_SIZE, PAGE_SIZE, 0, BUS_DMA_NOWAIT,
   2733 	    &obj->pages);
   2734 	if (ret)
   2735 		goto fail0;
   2736 
   2737 	/* XXX errno NetBSD->Linux */
   2738 	ret = -uvm_obj_wirepages(obj->base.filp, 0, obj->base.size,
   2739 	    &obj->pageq);
   2740 	if (ret)		/* XXX Try purge, shrink.  */
   2741 		goto fail1;
   2742 
   2743 	/*
   2744 	 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
   2745 	 *
   2746 	 * XXX This should be unnecessary: the uao should guarantee
   2747 	 * this constraint after uao_set_pgfl.
   2748 	 *
   2749 	 * XXX This should also be expanded for newer devices.
   2750 	 */
   2751 	TAILQ_FOREACH(page, &obj->pageq, pageq.queue) {
   2752 		const uint64_t mask =
   2753 		    (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
   2754 			0xffffffffULL : 0xffffffffffULL);
   2755 		if (VM_PAGE_TO_PHYS(page) & ~mask) {
   2756 			DRM_ERROR("GEM physical address exceeds %u bits"
   2757 			    ": %"PRIxMAX"\n",
   2758 			    popcount64(mask),
   2759 			    (uintmax_t)VM_PAGE_TO_PHYS(page));
   2760 			ret = -EIO;
   2761 			goto fail2;
   2762 		}
   2763 	}
   2764 
   2765 	ret = i915_gem_gtt_prepare_object(obj);
   2766 	if (ret)
   2767 		goto fail2;
   2768 
   2769 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2770 		i915_gem_object_do_bit_17_swizzle(obj);
   2771 
   2772 	if (obj->tiling_mode != I915_TILING_NONE &&
   2773 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
   2774 		i915_gem_object_pin_pages(obj);
   2775 
   2776 	/* Success!  */
   2777 	return 0;
   2778 
   2779 fail3: __unused
   2780 	i915_gem_gtt_finish_object(obj);
   2781 fail2:	uvm_obj_unwirepages(obj->base.filp, 0, obj->base.size);
   2782 fail1:	bus_dmamap_destroy(dev->dmat, obj->pages);
   2783 	obj->pages = NULL;
   2784 fail0:	KASSERT(ret);
   2785 	return ret;
   2786 #else
   2787 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2788 	int page_count, i;
   2789 	struct address_space *mapping;
   2790 	struct sg_table *st;
   2791 	struct scatterlist *sg;
   2792 	struct sg_page_iter sg_iter;
   2793 	struct page *page;
   2794 	unsigned long last_pfn = 0;	/* suppress gcc warning */
   2795 	int ret;
   2796 	gfp_t gfp;
   2797 
   2798 	/* Assert that the object is not currently in any GPU domain. As it
   2799 	 * wasn't in the GTT, there shouldn't be any way it could have been in
   2800 	 * a GPU cache
   2801 	 */
   2802 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2803 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2804 
   2805 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   2806 	if (st == NULL)
   2807 		return -ENOMEM;
   2808 
   2809 	page_count = obj->base.size / PAGE_SIZE;
   2810 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
   2811 		kfree(st);
   2812 		return -ENOMEM;
   2813 	}
   2814 
   2815 	/* Get the list of pages out of our struct file.  They'll be pinned
   2816 	 * at this point until we release them.
   2817 	 *
   2818 	 * Fail silently without starting the shrinker
   2819 	 */
   2820 	mapping = file_inode(obj->base.filp)->i_mapping;
   2821 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
   2822 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
   2823 	sg = st->sgl;
   2824 	st->nents = 0;
   2825 	for (i = 0; i < page_count; i++) {
   2826 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2827 		if (IS_ERR(page)) {
   2828 			i915_gem_shrink(dev_priv,
   2829 					page_count,
   2830 					I915_SHRINK_BOUND |
   2831 					I915_SHRINK_UNBOUND |
   2832 					I915_SHRINK_PURGEABLE);
   2833 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2834 		}
   2835 		if (IS_ERR(page)) {
   2836 			/* We've tried hard to allocate the memory by reaping
   2837 			 * our own buffer, now let the real VM do its job and
   2838 			 * go down in flames if truly OOM.
   2839 			 */
   2840 			i915_gem_shrink_all(dev_priv);
   2841 			page = shmem_read_mapping_page(mapping, i);
   2842 			if (IS_ERR(page)) {
   2843 				ret = PTR_ERR(page);
   2844 				goto err_pages;
   2845 			}
   2846 		}
   2847 #ifdef CONFIG_SWIOTLB
   2848 		if (swiotlb_nr_tbl()) {
   2849 			st->nents++;
   2850 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2851 			sg = sg_next(sg);
   2852 			continue;
   2853 		}
   2854 #endif
   2855 		if (!i || page_to_pfn(page) != last_pfn + 1) {
   2856 			if (i)
   2857 				sg = sg_next(sg);
   2858 			st->nents++;
   2859 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2860 		} else {
   2861 			sg->length += PAGE_SIZE;
   2862 		}
   2863 		last_pfn = page_to_pfn(page);
   2864 
   2865 		/* Check that the i965g/gm workaround works. */
   2866 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
   2867 	}
   2868 #ifdef CONFIG_SWIOTLB
   2869 	if (!swiotlb_nr_tbl())
   2870 #endif
   2871 		sg_mark_end(sg);
   2872 	obj->pages = st;
   2873 
   2874 	ret = i915_gem_gtt_prepare_object(obj);
   2875 	if (ret)
   2876 		goto err_pages;
   2877 
   2878 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2879 		i915_gem_object_do_bit_17_swizzle(obj);
   2880 
   2881 	if (obj->tiling_mode != I915_TILING_NONE &&
   2882 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
   2883 		i915_gem_object_pin_pages(obj);
   2884 
   2885 	return 0;
   2886 
   2887 err_pages:
   2888 	sg_mark_end(sg);
   2889 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
   2890 		page_cache_release(sg_page_iter_page(&sg_iter));
   2891 	sg_free_table(st);
   2892 	kfree(st);
   2893 
   2894 	/* shmemfs first checks if there is enough memory to allocate the page
   2895 	 * and reports ENOSPC should there be insufficient, along with the usual
   2896 	 * ENOMEM for a genuine allocation failure.
   2897 	 *
   2898 	 * We use ENOSPC in our driver to mean that we have run out of aperture
   2899 	 * space and so want to translate the error from shmemfs back to our
   2900 	 * usual understanding of ENOMEM.
   2901 	 */
   2902 	if (ret == -ENOSPC)
   2903 		ret = -ENOMEM;
   2904 
   2905 	return ret;
   2906 #endif
   2907 }
   2908 
   2909 /* Ensure that the associated pages are gathered from the backing storage
   2910  * and pinned into our object. i915_gem_object_get_pages() may be called
   2911  * multiple times before they are released by a single call to
   2912  * i915_gem_object_put_pages() - once the pages are no longer referenced
   2913  * either as a result of memory pressure (reaping pages under the shrinker)
   2914  * or as the object is itself released.
   2915  */
   2916 int
   2917 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
   2918 {
   2919 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2920 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2921 	int ret;
   2922 
   2923 	if (obj->pages)
   2924 		return 0;
   2925 
   2926 	if (obj->madv != I915_MADV_WILLNEED) {
   2927 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
   2928 		return -EFAULT;
   2929 	}
   2930 
   2931 	BUG_ON(obj->pages_pin_count);
   2932 
   2933 	ret = ops->get_pages(obj);
   2934 	if (ret)
   2935 		return ret;
   2936 
   2937 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   2938 
   2939 #ifndef __NetBSD__
   2940 	obj->get_page.sg = obj->pages->sgl;
   2941 	obj->get_page.last = 0;
   2942 #endif
   2943 
   2944 	return 0;
   2945 }
   2946 
   2947 void i915_vma_move_to_active(struct i915_vma *vma,
   2948 			     struct drm_i915_gem_request *req)
   2949 {
   2950 	struct drm_i915_gem_object *obj = vma->obj;
   2951 	struct intel_engine_cs *ring;
   2952 
   2953 	ring = i915_gem_request_get_ring(req);
   2954 
   2955 	/* Add a reference if we're newly entering the active list. */
   2956 	if (obj->active == 0)
   2957 		drm_gem_object_reference(&obj->base);
   2958 	obj->active |= intel_ring_flag(ring);
   2959 
   2960 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
   2961 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
   2962 
   2963 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
   2964 }
   2965 
   2966 static void
   2967 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
   2968 {
   2969 	RQ_BUG_ON(obj->last_write_req == NULL);
   2970 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
   2971 
   2972 	i915_gem_request_assign(&obj->last_write_req, NULL);
   2973 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
   2974 }
   2975 
   2976 static void
   2977 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
   2978 {
   2979 	struct i915_vma *vma;
   2980 
   2981 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
   2982 	RQ_BUG_ON(!(obj->active & (1 << ring)));
   2983 
   2984 	list_del_init(&obj->ring_list[ring]);
   2985 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
   2986 
   2987 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
   2988 		i915_gem_object_retire__write(obj);
   2989 
   2990 	obj->active &= ~(1 << ring);
   2991 	if (obj->active)
   2992 		return;
   2993 
   2994 	/* Bump our place on the bound list to keep it roughly in LRU order
   2995 	 * so that we don't steal from recently used but inactive objects
   2996 	 * (unless we are forced to ofc!)
   2997 	 */
   2998 	list_move_tail(&obj->global_list,
   2999 		       &to_i915(obj->base.dev)->mm.bound_list);
   3000 
   3001 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
   3002 		if (!list_empty(&vma->mm_list))
   3003 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
   3004 	}
   3005 
   3006 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
   3007 	drm_gem_object_unreference(&obj->base);
   3008 }
   3009 
   3010 static int
   3011 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
   3012 {
   3013 	struct drm_i915_private *dev_priv = dev->dev_private;
   3014 	struct intel_engine_cs *ring;
   3015 	int ret, i, j;
   3016 
   3017 	/* Carefully retire all requests without writing to the rings */
   3018 	for_each_ring(ring, dev_priv, i) {
   3019 		ret = intel_ring_idle(ring);
   3020 		if (ret)
   3021 			return ret;
   3022 	}
   3023 	i915_gem_retire_requests(dev);
   3024 
   3025 	/* Finally reset hw state */
   3026 	for_each_ring(ring, dev_priv, i) {
   3027 		intel_ring_init_seqno(ring, seqno);
   3028 
   3029 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
   3030 			ring->semaphore.sync_seqno[j] = 0;
   3031 	}
   3032 
   3033 	return 0;
   3034 }
   3035 
   3036 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
   3037 {
   3038 	struct drm_i915_private *dev_priv = dev->dev_private;
   3039 	int ret;
   3040 
   3041 	if (seqno == 0)
   3042 		return -EINVAL;
   3043 
   3044 	/* HWS page needs to be set less than what we
   3045 	 * will inject to ring
   3046 	 */
   3047 	ret = i915_gem_init_seqno(dev, seqno - 1);
   3048 	if (ret)
   3049 		return ret;
   3050 
   3051 	/* Carefully set the last_seqno value so that wrap
   3052 	 * detection still works
   3053 	 */
   3054 	dev_priv->next_seqno = seqno;
   3055 	dev_priv->last_seqno = seqno - 1;
   3056 	if (dev_priv->last_seqno == 0)
   3057 		dev_priv->last_seqno--;
   3058 
   3059 	return 0;
   3060 }
   3061 
   3062 int
   3063 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
   3064 {
   3065 	struct drm_i915_private *dev_priv = dev->dev_private;
   3066 
   3067 	/* reserve 0 for non-seqno */
   3068 	if (dev_priv->next_seqno == 0) {
   3069 		int ret = i915_gem_init_seqno(dev, 0);
   3070 		if (ret)
   3071 			return ret;
   3072 
   3073 		dev_priv->next_seqno = 1;
   3074 	}
   3075 
   3076 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
   3077 	return 0;
   3078 }
   3079 
   3080 /*
   3081  * NB: This function is not allowed to fail. Doing so would mean the the
   3082  * request is not being tracked for completion but the work itself is
   3083  * going to happen on the hardware. This would be a Bad Thing(tm).
   3084  */
   3085 void __i915_add_request(struct drm_i915_gem_request *request,
   3086 			struct drm_i915_gem_object *obj,
   3087 			bool flush_caches)
   3088 {
   3089 	struct intel_engine_cs *ring;
   3090 	struct drm_i915_private *dev_priv;
   3091 	struct intel_ringbuffer *ringbuf;
   3092 	u32 request_start;
   3093 	int ret;
   3094 
   3095 	if (WARN_ON(request == NULL))
   3096 		return;
   3097 
   3098 	ring = request->ring;
   3099 	dev_priv = ring->dev->dev_private;
   3100 	ringbuf = request->ringbuf;
   3101 
   3102 	/*
   3103 	 * To ensure that this call will not fail, space for its emissions
   3104 	 * should already have been reserved in the ring buffer. Let the ring
   3105 	 * know that it is time to use that space up.
   3106 	 */
   3107 	intel_ring_reserved_space_use(ringbuf);
   3108 
   3109 	request_start = intel_ring_get_tail(ringbuf);
   3110 	/*
   3111 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
   3112 	 * after having emitted the batchbuffer command. Hence we need to fix
   3113 	 * things up similar to emitting the lazy request. The difference here
   3114 	 * is that the flush _must_ happen before the next request, no matter
   3115 	 * what.
   3116 	 */
   3117 	if (flush_caches) {
   3118 		if (i915.enable_execlists)
   3119 			ret = logical_ring_flush_all_caches(request);
   3120 		else
   3121 			ret = intel_ring_flush_all_caches(request);
   3122 		/* Not allowed to fail! */
   3123 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
   3124 	}
   3125 
   3126 	/* Record the position of the start of the request so that
   3127 	 * should we detect the updated seqno part-way through the
   3128 	 * GPU processing the request, we never over-estimate the
   3129 	 * position of the head.
   3130 	 */
   3131 	request->postfix = intel_ring_get_tail(ringbuf);
   3132 
   3133 	if (i915.enable_execlists)
   3134 		ret = ring->emit_request(request);
   3135 	else {
   3136 		ret = ring->add_request(request);
   3137 
   3138 		request->tail = intel_ring_get_tail(ringbuf);
   3139 	}
   3140 	/* Not allowed to fail! */
   3141 	WARN(ret, "emit|add_request failed: %d!\n", ret);
   3142 
   3143 	request->head = request_start;
   3144 
   3145 	/* Whilst this request exists, batch_obj will be on the
   3146 	 * active_list, and so will hold the active reference. Only when this
   3147 	 * request is retired will the the batch_obj be moved onto the
   3148 	 * inactive_list and lose its active reference. Hence we do not need
   3149 	 * to explicitly hold another reference here.
   3150 	 */
   3151 	request->batch_obj = obj;
   3152 
   3153 	request->emitted_jiffies = jiffies;
   3154 	request->previous_seqno = ring->last_submitted_seqno;
   3155 	ring->last_submitted_seqno = request->seqno;
   3156 	list_add_tail(&request->list, &ring->request_list);
   3157 
   3158 	trace_i915_gem_request_add(request);
   3159 
   3160 	i915_queue_hangcheck(ring->dev);
   3161 
   3162 	queue_delayed_work(dev_priv->wq,
   3163 			   &dev_priv->mm.retire_work,
   3164 			   round_jiffies_up_relative(HZ));
   3165 	intel_mark_busy(dev_priv->dev);
   3166 
   3167 	/* Sanity check that the reserved size was large enough. */
   3168 	intel_ring_reserved_space_end(ringbuf);
   3169 }
   3170 
   3171 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
   3172 				   const struct intel_context *ctx)
   3173 {
   3174 	unsigned long elapsed;
   3175 
   3176 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
   3177 
   3178 	if (ctx->hang_stats.banned)
   3179 		return true;
   3180 
   3181 	if (ctx->hang_stats.ban_period_seconds &&
   3182 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
   3183 		if (!i915_gem_context_is_default(ctx)) {
   3184 			DRM_DEBUG("context hanging too fast, banning!\n");
   3185 			return true;
   3186 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
   3187 			if (i915_stop_ring_allow_warn(dev_priv))
   3188 				DRM_ERROR("gpu hanging too fast, banning!\n");
   3189 			return true;
   3190 		}
   3191 	}
   3192 
   3193 	return false;
   3194 }
   3195 
   3196 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
   3197 				  struct intel_context *ctx,
   3198 				  const bool guilty)
   3199 {
   3200 	struct i915_ctx_hang_stats *hs;
   3201 
   3202 	if (WARN_ON(!ctx))
   3203 		return;
   3204 
   3205 	hs = &ctx->hang_stats;
   3206 
   3207 	if (guilty) {
   3208 		hs->banned = i915_context_is_banned(dev_priv, ctx);
   3209 		hs->batch_active++;
   3210 		hs->guilty_ts = get_seconds();
   3211 	} else {
   3212 		hs->batch_pending++;
   3213 	}
   3214 }
   3215 
   3216 void i915_gem_request_free(struct kref *req_ref)
   3217 {
   3218 	struct drm_i915_gem_request *req = container_of(req_ref,
   3219 						 typeof(*req), ref);
   3220 	struct intel_context *ctx = req->ctx;
   3221 
   3222 	if (req->file_priv)
   3223 		i915_gem_request_remove_from_client(req);
   3224 
   3225 	if (ctx) {
   3226 		if (i915.enable_execlists) {
   3227 			if (ctx != req->ring->default_context)
   3228 				intel_lr_context_unpin(req);
   3229 		}
   3230 
   3231 		i915_gem_context_unreference(ctx);
   3232 	}
   3233 
   3234 	kmem_cache_free(req->i915->requests, req);
   3235 }
   3236 
   3237 int i915_gem_request_alloc(struct intel_engine_cs *ring,
   3238 			   struct intel_context *ctx,
   3239 			   struct drm_i915_gem_request **req_out)
   3240 {
   3241 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
   3242 	struct drm_i915_gem_request *req;
   3243 	int ret;
   3244 
   3245 	if (!req_out)
   3246 		return -EINVAL;
   3247 
   3248 	*req_out = NULL;
   3249 
   3250 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
   3251 	if (req == NULL)
   3252 		return -ENOMEM;
   3253 
   3254 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
   3255 	if (ret)
   3256 		goto err;
   3257 
   3258 	kref_init(&req->ref);
   3259 	req->i915 = dev_priv;
   3260 	req->ring = ring;
   3261 	req->ctx  = ctx;
   3262 	i915_gem_context_reference(req->ctx);
   3263 
   3264 	if (i915.enable_execlists)
   3265 		ret = intel_logical_ring_alloc_request_extras(req);
   3266 	else
   3267 		ret = intel_ring_alloc_request_extras(req);
   3268 	if (ret) {
   3269 		i915_gem_context_unreference(req->ctx);
   3270 		goto err;
   3271 	}
   3272 
   3273 	/*
   3274 	 * Reserve space in the ring buffer for all the commands required to
   3275 	 * eventually emit this request. This is to guarantee that the
   3276 	 * i915_add_request() call can't fail. Note that the reserve may need
   3277 	 * to be redone if the request is not actually submitted straight
   3278 	 * away, e.g. because a GPU scheduler has deferred it.
   3279 	 */
   3280 	if (i915.enable_execlists)
   3281 		ret = intel_logical_ring_reserve_space(req);
   3282 	else
   3283 		ret = intel_ring_reserve_space(req);
   3284 	if (ret) {
   3285 		/*
   3286 		 * At this point, the request is fully allocated even if not
   3287 		 * fully prepared. Thus it can be cleaned up using the proper
   3288 		 * free code.
   3289 		 */
   3290 		i915_gem_request_cancel(req);
   3291 		return ret;
   3292 	}
   3293 
   3294 	*req_out = req;
   3295 	return 0;
   3296 
   3297 err:
   3298 	kmem_cache_free(dev_priv->requests, req);
   3299 	return ret;
   3300 }
   3301 
   3302 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
   3303 {
   3304 	intel_ring_reserved_space_cancel(req->ringbuf);
   3305 
   3306 	i915_gem_request_unreference(req);
   3307 }
   3308 
   3309 struct drm_i915_gem_request *
   3310 i915_gem_find_active_request(struct intel_engine_cs *ring)
   3311 {
   3312 	struct drm_i915_gem_request *request;
   3313 
   3314 	list_for_each_entry(request, &ring->request_list, list) {
   3315 		if (i915_gem_request_completed(request, false))
   3316 			continue;
   3317 
   3318 		return request;
   3319 	}
   3320 
   3321 	return NULL;
   3322 }
   3323 
   3324 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
   3325 				       struct intel_engine_cs *ring)
   3326 {
   3327 	struct drm_i915_gem_request *request;
   3328 	bool ring_hung;
   3329 
   3330 	request = i915_gem_find_active_request(ring);
   3331 
   3332 	if (request == NULL)
   3333 		return;
   3334 
   3335 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
   3336 
   3337 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
   3338 
   3339 	list_for_each_entry_continue(request, &ring->request_list, list)
   3340 		i915_set_reset_status(dev_priv, request->ctx, false);
   3341 }
   3342 
   3343 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
   3344 					struct intel_engine_cs *ring)
   3345 {
   3346 	while (!list_empty(&ring->active_list)) {
   3347 		struct drm_i915_gem_object *obj;
   3348 
   3349 		obj = list_first_entry(&ring->active_list,
   3350 				       struct drm_i915_gem_object,
   3351 				       ring_list[ring->id]);
   3352 
   3353 		i915_gem_object_retire__read(obj, ring->id);
   3354 	}
   3355 
   3356 	/*
   3357 	 * Clear the execlists queue up before freeing the requests, as those
   3358 	 * are the ones that keep the context and ringbuffer backing objects
   3359 	 * pinned in place.
   3360 	 */
   3361 	while (!list_empty(&ring->execlist_queue)) {
   3362 		struct drm_i915_gem_request *submit_req;
   3363 
   3364 		submit_req = list_first_entry(&ring->execlist_queue,
   3365 				struct drm_i915_gem_request,
   3366 				execlist_link);
   3367 		list_del(&submit_req->execlist_link);
   3368 
   3369 		if (submit_req->ctx != ring->default_context)
   3370 			intel_lr_context_unpin(submit_req);
   3371 
   3372 		i915_gem_request_unreference(submit_req);
   3373 	}
   3374 
   3375 	/*
   3376 	 * We must free the requests after all the corresponding objects have
   3377 	 * been moved off active lists. Which is the same order as the normal
   3378 	 * retire_requests function does. This is important if object hold
   3379 	 * implicit references on things like e.g. ppgtt address spaces through
   3380 	 * the request.
   3381 	 */
   3382 	while (!list_empty(&ring->request_list)) {
   3383 		struct drm_i915_gem_request *request;
   3384 
   3385 		request = list_first_entry(&ring->request_list,
   3386 					   struct drm_i915_gem_request,
   3387 					   list);
   3388 
   3389 		i915_gem_request_retire(request);
   3390 	}
   3391 }
   3392 
   3393 void i915_gem_reset(struct drm_device *dev)
   3394 {
   3395 	struct drm_i915_private *dev_priv = dev->dev_private;
   3396 	struct intel_engine_cs *ring;
   3397 	int i;
   3398 
   3399 	/*
   3400 	 * Before we free the objects from the requests, we need to inspect
   3401 	 * them for finding the guilty party. As the requests only borrow
   3402 	 * their reference to the objects, the inspection must be done first.
   3403 	 */
   3404 	for_each_ring(ring, dev_priv, i)
   3405 		i915_gem_reset_ring_status(dev_priv, ring);
   3406 
   3407 	for_each_ring(ring, dev_priv, i)
   3408 		i915_gem_reset_ring_cleanup(dev_priv, ring);
   3409 
   3410 	i915_gem_context_reset(dev);
   3411 
   3412 	i915_gem_restore_fences(dev);
   3413 
   3414 	WARN_ON(i915_verify_lists(dev));
   3415 }
   3416 
   3417 /**
   3418  * This function clears the request list as sequence numbers are passed.
   3419  */
   3420 void
   3421 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
   3422 {
   3423 	WARN_ON(i915_verify_lists(ring->dev));
   3424 
   3425 	/* Retire requests first as we use it above for the early return.
   3426 	 * If we retire requests last, we may use a later seqno and so clear
   3427 	 * the requests lists without clearing the active list, leading to
   3428 	 * confusion.
   3429 	 */
   3430 	while (!list_empty(&ring->request_list)) {
   3431 		struct drm_i915_gem_request *request;
   3432 
   3433 		request = list_first_entry(&ring->request_list,
   3434 					   struct drm_i915_gem_request,
   3435 					   list);
   3436 
   3437 		if (!i915_gem_request_completed(request, true))
   3438 			break;
   3439 
   3440 		i915_gem_request_retire(request);
   3441 	}
   3442 
   3443 	/* Move any buffers on the active list that are no longer referenced
   3444 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
   3445 	 * before we free the context associated with the requests.
   3446 	 */
   3447 	while (!list_empty(&ring->active_list)) {
   3448 		struct drm_i915_gem_object *obj;
   3449 
   3450 		obj = list_first_entry(&ring->active_list,
   3451 				      struct drm_i915_gem_object,
   3452 				      ring_list[ring->id]);
   3453 
   3454 		if (!list_empty(&obj->last_read_req[ring->id]->list))
   3455 			break;
   3456 
   3457 		i915_gem_object_retire__read(obj, ring->id);
   3458 	}
   3459 
   3460 	if (unlikely(ring->trace_irq_req &&
   3461 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
   3462 		ring->irq_put(ring);
   3463 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
   3464 	}
   3465 
   3466 	WARN_ON(i915_verify_lists(ring->dev));
   3467 }
   3468 
   3469 bool
   3470 i915_gem_retire_requests(struct drm_device *dev)
   3471 {
   3472 	struct drm_i915_private *dev_priv = dev->dev_private;
   3473 	struct intel_engine_cs *ring;
   3474 	bool idle = true;
   3475 	int i;
   3476 
   3477 	for_each_ring(ring, dev_priv, i) {
   3478 		i915_gem_retire_requests_ring(ring);
   3479 		idle &= list_empty(&ring->request_list);
   3480 		if (i915.enable_execlists) {
   3481 			unsigned long flags;
   3482 
   3483 			spin_lock_irqsave(&ring->execlist_lock, flags);
   3484 			idle &= list_empty(&ring->execlist_queue);
   3485 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
   3486 
   3487 			intel_execlists_retire_requests(ring);
   3488 		}
   3489 	}
   3490 
   3491 	if (idle)
   3492 		mod_delayed_work(dev_priv->wq,
   3493 				   &dev_priv->mm.idle_work,
   3494 				   msecs_to_jiffies(100));
   3495 
   3496 	return idle;
   3497 }
   3498 
   3499 static void
   3500 i915_gem_retire_work_handler(struct work_struct *work)
   3501 {
   3502 	struct drm_i915_private *dev_priv =
   3503 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
   3504 	struct drm_device *dev = dev_priv->dev;
   3505 	bool idle;
   3506 
   3507 	/* Come back later if the device is busy... */
   3508 	idle = false;
   3509 	if (mutex_trylock(&dev->struct_mutex)) {
   3510 		idle = i915_gem_retire_requests(dev);
   3511 		mutex_unlock(&dev->struct_mutex);
   3512 	}
   3513 	if (!idle)
   3514 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
   3515 				   round_jiffies_up_relative(HZ));
   3516 }
   3517 
   3518 static void
   3519 i915_gem_idle_work_handler(struct work_struct *work)
   3520 {
   3521 	struct drm_i915_private *dev_priv =
   3522 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
   3523 	struct drm_device *dev = dev_priv->dev;
   3524 	struct intel_engine_cs *ring;
   3525 	int i;
   3526 
   3527 	for_each_ring(ring, dev_priv, i)
   3528 		if (!list_empty(&ring->request_list))
   3529 			return;
   3530 
   3531 	intel_mark_idle(dev);
   3532 
   3533 	if (mutex_trylock(&dev->struct_mutex)) {
   3534 		struct intel_engine_cs *ring;
   3535 		int i;
   3536 
   3537 		for_each_ring(ring, dev_priv, i)
   3538 			i915_gem_batch_pool_fini(&ring->batch_pool);
   3539 
   3540 		mutex_unlock(&dev->struct_mutex);
   3541 	}
   3542 }
   3543 
   3544 /**
   3545  * Ensures that an object will eventually get non-busy by flushing any required
   3546  * write domains, emitting any outstanding lazy request and retiring and
   3547  * completed requests.
   3548  */
   3549 static int
   3550 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
   3551 {
   3552 	int i;
   3553 
   3554 	if (!obj->active)
   3555 		return 0;
   3556 
   3557 	for (i = 0; i < I915_NUM_RINGS; i++) {
   3558 		struct drm_i915_gem_request *req;
   3559 
   3560 		req = obj->last_read_req[i];
   3561 		if (req == NULL)
   3562 			continue;
   3563 
   3564 		if (list_empty(&req->list))
   3565 			goto retire;
   3566 
   3567 		if (i915_gem_request_completed(req, true)) {
   3568 			__i915_gem_request_retire__upto(req);
   3569 retire:
   3570 			i915_gem_object_retire__read(obj, i);
   3571 		}
   3572 	}
   3573 
   3574 	return 0;
   3575 }
   3576 
   3577 /**
   3578  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
   3579  * @DRM_IOCTL_ARGS: standard ioctl arguments
   3580  *
   3581  * Returns 0 if successful, else an error is returned with the remaining time in
   3582  * the timeout parameter.
   3583  *  -ETIME: object is still busy after timeout
   3584  *  -ERESTARTSYS: signal interrupted the wait
   3585  *  -ENONENT: object doesn't exist
   3586  * Also possible, but rare:
   3587  *  -EAGAIN: GPU wedged
   3588  *  -ENOMEM: damn
   3589  *  -ENODEV: Internal IRQ fail
   3590  *  -E?: The add request failed
   3591  *
   3592  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
   3593  * non-zero timeout parameter the wait ioctl will wait for the given number of
   3594  * nanoseconds on an object becoming unbusy. Since the wait itself does so
   3595  * without holding struct_mutex the object may become re-busied before this
   3596  * function completes. A similar but shorter * race condition exists in the busy
   3597  * ioctl
   3598  */
   3599 int
   3600 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
   3601 {
   3602 	struct drm_i915_private *dev_priv = dev->dev_private;
   3603 	struct drm_i915_gem_wait *args = data;
   3604 	struct drm_gem_object *gobj;
   3605 	struct drm_i915_gem_object *obj;
   3606 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
   3607 	unsigned reset_counter;
   3608 	int i, n = 0;
   3609 	int ret;
   3610 
   3611 	if (args->flags != 0)
   3612 		return -EINVAL;
   3613 
   3614 	ret = i915_mutex_lock_interruptible(dev);
   3615 	if (ret)
   3616 		return ret;
   3617 
   3618 	gobj = drm_gem_object_lookup(dev, file, args->bo_handle);
   3619 	if (gobj == NULL) {
   3620 		mutex_unlock(&dev->struct_mutex);
   3621 		return -ENOENT;
   3622 	}
   3623 	obj = to_intel_bo(gobj);
   3624 
   3625 	/* Need to make sure the object gets inactive eventually. */
   3626 	ret = i915_gem_object_flush_active(obj);
   3627 	if (ret)
   3628 		goto out;
   3629 
   3630 	if (!obj->active)
   3631 		goto out;
   3632 
   3633 	/* Do this after OLR check to make sure we make forward progress polling
   3634 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
   3635 	 */
   3636 	if (args->timeout_ns == 0) {
   3637 		ret = -ETIME;
   3638 		goto out;
   3639 	}
   3640 
   3641 	drm_gem_object_unreference(&obj->base);
   3642 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   3643 
   3644 	for (i = 0; i < I915_NUM_RINGS; i++) {
   3645 		if (obj->last_read_req[i] == NULL)
   3646 			continue;
   3647 
   3648 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
   3649 	}
   3650 
   3651 	mutex_unlock(&dev->struct_mutex);
   3652 
   3653 	for (i = 0; i < n; i++) {
   3654 		if (ret == 0)
   3655 			ret = __i915_wait_request(req[i], reset_counter, true,
   3656 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
   3657 						  file->driver_priv);
   3658 		i915_gem_request_unreference__unlocked(req[i]);
   3659 	}
   3660 	return ret;
   3661 
   3662 out:
   3663 	drm_gem_object_unreference(&obj->base);
   3664 	mutex_unlock(&dev->struct_mutex);
   3665 	return ret;
   3666 }
   3667 
   3668 static int
   3669 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
   3670 		       struct intel_engine_cs *to,
   3671 		       struct drm_i915_gem_request *from_req,
   3672 		       struct drm_i915_gem_request **to_req)
   3673 {
   3674 	struct intel_engine_cs *from;
   3675 	int ret;
   3676 
   3677 	from = i915_gem_request_get_ring(from_req);
   3678 	if (to == from)
   3679 		return 0;
   3680 
   3681 	if (i915_gem_request_completed(from_req, true))
   3682 		return 0;
   3683 
   3684 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
   3685 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
   3686 		ret = __i915_wait_request(from_req,
   3687 					  atomic_read(&i915->gpu_error.reset_counter),
   3688 					  i915->mm.interruptible,
   3689 					  NULL,
   3690 					  &i915->rps.semaphores);
   3691 		if (ret)
   3692 			return ret;
   3693 
   3694 		i915_gem_object_retire_request(obj, from_req);
   3695 	} else {
   3696 		int idx = intel_ring_sync_index(from, to);
   3697 		u32 seqno = i915_gem_request_get_seqno(from_req);
   3698 
   3699 		WARN_ON(!to_req);
   3700 
   3701 		if (seqno <= from->semaphore.sync_seqno[idx])
   3702 			return 0;
   3703 
   3704 		if (*to_req == NULL) {
   3705 			ret = i915_gem_request_alloc(to, to->default_context, to_req);
   3706 			if (ret)
   3707 				return ret;
   3708 		}
   3709 
   3710 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
   3711 		ret = to->semaphore.sync_to(*to_req, from, seqno);
   3712 		if (ret)
   3713 			return ret;
   3714 
   3715 		/* We use last_read_req because sync_to()
   3716 		 * might have just caused seqno wrap under
   3717 		 * the radar.
   3718 		 */
   3719 		from->semaphore.sync_seqno[idx] =
   3720 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
   3721 	}
   3722 
   3723 	return 0;
   3724 }
   3725 
   3726 /**
   3727  * i915_gem_object_sync - sync an object to a ring.
   3728  *
   3729  * @obj: object which may be in use on another ring.
   3730  * @to: ring we wish to use the object on. May be NULL.
   3731  * @to_req: request we wish to use the object for. See below.
   3732  *          This will be allocated and returned if a request is
   3733  *          required but not passed in.
   3734  *
   3735  * This code is meant to abstract object synchronization with the GPU.
   3736  * Calling with NULL implies synchronizing the object with the CPU
   3737  * rather than a particular GPU ring. Conceptually we serialise writes
   3738  * between engines inside the GPU. We only allow one engine to write
   3739  * into a buffer at any time, but multiple readers. To ensure each has
   3740  * a coherent view of memory, we must:
   3741  *
   3742  * - If there is an outstanding write request to the object, the new
   3743  *   request must wait for it to complete (either CPU or in hw, requests
   3744  *   on the same ring will be naturally ordered).
   3745  *
   3746  * - If we are a write request (pending_write_domain is set), the new
   3747  *   request must wait for outstanding read requests to complete.
   3748  *
   3749  * For CPU synchronisation (NULL to) no request is required. For syncing with
   3750  * rings to_req must be non-NULL. However, a request does not have to be
   3751  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
   3752  * request will be allocated automatically and returned through *to_req. Note
   3753  * that it is not guaranteed that commands will be emitted (because the system
   3754  * might already be idle). Hence there is no need to create a request that
   3755  * might never have any work submitted. Note further that if a request is
   3756  * returned in *to_req, it is the responsibility of the caller to submit
   3757  * that request (after potentially adding more work to it).
   3758  *
   3759  * Returns 0 if successful, else propagates up the lower layer error.
   3760  */
   3761 int
   3762 i915_gem_object_sync(struct drm_i915_gem_object *obj,
   3763 		     struct intel_engine_cs *to,
   3764 		     struct drm_i915_gem_request **to_req)
   3765 {
   3766 	const bool readonly = obj->base.pending_write_domain == 0;
   3767 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
   3768 	int ret, i, n;
   3769 
   3770 	if (!obj->active)
   3771 		return 0;
   3772 
   3773 	if (to == NULL)
   3774 		return i915_gem_object_wait_rendering(obj, readonly);
   3775 
   3776 	n = 0;
   3777 	if (readonly) {
   3778 		if (obj->last_write_req)
   3779 			req[n++] = obj->last_write_req;
   3780 	} else {
   3781 		for (i = 0; i < I915_NUM_RINGS; i++)
   3782 			if (obj->last_read_req[i])
   3783 				req[n++] = obj->last_read_req[i];
   3784 	}
   3785 	for (i = 0; i < n; i++) {
   3786 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
   3787 		if (ret)
   3788 			return ret;
   3789 	}
   3790 
   3791 	return 0;
   3792 }
   3793 
   3794 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
   3795 {
   3796 	u32 old_write_domain, old_read_domains;
   3797 
   3798 	/* Force a pagefault for domain tracking on next user access */
   3799 	i915_gem_release_mmap(obj);
   3800 
   3801 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   3802 		return;
   3803 
   3804 	/* Wait for any direct GTT access to complete */
   3805 	mb();
   3806 
   3807 	old_read_domains = obj->base.read_domains;
   3808 	old_write_domain = obj->base.write_domain;
   3809 
   3810 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
   3811 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
   3812 
   3813 	trace_i915_gem_object_change_domain(obj,
   3814 					    old_read_domains,
   3815 					    old_write_domain);
   3816 }
   3817 
   3818 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
   3819 {
   3820 	struct drm_i915_gem_object *obj = vma->obj;
   3821 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3822 	int ret;
   3823 
   3824 	if (list_empty(&vma->vma_link))
   3825 		return 0;
   3826 
   3827 	if (!drm_mm_node_allocated(&vma->node)) {
   3828 		i915_gem_vma_destroy(vma);
   3829 		return 0;
   3830 	}
   3831 
   3832 	if (vma->pin_count)
   3833 		return -EBUSY;
   3834 
   3835 	BUG_ON(obj->pages == NULL);
   3836 
   3837 	if (wait) {
   3838 		ret = i915_gem_object_wait_rendering(obj, false);
   3839 		if (ret)
   3840 			return ret;
   3841 	}
   3842 
   3843 	if (i915_is_ggtt(vma->vm) &&
   3844 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
   3845 		i915_gem_object_finish_gtt(obj);
   3846 
   3847 		/* release the fence reg _after_ flushing */
   3848 		ret = i915_gem_object_put_fence(obj);
   3849 		if (ret)
   3850 			return ret;
   3851 	}
   3852 
   3853 	trace_i915_vma_unbind(vma);
   3854 
   3855 	vma->vm->unbind_vma(vma);
   3856 	vma->bound = 0;
   3857 
   3858 	list_del_init(&vma->mm_list);
   3859 	if (i915_is_ggtt(vma->vm)) {
   3860 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
   3861 			obj->map_and_fenceable = false;
   3862 		} else if (vma->ggtt_view.pages) {
   3863 #ifdef __NetBSD__
   3864 			panic("rotated/partial views can't happen");
   3865 #else
   3866 			sg_free_table(vma->ggtt_view.pages);
   3867 			kfree(vma->ggtt_view.pages);
   3868 #endif
   3869 		}
   3870 		vma->ggtt_view.pages = NULL;
   3871 	}
   3872 
   3873 	drm_mm_remove_node(&vma->node);
   3874 	i915_gem_vma_destroy(vma);
   3875 
   3876 	/* Since the unbound list is global, only move to that list if
   3877 	 * no more VMAs exist. */
   3878 	if (list_empty(&obj->vma_list))
   3879 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   3880 
   3881 	/* And finally now the object is completely decoupled from this vma,
   3882 	 * we can drop its hold on the backing storage and allow it to be
   3883 	 * reaped by the shrinker.
   3884 	 */
   3885 	i915_gem_object_unpin_pages(obj);
   3886 
   3887 	return 0;
   3888 }
   3889 
   3890 int i915_vma_unbind(struct i915_vma *vma)
   3891 {
   3892 	return __i915_vma_unbind(vma, true);
   3893 }
   3894 
   3895 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
   3896 {
   3897 	return __i915_vma_unbind(vma, false);
   3898 }
   3899 
   3900 int i915_gpu_idle(struct drm_device *dev)
   3901 {
   3902 	struct drm_i915_private *dev_priv = dev->dev_private;
   3903 	struct intel_engine_cs *ring;
   3904 	int ret, i;
   3905 
   3906 	/* Flush everything onto the inactive list. */
   3907 	for_each_ring(ring, dev_priv, i) {
   3908 		if (!i915.enable_execlists) {
   3909 			struct drm_i915_gem_request *req;
   3910 
   3911 			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
   3912 			if (ret)
   3913 				return ret;
   3914 
   3915 			ret = i915_switch_context(req);
   3916 			if (ret) {
   3917 				i915_gem_request_cancel(req);
   3918 				return ret;
   3919 			}
   3920 
   3921 			i915_add_request_no_flush(req);
   3922 		}
   3923 
   3924 		ret = intel_ring_idle(ring);
   3925 		if (ret)
   3926 			return ret;
   3927 	}
   3928 
   3929 	WARN_ON(i915_verify_lists(dev));
   3930 	return 0;
   3931 }
   3932 
   3933 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
   3934 				     unsigned long cache_level)
   3935 {
   3936 	struct drm_mm_node *gtt_space = &vma->node;
   3937 	struct drm_mm_node *other;
   3938 
   3939 	/*
   3940 	 * On some machines we have to be careful when putting differing types
   3941 	 * of snoopable memory together to avoid the prefetcher crossing memory
   3942 	 * domains and dying. During vm initialisation, we decide whether or not
   3943 	 * these constraints apply and set the drm_mm.color_adjust
   3944 	 * appropriately.
   3945 	 */
   3946 	if (vma->vm->mm.color_adjust == NULL)
   3947 		return true;
   3948 
   3949 	if (!drm_mm_node_allocated(gtt_space))
   3950 		return true;
   3951 
   3952 	if (list_empty(&gtt_space->node_list))
   3953 		return true;
   3954 
   3955 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
   3956 	if (other->allocated && !other->hole_follows && other->color != cache_level)
   3957 		return false;
   3958 
   3959 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
   3960 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
   3961 		return false;
   3962 
   3963 	return true;
   3964 }
   3965 
   3966 /**
   3967  * Finds free space in the GTT aperture and binds the object or a view of it
   3968  * there.
   3969  */
   3970 static struct i915_vma *
   3971 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
   3972 			   struct i915_address_space *vm,
   3973 			   const struct i915_ggtt_view *ggtt_view,
   3974 			   unsigned alignment,
   3975 			   uint64_t flags)
   3976 {
   3977 	struct drm_device *dev = obj->base.dev;
   3978 	struct drm_i915_private *dev_priv = dev->dev_private;
   3979 	u32 fence_alignment, unfenced_alignment;
   3980 	u32 search_flag, alloc_flag;
   3981 	u64 start, end;
   3982 	u64 size, fence_size;
   3983 	struct i915_vma *vma;
   3984 	int ret;
   3985 
   3986 	if (i915_is_ggtt(vm)) {
   3987 		u32 view_size;
   3988 
   3989 		if (WARN_ON(!ggtt_view))
   3990 			return ERR_PTR(-EINVAL);
   3991 
   3992 		view_size = i915_ggtt_view_size(obj, ggtt_view);
   3993 
   3994 		fence_size = i915_gem_get_gtt_size(dev,
   3995 						   view_size,
   3996 						   obj->tiling_mode);
   3997 		fence_alignment = i915_gem_get_gtt_alignment(dev,
   3998 							     view_size,
   3999 							     obj->tiling_mode,
   4000 							     true);
   4001 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
   4002 								view_size,
   4003 								obj->tiling_mode,
   4004 								false);
   4005 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
   4006 	} else {
   4007 		fence_size = i915_gem_get_gtt_size(dev,
   4008 						   obj->base.size,
   4009 						   obj->tiling_mode);
   4010 		fence_alignment = i915_gem_get_gtt_alignment(dev,
   4011 							     obj->base.size,
   4012 							     obj->tiling_mode,
   4013 							     true);
   4014 		unfenced_alignment =
   4015 			i915_gem_get_gtt_alignment(dev,
   4016 						   obj->base.size,
   4017 						   obj->tiling_mode,
   4018 						   false);
   4019 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
   4020 	}
   4021 
   4022 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
   4023 	end = vm->total;
   4024 	if (flags & PIN_MAPPABLE)
   4025 		end = min_t(u64, end, dev_priv->gtt.mappable_end);
   4026 	if (flags & PIN_ZONE_4G)
   4027 		end = min_t(u64, end, (1ULL << 32));
   4028 
   4029 	if (alignment == 0)
   4030 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
   4031 						unfenced_alignment;
   4032 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
   4033 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
   4034 			  ggtt_view ? ggtt_view->type : 0,
   4035 			  alignment);
   4036 		return ERR_PTR(-EINVAL);
   4037 	}
   4038 
   4039 	/* If binding the object/GGTT view requires more space than the entire
   4040 	 * aperture has, reject it early before evicting everything in a vain
   4041 	 * attempt to find space.
   4042 	 */
   4043 	if (size > end) {
   4044 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%"PRIx64" > %s aperture=%"PRIx64"\n",
   4045 			  ggtt_view ? ggtt_view->type : 0,
   4046 			  size,
   4047 			  flags & PIN_MAPPABLE ? "mappable" : "total",
   4048 			  end);
   4049 		return ERR_PTR(-E2BIG);
   4050 	}
   4051 
   4052 	ret = i915_gem_object_get_pages(obj);
   4053 	if (ret)
   4054 		return ERR_PTR(ret);
   4055 
   4056 	i915_gem_object_pin_pages(obj);
   4057 
   4058 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
   4059 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
   4060 
   4061 	if (IS_ERR(vma))
   4062 		goto err_unpin;
   4063 
   4064 	if (flags & PIN_HIGH) {
   4065 		search_flag = DRM_MM_SEARCH_BELOW;
   4066 		alloc_flag = DRM_MM_CREATE_TOP;
   4067 	} else {
   4068 		search_flag = DRM_MM_SEARCH_DEFAULT;
   4069 		alloc_flag = DRM_MM_CREATE_DEFAULT;
   4070 	}
   4071 
   4072 search_free:
   4073 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
   4074 						  size, alignment,
   4075 						  obj->cache_level,
   4076 						  start, end,
   4077 						  search_flag,
   4078 						  alloc_flag);
   4079 	if (ret) {
   4080 		ret = i915_gem_evict_something(dev, vm, size, alignment,
   4081 					       obj->cache_level,
   4082 					       start, end,
   4083 					       flags);
   4084 		if (ret == 0)
   4085 			goto search_free;
   4086 
   4087 		goto err_free_vma;
   4088 	}
   4089 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
   4090 		ret = -EINVAL;
   4091 		goto err_remove_node;
   4092 	}
   4093 
   4094 	trace_i915_vma_bind(vma, flags);
   4095 	ret = i915_vma_bind(vma, obj->cache_level, flags);
   4096 	if (ret)
   4097 		goto err_remove_node;
   4098 
   4099 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
   4100 	list_add_tail(&vma->mm_list, &vm->inactive_list);
   4101 
   4102 	return vma;
   4103 
   4104 err_remove_node:
   4105 	drm_mm_remove_node(&vma->node);
   4106 err_free_vma:
   4107 	i915_gem_vma_destroy(vma);
   4108 	vma = ERR_PTR(ret);
   4109 err_unpin:
   4110 	i915_gem_object_unpin_pages(obj);
   4111 	return vma;
   4112 }
   4113 
   4114 bool
   4115 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
   4116 			bool force)
   4117 {
   4118 	/* If we don't have a page list set up, then we're not pinned
   4119 	 * to GPU, and we can ignore the cache flush because it'll happen
   4120 	 * again at bind time.
   4121 	 */
   4122 	if (obj->pages == NULL)
   4123 		return false;
   4124 
   4125 	/*
   4126 	 * Stolen memory is always coherent with the GPU as it is explicitly
   4127 	 * marked as wc by the system, or the system is cache-coherent.
   4128 	 */
   4129 	if (obj->stolen || obj->phys_handle)
   4130 		return false;
   4131 
   4132 	/* If the GPU is snooping the contents of the CPU cache,
   4133 	 * we do not need to manually clear the CPU cache lines.  However,
   4134 	 * the caches are only snooped when the render cache is
   4135 	 * flushed/invalidated.  As we always have to emit invalidations
   4136 	 * and flushes when moving into and out of the RENDER domain, correct
   4137 	 * snooping behaviour occurs naturally as the result of our domain
   4138 	 * tracking.
   4139 	 */
   4140 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
   4141 		obj->cache_dirty = true;
   4142 		return false;
   4143 	}
   4144 
   4145 	trace_i915_gem_object_clflush(obj);
   4146 #ifdef __NetBSD__
   4147 	drm_clflush_pglist(&obj->pageq);
   4148 #else
   4149 	drm_clflush_sg(obj->pages);
   4150 #endif
   4151 	obj->cache_dirty = false;
   4152 
   4153 	return true;
   4154 }
   4155 
   4156 /** Flushes the GTT write domain for the object if it's dirty. */
   4157 static void
   4158 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
   4159 {
   4160 	uint32_t old_write_domain;
   4161 
   4162 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
   4163 		return;
   4164 
   4165 	/* No actual flushing is required for the GTT write domain.  Writes
   4166 	 * to it immediately go to main memory as far as we know, so there's
   4167 	 * no chipset flush.  It also doesn't land in render cache.
   4168 	 *
   4169 	 * However, we do have to enforce the order so that all writes through
   4170 	 * the GTT land before any writes to the device, such as updates to
   4171 	 * the GATT itself.
   4172 	 */
   4173 	wmb();
   4174 
   4175 	old_write_domain = obj->base.write_domain;
   4176 	obj->base.write_domain = 0;
   4177 
   4178 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
   4179 
   4180 	trace_i915_gem_object_change_domain(obj,
   4181 					    obj->base.read_domains,
   4182 					    old_write_domain);
   4183 }
   4184 
   4185 /** Flushes the CPU write domain for the object if it's dirty. */
   4186 static void
   4187 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
   4188 {
   4189 	uint32_t old_write_domain;
   4190 
   4191 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
   4192 		return;
   4193 
   4194 	if (i915_gem_clflush_object(obj, obj->pin_display))
   4195 		i915_gem_chipset_flush(obj->base.dev);
   4196 
   4197 	old_write_domain = obj->base.write_domain;
   4198 	obj->base.write_domain = 0;
   4199 
   4200 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
   4201 
   4202 	trace_i915_gem_object_change_domain(obj,
   4203 					    obj->base.read_domains,
   4204 					    old_write_domain);
   4205 }
   4206 
   4207 /**
   4208  * Moves a single object to the GTT read, and possibly write domain.
   4209  *
   4210  * This function returns when the move is complete, including waiting on
   4211  * flushes to occur.
   4212  */
   4213 int
   4214 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
   4215 {
   4216 	uint32_t old_write_domain, old_read_domains;
   4217 	struct i915_vma *vma;
   4218 	int ret;
   4219 
   4220 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
   4221 		return 0;
   4222 
   4223 	ret = i915_gem_object_wait_rendering(obj, !write);
   4224 	if (ret)
   4225 		return ret;
   4226 
   4227 	/* Flush and acquire obj->pages so that we are coherent through
   4228 	 * direct access in memory with previous cached writes through
   4229 	 * shmemfs and that our cache domain tracking remains valid.
   4230 	 * For example, if the obj->filp was moved to swap without us
   4231 	 * being notified and releasing the pages, we would mistakenly
   4232 	 * continue to assume that the obj remained out of the CPU cached
   4233 	 * domain.
   4234 	 */
   4235 	ret = i915_gem_object_get_pages(obj);
   4236 	if (ret)
   4237 		return ret;
   4238 
   4239 	i915_gem_object_flush_cpu_write_domain(obj);
   4240 
   4241 	/* Serialise direct access to this object with the barriers for
   4242 	 * coherent writes from the GPU, by effectively invalidating the
   4243 	 * GTT domain upon first access.
   4244 	 */
   4245 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   4246 		mb();
   4247 
   4248 	old_write_domain = obj->base.write_domain;
   4249 	old_read_domains = obj->base.read_domains;
   4250 
   4251 	/* It should now be out of any other write domains, and we can update
   4252 	 * the domain values for our changes.
   4253 	 */
   4254 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
   4255 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4256 	if (write) {
   4257 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
   4258 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
   4259 		obj->dirty = 1;
   4260 	}
   4261 
   4262 	trace_i915_gem_object_change_domain(obj,
   4263 					    old_read_domains,
   4264 					    old_write_domain);
   4265 
   4266 	/* And bump the LRU for this access */
   4267 	vma = i915_gem_obj_to_ggtt(obj);
   4268 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
   4269 		list_move_tail(&vma->mm_list,
   4270 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
   4271 
   4272 	return 0;
   4273 }
   4274 
   4275 /**
   4276  * Changes the cache-level of an object across all VMA.
   4277  *
   4278  * After this function returns, the object will be in the new cache-level
   4279  * across all GTT and the contents of the backing storage will be coherent,
   4280  * with respect to the new cache-level. In order to keep the backing storage
   4281  * coherent for all users, we only allow a single cache level to be set
   4282  * globally on the object and prevent it from being changed whilst the
   4283  * hardware is reading from the object. That is if the object is currently
   4284  * on the scanout it will be set to uncached (or equivalent display
   4285  * cache coherency) and all non-MOCS GPU access will also be uncached so
   4286  * that all direct access to the scanout remains coherent.
   4287  */
   4288 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
   4289 				    enum i915_cache_level cache_level)
   4290 {
   4291 	struct drm_device *dev = obj->base.dev;
   4292 	struct i915_vma *vma, *next;
   4293 	bool bound = false;
   4294 	int ret = 0;
   4295 
   4296 	if (obj->cache_level == cache_level)
   4297 		goto out;
   4298 
   4299 	/* Inspect the list of currently bound VMA and unbind any that would
   4300 	 * be invalid given the new cache-level. This is principally to
   4301 	 * catch the issue of the CS prefetch crossing page boundaries and
   4302 	 * reading an invalid PTE on older architectures.
   4303 	 */
   4304 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   4305 		if (!drm_mm_node_allocated(&vma->node))
   4306 			continue;
   4307 
   4308 		if (vma->pin_count) {
   4309 			DRM_DEBUG("can not change the cache level of pinned objects\n");
   4310 			return -EBUSY;
   4311 		}
   4312 
   4313 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
   4314 			ret = i915_vma_unbind(vma);
   4315 			if (ret)
   4316 				return ret;
   4317 		} else
   4318 			bound = true;
   4319 	}
   4320 
   4321 	/* We can reuse the existing drm_mm nodes but need to change the
   4322 	 * cache-level on the PTE. We could simply unbind them all and
   4323 	 * rebind with the correct cache-level on next use. However since
   4324 	 * we already have a valid slot, dma mapping, pages etc, we may as
   4325 	 * rewrite the PTE in the belief that doing so tramples upon less
   4326 	 * state and so involves less work.
   4327 	 */
   4328 	if (bound) {
   4329 		/* Before we change the PTE, the GPU must not be accessing it.
   4330 		 * If we wait upon the object, we know that all the bound
   4331 		 * VMA are no longer active.
   4332 		 */
   4333 		ret = i915_gem_object_wait_rendering(obj, false);
   4334 		if (ret)
   4335 			return ret;
   4336 
   4337 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
   4338 			/* Access to snoopable pages through the GTT is
   4339 			 * incoherent and on some machines causes a hard
   4340 			 * lockup. Relinquish the CPU mmaping to force
   4341 			 * userspace to refault in the pages and we can
   4342 			 * then double check if the GTT mapping is still
   4343 			 * valid for that pointer access.
   4344 			 */
   4345 			i915_gem_release_mmap(obj);
   4346 
   4347 			/* As we no longer need a fence for GTT access,
   4348 			 * we can relinquish it now (and so prevent having
   4349 			 * to steal a fence from someone else on the next
   4350 			 * fence request). Note GPU activity would have
   4351 			 * dropped the fence as all snoopable access is
   4352 			 * supposed to be linear.
   4353 			 */
   4354 			ret = i915_gem_object_put_fence(obj);
   4355 			if (ret)
   4356 				return ret;
   4357 		} else {
   4358 			/* We either have incoherent backing store and
   4359 			 * so no GTT access or the architecture is fully
   4360 			 * coherent. In such cases, existing GTT mmaps
   4361 			 * ignore the cache bit in the PTE and we can
   4362 			 * rewrite it without confusing the GPU or having
   4363 			 * to force userspace to fault back in its mmaps.
   4364 			 */
   4365 		}
   4366 
   4367 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
   4368 			if (!drm_mm_node_allocated(&vma->node))
   4369 				continue;
   4370 
   4371 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
   4372 			if (ret)
   4373 				return ret;
   4374 		}
   4375 	}
   4376 
   4377 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   4378 		vma->node.color = cache_level;
   4379 	obj->cache_level = cache_level;
   4380 
   4381 out:
   4382 	/* Flush the dirty CPU caches to the backing storage so that the
   4383 	 * object is now coherent at its new cache level (with respect
   4384 	 * to the access domain).
   4385 	 */
   4386 	if (obj->cache_dirty &&
   4387 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
   4388 	    cpu_write_needs_clflush(obj)) {
   4389 		if (i915_gem_clflush_object(obj, true))
   4390 			i915_gem_chipset_flush(obj->base.dev);
   4391 	}
   4392 
   4393 	return 0;
   4394 }
   4395 
   4396 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
   4397 			       struct drm_file *file)
   4398 {
   4399 	struct drm_i915_gem_caching *args = data;
   4400 	struct drm_gem_object *gobj;
   4401 	struct drm_i915_gem_object *obj;
   4402 
   4403 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4404 	if (gobj == NULL)
   4405 		return -ENOENT;
   4406 	obj = to_intel_bo(gobj);
   4407 
   4408 	switch (obj->cache_level) {
   4409 	case I915_CACHE_LLC:
   4410 	case I915_CACHE_L3_LLC:
   4411 		args->caching = I915_CACHING_CACHED;
   4412 		break;
   4413 
   4414 	case I915_CACHE_WT:
   4415 		args->caching = I915_CACHING_DISPLAY;
   4416 		break;
   4417 
   4418 	default:
   4419 		args->caching = I915_CACHING_NONE;
   4420 		break;
   4421 	}
   4422 
   4423 	drm_gem_object_unreference_unlocked(&obj->base);
   4424 	return 0;
   4425 }
   4426 
   4427 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
   4428 			       struct drm_file *file)
   4429 {
   4430 	struct drm_i915_private *dev_priv = dev->dev_private;
   4431 	struct drm_i915_gem_caching *args = data;
   4432 	struct drm_gem_object *gobj;
   4433 	struct drm_i915_gem_object *obj;
   4434 	enum i915_cache_level level;
   4435 	int ret;
   4436 
   4437 	switch (args->caching) {
   4438 	case I915_CACHING_NONE:
   4439 		level = I915_CACHE_NONE;
   4440 		break;
   4441 	case I915_CACHING_CACHED:
   4442 		/*
   4443 		 * Due to a HW issue on BXT A stepping, GPU stores via a
   4444 		 * snooped mapping may leave stale data in a corresponding CPU
   4445 		 * cacheline, whereas normally such cachelines would get
   4446 		 * invalidated.
   4447 		 */
   4448 		if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
   4449 			return -ENODEV;
   4450 
   4451 		level = I915_CACHE_LLC;
   4452 		break;
   4453 	case I915_CACHING_DISPLAY:
   4454 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
   4455 		break;
   4456 	default:
   4457 		return -EINVAL;
   4458 	}
   4459 
   4460 	intel_runtime_pm_get(dev_priv);
   4461 
   4462 	ret = i915_mutex_lock_interruptible(dev);
   4463 	if (ret)
   4464 		goto rpm_put;
   4465 
   4466 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4467 	if (gobj == NULL) {
   4468 		ret = -ENOENT;
   4469 		goto unlock;
   4470 	}
   4471 	obj = to_intel_bo(gobj);
   4472 
   4473 	ret = i915_gem_object_set_cache_level(obj, level);
   4474 
   4475 	drm_gem_object_unreference(&obj->base);
   4476 unlock:
   4477 	mutex_unlock(&dev->struct_mutex);
   4478 rpm_put:
   4479 	intel_runtime_pm_put(dev_priv);
   4480 
   4481 	return ret;
   4482 }
   4483 
   4484 /*
   4485  * Prepare buffer for display plane (scanout, cursors, etc).
   4486  * Can be called from an uninterruptible phase (modesetting) and allows
   4487  * any flushes to be pipelined (for pageflips).
   4488  */
   4489 int
   4490 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
   4491 				     u32 alignment,
   4492 				     struct intel_engine_cs *pipelined,
   4493 				     struct drm_i915_gem_request **pipelined_request,
   4494 				     const struct i915_ggtt_view *view)
   4495 {
   4496 	u32 old_read_domains, old_write_domain;
   4497 	int ret;
   4498 
   4499 	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
   4500 	if (ret)
   4501 		return ret;
   4502 
   4503 	/* Mark the pin_display early so that we account for the
   4504 	 * display coherency whilst setting up the cache domains.
   4505 	 */
   4506 	obj->pin_display++;
   4507 
   4508 	/* The display engine is not coherent with the LLC cache on gen6.  As
   4509 	 * a result, we make sure that the pinning that is about to occur is
   4510 	 * done with uncached PTEs. This is lowest common denominator for all
   4511 	 * chipsets.
   4512 	 *
   4513 	 * However for gen6+, we could do better by using the GFDT bit instead
   4514 	 * of uncaching, which would allow us to flush all the LLC-cached data
   4515 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
   4516 	 */
   4517 	ret = i915_gem_object_set_cache_level(obj,
   4518 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
   4519 	if (ret)
   4520 		goto err_unpin_display;
   4521 
   4522 	/* As the user may map the buffer once pinned in the display plane
   4523 	 * (e.g. libkms for the bootup splash), we have to ensure that we
   4524 	 * always use map_and_fenceable for all scanout buffers.
   4525 	 */
   4526 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
   4527 				       view->type == I915_GGTT_VIEW_NORMAL ?
   4528 				       PIN_MAPPABLE : 0);
   4529 	if (ret)
   4530 		goto err_unpin_display;
   4531 
   4532 	i915_gem_object_flush_cpu_write_domain(obj);
   4533 
   4534 	old_write_domain = obj->base.write_domain;
   4535 	old_read_domains = obj->base.read_domains;
   4536 
   4537 	/* It should now be out of any other write domains, and we can update
   4538 	 * the domain values for our changes.
   4539 	 */
   4540 	obj->base.write_domain = 0;
   4541 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4542 
   4543 	trace_i915_gem_object_change_domain(obj,
   4544 					    old_read_domains,
   4545 					    old_write_domain);
   4546 
   4547 	return 0;
   4548 
   4549 err_unpin_display:
   4550 	obj->pin_display--;
   4551 	return ret;
   4552 }
   4553 
   4554 void
   4555 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
   4556 					 const struct i915_ggtt_view *view)
   4557 {
   4558 	if (WARN_ON(obj->pin_display == 0))
   4559 		return;
   4560 
   4561 	i915_gem_object_ggtt_unpin_view(obj, view);
   4562 
   4563 	obj->pin_display--;
   4564 }
   4565 
   4566 /**
   4567  * Moves a single object to the CPU read, and possibly write domain.
   4568  *
   4569  * This function returns when the move is complete, including waiting on
   4570  * flushes to occur.
   4571  */
   4572 int
   4573 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
   4574 {
   4575 	uint32_t old_write_domain, old_read_domains;
   4576 	int ret;
   4577 
   4578 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
   4579 		return 0;
   4580 
   4581 	ret = i915_gem_object_wait_rendering(obj, !write);
   4582 	if (ret)
   4583 		return ret;
   4584 
   4585 	i915_gem_object_flush_gtt_write_domain(obj);
   4586 
   4587 	old_write_domain = obj->base.write_domain;
   4588 	old_read_domains = obj->base.read_domains;
   4589 
   4590 	/* Flush the CPU cache if it's still invalid. */
   4591 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
   4592 		i915_gem_clflush_object(obj, false);
   4593 
   4594 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
   4595 	}
   4596 
   4597 	/* It should now be out of any other write domains, and we can update
   4598 	 * the domain values for our changes.
   4599 	 */
   4600 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
   4601 
   4602 	/* If we're writing through the CPU, then the GPU read domains will
   4603 	 * need to be invalidated at next use.
   4604 	 */
   4605 	if (write) {
   4606 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4607 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4608 	}
   4609 
   4610 	trace_i915_gem_object_change_domain(obj,
   4611 					    old_read_domains,
   4612 					    old_write_domain);
   4613 
   4614 	return 0;
   4615 }
   4616 
   4617 /* Throttle our rendering by waiting until the ring has completed our requests
   4618  * emitted over 20 msec ago.
   4619  *
   4620  * Note that if we were to use the current jiffies each time around the loop,
   4621  * we wouldn't escape the function with any frames outstanding if the time to
   4622  * render a frame was over 20ms.
   4623  *
   4624  * This should get us reasonable parallelism between CPU and GPU but also
   4625  * relatively low latency when blocking on a particular request to finish.
   4626  */
   4627 static int
   4628 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
   4629 {
   4630 	struct drm_i915_private *dev_priv = dev->dev_private;
   4631 	struct drm_i915_file_private *file_priv = file->driver_priv;
   4632 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
   4633 	struct drm_i915_gem_request *request, *target = NULL;
   4634 	unsigned reset_counter;
   4635 	int ret;
   4636 
   4637 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
   4638 	if (ret)
   4639 		return ret;
   4640 
   4641 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
   4642 	if (ret)
   4643 		return ret;
   4644 
   4645 	spin_lock(&file_priv->mm.lock);
   4646 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
   4647 		if (time_after_eq(request->emitted_jiffies, recent_enough))
   4648 			break;
   4649 
   4650 		/*
   4651 		 * Note that the request might not have been submitted yet.
   4652 		 * In which case emitted_jiffies will be zero.
   4653 		 */
   4654 		if (!request->emitted_jiffies)
   4655 			continue;
   4656 
   4657 		target = request;
   4658 	}
   4659 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   4660 	if (target)
   4661 		i915_gem_request_reference(target);
   4662 	spin_unlock(&file_priv->mm.lock);
   4663 
   4664 	if (target == NULL)
   4665 		return 0;
   4666 
   4667 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
   4668 	if (ret == 0)
   4669 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
   4670 
   4671 	i915_gem_request_unreference__unlocked(target);
   4672 
   4673 	return ret;
   4674 }
   4675 
   4676 static bool
   4677 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
   4678 {
   4679 	struct drm_i915_gem_object *obj = vma->obj;
   4680 
   4681 	if (alignment &&
   4682 	    vma->node.start & (alignment - 1))
   4683 		return true;
   4684 
   4685 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
   4686 		return true;
   4687 
   4688 	if (flags & PIN_OFFSET_BIAS &&
   4689 	    vma->node.start < (flags & PIN_OFFSET_MASK))
   4690 		return true;
   4691 
   4692 	return false;
   4693 }
   4694 
   4695 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
   4696 {
   4697 	struct drm_i915_gem_object *obj = vma->obj;
   4698 	bool mappable, fenceable;
   4699 	u32 fence_size, fence_alignment;
   4700 
   4701 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
   4702 					   obj->base.size,
   4703 					   obj->tiling_mode);
   4704 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
   4705 						     obj->base.size,
   4706 						     obj->tiling_mode,
   4707 						     true);
   4708 
   4709 	fenceable = (vma->node.size == fence_size &&
   4710 		     (vma->node.start & (fence_alignment - 1)) == 0);
   4711 
   4712 	mappable = (vma->node.start + fence_size <=
   4713 		    to_i915(obj->base.dev)->gtt.mappable_end);
   4714 
   4715 	obj->map_and_fenceable = mappable && fenceable;
   4716 }
   4717 
   4718 static int
   4719 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
   4720 		       struct i915_address_space *vm,
   4721 		       const struct i915_ggtt_view *ggtt_view,
   4722 		       uint32_t alignment,
   4723 		       uint64_t flags)
   4724 {
   4725 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   4726 	struct i915_vma *vma;
   4727 	unsigned bound;
   4728 	int ret;
   4729 
   4730 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
   4731 		return -ENODEV;
   4732 
   4733 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
   4734 		return -EINVAL;
   4735 
   4736 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
   4737 		return -EINVAL;
   4738 
   4739 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
   4740 		return -EINVAL;
   4741 
   4742 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
   4743 			  i915_gem_obj_to_vma(obj, vm);
   4744 
   4745 	if (IS_ERR(vma))
   4746 		return PTR_ERR(vma);
   4747 
   4748 	if (vma) {
   4749 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
   4750 			return -EBUSY;
   4751 
   4752 		if (i915_vma_misplaced(vma, alignment, flags)) {
   4753 			WARN(vma->pin_count,
   4754 			     "bo is already pinned in %s with incorrect alignment:"
   4755 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
   4756 			     " obj->map_and_fenceable=%d\n",
   4757 			     ggtt_view ? "ggtt" : "ppgtt",
   4758 			     upper_32_bits(vma->node.start),
   4759 			     lower_32_bits(vma->node.start),
   4760 			     alignment,
   4761 			     !!(flags & PIN_MAPPABLE),
   4762 			     obj->map_and_fenceable);
   4763 			ret = i915_vma_unbind(vma);
   4764 			if (ret)
   4765 				return ret;
   4766 
   4767 			vma = NULL;
   4768 		}
   4769 	}
   4770 
   4771 	bound = vma ? vma->bound : 0;
   4772 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
   4773 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
   4774 						 flags);
   4775 		if (IS_ERR(vma))
   4776 			return PTR_ERR(vma);
   4777 	} else {
   4778 		ret = i915_vma_bind(vma, obj->cache_level, flags);
   4779 		if (ret)
   4780 			return ret;
   4781 	}
   4782 
   4783 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
   4784 	    (bound ^ vma->bound) & GLOBAL_BIND) {
   4785 		__i915_vma_set_map_and_fenceable(vma);
   4786 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
   4787 	}
   4788 
   4789 	vma->pin_count++;
   4790 	return 0;
   4791 }
   4792 
   4793 int
   4794 i915_gem_object_pin(struct drm_i915_gem_object *obj,
   4795 		    struct i915_address_space *vm,
   4796 		    uint32_t alignment,
   4797 		    uint64_t flags)
   4798 {
   4799 	return i915_gem_object_do_pin(obj, vm,
   4800 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
   4801 				      alignment, flags);
   4802 }
   4803 
   4804 int
   4805 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
   4806 			 const struct i915_ggtt_view *view,
   4807 			 uint32_t alignment,
   4808 			 uint64_t flags)
   4809 {
   4810 	if (WARN_ONCE(!view, "no view specified"))
   4811 		return -EINVAL;
   4812 
   4813 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
   4814 				      alignment, flags | PIN_GLOBAL);
   4815 }
   4816 
   4817 void
   4818 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
   4819 				const struct i915_ggtt_view *view)
   4820 {
   4821 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
   4822 
   4823 	BUG_ON(!vma);
   4824 	WARN_ON(vma->pin_count == 0);
   4825 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
   4826 
   4827 	--vma->pin_count;
   4828 }
   4829 
   4830 int
   4831 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
   4832 		    struct drm_file *file)
   4833 {
   4834 	struct drm_i915_gem_busy *args = data;
   4835 	struct drm_gem_object *gobj;
   4836 	struct drm_i915_gem_object *obj;
   4837 	int ret;
   4838 
   4839 	ret = i915_mutex_lock_interruptible(dev);
   4840 	if (ret)
   4841 		return ret;
   4842 
   4843 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4844 	if (gobj == NULL) {
   4845 		ret = -ENOENT;
   4846 		goto unlock;
   4847 	}
   4848 	obj = to_intel_bo(gobj);
   4849 
   4850 	/* Count all active objects as busy, even if they are currently not used
   4851 	 * by the gpu. Users of this interface expect objects to eventually
   4852 	 * become non-busy without any further actions, therefore emit any
   4853 	 * necessary flushes here.
   4854 	 */
   4855 	ret = i915_gem_object_flush_active(obj);
   4856 	if (ret)
   4857 		goto unref;
   4858 
   4859 	BUILD_BUG_ON(I915_NUM_RINGS > 16);
   4860 	args->busy = obj->active << 16;
   4861 	if (obj->last_write_req)
   4862 		args->busy |= obj->last_write_req->ring->id;
   4863 
   4864 unref:
   4865 	drm_gem_object_unreference(&obj->base);
   4866 unlock:
   4867 	mutex_unlock(&dev->struct_mutex);
   4868 	return ret;
   4869 }
   4870 
   4871 int
   4872 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
   4873 			struct drm_file *file_priv)
   4874 {
   4875 	return i915_gem_ring_throttle(dev, file_priv);
   4876 }
   4877 
   4878 int
   4879 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   4880 		       struct drm_file *file_priv)
   4881 {
   4882 	struct drm_i915_private *dev_priv = dev->dev_private;
   4883 	struct drm_i915_gem_madvise *args = data;
   4884 	struct drm_gem_object *gobj;
   4885 	struct drm_i915_gem_object *obj;
   4886 	int ret;
   4887 
   4888 	switch (args->madv) {
   4889 	case I915_MADV_DONTNEED:
   4890 	case I915_MADV_WILLNEED:
   4891 	    break;
   4892 	default:
   4893 	    return -EINVAL;
   4894 	}
   4895 
   4896 	ret = i915_mutex_lock_interruptible(dev);
   4897 	if (ret)
   4898 		return ret;
   4899 
   4900 	gobj = drm_gem_object_lookup(dev, file_priv, args->handle);
   4901 	if (gobj == NULL) {
   4902 		ret = -ENOENT;
   4903 		goto unlock;
   4904 	}
   4905 	obj = to_intel_bo(gobj);
   4906 
   4907 	if (i915_gem_obj_is_pinned(obj)) {
   4908 		ret = -EINVAL;
   4909 		goto out;
   4910 	}
   4911 
   4912 	if (obj->pages &&
   4913 	    obj->tiling_mode != I915_TILING_NONE &&
   4914 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
   4915 		if (obj->madv == I915_MADV_WILLNEED)
   4916 			i915_gem_object_unpin_pages(obj);
   4917 		if (args->madv == I915_MADV_WILLNEED)
   4918 			i915_gem_object_pin_pages(obj);
   4919 	}
   4920 
   4921 	if (obj->madv != __I915_MADV_PURGED)
   4922 		obj->madv = args->madv;
   4923 
   4924 	/* if the object is no longer attached, discard its backing storage */
   4925 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
   4926 		i915_gem_object_truncate(obj);
   4927 
   4928 	args->retained = obj->madv != __I915_MADV_PURGED;
   4929 
   4930 out:
   4931 	drm_gem_object_unreference(&obj->base);
   4932 unlock:
   4933 	mutex_unlock(&dev->struct_mutex);
   4934 	return ret;
   4935 }
   4936 
   4937 void i915_gem_object_init(struct drm_i915_gem_object *obj,
   4938 			  const struct drm_i915_gem_object_ops *ops)
   4939 {
   4940 	int i;
   4941 
   4942 	INIT_LIST_HEAD(&obj->global_list);
   4943 	for (i = 0; i < I915_NUM_RINGS; i++)
   4944 		INIT_LIST_HEAD(&obj->ring_list[i]);
   4945 	INIT_LIST_HEAD(&obj->obj_exec_link);
   4946 	INIT_LIST_HEAD(&obj->vma_list);
   4947 	INIT_LIST_HEAD(&obj->batch_pool_link);
   4948 
   4949 	obj->ops = ops;
   4950 
   4951 	obj->fence_reg = I915_FENCE_REG_NONE;
   4952 	obj->madv = I915_MADV_WILLNEED;
   4953 
   4954 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
   4955 }
   4956 
   4957 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
   4958 	.get_pages = i915_gem_object_get_pages_gtt,
   4959 	.put_pages = i915_gem_object_put_pages_gtt,
   4960 };
   4961 
   4962 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
   4963 						  size_t size)
   4964 {
   4965 #ifdef __NetBSD__
   4966 	struct drm_i915_private *const dev_priv = dev->dev_private;
   4967 #endif
   4968 	struct drm_i915_gem_object *obj;
   4969 #ifndef __NetBSD__
   4970 	struct address_space *mapping;
   4971 	gfp_t mask;
   4972 #endif
   4973 
   4974 	obj = i915_gem_object_alloc(dev);
   4975 	if (obj == NULL)
   4976 		return NULL;
   4977 
   4978 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
   4979 		i915_gem_object_free(obj);
   4980 		return NULL;
   4981 	}
   4982 
   4983 #ifdef __NetBSD__
   4984 	uao_set_pgfl(obj->base.filp, dev_priv->gtt.pgfl);
   4985 #else
   4986 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
   4987 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
   4988 		/* 965gm cannot relocate objects above 4GiB. */
   4989 		mask &= ~__GFP_HIGHMEM;
   4990 		mask |= __GFP_DMA32;
   4991 	}
   4992 
   4993 	mapping = file_inode(obj->base.filp)->i_mapping;
   4994 	mapping_set_gfp_mask(mapping, mask);
   4995 #endif
   4996 
   4997 	i915_gem_object_init(obj, &i915_gem_object_ops);
   4998 
   4999 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   5000 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   5001 
   5002 	if (HAS_LLC(dev)) {
   5003 		/* On some devices, we can have the GPU use the LLC (the CPU
   5004 		 * cache) for about a 10% performance improvement
   5005 		 * compared to uncached.  Graphics requests other than
   5006 		 * display scanout are coherent with the CPU in
   5007 		 * accessing this cache.  This means in this mode we
   5008 		 * don't need to clflush on the CPU side, and on the
   5009 		 * GPU side we only need to flush internal caches to
   5010 		 * get data visible to the CPU.
   5011 		 *
   5012 		 * However, we maintain the display planes as UC, and so
   5013 		 * need to rebind when first used as such.
   5014 		 */
   5015 		obj->cache_level = I915_CACHE_LLC;
   5016 	} else
   5017 		obj->cache_level = I915_CACHE_NONE;
   5018 
   5019 	trace_i915_gem_object_create(obj);
   5020 
   5021 	return obj;
   5022 }
   5023 
   5024 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
   5025 {
   5026 	/* If we are the last user of the backing storage (be it shmemfs
   5027 	 * pages or stolen etc), we know that the pages are going to be
   5028 	 * immediately released. In this case, we can then skip copying
   5029 	 * back the contents from the GPU.
   5030 	 */
   5031 
   5032 	if (obj->madv != I915_MADV_WILLNEED)
   5033 		return false;
   5034 
   5035 	if (obj->base.filp == NULL)
   5036 		return true;
   5037 
   5038 	/* At first glance, this looks racy, but then again so would be
   5039 	 * userspace racing mmap against close. However, the first external
   5040 	 * reference to the filp can only be obtained through the
   5041 	 * i915_gem_mmap_ioctl() which safeguards us against the user
   5042 	 * acquiring such a reference whilst we are in the middle of
   5043 	 * freeing the object.
   5044 	 */
   5045 #ifdef __NetBSD__
   5046 	/* XXX This number might be a fencepost.  */
   5047 	return obj->base.filp->uo_refs == 1;
   5048 #else
   5049 	return atomic_long_read(&obj->base.filp->f_count) == 1;
   5050 #endif
   5051 }
   5052 
   5053 void i915_gem_free_object(struct drm_gem_object *gem_obj)
   5054 {
   5055 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   5056 	struct drm_device *dev = obj->base.dev;
   5057 	struct drm_i915_private *dev_priv = dev->dev_private;
   5058 	struct i915_vma *vma, *next;
   5059 
   5060 	intel_runtime_pm_get(dev_priv);
   5061 
   5062 	trace_i915_gem_object_destroy(obj);
   5063 
   5064 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   5065 		int ret;
   5066 
   5067 		vma->pin_count = 0;
   5068 		ret = i915_vma_unbind(vma);
   5069 		if (WARN_ON(ret == -ERESTARTSYS)) {
   5070 			bool was_interruptible;
   5071 
   5072 			was_interruptible = dev_priv->mm.interruptible;
   5073 			dev_priv->mm.interruptible = false;
   5074 
   5075 			WARN_ON(i915_vma_unbind(vma));
   5076 
   5077 			dev_priv->mm.interruptible = was_interruptible;
   5078 		}
   5079 	}
   5080 
   5081 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
   5082 	 * before progressing. */
   5083 	if (obj->stolen)
   5084 		i915_gem_object_unpin_pages(obj);
   5085 
   5086 	WARN_ON(obj->frontbuffer_bits);
   5087 
   5088 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
   5089 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
   5090 	    obj->tiling_mode != I915_TILING_NONE)
   5091 		i915_gem_object_unpin_pages(obj);
   5092 
   5093 	if (WARN_ON(obj->pages_pin_count))
   5094 		obj->pages_pin_count = 0;
   5095 	if (discard_backing_storage(obj))
   5096 		obj->madv = I915_MADV_DONTNEED;
   5097 	i915_gem_object_put_pages(obj);
   5098 	i915_gem_object_free_mmap_offset(obj);
   5099 
   5100 	BUG_ON(obj->pages);
   5101 
   5102 #ifndef __NetBSD__		/* XXX drm prime */
   5103 	if (obj->base.import_attach)
   5104 		drm_prime_gem_destroy(&obj->base, NULL);
   5105 #endif
   5106 
   5107 	if (obj->ops->release)
   5108 		obj->ops->release(obj);
   5109 
   5110 	drm_gem_object_release(&obj->base);
   5111 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
   5112 
   5113 	kfree(obj->bit_17);
   5114 	i915_gem_object_free(obj);
   5115 
   5116 	intel_runtime_pm_put(dev_priv);
   5117 }
   5118 
   5119 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
   5120 				     struct i915_address_space *vm)
   5121 {
   5122 	struct i915_vma *vma;
   5123 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
   5124 		if (i915_is_ggtt(vma->vm) &&
   5125 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5126 			continue;
   5127 		if (vma->vm == vm)
   5128 			return vma;
   5129 	}
   5130 	return NULL;
   5131 }
   5132 
   5133 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
   5134 					   const struct i915_ggtt_view *view)
   5135 {
   5136 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
   5137 	struct i915_vma *vma;
   5138 
   5139 	if (WARN_ONCE(!view, "no view specified"))
   5140 		return ERR_PTR(-EINVAL);
   5141 
   5142 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   5143 		if (vma->vm == ggtt &&
   5144 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
   5145 			return vma;
   5146 	return NULL;
   5147 }
   5148 
   5149 void i915_gem_vma_destroy(struct i915_vma *vma)
   5150 {
   5151 	struct i915_address_space *vm = NULL;
   5152 	WARN_ON(vma->node.allocated);
   5153 
   5154 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
   5155 	if (!list_empty(&vma->exec_list))
   5156 		return;
   5157 
   5158 	vm = vma->vm;
   5159 
   5160 	if (!i915_is_ggtt(vm))
   5161 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
   5162 
   5163 	list_del(&vma->vma_link);
   5164 
   5165 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
   5166 }
   5167 
   5168 static void
   5169 i915_gem_stop_ringbuffers(struct drm_device *dev)
   5170 {
   5171 	struct drm_i915_private *dev_priv = dev->dev_private;
   5172 	struct intel_engine_cs *ring;
   5173 	int i;
   5174 
   5175 	for_each_ring(ring, dev_priv, i)
   5176 		dev_priv->gt.stop_ring(ring);
   5177 }
   5178 
   5179 int
   5180 i915_gem_suspend(struct drm_device *dev)
   5181 {
   5182 	struct drm_i915_private *dev_priv = dev->dev_private;
   5183 	int ret = 0;
   5184 
   5185 	mutex_lock(&dev->struct_mutex);
   5186 	ret = i915_gpu_idle(dev);
   5187 	if (ret)
   5188 		goto err;
   5189 
   5190 	i915_gem_retire_requests(dev);
   5191 
   5192 	i915_gem_stop_ringbuffers(dev);
   5193 	mutex_unlock(&dev->struct_mutex);
   5194 
   5195 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
   5196 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
   5197 	flush_delayed_work(&dev_priv->mm.idle_work);
   5198 
   5199 	/* Assert that we sucessfully flushed all the work and
   5200 	 * reset the GPU back to its idle, low power state.
   5201 	 */
   5202 	WARN_ON(dev_priv->mm.busy);
   5203 
   5204 	return 0;
   5205 
   5206 err:
   5207 	mutex_unlock(&dev->struct_mutex);
   5208 	return ret;
   5209 }
   5210 
   5211 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
   5212 {
   5213 	struct intel_engine_cs *ring = req->ring;
   5214 	struct drm_device *dev = ring->dev;
   5215 	struct drm_i915_private *dev_priv = dev->dev_private;
   5216 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
   5217 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
   5218 	int i, ret;
   5219 
   5220 	if (!HAS_L3_DPF(dev) || !remap_info)
   5221 		return 0;
   5222 
   5223 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
   5224 	if (ret)
   5225 		return ret;
   5226 
   5227 	/*
   5228 	 * Note: We do not worry about the concurrent register cacheline hang
   5229 	 * here because no other code should access these registers other than
   5230 	 * at initialization time.
   5231 	 */
   5232 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
   5233 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
   5234 		intel_ring_emit(ring, reg_base + i);
   5235 		intel_ring_emit(ring, remap_info[i/4]);
   5236 	}
   5237 
   5238 	intel_ring_advance(ring);
   5239 
   5240 	return ret;
   5241 }
   5242 
   5243 void i915_gem_init_swizzling(struct drm_device *dev)
   5244 {
   5245 	struct drm_i915_private *dev_priv = dev->dev_private;
   5246 
   5247 	if (INTEL_INFO(dev)->gen < 5 ||
   5248 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
   5249 		return;
   5250 
   5251 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
   5252 				 DISP_TILE_SURFACE_SWIZZLING);
   5253 
   5254 	if (IS_GEN5(dev))
   5255 		return;
   5256 
   5257 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
   5258 	if (IS_GEN6(dev))
   5259 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
   5260 	else if (IS_GEN7(dev))
   5261 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
   5262 	else if (IS_GEN8(dev))
   5263 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
   5264 	else
   5265 		BUG();
   5266 }
   5267 
   5268 static void init_unused_ring(struct drm_device *dev, u32 base)
   5269 {
   5270 	struct drm_i915_private *dev_priv = dev->dev_private;
   5271 
   5272 	I915_WRITE(RING_CTL(base), 0);
   5273 	I915_WRITE(RING_HEAD(base), 0);
   5274 	I915_WRITE(RING_TAIL(base), 0);
   5275 	I915_WRITE(RING_START(base), 0);
   5276 }
   5277 
   5278 static void init_unused_rings(struct drm_device *dev)
   5279 {
   5280 	if (IS_I830(dev)) {
   5281 		init_unused_ring(dev, PRB1_BASE);
   5282 		init_unused_ring(dev, SRB0_BASE);
   5283 		init_unused_ring(dev, SRB1_BASE);
   5284 		init_unused_ring(dev, SRB2_BASE);
   5285 		init_unused_ring(dev, SRB3_BASE);
   5286 	} else if (IS_GEN2(dev)) {
   5287 		init_unused_ring(dev, SRB0_BASE);
   5288 		init_unused_ring(dev, SRB1_BASE);
   5289 	} else if (IS_GEN3(dev)) {
   5290 		init_unused_ring(dev, PRB1_BASE);
   5291 		init_unused_ring(dev, PRB2_BASE);
   5292 	}
   5293 }
   5294 
   5295 int i915_gem_init_rings(struct drm_device *dev)
   5296 {
   5297 	struct drm_i915_private *dev_priv = dev->dev_private;
   5298 	int ret;
   5299 
   5300 	ret = intel_init_render_ring_buffer(dev);
   5301 	if (ret)
   5302 		return ret;
   5303 
   5304 	if (HAS_BSD(dev)) {
   5305 		ret = intel_init_bsd_ring_buffer(dev);
   5306 		if (ret)
   5307 			goto cleanup_render_ring;
   5308 	}
   5309 
   5310 	if (HAS_BLT(dev)) {
   5311 		ret = intel_init_blt_ring_buffer(dev);
   5312 		if (ret)
   5313 			goto cleanup_bsd_ring;
   5314 	}
   5315 
   5316 	if (HAS_VEBOX(dev)) {
   5317 		ret = intel_init_vebox_ring_buffer(dev);
   5318 		if (ret)
   5319 			goto cleanup_blt_ring;
   5320 	}
   5321 
   5322 	if (HAS_BSD2(dev)) {
   5323 		ret = intel_init_bsd2_ring_buffer(dev);
   5324 		if (ret)
   5325 			goto cleanup_vebox_ring;
   5326 	}
   5327 
   5328 	return 0;
   5329 
   5330 cleanup_vebox_ring:
   5331 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
   5332 cleanup_blt_ring:
   5333 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
   5334 cleanup_bsd_ring:
   5335 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
   5336 cleanup_render_ring:
   5337 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
   5338 
   5339 	return ret;
   5340 }
   5341 
   5342 int
   5343 i915_gem_init_hw(struct drm_device *dev)
   5344 {
   5345 	struct drm_i915_private *dev_priv = dev->dev_private;
   5346 	struct intel_engine_cs *ring;
   5347 	int ret, i, j;
   5348 
   5349 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
   5350 		return -EIO;
   5351 
   5352 	/* Double layer security blanket, see i915_gem_init() */
   5353 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5354 
   5355 	if (dev_priv->ellc_size)
   5356 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
   5357 
   5358 	if (IS_HASWELL(dev))
   5359 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
   5360 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
   5361 
   5362 	if (HAS_PCH_NOP(dev)) {
   5363 		if (IS_IVYBRIDGE(dev)) {
   5364 			u32 temp = I915_READ(GEN7_MSG_CTL);
   5365 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
   5366 			I915_WRITE(GEN7_MSG_CTL, temp);
   5367 		} else if (INTEL_INFO(dev)->gen >= 7) {
   5368 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
   5369 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
   5370 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
   5371 		}
   5372 	}
   5373 
   5374 	i915_gem_init_swizzling(dev);
   5375 
   5376 	/*
   5377 	 * At least 830 can leave some of the unused rings
   5378 	 * "active" (ie. head != tail) after resume which
   5379 	 * will prevent c3 entry. Makes sure all unused rings
   5380 	 * are totally idle.
   5381 	 */
   5382 	init_unused_rings(dev);
   5383 
   5384 	BUG_ON(!dev_priv->ring[RCS].default_context);
   5385 
   5386 	ret = i915_ppgtt_init_hw(dev);
   5387 	if (ret) {
   5388 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
   5389 		goto out;
   5390 	}
   5391 
   5392 	/* Need to do basic initialisation of all rings first: */
   5393 	for_each_ring(ring, dev_priv, i) {
   5394 		ret = ring->init_hw(ring);
   5395 		if (ret)
   5396 			goto out;
   5397 	}
   5398 
   5399 	/* We can't enable contexts until all firmware is loaded */
   5400 	if (HAS_GUC_UCODE(dev)) {
   5401 		ret = intel_guc_ucode_load(dev);
   5402 		if (ret) {
   5403 			/*
   5404 			 * If we got an error and GuC submission is enabled, map
   5405 			 * the error to -EIO so the GPU will be declared wedged.
   5406 			 * OTOH, if we didn't intend to use the GuC anyway, just
   5407 			 * discard the error and carry on.
   5408 			 */
   5409 			DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
   5410 				  i915.enable_guc_submission ? "" :
   5411 				  " (ignored)");
   5412 			ret = i915.enable_guc_submission ? -EIO : 0;
   5413 			if (ret)
   5414 				goto out;
   5415 		}
   5416 	}
   5417 
   5418 	/*
   5419 	 * Increment the next seqno by 0x100 so we have a visible break
   5420 	 * on re-initialisation
   5421 	 */
   5422 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
   5423 	if (ret)
   5424 		goto out;
   5425 
   5426 	/* Now it is safe to go back round and do everything else: */
   5427 	for_each_ring(ring, dev_priv, i) {
   5428 		struct drm_i915_gem_request *req;
   5429 
   5430 		WARN_ON(!ring->default_context);
   5431 
   5432 		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
   5433 		if (ret) {
   5434 			i915_gem_cleanup_ringbuffer(dev);
   5435 			goto out;
   5436 		}
   5437 
   5438 		if (ring->id == RCS) {
   5439 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
   5440 				i915_gem_l3_remap(req, j);
   5441 		}
   5442 
   5443 		ret = i915_ppgtt_init_ring(req);
   5444 		if (ret && ret != -EIO) {
   5445 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
   5446 			i915_gem_request_cancel(req);
   5447 			i915_gem_cleanup_ringbuffer(dev);
   5448 			goto out;
   5449 		}
   5450 
   5451 		ret = i915_gem_context_enable(req);
   5452 		if (ret && ret != -EIO) {
   5453 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
   5454 			i915_gem_request_cancel(req);
   5455 			i915_gem_cleanup_ringbuffer(dev);
   5456 			goto out;
   5457 		}
   5458 
   5459 		i915_add_request_no_flush(req);
   5460 	}
   5461 
   5462 out:
   5463 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5464 	return ret;
   5465 }
   5466 
   5467 int i915_gem_init(struct drm_device *dev)
   5468 {
   5469 	struct drm_i915_private *dev_priv = dev->dev_private;
   5470 	int ret;
   5471 
   5472 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
   5473 			i915.enable_execlists);
   5474 
   5475 	idr_preload(GFP_KERNEL);	/* gem context */
   5476 	mutex_lock(&dev->struct_mutex);
   5477 
   5478 	if (IS_VALLEYVIEW(dev)) {
   5479 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
   5480 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
   5481 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
   5482 			      VLV_GTLC_ALLOWWAKEACK), 10))
   5483 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
   5484 	}
   5485 
   5486 	if (!i915.enable_execlists) {
   5487 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
   5488 		dev_priv->gt.init_rings = i915_gem_init_rings;
   5489 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
   5490 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
   5491 	} else {
   5492 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
   5493 		dev_priv->gt.init_rings = intel_logical_rings_init;
   5494 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
   5495 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
   5496 	}
   5497 
   5498 	/* This is just a security blanket to placate dragons.
   5499 	 * On some systems, we very sporadically observe that the first TLBs
   5500 	 * used by the CS may be stale, despite us poking the TLB reset. If
   5501 	 * we hold the forcewake during initialisation these problems
   5502 	 * just magically go away.
   5503 	 */
   5504 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5505 
   5506 	ret = i915_gem_init_userptr(dev);
   5507 	if (ret)
   5508 		goto out_unlock;
   5509 
   5510 	i915_gem_init_global_gtt(dev);
   5511 
   5512 	ret = i915_gem_context_init(dev);
   5513 	if (ret)
   5514 		goto out_unlock;
   5515 
   5516 	ret = dev_priv->gt.init_rings(dev);
   5517 	if (ret)
   5518 		goto out_unlock;
   5519 
   5520 	ret = i915_gem_init_hw(dev);
   5521 	if (ret == -EIO) {
   5522 		/* Allow ring initialisation to fail by marking the GPU as
   5523 		 * wedged. But we only want to do this where the GPU is angry,
   5524 		 * for all other failure, such as an allocation failure, bail.
   5525 		 */
   5526 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
   5527 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
   5528 		ret = 0;
   5529 	}
   5530 
   5531 out_unlock:
   5532 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5533 	mutex_unlock(&dev->struct_mutex);
   5534 	idr_preload_end();
   5535 
   5536 	return ret;
   5537 }
   5538 
   5539 void
   5540 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
   5541 {
   5542 	struct drm_i915_private *dev_priv = dev->dev_private;
   5543 	struct intel_engine_cs *ring;
   5544 	int i;
   5545 
   5546 	for_each_ring(ring, dev_priv, i)
   5547 		dev_priv->gt.cleanup_ring(ring);
   5548 
   5549     if (i915.enable_execlists)
   5550             /*
   5551              * Neither the BIOS, ourselves or any other kernel
   5552              * expects the system to be in execlists mode on startup,
   5553              * so we need to reset the GPU back to legacy mode.
   5554              */
   5555             intel_gpu_reset(dev);
   5556 }
   5557 
   5558 static void
   5559 init_ring_lists(struct intel_engine_cs *ring)
   5560 {
   5561 	INIT_LIST_HEAD(&ring->active_list);
   5562 	INIT_LIST_HEAD(&ring->request_list);
   5563 }
   5564 
   5565 void
   5566 i915_gem_load(struct drm_device *dev)
   5567 {
   5568 	struct drm_i915_private *dev_priv = dev->dev_private;
   5569 	int i;
   5570 
   5571 	dev_priv->objects =
   5572 		kmem_cache_create("i915_gem_object",
   5573 				  sizeof(struct drm_i915_gem_object), 0,
   5574 				  SLAB_HWCACHE_ALIGN,
   5575 				  NULL);
   5576 	dev_priv->vmas =
   5577 		kmem_cache_create("i915_gem_vma",
   5578 				  sizeof(struct i915_vma), 0,
   5579 				  SLAB_HWCACHE_ALIGN,
   5580 				  NULL);
   5581 	dev_priv->requests =
   5582 		kmem_cache_create("i915_gem_request",
   5583 				  sizeof(struct drm_i915_gem_request), 0,
   5584 				  SLAB_HWCACHE_ALIGN,
   5585 				  NULL);
   5586 
   5587 	INIT_LIST_HEAD(&dev_priv->vm_list);
   5588 	INIT_LIST_HEAD(&dev_priv->context_list);
   5589 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
   5590 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
   5591 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5592 	for (i = 0; i < I915_NUM_RINGS; i++)
   5593 		init_ring_lists(&dev_priv->ring[i]);
   5594 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
   5595 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
   5596 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
   5597 			  i915_gem_retire_work_handler);
   5598 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
   5599 			  i915_gem_idle_work_handler);
   5600 #ifdef __NetBSD__
   5601 	spin_lock_init(&dev_priv->gpu_error.reset_lock);
   5602 	DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
   5603 #else
   5604 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
   5605 #endif
   5606 
   5607 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
   5608 
   5609 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
   5610 		dev_priv->num_fence_regs = 32;
   5611 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
   5612 		dev_priv->num_fence_regs = 16;
   5613 	else
   5614 		dev_priv->num_fence_regs = 8;
   5615 
   5616 	if (intel_vgpu_active(dev))
   5617 		dev_priv->num_fence_regs =
   5618 				I915_READ(vgtif_reg(avail_rs.fence_num));
   5619 
   5620 	/*
   5621 	 * Set initial sequence number for requests.
   5622 	 * Using this number allows the wraparound to happen early,
   5623 	 * catching any obvious problems.
   5624 	 */
   5625 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
   5626 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
   5627 
   5628 	/* Initialize fence registers to zero */
   5629 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5630 	i915_gem_restore_fences(dev);
   5631 
   5632 	i915_gem_detect_bit_6_swizzle(dev);
   5633 #ifdef __NetBSD__
   5634 	DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
   5635 	spin_lock_init(&dev_priv->pending_flip_lock);
   5636 #else
   5637 	init_waitqueue_head(&dev_priv->pending_flip_queue);
   5638 #endif
   5639 
   5640 	dev_priv->mm.interruptible = true;
   5641 
   5642 	i915_gem_shrinker_init(dev_priv);
   5643 #ifdef __NetBSD__
   5644 	linux_mutex_init(&dev_priv->fb_tracking.lock);
   5645 #else
   5646 	mutex_init(&dev_priv->fb_tracking.lock);
   5647 #endif
   5648 }
   5649 
   5650 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   5651 {
   5652 	struct drm_i915_file_private *file_priv = file->driver_priv;
   5653 
   5654 	/* Clean up our request list when the client is going away, so that
   5655 	 * later retire_requests won't dereference our soon-to-be-gone
   5656 	 * file_priv.
   5657 	 */
   5658 	spin_lock(&file_priv->mm.lock);
   5659 	while (!list_empty(&file_priv->mm.request_list)) {
   5660 		struct drm_i915_gem_request *request;
   5661 
   5662 		request = list_first_entry(&file_priv->mm.request_list,
   5663 					   struct drm_i915_gem_request,
   5664 					   client_list);
   5665 		list_del(&request->client_list);
   5666 		request->file_priv = NULL;
   5667 	}
   5668 	spin_unlock(&file_priv->mm.lock);
   5669 
   5670 	if (!list_empty(&file_priv->rps.link)) {
   5671 		spin_lock(&to_i915(dev)->rps.client_lock);
   5672 		list_del(&file_priv->rps.link);
   5673 		spin_unlock(&to_i915(dev)->rps.client_lock);
   5674 	}
   5675 }
   5676 
   5677 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
   5678 {
   5679 	struct drm_i915_file_private *file_priv;
   5680 	int ret;
   5681 
   5682 	DRM_DEBUG_DRIVER("\n");
   5683 
   5684 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
   5685 	if (!file_priv)
   5686 		return -ENOMEM;
   5687 
   5688 	file->driver_priv = file_priv;
   5689 	file_priv->dev_priv = dev->dev_private;
   5690 	file_priv->file = file;
   5691 	INIT_LIST_HEAD(&file_priv->rps.link);
   5692 
   5693 	spin_lock_init(&file_priv->mm.lock);
   5694 	INIT_LIST_HEAD(&file_priv->mm.request_list);
   5695 
   5696 	ret = i915_gem_context_open(dev, file);
   5697 	if (ret)
   5698 		kfree(file_priv);
   5699 
   5700 	return ret;
   5701 }
   5702 
   5703 /**
   5704  * i915_gem_track_fb - update frontbuffer tracking
   5705  * @old: current GEM buffer for the frontbuffer slots
   5706  * @new: new GEM buffer for the frontbuffer slots
   5707  * @frontbuffer_bits: bitmask of frontbuffer slots
   5708  *
   5709  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
   5710  * from @old and setting them in @new. Both @old and @new can be NULL.
   5711  */
   5712 void i915_gem_track_fb(struct drm_i915_gem_object *old,
   5713 		       struct drm_i915_gem_object *new,
   5714 		       unsigned frontbuffer_bits)
   5715 {
   5716 	if (old) {
   5717 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
   5718 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
   5719 		old->frontbuffer_bits &= ~frontbuffer_bits;
   5720 	}
   5721 
   5722 	if (new) {
   5723 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
   5724 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
   5725 		new->frontbuffer_bits |= frontbuffer_bits;
   5726 	}
   5727 }
   5728 
   5729 /* All the new VM stuff */
   5730 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
   5731 			struct i915_address_space *vm)
   5732 {
   5733 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5734 	struct i915_vma *vma;
   5735 
   5736 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
   5737 
   5738 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5739 		if (i915_is_ggtt(vma->vm) &&
   5740 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5741 			continue;
   5742 		if (vma->vm == vm)
   5743 			return vma->node.start;
   5744 	}
   5745 
   5746 	WARN(1, "%s vma for this object not found.\n",
   5747 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
   5748 	return -1;
   5749 }
   5750 
   5751 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
   5752 				  const struct i915_ggtt_view *view)
   5753 {
   5754 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
   5755 	struct i915_vma *vma;
   5756 
   5757 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5758 		if (vma->vm == ggtt &&
   5759 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
   5760 			return vma->node.start;
   5761 
   5762 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
   5763 	return -1;
   5764 }
   5765 
   5766 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
   5767 			struct i915_address_space *vm)
   5768 {
   5769 	struct i915_vma *vma;
   5770 
   5771 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5772 		if (i915_is_ggtt(vma->vm) &&
   5773 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5774 			continue;
   5775 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
   5776 			return true;
   5777 	}
   5778 
   5779 	return false;
   5780 }
   5781 
   5782 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
   5783 				  const struct i915_ggtt_view *view)
   5784 {
   5785 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
   5786 	struct i915_vma *vma;
   5787 
   5788 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5789 		if (vma->vm == ggtt &&
   5790 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
   5791 		    drm_mm_node_allocated(&vma->node))
   5792 			return true;
   5793 
   5794 	return false;
   5795 }
   5796 
   5797 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
   5798 {
   5799 	struct i915_vma *vma;
   5800 
   5801 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5802 		if (drm_mm_node_allocated(&vma->node))
   5803 			return true;
   5804 
   5805 	return false;
   5806 }
   5807 
   5808 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
   5809 				struct i915_address_space *vm)
   5810 {
   5811 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5812 	struct i915_vma *vma;
   5813 
   5814 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
   5815 
   5816 	BUG_ON(list_empty(&o->vma_list));
   5817 
   5818 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5819 		if (i915_is_ggtt(vma->vm) &&
   5820 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5821 			continue;
   5822 		if (vma->vm == vm)
   5823 			return vma->node.size;
   5824 	}
   5825 	return 0;
   5826 }
   5827 
   5828 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
   5829 {
   5830 	struct i915_vma *vma;
   5831 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   5832 		if (vma->pin_count > 0)
   5833 			return true;
   5834 
   5835 	return false;
   5836 }
   5837 
   5838 /* Allocate a new GEM object and fill it with the supplied data */
   5839 struct drm_i915_gem_object *
   5840 i915_gem_object_create_from_data(struct drm_device *dev,
   5841 			         const void *data, size_t size)
   5842 {
   5843 	struct drm_i915_gem_object *obj;
   5844 #ifdef __NetBSD__
   5845 	struct iovec iov = { .iov_base = __UNCONST(data), .iov_len = size };
   5846 	struct uio uio = {
   5847 	    .uio_iov = &iov,
   5848 	    .uio_iovcnt = 1,
   5849 	    .uio_offset = 0,
   5850 	    .uio_resid = size,
   5851 	    .uio_rw = UIO_WRITE,
   5852 	};
   5853 #else
   5854 	struct sg_table *sg;
   5855 #endif
   5856 	size_t bytes;
   5857 	int ret;
   5858 
   5859 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
   5860 	if (IS_ERR_OR_NULL(obj))
   5861 		return obj;
   5862 
   5863 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   5864 	if (ret)
   5865 		goto fail;
   5866 
   5867 	ret = i915_gem_object_get_pages(obj);
   5868 	if (ret)
   5869 		goto fail;
   5870 
   5871 	i915_gem_object_pin_pages(obj);
   5872 #ifdef __NetBSD__
   5873 	UIO_SETUP_SYSSPACE(&uio);
   5874 	/* XXX errno NetBSD->Linux */
   5875 	ret = -ubc_uiomove(obj->base.filp, &uio, size, UVM_ADV_NORMAL,
   5876 	    UBC_WRITE);
   5877 	if (ret)
   5878 		goto fail;
   5879 	bytes = size - uio.uio_resid;
   5880 #else
   5881 	sg = obj->pages;
   5882 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
   5883 #endif
   5884 	i915_gem_object_unpin_pages(obj);
   5885 
   5886 	if (WARN_ON(bytes != size)) {
   5887 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
   5888 		ret = -EFAULT;
   5889 		goto fail;
   5890 	}
   5891 
   5892 	return obj;
   5893 
   5894 fail:
   5895 	drm_gem_object_unreference(&obj->base);
   5896 	return ERR_PTR(ret);
   5897 }
   5898