i915_gem.c revision 1.52 1 /* $NetBSD: i915_gem.c,v 1.52 2018/08/27 14:47:02 riastradh Exp $ */
2
3 /*
4 * Copyright 2008-2015 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 *
25 * Authors:
26 * Eric Anholt <eric (at) anholt.net>
27 *
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: i915_gem.c,v 1.52 2018/08/27 14:47:02 riastradh Exp $");
32
33 #ifdef __NetBSD__
34 #if 0 /* XXX uvmhist option? */
35 #include "opt_uvmhist.h"
36 #endif
37
38 #include <sys/types.h>
39 #include <sys/param.h>
40
41 #include <uvm/uvm.h>
42 #include <uvm/uvm_extern.h>
43 #include <uvm/uvm_fault.h>
44 #include <uvm/uvm_page.h>
45 #include <uvm/uvm_pmap.h>
46 #include <uvm/uvm_prot.h>
47
48 #include <drm/bus_dma_hacks.h>
49 #endif
50
51 #include <drm/drmP.h>
52 #include <drm/drm_vma_manager.h>
53 #include <drm/i915_drm.h>
54 #include "i915_drv.h"
55 #include "i915_vgpu.h"
56 #include "i915_trace.h"
57 #include "intel_drv.h"
58 #include <linux/shmem_fs.h>
59 #include <linux/slab.h>
60 #include <linux/swap.h>
61 #include <linux/pci.h>
62 #include <linux/dma-buf.h>
63 #include <linux/errno.h>
64 #include <linux/time.h>
65 #include <linux/err.h>
66 #include <linux/bitops.h>
67 #include <linux/printk.h>
68 #include <asm/param.h>
69 #include <asm/page.h>
70 #include <asm/cpufeature.h>
71
72 #define RQ_BUG_ON(expr)
73
74 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
75 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
76 static void
77 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
78 static void
79 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
80
81 static bool cpu_cache_is_coherent(struct drm_device *dev,
82 enum i915_cache_level level)
83 {
84 return HAS_LLC(dev) || level != I915_CACHE_NONE;
85 }
86
87 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
88 {
89 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
90 return true;
91
92 return obj->pin_display;
93 }
94
95 /* some bookkeeping */
96 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
97 size_t size)
98 {
99 spin_lock(&dev_priv->mm.object_stat_lock);
100 dev_priv->mm.object_count++;
101 dev_priv->mm.object_memory += size;
102 spin_unlock(&dev_priv->mm.object_stat_lock);
103 }
104
105 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
106 size_t size)
107 {
108 spin_lock(&dev_priv->mm.object_stat_lock);
109 dev_priv->mm.object_count--;
110 dev_priv->mm.object_memory -= size;
111 spin_unlock(&dev_priv->mm.object_stat_lock);
112 }
113
114 static int
115 i915_gem_wait_for_error(struct i915_gpu_error *error)
116 {
117 int ret;
118
119 #define EXIT_COND (!i915_reset_in_progress(error) || \
120 i915_terminally_wedged(error))
121 if (EXIT_COND)
122 return 0;
123
124 /*
125 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
126 * userspace. If it takes that long something really bad is going on and
127 * we should simply try to bail out and fail as gracefully as possible.
128 */
129 #ifdef __NetBSD__
130 spin_lock(&error->reset_lock);
131 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
132 10*HZ, EXIT_COND);
133 spin_unlock(&error->reset_lock);
134 #else
135 ret = wait_event_interruptible_timeout(error->reset_queue,
136 EXIT_COND,
137 10*HZ);
138 #endif
139 if (ret == 0) {
140 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
141 return -EIO;
142 } else if (ret < 0) {
143 return ret;
144 }
145 #undef EXIT_COND
146
147 return 0;
148 }
149
150 int i915_mutex_lock_interruptible(struct drm_device *dev)
151 {
152 struct drm_i915_private *dev_priv = dev->dev_private;
153 int ret;
154
155 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
156 if (ret)
157 return ret;
158
159 ret = mutex_lock_interruptible(&dev->struct_mutex);
160 if (ret)
161 return ret;
162
163 WARN_ON(i915_verify_lists(dev));
164 return 0;
165 }
166
167 int
168 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
169 struct drm_file *file)
170 {
171 struct drm_i915_private *dev_priv = dev->dev_private;
172 struct drm_i915_gem_get_aperture *args = data;
173 struct i915_gtt *ggtt = &dev_priv->gtt;
174 struct i915_vma *vma;
175 size_t pinned;
176
177 pinned = 0;
178 mutex_lock(&dev->struct_mutex);
179 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
180 if (vma->pin_count)
181 pinned += vma->node.size;
182 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
183 if (vma->pin_count)
184 pinned += vma->node.size;
185 mutex_unlock(&dev->struct_mutex);
186
187 args->aper_size = dev_priv->gtt.base.total;
188 args->aper_available_size = args->aper_size - pinned;
189
190 return 0;
191 }
192
193 static int
194 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
195 {
196 #ifndef __NetBSD__
197 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
198 #endif
199 char *vaddr = obj->phys_handle->vaddr;
200 #ifndef __NetBSD__
201 struct sg_table *st;
202 struct scatterlist *sg;
203 #endif
204 int i;
205
206 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
207 return -EINVAL;
208
209 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
210 struct page *page;
211 char *src;
212
213 #ifdef __NetBSD__
214 struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
215 int ret;
216 /* XXX errno NetBSD->Linux */
217 ret = -uvm_obj_wirepages(obj->base.filp, i*PAGE_SIZE,
218 (i + 1)*PAGE_SIZE, &pages);
219 if (ret)
220 return ret;
221 page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
222 #else
223 page = shmem_read_mapping_page(mapping, i);
224 if (IS_ERR(page))
225 return PTR_ERR(page);
226 #endif
227
228 src = kmap_atomic(page);
229 memcpy(vaddr, src, PAGE_SIZE);
230 drm_clflush_virt_range(vaddr, PAGE_SIZE);
231 kunmap_atomic(src);
232
233 #ifdef __NetBSD__
234 uvm_obj_unwirepages(obj->base.filp, i*PAGE_SIZE,
235 (i + 1)*PAGE_SIZE);
236 #else
237 page_cache_release(page);
238 #endif
239 vaddr += PAGE_SIZE;
240 }
241
242 i915_gem_chipset_flush(obj->base.dev);
243
244 #ifdef __NetBSD__
245 obj->pages = obj->phys_handle->dmah_map;
246 #else
247 st = kmalloc(sizeof(*st), GFP_KERNEL);
248 if (st == NULL)
249 return -ENOMEM;
250
251 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
252 kfree(st);
253 return -ENOMEM;
254 }
255
256 sg = st->sgl;
257 sg->offset = 0;
258 sg->length = obj->base.size;
259
260 sg_dma_address(sg) = obj->phys_handle->busaddr;
261 sg_dma_len(sg) = obj->base.size;
262
263 obj->pages = st;
264 #endif
265 return 0;
266 }
267
268 static void
269 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
270 {
271 int ret;
272
273 BUG_ON(obj->madv == __I915_MADV_PURGED);
274
275 ret = i915_gem_object_set_to_cpu_domain(obj, true);
276 if (ret) {
277 /* In the event of a disaster, abandon all caches and
278 * hope for the best.
279 */
280 WARN_ON(ret != -EIO);
281 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
282 }
283
284 if (obj->madv == I915_MADV_DONTNEED)
285 obj->dirty = 0;
286
287 if (obj->dirty) {
288 #ifndef __NetBSD__
289 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
290 #endif
291 const char *vaddr = obj->phys_handle->vaddr;
292 int i;
293
294 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
295 struct page *page;
296 char *dst;
297
298 #ifdef __NetBSD__
299 struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
300 /* XXX errno NetBSD->Linux */
301 ret = -uvm_obj_wirepages(obj->base.filp,
302 i*PAGE_SIZE, (i + 1)*PAGE_SIZE, &pages);
303 if (ret)
304 continue;
305 page = container_of(TAILQ_FIRST(&pages), struct page,
306 p_vmp);
307 #endif
308
309 dst = kmap_atomic(page);
310 drm_clflush_virt_range(vaddr, PAGE_SIZE);
311 memcpy(dst, vaddr, PAGE_SIZE);
312 kunmap_atomic(dst);
313
314 set_page_dirty(page);
315 #ifdef __NetBSD__
316 /* XXX mark page accessed */
317 uvm_obj_unwirepages(obj->base.filp, i*PAGE_SIZE,
318 (i+1)*PAGE_SIZE);
319 #else
320 if (obj->madv == I915_MADV_WILLNEED)
321 mark_page_accessed(page);
322 page_cache_release(page);
323 #endif
324 vaddr += PAGE_SIZE;
325 }
326 obj->dirty = 0;
327 }
328
329 #ifdef __NetBSD__
330 obj->pages = NULL;
331 #else
332 sg_free_table(obj->pages);
333 kfree(obj->pages);
334 #endif
335 }
336
337 static void
338 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
339 {
340 drm_pci_free(obj->base.dev, obj->phys_handle);
341 }
342
343 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
344 .get_pages = i915_gem_object_get_pages_phys,
345 .put_pages = i915_gem_object_put_pages_phys,
346 .release = i915_gem_object_release_phys,
347 };
348
349 static int
350 drop_pages(struct drm_i915_gem_object *obj)
351 {
352 struct i915_vma *vma, *next;
353 int ret;
354
355 drm_gem_object_reference(&obj->base);
356 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
357 if (i915_vma_unbind(vma))
358 break;
359
360 ret = i915_gem_object_put_pages(obj);
361 drm_gem_object_unreference(&obj->base);
362
363 return ret;
364 }
365
366 int
367 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
368 int align)
369 {
370 drm_dma_handle_t *phys;
371 int ret;
372
373 if (obj->phys_handle) {
374 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
375 return -EBUSY;
376
377 return 0;
378 }
379
380 if (obj->madv != I915_MADV_WILLNEED)
381 return -EFAULT;
382
383 if (obj->base.filp == NULL)
384 return -EINVAL;
385
386 ret = drop_pages(obj);
387 if (ret)
388 return ret;
389
390 /* create a new object */
391 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
392 if (!phys)
393 return -ENOMEM;
394
395 obj->phys_handle = phys;
396 obj->ops = &i915_gem_phys_ops;
397
398 return i915_gem_object_get_pages(obj);
399 }
400
401 static int
402 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
403 struct drm_i915_gem_pwrite *args,
404 struct drm_file *file_priv)
405 {
406 struct drm_device *dev = obj->base.dev;
407 void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
408 char __user *user_data = to_user_ptr(args->data_ptr);
409 int ret = 0;
410
411 /* We manually control the domain here and pretend that it
412 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
413 */
414 ret = i915_gem_object_wait_rendering(obj, false);
415 if (ret)
416 return ret;
417
418 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
419 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
420 unsigned long unwritten;
421
422 /* The physical object once assigned is fixed for the lifetime
423 * of the obj, so we can safely drop the lock and continue
424 * to access vaddr.
425 */
426 mutex_unlock(&dev->struct_mutex);
427 unwritten = copy_from_user(vaddr, user_data, args->size);
428 mutex_lock(&dev->struct_mutex);
429 if (unwritten) {
430 ret = -EFAULT;
431 goto out;
432 }
433 }
434
435 drm_clflush_virt_range(vaddr, args->size);
436 i915_gem_chipset_flush(dev);
437
438 out:
439 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
440 return ret;
441 }
442
443 void *i915_gem_object_alloc(struct drm_device *dev)
444 {
445 struct drm_i915_private *dev_priv = dev->dev_private;
446 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
447 }
448
449 void i915_gem_object_free(struct drm_i915_gem_object *obj)
450 {
451 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
452 kmem_cache_free(dev_priv->objects, obj);
453 }
454
455 static int
456 i915_gem_create(struct drm_file *file,
457 struct drm_device *dev,
458 uint64_t size,
459 uint32_t *handle_p)
460 {
461 struct drm_i915_gem_object *obj;
462 int ret;
463 u32 handle;
464
465 size = roundup(size, PAGE_SIZE);
466 if (size == 0)
467 return -EINVAL;
468
469 /* Allocate the new object */
470 obj = i915_gem_alloc_object(dev, size);
471 if (obj == NULL)
472 return -ENOMEM;
473
474 ret = drm_gem_handle_create(file, &obj->base, &handle);
475 /* drop reference from allocate - handle holds it now */
476 drm_gem_object_unreference_unlocked(&obj->base);
477 if (ret)
478 return ret;
479
480 *handle_p = handle;
481 return 0;
482 }
483
484 int
485 i915_gem_dumb_create(struct drm_file *file,
486 struct drm_device *dev,
487 struct drm_mode_create_dumb *args)
488 {
489 /* have to work out size/pitch and return them */
490 #ifdef __NetBSD__ /* ALIGN means something else. */
491 args->pitch = round_up(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
492 #else
493 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
494 #endif
495 args->size = args->pitch * args->height;
496 return i915_gem_create(file, dev,
497 args->size, &args->handle);
498 }
499
500 /**
501 * Creates a new mm object and returns a handle to it.
502 */
503 int
504 i915_gem_create_ioctl(struct drm_device *dev, void *data,
505 struct drm_file *file)
506 {
507 struct drm_i915_gem_create *args = data;
508
509 return i915_gem_create(file, dev,
510 args->size, &args->handle);
511 }
512
513 static inline int
514 __copy_to_user_swizzled(char __user *cpu_vaddr,
515 const char *gpu_vaddr, int gpu_offset,
516 int length)
517 {
518 int ret, cpu_offset = 0;
519
520 while (length > 0) {
521 #ifdef __NetBSD__ /* XXX ALIGN means something else. */
522 int cacheline_end = round_up(gpu_offset + 1, 64);
523 #else
524 int cacheline_end = ALIGN(gpu_offset + 1, 64);
525 #endif
526 int this_length = min(cacheline_end - gpu_offset, length);
527 int swizzled_gpu_offset = gpu_offset ^ 64;
528
529 ret = __copy_to_user(cpu_vaddr + cpu_offset,
530 gpu_vaddr + swizzled_gpu_offset,
531 this_length);
532 if (ret)
533 return ret + length;
534
535 cpu_offset += this_length;
536 gpu_offset += this_length;
537 length -= this_length;
538 }
539
540 return 0;
541 }
542
543 static inline int
544 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
545 const char __user *cpu_vaddr,
546 int length)
547 {
548 int ret, cpu_offset = 0;
549
550 while (length > 0) {
551 #ifdef __NetBSD__ /* XXX ALIGN means something else. */
552 int cacheline_end = round_up(gpu_offset + 1, 64);
553 #else
554 int cacheline_end = ALIGN(gpu_offset + 1, 64);
555 #endif
556 int this_length = min(cacheline_end - gpu_offset, length);
557 int swizzled_gpu_offset = gpu_offset ^ 64;
558
559 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
560 cpu_vaddr + cpu_offset,
561 this_length);
562 if (ret)
563 return ret + length;
564
565 cpu_offset += this_length;
566 gpu_offset += this_length;
567 length -= this_length;
568 }
569
570 return 0;
571 }
572
573 /*
574 * Pins the specified object's pages and synchronizes the object with
575 * GPU accesses. Sets needs_clflush to non-zero if the caller should
576 * flush the object from the CPU cache.
577 */
578 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
579 int *needs_clflush)
580 {
581 int ret;
582
583 *needs_clflush = 0;
584
585 if (!obj->base.filp)
586 return -EINVAL;
587
588 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
589 /* If we're not in the cpu read domain, set ourself into the gtt
590 * read domain and manually flush cachelines (if required). This
591 * optimizes for the case when the gpu will dirty the data
592 * anyway again before the next pread happens. */
593 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
594 obj->cache_level);
595 ret = i915_gem_object_wait_rendering(obj, true);
596 if (ret)
597 return ret;
598 }
599
600 ret = i915_gem_object_get_pages(obj);
601 if (ret)
602 return ret;
603
604 i915_gem_object_pin_pages(obj);
605
606 return ret;
607 }
608
609 /* Per-page copy function for the shmem pread fastpath.
610 * Flushes invalid cachelines before reading the target if
611 * needs_clflush is set. */
612 static int
613 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
614 char __user *user_data,
615 bool page_do_bit17_swizzling, bool needs_clflush)
616 {
617 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
618 return -EFAULT;
619 #else
620 char *vaddr;
621 int ret;
622
623 if (unlikely(page_do_bit17_swizzling))
624 return -EINVAL;
625
626 vaddr = kmap_atomic(page);
627 if (needs_clflush)
628 drm_clflush_virt_range(vaddr + shmem_page_offset,
629 page_length);
630 ret = __copy_to_user_inatomic(user_data,
631 vaddr + shmem_page_offset,
632 page_length);
633 kunmap_atomic(vaddr);
634
635 return ret ? -EFAULT : 0;
636 #endif
637 }
638
639 static void
640 shmem_clflush_swizzled_range(char *addr, unsigned long length,
641 bool swizzled)
642 {
643 if (unlikely(swizzled)) {
644 unsigned long start = (unsigned long) addr;
645 unsigned long end = (unsigned long) addr + length;
646
647 /* For swizzling simply ensure that we always flush both
648 * channels. Lame, but simple and it works. Swizzled
649 * pwrite/pread is far from a hotpath - current userspace
650 * doesn't use it at all. */
651 start = round_down(start, 128);
652 end = round_up(end, 128);
653
654 drm_clflush_virt_range((void *)start, end - start);
655 } else {
656 drm_clflush_virt_range(addr, length);
657 }
658
659 }
660
661 /* Only difference to the fast-path function is that this can handle bit17
662 * and uses non-atomic copy and kmap functions. */
663 static int
664 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling, bool needs_clflush)
667 {
668 char *vaddr;
669 int ret;
670
671 vaddr = kmap(page);
672 if (needs_clflush)
673 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
674 page_length,
675 page_do_bit17_swizzling);
676
677 if (page_do_bit17_swizzling)
678 ret = __copy_to_user_swizzled(user_data,
679 vaddr, shmem_page_offset,
680 page_length);
681 else
682 ret = __copy_to_user(user_data,
683 vaddr + shmem_page_offset,
684 page_length);
685 kunmap(page);
686
687 return ret ? - EFAULT : 0;
688 }
689
690 static int
691 i915_gem_shmem_pread(struct drm_device *dev,
692 struct drm_i915_gem_object *obj,
693 struct drm_i915_gem_pread *args,
694 struct drm_file *file)
695 {
696 char __user *user_data;
697 ssize_t remain;
698 loff_t offset;
699 int shmem_page_offset, page_length, ret = 0;
700 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
701 #ifndef __NetBSD__ /* XXX */
702 int prefaulted = 0;
703 #endif
704 int needs_clflush = 0;
705 #ifndef __NetBSD__
706 struct sg_page_iter sg_iter;
707 #endif
708
709 user_data = to_user_ptr(args->data_ptr);
710 remain = args->size;
711
712 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
713
714 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
715 if (ret)
716 return ret;
717
718 offset = args->offset;
719
720 #ifdef __NetBSD__
721 while (0 < remain)
722 #else
723 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
724 offset >> PAGE_SHIFT)
725 #endif
726 {
727 #ifdef __NetBSD__
728 struct page *const page = i915_gem_object_get_page(obj,
729 atop(offset));
730 #else
731 struct page *page = sg_page_iter_page(&sg_iter);
732
733 if (remain <= 0)
734 break;
735 #endif
736
737 /* Operation in this page
738 *
739 * shmem_page_offset = offset within page in shmem file
740 * page_length = bytes to copy for this page
741 */
742 shmem_page_offset = offset_in_page(offset);
743 page_length = remain;
744 if ((shmem_page_offset + page_length) > PAGE_SIZE)
745 page_length = PAGE_SIZE - shmem_page_offset;
746
747 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
748 (page_to_phys(page) & (1 << 17)) != 0;
749
750 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
751 user_data, page_do_bit17_swizzling,
752 needs_clflush);
753 if (ret == 0)
754 goto next_page;
755
756 mutex_unlock(&dev->struct_mutex);
757 #ifndef __NetBSD__
758 if (likely(!i915.prefault_disable) && !prefaulted) {
759 ret = fault_in_multipages_writeable(user_data, remain);
760 /* Userspace is tricking us, but we've already clobbered
761 * its pages with the prefault and promised to write the
762 * data up to the first fault. Hence ignore any errors
763 * and just continue. */
764 (void)ret;
765 prefaulted = 1;
766 }
767 #endif
768 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
769 user_data, page_do_bit17_swizzling,
770 needs_clflush);
771
772 mutex_lock(&dev->struct_mutex);
773
774 if (ret)
775 goto out;
776
777 next_page:
778 remain -= page_length;
779 user_data += page_length;
780 offset += page_length;
781 }
782
783 out:
784 i915_gem_object_unpin_pages(obj);
785
786 return ret;
787 }
788
789 /**
790 * Reads data from the object referenced by handle.
791 *
792 * On error, the contents of *data are undefined.
793 */
794 int
795 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
796 struct drm_file *file)
797 {
798 struct drm_i915_gem_pread *args = data;
799 struct drm_gem_object *gobj;
800 struct drm_i915_gem_object *obj;
801 int ret = 0;
802
803 if (args->size == 0)
804 return 0;
805
806 if (!access_ok(VERIFY_WRITE,
807 to_user_ptr(args->data_ptr),
808 args->size))
809 return -EFAULT;
810
811 ret = i915_mutex_lock_interruptible(dev);
812 if (ret)
813 return ret;
814
815 gobj = drm_gem_object_lookup(dev, file, args->handle);
816 if (gobj == NULL) {
817 ret = -ENOENT;
818 goto unlock;
819 }
820 obj = to_intel_bo(gobj);
821
822 /* Bounds check source. */
823 if (args->offset > obj->base.size ||
824 args->size > obj->base.size - args->offset) {
825 ret = -EINVAL;
826 goto out;
827 }
828
829 /* prime objects have no backing filp to GEM pread/pwrite
830 * pages from.
831 */
832 if (!obj->base.filp) {
833 ret = -EINVAL;
834 goto out;
835 }
836
837 trace_i915_gem_object_pread(obj, args->offset, args->size);
838
839 ret = i915_gem_shmem_pread(dev, obj, args, file);
840
841 out:
842 drm_gem_object_unreference(&obj->base);
843 unlock:
844 mutex_unlock(&dev->struct_mutex);
845 return ret;
846 }
847
848 /* This is the fast write path which cannot handle
849 * page faults in the source data
850 */
851
852 static inline int
853 fast_user_write(struct io_mapping *mapping,
854 loff_t page_base, int page_offset,
855 char __user *user_data,
856 int length)
857 {
858 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
859 return -EFAULT;
860 #else
861 void __iomem *vaddr_atomic;
862 void *vaddr;
863 unsigned long unwritten;
864
865 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
866 /* We can use the cpu mem copy function because this is X86. */
867 vaddr = (void __force*)vaddr_atomic + page_offset;
868 unwritten = __copy_from_user_inatomic_nocache(vaddr,
869 user_data, length);
870 io_mapping_unmap_atomic(vaddr_atomic);
871 return unwritten;
872 #endif
873 }
874
875 /**
876 * This is the fast pwrite path, where we copy the data directly from the
877 * user into the GTT, uncached.
878 */
879 static int
880 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
881 struct drm_i915_gem_object *obj,
882 struct drm_i915_gem_pwrite *args,
883 struct drm_file *file)
884 {
885 struct drm_i915_private *dev_priv = dev->dev_private;
886 ssize_t remain;
887 loff_t offset, page_base;
888 char __user *user_data;
889 int page_offset, page_length, ret;
890
891 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
892 if (ret)
893 goto out;
894
895 ret = i915_gem_object_set_to_gtt_domain(obj, true);
896 if (ret)
897 goto out_unpin;
898
899 ret = i915_gem_object_put_fence(obj);
900 if (ret)
901 goto out_unpin;
902
903 user_data = to_user_ptr(args->data_ptr);
904 remain = args->size;
905
906 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
907
908 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
909
910 while (remain > 0) {
911 /* Operation in this page
912 *
913 * page_base = page offset within aperture
914 * page_offset = offset within page
915 * page_length = bytes to copy for this page
916 */
917 page_base = offset & PAGE_MASK;
918 page_offset = offset_in_page(offset);
919 page_length = remain;
920 if ((page_offset + remain) > PAGE_SIZE)
921 page_length = PAGE_SIZE - page_offset;
922
923 /* If we get a fault while copying data, then (presumably) our
924 * source page isn't available. Return the error and we'll
925 * retry in the slow path.
926 */
927 if (fast_user_write(dev_priv->gtt.mappable, page_base,
928 page_offset, user_data, page_length)) {
929 ret = -EFAULT;
930 goto out_flush;
931 }
932
933 remain -= page_length;
934 user_data += page_length;
935 offset += page_length;
936 }
937
938 out_flush:
939 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
940 out_unpin:
941 i915_gem_object_ggtt_unpin(obj);
942 out:
943 return ret;
944 }
945
946 /* Per-page copy function for the shmem pwrite fastpath.
947 * Flushes invalid cachelines before writing to the target if
948 * needs_clflush_before is set and flushes out any written cachelines after
949 * writing if needs_clflush is set. */
950 static int
951 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
952 char __user *user_data,
953 bool page_do_bit17_swizzling,
954 bool needs_clflush_before,
955 bool needs_clflush_after)
956 {
957 #ifdef __NetBSD__
958 return -EFAULT;
959 #else
960 char *vaddr;
961 int ret;
962
963 if (unlikely(page_do_bit17_swizzling))
964 return -EINVAL;
965
966 vaddr = kmap_atomic(page);
967 if (needs_clflush_before)
968 drm_clflush_virt_range(vaddr + shmem_page_offset,
969 page_length);
970 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
971 user_data, page_length);
972 if (needs_clflush_after)
973 drm_clflush_virt_range(vaddr + shmem_page_offset,
974 page_length);
975 kunmap_atomic(vaddr);
976
977 return ret ? -EFAULT : 0;
978 #endif
979 }
980
981 /* Only difference to the fast-path function is that this can handle bit17
982 * and uses non-atomic copy and kmap functions. */
983 static int
984 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
985 char __user *user_data,
986 bool page_do_bit17_swizzling,
987 bool needs_clflush_before,
988 bool needs_clflush_after)
989 {
990 char *vaddr;
991 int ret;
992
993 vaddr = kmap(page);
994 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
995 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
996 page_length,
997 page_do_bit17_swizzling);
998 if (page_do_bit17_swizzling)
999 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1000 user_data,
1001 page_length);
1002 else
1003 ret = __copy_from_user(vaddr + shmem_page_offset,
1004 user_data,
1005 page_length);
1006 if (needs_clflush_after)
1007 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1008 page_length,
1009 page_do_bit17_swizzling);
1010 kunmap(page);
1011
1012 return ret ? -EFAULT : 0;
1013 }
1014
1015 static int
1016 i915_gem_shmem_pwrite(struct drm_device *dev,
1017 struct drm_i915_gem_object *obj,
1018 struct drm_i915_gem_pwrite *args,
1019 struct drm_file *file)
1020 {
1021 ssize_t remain;
1022 loff_t offset;
1023 char __user *user_data;
1024 int shmem_page_offset, page_length, ret = 0;
1025 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1026 int hit_slowpath = 0;
1027 int needs_clflush_after = 0;
1028 int needs_clflush_before = 0;
1029 #ifndef __NetBSD__
1030 struct sg_page_iter sg_iter;
1031 int flush_mask = boot_cpu_data.x86_clflush_size - 1;
1032 #else
1033 int flush_mask = cpu_info_primary.ci_cflush_lsize - 1;
1034 #endif
1035
1036 user_data = to_user_ptr(args->data_ptr);
1037 remain = args->size;
1038
1039 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1040
1041 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1042 /* If we're not in the cpu write domain, set ourself into the gtt
1043 * write domain and manually flush cachelines (if required). This
1044 * optimizes for the case when the gpu will use the data
1045 * right away and we therefore have to clflush anyway. */
1046 needs_clflush_after = cpu_write_needs_clflush(obj);
1047 ret = i915_gem_object_wait_rendering(obj, false);
1048 if (ret)
1049 return ret;
1050 }
1051 /* Same trick applies to invalidate partially written cachelines read
1052 * before writing. */
1053 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1054 needs_clflush_before =
1055 !cpu_cache_is_coherent(dev, obj->cache_level);
1056
1057 ret = i915_gem_object_get_pages(obj);
1058 if (ret)
1059 return ret;
1060
1061 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1062
1063 i915_gem_object_pin_pages(obj);
1064
1065 offset = args->offset;
1066 obj->dirty = 1;
1067
1068 #ifdef __NetBSD__
1069 while (0 < remain)
1070 #else
1071 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1072 offset >> PAGE_SHIFT)
1073 #endif
1074 {
1075 #ifdef __NetBSD__
1076 struct page *const page = i915_gem_object_get_page(obj,
1077 atop(offset));
1078 #else
1079 struct page *page = sg_page_iter_page(&sg_iter);
1080
1081 if (remain <= 0)
1082 break;
1083 #endif
1084
1085 /* Operation in this page
1086 *
1087 * shmem_page_offset = offset within page in shmem file
1088 * page_length = bytes to copy for this page
1089 */
1090 shmem_page_offset = offset_in_page(offset);
1091
1092 page_length = remain;
1093 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1094 page_length = PAGE_SIZE - shmem_page_offset;
1095
1096 /* If we don't overwrite a cacheline completely we need to be
1097 * careful to have up-to-date data by first clflushing. Don't
1098 * overcomplicate things and flush the entire patch. */
1099 const int partial_cacheline_write = needs_clflush_before &&
1100 ((shmem_page_offset | page_length) & flush_mask);
1101
1102 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1103 (page_to_phys(page) & (1 << 17)) != 0;
1104
1105 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1106 user_data, page_do_bit17_swizzling,
1107 partial_cacheline_write,
1108 needs_clflush_after);
1109 if (ret == 0)
1110 goto next_page;
1111
1112 hit_slowpath = 1;
1113 mutex_unlock(&dev->struct_mutex);
1114 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1115 user_data, page_do_bit17_swizzling,
1116 partial_cacheline_write,
1117 needs_clflush_after);
1118
1119 mutex_lock(&dev->struct_mutex);
1120
1121 if (ret)
1122 goto out;
1123
1124 next_page:
1125 remain -= page_length;
1126 user_data += page_length;
1127 offset += page_length;
1128 }
1129
1130 out:
1131 i915_gem_object_unpin_pages(obj);
1132
1133 if (hit_slowpath) {
1134 /*
1135 * Fixup: Flush cpu caches in case we didn't flush the dirty
1136 * cachelines in-line while writing and the object moved
1137 * out of the cpu write domain while we've dropped the lock.
1138 */
1139 if (!needs_clflush_after &&
1140 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1141 if (i915_gem_clflush_object(obj, obj->pin_display))
1142 needs_clflush_after = true;
1143 }
1144 }
1145
1146 if (needs_clflush_after)
1147 i915_gem_chipset_flush(dev);
1148 else
1149 obj->cache_dirty = true;
1150
1151 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1152 return ret;
1153 }
1154
1155 /**
1156 * Writes data to the object referenced by handle.
1157 *
1158 * On error, the contents of the buffer that were to be modified are undefined.
1159 */
1160 int
1161 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1162 struct drm_file *file)
1163 {
1164 struct drm_i915_private *dev_priv = dev->dev_private;
1165 struct drm_i915_gem_pwrite *args = data;
1166 struct drm_gem_object *gobj;
1167 struct drm_i915_gem_object *obj;
1168 int ret;
1169
1170 if (args->size == 0)
1171 return 0;
1172
1173 if (!access_ok(VERIFY_READ,
1174 to_user_ptr(args->data_ptr),
1175 args->size))
1176 return -EFAULT;
1177
1178 #ifndef __NetBSD__ /* XXX prefault */
1179 if (likely(!i915.prefault_disable)) {
1180 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1181 args->size);
1182 if (ret)
1183 return -EFAULT;
1184 }
1185 #endif
1186
1187 intel_runtime_pm_get(dev_priv);
1188
1189 ret = i915_mutex_lock_interruptible(dev);
1190 if (ret)
1191 goto put_rpm;
1192
1193 gobj = drm_gem_object_lookup(dev, file, args->handle);
1194 if (gobj == NULL) {
1195 ret = -ENOENT;
1196 goto unlock;
1197 }
1198 obj = to_intel_bo(gobj);
1199
1200 /* Bounds check destination. */
1201 if (args->offset > obj->base.size ||
1202 args->size > obj->base.size - args->offset) {
1203 ret = -EINVAL;
1204 goto out;
1205 }
1206
1207 /* prime objects have no backing filp to GEM pread/pwrite
1208 * pages from.
1209 */
1210 if (!obj->base.filp) {
1211 ret = -EINVAL;
1212 goto out;
1213 }
1214
1215 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1216
1217 ret = -EFAULT;
1218 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1219 * it would end up going through the fenced access, and we'll get
1220 * different detiling behavior between reading and writing.
1221 * pread/pwrite currently are reading and writing from the CPU
1222 * perspective, requiring manual detiling by the client.
1223 */
1224 if (obj->tiling_mode == I915_TILING_NONE &&
1225 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1226 cpu_write_needs_clflush(obj)) {
1227 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1228 /* Note that the gtt paths might fail with non-page-backed user
1229 * pointers (e.g. gtt mappings when moving data between
1230 * textures). Fallback to the shmem path in that case. */
1231 }
1232
1233 if (ret == -EFAULT || ret == -ENOSPC) {
1234 if (obj->phys_handle)
1235 ret = i915_gem_phys_pwrite(obj, args, file);
1236 else
1237 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1238 }
1239
1240 out:
1241 drm_gem_object_unreference(&obj->base);
1242 unlock:
1243 mutex_unlock(&dev->struct_mutex);
1244 put_rpm:
1245 intel_runtime_pm_put(dev_priv);
1246
1247 return ret;
1248 }
1249
1250 int
1251 i915_gem_check_wedge(struct i915_gpu_error *error,
1252 bool interruptible)
1253 {
1254 if (i915_reset_in_progress(error)) {
1255 /* Non-interruptible callers can't handle -EAGAIN, hence return
1256 * -EIO unconditionally for these. */
1257 if (!interruptible)
1258 return -EIO;
1259
1260 /* Recovery complete, but the reset failed ... */
1261 if (i915_terminally_wedged(error))
1262 return -EIO;
1263
1264 /*
1265 * Check if GPU Reset is in progress - we need intel_ring_begin
1266 * to work properly to reinit the hw state while the gpu is
1267 * still marked as reset-in-progress. Handle this with a flag.
1268 */
1269 if (!error->reload_in_reset)
1270 return -EAGAIN;
1271 }
1272
1273 return 0;
1274 }
1275
1276 #ifndef __NetBSD__
1277 static void fake_irq(unsigned long data)
1278 {
1279 wake_up_process((struct task_struct *)data);
1280 }
1281 #endif
1282
1283 static bool missed_irq(struct drm_i915_private *dev_priv,
1284 struct intel_engine_cs *ring)
1285 {
1286 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1287 }
1288
1289 #ifndef __NetBSD__
1290 static unsigned long local_clock_us(unsigned *cpu)
1291 {
1292 unsigned long t;
1293
1294 /* Cheaply and approximately convert from nanoseconds to microseconds.
1295 * The result and subsequent calculations are also defined in the same
1296 * approximate microseconds units. The principal source of timing
1297 * error here is from the simple truncation.
1298 *
1299 * Note that local_clock() is only defined wrt to the current CPU;
1300 * the comparisons are no longer valid if we switch CPUs. Instead of
1301 * blocking preemption for the entire busywait, we can detect the CPU
1302 * switch and use that as indicator of system load and a reason to
1303 * stop busywaiting, see busywait_stop().
1304 */
1305 *cpu = get_cpu();
1306 t = local_clock() >> 10;
1307 put_cpu();
1308
1309 return t;
1310 }
1311
1312 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1313 {
1314 unsigned this_cpu;
1315
1316 if (time_after(local_clock_us(&this_cpu), timeout))
1317 return true;
1318
1319 return this_cpu != cpu;
1320 }
1321 #endif
1322
1323 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1324 {
1325 #ifndef __NetBSD__
1326 unsigned long timeout;
1327 unsigned cpu;
1328 #endif
1329
1330 /* When waiting for high frequency requests, e.g. during synchronous
1331 * rendering split between the CPU and GPU, the finite amount of time
1332 * required to set up the irq and wait upon it limits the response
1333 * rate. By busywaiting on the request completion for a short while we
1334 * can service the high frequency waits as quick as possible. However,
1335 * if it is a slow request, we want to sleep as quickly as possible.
1336 * The tradeoff between waiting and sleeping is roughly the time it
1337 * takes to sleep on a request, on the order of a microsecond.
1338 */
1339
1340 if (req->ring->irq_refcount)
1341 return -EBUSY;
1342
1343 /* Only spin if we know the GPU is processing this request */
1344 if (!i915_gem_request_started(req, true))
1345 return -EAGAIN;
1346
1347 #ifndef __NetBSD__ /* XXX No local clock in usec. */
1348 timeout = local_clock_us(&cpu) + 5;
1349 while (!need_resched()) {
1350 if (i915_gem_request_completed(req, true))
1351 return 0;
1352
1353 if (signal_pending_state(state, current))
1354 break;
1355
1356 if (busywait_stop(timeout, cpu))
1357 break;
1358
1359 cpu_relax_lowlatency();
1360 }
1361 #endif
1362
1363 if (i915_gem_request_completed(req, false))
1364 return 0;
1365
1366 return -EAGAIN;
1367 }
1368
1369 /**
1370 * __i915_wait_request - wait until execution of request has finished
1371 * @req: duh!
1372 * @reset_counter: reset sequence associated with the given request
1373 * @interruptible: do an interruptible wait (normally yes)
1374 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1375 *
1376 * Note: It is of utmost importance that the passed in seqno and reset_counter
1377 * values have been read by the caller in an smp safe manner. Where read-side
1378 * locks are involved, it is sufficient to read the reset_counter before
1379 * unlocking the lock that protects the seqno. For lockless tricks, the
1380 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1381 * inserted.
1382 *
1383 * Returns 0 if the request was found within the alloted time. Else returns the
1384 * errno with remaining time filled in timeout argument.
1385 */
1386 int __i915_wait_request(struct drm_i915_gem_request *req,
1387 unsigned reset_counter,
1388 bool interruptible,
1389 s64 *timeout,
1390 struct intel_rps_client *rps)
1391 {
1392 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1393 struct drm_device *dev = ring->dev;
1394 struct drm_i915_private *dev_priv = dev->dev_private;
1395 const bool irq_test_in_progress =
1396 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1397 #ifdef __NetBSD__
1398 int state = 0;
1399 bool wedged;
1400 #else
1401 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1402 DEFINE_WAIT(wait);
1403 unsigned long timeout_expire;
1404 #endif
1405 s64 before, now;
1406 int ret;
1407
1408 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1409
1410 if (list_empty(&req->list))
1411 return 0;
1412
1413 if (i915_gem_request_completed(req, true))
1414 return 0;
1415
1416 #ifndef __NetBSD__
1417 timeout_expire = 0;
1418 if (timeout) {
1419 if (WARN_ON(*timeout < 0))
1420 return -EINVAL;
1421
1422 if (*timeout == 0)
1423 return -ETIME;
1424
1425 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1426 }
1427 #endif
1428
1429 if (INTEL_INFO(dev_priv)->gen >= 6)
1430 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1431
1432 /* Record current time in case interrupted by signal, or wedged */
1433 trace_i915_gem_request_wait_begin(req);
1434 before = ktime_get_raw_ns();
1435
1436 /* Optimistic spin for the next jiffie before touching IRQs */
1437 ret = __i915_spin_request(req, state);
1438 if (ret == 0)
1439 goto out;
1440
1441 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1442 ret = -ENODEV;
1443 goto out;
1444 }
1445
1446 #ifdef __NetBSD__
1447 # define EXIT_COND \
1448 ((wedged = (reset_counter != \
1449 atomic_read(&dev_priv->gpu_error.reset_counter))) || \
1450 i915_gem_request_completed(req, false))
1451 spin_lock(&dev_priv->irq_lock);
1452 if (timeout) {
1453 int ticks = missed_irq(dev_priv, ring) ? 1 :
1454 nsecs_to_jiffies_timeout(*timeout);
1455 if (interruptible) {
1456 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
1457 &dev_priv->irq_lock, ticks, EXIT_COND);
1458 } else {
1459 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
1460 &dev_priv->irq_lock, ticks, EXIT_COND);
1461 }
1462 if (ret < 0) /* Failure: return negative error as is. */
1463 ;
1464 else if (ret == 0) /* Timed out: return -ETIME. */
1465 ret = -ETIME;
1466 else /* Succeeded (ret > 0): return 0. */
1467 ret = 0;
1468 } else {
1469 if (interruptible) {
1470 DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
1471 &dev_priv->irq_lock, EXIT_COND);
1472 } else {
1473 DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
1474 &dev_priv->irq_lock, EXIT_COND);
1475 }
1476 /* ret is negative on failure or zero on success. */
1477 }
1478 spin_unlock(&dev_priv->irq_lock);
1479 if (wedged) {
1480 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1481 if (ret == 0)
1482 ret = -EAGAIN;
1483 }
1484 #else
1485 for (;;) {
1486 struct timer_list timer;
1487
1488 prepare_to_wait(&ring->irq_queue, &wait, state);
1489
1490 /* We need to check whether any gpu reset happened in between
1491 * the caller grabbing the seqno and now ... */
1492 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1493 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1494 * is truely gone. */
1495 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1496 if (ret == 0)
1497 ret = -EAGAIN;
1498 break;
1499 }
1500
1501 if (i915_gem_request_completed(req, false)) {
1502 ret = 0;
1503 break;
1504 }
1505
1506 if (signal_pending_state(state, current)) {
1507 ret = -ERESTARTSYS;
1508 break;
1509 }
1510
1511 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1512 ret = -ETIME;
1513 break;
1514 }
1515
1516 timer.function = NULL;
1517 if (timeout || missed_irq(dev_priv, ring)) {
1518 unsigned long expire;
1519
1520 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1521 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1522 mod_timer(&timer, expire);
1523 }
1524
1525 io_schedule();
1526
1527 if (timer.function) {
1528 del_singleshot_timer_sync(&timer);
1529 destroy_timer_on_stack(&timer);
1530 }
1531 }
1532 #endif
1533 if (!irq_test_in_progress)
1534 ring->irq_put(ring);
1535
1536 #ifndef __NetBSD__
1537 finish_wait(&ring->irq_queue, &wait);
1538 #endif
1539
1540 out:
1541 now = ktime_get_raw_ns();
1542 trace_i915_gem_request_wait_end(req);
1543
1544 if (timeout) {
1545 s64 tres = *timeout - (now - before);
1546
1547 *timeout = tres < 0 ? 0 : tres;
1548
1549 /*
1550 * Apparently ktime isn't accurate enough and occasionally has a
1551 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1552 * things up to make the test happy. We allow up to 1 jiffy.
1553 *
1554 * This is a regrssion from the timespec->ktime conversion.
1555 */
1556 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1557 *timeout = 0;
1558 }
1559
1560 return ret;
1561 }
1562
1563 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1564 struct drm_file *file)
1565 {
1566 struct drm_i915_private *dev_private __unused;
1567 struct drm_i915_file_private *file_priv;
1568
1569 WARN_ON(!req || !file || req->file_priv);
1570
1571 if (!req || !file)
1572 return -EINVAL;
1573
1574 if (req->file_priv)
1575 return -EINVAL;
1576
1577 dev_private = req->ring->dev->dev_private;
1578 file_priv = file->driver_priv;
1579
1580 spin_lock(&file_priv->mm.lock);
1581 req->file_priv = file_priv;
1582 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1583 spin_unlock(&file_priv->mm.lock);
1584
1585 #ifndef __NetBSD__
1586 req->pid = get_pid(task_pid(current));
1587 #endif
1588
1589 return 0;
1590 }
1591
1592 static inline void
1593 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1594 {
1595 struct drm_i915_file_private *file_priv = request->file_priv;
1596
1597 if (!file_priv)
1598 return;
1599
1600 spin_lock(&file_priv->mm.lock);
1601 list_del(&request->client_list);
1602 request->file_priv = NULL;
1603 spin_unlock(&file_priv->mm.lock);
1604
1605 #ifndef __NetBSD__
1606 put_pid(request->pid);
1607 request->pid = NULL;
1608 #endif
1609 }
1610
1611 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1612 {
1613 trace_i915_gem_request_retire(request);
1614
1615 /* We know the GPU must have read the request to have
1616 * sent us the seqno + interrupt, so use the position
1617 * of tail of the request to update the last known position
1618 * of the GPU head.
1619 *
1620 * Note this requires that we are always called in request
1621 * completion order.
1622 */
1623 request->ringbuf->last_retired_head = request->postfix;
1624
1625 list_del_init(&request->list);
1626 i915_gem_request_remove_from_client(request);
1627
1628 i915_gem_request_unreference(request);
1629 }
1630
1631 static void
1632 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1633 {
1634 struct intel_engine_cs *engine = req->ring;
1635 struct drm_i915_gem_request *tmp;
1636
1637 lockdep_assert_held(&engine->dev->struct_mutex);
1638
1639 if (list_empty(&req->list))
1640 return;
1641
1642 do {
1643 tmp = list_first_entry(&engine->request_list,
1644 typeof(*tmp), list);
1645
1646 i915_gem_request_retire(tmp);
1647 } while (tmp != req);
1648
1649 WARN_ON(i915_verify_lists(engine->dev));
1650 }
1651
1652 /**
1653 * Waits for a request to be signaled, and cleans up the
1654 * request and object lists appropriately for that event.
1655 */
1656 int
1657 i915_wait_request(struct drm_i915_gem_request *req)
1658 {
1659 struct drm_device *dev;
1660 struct drm_i915_private *dev_priv;
1661 bool interruptible;
1662 int ret;
1663
1664 BUG_ON(req == NULL);
1665
1666 dev = req->ring->dev;
1667 dev_priv = dev->dev_private;
1668 interruptible = dev_priv->mm.interruptible;
1669
1670 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1671
1672 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1673 if (ret)
1674 return ret;
1675
1676 ret = __i915_wait_request(req,
1677 atomic_read(&dev_priv->gpu_error.reset_counter),
1678 interruptible, NULL, NULL);
1679 if (ret)
1680 return ret;
1681
1682 __i915_gem_request_retire__upto(req);
1683 return 0;
1684 }
1685
1686 /**
1687 * Ensures that all rendering to the object has completed and the object is
1688 * safe to unbind from the GTT or access from the CPU.
1689 */
1690 int
1691 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1692 bool readonly)
1693 {
1694 int ret, i;
1695
1696 if (!obj->active)
1697 return 0;
1698
1699 if (readonly) {
1700 if (obj->last_write_req != NULL) {
1701 ret = i915_wait_request(obj->last_write_req);
1702 if (ret)
1703 return ret;
1704
1705 i = obj->last_write_req->ring->id;
1706 if (obj->last_read_req[i] == obj->last_write_req)
1707 i915_gem_object_retire__read(obj, i);
1708 else
1709 i915_gem_object_retire__write(obj);
1710 }
1711 } else {
1712 for (i = 0; i < I915_NUM_RINGS; i++) {
1713 if (obj->last_read_req[i] == NULL)
1714 continue;
1715
1716 ret = i915_wait_request(obj->last_read_req[i]);
1717 if (ret)
1718 return ret;
1719
1720 i915_gem_object_retire__read(obj, i);
1721 }
1722 RQ_BUG_ON(obj->active);
1723 }
1724
1725 return 0;
1726 }
1727
1728 static void
1729 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1730 struct drm_i915_gem_request *req)
1731 {
1732 int ring = req->ring->id;
1733
1734 if (obj->last_read_req[ring] == req)
1735 i915_gem_object_retire__read(obj, ring);
1736 else if (obj->last_write_req == req)
1737 i915_gem_object_retire__write(obj);
1738
1739 __i915_gem_request_retire__upto(req);
1740 }
1741
1742 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1743 * as the object state may change during this call.
1744 */
1745 static __must_check int
1746 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1747 struct intel_rps_client *rps,
1748 bool readonly)
1749 {
1750 struct drm_device *dev = obj->base.dev;
1751 struct drm_i915_private *dev_priv = dev->dev_private;
1752 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1753 unsigned reset_counter;
1754 int ret, i, n = 0;
1755
1756 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1757 BUG_ON(!dev_priv->mm.interruptible);
1758
1759 if (!obj->active)
1760 return 0;
1761
1762 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1763 if (ret)
1764 return ret;
1765
1766 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1767
1768 if (readonly) {
1769 struct drm_i915_gem_request *req;
1770
1771 req = obj->last_write_req;
1772 if (req == NULL)
1773 return 0;
1774
1775 requests[n++] = i915_gem_request_reference(req);
1776 } else {
1777 for (i = 0; i < I915_NUM_RINGS; i++) {
1778 struct drm_i915_gem_request *req;
1779
1780 req = obj->last_read_req[i];
1781 if (req == NULL)
1782 continue;
1783
1784 requests[n++] = i915_gem_request_reference(req);
1785 }
1786 }
1787
1788 mutex_unlock(&dev->struct_mutex);
1789 for (i = 0; ret == 0 && i < n; i++)
1790 ret = __i915_wait_request(requests[i], reset_counter, true,
1791 NULL, rps);
1792 mutex_lock(&dev->struct_mutex);
1793
1794 for (i = 0; i < n; i++) {
1795 if (ret == 0)
1796 i915_gem_object_retire_request(obj, requests[i]);
1797 i915_gem_request_unreference(requests[i]);
1798 }
1799
1800 return ret;
1801 }
1802
1803 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1804 {
1805 struct drm_i915_file_private *fpriv = file->driver_priv;
1806 return &fpriv->rps;
1807 }
1808
1809 /**
1810 * Called when user space prepares to use an object with the CPU, either
1811 * through the mmap ioctl's mapping or a GTT mapping.
1812 */
1813 int
1814 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1815 struct drm_file *file)
1816 {
1817 struct drm_i915_gem_set_domain *args = data;
1818 struct drm_gem_object *gobj;
1819 struct drm_i915_gem_object *obj;
1820 uint32_t read_domains = args->read_domains;
1821 uint32_t write_domain = args->write_domain;
1822 int ret;
1823
1824 /* Only handle setting domains to types used by the CPU. */
1825 if (write_domain & I915_GEM_GPU_DOMAINS)
1826 return -EINVAL;
1827
1828 if (read_domains & I915_GEM_GPU_DOMAINS)
1829 return -EINVAL;
1830
1831 /* Having something in the write domain implies it's in the read
1832 * domain, and only that read domain. Enforce that in the request.
1833 */
1834 if (write_domain != 0 && read_domains != write_domain)
1835 return -EINVAL;
1836
1837 ret = i915_mutex_lock_interruptible(dev);
1838 if (ret)
1839 return ret;
1840
1841 gobj = drm_gem_object_lookup(dev, file, args->handle);
1842 if (gobj == NULL) {
1843 ret = -ENOENT;
1844 goto unlock;
1845 }
1846 obj = to_intel_bo(gobj);
1847
1848 /* Try to flush the object off the GPU without holding the lock.
1849 * We will repeat the flush holding the lock in the normal manner
1850 * to catch cases where we are gazumped.
1851 */
1852 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1853 to_rps_client(file),
1854 !write_domain);
1855 if (ret)
1856 goto unref;
1857
1858 if (read_domains & I915_GEM_DOMAIN_GTT)
1859 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1860 else
1861 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1862
1863 if (write_domain != 0)
1864 intel_fb_obj_invalidate(obj,
1865 write_domain == I915_GEM_DOMAIN_GTT ?
1866 ORIGIN_GTT : ORIGIN_CPU);
1867
1868 unref:
1869 drm_gem_object_unreference(&obj->base);
1870 unlock:
1871 mutex_unlock(&dev->struct_mutex);
1872 return ret;
1873 }
1874
1875 /**
1876 * Called when user space has done writes to this buffer
1877 */
1878 int
1879 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1880 struct drm_file *file)
1881 {
1882 struct drm_i915_gem_sw_finish *args = data;
1883 struct drm_gem_object *gobj;
1884 struct drm_i915_gem_object *obj;
1885 int ret = 0;
1886
1887 ret = i915_mutex_lock_interruptible(dev);
1888 if (ret)
1889 return ret;
1890
1891 gobj = drm_gem_object_lookup(dev, file, args->handle);
1892 if (gobj == NULL) {
1893 ret = -ENOENT;
1894 goto unlock;
1895 }
1896 obj = to_intel_bo(gobj);
1897
1898 /* Pinned buffers may be scanout, so flush the cache */
1899 if (obj->pin_display)
1900 i915_gem_object_flush_cpu_write_domain(obj);
1901
1902 drm_gem_object_unreference(&obj->base);
1903 unlock:
1904 mutex_unlock(&dev->struct_mutex);
1905 return ret;
1906 }
1907
1908 /**
1909 * Maps the contents of an object, returning the address it is mapped
1910 * into.
1911 *
1912 * While the mapping holds a reference on the contents of the object, it doesn't
1913 * imply a ref on the object itself.
1914 *
1915 * IMPORTANT:
1916 *
1917 * DRM driver writers who look a this function as an example for how to do GEM
1918 * mmap support, please don't implement mmap support like here. The modern way
1919 * to implement DRM mmap support is with an mmap offset ioctl (like
1920 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1921 * That way debug tooling like valgrind will understand what's going on, hiding
1922 * the mmap call in a driver private ioctl will break that. The i915 driver only
1923 * does cpu mmaps this way because we didn't know better.
1924 */
1925 int
1926 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1927 struct drm_file *file)
1928 {
1929 struct drm_i915_gem_mmap *args = data;
1930 struct drm_gem_object *obj;
1931 unsigned long addr;
1932 #ifdef __NetBSD__
1933 struct drm_i915_private *dev_priv = dev->dev_private;
1934 int ret;
1935
1936 if ((dev_priv->quirks & QUIRK_NETBSD_VERSION_CALLED) == 0)
1937 args->flags = 0;
1938 #endif
1939
1940 if (args->flags & ~(I915_MMAP_WC))
1941 return -EINVAL;
1942
1943 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1944 return -ENODEV;
1945
1946 obj = drm_gem_object_lookup(dev, file, args->handle);
1947 if (obj == NULL)
1948 return -ENOENT;
1949
1950 /* prime objects have no backing filp to GEM mmap
1951 * pages from.
1952 */
1953 if (!obj->filp) {
1954 drm_gem_object_unreference_unlocked(obj);
1955 return -EINVAL;
1956 }
1957
1958 #ifdef __NetBSD__
1959 addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
1960 (vaddr_t)curproc->p_vmspace->vm_daddr, args->size,
1961 curproc->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1962 /* XXX errno NetBSD->Linux */
1963 ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
1964 obj->filp, args->offset, 0,
1965 UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
1966 (VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
1967 0));
1968 if (ret) {
1969 drm_gem_object_unreference_unlocked(obj);
1970 return ret;
1971 }
1972 uao_reference(obj->filp);
1973 drm_gem_object_unreference_unlocked(obj);
1974 #else
1975 addr = vm_mmap(obj->filp, 0, args->size,
1976 PROT_READ | PROT_WRITE, MAP_SHARED,
1977 args->offset);
1978 if (args->flags & I915_MMAP_WC) {
1979 struct mm_struct *mm = current->mm;
1980 struct vm_area_struct *vma;
1981
1982 down_write(&mm->mmap_sem);
1983 vma = find_vma(mm, addr);
1984 if (vma)
1985 vma->vm_page_prot =
1986 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1987 else
1988 addr = -ENOMEM;
1989 up_write(&mm->mmap_sem);
1990 }
1991 drm_gem_object_unreference_unlocked(obj);
1992 if (IS_ERR((void *)addr))
1993 return addr;
1994 #endif
1995
1996 args->addr_ptr = (uint64_t) addr;
1997
1998 return 0;
1999 }
2000
2001 #ifdef __NetBSD__ /* XXX gem gtt fault */
2002 static int i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
2003 struct vm_page **, int, int, vm_prot_t, int, paddr_t);
2004
2005 int
2006 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
2007 int npages, int centeridx, vm_prot_t access_type, int flags)
2008 {
2009 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
2010 struct drm_gem_object *gem_obj =
2011 container_of(uobj, struct drm_gem_object, gemo_uvmobj);
2012 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
2013 struct drm_device *dev = obj->base.dev;
2014 struct drm_i915_private *dev_priv = dev->dev_private;
2015 voff_t byte_offset;
2016 pgoff_t page_offset;
2017 int ret = 0;
2018 bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
2019
2020 byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
2021 KASSERT(byte_offset <= obj->base.size);
2022 page_offset = (byte_offset >> PAGE_SHIFT);
2023
2024 intel_runtime_pm_get(dev_priv);
2025
2026 /* Thanks, uvm, but we don't need this lock. */
2027 mutex_exit(uobj->vmobjlock);
2028
2029 ret = i915_mutex_lock_interruptible(dev);
2030 if (ret)
2031 goto out;
2032
2033 trace_i915_gem_object_fault(obj, page_offset, true, write);
2034
2035 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2036 if (ret)
2037 goto unlock;
2038
2039 if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
2040 ret = -EINVAL;
2041 goto unlock;
2042 }
2043
2044 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
2045 if (ret)
2046 goto unlock;
2047
2048 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2049 if (ret)
2050 goto unpin;
2051
2052 ret = i915_gem_object_get_fence(obj);
2053 if (ret)
2054 goto unpin;
2055
2056 obj->fault_mappable = true;
2057
2058 /* XXX errno NetBSD->Linux */
2059 ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
2060 flags,
2061 (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
2062 unpin:
2063 i915_gem_object_ggtt_unpin(obj);
2064 unlock:
2065 mutex_unlock(&dev->struct_mutex);
2066 out:
2067 mutex_enter(uobj->vmobjlock);
2068 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
2069 if (ret == -ERESTART)
2070 uvm_wait("i915flt");
2071
2072 /*
2073 * Remap EINTR to success, so that we return to userland.
2074 * On the way out, we'll deliver the signal, and if the signal
2075 * is not fatal then the user code which faulted will most likely
2076 * fault again, and we'll come back here for another try.
2077 */
2078 if (ret == -EINTR)
2079 ret = 0;
2080 /* XXX Deal with GPU hangs here... */
2081 intel_runtime_pm_put(dev_priv);
2082 /* XXX errno Linux->NetBSD */
2083 return -ret;
2084 }
2085
2086 /*
2087 * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
2088 *
2089 * XXX pmap_enter_default instead of pmap_enter because of a problem
2090 * with using weak aliases in kernel modules or something.
2091 */
2092 int pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
2093
2094 static int
2095 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
2096 int npages, int centeridx, vm_prot_t access_type, int flags,
2097 paddr_t gtt_paddr)
2098 {
2099 struct vm_map_entry *entry = ufi->entry;
2100 vaddr_t curr_va;
2101 off_t curr_offset;
2102 paddr_t paddr;
2103 u_int mmapflags;
2104 int lcv, retval;
2105 vm_prot_t mapprot;
2106 UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
2107 UVMHIST_LOG(maphist," flags=%jd", flags,0,0,0);
2108
2109 /*
2110 * we do not allow device mappings to be mapped copy-on-write
2111 * so we kill any attempt to do so here.
2112 */
2113
2114 if (UVM_ET_ISCOPYONWRITE(entry)) {
2115 UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%jx)",
2116 entry->etype, 0,0,0);
2117 return(EIO);
2118 }
2119
2120 /*
2121 * now we must determine the offset in udv to use and the VA to
2122 * use for pmap_enter. note that we always use orig_map's pmap
2123 * for pmap_enter (even if we have a submap). since virtual
2124 * addresses in a submap must match the main map, this is ok.
2125 */
2126
2127 /* udv offset = (offset from start of entry) + entry's offset */
2128 curr_offset = entry->offset + (vaddr - entry->start);
2129 /* pmap va = vaddr (virtual address of pps[0]) */
2130 curr_va = vaddr;
2131
2132 /*
2133 * loop over the page range entering in as needed
2134 */
2135
2136 retval = 0;
2137 for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
2138 curr_va += PAGE_SIZE) {
2139 if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
2140 continue;
2141
2142 if (pps[lcv] == PGO_DONTCARE)
2143 continue;
2144
2145 paddr = (gtt_paddr + curr_offset);
2146 mmapflags = 0;
2147 mapprot = ufi->entry->protection;
2148 UVMHIST_LOG(maphist,
2149 " MAPPING: device: pm=0x%#jx, va=0x%jx, pa=0x%jx, at=%jd",
2150 (uintptr_t)ufi->orig_map->pmap, curr_va, paddr, mapprot);
2151 if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
2152 PMAP_CANFAIL | mapprot | mmapflags) != 0) {
2153 /*
2154 * pmap_enter() didn't have the resource to
2155 * enter this mapping. Unlock everything,
2156 * wait for the pagedaemon to free up some
2157 * pages, and then tell uvm_fault() to start
2158 * the fault again.
2159 *
2160 * XXX Needs some rethinking for the PGO_ALLPAGES
2161 * XXX case.
2162 */
2163 pmap_update(ufi->orig_map->pmap); /* sync what we have so far */
2164 return (ERESTART);
2165 }
2166 }
2167
2168 pmap_update(ufi->orig_map->pmap);
2169 return (retval);
2170 }
2171 #else
2172 /**
2173 * i915_gem_fault - fault a page into the GTT
2174 * @vma: VMA in question
2175 * @vmf: fault info
2176 *
2177 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2178 * from userspace. The fault handler takes care of binding the object to
2179 * the GTT (if needed), allocating and programming a fence register (again,
2180 * only if needed based on whether the old reg is still valid or the object
2181 * is tiled) and inserting a new PTE into the faulting process.
2182 *
2183 * Note that the faulting process may involve evicting existing objects
2184 * from the GTT and/or fence registers to make room. So performance may
2185 * suffer if the GTT working set is large or there are few fence registers
2186 * left.
2187 */
2188 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2189 {
2190 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2191 struct drm_device *dev = obj->base.dev;
2192 struct drm_i915_private *dev_priv = dev->dev_private;
2193 struct i915_ggtt_view view = i915_ggtt_view_normal;
2194 pgoff_t page_offset;
2195 unsigned long pfn;
2196 int ret = 0;
2197 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2198
2199 intel_runtime_pm_get(dev_priv);
2200
2201 /* We don't use vmf->pgoff since that has the fake offset */
2202 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2203 PAGE_SHIFT;
2204
2205 ret = i915_mutex_lock_interruptible(dev);
2206 if (ret)
2207 goto out;
2208
2209 trace_i915_gem_object_fault(obj, page_offset, true, write);
2210
2211 /* Try to flush the object off the GPU first without holding the lock.
2212 * Upon reacquiring the lock, we will perform our sanity checks and then
2213 * repeat the flush holding the lock in the normal manner to catch cases
2214 * where we are gazumped.
2215 */
2216 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2217 if (ret)
2218 goto unlock;
2219
2220 /* Access to snoopable pages through the GTT is incoherent. */
2221 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2222 ret = -EFAULT;
2223 goto unlock;
2224 }
2225
2226 /* Use a partial view if the object is bigger than the aperture. */
2227 if (obj->base.size >= dev_priv->gtt.mappable_end &&
2228 obj->tiling_mode == I915_TILING_NONE) {
2229 static const unsigned int chunk_size = 256; // 1 MiB
2230
2231 memset(&view, 0, sizeof(view));
2232 view.type = I915_GGTT_VIEW_PARTIAL;
2233 view.params.partial.offset = rounddown(page_offset, chunk_size);
2234 view.params.partial.size =
2235 min_t(unsigned int,
2236 chunk_size,
2237 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2238 view.params.partial.offset);
2239 }
2240
2241 /* Now pin it into the GTT if needed */
2242 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2243 if (ret)
2244 goto unlock;
2245
2246 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2247 if (ret)
2248 goto unpin;
2249
2250 ret = i915_gem_object_get_fence(obj);
2251 if (ret)
2252 goto unpin;
2253
2254 /* Finally, remap it using the new GTT offset */
2255 pfn = dev_priv->gtt.mappable_base +
2256 i915_gem_obj_ggtt_offset_view(obj, &view);
2257 pfn >>= PAGE_SHIFT;
2258
2259 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2260 /* Overriding existing pages in partial view does not cause
2261 * us any trouble as TLBs are still valid because the fault
2262 * is due to userspace losing part of the mapping or never
2263 * having accessed it before (at this partials' range).
2264 */
2265 unsigned long base = vma->vm_start +
2266 (view.params.partial.offset << PAGE_SHIFT);
2267 unsigned int i;
2268
2269 for (i = 0; i < view.params.partial.size; i++) {
2270 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2271 if (ret)
2272 break;
2273 }
2274
2275 obj->fault_mappable = true;
2276 } else {
2277 if (!obj->fault_mappable) {
2278 unsigned long size = min_t(unsigned long,
2279 vma->vm_end - vma->vm_start,
2280 obj->base.size);
2281 int i;
2282
2283 for (i = 0; i < size >> PAGE_SHIFT; i++) {
2284 ret = vm_insert_pfn(vma,
2285 (unsigned long)vma->vm_start + i * PAGE_SIZE,
2286 pfn + i);
2287 if (ret)
2288 break;
2289 }
2290
2291 obj->fault_mappable = true;
2292 } else
2293 ret = vm_insert_pfn(vma,
2294 (unsigned long)vmf->virtual_address,
2295 pfn + page_offset);
2296 }
2297 unpin:
2298 i915_gem_object_ggtt_unpin_view(obj, &view);
2299 unlock:
2300 mutex_unlock(&dev->struct_mutex);
2301 out:
2302 switch (ret) {
2303 case -EIO:
2304 /*
2305 * We eat errors when the gpu is terminally wedged to avoid
2306 * userspace unduly crashing (gl has no provisions for mmaps to
2307 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2308 * and so needs to be reported.
2309 */
2310 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2311 ret = VM_FAULT_SIGBUS;
2312 break;
2313 }
2314 case -EAGAIN:
2315 /*
2316 * EAGAIN means the gpu is hung and we'll wait for the error
2317 * handler to reset everything when re-faulting in
2318 * i915_mutex_lock_interruptible.
2319 */
2320 case 0:
2321 case -ERESTARTSYS:
2322 case -EINTR:
2323 case -EBUSY:
2324 /*
2325 * EBUSY is ok: this just means that another thread
2326 * already did the job.
2327 */
2328 ret = VM_FAULT_NOPAGE;
2329 break;
2330 case -ENOMEM:
2331 ret = VM_FAULT_OOM;
2332 break;
2333 case -ENOSPC:
2334 case -EFAULT:
2335 ret = VM_FAULT_SIGBUS;
2336 break;
2337 default:
2338 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2339 ret = VM_FAULT_SIGBUS;
2340 break;
2341 }
2342
2343 intel_runtime_pm_put(dev_priv);
2344 return ret;
2345 }
2346 #endif
2347
2348 /**
2349 * i915_gem_release_mmap - remove physical page mappings
2350 * @obj: obj in question
2351 *
2352 * Preserve the reservation of the mmapping with the DRM core code, but
2353 * relinquish ownership of the pages back to the system.
2354 *
2355 * It is vital that we remove the page mapping if we have mapped a tiled
2356 * object through the GTT and then lose the fence register due to
2357 * resource pressure. Similarly if the object has been moved out of the
2358 * aperture, than pages mapped into userspace must be revoked. Removing the
2359 * mapping will then trigger a page fault on the next user access, allowing
2360 * fixup by i915_gem_fault().
2361 */
2362 void
2363 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2364 {
2365 if (!obj->fault_mappable)
2366 return;
2367
2368 #ifdef __NetBSD__ /* XXX gem gtt fault */
2369 {
2370 struct drm_device *const dev = obj->base.dev;
2371 struct drm_i915_private *const dev_priv = dev->dev_private;
2372 const paddr_t start = dev_priv->gtt.mappable_base +
2373 i915_gem_obj_ggtt_offset(obj);
2374 const size_t size = obj->base.size;
2375 const paddr_t end = start + size;
2376 paddr_t pa;
2377
2378 KASSERT((start & (PAGE_SIZE - 1)) == 0);
2379 KASSERT((size & (PAGE_SIZE - 1)) == 0);
2380
2381 for (pa = start; pa < end; pa += PAGE_SIZE)
2382 pmap_pv_protect(pa, VM_PROT_NONE);
2383 }
2384 #else
2385 drm_vma_node_unmap(&obj->base.vma_node,
2386 obj->base.dev->anon_inode->i_mapping);
2387 #endif
2388 obj->fault_mappable = false;
2389 }
2390
2391 void
2392 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2393 {
2394 struct drm_i915_gem_object *obj;
2395
2396 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2397 i915_gem_release_mmap(obj);
2398 }
2399
2400 uint32_t
2401 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2402 {
2403 uint32_t gtt_size;
2404
2405 if (INTEL_INFO(dev)->gen >= 4 ||
2406 tiling_mode == I915_TILING_NONE)
2407 return size;
2408
2409 /* Previous chips need a power-of-two fence region when tiling */
2410 if (INTEL_INFO(dev)->gen == 3)
2411 gtt_size = 1024*1024;
2412 else
2413 gtt_size = 512*1024;
2414
2415 while (gtt_size < size)
2416 gtt_size <<= 1;
2417
2418 return gtt_size;
2419 }
2420
2421 /**
2422 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2423 * @obj: object to check
2424 *
2425 * Return the required GTT alignment for an object, taking into account
2426 * potential fence register mapping.
2427 */
2428 uint32_t
2429 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2430 int tiling_mode, bool fenced)
2431 {
2432 /*
2433 * Minimum alignment is 4k (GTT page size), but might be greater
2434 * if a fence register is needed for the object.
2435 */
2436 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2437 tiling_mode == I915_TILING_NONE)
2438 return 4096;
2439
2440 /*
2441 * Previous chips need to be aligned to the size of the smallest
2442 * fence register that can contain the object.
2443 */
2444 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2445 }
2446
2447 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2448 {
2449 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2450 int ret;
2451
2452 if (drm_vma_node_has_offset(&obj->base.vma_node))
2453 return 0;
2454
2455 dev_priv->mm.shrinker_no_lock_stealing = true;
2456
2457 ret = drm_gem_create_mmap_offset(&obj->base);
2458 if (ret != -ENOSPC)
2459 goto out;
2460
2461 /* Badly fragmented mmap space? The only way we can recover
2462 * space is by destroying unwanted objects. We can't randomly release
2463 * mmap_offsets as userspace expects them to be persistent for the
2464 * lifetime of the objects. The closest we can is to release the
2465 * offsets on purgeable objects by truncating it and marking it purged,
2466 * which prevents userspace from ever using that object again.
2467 */
2468 i915_gem_shrink(dev_priv,
2469 obj->base.size >> PAGE_SHIFT,
2470 I915_SHRINK_BOUND |
2471 I915_SHRINK_UNBOUND |
2472 I915_SHRINK_PURGEABLE);
2473 ret = drm_gem_create_mmap_offset(&obj->base);
2474 if (ret != -ENOSPC)
2475 goto out;
2476
2477 i915_gem_shrink_all(dev_priv);
2478 ret = drm_gem_create_mmap_offset(&obj->base);
2479 out:
2480 dev_priv->mm.shrinker_no_lock_stealing = false;
2481
2482 return ret;
2483 }
2484
2485 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2486 {
2487 drm_gem_free_mmap_offset(&obj->base);
2488 }
2489
2490 int
2491 i915_gem_mmap_gtt(struct drm_file *file,
2492 struct drm_device *dev,
2493 uint32_t handle,
2494 uint64_t *offset)
2495 {
2496 struct drm_gem_object *gobj;
2497 struct drm_i915_gem_object *obj;
2498 int ret;
2499
2500 ret = i915_mutex_lock_interruptible(dev);
2501 if (ret)
2502 return ret;
2503
2504 gobj = drm_gem_object_lookup(dev, file, handle);
2505 if (gobj == NULL) {
2506 ret = -ENOENT;
2507 goto unlock;
2508 }
2509 obj = to_intel_bo(gobj);
2510
2511 if (obj->madv != I915_MADV_WILLNEED) {
2512 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2513 ret = -EFAULT;
2514 goto out;
2515 }
2516
2517 ret = i915_gem_object_create_mmap_offset(obj);
2518 if (ret)
2519 goto out;
2520
2521 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2522
2523 out:
2524 drm_gem_object_unreference(&obj->base);
2525 unlock:
2526 mutex_unlock(&dev->struct_mutex);
2527 return ret;
2528 }
2529
2530 /**
2531 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2532 * @dev: DRM device
2533 * @data: GTT mapping ioctl data
2534 * @file: GEM object info
2535 *
2536 * Simply returns the fake offset to userspace so it can mmap it.
2537 * The mmap call will end up in drm_gem_mmap(), which will set things
2538 * up so we can get faults in the handler above.
2539 *
2540 * The fault handler will take care of binding the object into the GTT
2541 * (since it may have been evicted to make room for something), allocating
2542 * a fence register, and mapping the appropriate aperture address into
2543 * userspace.
2544 */
2545 int
2546 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2547 struct drm_file *file)
2548 {
2549 struct drm_i915_gem_mmap_gtt *args = data;
2550
2551 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2552 }
2553
2554 /* Immediately discard the backing storage */
2555 static void
2556 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2557 {
2558 i915_gem_object_free_mmap_offset(obj);
2559
2560 if (obj->base.filp == NULL)
2561 return;
2562
2563 #ifdef __NetBSD__
2564 {
2565 struct uvm_object *const uobj = obj->base.filp;
2566
2567 if (uobj != NULL) {
2568 /* XXX Calling pgo_put like this is bogus. */
2569 mutex_enter(uobj->vmobjlock);
2570 (*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
2571 (PGO_ALLPAGES | PGO_FREE));
2572 }
2573 }
2574 #else
2575 /* Our goal here is to return as much of the memory as
2576 * is possible back to the system as we are called from OOM.
2577 * To do this we must instruct the shmfs to drop all of its
2578 * backing pages, *now*.
2579 */
2580 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2581 #endif
2582 obj->madv = __I915_MADV_PURGED;
2583 }
2584
2585 /* Try to discard unwanted pages */
2586 static void
2587 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2588 {
2589 #ifdef __NetBSD__
2590 struct uvm_object *uobj;
2591 #else
2592 struct address_space *mapping;
2593 #endif
2594
2595 switch (obj->madv) {
2596 case I915_MADV_DONTNEED:
2597 i915_gem_object_truncate(obj);
2598 case __I915_MADV_PURGED:
2599 return;
2600 }
2601
2602 if (obj->base.filp == NULL)
2603 return;
2604
2605 #ifdef __NetBSD__
2606 uobj = obj->base.filp;
2607 mutex_enter(uobj->vmobjlock);
2608 (*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
2609 PGO_ALLPAGES|PGO_DEACTIVATE|PGO_CLEANIT);
2610 #else
2611 mapping = file_inode(obj->base.filp)->i_mapping,
2612 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2613 #endif
2614 }
2615
2616 static void
2617 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2618 {
2619 #ifdef __NetBSD__
2620 struct drm_device *const dev = obj->base.dev;
2621 struct vm_page *page;
2622 int ret;
2623
2624 /* XXX Cargo-culted from the Linux code. */
2625 BUG_ON(obj->madv == __I915_MADV_PURGED);
2626
2627 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2628 if (ret) {
2629 WARN_ON(ret != -EIO);
2630 i915_gem_clflush_object(obj, true);
2631 obj->base.read_domains = obj->base.write_domain =
2632 I915_GEM_DOMAIN_CPU;
2633 }
2634
2635 i915_gem_gtt_finish_object(obj);
2636
2637 if (i915_gem_object_needs_bit17_swizzle(obj))
2638 i915_gem_object_save_bit_17_swizzle(obj);
2639
2640 if (obj->madv == I915_MADV_DONTNEED)
2641 obj->dirty = 0;
2642
2643 if (obj->dirty) {
2644 TAILQ_FOREACH(page, &obj->pageq, pageq.queue) {
2645 page->flags &= ~PG_CLEAN;
2646 /* XXX mark page accessed */
2647 }
2648 }
2649 obj->dirty = 0;
2650
2651 uvm_obj_unwirepages(obj->base.filp, 0, obj->base.size);
2652 bus_dmamap_destroy(dev->dmat, obj->pages);
2653 #else
2654 struct sg_page_iter sg_iter;
2655 int ret;
2656
2657 BUG_ON(obj->madv == __I915_MADV_PURGED);
2658
2659 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2660 if (ret) {
2661 /* In the event of a disaster, abandon all caches and
2662 * hope for the best.
2663 */
2664 WARN_ON(ret != -EIO);
2665 i915_gem_clflush_object(obj, true);
2666 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2667 }
2668
2669 i915_gem_gtt_finish_object(obj);
2670
2671 if (i915_gem_object_needs_bit17_swizzle(obj))
2672 i915_gem_object_save_bit_17_swizzle(obj);
2673
2674 if (obj->madv == I915_MADV_DONTNEED)
2675 obj->dirty = 0;
2676
2677 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2678 struct page *page = sg_page_iter_page(&sg_iter);
2679
2680 if (obj->dirty)
2681 set_page_dirty(page);
2682
2683 if (obj->madv == I915_MADV_WILLNEED)
2684 mark_page_accessed(page);
2685
2686 page_cache_release(page);
2687 }
2688 obj->dirty = 0;
2689
2690 sg_free_table(obj->pages);
2691 kfree(obj->pages);
2692 #endif
2693 }
2694
2695 int
2696 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2697 {
2698 const struct drm_i915_gem_object_ops *ops = obj->ops;
2699
2700 if (obj->pages == NULL)
2701 return 0;
2702
2703 if (obj->pages_pin_count)
2704 return -EBUSY;
2705
2706 BUG_ON(i915_gem_obj_bound_any(obj));
2707
2708 /* ->put_pages might need to allocate memory for the bit17 swizzle
2709 * array, hence protect them from being reaped by removing them from gtt
2710 * lists early. */
2711 list_del(&obj->global_list);
2712
2713 ops->put_pages(obj);
2714 obj->pages = NULL;
2715
2716 i915_gem_object_invalidate(obj);
2717
2718 return 0;
2719 }
2720
2721 static int
2722 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2723 {
2724 #ifdef __NetBSD__
2725 struct drm_device *const dev = obj->base.dev;
2726 struct drm_i915_private *dev_priv = dev->dev_private;
2727 struct vm_page *page;
2728 int ret;
2729
2730 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2731 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2732
2733 KASSERT(obj->pages == NULL);
2734 TAILQ_INIT(&obj->pageq);
2735
2736 /* XXX errno NetBSD->Linux */
2737 ret = -bus_dmamap_create(dev->dmat, obj->base.size,
2738 obj->base.size/PAGE_SIZE, PAGE_SIZE, 0, BUS_DMA_NOWAIT,
2739 &obj->pages);
2740 if (ret)
2741 goto fail0;
2742
2743 /* XXX errno NetBSD->Linux */
2744 ret = -uvm_obj_wirepages(obj->base.filp, 0, obj->base.size,
2745 &obj->pageq);
2746 if (ret) /* XXX Try purge, shrink. */
2747 goto fail1;
2748
2749 /*
2750 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
2751 *
2752 * XXX This should be unnecessary: the uao should guarantee
2753 * this constraint after uao_set_pgfl.
2754 *
2755 * XXX This should also be expanded for newer devices.
2756 */
2757 TAILQ_FOREACH(page, &obj->pageq, pageq.queue) {
2758 const uint64_t mask =
2759 (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
2760 0xffffffffULL : 0xffffffffffULL);
2761 if (VM_PAGE_TO_PHYS(page) & ~mask) {
2762 DRM_ERROR("GEM physical address exceeds %u bits"
2763 ": %"PRIxMAX"\n",
2764 popcount64(mask),
2765 (uintmax_t)VM_PAGE_TO_PHYS(page));
2766 ret = -EIO;
2767 goto fail2;
2768 }
2769 }
2770
2771 ret = i915_gem_gtt_prepare_object(obj);
2772 if (ret)
2773 goto fail2;
2774
2775 if (i915_gem_object_needs_bit17_swizzle(obj))
2776 i915_gem_object_do_bit_17_swizzle(obj);
2777
2778 if (obj->tiling_mode != I915_TILING_NONE &&
2779 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2780 i915_gem_object_pin_pages(obj);
2781
2782 /* Success! */
2783 return 0;
2784
2785 fail3: __unused
2786 i915_gem_gtt_finish_object(obj);
2787 fail2: uvm_obj_unwirepages(obj->base.filp, 0, obj->base.size);
2788 fail1: bus_dmamap_destroy(dev->dmat, obj->pages);
2789 obj->pages = NULL;
2790 fail0: KASSERT(ret);
2791 return ret;
2792 #else
2793 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2794 int page_count, i;
2795 struct address_space *mapping;
2796 struct sg_table *st;
2797 struct scatterlist *sg;
2798 struct sg_page_iter sg_iter;
2799 struct page *page;
2800 unsigned long last_pfn = 0; /* suppress gcc warning */
2801 int ret;
2802 gfp_t gfp;
2803
2804 /* Assert that the object is not currently in any GPU domain. As it
2805 * wasn't in the GTT, there shouldn't be any way it could have been in
2806 * a GPU cache
2807 */
2808 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2809 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2810
2811 st = kmalloc(sizeof(*st), GFP_KERNEL);
2812 if (st == NULL)
2813 return -ENOMEM;
2814
2815 page_count = obj->base.size / PAGE_SIZE;
2816 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2817 kfree(st);
2818 return -ENOMEM;
2819 }
2820
2821 /* Get the list of pages out of our struct file. They'll be pinned
2822 * at this point until we release them.
2823 *
2824 * Fail silently without starting the shrinker
2825 */
2826 mapping = file_inode(obj->base.filp)->i_mapping;
2827 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2828 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2829 sg = st->sgl;
2830 st->nents = 0;
2831 for (i = 0; i < page_count; i++) {
2832 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2833 if (IS_ERR(page)) {
2834 i915_gem_shrink(dev_priv,
2835 page_count,
2836 I915_SHRINK_BOUND |
2837 I915_SHRINK_UNBOUND |
2838 I915_SHRINK_PURGEABLE);
2839 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2840 }
2841 if (IS_ERR(page)) {
2842 /* We've tried hard to allocate the memory by reaping
2843 * our own buffer, now let the real VM do its job and
2844 * go down in flames if truly OOM.
2845 */
2846 i915_gem_shrink_all(dev_priv);
2847 page = shmem_read_mapping_page(mapping, i);
2848 if (IS_ERR(page)) {
2849 ret = PTR_ERR(page);
2850 goto err_pages;
2851 }
2852 }
2853 #ifdef CONFIG_SWIOTLB
2854 if (swiotlb_nr_tbl()) {
2855 st->nents++;
2856 sg_set_page(sg, page, PAGE_SIZE, 0);
2857 sg = sg_next(sg);
2858 continue;
2859 }
2860 #endif
2861 if (!i || page_to_pfn(page) != last_pfn + 1) {
2862 if (i)
2863 sg = sg_next(sg);
2864 st->nents++;
2865 sg_set_page(sg, page, PAGE_SIZE, 0);
2866 } else {
2867 sg->length += PAGE_SIZE;
2868 }
2869 last_pfn = page_to_pfn(page);
2870
2871 /* Check that the i965g/gm workaround works. */
2872 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2873 }
2874 #ifdef CONFIG_SWIOTLB
2875 if (!swiotlb_nr_tbl())
2876 #endif
2877 sg_mark_end(sg);
2878 obj->pages = st;
2879
2880 ret = i915_gem_gtt_prepare_object(obj);
2881 if (ret)
2882 goto err_pages;
2883
2884 if (i915_gem_object_needs_bit17_swizzle(obj))
2885 i915_gem_object_do_bit_17_swizzle(obj);
2886
2887 if (obj->tiling_mode != I915_TILING_NONE &&
2888 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2889 i915_gem_object_pin_pages(obj);
2890
2891 return 0;
2892
2893 err_pages:
2894 sg_mark_end(sg);
2895 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2896 page_cache_release(sg_page_iter_page(&sg_iter));
2897 sg_free_table(st);
2898 kfree(st);
2899
2900 /* shmemfs first checks if there is enough memory to allocate the page
2901 * and reports ENOSPC should there be insufficient, along with the usual
2902 * ENOMEM for a genuine allocation failure.
2903 *
2904 * We use ENOSPC in our driver to mean that we have run out of aperture
2905 * space and so want to translate the error from shmemfs back to our
2906 * usual understanding of ENOMEM.
2907 */
2908 if (ret == -ENOSPC)
2909 ret = -ENOMEM;
2910
2911 return ret;
2912 #endif
2913 }
2914
2915 /* Ensure that the associated pages are gathered from the backing storage
2916 * and pinned into our object. i915_gem_object_get_pages() may be called
2917 * multiple times before they are released by a single call to
2918 * i915_gem_object_put_pages() - once the pages are no longer referenced
2919 * either as a result of memory pressure (reaping pages under the shrinker)
2920 * or as the object is itself released.
2921 */
2922 int
2923 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2924 {
2925 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2926 const struct drm_i915_gem_object_ops *ops = obj->ops;
2927 int ret;
2928
2929 if (obj->pages)
2930 return 0;
2931
2932 if (obj->madv != I915_MADV_WILLNEED) {
2933 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2934 return -EFAULT;
2935 }
2936
2937 BUG_ON(obj->pages_pin_count);
2938
2939 ret = ops->get_pages(obj);
2940 if (ret)
2941 return ret;
2942
2943 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2944
2945 #ifndef __NetBSD__
2946 obj->get_page.sg = obj->pages->sgl;
2947 obj->get_page.last = 0;
2948 #endif
2949
2950 return 0;
2951 }
2952
2953 void i915_vma_move_to_active(struct i915_vma *vma,
2954 struct drm_i915_gem_request *req)
2955 {
2956 struct drm_i915_gem_object *obj = vma->obj;
2957 struct intel_engine_cs *ring;
2958
2959 ring = i915_gem_request_get_ring(req);
2960
2961 /* Add a reference if we're newly entering the active list. */
2962 if (obj->active == 0)
2963 drm_gem_object_reference(&obj->base);
2964 obj->active |= intel_ring_flag(ring);
2965
2966 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2967 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2968
2969 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2970 }
2971
2972 static void
2973 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2974 {
2975 RQ_BUG_ON(obj->last_write_req == NULL);
2976 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2977
2978 i915_gem_request_assign(&obj->last_write_req, NULL);
2979 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2980 }
2981
2982 static void
2983 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2984 {
2985 struct i915_vma *vma;
2986
2987 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2988 RQ_BUG_ON(!(obj->active & (1 << ring)));
2989
2990 list_del_init(&obj->ring_list[ring]);
2991 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2992
2993 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2994 i915_gem_object_retire__write(obj);
2995
2996 obj->active &= ~(1 << ring);
2997 if (obj->active)
2998 return;
2999
3000 /* Bump our place on the bound list to keep it roughly in LRU order
3001 * so that we don't steal from recently used but inactive objects
3002 * (unless we are forced to ofc!)
3003 */
3004 list_move_tail(&obj->global_list,
3005 &to_i915(obj->base.dev)->mm.bound_list);
3006
3007 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3008 if (!list_empty(&vma->mm_list))
3009 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
3010 }
3011
3012 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3013 drm_gem_object_unreference(&obj->base);
3014 }
3015
3016 static int
3017 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
3018 {
3019 struct drm_i915_private *dev_priv = dev->dev_private;
3020 struct intel_engine_cs *ring;
3021 int ret, i, j;
3022
3023 /* Carefully retire all requests without writing to the rings */
3024 for_each_ring(ring, dev_priv, i) {
3025 ret = intel_ring_idle(ring);
3026 if (ret)
3027 return ret;
3028 }
3029 i915_gem_retire_requests(dev);
3030
3031 /* Finally reset hw state */
3032 for_each_ring(ring, dev_priv, i) {
3033 intel_ring_init_seqno(ring, seqno);
3034
3035 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
3036 ring->semaphore.sync_seqno[j] = 0;
3037 }
3038
3039 return 0;
3040 }
3041
3042 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
3043 {
3044 struct drm_i915_private *dev_priv = dev->dev_private;
3045 int ret;
3046
3047 if (seqno == 0)
3048 return -EINVAL;
3049
3050 /* HWS page needs to be set less than what we
3051 * will inject to ring
3052 */
3053 ret = i915_gem_init_seqno(dev, seqno - 1);
3054 if (ret)
3055 return ret;
3056
3057 /* Carefully set the last_seqno value so that wrap
3058 * detection still works
3059 */
3060 dev_priv->next_seqno = seqno;
3061 dev_priv->last_seqno = seqno - 1;
3062 if (dev_priv->last_seqno == 0)
3063 dev_priv->last_seqno--;
3064
3065 return 0;
3066 }
3067
3068 int
3069 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
3070 {
3071 struct drm_i915_private *dev_priv = dev->dev_private;
3072
3073 /* reserve 0 for non-seqno */
3074 if (dev_priv->next_seqno == 0) {
3075 int ret = i915_gem_init_seqno(dev, 0);
3076 if (ret)
3077 return ret;
3078
3079 dev_priv->next_seqno = 1;
3080 }
3081
3082 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
3083 return 0;
3084 }
3085
3086 /*
3087 * NB: This function is not allowed to fail. Doing so would mean the the
3088 * request is not being tracked for completion but the work itself is
3089 * going to happen on the hardware. This would be a Bad Thing(tm).
3090 */
3091 void __i915_add_request(struct drm_i915_gem_request *request,
3092 struct drm_i915_gem_object *obj,
3093 bool flush_caches)
3094 {
3095 struct intel_engine_cs *ring;
3096 struct drm_i915_private *dev_priv;
3097 struct intel_ringbuffer *ringbuf;
3098 u32 request_start;
3099 int ret;
3100
3101 if (WARN_ON(request == NULL))
3102 return;
3103
3104 ring = request->ring;
3105 dev_priv = ring->dev->dev_private;
3106 ringbuf = request->ringbuf;
3107
3108 /*
3109 * To ensure that this call will not fail, space for its emissions
3110 * should already have been reserved in the ring buffer. Let the ring
3111 * know that it is time to use that space up.
3112 */
3113 intel_ring_reserved_space_use(ringbuf);
3114
3115 request_start = intel_ring_get_tail(ringbuf);
3116 /*
3117 * Emit any outstanding flushes - execbuf can fail to emit the flush
3118 * after having emitted the batchbuffer command. Hence we need to fix
3119 * things up similar to emitting the lazy request. The difference here
3120 * is that the flush _must_ happen before the next request, no matter
3121 * what.
3122 */
3123 if (flush_caches) {
3124 if (i915.enable_execlists)
3125 ret = logical_ring_flush_all_caches(request);
3126 else
3127 ret = intel_ring_flush_all_caches(request);
3128 /* Not allowed to fail! */
3129 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
3130 }
3131
3132 /* Record the position of the start of the request so that
3133 * should we detect the updated seqno part-way through the
3134 * GPU processing the request, we never over-estimate the
3135 * position of the head.
3136 */
3137 request->postfix = intel_ring_get_tail(ringbuf);
3138
3139 if (i915.enable_execlists)
3140 ret = ring->emit_request(request);
3141 else {
3142 ret = ring->add_request(request);
3143
3144 request->tail = intel_ring_get_tail(ringbuf);
3145 }
3146 /* Not allowed to fail! */
3147 WARN(ret, "emit|add_request failed: %d!\n", ret);
3148
3149 request->head = request_start;
3150
3151 /* Whilst this request exists, batch_obj will be on the
3152 * active_list, and so will hold the active reference. Only when this
3153 * request is retired will the the batch_obj be moved onto the
3154 * inactive_list and lose its active reference. Hence we do not need
3155 * to explicitly hold another reference here.
3156 */
3157 request->batch_obj = obj;
3158
3159 request->emitted_jiffies = jiffies;
3160 request->previous_seqno = ring->last_submitted_seqno;
3161 ring->last_submitted_seqno = request->seqno;
3162 list_add_tail(&request->list, &ring->request_list);
3163
3164 trace_i915_gem_request_add(request);
3165
3166 i915_queue_hangcheck(ring->dev);
3167
3168 queue_delayed_work(dev_priv->wq,
3169 &dev_priv->mm.retire_work,
3170 round_jiffies_up_relative(HZ));
3171 intel_mark_busy(dev_priv->dev);
3172
3173 /* Sanity check that the reserved size was large enough. */
3174 intel_ring_reserved_space_end(ringbuf);
3175 }
3176
3177 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
3178 const struct intel_context *ctx)
3179 {
3180 unsigned long elapsed;
3181
3182 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
3183
3184 if (ctx->hang_stats.banned)
3185 return true;
3186
3187 if (ctx->hang_stats.ban_period_seconds &&
3188 elapsed <= ctx->hang_stats.ban_period_seconds) {
3189 if (!i915_gem_context_is_default(ctx)) {
3190 DRM_DEBUG("context hanging too fast, banning!\n");
3191 return true;
3192 } else if (i915_stop_ring_allow_ban(dev_priv)) {
3193 if (i915_stop_ring_allow_warn(dev_priv))
3194 DRM_ERROR("gpu hanging too fast, banning!\n");
3195 return true;
3196 }
3197 }
3198
3199 return false;
3200 }
3201
3202 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
3203 struct intel_context *ctx,
3204 const bool guilty)
3205 {
3206 struct i915_ctx_hang_stats *hs;
3207
3208 if (WARN_ON(!ctx))
3209 return;
3210
3211 hs = &ctx->hang_stats;
3212
3213 if (guilty) {
3214 hs->banned = i915_context_is_banned(dev_priv, ctx);
3215 hs->batch_active++;
3216 hs->guilty_ts = get_seconds();
3217 } else {
3218 hs->batch_pending++;
3219 }
3220 }
3221
3222 void i915_gem_request_free(struct kref *req_ref)
3223 {
3224 struct drm_i915_gem_request *req = container_of(req_ref,
3225 typeof(*req), ref);
3226 struct intel_context *ctx = req->ctx;
3227
3228 if (req->file_priv)
3229 i915_gem_request_remove_from_client(req);
3230
3231 if (ctx) {
3232 if (i915.enable_execlists) {
3233 if (ctx != req->ring->default_context)
3234 intel_lr_context_unpin(req);
3235 }
3236
3237 i915_gem_context_unreference(ctx);
3238 }
3239
3240 kmem_cache_free(req->i915->requests, req);
3241 }
3242
3243 int i915_gem_request_alloc(struct intel_engine_cs *ring,
3244 struct intel_context *ctx,
3245 struct drm_i915_gem_request **req_out)
3246 {
3247 struct drm_i915_private *dev_priv = to_i915(ring->dev);
3248 struct drm_i915_gem_request *req;
3249 int ret;
3250
3251 if (!req_out)
3252 return -EINVAL;
3253
3254 *req_out = NULL;
3255
3256 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
3257 if (req == NULL)
3258 return -ENOMEM;
3259
3260 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
3261 if (ret)
3262 goto err;
3263
3264 kref_init(&req->ref);
3265 req->i915 = dev_priv;
3266 req->ring = ring;
3267 req->ctx = ctx;
3268 i915_gem_context_reference(req->ctx);
3269
3270 if (i915.enable_execlists)
3271 ret = intel_logical_ring_alloc_request_extras(req);
3272 else
3273 ret = intel_ring_alloc_request_extras(req);
3274 if (ret) {
3275 i915_gem_context_unreference(req->ctx);
3276 goto err;
3277 }
3278
3279 /*
3280 * Reserve space in the ring buffer for all the commands required to
3281 * eventually emit this request. This is to guarantee that the
3282 * i915_add_request() call can't fail. Note that the reserve may need
3283 * to be redone if the request is not actually submitted straight
3284 * away, e.g. because a GPU scheduler has deferred it.
3285 */
3286 if (i915.enable_execlists)
3287 ret = intel_logical_ring_reserve_space(req);
3288 else
3289 ret = intel_ring_reserve_space(req);
3290 if (ret) {
3291 /*
3292 * At this point, the request is fully allocated even if not
3293 * fully prepared. Thus it can be cleaned up using the proper
3294 * free code.
3295 */
3296 i915_gem_request_cancel(req);
3297 return ret;
3298 }
3299
3300 *req_out = req;
3301 return 0;
3302
3303 err:
3304 kmem_cache_free(dev_priv->requests, req);
3305 return ret;
3306 }
3307
3308 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
3309 {
3310 intel_ring_reserved_space_cancel(req->ringbuf);
3311
3312 i915_gem_request_unreference(req);
3313 }
3314
3315 struct drm_i915_gem_request *
3316 i915_gem_find_active_request(struct intel_engine_cs *ring)
3317 {
3318 struct drm_i915_gem_request *request;
3319
3320 list_for_each_entry(request, &ring->request_list, list) {
3321 if (i915_gem_request_completed(request, false))
3322 continue;
3323
3324 return request;
3325 }
3326
3327 return NULL;
3328 }
3329
3330 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
3331 struct intel_engine_cs *ring)
3332 {
3333 struct drm_i915_gem_request *request;
3334 bool ring_hung;
3335
3336 request = i915_gem_find_active_request(ring);
3337
3338 if (request == NULL)
3339 return;
3340
3341 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3342
3343 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3344
3345 list_for_each_entry_continue(request, &ring->request_list, list)
3346 i915_set_reset_status(dev_priv, request->ctx, false);
3347 }
3348
3349 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
3350 struct intel_engine_cs *ring)
3351 {
3352 while (!list_empty(&ring->active_list)) {
3353 struct drm_i915_gem_object *obj;
3354
3355 obj = list_first_entry(&ring->active_list,
3356 struct drm_i915_gem_object,
3357 ring_list[ring->id]);
3358
3359 i915_gem_object_retire__read(obj, ring->id);
3360 }
3361
3362 /*
3363 * Clear the execlists queue up before freeing the requests, as those
3364 * are the ones that keep the context and ringbuffer backing objects
3365 * pinned in place.
3366 */
3367 while (!list_empty(&ring->execlist_queue)) {
3368 struct drm_i915_gem_request *submit_req;
3369
3370 submit_req = list_first_entry(&ring->execlist_queue,
3371 struct drm_i915_gem_request,
3372 execlist_link);
3373 list_del(&submit_req->execlist_link);
3374
3375 if (submit_req->ctx != ring->default_context)
3376 intel_lr_context_unpin(submit_req);
3377
3378 i915_gem_request_unreference(submit_req);
3379 }
3380
3381 /*
3382 * We must free the requests after all the corresponding objects have
3383 * been moved off active lists. Which is the same order as the normal
3384 * retire_requests function does. This is important if object hold
3385 * implicit references on things like e.g. ppgtt address spaces through
3386 * the request.
3387 */
3388 while (!list_empty(&ring->request_list)) {
3389 struct drm_i915_gem_request *request;
3390
3391 request = list_first_entry(&ring->request_list,
3392 struct drm_i915_gem_request,
3393 list);
3394
3395 i915_gem_request_retire(request);
3396 }
3397 }
3398
3399 void i915_gem_reset(struct drm_device *dev)
3400 {
3401 struct drm_i915_private *dev_priv = dev->dev_private;
3402 struct intel_engine_cs *ring;
3403 int i;
3404
3405 /*
3406 * Before we free the objects from the requests, we need to inspect
3407 * them for finding the guilty party. As the requests only borrow
3408 * their reference to the objects, the inspection must be done first.
3409 */
3410 for_each_ring(ring, dev_priv, i)
3411 i915_gem_reset_ring_status(dev_priv, ring);
3412
3413 for_each_ring(ring, dev_priv, i)
3414 i915_gem_reset_ring_cleanup(dev_priv, ring);
3415
3416 i915_gem_context_reset(dev);
3417
3418 i915_gem_restore_fences(dev);
3419
3420 WARN_ON(i915_verify_lists(dev));
3421 }
3422
3423 /**
3424 * This function clears the request list as sequence numbers are passed.
3425 */
3426 void
3427 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
3428 {
3429 WARN_ON(i915_verify_lists(ring->dev));
3430
3431 /* Retire requests first as we use it above for the early return.
3432 * If we retire requests last, we may use a later seqno and so clear
3433 * the requests lists without clearing the active list, leading to
3434 * confusion.
3435 */
3436 while (!list_empty(&ring->request_list)) {
3437 struct drm_i915_gem_request *request;
3438
3439 request = list_first_entry(&ring->request_list,
3440 struct drm_i915_gem_request,
3441 list);
3442
3443 if (!i915_gem_request_completed(request, true))
3444 break;
3445
3446 i915_gem_request_retire(request);
3447 }
3448
3449 /* Move any buffers on the active list that are no longer referenced
3450 * by the ringbuffer to the flushing/inactive lists as appropriate,
3451 * before we free the context associated with the requests.
3452 */
3453 while (!list_empty(&ring->active_list)) {
3454 struct drm_i915_gem_object *obj;
3455
3456 obj = list_first_entry(&ring->active_list,
3457 struct drm_i915_gem_object,
3458 ring_list[ring->id]);
3459
3460 if (!list_empty(&obj->last_read_req[ring->id]->list))
3461 break;
3462
3463 i915_gem_object_retire__read(obj, ring->id);
3464 }
3465
3466 if (unlikely(ring->trace_irq_req &&
3467 i915_gem_request_completed(ring->trace_irq_req, true))) {
3468 ring->irq_put(ring);
3469 i915_gem_request_assign(&ring->trace_irq_req, NULL);
3470 }
3471
3472 WARN_ON(i915_verify_lists(ring->dev));
3473 }
3474
3475 bool
3476 i915_gem_retire_requests(struct drm_device *dev)
3477 {
3478 struct drm_i915_private *dev_priv = dev->dev_private;
3479 struct intel_engine_cs *ring;
3480 bool idle = true;
3481 int i;
3482
3483 for_each_ring(ring, dev_priv, i) {
3484 i915_gem_retire_requests_ring(ring);
3485 idle &= list_empty(&ring->request_list);
3486 if (i915.enable_execlists) {
3487 unsigned long flags;
3488
3489 spin_lock_irqsave(&ring->execlist_lock, flags);
3490 idle &= list_empty(&ring->execlist_queue);
3491 spin_unlock_irqrestore(&ring->execlist_lock, flags);
3492
3493 intel_execlists_retire_requests(ring);
3494 }
3495 }
3496
3497 if (idle)
3498 mod_delayed_work(dev_priv->wq,
3499 &dev_priv->mm.idle_work,
3500 msecs_to_jiffies(100));
3501
3502 return idle;
3503 }
3504
3505 static void
3506 i915_gem_retire_work_handler(struct work_struct *work)
3507 {
3508 struct drm_i915_private *dev_priv =
3509 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3510 struct drm_device *dev = dev_priv->dev;
3511 bool idle;
3512
3513 /* Come back later if the device is busy... */
3514 idle = false;
3515 if (mutex_trylock(&dev->struct_mutex)) {
3516 idle = i915_gem_retire_requests(dev);
3517 mutex_unlock(&dev->struct_mutex);
3518 }
3519 if (!idle)
3520 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3521 round_jiffies_up_relative(HZ));
3522 }
3523
3524 static void
3525 i915_gem_idle_work_handler(struct work_struct *work)
3526 {
3527 struct drm_i915_private *dev_priv =
3528 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3529 struct drm_device *dev = dev_priv->dev;
3530 struct intel_engine_cs *ring;
3531 int i;
3532
3533 for_each_ring(ring, dev_priv, i)
3534 if (!list_empty(&ring->request_list))
3535 return;
3536
3537 intel_mark_idle(dev);
3538
3539 if (mutex_trylock(&dev->struct_mutex)) {
3540 struct intel_engine_cs *ring;
3541 int i;
3542
3543 for_each_ring(ring, dev_priv, i)
3544 i915_gem_batch_pool_fini(&ring->batch_pool);
3545
3546 mutex_unlock(&dev->struct_mutex);
3547 }
3548 }
3549
3550 /**
3551 * Ensures that an object will eventually get non-busy by flushing any required
3552 * write domains, emitting any outstanding lazy request and retiring and
3553 * completed requests.
3554 */
3555 static int
3556 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3557 {
3558 int i;
3559
3560 if (!obj->active)
3561 return 0;
3562
3563 for (i = 0; i < I915_NUM_RINGS; i++) {
3564 struct drm_i915_gem_request *req;
3565
3566 req = obj->last_read_req[i];
3567 if (req == NULL)
3568 continue;
3569
3570 if (list_empty(&req->list))
3571 goto retire;
3572
3573 if (i915_gem_request_completed(req, true)) {
3574 __i915_gem_request_retire__upto(req);
3575 retire:
3576 i915_gem_object_retire__read(obj, i);
3577 }
3578 }
3579
3580 return 0;
3581 }
3582
3583 /**
3584 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3585 * @DRM_IOCTL_ARGS: standard ioctl arguments
3586 *
3587 * Returns 0 if successful, else an error is returned with the remaining time in
3588 * the timeout parameter.
3589 * -ETIME: object is still busy after timeout
3590 * -ERESTARTSYS: signal interrupted the wait
3591 * -ENONENT: object doesn't exist
3592 * Also possible, but rare:
3593 * -EAGAIN: GPU wedged
3594 * -ENOMEM: damn
3595 * -ENODEV: Internal IRQ fail
3596 * -E?: The add request failed
3597 *
3598 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3599 * non-zero timeout parameter the wait ioctl will wait for the given number of
3600 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3601 * without holding struct_mutex the object may become re-busied before this
3602 * function completes. A similar but shorter * race condition exists in the busy
3603 * ioctl
3604 */
3605 int
3606 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3607 {
3608 struct drm_i915_private *dev_priv = dev->dev_private;
3609 struct drm_i915_gem_wait *args = data;
3610 struct drm_gem_object *gobj;
3611 struct drm_i915_gem_object *obj;
3612 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3613 unsigned reset_counter;
3614 int i, n = 0;
3615 int ret;
3616
3617 if (args->flags != 0)
3618 return -EINVAL;
3619
3620 ret = i915_mutex_lock_interruptible(dev);
3621 if (ret)
3622 return ret;
3623
3624 gobj = drm_gem_object_lookup(dev, file, args->bo_handle);
3625 if (gobj == NULL) {
3626 mutex_unlock(&dev->struct_mutex);
3627 return -ENOENT;
3628 }
3629 obj = to_intel_bo(gobj);
3630
3631 /* Need to make sure the object gets inactive eventually. */
3632 ret = i915_gem_object_flush_active(obj);
3633 if (ret)
3634 goto out;
3635
3636 if (!obj->active)
3637 goto out;
3638
3639 /* Do this after OLR check to make sure we make forward progress polling
3640 * on this IOCTL with a timeout == 0 (like busy ioctl)
3641 */
3642 if (args->timeout_ns == 0) {
3643 ret = -ETIME;
3644 goto out;
3645 }
3646
3647 drm_gem_object_unreference(&obj->base);
3648 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3649
3650 for (i = 0; i < I915_NUM_RINGS; i++) {
3651 if (obj->last_read_req[i] == NULL)
3652 continue;
3653
3654 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3655 }
3656
3657 mutex_unlock(&dev->struct_mutex);
3658
3659 for (i = 0; i < n; i++) {
3660 if (ret == 0)
3661 ret = __i915_wait_request(req[i], reset_counter, true,
3662 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3663 file->driver_priv);
3664 i915_gem_request_unreference__unlocked(req[i]);
3665 }
3666 return ret;
3667
3668 out:
3669 drm_gem_object_unreference(&obj->base);
3670 mutex_unlock(&dev->struct_mutex);
3671 return ret;
3672 }
3673
3674 static int
3675 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3676 struct intel_engine_cs *to,
3677 struct drm_i915_gem_request *from_req,
3678 struct drm_i915_gem_request **to_req)
3679 {
3680 struct intel_engine_cs *from;
3681 int ret;
3682
3683 from = i915_gem_request_get_ring(from_req);
3684 if (to == from)
3685 return 0;
3686
3687 if (i915_gem_request_completed(from_req, true))
3688 return 0;
3689
3690 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3691 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3692 ret = __i915_wait_request(from_req,
3693 atomic_read(&i915->gpu_error.reset_counter),
3694 i915->mm.interruptible,
3695 NULL,
3696 &i915->rps.semaphores);
3697 if (ret)
3698 return ret;
3699
3700 i915_gem_object_retire_request(obj, from_req);
3701 } else {
3702 int idx = intel_ring_sync_index(from, to);
3703 u32 seqno = i915_gem_request_get_seqno(from_req);
3704
3705 WARN_ON(!to_req);
3706
3707 if (seqno <= from->semaphore.sync_seqno[idx])
3708 return 0;
3709
3710 if (*to_req == NULL) {
3711 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3712 if (ret)
3713 return ret;
3714 }
3715
3716 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3717 ret = to->semaphore.sync_to(*to_req, from, seqno);
3718 if (ret)
3719 return ret;
3720
3721 /* We use last_read_req because sync_to()
3722 * might have just caused seqno wrap under
3723 * the radar.
3724 */
3725 from->semaphore.sync_seqno[idx] =
3726 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3727 }
3728
3729 return 0;
3730 }
3731
3732 /**
3733 * i915_gem_object_sync - sync an object to a ring.
3734 *
3735 * @obj: object which may be in use on another ring.
3736 * @to: ring we wish to use the object on. May be NULL.
3737 * @to_req: request we wish to use the object for. See below.
3738 * This will be allocated and returned if a request is
3739 * required but not passed in.
3740 *
3741 * This code is meant to abstract object synchronization with the GPU.
3742 * Calling with NULL implies synchronizing the object with the CPU
3743 * rather than a particular GPU ring. Conceptually we serialise writes
3744 * between engines inside the GPU. We only allow one engine to write
3745 * into a buffer at any time, but multiple readers. To ensure each has
3746 * a coherent view of memory, we must:
3747 *
3748 * - If there is an outstanding write request to the object, the new
3749 * request must wait for it to complete (either CPU or in hw, requests
3750 * on the same ring will be naturally ordered).
3751 *
3752 * - If we are a write request (pending_write_domain is set), the new
3753 * request must wait for outstanding read requests to complete.
3754 *
3755 * For CPU synchronisation (NULL to) no request is required. For syncing with
3756 * rings to_req must be non-NULL. However, a request does not have to be
3757 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3758 * request will be allocated automatically and returned through *to_req. Note
3759 * that it is not guaranteed that commands will be emitted (because the system
3760 * might already be idle). Hence there is no need to create a request that
3761 * might never have any work submitted. Note further that if a request is
3762 * returned in *to_req, it is the responsibility of the caller to submit
3763 * that request (after potentially adding more work to it).
3764 *
3765 * Returns 0 if successful, else propagates up the lower layer error.
3766 */
3767 int
3768 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3769 struct intel_engine_cs *to,
3770 struct drm_i915_gem_request **to_req)
3771 {
3772 const bool readonly = obj->base.pending_write_domain == 0;
3773 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3774 int ret, i, n;
3775
3776 if (!obj->active)
3777 return 0;
3778
3779 if (to == NULL)
3780 return i915_gem_object_wait_rendering(obj, readonly);
3781
3782 n = 0;
3783 if (readonly) {
3784 if (obj->last_write_req)
3785 req[n++] = obj->last_write_req;
3786 } else {
3787 for (i = 0; i < I915_NUM_RINGS; i++)
3788 if (obj->last_read_req[i])
3789 req[n++] = obj->last_read_req[i];
3790 }
3791 for (i = 0; i < n; i++) {
3792 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3793 if (ret)
3794 return ret;
3795 }
3796
3797 return 0;
3798 }
3799
3800 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3801 {
3802 u32 old_write_domain, old_read_domains;
3803
3804 /* Force a pagefault for domain tracking on next user access */
3805 i915_gem_release_mmap(obj);
3806
3807 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3808 return;
3809
3810 /* Wait for any direct GTT access to complete */
3811 mb();
3812
3813 old_read_domains = obj->base.read_domains;
3814 old_write_domain = obj->base.write_domain;
3815
3816 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3817 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3818
3819 trace_i915_gem_object_change_domain(obj,
3820 old_read_domains,
3821 old_write_domain);
3822 }
3823
3824 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3825 {
3826 struct drm_i915_gem_object *obj = vma->obj;
3827 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3828 int ret;
3829
3830 if (list_empty(&vma->vma_link))
3831 return 0;
3832
3833 if (!drm_mm_node_allocated(&vma->node)) {
3834 i915_gem_vma_destroy(vma);
3835 return 0;
3836 }
3837
3838 if (vma->pin_count)
3839 return -EBUSY;
3840
3841 BUG_ON(obj->pages == NULL);
3842
3843 if (wait) {
3844 ret = i915_gem_object_wait_rendering(obj, false);
3845 if (ret)
3846 return ret;
3847 }
3848
3849 if (i915_is_ggtt(vma->vm) &&
3850 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3851 i915_gem_object_finish_gtt(obj);
3852
3853 /* release the fence reg _after_ flushing */
3854 ret = i915_gem_object_put_fence(obj);
3855 if (ret)
3856 return ret;
3857 }
3858
3859 trace_i915_vma_unbind(vma);
3860
3861 vma->vm->unbind_vma(vma);
3862 vma->bound = 0;
3863
3864 list_del_init(&vma->mm_list);
3865 if (i915_is_ggtt(vma->vm)) {
3866 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3867 obj->map_and_fenceable = false;
3868 } else if (vma->ggtt_view.pages) {
3869 #ifdef __NetBSD__
3870 panic("rotated/partial views can't happen");
3871 #else
3872 sg_free_table(vma->ggtt_view.pages);
3873 kfree(vma->ggtt_view.pages);
3874 #endif
3875 }
3876 vma->ggtt_view.pages = NULL;
3877 }
3878
3879 drm_mm_remove_node(&vma->node);
3880 i915_gem_vma_destroy(vma);
3881
3882 /* Since the unbound list is global, only move to that list if
3883 * no more VMAs exist. */
3884 if (list_empty(&obj->vma_list))
3885 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3886
3887 /* And finally now the object is completely decoupled from this vma,
3888 * we can drop its hold on the backing storage and allow it to be
3889 * reaped by the shrinker.
3890 */
3891 i915_gem_object_unpin_pages(obj);
3892
3893 return 0;
3894 }
3895
3896 int i915_vma_unbind(struct i915_vma *vma)
3897 {
3898 return __i915_vma_unbind(vma, true);
3899 }
3900
3901 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3902 {
3903 return __i915_vma_unbind(vma, false);
3904 }
3905
3906 int i915_gpu_idle(struct drm_device *dev)
3907 {
3908 struct drm_i915_private *dev_priv = dev->dev_private;
3909 struct intel_engine_cs *ring;
3910 int ret, i;
3911
3912 /* Flush everything onto the inactive list. */
3913 for_each_ring(ring, dev_priv, i) {
3914 if (!i915.enable_execlists) {
3915 struct drm_i915_gem_request *req;
3916
3917 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3918 if (ret)
3919 return ret;
3920
3921 ret = i915_switch_context(req);
3922 if (ret) {
3923 i915_gem_request_cancel(req);
3924 return ret;
3925 }
3926
3927 i915_add_request_no_flush(req);
3928 }
3929
3930 ret = intel_ring_idle(ring);
3931 if (ret)
3932 return ret;
3933 }
3934
3935 WARN_ON(i915_verify_lists(dev));
3936 return 0;
3937 }
3938
3939 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3940 unsigned long cache_level)
3941 {
3942 struct drm_mm_node *gtt_space = &vma->node;
3943 struct drm_mm_node *other;
3944
3945 /*
3946 * On some machines we have to be careful when putting differing types
3947 * of snoopable memory together to avoid the prefetcher crossing memory
3948 * domains and dying. During vm initialisation, we decide whether or not
3949 * these constraints apply and set the drm_mm.color_adjust
3950 * appropriately.
3951 */
3952 if (vma->vm->mm.color_adjust == NULL)
3953 return true;
3954
3955 if (!drm_mm_node_allocated(gtt_space))
3956 return true;
3957
3958 if (list_empty(>t_space->node_list))
3959 return true;
3960
3961 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3962 if (other->allocated && !other->hole_follows && other->color != cache_level)
3963 return false;
3964
3965 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3966 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3967 return false;
3968
3969 return true;
3970 }
3971
3972 /**
3973 * Finds free space in the GTT aperture and binds the object or a view of it
3974 * there.
3975 */
3976 static struct i915_vma *
3977 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3978 struct i915_address_space *vm,
3979 const struct i915_ggtt_view *ggtt_view,
3980 unsigned alignment,
3981 uint64_t flags)
3982 {
3983 struct drm_device *dev = obj->base.dev;
3984 struct drm_i915_private *dev_priv = dev->dev_private;
3985 u32 fence_alignment, unfenced_alignment;
3986 u32 search_flag, alloc_flag;
3987 u64 start, end;
3988 u64 size, fence_size;
3989 struct i915_vma *vma;
3990 int ret;
3991
3992 if (i915_is_ggtt(vm)) {
3993 u32 view_size;
3994
3995 if (WARN_ON(!ggtt_view))
3996 return ERR_PTR(-EINVAL);
3997
3998 view_size = i915_ggtt_view_size(obj, ggtt_view);
3999
4000 fence_size = i915_gem_get_gtt_size(dev,
4001 view_size,
4002 obj->tiling_mode);
4003 fence_alignment = i915_gem_get_gtt_alignment(dev,
4004 view_size,
4005 obj->tiling_mode,
4006 true);
4007 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
4008 view_size,
4009 obj->tiling_mode,
4010 false);
4011 size = flags & PIN_MAPPABLE ? fence_size : view_size;
4012 } else {
4013 fence_size = i915_gem_get_gtt_size(dev,
4014 obj->base.size,
4015 obj->tiling_mode);
4016 fence_alignment = i915_gem_get_gtt_alignment(dev,
4017 obj->base.size,
4018 obj->tiling_mode,
4019 true);
4020 unfenced_alignment =
4021 i915_gem_get_gtt_alignment(dev,
4022 obj->base.size,
4023 obj->tiling_mode,
4024 false);
4025 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
4026 }
4027
4028 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
4029 end = vm->total;
4030 if (flags & PIN_MAPPABLE)
4031 end = min_t(u64, end, dev_priv->gtt.mappable_end);
4032 if (flags & PIN_ZONE_4G)
4033 end = min_t(u64, end, (1ULL << 32));
4034
4035 if (alignment == 0)
4036 alignment = flags & PIN_MAPPABLE ? fence_alignment :
4037 unfenced_alignment;
4038 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
4039 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
4040 ggtt_view ? ggtt_view->type : 0,
4041 alignment);
4042 return ERR_PTR(-EINVAL);
4043 }
4044
4045 /* If binding the object/GGTT view requires more space than the entire
4046 * aperture has, reject it early before evicting everything in a vain
4047 * attempt to find space.
4048 */
4049 if (size > end) {
4050 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%"PRIx64" > %s aperture=%"PRIx64"\n",
4051 ggtt_view ? ggtt_view->type : 0,
4052 size,
4053 flags & PIN_MAPPABLE ? "mappable" : "total",
4054 end);
4055 return ERR_PTR(-E2BIG);
4056 }
4057
4058 ret = i915_gem_object_get_pages(obj);
4059 if (ret)
4060 return ERR_PTR(ret);
4061
4062 i915_gem_object_pin_pages(obj);
4063
4064 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
4065 i915_gem_obj_lookup_or_create_vma(obj, vm);
4066
4067 if (IS_ERR(vma))
4068 goto err_unpin;
4069
4070 if (flags & PIN_HIGH) {
4071 search_flag = DRM_MM_SEARCH_BELOW;
4072 alloc_flag = DRM_MM_CREATE_TOP;
4073 } else {
4074 search_flag = DRM_MM_SEARCH_DEFAULT;
4075 alloc_flag = DRM_MM_CREATE_DEFAULT;
4076 }
4077
4078 search_free:
4079 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
4080 size, alignment,
4081 obj->cache_level,
4082 start, end,
4083 search_flag,
4084 alloc_flag);
4085 if (ret) {
4086 ret = i915_gem_evict_something(dev, vm, size, alignment,
4087 obj->cache_level,
4088 start, end,
4089 flags);
4090 if (ret == 0)
4091 goto search_free;
4092
4093 goto err_free_vma;
4094 }
4095 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
4096 ret = -EINVAL;
4097 goto err_remove_node;
4098 }
4099
4100 trace_i915_vma_bind(vma, flags);
4101 ret = i915_vma_bind(vma, obj->cache_level, flags);
4102 if (ret)
4103 goto err_remove_node;
4104
4105 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
4106 list_add_tail(&vma->mm_list, &vm->inactive_list);
4107
4108 return vma;
4109
4110 err_remove_node:
4111 drm_mm_remove_node(&vma->node);
4112 err_free_vma:
4113 i915_gem_vma_destroy(vma);
4114 vma = ERR_PTR(ret);
4115 err_unpin:
4116 i915_gem_object_unpin_pages(obj);
4117 return vma;
4118 }
4119
4120 bool
4121 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
4122 bool force)
4123 {
4124 /* If we don't have a page list set up, then we're not pinned
4125 * to GPU, and we can ignore the cache flush because it'll happen
4126 * again at bind time.
4127 */
4128 if (obj->pages == NULL)
4129 return false;
4130
4131 /*
4132 * Stolen memory is always coherent with the GPU as it is explicitly
4133 * marked as wc by the system, or the system is cache-coherent.
4134 */
4135 if (obj->stolen || obj->phys_handle)
4136 return false;
4137
4138 /* If the GPU is snooping the contents of the CPU cache,
4139 * we do not need to manually clear the CPU cache lines. However,
4140 * the caches are only snooped when the render cache is
4141 * flushed/invalidated. As we always have to emit invalidations
4142 * and flushes when moving into and out of the RENDER domain, correct
4143 * snooping behaviour occurs naturally as the result of our domain
4144 * tracking.
4145 */
4146 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
4147 obj->cache_dirty = true;
4148 return false;
4149 }
4150
4151 trace_i915_gem_object_clflush(obj);
4152 #ifdef __NetBSD__
4153 drm_clflush_pglist(&obj->pageq);
4154 #else
4155 drm_clflush_sg(obj->pages);
4156 #endif
4157 obj->cache_dirty = false;
4158
4159 return true;
4160 }
4161
4162 /** Flushes the GTT write domain for the object if it's dirty. */
4163 static void
4164 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
4165 {
4166 uint32_t old_write_domain;
4167
4168 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
4169 return;
4170
4171 /* No actual flushing is required for the GTT write domain. Writes
4172 * to it immediately go to main memory as far as we know, so there's
4173 * no chipset flush. It also doesn't land in render cache.
4174 *
4175 * However, we do have to enforce the order so that all writes through
4176 * the GTT land before any writes to the device, such as updates to
4177 * the GATT itself.
4178 */
4179 wmb();
4180
4181 old_write_domain = obj->base.write_domain;
4182 obj->base.write_domain = 0;
4183
4184 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
4185
4186 trace_i915_gem_object_change_domain(obj,
4187 obj->base.read_domains,
4188 old_write_domain);
4189 }
4190
4191 /** Flushes the CPU write domain for the object if it's dirty. */
4192 static void
4193 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
4194 {
4195 uint32_t old_write_domain;
4196
4197 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4198 return;
4199
4200 if (i915_gem_clflush_object(obj, obj->pin_display))
4201 i915_gem_chipset_flush(obj->base.dev);
4202
4203 old_write_domain = obj->base.write_domain;
4204 obj->base.write_domain = 0;
4205
4206 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
4207
4208 trace_i915_gem_object_change_domain(obj,
4209 obj->base.read_domains,
4210 old_write_domain);
4211 }
4212
4213 /**
4214 * Moves a single object to the GTT read, and possibly write domain.
4215 *
4216 * This function returns when the move is complete, including waiting on
4217 * flushes to occur.
4218 */
4219 int
4220 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4221 {
4222 uint32_t old_write_domain, old_read_domains;
4223 struct i915_vma *vma;
4224 int ret;
4225
4226 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4227 return 0;
4228
4229 ret = i915_gem_object_wait_rendering(obj, !write);
4230 if (ret)
4231 return ret;
4232
4233 /* Flush and acquire obj->pages so that we are coherent through
4234 * direct access in memory with previous cached writes through
4235 * shmemfs and that our cache domain tracking remains valid.
4236 * For example, if the obj->filp was moved to swap without us
4237 * being notified and releasing the pages, we would mistakenly
4238 * continue to assume that the obj remained out of the CPU cached
4239 * domain.
4240 */
4241 ret = i915_gem_object_get_pages(obj);
4242 if (ret)
4243 return ret;
4244
4245 i915_gem_object_flush_cpu_write_domain(obj);
4246
4247 /* Serialise direct access to this object with the barriers for
4248 * coherent writes from the GPU, by effectively invalidating the
4249 * GTT domain upon first access.
4250 */
4251 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4252 mb();
4253
4254 old_write_domain = obj->base.write_domain;
4255 old_read_domains = obj->base.read_domains;
4256
4257 /* It should now be out of any other write domains, and we can update
4258 * the domain values for our changes.
4259 */
4260 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4261 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4262 if (write) {
4263 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4264 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4265 obj->dirty = 1;
4266 }
4267
4268 trace_i915_gem_object_change_domain(obj,
4269 old_read_domains,
4270 old_write_domain);
4271
4272 /* And bump the LRU for this access */
4273 vma = i915_gem_obj_to_ggtt(obj);
4274 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4275 list_move_tail(&vma->mm_list,
4276 &to_i915(obj->base.dev)->gtt.base.inactive_list);
4277
4278 return 0;
4279 }
4280
4281 /**
4282 * Changes the cache-level of an object across all VMA.
4283 *
4284 * After this function returns, the object will be in the new cache-level
4285 * across all GTT and the contents of the backing storage will be coherent,
4286 * with respect to the new cache-level. In order to keep the backing storage
4287 * coherent for all users, we only allow a single cache level to be set
4288 * globally on the object and prevent it from being changed whilst the
4289 * hardware is reading from the object. That is if the object is currently
4290 * on the scanout it will be set to uncached (or equivalent display
4291 * cache coherency) and all non-MOCS GPU access will also be uncached so
4292 * that all direct access to the scanout remains coherent.
4293 */
4294 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4295 enum i915_cache_level cache_level)
4296 {
4297 struct drm_device *dev = obj->base.dev;
4298 struct i915_vma *vma, *next;
4299 bool bound = false;
4300 int ret = 0;
4301
4302 if (obj->cache_level == cache_level)
4303 goto out;
4304
4305 /* Inspect the list of currently bound VMA and unbind any that would
4306 * be invalid given the new cache-level. This is principally to
4307 * catch the issue of the CS prefetch crossing page boundaries and
4308 * reading an invalid PTE on older architectures.
4309 */
4310 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4311 if (!drm_mm_node_allocated(&vma->node))
4312 continue;
4313
4314 if (vma->pin_count) {
4315 DRM_DEBUG("can not change the cache level of pinned objects\n");
4316 return -EBUSY;
4317 }
4318
4319 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4320 ret = i915_vma_unbind(vma);
4321 if (ret)
4322 return ret;
4323 } else
4324 bound = true;
4325 }
4326
4327 /* We can reuse the existing drm_mm nodes but need to change the
4328 * cache-level on the PTE. We could simply unbind them all and
4329 * rebind with the correct cache-level on next use. However since
4330 * we already have a valid slot, dma mapping, pages etc, we may as
4331 * rewrite the PTE in the belief that doing so tramples upon less
4332 * state and so involves less work.
4333 */
4334 if (bound) {
4335 /* Before we change the PTE, the GPU must not be accessing it.
4336 * If we wait upon the object, we know that all the bound
4337 * VMA are no longer active.
4338 */
4339 ret = i915_gem_object_wait_rendering(obj, false);
4340 if (ret)
4341 return ret;
4342
4343 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4344 /* Access to snoopable pages through the GTT is
4345 * incoherent and on some machines causes a hard
4346 * lockup. Relinquish the CPU mmaping to force
4347 * userspace to refault in the pages and we can
4348 * then double check if the GTT mapping is still
4349 * valid for that pointer access.
4350 */
4351 i915_gem_release_mmap(obj);
4352
4353 /* As we no longer need a fence for GTT access,
4354 * we can relinquish it now (and so prevent having
4355 * to steal a fence from someone else on the next
4356 * fence request). Note GPU activity would have
4357 * dropped the fence as all snoopable access is
4358 * supposed to be linear.
4359 */
4360 ret = i915_gem_object_put_fence(obj);
4361 if (ret)
4362 return ret;
4363 } else {
4364 /* We either have incoherent backing store and
4365 * so no GTT access or the architecture is fully
4366 * coherent. In such cases, existing GTT mmaps
4367 * ignore the cache bit in the PTE and we can
4368 * rewrite it without confusing the GPU or having
4369 * to force userspace to fault back in its mmaps.
4370 */
4371 }
4372
4373 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4374 if (!drm_mm_node_allocated(&vma->node))
4375 continue;
4376
4377 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4378 if (ret)
4379 return ret;
4380 }
4381 }
4382
4383 list_for_each_entry(vma, &obj->vma_list, vma_link)
4384 vma->node.color = cache_level;
4385 obj->cache_level = cache_level;
4386
4387 out:
4388 /* Flush the dirty CPU caches to the backing storage so that the
4389 * object is now coherent at its new cache level (with respect
4390 * to the access domain).
4391 */
4392 if (obj->cache_dirty &&
4393 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4394 cpu_write_needs_clflush(obj)) {
4395 if (i915_gem_clflush_object(obj, true))
4396 i915_gem_chipset_flush(obj->base.dev);
4397 }
4398
4399 return 0;
4400 }
4401
4402 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4403 struct drm_file *file)
4404 {
4405 struct drm_i915_gem_caching *args = data;
4406 struct drm_gem_object *gobj;
4407 struct drm_i915_gem_object *obj;
4408
4409 gobj = drm_gem_object_lookup(dev, file, args->handle);
4410 if (gobj == NULL)
4411 return -ENOENT;
4412 obj = to_intel_bo(gobj);
4413
4414 switch (obj->cache_level) {
4415 case I915_CACHE_LLC:
4416 case I915_CACHE_L3_LLC:
4417 args->caching = I915_CACHING_CACHED;
4418 break;
4419
4420 case I915_CACHE_WT:
4421 args->caching = I915_CACHING_DISPLAY;
4422 break;
4423
4424 default:
4425 args->caching = I915_CACHING_NONE;
4426 break;
4427 }
4428
4429 drm_gem_object_unreference_unlocked(&obj->base);
4430 return 0;
4431 }
4432
4433 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4434 struct drm_file *file)
4435 {
4436 struct drm_i915_private *dev_priv = dev->dev_private;
4437 struct drm_i915_gem_caching *args = data;
4438 struct drm_gem_object *gobj;
4439 struct drm_i915_gem_object *obj;
4440 enum i915_cache_level level;
4441 int ret;
4442
4443 switch (args->caching) {
4444 case I915_CACHING_NONE:
4445 level = I915_CACHE_NONE;
4446 break;
4447 case I915_CACHING_CACHED:
4448 /*
4449 * Due to a HW issue on BXT A stepping, GPU stores via a
4450 * snooped mapping may leave stale data in a corresponding CPU
4451 * cacheline, whereas normally such cachelines would get
4452 * invalidated.
4453 */
4454 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
4455 return -ENODEV;
4456
4457 level = I915_CACHE_LLC;
4458 break;
4459 case I915_CACHING_DISPLAY:
4460 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4461 break;
4462 default:
4463 return -EINVAL;
4464 }
4465
4466 intel_runtime_pm_get(dev_priv);
4467
4468 ret = i915_mutex_lock_interruptible(dev);
4469 if (ret)
4470 goto rpm_put;
4471
4472 gobj = drm_gem_object_lookup(dev, file, args->handle);
4473 if (gobj == NULL) {
4474 ret = -ENOENT;
4475 goto unlock;
4476 }
4477 obj = to_intel_bo(gobj);
4478
4479 ret = i915_gem_object_set_cache_level(obj, level);
4480
4481 drm_gem_object_unreference(&obj->base);
4482 unlock:
4483 mutex_unlock(&dev->struct_mutex);
4484 rpm_put:
4485 intel_runtime_pm_put(dev_priv);
4486
4487 return ret;
4488 }
4489
4490 /*
4491 * Prepare buffer for display plane (scanout, cursors, etc).
4492 * Can be called from an uninterruptible phase (modesetting) and allows
4493 * any flushes to be pipelined (for pageflips).
4494 */
4495 int
4496 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4497 u32 alignment,
4498 struct intel_engine_cs *pipelined,
4499 struct drm_i915_gem_request **pipelined_request,
4500 const struct i915_ggtt_view *view)
4501 {
4502 u32 old_read_domains, old_write_domain;
4503 int ret;
4504
4505 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
4506 if (ret)
4507 return ret;
4508
4509 /* Mark the pin_display early so that we account for the
4510 * display coherency whilst setting up the cache domains.
4511 */
4512 obj->pin_display++;
4513
4514 /* The display engine is not coherent with the LLC cache on gen6. As
4515 * a result, we make sure that the pinning that is about to occur is
4516 * done with uncached PTEs. This is lowest common denominator for all
4517 * chipsets.
4518 *
4519 * However for gen6+, we could do better by using the GFDT bit instead
4520 * of uncaching, which would allow us to flush all the LLC-cached data
4521 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4522 */
4523 ret = i915_gem_object_set_cache_level(obj,
4524 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4525 if (ret)
4526 goto err_unpin_display;
4527
4528 /* As the user may map the buffer once pinned in the display plane
4529 * (e.g. libkms for the bootup splash), we have to ensure that we
4530 * always use map_and_fenceable for all scanout buffers.
4531 */
4532 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4533 view->type == I915_GGTT_VIEW_NORMAL ?
4534 PIN_MAPPABLE : 0);
4535 if (ret)
4536 goto err_unpin_display;
4537
4538 i915_gem_object_flush_cpu_write_domain(obj);
4539
4540 old_write_domain = obj->base.write_domain;
4541 old_read_domains = obj->base.read_domains;
4542
4543 /* It should now be out of any other write domains, and we can update
4544 * the domain values for our changes.
4545 */
4546 obj->base.write_domain = 0;
4547 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4548
4549 trace_i915_gem_object_change_domain(obj,
4550 old_read_domains,
4551 old_write_domain);
4552
4553 return 0;
4554
4555 err_unpin_display:
4556 obj->pin_display--;
4557 return ret;
4558 }
4559
4560 void
4561 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4562 const struct i915_ggtt_view *view)
4563 {
4564 if (WARN_ON(obj->pin_display == 0))
4565 return;
4566
4567 i915_gem_object_ggtt_unpin_view(obj, view);
4568
4569 obj->pin_display--;
4570 }
4571
4572 /**
4573 * Moves a single object to the CPU read, and possibly write domain.
4574 *
4575 * This function returns when the move is complete, including waiting on
4576 * flushes to occur.
4577 */
4578 int
4579 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4580 {
4581 uint32_t old_write_domain, old_read_domains;
4582 int ret;
4583
4584 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4585 return 0;
4586
4587 ret = i915_gem_object_wait_rendering(obj, !write);
4588 if (ret)
4589 return ret;
4590
4591 i915_gem_object_flush_gtt_write_domain(obj);
4592
4593 old_write_domain = obj->base.write_domain;
4594 old_read_domains = obj->base.read_domains;
4595
4596 /* Flush the CPU cache if it's still invalid. */
4597 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4598 i915_gem_clflush_object(obj, false);
4599
4600 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4601 }
4602
4603 /* It should now be out of any other write domains, and we can update
4604 * the domain values for our changes.
4605 */
4606 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4607
4608 /* If we're writing through the CPU, then the GPU read domains will
4609 * need to be invalidated at next use.
4610 */
4611 if (write) {
4612 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4613 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4614 }
4615
4616 trace_i915_gem_object_change_domain(obj,
4617 old_read_domains,
4618 old_write_domain);
4619
4620 return 0;
4621 }
4622
4623 /* Throttle our rendering by waiting until the ring has completed our requests
4624 * emitted over 20 msec ago.
4625 *
4626 * Note that if we were to use the current jiffies each time around the loop,
4627 * we wouldn't escape the function with any frames outstanding if the time to
4628 * render a frame was over 20ms.
4629 *
4630 * This should get us reasonable parallelism between CPU and GPU but also
4631 * relatively low latency when blocking on a particular request to finish.
4632 */
4633 static int
4634 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4635 {
4636 struct drm_i915_private *dev_priv = dev->dev_private;
4637 struct drm_i915_file_private *file_priv = file->driver_priv;
4638 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4639 struct drm_i915_gem_request *request, *target = NULL;
4640 unsigned reset_counter;
4641 int ret;
4642
4643 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4644 if (ret)
4645 return ret;
4646
4647 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4648 if (ret)
4649 return ret;
4650
4651 spin_lock(&file_priv->mm.lock);
4652 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4653 if (time_after_eq(request->emitted_jiffies, recent_enough))
4654 break;
4655
4656 /*
4657 * Note that the request might not have been submitted yet.
4658 * In which case emitted_jiffies will be zero.
4659 */
4660 if (!request->emitted_jiffies)
4661 continue;
4662
4663 target = request;
4664 }
4665 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4666 if (target)
4667 i915_gem_request_reference(target);
4668 spin_unlock(&file_priv->mm.lock);
4669
4670 if (target == NULL)
4671 return 0;
4672
4673 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4674 if (ret == 0)
4675 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4676
4677 i915_gem_request_unreference__unlocked(target);
4678
4679 return ret;
4680 }
4681
4682 static bool
4683 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4684 {
4685 struct drm_i915_gem_object *obj = vma->obj;
4686
4687 if (alignment &&
4688 vma->node.start & (alignment - 1))
4689 return true;
4690
4691 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4692 return true;
4693
4694 if (flags & PIN_OFFSET_BIAS &&
4695 vma->node.start < (flags & PIN_OFFSET_MASK))
4696 return true;
4697
4698 return false;
4699 }
4700
4701 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4702 {
4703 struct drm_i915_gem_object *obj = vma->obj;
4704 bool mappable, fenceable;
4705 u32 fence_size, fence_alignment;
4706
4707 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4708 obj->base.size,
4709 obj->tiling_mode);
4710 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4711 obj->base.size,
4712 obj->tiling_mode,
4713 true);
4714
4715 fenceable = (vma->node.size == fence_size &&
4716 (vma->node.start & (fence_alignment - 1)) == 0);
4717
4718 mappable = (vma->node.start + fence_size <=
4719 to_i915(obj->base.dev)->gtt.mappable_end);
4720
4721 obj->map_and_fenceable = mappable && fenceable;
4722 }
4723
4724 static int
4725 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4726 struct i915_address_space *vm,
4727 const struct i915_ggtt_view *ggtt_view,
4728 uint32_t alignment,
4729 uint64_t flags)
4730 {
4731 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4732 struct i915_vma *vma;
4733 unsigned bound;
4734 int ret;
4735
4736 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4737 return -ENODEV;
4738
4739 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4740 return -EINVAL;
4741
4742 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4743 return -EINVAL;
4744
4745 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4746 return -EINVAL;
4747
4748 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4749 i915_gem_obj_to_vma(obj, vm);
4750
4751 if (IS_ERR(vma))
4752 return PTR_ERR(vma);
4753
4754 if (vma) {
4755 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4756 return -EBUSY;
4757
4758 if (i915_vma_misplaced(vma, alignment, flags)) {
4759 WARN(vma->pin_count,
4760 "bo is already pinned in %s with incorrect alignment:"
4761 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4762 " obj->map_and_fenceable=%d\n",
4763 ggtt_view ? "ggtt" : "ppgtt",
4764 upper_32_bits(vma->node.start),
4765 lower_32_bits(vma->node.start),
4766 alignment,
4767 !!(flags & PIN_MAPPABLE),
4768 obj->map_and_fenceable);
4769 ret = i915_vma_unbind(vma);
4770 if (ret)
4771 return ret;
4772
4773 vma = NULL;
4774 }
4775 }
4776
4777 bound = vma ? vma->bound : 0;
4778 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4779 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4780 flags);
4781 if (IS_ERR(vma))
4782 return PTR_ERR(vma);
4783 } else {
4784 ret = i915_vma_bind(vma, obj->cache_level, flags);
4785 if (ret)
4786 return ret;
4787 }
4788
4789 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4790 (bound ^ vma->bound) & GLOBAL_BIND) {
4791 __i915_vma_set_map_and_fenceable(vma);
4792 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4793 }
4794
4795 vma->pin_count++;
4796 return 0;
4797 }
4798
4799 int
4800 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4801 struct i915_address_space *vm,
4802 uint32_t alignment,
4803 uint64_t flags)
4804 {
4805 return i915_gem_object_do_pin(obj, vm,
4806 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4807 alignment, flags);
4808 }
4809
4810 int
4811 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4812 const struct i915_ggtt_view *view,
4813 uint32_t alignment,
4814 uint64_t flags)
4815 {
4816 if (WARN_ONCE(!view, "no view specified"))
4817 return -EINVAL;
4818
4819 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4820 alignment, flags | PIN_GLOBAL);
4821 }
4822
4823 void
4824 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4825 const struct i915_ggtt_view *view)
4826 {
4827 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4828
4829 BUG_ON(!vma);
4830 WARN_ON(vma->pin_count == 0);
4831 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4832
4833 --vma->pin_count;
4834 }
4835
4836 int
4837 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4838 struct drm_file *file)
4839 {
4840 struct drm_i915_gem_busy *args = data;
4841 struct drm_gem_object *gobj;
4842 struct drm_i915_gem_object *obj;
4843 int ret;
4844
4845 ret = i915_mutex_lock_interruptible(dev);
4846 if (ret)
4847 return ret;
4848
4849 gobj = drm_gem_object_lookup(dev, file, args->handle);
4850 if (gobj == NULL) {
4851 ret = -ENOENT;
4852 goto unlock;
4853 }
4854 obj = to_intel_bo(gobj);
4855
4856 /* Count all active objects as busy, even if they are currently not used
4857 * by the gpu. Users of this interface expect objects to eventually
4858 * become non-busy without any further actions, therefore emit any
4859 * necessary flushes here.
4860 */
4861 ret = i915_gem_object_flush_active(obj);
4862 if (ret)
4863 goto unref;
4864
4865 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4866 args->busy = obj->active << 16;
4867 if (obj->last_write_req)
4868 args->busy |= obj->last_write_req->ring->id;
4869
4870 unref:
4871 drm_gem_object_unreference(&obj->base);
4872 unlock:
4873 mutex_unlock(&dev->struct_mutex);
4874 return ret;
4875 }
4876
4877 int
4878 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4879 struct drm_file *file_priv)
4880 {
4881 return i915_gem_ring_throttle(dev, file_priv);
4882 }
4883
4884 int
4885 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4886 struct drm_file *file_priv)
4887 {
4888 struct drm_i915_private *dev_priv = dev->dev_private;
4889 struct drm_i915_gem_madvise *args = data;
4890 struct drm_gem_object *gobj;
4891 struct drm_i915_gem_object *obj;
4892 int ret;
4893
4894 switch (args->madv) {
4895 case I915_MADV_DONTNEED:
4896 case I915_MADV_WILLNEED:
4897 break;
4898 default:
4899 return -EINVAL;
4900 }
4901
4902 ret = i915_mutex_lock_interruptible(dev);
4903 if (ret)
4904 return ret;
4905
4906 gobj = drm_gem_object_lookup(dev, file_priv, args->handle);
4907 if (gobj == NULL) {
4908 ret = -ENOENT;
4909 goto unlock;
4910 }
4911 obj = to_intel_bo(gobj);
4912
4913 if (i915_gem_obj_is_pinned(obj)) {
4914 ret = -EINVAL;
4915 goto out;
4916 }
4917
4918 if (obj->pages &&
4919 obj->tiling_mode != I915_TILING_NONE &&
4920 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4921 if (obj->madv == I915_MADV_WILLNEED)
4922 i915_gem_object_unpin_pages(obj);
4923 if (args->madv == I915_MADV_WILLNEED)
4924 i915_gem_object_pin_pages(obj);
4925 }
4926
4927 if (obj->madv != __I915_MADV_PURGED)
4928 obj->madv = args->madv;
4929
4930 /* if the object is no longer attached, discard its backing storage */
4931 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4932 i915_gem_object_truncate(obj);
4933
4934 args->retained = obj->madv != __I915_MADV_PURGED;
4935
4936 out:
4937 drm_gem_object_unreference(&obj->base);
4938 unlock:
4939 mutex_unlock(&dev->struct_mutex);
4940 return ret;
4941 }
4942
4943 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4944 const struct drm_i915_gem_object_ops *ops)
4945 {
4946 int i;
4947
4948 INIT_LIST_HEAD(&obj->global_list);
4949 for (i = 0; i < I915_NUM_RINGS; i++)
4950 INIT_LIST_HEAD(&obj->ring_list[i]);
4951 INIT_LIST_HEAD(&obj->obj_exec_link);
4952 INIT_LIST_HEAD(&obj->vma_list);
4953 INIT_LIST_HEAD(&obj->batch_pool_link);
4954
4955 obj->ops = ops;
4956
4957 obj->fence_reg = I915_FENCE_REG_NONE;
4958 obj->madv = I915_MADV_WILLNEED;
4959
4960 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4961 }
4962
4963 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4964 .get_pages = i915_gem_object_get_pages_gtt,
4965 .put_pages = i915_gem_object_put_pages_gtt,
4966 };
4967
4968 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4969 size_t size)
4970 {
4971 #ifdef __NetBSD__
4972 struct drm_i915_private *const dev_priv = dev->dev_private;
4973 #endif
4974 struct drm_i915_gem_object *obj;
4975 #ifndef __NetBSD__
4976 struct address_space *mapping;
4977 gfp_t mask;
4978 #endif
4979
4980 obj = i915_gem_object_alloc(dev);
4981 if (obj == NULL)
4982 return NULL;
4983
4984 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4985 i915_gem_object_free(obj);
4986 return NULL;
4987 }
4988
4989 #ifdef __NetBSD__
4990 uao_set_pgfl(obj->base.filp, dev_priv->gtt.pgfl);
4991 #else
4992 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4993 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4994 /* 965gm cannot relocate objects above 4GiB. */
4995 mask &= ~__GFP_HIGHMEM;
4996 mask |= __GFP_DMA32;
4997 }
4998
4999 mapping = file_inode(obj->base.filp)->i_mapping;
5000 mapping_set_gfp_mask(mapping, mask);
5001 #endif
5002
5003 i915_gem_object_init(obj, &i915_gem_object_ops);
5004
5005 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5006 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5007
5008 if (HAS_LLC(dev)) {
5009 /* On some devices, we can have the GPU use the LLC (the CPU
5010 * cache) for about a 10% performance improvement
5011 * compared to uncached. Graphics requests other than
5012 * display scanout are coherent with the CPU in
5013 * accessing this cache. This means in this mode we
5014 * don't need to clflush on the CPU side, and on the
5015 * GPU side we only need to flush internal caches to
5016 * get data visible to the CPU.
5017 *
5018 * However, we maintain the display planes as UC, and so
5019 * need to rebind when first used as such.
5020 */
5021 obj->cache_level = I915_CACHE_LLC;
5022 } else
5023 obj->cache_level = I915_CACHE_NONE;
5024
5025 trace_i915_gem_object_create(obj);
5026
5027 return obj;
5028 }
5029
5030 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
5031 {
5032 /* If we are the last user of the backing storage (be it shmemfs
5033 * pages or stolen etc), we know that the pages are going to be
5034 * immediately released. In this case, we can then skip copying
5035 * back the contents from the GPU.
5036 */
5037
5038 if (obj->madv != I915_MADV_WILLNEED)
5039 return false;
5040
5041 if (obj->base.filp == NULL)
5042 return true;
5043
5044 /* At first glance, this looks racy, but then again so would be
5045 * userspace racing mmap against close. However, the first external
5046 * reference to the filp can only be obtained through the
5047 * i915_gem_mmap_ioctl() which safeguards us against the user
5048 * acquiring such a reference whilst we are in the middle of
5049 * freeing the object.
5050 */
5051 #ifdef __NetBSD__
5052 /* XXX This number might be a fencepost. */
5053 return obj->base.filp->uo_refs == 1;
5054 #else
5055 return atomic_long_read(&obj->base.filp->f_count) == 1;
5056 #endif
5057 }
5058
5059 void i915_gem_free_object(struct drm_gem_object *gem_obj)
5060 {
5061 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
5062 struct drm_device *dev = obj->base.dev;
5063 struct drm_i915_private *dev_priv = dev->dev_private;
5064 struct i915_vma *vma, *next;
5065
5066 intel_runtime_pm_get(dev_priv);
5067
5068 trace_i915_gem_object_destroy(obj);
5069
5070 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
5071 int ret;
5072
5073 vma->pin_count = 0;
5074 ret = i915_vma_unbind(vma);
5075 if (WARN_ON(ret == -ERESTARTSYS)) {
5076 bool was_interruptible;
5077
5078 was_interruptible = dev_priv->mm.interruptible;
5079 dev_priv->mm.interruptible = false;
5080
5081 WARN_ON(i915_vma_unbind(vma));
5082
5083 dev_priv->mm.interruptible = was_interruptible;
5084 }
5085 }
5086
5087 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
5088 * before progressing. */
5089 if (obj->stolen)
5090 i915_gem_object_unpin_pages(obj);
5091
5092 WARN_ON(obj->frontbuffer_bits);
5093
5094 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
5095 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
5096 obj->tiling_mode != I915_TILING_NONE)
5097 i915_gem_object_unpin_pages(obj);
5098
5099 if (WARN_ON(obj->pages_pin_count))
5100 obj->pages_pin_count = 0;
5101 if (discard_backing_storage(obj))
5102 obj->madv = I915_MADV_DONTNEED;
5103 i915_gem_object_put_pages(obj);
5104 i915_gem_object_free_mmap_offset(obj);
5105
5106 BUG_ON(obj->pages);
5107
5108 #ifndef __NetBSD__ /* XXX drm prime */
5109 if (obj->base.import_attach)
5110 drm_prime_gem_destroy(&obj->base, NULL);
5111 #endif
5112
5113 if (obj->ops->release)
5114 obj->ops->release(obj);
5115
5116 drm_gem_object_release(&obj->base);
5117 i915_gem_info_remove_obj(dev_priv, obj->base.size);
5118
5119 kfree(obj->bit_17);
5120 i915_gem_object_free(obj);
5121
5122 intel_runtime_pm_put(dev_priv);
5123 }
5124
5125 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
5126 struct i915_address_space *vm)
5127 {
5128 struct i915_vma *vma;
5129 list_for_each_entry(vma, &obj->vma_list, vma_link) {
5130 if (i915_is_ggtt(vma->vm) &&
5131 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5132 continue;
5133 if (vma->vm == vm)
5134 return vma;
5135 }
5136 return NULL;
5137 }
5138
5139 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
5140 const struct i915_ggtt_view *view)
5141 {
5142 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5143 struct i915_vma *vma;
5144
5145 if (WARN_ONCE(!view, "no view specified"))
5146 return ERR_PTR(-EINVAL);
5147
5148 list_for_each_entry(vma, &obj->vma_list, vma_link)
5149 if (vma->vm == ggtt &&
5150 i915_ggtt_view_equal(&vma->ggtt_view, view))
5151 return vma;
5152 return NULL;
5153 }
5154
5155 void i915_gem_vma_destroy(struct i915_vma *vma)
5156 {
5157 struct i915_address_space *vm = NULL;
5158 WARN_ON(vma->node.allocated);
5159
5160 /* Keep the vma as a placeholder in the execbuffer reservation lists */
5161 if (!list_empty(&vma->exec_list))
5162 return;
5163
5164 vm = vma->vm;
5165
5166 if (!i915_is_ggtt(vm))
5167 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
5168
5169 list_del(&vma->vma_link);
5170
5171 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
5172 }
5173
5174 static void
5175 i915_gem_stop_ringbuffers(struct drm_device *dev)
5176 {
5177 struct drm_i915_private *dev_priv = dev->dev_private;
5178 struct intel_engine_cs *ring;
5179 int i;
5180
5181 for_each_ring(ring, dev_priv, i)
5182 dev_priv->gt.stop_ring(ring);
5183 }
5184
5185 int
5186 i915_gem_suspend(struct drm_device *dev)
5187 {
5188 struct drm_i915_private *dev_priv = dev->dev_private;
5189 int ret = 0;
5190
5191 mutex_lock(&dev->struct_mutex);
5192 ret = i915_gpu_idle(dev);
5193 if (ret)
5194 goto err;
5195
5196 i915_gem_retire_requests(dev);
5197
5198 i915_gem_stop_ringbuffers(dev);
5199 mutex_unlock(&dev->struct_mutex);
5200
5201 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
5202 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
5203 flush_delayed_work(&dev_priv->mm.idle_work);
5204
5205 /* Assert that we sucessfully flushed all the work and
5206 * reset the GPU back to its idle, low power state.
5207 */
5208 WARN_ON(dev_priv->mm.busy);
5209
5210 return 0;
5211
5212 err:
5213 mutex_unlock(&dev->struct_mutex);
5214 return ret;
5215 }
5216
5217 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
5218 {
5219 struct intel_engine_cs *ring = req->ring;
5220 struct drm_device *dev = ring->dev;
5221 struct drm_i915_private *dev_priv = dev->dev_private;
5222 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
5223 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
5224 int i, ret;
5225
5226 if (!HAS_L3_DPF(dev) || !remap_info)
5227 return 0;
5228
5229 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
5230 if (ret)
5231 return ret;
5232
5233 /*
5234 * Note: We do not worry about the concurrent register cacheline hang
5235 * here because no other code should access these registers other than
5236 * at initialization time.
5237 */
5238 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
5239 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
5240 intel_ring_emit(ring, reg_base + i);
5241 intel_ring_emit(ring, remap_info[i/4]);
5242 }
5243
5244 intel_ring_advance(ring);
5245
5246 return ret;
5247 }
5248
5249 void i915_gem_init_swizzling(struct drm_device *dev)
5250 {
5251 struct drm_i915_private *dev_priv = dev->dev_private;
5252
5253 if (INTEL_INFO(dev)->gen < 5 ||
5254 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5255 return;
5256
5257 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5258 DISP_TILE_SURFACE_SWIZZLING);
5259
5260 if (IS_GEN5(dev))
5261 return;
5262
5263 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5264 if (IS_GEN6(dev))
5265 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5266 else if (IS_GEN7(dev))
5267 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5268 else if (IS_GEN8(dev))
5269 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5270 else
5271 BUG();
5272 }
5273
5274 static void init_unused_ring(struct drm_device *dev, u32 base)
5275 {
5276 struct drm_i915_private *dev_priv = dev->dev_private;
5277
5278 I915_WRITE(RING_CTL(base), 0);
5279 I915_WRITE(RING_HEAD(base), 0);
5280 I915_WRITE(RING_TAIL(base), 0);
5281 I915_WRITE(RING_START(base), 0);
5282 }
5283
5284 static void init_unused_rings(struct drm_device *dev)
5285 {
5286 if (IS_I830(dev)) {
5287 init_unused_ring(dev, PRB1_BASE);
5288 init_unused_ring(dev, SRB0_BASE);
5289 init_unused_ring(dev, SRB1_BASE);
5290 init_unused_ring(dev, SRB2_BASE);
5291 init_unused_ring(dev, SRB3_BASE);
5292 } else if (IS_GEN2(dev)) {
5293 init_unused_ring(dev, SRB0_BASE);
5294 init_unused_ring(dev, SRB1_BASE);
5295 } else if (IS_GEN3(dev)) {
5296 init_unused_ring(dev, PRB1_BASE);
5297 init_unused_ring(dev, PRB2_BASE);
5298 }
5299 }
5300
5301 int i915_gem_init_rings(struct drm_device *dev)
5302 {
5303 struct drm_i915_private *dev_priv = dev->dev_private;
5304 int ret;
5305
5306 ret = intel_init_render_ring_buffer(dev);
5307 if (ret)
5308 return ret;
5309
5310 if (HAS_BSD(dev)) {
5311 ret = intel_init_bsd_ring_buffer(dev);
5312 if (ret)
5313 goto cleanup_render_ring;
5314 }
5315
5316 if (HAS_BLT(dev)) {
5317 ret = intel_init_blt_ring_buffer(dev);
5318 if (ret)
5319 goto cleanup_bsd_ring;
5320 }
5321
5322 if (HAS_VEBOX(dev)) {
5323 ret = intel_init_vebox_ring_buffer(dev);
5324 if (ret)
5325 goto cleanup_blt_ring;
5326 }
5327
5328 if (HAS_BSD2(dev)) {
5329 ret = intel_init_bsd2_ring_buffer(dev);
5330 if (ret)
5331 goto cleanup_vebox_ring;
5332 }
5333
5334 return 0;
5335
5336 cleanup_vebox_ring:
5337 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5338 cleanup_blt_ring:
5339 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5340 cleanup_bsd_ring:
5341 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5342 cleanup_render_ring:
5343 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5344
5345 return ret;
5346 }
5347
5348 int
5349 i915_gem_init_hw(struct drm_device *dev)
5350 {
5351 struct drm_i915_private *dev_priv = dev->dev_private;
5352 struct intel_engine_cs *ring;
5353 int ret, i, j;
5354
5355 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5356 return -EIO;
5357
5358 /* Double layer security blanket, see i915_gem_init() */
5359 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5360
5361 if (dev_priv->ellc_size)
5362 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5363
5364 if (IS_HASWELL(dev))
5365 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5366 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5367
5368 if (HAS_PCH_NOP(dev)) {
5369 if (IS_IVYBRIDGE(dev)) {
5370 u32 temp = I915_READ(GEN7_MSG_CTL);
5371 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5372 I915_WRITE(GEN7_MSG_CTL, temp);
5373 } else if (INTEL_INFO(dev)->gen >= 7) {
5374 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5375 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5376 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5377 }
5378 }
5379
5380 i915_gem_init_swizzling(dev);
5381
5382 /*
5383 * At least 830 can leave some of the unused rings
5384 * "active" (ie. head != tail) after resume which
5385 * will prevent c3 entry. Makes sure all unused rings
5386 * are totally idle.
5387 */
5388 init_unused_rings(dev);
5389
5390 BUG_ON(!dev_priv->ring[RCS].default_context);
5391
5392 ret = i915_ppgtt_init_hw(dev);
5393 if (ret) {
5394 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5395 goto out;
5396 }
5397
5398 /* Need to do basic initialisation of all rings first: */
5399 for_each_ring(ring, dev_priv, i) {
5400 ret = ring->init_hw(ring);
5401 if (ret)
5402 goto out;
5403 }
5404
5405 /* We can't enable contexts until all firmware is loaded */
5406 if (HAS_GUC_UCODE(dev)) {
5407 ret = intel_guc_ucode_load(dev);
5408 if (ret) {
5409 /*
5410 * If we got an error and GuC submission is enabled, map
5411 * the error to -EIO so the GPU will be declared wedged.
5412 * OTOH, if we didn't intend to use the GuC anyway, just
5413 * discard the error and carry on.
5414 */
5415 DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
5416 i915.enable_guc_submission ? "" :
5417 " (ignored)");
5418 ret = i915.enable_guc_submission ? -EIO : 0;
5419 if (ret)
5420 goto out;
5421 }
5422 }
5423
5424 /*
5425 * Increment the next seqno by 0x100 so we have a visible break
5426 * on re-initialisation
5427 */
5428 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
5429 if (ret)
5430 goto out;
5431
5432 /* Now it is safe to go back round and do everything else: */
5433 for_each_ring(ring, dev_priv, i) {
5434 struct drm_i915_gem_request *req;
5435
5436 WARN_ON(!ring->default_context);
5437
5438 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
5439 if (ret) {
5440 i915_gem_cleanup_ringbuffer(dev);
5441 goto out;
5442 }
5443
5444 if (ring->id == RCS) {
5445 for (j = 0; j < NUM_L3_SLICES(dev); j++)
5446 i915_gem_l3_remap(req, j);
5447 }
5448
5449 ret = i915_ppgtt_init_ring(req);
5450 if (ret && ret != -EIO) {
5451 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5452 i915_gem_request_cancel(req);
5453 i915_gem_cleanup_ringbuffer(dev);
5454 goto out;
5455 }
5456
5457 ret = i915_gem_context_enable(req);
5458 if (ret && ret != -EIO) {
5459 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5460 i915_gem_request_cancel(req);
5461 i915_gem_cleanup_ringbuffer(dev);
5462 goto out;
5463 }
5464
5465 i915_add_request_no_flush(req);
5466 }
5467
5468 out:
5469 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5470 return ret;
5471 }
5472
5473 int i915_gem_init(struct drm_device *dev)
5474 {
5475 struct drm_i915_private *dev_priv = dev->dev_private;
5476 int ret;
5477
5478 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5479 i915.enable_execlists);
5480
5481 idr_preload(GFP_KERNEL); /* gem context */
5482 mutex_lock(&dev->struct_mutex);
5483
5484 if (IS_VALLEYVIEW(dev)) {
5485 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5486 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5487 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5488 VLV_GTLC_ALLOWWAKEACK), 10))
5489 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5490 }
5491
5492 if (!i915.enable_execlists) {
5493 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5494 dev_priv->gt.init_rings = i915_gem_init_rings;
5495 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5496 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5497 } else {
5498 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5499 dev_priv->gt.init_rings = intel_logical_rings_init;
5500 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5501 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5502 }
5503
5504 /* This is just a security blanket to placate dragons.
5505 * On some systems, we very sporadically observe that the first TLBs
5506 * used by the CS may be stale, despite us poking the TLB reset. If
5507 * we hold the forcewake during initialisation these problems
5508 * just magically go away.
5509 */
5510 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5511
5512 ret = i915_gem_init_userptr(dev);
5513 if (ret)
5514 goto out_unlock;
5515
5516 i915_gem_init_global_gtt(dev);
5517
5518 ret = i915_gem_context_init(dev);
5519 if (ret)
5520 goto out_unlock;
5521
5522 ret = dev_priv->gt.init_rings(dev);
5523 if (ret)
5524 goto out_unlock;
5525
5526 ret = i915_gem_init_hw(dev);
5527 if (ret == -EIO) {
5528 /* Allow ring initialisation to fail by marking the GPU as
5529 * wedged. But we only want to do this where the GPU is angry,
5530 * for all other failure, such as an allocation failure, bail.
5531 */
5532 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5533 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5534 ret = 0;
5535 }
5536
5537 out_unlock:
5538 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5539 mutex_unlock(&dev->struct_mutex);
5540 idr_preload_end();
5541
5542 return ret;
5543 }
5544
5545 void
5546 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5547 {
5548 struct drm_i915_private *dev_priv = dev->dev_private;
5549 struct intel_engine_cs *ring;
5550 int i;
5551
5552 for_each_ring(ring, dev_priv, i)
5553 dev_priv->gt.cleanup_ring(ring);
5554
5555 if (i915.enable_execlists)
5556 /*
5557 * Neither the BIOS, ourselves or any other kernel
5558 * expects the system to be in execlists mode on startup,
5559 * so we need to reset the GPU back to legacy mode.
5560 */
5561 intel_gpu_reset(dev);
5562 }
5563
5564 static void
5565 init_ring_lists(struct intel_engine_cs *ring)
5566 {
5567 INIT_LIST_HEAD(&ring->active_list);
5568 INIT_LIST_HEAD(&ring->request_list);
5569 }
5570
5571 void
5572 i915_gem_load(struct drm_device *dev)
5573 {
5574 struct drm_i915_private *dev_priv = dev->dev_private;
5575 int i;
5576
5577 dev_priv->objects =
5578 kmem_cache_create("i915_gem_object",
5579 sizeof(struct drm_i915_gem_object), 0,
5580 SLAB_HWCACHE_ALIGN,
5581 NULL);
5582 dev_priv->vmas =
5583 kmem_cache_create("i915_gem_vma",
5584 sizeof(struct i915_vma), 0,
5585 SLAB_HWCACHE_ALIGN,
5586 NULL);
5587 dev_priv->requests =
5588 kmem_cache_create("i915_gem_request",
5589 sizeof(struct drm_i915_gem_request), 0,
5590 SLAB_HWCACHE_ALIGN,
5591 NULL);
5592
5593 INIT_LIST_HEAD(&dev_priv->vm_list);
5594 INIT_LIST_HEAD(&dev_priv->context_list);
5595 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5596 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5597 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5598 for (i = 0; i < I915_NUM_RINGS; i++)
5599 init_ring_lists(&dev_priv->ring[i]);
5600 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5601 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5602 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5603 i915_gem_retire_work_handler);
5604 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5605 i915_gem_idle_work_handler);
5606 #ifdef __NetBSD__
5607 spin_lock_init(&dev_priv->gpu_error.reset_lock);
5608 DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
5609 #else
5610 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5611 #endif
5612
5613 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5614
5615 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5616 dev_priv->num_fence_regs = 32;
5617 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5618 dev_priv->num_fence_regs = 16;
5619 else
5620 dev_priv->num_fence_regs = 8;
5621
5622 if (intel_vgpu_active(dev))
5623 dev_priv->num_fence_regs =
5624 I915_READ(vgtif_reg(avail_rs.fence_num));
5625
5626 /*
5627 * Set initial sequence number for requests.
5628 * Using this number allows the wraparound to happen early,
5629 * catching any obvious problems.
5630 */
5631 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5632 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5633
5634 /* Initialize fence registers to zero */
5635 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5636 i915_gem_restore_fences(dev);
5637
5638 i915_gem_detect_bit_6_swizzle(dev);
5639 #ifdef __NetBSD__
5640 DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
5641 spin_lock_init(&dev_priv->pending_flip_lock);
5642 #else
5643 init_waitqueue_head(&dev_priv->pending_flip_queue);
5644 #endif
5645
5646 dev_priv->mm.interruptible = true;
5647
5648 i915_gem_shrinker_init(dev_priv);
5649 #ifdef __NetBSD__
5650 linux_mutex_init(&dev_priv->fb_tracking.lock);
5651 #else
5652 mutex_init(&dev_priv->fb_tracking.lock);
5653 #endif
5654 }
5655
5656 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5657 {
5658 struct drm_i915_file_private *file_priv = file->driver_priv;
5659
5660 /* Clean up our request list when the client is going away, so that
5661 * later retire_requests won't dereference our soon-to-be-gone
5662 * file_priv.
5663 */
5664 spin_lock(&file_priv->mm.lock);
5665 while (!list_empty(&file_priv->mm.request_list)) {
5666 struct drm_i915_gem_request *request;
5667
5668 request = list_first_entry(&file_priv->mm.request_list,
5669 struct drm_i915_gem_request,
5670 client_list);
5671 list_del(&request->client_list);
5672 request->file_priv = NULL;
5673 }
5674 spin_unlock(&file_priv->mm.lock);
5675
5676 if (!list_empty(&file_priv->rps.link)) {
5677 spin_lock(&to_i915(dev)->rps.client_lock);
5678 list_del(&file_priv->rps.link);
5679 spin_unlock(&to_i915(dev)->rps.client_lock);
5680 }
5681 }
5682
5683 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5684 {
5685 struct drm_i915_file_private *file_priv;
5686 int ret;
5687
5688 DRM_DEBUG_DRIVER("\n");
5689
5690 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5691 if (!file_priv)
5692 return -ENOMEM;
5693
5694 file->driver_priv = file_priv;
5695 file_priv->dev_priv = dev->dev_private;
5696 file_priv->file = file;
5697 INIT_LIST_HEAD(&file_priv->rps.link);
5698
5699 spin_lock_init(&file_priv->mm.lock);
5700 INIT_LIST_HEAD(&file_priv->mm.request_list);
5701
5702 ret = i915_gem_context_open(dev, file);
5703 if (ret)
5704 kfree(file_priv);
5705
5706 return ret;
5707 }
5708
5709 /**
5710 * i915_gem_track_fb - update frontbuffer tracking
5711 * @old: current GEM buffer for the frontbuffer slots
5712 * @new: new GEM buffer for the frontbuffer slots
5713 * @frontbuffer_bits: bitmask of frontbuffer slots
5714 *
5715 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5716 * from @old and setting them in @new. Both @old and @new can be NULL.
5717 */
5718 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5719 struct drm_i915_gem_object *new,
5720 unsigned frontbuffer_bits)
5721 {
5722 if (old) {
5723 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5724 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5725 old->frontbuffer_bits &= ~frontbuffer_bits;
5726 }
5727
5728 if (new) {
5729 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5730 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5731 new->frontbuffer_bits |= frontbuffer_bits;
5732 }
5733 }
5734
5735 /* All the new VM stuff */
5736 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5737 struct i915_address_space *vm)
5738 {
5739 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5740 struct i915_vma *vma;
5741
5742 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5743
5744 list_for_each_entry(vma, &o->vma_list, vma_link) {
5745 if (i915_is_ggtt(vma->vm) &&
5746 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5747 continue;
5748 if (vma->vm == vm)
5749 return vma->node.start;
5750 }
5751
5752 WARN(1, "%s vma for this object not found.\n",
5753 i915_is_ggtt(vm) ? "global" : "ppgtt");
5754 return -1;
5755 }
5756
5757 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5758 const struct i915_ggtt_view *view)
5759 {
5760 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5761 struct i915_vma *vma;
5762
5763 list_for_each_entry(vma, &o->vma_list, vma_link)
5764 if (vma->vm == ggtt &&
5765 i915_ggtt_view_equal(&vma->ggtt_view, view))
5766 return vma->node.start;
5767
5768 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5769 return -1;
5770 }
5771
5772 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5773 struct i915_address_space *vm)
5774 {
5775 struct i915_vma *vma;
5776
5777 list_for_each_entry(vma, &o->vma_list, vma_link) {
5778 if (i915_is_ggtt(vma->vm) &&
5779 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5780 continue;
5781 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5782 return true;
5783 }
5784
5785 return false;
5786 }
5787
5788 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5789 const struct i915_ggtt_view *view)
5790 {
5791 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5792 struct i915_vma *vma;
5793
5794 list_for_each_entry(vma, &o->vma_list, vma_link)
5795 if (vma->vm == ggtt &&
5796 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5797 drm_mm_node_allocated(&vma->node))
5798 return true;
5799
5800 return false;
5801 }
5802
5803 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5804 {
5805 struct i915_vma *vma;
5806
5807 list_for_each_entry(vma, &o->vma_list, vma_link)
5808 if (drm_mm_node_allocated(&vma->node))
5809 return true;
5810
5811 return false;
5812 }
5813
5814 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5815 struct i915_address_space *vm)
5816 {
5817 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5818 struct i915_vma *vma;
5819
5820 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5821
5822 BUG_ON(list_empty(&o->vma_list));
5823
5824 list_for_each_entry(vma, &o->vma_list, vma_link) {
5825 if (i915_is_ggtt(vma->vm) &&
5826 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5827 continue;
5828 if (vma->vm == vm)
5829 return vma->node.size;
5830 }
5831 return 0;
5832 }
5833
5834 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5835 {
5836 struct i915_vma *vma;
5837 list_for_each_entry(vma, &obj->vma_list, vma_link)
5838 if (vma->pin_count > 0)
5839 return true;
5840
5841 return false;
5842 }
5843
5844 /* Allocate a new GEM object and fill it with the supplied data */
5845 struct drm_i915_gem_object *
5846 i915_gem_object_create_from_data(struct drm_device *dev,
5847 const void *data, size_t size)
5848 {
5849 struct drm_i915_gem_object *obj;
5850 #ifdef __NetBSD__
5851 struct iovec iov = { .iov_base = __UNCONST(data), .iov_len = size };
5852 struct uio uio = {
5853 .uio_iov = &iov,
5854 .uio_iovcnt = 1,
5855 .uio_offset = 0,
5856 .uio_resid = size,
5857 .uio_rw = UIO_WRITE,
5858 };
5859 #else
5860 struct sg_table *sg;
5861 #endif
5862 size_t bytes;
5863 int ret;
5864
5865 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5866 if (IS_ERR_OR_NULL(obj))
5867 return obj;
5868
5869 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5870 if (ret)
5871 goto fail;
5872
5873 ret = i915_gem_object_get_pages(obj);
5874 if (ret)
5875 goto fail;
5876
5877 i915_gem_object_pin_pages(obj);
5878 #ifdef __NetBSD__
5879 UIO_SETUP_SYSSPACE(&uio);
5880 /* XXX errno NetBSD->Linux */
5881 ret = -ubc_uiomove(obj->base.filp, &uio, size, UVM_ADV_NORMAL,
5882 UBC_WRITE);
5883 if (ret)
5884 goto fail;
5885 bytes = size - uio.uio_resid;
5886 #else
5887 sg = obj->pages;
5888 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5889 #endif
5890 i915_gem_object_unpin_pages(obj);
5891
5892 if (WARN_ON(bytes != size)) {
5893 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5894 ret = -EFAULT;
5895 goto fail;
5896 }
5897
5898 return obj;
5899
5900 fail:
5901 drm_gem_object_unreference(&obj->base);
5902 return ERR_PTR(ret);
5903 }
5904