Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.54.6.1
      1 /*	$NetBSD: i915_gem.c,v 1.54.6.1 2020/01/17 21:47:32 ad Exp $	*/
      2 
      3 /*
      4  * Copyright  2008-2015 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  * Authors:
     26  *    Eric Anholt <eric (at) anholt.net>
     27  *
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: i915_gem.c,v 1.54.6.1 2020/01/17 21:47:32 ad Exp $");
     32 
     33 #ifdef __NetBSD__
     34 #if 0				/* XXX uvmhist option?  */
     35 #include "opt_uvmhist.h"
     36 #endif
     37 
     38 #include <sys/types.h>
     39 #include <sys/param.h>
     40 
     41 #include <uvm/uvm.h>
     42 #include <uvm/uvm_extern.h>
     43 #include <uvm/uvm_fault.h>
     44 #include <uvm/uvm_page.h>
     45 #include <uvm/uvm_pmap.h>
     46 #include <uvm/uvm_prot.h>
     47 
     48 #include <drm/bus_dma_hacks.h>
     49 #endif
     50 
     51 #include <drm/drmP.h>
     52 #include <drm/drm_vma_manager.h>
     53 #include <drm/i915_drm.h>
     54 #include "i915_drv.h"
     55 #include "i915_vgpu.h"
     56 #include "i915_trace.h"
     57 #include "intel_drv.h"
     58 #include <linux/shmem_fs.h>
     59 #include <linux/slab.h>
     60 #include <linux/swap.h>
     61 #include <linux/pci.h>
     62 #include <linux/dma-buf.h>
     63 #include <linux/errno.h>
     64 #include <linux/time.h>
     65 #include <linux/err.h>
     66 #include <linux/bitops.h>
     67 #include <linux/printk.h>
     68 #include <asm/param.h>
     69 #include <asm/page.h>
     70 #include <asm/cpufeature.h>
     71 
     72 #define RQ_BUG_ON(expr)
     73 
     74 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
     75 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
     76 static void
     77 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
     78 static void
     79 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
     80 
     81 static bool cpu_cache_is_coherent(struct drm_device *dev,
     82 				  enum i915_cache_level level)
     83 {
     84 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
     85 }
     86 
     87 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
     88 {
     89 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
     90 		return true;
     91 
     92 	return obj->pin_display;
     93 }
     94 
     95 /* some bookkeeping */
     96 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
     97 				  size_t size)
     98 {
     99 	spin_lock(&dev_priv->mm.object_stat_lock);
    100 	dev_priv->mm.object_count++;
    101 	dev_priv->mm.object_memory += size;
    102 	spin_unlock(&dev_priv->mm.object_stat_lock);
    103 }
    104 
    105 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
    106 				     size_t size)
    107 {
    108 	spin_lock(&dev_priv->mm.object_stat_lock);
    109 	dev_priv->mm.object_count--;
    110 	dev_priv->mm.object_memory -= size;
    111 	spin_unlock(&dev_priv->mm.object_stat_lock);
    112 }
    113 
    114 static int
    115 i915_gem_wait_for_error(struct i915_gpu_error *error)
    116 {
    117 	int ret;
    118 
    119 #define EXIT_COND (!i915_reset_in_progress(error) || \
    120 		   i915_terminally_wedged(error))
    121 	if (EXIT_COND)
    122 		return 0;
    123 
    124 	/*
    125 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
    126 	 * userspace. If it takes that long something really bad is going on and
    127 	 * we should simply try to bail out and fail as gracefully as possible.
    128 	 */
    129 #ifdef __NetBSD__
    130 	spin_lock(&error->reset_lock);
    131 	DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
    132 	    10*HZ, EXIT_COND);
    133 	spin_unlock(&error->reset_lock);
    134 #else
    135 	ret = wait_event_interruptible_timeout(error->reset_queue,
    136 					       EXIT_COND,
    137 					       10*HZ);
    138 #endif
    139 	if (ret == 0) {
    140 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
    141 		return -EIO;
    142 	} else if (ret < 0) {
    143 		return ret;
    144 	}
    145 #undef EXIT_COND
    146 
    147 	return 0;
    148 }
    149 
    150 int i915_mutex_lock_interruptible(struct drm_device *dev)
    151 {
    152 	struct drm_i915_private *dev_priv = dev->dev_private;
    153 	int ret;
    154 
    155 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
    156 	if (ret)
    157 		return ret;
    158 
    159 	ret = mutex_lock_interruptible(&dev->struct_mutex);
    160 	if (ret)
    161 		return ret;
    162 
    163 	WARN_ON(i915_verify_lists(dev));
    164 	return 0;
    165 }
    166 
    167 int
    168 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    169 			    struct drm_file *file)
    170 {
    171 	struct drm_i915_private *dev_priv = dev->dev_private;
    172 	struct drm_i915_gem_get_aperture *args = data;
    173 	struct i915_gtt *ggtt = &dev_priv->gtt;
    174 	struct i915_vma *vma;
    175 	size_t pinned;
    176 
    177 	pinned = 0;
    178 	mutex_lock(&dev->struct_mutex);
    179 	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
    180 		if (vma->pin_count)
    181 			pinned += vma->node.size;
    182 	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
    183 		if (vma->pin_count)
    184 			pinned += vma->node.size;
    185 	mutex_unlock(&dev->struct_mutex);
    186 
    187 	args->aper_size = dev_priv->gtt.base.total;
    188 	args->aper_available_size = args->aper_size - pinned;
    189 
    190 	return 0;
    191 }
    192 
    193 static int
    194 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
    195 {
    196 #ifndef __NetBSD__
    197 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    198 #endif
    199 	char *vaddr = obj->phys_handle->vaddr;
    200 #ifndef __NetBSD__
    201 	struct sg_table *st;
    202 	struct scatterlist *sg;
    203 #endif
    204 	int i;
    205 
    206 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
    207 		return -EINVAL;
    208 
    209 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    210 		struct page *page;
    211 		char *src;
    212 
    213 #ifdef __NetBSD__
    214 		struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
    215 		int ret;
    216 		/* XXX errno NetBSD->Linux */
    217 		ret = -uvm_obj_wirepages(obj->base.filp, i*PAGE_SIZE,
    218 		    (i + 1)*PAGE_SIZE, &pages);
    219 		if (ret)
    220 			return ret;
    221 		page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
    222 #else
    223 		page = shmem_read_mapping_page(mapping, i);
    224 		if (IS_ERR(page))
    225 			return PTR_ERR(page);
    226 #endif
    227 
    228 		src = kmap_atomic(page);
    229 		memcpy(vaddr, src, PAGE_SIZE);
    230 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
    231 		kunmap_atomic(src);
    232 
    233 #ifdef __NetBSD__
    234 		uvm_obj_unwirepages(obj->base.filp, i*PAGE_SIZE,
    235 		    (i + 1)*PAGE_SIZE);
    236 #else
    237 		page_cache_release(page);
    238 #endif
    239 		vaddr += PAGE_SIZE;
    240 	}
    241 
    242 	i915_gem_chipset_flush(obj->base.dev);
    243 
    244 #ifdef __NetBSD__
    245 	obj->pages = obj->phys_handle->dmah_map;
    246 #else
    247 	st = kmalloc(sizeof(*st), GFP_KERNEL);
    248 	if (st == NULL)
    249 		return -ENOMEM;
    250 
    251 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
    252 		kfree(st);
    253 		return -ENOMEM;
    254 	}
    255 
    256 	sg = st->sgl;
    257 	sg->offset = 0;
    258 	sg->length = obj->base.size;
    259 
    260 	sg_dma_address(sg) = obj->phys_handle->busaddr;
    261 	sg_dma_len(sg) = obj->base.size;
    262 
    263 	obj->pages = st;
    264 #endif
    265 	return 0;
    266 }
    267 
    268 static void
    269 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
    270 {
    271 	int ret;
    272 
    273 	BUG_ON(obj->madv == __I915_MADV_PURGED);
    274 
    275 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
    276 	if (ret) {
    277 		/* In the event of a disaster, abandon all caches and
    278 		 * hope for the best.
    279 		 */
    280 		WARN_ON(ret != -EIO);
    281 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
    282 	}
    283 
    284 	if (obj->madv == I915_MADV_DONTNEED)
    285 		obj->dirty = 0;
    286 
    287 	if (obj->dirty) {
    288 #ifndef __NetBSD__
    289 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    290 #endif
    291 		const char *vaddr = obj->phys_handle->vaddr;
    292 		int i;
    293 
    294 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    295 			struct page *page;
    296 			char *dst;
    297 
    298 #ifdef __NetBSD__
    299 			struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
    300 			/* XXX errno NetBSD->Linux */
    301 			ret = -uvm_obj_wirepages(obj->base.filp,
    302 			    i*PAGE_SIZE, (i + 1)*PAGE_SIZE, &pages);
    303 			if (ret)
    304 				continue;
    305 			page = container_of(TAILQ_FIRST(&pages), struct page,
    306 			    p_vmp);
    307 #endif
    308 
    309 			dst = kmap_atomic(page);
    310 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
    311 			memcpy(dst, vaddr, PAGE_SIZE);
    312 			kunmap_atomic(dst);
    313 
    314 			set_page_dirty(page);
    315 #ifdef __NetBSD__
    316 			/* XXX mark page accessed */
    317 			uvm_obj_unwirepages(obj->base.filp, i*PAGE_SIZE,
    318 			    (i+1)*PAGE_SIZE);
    319 #else
    320 			if (obj->madv == I915_MADV_WILLNEED)
    321 				mark_page_accessed(page);
    322 			page_cache_release(page);
    323 #endif
    324 			vaddr += PAGE_SIZE;
    325 		}
    326 		obj->dirty = 0;
    327 	}
    328 
    329 #ifdef __NetBSD__
    330 	obj->pages = NULL;
    331 #else
    332 	sg_free_table(obj->pages);
    333 	kfree(obj->pages);
    334 #endif
    335 }
    336 
    337 static void
    338 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
    339 {
    340 	drm_pci_free(obj->base.dev, obj->phys_handle);
    341 }
    342 
    343 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
    344 	.get_pages = i915_gem_object_get_pages_phys,
    345 	.put_pages = i915_gem_object_put_pages_phys,
    346 	.release = i915_gem_object_release_phys,
    347 };
    348 
    349 static int
    350 drop_pages(struct drm_i915_gem_object *obj)
    351 {
    352 	struct i915_vma *vma, *next;
    353 	int ret;
    354 
    355 	drm_gem_object_reference(&obj->base);
    356 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
    357 		if (i915_vma_unbind(vma))
    358 			break;
    359 
    360 	ret = i915_gem_object_put_pages(obj);
    361 	drm_gem_object_unreference(&obj->base);
    362 
    363 	return ret;
    364 }
    365 
    366 int
    367 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
    368 			    int align)
    369 {
    370 	drm_dma_handle_t *phys;
    371 	int ret;
    372 
    373 	if (obj->phys_handle) {
    374 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
    375 			return -EBUSY;
    376 
    377 		return 0;
    378 	}
    379 
    380 	if (obj->madv != I915_MADV_WILLNEED)
    381 		return -EFAULT;
    382 
    383 	if (obj->base.filp == NULL)
    384 		return -EINVAL;
    385 
    386 	ret = drop_pages(obj);
    387 	if (ret)
    388 		return ret;
    389 
    390 	/* create a new object */
    391 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
    392 	if (!phys)
    393 		return -ENOMEM;
    394 
    395 	obj->phys_handle = phys;
    396 	obj->ops = &i915_gem_phys_ops;
    397 
    398 	return i915_gem_object_get_pages(obj);
    399 }
    400 
    401 static int
    402 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
    403 		     struct drm_i915_gem_pwrite *args,
    404 		     struct drm_file *file_priv)
    405 {
    406 	struct drm_device *dev = obj->base.dev;
    407 	void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
    408 	char __user *user_data = to_user_ptr(args->data_ptr);
    409 	int ret = 0;
    410 
    411 	/* We manually control the domain here and pretend that it
    412 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
    413 	 */
    414 	ret = i915_gem_object_wait_rendering(obj, false);
    415 	if (ret)
    416 		return ret;
    417 
    418 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
    419 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
    420 		unsigned long unwritten;
    421 
    422 		/* The physical object once assigned is fixed for the lifetime
    423 		 * of the obj, so we can safely drop the lock and continue
    424 		 * to access vaddr.
    425 		 */
    426 		mutex_unlock(&dev->struct_mutex);
    427 		unwritten = copy_from_user(vaddr, user_data, args->size);
    428 		mutex_lock(&dev->struct_mutex);
    429 		if (unwritten) {
    430 			ret = -EFAULT;
    431 			goto out;
    432 		}
    433 	}
    434 
    435 	drm_clflush_virt_range(vaddr, args->size);
    436 	i915_gem_chipset_flush(dev);
    437 
    438 out:
    439 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
    440 	return ret;
    441 }
    442 
    443 void *i915_gem_object_alloc(struct drm_device *dev)
    444 {
    445 	struct drm_i915_private *dev_priv = dev->dev_private;
    446 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
    447 }
    448 
    449 void i915_gem_object_free(struct drm_i915_gem_object *obj)
    450 {
    451 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
    452 	kmem_cache_free(dev_priv->objects, obj);
    453 }
    454 
    455 static int
    456 i915_gem_create(struct drm_file *file,
    457 		struct drm_device *dev,
    458 		uint64_t size,
    459 		uint32_t *handle_p)
    460 {
    461 	struct drm_i915_gem_object *obj;
    462 	int ret;
    463 	u32 handle;
    464 
    465 	size = roundup(size, PAGE_SIZE);
    466 	if (size == 0)
    467 		return -EINVAL;
    468 
    469 	/* Allocate the new object */
    470 	obj = i915_gem_alloc_object(dev, size);
    471 	if (obj == NULL)
    472 		return -ENOMEM;
    473 
    474 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    475 	/* drop reference from allocate - handle holds it now */
    476 	drm_gem_object_unreference_unlocked(&obj->base);
    477 	if (ret)
    478 		return ret;
    479 
    480 	*handle_p = handle;
    481 	return 0;
    482 }
    483 
    484 int
    485 i915_gem_dumb_create(struct drm_file *file,
    486 		     struct drm_device *dev,
    487 		     struct drm_mode_create_dumb *args)
    488 {
    489 	/* have to work out size/pitch and return them */
    490 #ifdef __NetBSD__		/* ALIGN means something else.  */
    491 	args->pitch = round_up(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    492 #else
    493 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    494 #endif
    495 	args->size = args->pitch * args->height;
    496 	return i915_gem_create(file, dev,
    497 			       args->size, &args->handle);
    498 }
    499 
    500 /**
    501  * Creates a new mm object and returns a handle to it.
    502  */
    503 int
    504 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    505 		      struct drm_file *file)
    506 {
    507 	struct drm_i915_gem_create *args = data;
    508 
    509 	return i915_gem_create(file, dev,
    510 			       args->size, &args->handle);
    511 }
    512 
    513 static inline int
    514 __copy_to_user_swizzled(char __user *cpu_vaddr,
    515 			const char *gpu_vaddr, int gpu_offset,
    516 			int length)
    517 {
    518 	int ret, cpu_offset = 0;
    519 
    520 	while (length > 0) {
    521 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    522 		int cacheline_end = round_up(gpu_offset + 1, 64);
    523 #else
    524 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    525 #endif
    526 		int this_length = min(cacheline_end - gpu_offset, length);
    527 		int swizzled_gpu_offset = gpu_offset ^ 64;
    528 
    529 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
    530 				     gpu_vaddr + swizzled_gpu_offset,
    531 				     this_length);
    532 		if (ret)
    533 			return ret + length;
    534 
    535 		cpu_offset += this_length;
    536 		gpu_offset += this_length;
    537 		length -= this_length;
    538 	}
    539 
    540 	return 0;
    541 }
    542 
    543 static inline int
    544 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
    545 			  const char __user *cpu_vaddr,
    546 			  int length)
    547 {
    548 	int ret, cpu_offset = 0;
    549 
    550 	while (length > 0) {
    551 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    552 		int cacheline_end = round_up(gpu_offset + 1, 64);
    553 #else
    554 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    555 #endif
    556 		int this_length = min(cacheline_end - gpu_offset, length);
    557 		int swizzled_gpu_offset = gpu_offset ^ 64;
    558 
    559 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
    560 				       cpu_vaddr + cpu_offset,
    561 				       this_length);
    562 		if (ret)
    563 			return ret + length;
    564 
    565 		cpu_offset += this_length;
    566 		gpu_offset += this_length;
    567 		length -= this_length;
    568 	}
    569 
    570 	return 0;
    571 }
    572 
    573 /*
    574  * Pins the specified object's pages and synchronizes the object with
    575  * GPU accesses. Sets needs_clflush to non-zero if the caller should
    576  * flush the object from the CPU cache.
    577  */
    578 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
    579 				    int *needs_clflush)
    580 {
    581 	int ret;
    582 
    583 	*needs_clflush = 0;
    584 
    585 	if (!obj->base.filp)
    586 		return -EINVAL;
    587 
    588 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
    589 		/* If we're not in the cpu read domain, set ourself into the gtt
    590 		 * read domain and manually flush cachelines (if required). This
    591 		 * optimizes for the case when the gpu will dirty the data
    592 		 * anyway again before the next pread happens. */
    593 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
    594 							obj->cache_level);
    595 		ret = i915_gem_object_wait_rendering(obj, true);
    596 		if (ret)
    597 			return ret;
    598 	}
    599 
    600 	ret = i915_gem_object_get_pages(obj);
    601 	if (ret)
    602 		return ret;
    603 
    604 	i915_gem_object_pin_pages(obj);
    605 
    606 	return ret;
    607 }
    608 
    609 /* Per-page copy function for the shmem pread fastpath.
    610  * Flushes invalid cachelines before reading the target if
    611  * needs_clflush is set. */
    612 static int
    613 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
    614 		 char __user *user_data,
    615 		 bool page_do_bit17_swizzling, bool needs_clflush)
    616 {
    617 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    618 	return -EFAULT;
    619 #else
    620 	char *vaddr;
    621 	int ret;
    622 
    623 	if (unlikely(page_do_bit17_swizzling))
    624 		return -EINVAL;
    625 
    626 	vaddr = kmap_atomic(page);
    627 	if (needs_clflush)
    628 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    629 				       page_length);
    630 	ret = __copy_to_user_inatomic(user_data,
    631 				      vaddr + shmem_page_offset,
    632 				      page_length);
    633 	kunmap_atomic(vaddr);
    634 
    635 	return ret ? -EFAULT : 0;
    636 #endif
    637 }
    638 
    639 static void
    640 shmem_clflush_swizzled_range(char *addr, unsigned long length,
    641 			     bool swizzled)
    642 {
    643 	if (unlikely(swizzled)) {
    644 		unsigned long start = (unsigned long) addr;
    645 		unsigned long end = (unsigned long) addr + length;
    646 
    647 		/* For swizzling simply ensure that we always flush both
    648 		 * channels. Lame, but simple and it works. Swizzled
    649 		 * pwrite/pread is far from a hotpath - current userspace
    650 		 * doesn't use it at all. */
    651 		start = round_down(start, 128);
    652 		end = round_up(end, 128);
    653 
    654 		drm_clflush_virt_range((void *)start, end - start);
    655 	} else {
    656 		drm_clflush_virt_range(addr, length);
    657 	}
    658 
    659 }
    660 
    661 /* Only difference to the fast-path function is that this can handle bit17
    662  * and uses non-atomic copy and kmap functions. */
    663 static int
    664 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
    665 		 char __user *user_data,
    666 		 bool page_do_bit17_swizzling, bool needs_clflush)
    667 {
    668 	char *vaddr;
    669 	int ret;
    670 
    671 	vaddr = kmap(page);
    672 	if (needs_clflush)
    673 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    674 					     page_length,
    675 					     page_do_bit17_swizzling);
    676 
    677 	if (page_do_bit17_swizzling)
    678 		ret = __copy_to_user_swizzled(user_data,
    679 					      vaddr, shmem_page_offset,
    680 					      page_length);
    681 	else
    682 		ret = __copy_to_user(user_data,
    683 				     vaddr + shmem_page_offset,
    684 				     page_length);
    685 	kunmap(page);
    686 
    687 	return ret ? - EFAULT : 0;
    688 }
    689 
    690 static int
    691 i915_gem_shmem_pread(struct drm_device *dev,
    692 		     struct drm_i915_gem_object *obj,
    693 		     struct drm_i915_gem_pread *args,
    694 		     struct drm_file *file)
    695 {
    696 	char __user *user_data;
    697 	ssize_t remain;
    698 	loff_t offset;
    699 	int shmem_page_offset, page_length, ret = 0;
    700 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    701 #ifndef __NetBSD__		/* XXX */
    702 	int prefaulted = 0;
    703 #endif
    704 	int needs_clflush = 0;
    705 #ifndef __NetBSD__
    706 	struct sg_page_iter sg_iter;
    707 #endif
    708 
    709 	user_data = to_user_ptr(args->data_ptr);
    710 	remain = args->size;
    711 
    712 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    713 
    714 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
    715 	if (ret)
    716 		return ret;
    717 
    718 	offset = args->offset;
    719 
    720 #ifdef __NetBSD__
    721 	while (0 < remain)
    722 #else
    723 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
    724 			 offset >> PAGE_SHIFT)
    725 #endif
    726 	{
    727 #ifdef __NetBSD__
    728 		struct page *const page = i915_gem_object_get_page(obj,
    729 		    atop(offset));
    730 #else
    731 		struct page *page = sg_page_iter_page(&sg_iter);
    732 
    733 		if (remain <= 0)
    734 			break;
    735 #endif
    736 
    737 		/* Operation in this page
    738 		 *
    739 		 * shmem_page_offset = offset within page in shmem file
    740 		 * page_length = bytes to copy for this page
    741 		 */
    742 		shmem_page_offset = offset_in_page(offset);
    743 		page_length = remain;
    744 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    745 			page_length = PAGE_SIZE - shmem_page_offset;
    746 
    747 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    748 			(page_to_phys(page) & (1 << 17)) != 0;
    749 
    750 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    751 				       user_data, page_do_bit17_swizzling,
    752 				       needs_clflush);
    753 		if (ret == 0)
    754 			goto next_page;
    755 
    756 		mutex_unlock(&dev->struct_mutex);
    757 #ifndef __NetBSD__
    758 		if (likely(!i915.prefault_disable) && !prefaulted) {
    759 			ret = fault_in_multipages_writeable(user_data, remain);
    760 			/* Userspace is tricking us, but we've already clobbered
    761 			 * its pages with the prefault and promised to write the
    762 			 * data up to the first fault. Hence ignore any errors
    763 			 * and just continue. */
    764 			(void)ret;
    765 			prefaulted = 1;
    766 		}
    767 #endif
    768 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    769 				       user_data, page_do_bit17_swizzling,
    770 				       needs_clflush);
    771 
    772 		mutex_lock(&dev->struct_mutex);
    773 
    774 		if (ret)
    775 			goto out;
    776 
    777 next_page:
    778 		remain -= page_length;
    779 		user_data += page_length;
    780 		offset += page_length;
    781 	}
    782 
    783 out:
    784 	i915_gem_object_unpin_pages(obj);
    785 
    786 	return ret;
    787 }
    788 
    789 /**
    790  * Reads data from the object referenced by handle.
    791  *
    792  * On error, the contents of *data are undefined.
    793  */
    794 int
    795 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    796 		     struct drm_file *file)
    797 {
    798 	struct drm_i915_gem_pread *args = data;
    799 	struct drm_gem_object *gobj;
    800 	struct drm_i915_gem_object *obj;
    801 	int ret = 0;
    802 
    803 	if (args->size == 0)
    804 		return 0;
    805 
    806 	if (!access_ok(VERIFY_WRITE,
    807 		       to_user_ptr(args->data_ptr),
    808 		       args->size))
    809 		return -EFAULT;
    810 
    811 	ret = i915_mutex_lock_interruptible(dev);
    812 	if (ret)
    813 		return ret;
    814 
    815 	gobj = drm_gem_object_lookup(dev, file, args->handle);
    816 	if (gobj == NULL) {
    817 		ret = -ENOENT;
    818 		goto unlock;
    819 	}
    820 	obj = to_intel_bo(gobj);
    821 
    822 	/* Bounds check source.  */
    823 	if (args->offset > obj->base.size ||
    824 	    args->size > obj->base.size - args->offset) {
    825 		ret = -EINVAL;
    826 		goto out;
    827 	}
    828 
    829 	/* prime objects have no backing filp to GEM pread/pwrite
    830 	 * pages from.
    831 	 */
    832 	if (!obj->base.filp) {
    833 		ret = -EINVAL;
    834 		goto out;
    835 	}
    836 
    837 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    838 
    839 	ret = i915_gem_shmem_pread(dev, obj, args, file);
    840 
    841 out:
    842 	drm_gem_object_unreference(&obj->base);
    843 unlock:
    844 	mutex_unlock(&dev->struct_mutex);
    845 	return ret;
    846 }
    847 
    848 /* This is the fast write path which cannot handle
    849  * page faults in the source data
    850  */
    851 
    852 static inline int
    853 fast_user_write(struct io_mapping *mapping,
    854 		loff_t page_base, int page_offset,
    855 		char __user *user_data,
    856 		int length)
    857 {
    858 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    859 	return -EFAULT;
    860 #else
    861 	void __iomem *vaddr_atomic;
    862 	void *vaddr;
    863 	unsigned long unwritten;
    864 
    865 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
    866 	/* We can use the cpu mem copy function because this is X86. */
    867 	vaddr = (void __force*)vaddr_atomic + page_offset;
    868 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
    869 						      user_data, length);
    870 	io_mapping_unmap_atomic(vaddr_atomic);
    871 	return unwritten;
    872 #endif
    873 }
    874 
    875 /**
    876  * This is the fast pwrite path, where we copy the data directly from the
    877  * user into the GTT, uncached.
    878  */
    879 static int
    880 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
    881 			 struct drm_i915_gem_object *obj,
    882 			 struct drm_i915_gem_pwrite *args,
    883 			 struct drm_file *file)
    884 {
    885 	struct drm_i915_private *dev_priv = dev->dev_private;
    886 	ssize_t remain;
    887 	loff_t offset, page_base;
    888 	char __user *user_data;
    889 	int page_offset, page_length, ret;
    890 
    891 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
    892 	if (ret)
    893 		goto out;
    894 
    895 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    896 	if (ret)
    897 		goto out_unpin;
    898 
    899 	ret = i915_gem_object_put_fence(obj);
    900 	if (ret)
    901 		goto out_unpin;
    902 
    903 	user_data = to_user_ptr(args->data_ptr);
    904 	remain = args->size;
    905 
    906 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
    907 
    908 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
    909 
    910 	while (remain > 0) {
    911 		/* Operation in this page
    912 		 *
    913 		 * page_base = page offset within aperture
    914 		 * page_offset = offset within page
    915 		 * page_length = bytes to copy for this page
    916 		 */
    917 		page_base = offset & PAGE_MASK;
    918 		page_offset = offset_in_page(offset);
    919 		page_length = remain;
    920 		if ((page_offset + remain) > PAGE_SIZE)
    921 			page_length = PAGE_SIZE - page_offset;
    922 
    923 		/* If we get a fault while copying data, then (presumably) our
    924 		 * source page isn't available.  Return the error and we'll
    925 		 * retry in the slow path.
    926 		 */
    927 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
    928 				    page_offset, user_data, page_length)) {
    929 			ret = -EFAULT;
    930 			goto out_flush;
    931 		}
    932 
    933 		remain -= page_length;
    934 		user_data += page_length;
    935 		offset += page_length;
    936 	}
    937 
    938 out_flush:
    939 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
    940 out_unpin:
    941 	i915_gem_object_ggtt_unpin(obj);
    942 out:
    943 	return ret;
    944 }
    945 
    946 /* Per-page copy function for the shmem pwrite fastpath.
    947  * Flushes invalid cachelines before writing to the target if
    948  * needs_clflush_before is set and flushes out any written cachelines after
    949  * writing if needs_clflush is set. */
    950 static int
    951 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
    952 		  char __user *user_data,
    953 		  bool page_do_bit17_swizzling,
    954 		  bool needs_clflush_before,
    955 		  bool needs_clflush_after)
    956 {
    957 #ifdef __NetBSD__
    958 	return -EFAULT;
    959 #else
    960 	char *vaddr;
    961 	int ret;
    962 
    963 	if (unlikely(page_do_bit17_swizzling))
    964 		return -EINVAL;
    965 
    966 	vaddr = kmap_atomic(page);
    967 	if (needs_clflush_before)
    968 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    969 				       page_length);
    970 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
    971 					user_data, page_length);
    972 	if (needs_clflush_after)
    973 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    974 				       page_length);
    975 	kunmap_atomic(vaddr);
    976 
    977 	return ret ? -EFAULT : 0;
    978 #endif
    979 }
    980 
    981 /* Only difference to the fast-path function is that this can handle bit17
    982  * and uses non-atomic copy and kmap functions. */
    983 static int
    984 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
    985 		  char __user *user_data,
    986 		  bool page_do_bit17_swizzling,
    987 		  bool needs_clflush_before,
    988 		  bool needs_clflush_after)
    989 {
    990 	char *vaddr;
    991 	int ret;
    992 
    993 	vaddr = kmap(page);
    994 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
    995 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    996 					     page_length,
    997 					     page_do_bit17_swizzling);
    998 	if (page_do_bit17_swizzling)
    999 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
   1000 						user_data,
   1001 						page_length);
   1002 	else
   1003 		ret = __copy_from_user(vaddr + shmem_page_offset,
   1004 				       user_data,
   1005 				       page_length);
   1006 	if (needs_clflush_after)
   1007 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
   1008 					     page_length,
   1009 					     page_do_bit17_swizzling);
   1010 	kunmap(page);
   1011 
   1012 	return ret ? -EFAULT : 0;
   1013 }
   1014 
   1015 static int
   1016 i915_gem_shmem_pwrite(struct drm_device *dev,
   1017 		      struct drm_i915_gem_object *obj,
   1018 		      struct drm_i915_gem_pwrite *args,
   1019 		      struct drm_file *file)
   1020 {
   1021 	ssize_t remain;
   1022 	loff_t offset;
   1023 	char __user *user_data;
   1024 	int shmem_page_offset, page_length, ret = 0;
   1025 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
   1026 	int hit_slowpath = 0;
   1027 	int needs_clflush_after = 0;
   1028 	int needs_clflush_before = 0;
   1029 #ifndef __NetBSD__
   1030 	struct sg_page_iter sg_iter;
   1031 	int flush_mask = boot_cpu_data.x86_clflush_size - 1;
   1032 #else
   1033 	int flush_mask = cpu_info_primary.ci_cflush_lsize - 1;
   1034 #endif
   1035 
   1036 	user_data = to_user_ptr(args->data_ptr);
   1037 	remain = args->size;
   1038 
   1039 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
   1040 
   1041 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1042 		/* If we're not in the cpu write domain, set ourself into the gtt
   1043 		 * write domain and manually flush cachelines (if required). This
   1044 		 * optimizes for the case when the gpu will use the data
   1045 		 * right away and we therefore have to clflush anyway. */
   1046 		needs_clflush_after = cpu_write_needs_clflush(obj);
   1047 		ret = i915_gem_object_wait_rendering(obj, false);
   1048 		if (ret)
   1049 			return ret;
   1050 	}
   1051 	/* Same trick applies to invalidate partially written cachelines read
   1052 	 * before writing. */
   1053 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
   1054 		needs_clflush_before =
   1055 			!cpu_cache_is_coherent(dev, obj->cache_level);
   1056 
   1057 	ret = i915_gem_object_get_pages(obj);
   1058 	if (ret)
   1059 		return ret;
   1060 
   1061 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
   1062 
   1063 	i915_gem_object_pin_pages(obj);
   1064 
   1065 	offset = args->offset;
   1066 	obj->dirty = 1;
   1067 
   1068 #ifdef __NetBSD__
   1069 	while (0 < remain)
   1070 #else
   1071 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
   1072 			 offset >> PAGE_SHIFT)
   1073 #endif
   1074 	{
   1075 #ifdef __NetBSD__
   1076 		struct page *const page = i915_gem_object_get_page(obj,
   1077 		    atop(offset));
   1078 #else
   1079 		struct page *page = sg_page_iter_page(&sg_iter);
   1080 
   1081 		if (remain <= 0)
   1082 			break;
   1083 #endif
   1084 
   1085 		/* Operation in this page
   1086 		 *
   1087 		 * shmem_page_offset = offset within page in shmem file
   1088 		 * page_length = bytes to copy for this page
   1089 		 */
   1090 		shmem_page_offset = offset_in_page(offset);
   1091 
   1092 		page_length = remain;
   1093 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
   1094 			page_length = PAGE_SIZE - shmem_page_offset;
   1095 
   1096 		/* If we don't overwrite a cacheline completely we need to be
   1097 		 * careful to have up-to-date data by first clflushing. Don't
   1098 		 * overcomplicate things and flush the entire patch. */
   1099 		const int partial_cacheline_write = needs_clflush_before &&
   1100 			((shmem_page_offset | page_length) & flush_mask);
   1101 
   1102 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
   1103 			(page_to_phys(page) & (1 << 17)) != 0;
   1104 
   1105 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
   1106 					user_data, page_do_bit17_swizzling,
   1107 					partial_cacheline_write,
   1108 					needs_clflush_after);
   1109 		if (ret == 0)
   1110 			goto next_page;
   1111 
   1112 		hit_slowpath = 1;
   1113 		mutex_unlock(&dev->struct_mutex);
   1114 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
   1115 					user_data, page_do_bit17_swizzling,
   1116 					partial_cacheline_write,
   1117 					needs_clflush_after);
   1118 
   1119 		mutex_lock(&dev->struct_mutex);
   1120 
   1121 		if (ret)
   1122 			goto out;
   1123 
   1124 next_page:
   1125 		remain -= page_length;
   1126 		user_data += page_length;
   1127 		offset += page_length;
   1128 	}
   1129 
   1130 out:
   1131 	i915_gem_object_unpin_pages(obj);
   1132 
   1133 	if (hit_slowpath) {
   1134 		/*
   1135 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
   1136 		 * cachelines in-line while writing and the object moved
   1137 		 * out of the cpu write domain while we've dropped the lock.
   1138 		 */
   1139 		if (!needs_clflush_after &&
   1140 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1141 			if (i915_gem_clflush_object(obj, obj->pin_display))
   1142 				needs_clflush_after = true;
   1143 		}
   1144 	}
   1145 
   1146 	if (needs_clflush_after)
   1147 		i915_gem_chipset_flush(dev);
   1148 	else
   1149 		obj->cache_dirty = true;
   1150 
   1151 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
   1152 	return ret;
   1153 }
   1154 
   1155 /**
   1156  * Writes data to the object referenced by handle.
   1157  *
   1158  * On error, the contents of the buffer that were to be modified are undefined.
   1159  */
   1160 int
   1161 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
   1162 		      struct drm_file *file)
   1163 {
   1164 	struct drm_i915_private *dev_priv = dev->dev_private;
   1165 	struct drm_i915_gem_pwrite *args = data;
   1166 	struct drm_gem_object *gobj;
   1167 	struct drm_i915_gem_object *obj;
   1168 	int ret;
   1169 
   1170 	if (args->size == 0)
   1171 		return 0;
   1172 
   1173 	if (!access_ok(VERIFY_READ,
   1174 		       to_user_ptr(args->data_ptr),
   1175 		       args->size))
   1176 		return -EFAULT;
   1177 
   1178 #ifndef __NetBSD__		/* XXX prefault */
   1179 	if (likely(!i915.prefault_disable)) {
   1180 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
   1181 						   args->size);
   1182 		if (ret)
   1183 			return -EFAULT;
   1184 	}
   1185 #endif
   1186 
   1187 	intel_runtime_pm_get(dev_priv);
   1188 
   1189 	ret = i915_mutex_lock_interruptible(dev);
   1190 	if (ret)
   1191 		goto put_rpm;
   1192 
   1193 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1194 	if (gobj == NULL) {
   1195 		ret = -ENOENT;
   1196 		goto unlock;
   1197 	}
   1198 	obj = to_intel_bo(gobj);
   1199 
   1200 	/* Bounds check destination. */
   1201 	if (args->offset > obj->base.size ||
   1202 	    args->size > obj->base.size - args->offset) {
   1203 		ret = -EINVAL;
   1204 		goto out;
   1205 	}
   1206 
   1207 	/* prime objects have no backing filp to GEM pread/pwrite
   1208 	 * pages from.
   1209 	 */
   1210 	if (!obj->base.filp) {
   1211 		ret = -EINVAL;
   1212 		goto out;
   1213 	}
   1214 
   1215 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
   1216 
   1217 	ret = -EFAULT;
   1218 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
   1219 	 * it would end up going through the fenced access, and we'll get
   1220 	 * different detiling behavior between reading and writing.
   1221 	 * pread/pwrite currently are reading and writing from the CPU
   1222 	 * perspective, requiring manual detiling by the client.
   1223 	 */
   1224 	if (obj->tiling_mode == I915_TILING_NONE &&
   1225 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
   1226 	    cpu_write_needs_clflush(obj)) {
   1227 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
   1228 		/* Note that the gtt paths might fail with non-page-backed user
   1229 		 * pointers (e.g. gtt mappings when moving data between
   1230 		 * textures). Fallback to the shmem path in that case. */
   1231 	}
   1232 
   1233 	if (ret == -EFAULT || ret == -ENOSPC) {
   1234 		if (obj->phys_handle)
   1235 			ret = i915_gem_phys_pwrite(obj, args, file);
   1236 		else
   1237 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
   1238 	}
   1239 
   1240 out:
   1241 	drm_gem_object_unreference(&obj->base);
   1242 unlock:
   1243 	mutex_unlock(&dev->struct_mutex);
   1244 put_rpm:
   1245 	intel_runtime_pm_put(dev_priv);
   1246 
   1247 	return ret;
   1248 }
   1249 
   1250 int
   1251 i915_gem_check_wedge(struct i915_gpu_error *error,
   1252 		     bool interruptible)
   1253 {
   1254 	if (i915_reset_in_progress(error)) {
   1255 		/* Non-interruptible callers can't handle -EAGAIN, hence return
   1256 		 * -EIO unconditionally for these. */
   1257 		if (!interruptible)
   1258 			return -EIO;
   1259 
   1260 		/* Recovery complete, but the reset failed ... */
   1261 		if (i915_terminally_wedged(error))
   1262 			return -EIO;
   1263 
   1264 		/*
   1265 		 * Check if GPU Reset is in progress - we need intel_ring_begin
   1266 		 * to work properly to reinit the hw state while the gpu is
   1267 		 * still marked as reset-in-progress. Handle this with a flag.
   1268 		 */
   1269 		if (!error->reload_in_reset)
   1270 			return -EAGAIN;
   1271 	}
   1272 
   1273 	return 0;
   1274 }
   1275 
   1276 #ifndef __NetBSD__
   1277 static void fake_irq(unsigned long data)
   1278 {
   1279 	wake_up_process((struct task_struct *)data);
   1280 }
   1281 #endif
   1282 
   1283 static bool missed_irq(struct drm_i915_private *dev_priv,
   1284 		       struct intel_engine_cs *ring)
   1285 {
   1286 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
   1287 }
   1288 
   1289 #ifndef __NetBSD__
   1290 static unsigned long local_clock_us(unsigned *cpu)
   1291 {
   1292 	unsigned long t;
   1293 
   1294 	/* Cheaply and approximately convert from nanoseconds to microseconds.
   1295 	 * The result and subsequent calculations are also defined in the same
   1296 	 * approximate microseconds units. The principal source of timing
   1297 	 * error here is from the simple truncation.
   1298 	 *
   1299 	 * Note that local_clock() is only defined wrt to the current CPU;
   1300 	 * the comparisons are no longer valid if we switch CPUs. Instead of
   1301 	 * blocking preemption for the entire busywait, we can detect the CPU
   1302 	 * switch and use that as indicator of system load and a reason to
   1303 	 * stop busywaiting, see busywait_stop().
   1304 	 */
   1305 	*cpu = get_cpu();
   1306 	t = local_clock() >> 10;
   1307 	put_cpu();
   1308 
   1309 	return t;
   1310 }
   1311 
   1312 static bool busywait_stop(unsigned long timeout, unsigned cpu)
   1313 {
   1314 	unsigned this_cpu;
   1315 
   1316 	if (time_after(local_clock_us(&this_cpu), timeout))
   1317 		return true;
   1318 
   1319 	return this_cpu != cpu;
   1320 }
   1321 #endif
   1322 
   1323 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
   1324 {
   1325 #ifndef __NetBSD__
   1326 	unsigned long timeout;
   1327 	unsigned cpu;
   1328 #endif
   1329 
   1330 	/* When waiting for high frequency requests, e.g. during synchronous
   1331 	 * rendering split between the CPU and GPU, the finite amount of time
   1332 	 * required to set up the irq and wait upon it limits the response
   1333 	 * rate. By busywaiting on the request completion for a short while we
   1334 	 * can service the high frequency waits as quick as possible. However,
   1335 	 * if it is a slow request, we want to sleep as quickly as possible.
   1336 	 * The tradeoff between waiting and sleeping is roughly the time it
   1337 	 * takes to sleep on a request, on the order of a microsecond.
   1338 	 */
   1339 
   1340 	if (req->ring->irq_refcount)
   1341 		return -EBUSY;
   1342 
   1343 	/* Only spin if we know the GPU is processing this request */
   1344 	if (!i915_gem_request_started(req, true))
   1345 		return -EAGAIN;
   1346 
   1347 #ifndef __NetBSD__		/* XXX No local clock in usec.  */
   1348 	timeout = local_clock_us(&cpu) + 5;
   1349 	while (!need_resched()) {
   1350 		if (i915_gem_request_completed(req, true))
   1351 			return 0;
   1352 
   1353 		if (signal_pending_state(state, current))
   1354 			break;
   1355 
   1356 		if (busywait_stop(timeout, cpu))
   1357 			break;
   1358 
   1359 		cpu_relax_lowlatency();
   1360 	}
   1361 #endif
   1362 
   1363 	if (i915_gem_request_completed(req, false))
   1364 		return 0;
   1365 
   1366 	return -EAGAIN;
   1367 }
   1368 
   1369 /**
   1370  * __i915_wait_request - wait until execution of request has finished
   1371  * @req: duh!
   1372  * @reset_counter: reset sequence associated with the given request
   1373  * @interruptible: do an interruptible wait (normally yes)
   1374  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
   1375  *
   1376  * Note: It is of utmost importance that the passed in seqno and reset_counter
   1377  * values have been read by the caller in an smp safe manner. Where read-side
   1378  * locks are involved, it is sufficient to read the reset_counter before
   1379  * unlocking the lock that protects the seqno. For lockless tricks, the
   1380  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
   1381  * inserted.
   1382  *
   1383  * Returns 0 if the request was found within the alloted time. Else returns the
   1384  * errno with remaining time filled in timeout argument.
   1385  */
   1386 int __i915_wait_request(struct drm_i915_gem_request *req,
   1387 			unsigned reset_counter,
   1388 			bool interruptible,
   1389 			s64 *timeout,
   1390 			struct intel_rps_client *rps)
   1391 {
   1392 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
   1393 	struct drm_device *dev = ring->dev;
   1394 	struct drm_i915_private *dev_priv = dev->dev_private;
   1395 	const bool irq_test_in_progress =
   1396 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
   1397 #ifdef __NetBSD__
   1398 	int state = 0;
   1399 	bool wedged;
   1400 #else
   1401 	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
   1402 	DEFINE_WAIT(wait);
   1403 	unsigned long timeout_expire;
   1404 #endif
   1405 	s64 before, now;
   1406 	int ret;
   1407 
   1408 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
   1409 
   1410 	if (list_empty(&req->list))
   1411 		return 0;
   1412 
   1413 	if (i915_gem_request_completed(req, true))
   1414 		return 0;
   1415 
   1416 #ifndef __NetBSD__
   1417 	timeout_expire = 0;
   1418 	if (timeout) {
   1419 		if (WARN_ON(*timeout < 0))
   1420 			return -EINVAL;
   1421 
   1422 		if (*timeout == 0)
   1423 			return -ETIME;
   1424 
   1425 		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
   1426 	}
   1427 #endif
   1428 
   1429 	if (INTEL_INFO(dev_priv)->gen >= 6)
   1430 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
   1431 
   1432 	/* Record current time in case interrupted by signal, or wedged */
   1433 	trace_i915_gem_request_wait_begin(req);
   1434 	before = ktime_get_raw_ns();
   1435 
   1436 	/* Optimistic spin for the next jiffie before touching IRQs */
   1437 	ret = __i915_spin_request(req, state);
   1438 	if (ret == 0)
   1439 		goto out;
   1440 
   1441 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
   1442 		ret = -ENODEV;
   1443 		goto out;
   1444 	}
   1445 
   1446 #ifdef __NetBSD__
   1447 #  define	EXIT_COND						      \
   1448 	((wedged = (reset_counter !=					      \
   1449 		atomic_read(&dev_priv->gpu_error.reset_counter))) ||	      \
   1450 	    i915_gem_request_completed(req, false))
   1451 	spin_lock(&dev_priv->irq_lock);
   1452 	if (timeout) {
   1453 		int ticks = missed_irq(dev_priv, ring) ? 1 :
   1454 		    nsecs_to_jiffies_timeout(*timeout);
   1455 		if (interruptible) {
   1456 			DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
   1457 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1458 		} else {
   1459 			DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1460 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1461 		}
   1462 		if (ret < 0)	/* Failure: return negative error as is.  */
   1463 			;
   1464 		else if (ret == 0) /* Timed out: return -ETIME.  */
   1465 			ret = -ETIME;
   1466 		else		/* Succeeded (ret > 0): return 0.  */
   1467 			ret = 0;
   1468 	} else {
   1469 		if (interruptible) {
   1470 			DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
   1471 			    &dev_priv->irq_lock, EXIT_COND);
   1472 		} else {
   1473 			DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1474 			    &dev_priv->irq_lock, EXIT_COND);
   1475 		}
   1476 		/* ret is negative on failure or zero on success.  */
   1477 	}
   1478 	spin_unlock(&dev_priv->irq_lock);
   1479 	if (wedged) {
   1480 		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1481 		if (ret == 0)
   1482 			ret = -EAGAIN;
   1483 	}
   1484 #else
   1485 	for (;;) {
   1486 		struct timer_list timer;
   1487 
   1488 		prepare_to_wait(&ring->irq_queue, &wait, state);
   1489 
   1490 		/* We need to check whether any gpu reset happened in between
   1491 		 * the caller grabbing the seqno and now ... */
   1492 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
   1493 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
   1494 			 * is truely gone. */
   1495 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1496 			if (ret == 0)
   1497 				ret = -EAGAIN;
   1498 			break;
   1499 		}
   1500 
   1501 		if (i915_gem_request_completed(req, false)) {
   1502 			ret = 0;
   1503 			break;
   1504 		}
   1505 
   1506 		if (signal_pending_state(state, current)) {
   1507 			ret = -ERESTARTSYS;
   1508 			break;
   1509 		}
   1510 
   1511 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
   1512 			ret = -ETIME;
   1513 			break;
   1514 		}
   1515 
   1516 		timer.function = NULL;
   1517 		if (timeout || missed_irq(dev_priv, ring)) {
   1518 			unsigned long expire;
   1519 
   1520 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
   1521 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
   1522 			mod_timer(&timer, expire);
   1523 		}
   1524 
   1525 		io_schedule();
   1526 
   1527 		if (timer.function) {
   1528 			del_singleshot_timer_sync(&timer);
   1529 			destroy_timer_on_stack(&timer);
   1530 		}
   1531 	}
   1532 #endif
   1533 	if (!irq_test_in_progress)
   1534 		ring->irq_put(ring);
   1535 
   1536 #ifndef __NetBSD__
   1537 	finish_wait(&ring->irq_queue, &wait);
   1538 #endif
   1539 
   1540 out:
   1541 	now = ktime_get_raw_ns();
   1542 	trace_i915_gem_request_wait_end(req);
   1543 
   1544 	if (timeout) {
   1545 		s64 tres = *timeout - (now - before);
   1546 
   1547 		*timeout = tres < 0 ? 0 : tres;
   1548 
   1549 		/*
   1550 		 * Apparently ktime isn't accurate enough and occasionally has a
   1551 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
   1552 		 * things up to make the test happy. We allow up to 1 jiffy.
   1553 		 *
   1554 		 * This is a regrssion from the timespec->ktime conversion.
   1555 		 */
   1556 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
   1557 			*timeout = 0;
   1558 	}
   1559 
   1560 	return ret;
   1561 }
   1562 
   1563 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
   1564 				   struct drm_file *file)
   1565 {
   1566 	struct drm_i915_private *dev_private __unused;
   1567 	struct drm_i915_file_private *file_priv;
   1568 
   1569 	WARN_ON(!req || !file || req->file_priv);
   1570 
   1571 	if (!req || !file)
   1572 		return -EINVAL;
   1573 
   1574 	if (req->file_priv)
   1575 		return -EINVAL;
   1576 
   1577 	dev_private = req->ring->dev->dev_private;
   1578 	file_priv = file->driver_priv;
   1579 
   1580 	spin_lock(&file_priv->mm.lock);
   1581 	req->file_priv = file_priv;
   1582 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
   1583 	spin_unlock(&file_priv->mm.lock);
   1584 
   1585 #ifndef __NetBSD__
   1586 	req->pid = get_pid(task_pid(current));
   1587 #endif
   1588 
   1589 	return 0;
   1590 }
   1591 
   1592 static inline void
   1593 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
   1594 {
   1595 	struct drm_i915_file_private *file_priv = request->file_priv;
   1596 
   1597 	if (!file_priv)
   1598 		return;
   1599 
   1600 	spin_lock(&file_priv->mm.lock);
   1601 	list_del(&request->client_list);
   1602 	request->file_priv = NULL;
   1603 	spin_unlock(&file_priv->mm.lock);
   1604 
   1605 #ifndef __NetBSD__
   1606 	put_pid(request->pid);
   1607 	request->pid = NULL;
   1608 #endif
   1609 }
   1610 
   1611 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
   1612 {
   1613 	trace_i915_gem_request_retire(request);
   1614 
   1615 	/* We know the GPU must have read the request to have
   1616 	 * sent us the seqno + interrupt, so use the position
   1617 	 * of tail of the request to update the last known position
   1618 	 * of the GPU head.
   1619 	 *
   1620 	 * Note this requires that we are always called in request
   1621 	 * completion order.
   1622 	 */
   1623 	request->ringbuf->last_retired_head = request->postfix;
   1624 
   1625 	list_del_init(&request->list);
   1626 	i915_gem_request_remove_from_client(request);
   1627 
   1628 	i915_gem_request_unreference(request);
   1629 }
   1630 
   1631 static void
   1632 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
   1633 {
   1634 	struct intel_engine_cs *engine = req->ring;
   1635 	struct drm_i915_gem_request *tmp;
   1636 
   1637 	lockdep_assert_held(&engine->dev->struct_mutex);
   1638 
   1639 	if (list_empty(&req->list))
   1640 		return;
   1641 
   1642 	do {
   1643 		tmp = list_first_entry(&engine->request_list,
   1644 				       typeof(*tmp), list);
   1645 
   1646 		i915_gem_request_retire(tmp);
   1647 	} while (tmp != req);
   1648 
   1649 	WARN_ON(i915_verify_lists(engine->dev));
   1650 }
   1651 
   1652 /**
   1653  * Waits for a request to be signaled, and cleans up the
   1654  * request and object lists appropriately for that event.
   1655  */
   1656 int
   1657 i915_wait_request(struct drm_i915_gem_request *req)
   1658 {
   1659 	struct drm_device *dev;
   1660 	struct drm_i915_private *dev_priv;
   1661 	bool interruptible;
   1662 	int ret;
   1663 
   1664 	BUG_ON(req == NULL);
   1665 
   1666 	dev = req->ring->dev;
   1667 	dev_priv = dev->dev_private;
   1668 	interruptible = dev_priv->mm.interruptible;
   1669 
   1670 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1671 
   1672 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1673 	if (ret)
   1674 		return ret;
   1675 
   1676 	ret = __i915_wait_request(req,
   1677 				  atomic_read(&dev_priv->gpu_error.reset_counter),
   1678 				  interruptible, NULL, NULL);
   1679 	if (ret)
   1680 		return ret;
   1681 
   1682 	__i915_gem_request_retire__upto(req);
   1683 	return 0;
   1684 }
   1685 
   1686 /**
   1687  * Ensures that all rendering to the object has completed and the object is
   1688  * safe to unbind from the GTT or access from the CPU.
   1689  */
   1690 int
   1691 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
   1692 			       bool readonly)
   1693 {
   1694 	int ret, i;
   1695 
   1696 	if (!obj->active)
   1697 		return 0;
   1698 
   1699 	if (readonly) {
   1700 		if (obj->last_write_req != NULL) {
   1701 			ret = i915_wait_request(obj->last_write_req);
   1702 			if (ret)
   1703 				return ret;
   1704 
   1705 			i = obj->last_write_req->ring->id;
   1706 			if (obj->last_read_req[i] == obj->last_write_req)
   1707 				i915_gem_object_retire__read(obj, i);
   1708 			else
   1709 				i915_gem_object_retire__write(obj);
   1710 		}
   1711 	} else {
   1712 		for (i = 0; i < I915_NUM_RINGS; i++) {
   1713 			if (obj->last_read_req[i] == NULL)
   1714 				continue;
   1715 
   1716 			ret = i915_wait_request(obj->last_read_req[i]);
   1717 			if (ret)
   1718 				return ret;
   1719 
   1720 			i915_gem_object_retire__read(obj, i);
   1721 		}
   1722 		RQ_BUG_ON(obj->active);
   1723 	}
   1724 
   1725 	return 0;
   1726 }
   1727 
   1728 static void
   1729 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
   1730 			       struct drm_i915_gem_request *req)
   1731 {
   1732 	int ring = req->ring->id;
   1733 
   1734 	if (obj->last_read_req[ring] == req)
   1735 		i915_gem_object_retire__read(obj, ring);
   1736 	else if (obj->last_write_req == req)
   1737 		i915_gem_object_retire__write(obj);
   1738 
   1739 	__i915_gem_request_retire__upto(req);
   1740 }
   1741 
   1742 /* A nonblocking variant of the above wait. This is a highly dangerous routine
   1743  * as the object state may change during this call.
   1744  */
   1745 static __must_check int
   1746 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
   1747 					    struct intel_rps_client *rps,
   1748 					    bool readonly)
   1749 {
   1750 	struct drm_device *dev = obj->base.dev;
   1751 	struct drm_i915_private *dev_priv = dev->dev_private;
   1752 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
   1753 	unsigned reset_counter;
   1754 	int ret, i, n = 0;
   1755 
   1756 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1757 	BUG_ON(!dev_priv->mm.interruptible);
   1758 
   1759 	if (!obj->active)
   1760 		return 0;
   1761 
   1762 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
   1763 	if (ret)
   1764 		return ret;
   1765 
   1766 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   1767 
   1768 	if (readonly) {
   1769 		struct drm_i915_gem_request *req;
   1770 
   1771 		req = obj->last_write_req;
   1772 		if (req == NULL)
   1773 			return 0;
   1774 
   1775 		requests[n++] = i915_gem_request_reference(req);
   1776 	} else {
   1777 		for (i = 0; i < I915_NUM_RINGS; i++) {
   1778 			struct drm_i915_gem_request *req;
   1779 
   1780 			req = obj->last_read_req[i];
   1781 			if (req == NULL)
   1782 				continue;
   1783 
   1784 			requests[n++] = i915_gem_request_reference(req);
   1785 		}
   1786 	}
   1787 
   1788 	mutex_unlock(&dev->struct_mutex);
   1789 	for (i = 0; ret == 0 && i < n; i++)
   1790 		ret = __i915_wait_request(requests[i], reset_counter, true,
   1791 					  NULL, rps);
   1792 	mutex_lock(&dev->struct_mutex);
   1793 
   1794 	for (i = 0; i < n; i++) {
   1795 		if (ret == 0)
   1796 			i915_gem_object_retire_request(obj, requests[i]);
   1797 		i915_gem_request_unreference(requests[i]);
   1798 	}
   1799 
   1800 	return ret;
   1801 }
   1802 
   1803 static struct intel_rps_client *to_rps_client(struct drm_file *file)
   1804 {
   1805 	struct drm_i915_file_private *fpriv = file->driver_priv;
   1806 	return &fpriv->rps;
   1807 }
   1808 
   1809 /**
   1810  * Called when user space prepares to use an object with the CPU, either
   1811  * through the mmap ioctl's mapping or a GTT mapping.
   1812  */
   1813 int
   1814 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
   1815 			  struct drm_file *file)
   1816 {
   1817 	struct drm_i915_gem_set_domain *args = data;
   1818 	struct drm_gem_object *gobj;
   1819 	struct drm_i915_gem_object *obj;
   1820 	uint32_t read_domains = args->read_domains;
   1821 	uint32_t write_domain = args->write_domain;
   1822 	int ret;
   1823 
   1824 	/* Only handle setting domains to types used by the CPU. */
   1825 	if (write_domain & I915_GEM_GPU_DOMAINS)
   1826 		return -EINVAL;
   1827 
   1828 	if (read_domains & I915_GEM_GPU_DOMAINS)
   1829 		return -EINVAL;
   1830 
   1831 	/* Having something in the write domain implies it's in the read
   1832 	 * domain, and only that read domain.  Enforce that in the request.
   1833 	 */
   1834 	if (write_domain != 0 && read_domains != write_domain)
   1835 		return -EINVAL;
   1836 
   1837 	ret = i915_mutex_lock_interruptible(dev);
   1838 	if (ret)
   1839 		return ret;
   1840 
   1841 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1842 	if (gobj == NULL) {
   1843 		ret = -ENOENT;
   1844 		goto unlock;
   1845 	}
   1846 	obj = to_intel_bo(gobj);
   1847 
   1848 	/* Try to flush the object off the GPU without holding the lock.
   1849 	 * We will repeat the flush holding the lock in the normal manner
   1850 	 * to catch cases where we are gazumped.
   1851 	 */
   1852 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
   1853 							  to_rps_client(file),
   1854 							  !write_domain);
   1855 	if (ret)
   1856 		goto unref;
   1857 
   1858 	if (read_domains & I915_GEM_DOMAIN_GTT)
   1859 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
   1860 	else
   1861 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
   1862 
   1863 	if (write_domain != 0)
   1864 		intel_fb_obj_invalidate(obj,
   1865 					write_domain == I915_GEM_DOMAIN_GTT ?
   1866 					ORIGIN_GTT : ORIGIN_CPU);
   1867 
   1868 unref:
   1869 	drm_gem_object_unreference(&obj->base);
   1870 unlock:
   1871 	mutex_unlock(&dev->struct_mutex);
   1872 	return ret;
   1873 }
   1874 
   1875 /**
   1876  * Called when user space has done writes to this buffer
   1877  */
   1878 int
   1879 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
   1880 			 struct drm_file *file)
   1881 {
   1882 	struct drm_i915_gem_sw_finish *args = data;
   1883 	struct drm_gem_object *gobj;
   1884 	struct drm_i915_gem_object *obj;
   1885 	int ret = 0;
   1886 
   1887 	ret = i915_mutex_lock_interruptible(dev);
   1888 	if (ret)
   1889 		return ret;
   1890 
   1891 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1892 	if (gobj == NULL) {
   1893 		ret = -ENOENT;
   1894 		goto unlock;
   1895 	}
   1896 	obj = to_intel_bo(gobj);
   1897 
   1898 	/* Pinned buffers may be scanout, so flush the cache */
   1899 	if (obj->pin_display)
   1900 		i915_gem_object_flush_cpu_write_domain(obj);
   1901 
   1902 	drm_gem_object_unreference(&obj->base);
   1903 unlock:
   1904 	mutex_unlock(&dev->struct_mutex);
   1905 	return ret;
   1906 }
   1907 
   1908 /**
   1909  * Maps the contents of an object, returning the address it is mapped
   1910  * into.
   1911  *
   1912  * While the mapping holds a reference on the contents of the object, it doesn't
   1913  * imply a ref on the object itself.
   1914  *
   1915  * IMPORTANT:
   1916  *
   1917  * DRM driver writers who look a this function as an example for how to do GEM
   1918  * mmap support, please don't implement mmap support like here. The modern way
   1919  * to implement DRM mmap support is with an mmap offset ioctl (like
   1920  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
   1921  * That way debug tooling like valgrind will understand what's going on, hiding
   1922  * the mmap call in a driver private ioctl will break that. The i915 driver only
   1923  * does cpu mmaps this way because we didn't know better.
   1924  */
   1925 int
   1926 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
   1927 		    struct drm_file *file)
   1928 {
   1929 	struct drm_i915_gem_mmap *args = data;
   1930 	struct drm_gem_object *obj;
   1931 	unsigned long addr;
   1932 #ifdef __NetBSD__
   1933 	struct drm_i915_private *dev_priv = dev->dev_private;
   1934 	int ret;
   1935 
   1936 	if ((dev_priv->quirks & QUIRK_NETBSD_VERSION_CALLED) == 0)
   1937 		args->flags = 0;
   1938 #endif
   1939 
   1940 	if (args->flags & ~(I915_MMAP_WC))
   1941 		return -EINVAL;
   1942 
   1943 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
   1944 		return -ENODEV;
   1945 
   1946 	obj = drm_gem_object_lookup(dev, file, args->handle);
   1947 	if (obj == NULL)
   1948 		return -ENOENT;
   1949 
   1950 	/* prime objects have no backing filp to GEM mmap
   1951 	 * pages from.
   1952 	 */
   1953 	if (!obj->filp) {
   1954 		drm_gem_object_unreference_unlocked(obj);
   1955 		return -EINVAL;
   1956 	}
   1957 
   1958 #ifdef __NetBSD__
   1959 	/* Acquire a reference for uvm_map to consume.  */
   1960 	uao_reference(obj->filp);
   1961 	addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
   1962 	    (vaddr_t)curproc->p_vmspace->vm_daddr, args->size,
   1963 	    curproc->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1964 	/* XXX errno NetBSD->Linux */
   1965 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
   1966 	    obj->filp, args->offset, 0,
   1967 	    UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
   1968 		(VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
   1969 		0));
   1970 	if (ret) {
   1971 		uao_detach(obj->filp);
   1972 		drm_gem_object_unreference_unlocked(obj);
   1973 		return ret;
   1974 	}
   1975 	drm_gem_object_unreference_unlocked(obj);
   1976 #else
   1977 	addr = vm_mmap(obj->filp, 0, args->size,
   1978 		       PROT_READ | PROT_WRITE, MAP_SHARED,
   1979 		       args->offset);
   1980 	if (args->flags & I915_MMAP_WC) {
   1981 		struct mm_struct *mm = current->mm;
   1982 		struct vm_area_struct *vma;
   1983 
   1984 		down_write(&mm->mmap_sem);
   1985 		vma = find_vma(mm, addr);
   1986 		if (vma)
   1987 			vma->vm_page_prot =
   1988 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
   1989 		else
   1990 			addr = -ENOMEM;
   1991 		up_write(&mm->mmap_sem);
   1992 	}
   1993 	drm_gem_object_unreference_unlocked(obj);
   1994 	if (IS_ERR((void *)addr))
   1995 		return addr;
   1996 #endif
   1997 
   1998 	args->addr_ptr = (uint64_t) addr;
   1999 
   2000 	return 0;
   2001 }
   2002 
   2003 #ifdef __NetBSD__		/* XXX gem gtt fault */
   2004 static int	i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
   2005 		    struct vm_page **, int, int, vm_prot_t, int, paddr_t);
   2006 
   2007 int
   2008 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   2009     int npages, int centeridx, vm_prot_t access_type, int flags)
   2010 {
   2011 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   2012 	struct drm_gem_object *gem_obj =
   2013 	    container_of(uobj, struct drm_gem_object, gemo_uvmobj);
   2014 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   2015 	struct drm_device *dev = obj->base.dev;
   2016 	struct drm_i915_private *dev_priv = dev->dev_private;
   2017 	voff_t byte_offset;
   2018 	pgoff_t page_offset;
   2019 	int ret = 0;
   2020 	bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
   2021 
   2022 	byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
   2023 	KASSERT(byte_offset <= obj->base.size);
   2024 	page_offset = (byte_offset >> PAGE_SHIFT);
   2025 
   2026 	intel_runtime_pm_get(dev_priv);
   2027 
   2028 	/* Thanks, uvm, but we don't need this lock.  */
   2029 	mutex_exit(uobj->vmobjlock);
   2030 
   2031 	ret = i915_mutex_lock_interruptible(dev);
   2032 	if (ret)
   2033 		goto out;
   2034 
   2035 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   2036 
   2037 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   2038 	if (ret)
   2039 		goto unlock;
   2040 
   2041 	if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
   2042 		ret = -EINVAL;
   2043 		goto unlock;
   2044 	}
   2045 
   2046 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
   2047 	if (ret)
   2048 		goto unlock;
   2049 
   2050 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   2051 	if (ret)
   2052 		goto unpin;
   2053 
   2054 	ret = i915_gem_object_get_fence(obj);
   2055 	if (ret)
   2056 		goto unpin;
   2057 
   2058 	obj->fault_mappable = true;
   2059 
   2060 	/* XXX errno NetBSD->Linux */
   2061 	ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
   2062 	    flags,
   2063 	    (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
   2064 unpin:
   2065 	i915_gem_object_ggtt_unpin(obj);
   2066 unlock:
   2067 	mutex_unlock(&dev->struct_mutex);
   2068 out:
   2069 	mutex_enter(uobj->vmobjlock);
   2070 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
   2071 	if (ret == -ERESTART)
   2072 		uvm_wait("i915flt");
   2073 
   2074 	/*
   2075 	 * Remap EINTR to success, so that we return to userland.
   2076 	 * On the way out, we'll deliver the signal, and if the signal
   2077 	 * is not fatal then the user code which faulted will most likely
   2078 	 * fault again, and we'll come back here for another try.
   2079 	 */
   2080 	if (ret == -EINTR)
   2081 		ret = 0;
   2082 	/* XXX Deal with GPU hangs here...  */
   2083 	intel_runtime_pm_put(dev_priv);
   2084 	/* XXX errno Linux->NetBSD */
   2085 	return -ret;
   2086 }
   2087 
   2088 /*
   2089  * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
   2090  *
   2091  * XXX pmap_enter_default instead of pmap_enter because of a problem
   2092  * with using weak aliases in kernel modules or something.
   2093  */
   2094 int	pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
   2095 
   2096 static int
   2097 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   2098     int npages, int centeridx, vm_prot_t access_type, int flags,
   2099     paddr_t gtt_paddr)
   2100 {
   2101 	struct vm_map_entry *entry = ufi->entry;
   2102 	vaddr_t curr_va;
   2103 	off_t curr_offset;
   2104 	paddr_t paddr;
   2105 	u_int mmapflags;
   2106 	int lcv, retval;
   2107 	vm_prot_t mapprot;
   2108 	UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
   2109 	UVMHIST_LOG(maphist,"  flags=%jd", flags,0,0,0);
   2110 
   2111 	/*
   2112 	 * we do not allow device mappings to be mapped copy-on-write
   2113 	 * so we kill any attempt to do so here.
   2114 	 */
   2115 
   2116 	if (UVM_ET_ISCOPYONWRITE(entry)) {
   2117 		UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%jx)",
   2118 		entry->etype, 0,0,0);
   2119 		return(EIO);
   2120 	}
   2121 
   2122 	/*
   2123 	 * now we must determine the offset in udv to use and the VA to
   2124 	 * use for pmap_enter.  note that we always use orig_map's pmap
   2125 	 * for pmap_enter (even if we have a submap).   since virtual
   2126 	 * addresses in a submap must match the main map, this is ok.
   2127 	 */
   2128 
   2129 	/* udv offset = (offset from start of entry) + entry's offset */
   2130 	curr_offset = entry->offset + (vaddr - entry->start);
   2131 	/* pmap va = vaddr (virtual address of pps[0]) */
   2132 	curr_va = vaddr;
   2133 
   2134 	/*
   2135 	 * loop over the page range entering in as needed
   2136 	 */
   2137 
   2138 	retval = 0;
   2139 	for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
   2140 	    curr_va += PAGE_SIZE) {
   2141 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
   2142 			continue;
   2143 
   2144 		if (pps[lcv] == PGO_DONTCARE)
   2145 			continue;
   2146 
   2147 		paddr = (gtt_paddr + curr_offset);
   2148 		mmapflags = 0;
   2149 		mapprot = ufi->entry->protection;
   2150 		UVMHIST_LOG(maphist,
   2151 		    "  MAPPING: device: pm=0x%#jx, va=0x%jx, pa=0x%jx, at=%jd",
   2152 		    (uintptr_t)ufi->orig_map->pmap, curr_va, paddr, mapprot);
   2153 		if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
   2154 		    PMAP_CANFAIL | mapprot | mmapflags) != 0) {
   2155 			/*
   2156 			 * pmap_enter() didn't have the resource to
   2157 			 * enter this mapping.  Unlock everything,
   2158 			 * wait for the pagedaemon to free up some
   2159 			 * pages, and then tell uvm_fault() to start
   2160 			 * the fault again.
   2161 			 *
   2162 			 * XXX Needs some rethinking for the PGO_ALLPAGES
   2163 			 * XXX case.
   2164 			 */
   2165 			pmap_update(ufi->orig_map->pmap);	/* sync what we have so far */
   2166 			return (ERESTART);
   2167 		}
   2168 	}
   2169 
   2170 	pmap_update(ufi->orig_map->pmap);
   2171 	return (retval);
   2172 }
   2173 #else
   2174 /**
   2175  * i915_gem_fault - fault a page into the GTT
   2176  * @vma: VMA in question
   2177  * @vmf: fault info
   2178  *
   2179  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
   2180  * from userspace.  The fault handler takes care of binding the object to
   2181  * the GTT (if needed), allocating and programming a fence register (again,
   2182  * only if needed based on whether the old reg is still valid or the object
   2183  * is tiled) and inserting a new PTE into the faulting process.
   2184  *
   2185  * Note that the faulting process may involve evicting existing objects
   2186  * from the GTT and/or fence registers to make room.  So performance may
   2187  * suffer if the GTT working set is large or there are few fence registers
   2188  * left.
   2189  */
   2190 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
   2191 {
   2192 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
   2193 	struct drm_device *dev = obj->base.dev;
   2194 	struct drm_i915_private *dev_priv = dev->dev_private;
   2195 	struct i915_ggtt_view view = i915_ggtt_view_normal;
   2196 	pgoff_t page_offset;
   2197 	unsigned long pfn;
   2198 	int ret = 0;
   2199 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
   2200 
   2201 	intel_runtime_pm_get(dev_priv);
   2202 
   2203 	/* We don't use vmf->pgoff since that has the fake offset */
   2204 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
   2205 		PAGE_SHIFT;
   2206 
   2207 	ret = i915_mutex_lock_interruptible(dev);
   2208 	if (ret)
   2209 		goto out;
   2210 
   2211 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   2212 
   2213 	/* Try to flush the object off the GPU first without holding the lock.
   2214 	 * Upon reacquiring the lock, we will perform our sanity checks and then
   2215 	 * repeat the flush holding the lock in the normal manner to catch cases
   2216 	 * where we are gazumped.
   2217 	 */
   2218 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   2219 	if (ret)
   2220 		goto unlock;
   2221 
   2222 	/* Access to snoopable pages through the GTT is incoherent. */
   2223 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
   2224 		ret = -EFAULT;
   2225 		goto unlock;
   2226 	}
   2227 
   2228 	/* Use a partial view if the object is bigger than the aperture. */
   2229 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
   2230 	    obj->tiling_mode == I915_TILING_NONE) {
   2231 		static const unsigned int chunk_size = 256; // 1 MiB
   2232 
   2233 		memset(&view, 0, sizeof(view));
   2234 		view.type = I915_GGTT_VIEW_PARTIAL;
   2235 		view.params.partial.offset = rounddown(page_offset, chunk_size);
   2236 		view.params.partial.size =
   2237 			min_t(unsigned int,
   2238 			      chunk_size,
   2239 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
   2240 			      view.params.partial.offset);
   2241 	}
   2242 
   2243 	/* Now pin it into the GTT if needed */
   2244 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
   2245 	if (ret)
   2246 		goto unlock;
   2247 
   2248 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   2249 	if (ret)
   2250 		goto unpin;
   2251 
   2252 	ret = i915_gem_object_get_fence(obj);
   2253 	if (ret)
   2254 		goto unpin;
   2255 
   2256 	/* Finally, remap it using the new GTT offset */
   2257 	pfn = dev_priv->gtt.mappable_base +
   2258 		i915_gem_obj_ggtt_offset_view(obj, &view);
   2259 	pfn >>= PAGE_SHIFT;
   2260 
   2261 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
   2262 		/* Overriding existing pages in partial view does not cause
   2263 		 * us any trouble as TLBs are still valid because the fault
   2264 		 * is due to userspace losing part of the mapping or never
   2265 		 * having accessed it before (at this partials' range).
   2266 		 */
   2267 		unsigned long base = vma->vm_start +
   2268 				     (view.params.partial.offset << PAGE_SHIFT);
   2269 		unsigned int i;
   2270 
   2271 		for (i = 0; i < view.params.partial.size; i++) {
   2272 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
   2273 			if (ret)
   2274 				break;
   2275 		}
   2276 
   2277 		obj->fault_mappable = true;
   2278 	} else {
   2279 		if (!obj->fault_mappable) {
   2280 			unsigned long size = min_t(unsigned long,
   2281 						   vma->vm_end - vma->vm_start,
   2282 						   obj->base.size);
   2283 			int i;
   2284 
   2285 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
   2286 				ret = vm_insert_pfn(vma,
   2287 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
   2288 						    pfn + i);
   2289 				if (ret)
   2290 					break;
   2291 			}
   2292 
   2293 			obj->fault_mappable = true;
   2294 		} else
   2295 			ret = vm_insert_pfn(vma,
   2296 					    (unsigned long)vmf->virtual_address,
   2297 					    pfn + page_offset);
   2298 	}
   2299 unpin:
   2300 	i915_gem_object_ggtt_unpin_view(obj, &view);
   2301 unlock:
   2302 	mutex_unlock(&dev->struct_mutex);
   2303 out:
   2304 	switch (ret) {
   2305 	case -EIO:
   2306 		/*
   2307 		 * We eat errors when the gpu is terminally wedged to avoid
   2308 		 * userspace unduly crashing (gl has no provisions for mmaps to
   2309 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
   2310 		 * and so needs to be reported.
   2311 		 */
   2312 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
   2313 			ret = VM_FAULT_SIGBUS;
   2314 			break;
   2315 		}
   2316 	case -EAGAIN:
   2317 		/*
   2318 		 * EAGAIN means the gpu is hung and we'll wait for the error
   2319 		 * handler to reset everything when re-faulting in
   2320 		 * i915_mutex_lock_interruptible.
   2321 		 */
   2322 	case 0:
   2323 	case -ERESTARTSYS:
   2324 	case -EINTR:
   2325 	case -EBUSY:
   2326 		/*
   2327 		 * EBUSY is ok: this just means that another thread
   2328 		 * already did the job.
   2329 		 */
   2330 		ret = VM_FAULT_NOPAGE;
   2331 		break;
   2332 	case -ENOMEM:
   2333 		ret = VM_FAULT_OOM;
   2334 		break;
   2335 	case -ENOSPC:
   2336 	case -EFAULT:
   2337 		ret = VM_FAULT_SIGBUS;
   2338 		break;
   2339 	default:
   2340 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
   2341 		ret = VM_FAULT_SIGBUS;
   2342 		break;
   2343 	}
   2344 
   2345 	intel_runtime_pm_put(dev_priv);
   2346 	return ret;
   2347 }
   2348 #endif
   2349 
   2350 /**
   2351  * i915_gem_release_mmap - remove physical page mappings
   2352  * @obj: obj in question
   2353  *
   2354  * Preserve the reservation of the mmapping with the DRM core code, but
   2355  * relinquish ownership of the pages back to the system.
   2356  *
   2357  * It is vital that we remove the page mapping if we have mapped a tiled
   2358  * object through the GTT and then lose the fence register due to
   2359  * resource pressure. Similarly if the object has been moved out of the
   2360  * aperture, than pages mapped into userspace must be revoked. Removing the
   2361  * mapping will then trigger a page fault on the next user access, allowing
   2362  * fixup by i915_gem_fault().
   2363  */
   2364 void
   2365 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
   2366 {
   2367 	if (!obj->fault_mappable)
   2368 		return;
   2369 
   2370 #ifdef __NetBSD__		/* XXX gem gtt fault */
   2371 	{
   2372 		struct drm_device *const dev = obj->base.dev;
   2373 		struct drm_i915_private *const dev_priv = dev->dev_private;
   2374 		const paddr_t start = dev_priv->gtt.mappable_base +
   2375 		    i915_gem_obj_ggtt_offset(obj);
   2376 		const size_t size = obj->base.size;
   2377 		const paddr_t end = start + size;
   2378 		paddr_t pa;
   2379 
   2380 		KASSERT((start & (PAGE_SIZE - 1)) == 0);
   2381 		KASSERT((size & (PAGE_SIZE - 1)) == 0);
   2382 
   2383 		for (pa = start; pa < end; pa += PAGE_SIZE)
   2384 			pmap_pv_protect(pa, VM_PROT_NONE);
   2385 	}
   2386 #else
   2387 	drm_vma_node_unmap(&obj->base.vma_node,
   2388 			   obj->base.dev->anon_inode->i_mapping);
   2389 #endif
   2390 	obj->fault_mappable = false;
   2391 }
   2392 
   2393 void
   2394 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
   2395 {
   2396 	struct drm_i915_gem_object *obj;
   2397 
   2398 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
   2399 		i915_gem_release_mmap(obj);
   2400 }
   2401 
   2402 uint32_t
   2403 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
   2404 {
   2405 	uint32_t gtt_size;
   2406 
   2407 	if (INTEL_INFO(dev)->gen >= 4 ||
   2408 	    tiling_mode == I915_TILING_NONE)
   2409 		return size;
   2410 
   2411 	/* Previous chips need a power-of-two fence region when tiling */
   2412 	if (INTEL_INFO(dev)->gen == 3)
   2413 		gtt_size = 1024*1024;
   2414 	else
   2415 		gtt_size = 512*1024;
   2416 
   2417 	while (gtt_size < size)
   2418 		gtt_size <<= 1;
   2419 
   2420 	return gtt_size;
   2421 }
   2422 
   2423 /**
   2424  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
   2425  * @obj: object to check
   2426  *
   2427  * Return the required GTT alignment for an object, taking into account
   2428  * potential fence register mapping.
   2429  */
   2430 uint32_t
   2431 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
   2432 			   int tiling_mode, bool fenced)
   2433 {
   2434 	/*
   2435 	 * Minimum alignment is 4k (GTT page size), but might be greater
   2436 	 * if a fence register is needed for the object.
   2437 	 */
   2438 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
   2439 	    tiling_mode == I915_TILING_NONE)
   2440 		return 4096;
   2441 
   2442 	/*
   2443 	 * Previous chips need to be aligned to the size of the smallest
   2444 	 * fence register that can contain the object.
   2445 	 */
   2446 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
   2447 }
   2448 
   2449 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
   2450 {
   2451 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2452 	int ret;
   2453 
   2454 	if (drm_vma_node_has_offset(&obj->base.vma_node))
   2455 		return 0;
   2456 
   2457 	dev_priv->mm.shrinker_no_lock_stealing = true;
   2458 
   2459 	ret = drm_gem_create_mmap_offset(&obj->base);
   2460 	if (ret != -ENOSPC)
   2461 		goto out;
   2462 
   2463 	/* Badly fragmented mmap space? The only way we can recover
   2464 	 * space is by destroying unwanted objects. We can't randomly release
   2465 	 * mmap_offsets as userspace expects them to be persistent for the
   2466 	 * lifetime of the objects. The closest we can is to release the
   2467 	 * offsets on purgeable objects by truncating it and marking it purged,
   2468 	 * which prevents userspace from ever using that object again.
   2469 	 */
   2470 	i915_gem_shrink(dev_priv,
   2471 			obj->base.size >> PAGE_SHIFT,
   2472 			I915_SHRINK_BOUND |
   2473 			I915_SHRINK_UNBOUND |
   2474 			I915_SHRINK_PURGEABLE);
   2475 	ret = drm_gem_create_mmap_offset(&obj->base);
   2476 	if (ret != -ENOSPC)
   2477 		goto out;
   2478 
   2479 	i915_gem_shrink_all(dev_priv);
   2480 	ret = drm_gem_create_mmap_offset(&obj->base);
   2481 out:
   2482 	dev_priv->mm.shrinker_no_lock_stealing = false;
   2483 
   2484 	return ret;
   2485 }
   2486 
   2487 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
   2488 {
   2489 	drm_gem_free_mmap_offset(&obj->base);
   2490 }
   2491 
   2492 int
   2493 i915_gem_mmap_gtt(struct drm_file *file,
   2494 		  struct drm_device *dev,
   2495 		  uint32_t handle,
   2496 		  uint64_t *offset)
   2497 {
   2498 	struct drm_gem_object *gobj;
   2499 	struct drm_i915_gem_object *obj;
   2500 	int ret;
   2501 
   2502 	ret = i915_mutex_lock_interruptible(dev);
   2503 	if (ret)
   2504 		return ret;
   2505 
   2506 	gobj = drm_gem_object_lookup(dev, file, handle);
   2507 	if (gobj == NULL) {
   2508 		ret = -ENOENT;
   2509 		goto unlock;
   2510 	}
   2511 	obj = to_intel_bo(gobj);
   2512 
   2513 	if (obj->madv != I915_MADV_WILLNEED) {
   2514 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
   2515 		ret = -EFAULT;
   2516 		goto out;
   2517 	}
   2518 
   2519 	ret = i915_gem_object_create_mmap_offset(obj);
   2520 	if (ret)
   2521 		goto out;
   2522 
   2523 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
   2524 
   2525 out:
   2526 	drm_gem_object_unreference(&obj->base);
   2527 unlock:
   2528 	mutex_unlock(&dev->struct_mutex);
   2529 	return ret;
   2530 }
   2531 
   2532 /**
   2533  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
   2534  * @dev: DRM device
   2535  * @data: GTT mapping ioctl data
   2536  * @file: GEM object info
   2537  *
   2538  * Simply returns the fake offset to userspace so it can mmap it.
   2539  * The mmap call will end up in drm_gem_mmap(), which will set things
   2540  * up so we can get faults in the handler above.
   2541  *
   2542  * The fault handler will take care of binding the object into the GTT
   2543  * (since it may have been evicted to make room for something), allocating
   2544  * a fence register, and mapping the appropriate aperture address into
   2545  * userspace.
   2546  */
   2547 int
   2548 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
   2549 			struct drm_file *file)
   2550 {
   2551 	struct drm_i915_gem_mmap_gtt *args = data;
   2552 
   2553 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
   2554 }
   2555 
   2556 /* Immediately discard the backing storage */
   2557 static void
   2558 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
   2559 {
   2560 	i915_gem_object_free_mmap_offset(obj);
   2561 
   2562 	if (obj->base.filp == NULL)
   2563 		return;
   2564 
   2565 #ifdef __NetBSD__
   2566 	{
   2567 		struct uvm_object *const uobj = obj->base.filp;
   2568 
   2569 		if (uobj != NULL) {
   2570 			/* XXX Calling pgo_put like this is bogus.  */
   2571 			mutex_enter(uobj->vmobjlock);
   2572 			(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   2573 			    (PGO_ALLPAGES | PGO_FREE));
   2574 		}
   2575 	}
   2576 #else
   2577 	/* Our goal here is to return as much of the memory as
   2578 	 * is possible back to the system as we are called from OOM.
   2579 	 * To do this we must instruct the shmfs to drop all of its
   2580 	 * backing pages, *now*.
   2581 	 */
   2582 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
   2583 #endif
   2584 	obj->madv = __I915_MADV_PURGED;
   2585 }
   2586 
   2587 /* Try to discard unwanted pages */
   2588 static void
   2589 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
   2590 {
   2591 #ifdef __NetBSD__
   2592 	struct uvm_object *uobj;
   2593 #else
   2594 	struct address_space *mapping;
   2595 #endif
   2596 
   2597 	switch (obj->madv) {
   2598 	case I915_MADV_DONTNEED:
   2599 		i915_gem_object_truncate(obj);
   2600 	case __I915_MADV_PURGED:
   2601 		return;
   2602 	}
   2603 
   2604 	if (obj->base.filp == NULL)
   2605 		return;
   2606 
   2607 #ifdef __NetBSD__
   2608 	uobj = obj->base.filp;
   2609 	mutex_enter(uobj->vmobjlock);
   2610 	(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   2611 	    PGO_ALLPAGES|PGO_DEACTIVATE|PGO_CLEANIT);
   2612 #else
   2613 	mapping = file_inode(obj->base.filp)->i_mapping,
   2614 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
   2615 #endif
   2616 }
   2617 
   2618 static void
   2619 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2620 {
   2621 #ifdef __NetBSD__
   2622 	struct drm_device *const dev = obj->base.dev;
   2623 	struct vm_page *page;
   2624 	int ret;
   2625 
   2626 	/* XXX Cargo-culted from the Linux code.  */
   2627 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2628 
   2629 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2630 	if (ret) {
   2631 		WARN_ON(ret != -EIO);
   2632 		i915_gem_clflush_object(obj, true);
   2633 		obj->base.read_domains = obj->base.write_domain =
   2634 		    I915_GEM_DOMAIN_CPU;
   2635 	}
   2636 
   2637 	i915_gem_gtt_finish_object(obj);
   2638 
   2639 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2640 		i915_gem_object_save_bit_17_swizzle(obj);
   2641 
   2642 	if (obj->madv == I915_MADV_DONTNEED)
   2643 		obj->dirty = 0;
   2644 
   2645 	if (obj->dirty) {
   2646 		mutex_enter(obj->base.filp->vmobjlock);
   2647 		TAILQ_FOREACH(page, &obj->pageq, pageq.queue) {
   2648 			uvm_pagemarkdirty(page, UVM_PAGE_STATUS_DIRTY);
   2649 			/* XXX mark page accessed */
   2650 		}
   2651 		mutex_exit(obj->base.filp->vmobjlock);
   2652 	}
   2653 	obj->dirty = 0;
   2654 
   2655 	uvm_obj_unwirepages(obj->base.filp, 0, obj->base.size);
   2656 	bus_dmamap_destroy(dev->dmat, obj->pages);
   2657 #else
   2658 	struct sg_page_iter sg_iter;
   2659 	int ret;
   2660 
   2661 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2662 
   2663 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2664 	if (ret) {
   2665 		/* In the event of a disaster, abandon all caches and
   2666 		 * hope for the best.
   2667 		 */
   2668 		WARN_ON(ret != -EIO);
   2669 		i915_gem_clflush_object(obj, true);
   2670 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   2671 	}
   2672 
   2673 	i915_gem_gtt_finish_object(obj);
   2674 
   2675 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2676 		i915_gem_object_save_bit_17_swizzle(obj);
   2677 
   2678 	if (obj->madv == I915_MADV_DONTNEED)
   2679 		obj->dirty = 0;
   2680 
   2681 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
   2682 		struct page *page = sg_page_iter_page(&sg_iter);
   2683 
   2684 		if (obj->dirty)
   2685 			set_page_dirty(page);
   2686 
   2687 		if (obj->madv == I915_MADV_WILLNEED)
   2688 			mark_page_accessed(page);
   2689 
   2690 		page_cache_release(page);
   2691 	}
   2692 	obj->dirty = 0;
   2693 
   2694 	sg_free_table(obj->pages);
   2695 	kfree(obj->pages);
   2696 #endif
   2697 }
   2698 
   2699 int
   2700 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
   2701 {
   2702 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2703 
   2704 	if (obj->pages == NULL)
   2705 		return 0;
   2706 
   2707 	if (obj->pages_pin_count)
   2708 		return -EBUSY;
   2709 
   2710 	BUG_ON(i915_gem_obj_bound_any(obj));
   2711 
   2712 	/* ->put_pages might need to allocate memory for the bit17 swizzle
   2713 	 * array, hence protect them from being reaped by removing them from gtt
   2714 	 * lists early. */
   2715 	list_del(&obj->global_list);
   2716 
   2717 	ops->put_pages(obj);
   2718 	obj->pages = NULL;
   2719 
   2720 	i915_gem_object_invalidate(obj);
   2721 
   2722 	return 0;
   2723 }
   2724 
   2725 static int
   2726 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2727 {
   2728 #ifdef __NetBSD__
   2729 	struct drm_device *const dev = obj->base.dev;
   2730 	struct drm_i915_private *dev_priv = dev->dev_private;
   2731 	struct vm_page *page;
   2732 	int ret;
   2733 
   2734 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2735 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2736 
   2737 	KASSERT(obj->pages == NULL);
   2738 	TAILQ_INIT(&obj->pageq);
   2739 
   2740 	/* XXX errno NetBSD->Linux */
   2741 	ret = -bus_dmamap_create(dev->dmat, obj->base.size,
   2742 	    obj->base.size/PAGE_SIZE, PAGE_SIZE, 0, BUS_DMA_NOWAIT,
   2743 	    &obj->pages);
   2744 	if (ret)
   2745 		goto fail0;
   2746 
   2747 	/* XXX errno NetBSD->Linux */
   2748 	ret = -uvm_obj_wirepages(obj->base.filp, 0, obj->base.size,
   2749 	    &obj->pageq);
   2750 	if (ret)		/* XXX Try purge, shrink.  */
   2751 		goto fail1;
   2752 
   2753 	/*
   2754 	 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
   2755 	 *
   2756 	 * XXX This should be unnecessary: the uao should guarantee
   2757 	 * this constraint after uao_set_pgfl.
   2758 	 *
   2759 	 * XXX This should also be expanded for newer devices.
   2760 	 */
   2761 	TAILQ_FOREACH(page, &obj->pageq, pageq.queue) {
   2762 		const uint64_t mask =
   2763 		    (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
   2764 			0xffffffffULL : 0xffffffffffULL);
   2765 		if (VM_PAGE_TO_PHYS(page) & ~mask) {
   2766 			DRM_ERROR("GEM physical address exceeds %u bits"
   2767 			    ": %"PRIxMAX"\n",
   2768 			    popcount64(mask),
   2769 			    (uintmax_t)VM_PAGE_TO_PHYS(page));
   2770 			ret = -EIO;
   2771 			goto fail2;
   2772 		}
   2773 	}
   2774 
   2775 	ret = i915_gem_gtt_prepare_object(obj);
   2776 	if (ret)
   2777 		goto fail2;
   2778 
   2779 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2780 		i915_gem_object_do_bit_17_swizzle(obj);
   2781 
   2782 	if (obj->tiling_mode != I915_TILING_NONE &&
   2783 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
   2784 		i915_gem_object_pin_pages(obj);
   2785 
   2786 	/* Success!  */
   2787 	return 0;
   2788 
   2789 fail3: __unused
   2790 	i915_gem_gtt_finish_object(obj);
   2791 fail2:	uvm_obj_unwirepages(obj->base.filp, 0, obj->base.size);
   2792 fail1:	bus_dmamap_destroy(dev->dmat, obj->pages);
   2793 	obj->pages = NULL;
   2794 fail0:	KASSERT(ret);
   2795 	return ret;
   2796 #else
   2797 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2798 	int page_count, i;
   2799 	struct address_space *mapping;
   2800 	struct sg_table *st;
   2801 	struct scatterlist *sg;
   2802 	struct sg_page_iter sg_iter;
   2803 	struct page *page;
   2804 	unsigned long last_pfn = 0;	/* suppress gcc warning */
   2805 	int ret;
   2806 	gfp_t gfp;
   2807 
   2808 	/* Assert that the object is not currently in any GPU domain. As it
   2809 	 * wasn't in the GTT, there shouldn't be any way it could have been in
   2810 	 * a GPU cache
   2811 	 */
   2812 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2813 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2814 
   2815 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   2816 	if (st == NULL)
   2817 		return -ENOMEM;
   2818 
   2819 	page_count = obj->base.size / PAGE_SIZE;
   2820 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
   2821 		kfree(st);
   2822 		return -ENOMEM;
   2823 	}
   2824 
   2825 	/* Get the list of pages out of our struct file.  They'll be pinned
   2826 	 * at this point until we release them.
   2827 	 *
   2828 	 * Fail silently without starting the shrinker
   2829 	 */
   2830 	mapping = file_inode(obj->base.filp)->i_mapping;
   2831 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
   2832 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
   2833 	sg = st->sgl;
   2834 	st->nents = 0;
   2835 	for (i = 0; i < page_count; i++) {
   2836 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2837 		if (IS_ERR(page)) {
   2838 			i915_gem_shrink(dev_priv,
   2839 					page_count,
   2840 					I915_SHRINK_BOUND |
   2841 					I915_SHRINK_UNBOUND |
   2842 					I915_SHRINK_PURGEABLE);
   2843 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2844 		}
   2845 		if (IS_ERR(page)) {
   2846 			/* We've tried hard to allocate the memory by reaping
   2847 			 * our own buffer, now let the real VM do its job and
   2848 			 * go down in flames if truly OOM.
   2849 			 */
   2850 			i915_gem_shrink_all(dev_priv);
   2851 			page = shmem_read_mapping_page(mapping, i);
   2852 			if (IS_ERR(page)) {
   2853 				ret = PTR_ERR(page);
   2854 				goto err_pages;
   2855 			}
   2856 		}
   2857 #ifdef CONFIG_SWIOTLB
   2858 		if (swiotlb_nr_tbl()) {
   2859 			st->nents++;
   2860 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2861 			sg = sg_next(sg);
   2862 			continue;
   2863 		}
   2864 #endif
   2865 		if (!i || page_to_pfn(page) != last_pfn + 1) {
   2866 			if (i)
   2867 				sg = sg_next(sg);
   2868 			st->nents++;
   2869 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2870 		} else {
   2871 			sg->length += PAGE_SIZE;
   2872 		}
   2873 		last_pfn = page_to_pfn(page);
   2874 
   2875 		/* Check that the i965g/gm workaround works. */
   2876 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
   2877 	}
   2878 #ifdef CONFIG_SWIOTLB
   2879 	if (!swiotlb_nr_tbl())
   2880 #endif
   2881 		sg_mark_end(sg);
   2882 	obj->pages = st;
   2883 
   2884 	ret = i915_gem_gtt_prepare_object(obj);
   2885 	if (ret)
   2886 		goto err_pages;
   2887 
   2888 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2889 		i915_gem_object_do_bit_17_swizzle(obj);
   2890 
   2891 	if (obj->tiling_mode != I915_TILING_NONE &&
   2892 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
   2893 		i915_gem_object_pin_pages(obj);
   2894 
   2895 	return 0;
   2896 
   2897 err_pages:
   2898 	sg_mark_end(sg);
   2899 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
   2900 		page_cache_release(sg_page_iter_page(&sg_iter));
   2901 	sg_free_table(st);
   2902 	kfree(st);
   2903 
   2904 	/* shmemfs first checks if there is enough memory to allocate the page
   2905 	 * and reports ENOSPC should there be insufficient, along with the usual
   2906 	 * ENOMEM for a genuine allocation failure.
   2907 	 *
   2908 	 * We use ENOSPC in our driver to mean that we have run out of aperture
   2909 	 * space and so want to translate the error from shmemfs back to our
   2910 	 * usual understanding of ENOMEM.
   2911 	 */
   2912 	if (ret == -ENOSPC)
   2913 		ret = -ENOMEM;
   2914 
   2915 	return ret;
   2916 #endif
   2917 }
   2918 
   2919 /* Ensure that the associated pages are gathered from the backing storage
   2920  * and pinned into our object. i915_gem_object_get_pages() may be called
   2921  * multiple times before they are released by a single call to
   2922  * i915_gem_object_put_pages() - once the pages are no longer referenced
   2923  * either as a result of memory pressure (reaping pages under the shrinker)
   2924  * or as the object is itself released.
   2925  */
   2926 int
   2927 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
   2928 {
   2929 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2930 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2931 	int ret;
   2932 
   2933 	if (obj->pages)
   2934 		return 0;
   2935 
   2936 	if (obj->madv != I915_MADV_WILLNEED) {
   2937 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
   2938 		return -EFAULT;
   2939 	}
   2940 
   2941 	BUG_ON(obj->pages_pin_count);
   2942 
   2943 	ret = ops->get_pages(obj);
   2944 	if (ret)
   2945 		return ret;
   2946 
   2947 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   2948 
   2949 #ifndef __NetBSD__
   2950 	obj->get_page.sg = obj->pages->sgl;
   2951 	obj->get_page.last = 0;
   2952 #endif
   2953 
   2954 	return 0;
   2955 }
   2956 
   2957 void i915_vma_move_to_active(struct i915_vma *vma,
   2958 			     struct drm_i915_gem_request *req)
   2959 {
   2960 	struct drm_i915_gem_object *obj = vma->obj;
   2961 	struct intel_engine_cs *ring;
   2962 
   2963 	ring = i915_gem_request_get_ring(req);
   2964 
   2965 	/* Add a reference if we're newly entering the active list. */
   2966 	if (obj->active == 0)
   2967 		drm_gem_object_reference(&obj->base);
   2968 	obj->active |= intel_ring_flag(ring);
   2969 
   2970 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
   2971 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
   2972 
   2973 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
   2974 }
   2975 
   2976 static void
   2977 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
   2978 {
   2979 	RQ_BUG_ON(obj->last_write_req == NULL);
   2980 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
   2981 
   2982 	i915_gem_request_assign(&obj->last_write_req, NULL);
   2983 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
   2984 }
   2985 
   2986 static void
   2987 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
   2988 {
   2989 	struct i915_vma *vma;
   2990 
   2991 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
   2992 	RQ_BUG_ON(!(obj->active & (1 << ring)));
   2993 
   2994 	list_del_init(&obj->ring_list[ring]);
   2995 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
   2996 
   2997 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
   2998 		i915_gem_object_retire__write(obj);
   2999 
   3000 	obj->active &= ~(1 << ring);
   3001 	if (obj->active)
   3002 		return;
   3003 
   3004 	/* Bump our place on the bound list to keep it roughly in LRU order
   3005 	 * so that we don't steal from recently used but inactive objects
   3006 	 * (unless we are forced to ofc!)
   3007 	 */
   3008 	list_move_tail(&obj->global_list,
   3009 		       &to_i915(obj->base.dev)->mm.bound_list);
   3010 
   3011 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
   3012 		if (!list_empty(&vma->mm_list))
   3013 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
   3014 	}
   3015 
   3016 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
   3017 	drm_gem_object_unreference(&obj->base);
   3018 }
   3019 
   3020 static int
   3021 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
   3022 {
   3023 	struct drm_i915_private *dev_priv = dev->dev_private;
   3024 	struct intel_engine_cs *ring;
   3025 	int ret, i, j;
   3026 
   3027 	/* Carefully retire all requests without writing to the rings */
   3028 	for_each_ring(ring, dev_priv, i) {
   3029 		ret = intel_ring_idle(ring);
   3030 		if (ret)
   3031 			return ret;
   3032 	}
   3033 	i915_gem_retire_requests(dev);
   3034 
   3035 	/* Finally reset hw state */
   3036 	for_each_ring(ring, dev_priv, i) {
   3037 		intel_ring_init_seqno(ring, seqno);
   3038 
   3039 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
   3040 			ring->semaphore.sync_seqno[j] = 0;
   3041 	}
   3042 
   3043 	return 0;
   3044 }
   3045 
   3046 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
   3047 {
   3048 	struct drm_i915_private *dev_priv = dev->dev_private;
   3049 	int ret;
   3050 
   3051 	if (seqno == 0)
   3052 		return -EINVAL;
   3053 
   3054 	/* HWS page needs to be set less than what we
   3055 	 * will inject to ring
   3056 	 */
   3057 	ret = i915_gem_init_seqno(dev, seqno - 1);
   3058 	if (ret)
   3059 		return ret;
   3060 
   3061 	/* Carefully set the last_seqno value so that wrap
   3062 	 * detection still works
   3063 	 */
   3064 	dev_priv->next_seqno = seqno;
   3065 	dev_priv->last_seqno = seqno - 1;
   3066 	if (dev_priv->last_seqno == 0)
   3067 		dev_priv->last_seqno--;
   3068 
   3069 	return 0;
   3070 }
   3071 
   3072 int
   3073 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
   3074 {
   3075 	struct drm_i915_private *dev_priv = dev->dev_private;
   3076 
   3077 	/* reserve 0 for non-seqno */
   3078 	if (dev_priv->next_seqno == 0) {
   3079 		int ret = i915_gem_init_seqno(dev, 0);
   3080 		if (ret)
   3081 			return ret;
   3082 
   3083 		dev_priv->next_seqno = 1;
   3084 	}
   3085 
   3086 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
   3087 	return 0;
   3088 }
   3089 
   3090 /*
   3091  * NB: This function is not allowed to fail. Doing so would mean the the
   3092  * request is not being tracked for completion but the work itself is
   3093  * going to happen on the hardware. This would be a Bad Thing(tm).
   3094  */
   3095 void __i915_add_request(struct drm_i915_gem_request *request,
   3096 			struct drm_i915_gem_object *obj,
   3097 			bool flush_caches)
   3098 {
   3099 	struct intel_engine_cs *ring;
   3100 	struct drm_i915_private *dev_priv;
   3101 	struct intel_ringbuffer *ringbuf;
   3102 	u32 request_start;
   3103 	int ret;
   3104 
   3105 	if (WARN_ON(request == NULL))
   3106 		return;
   3107 
   3108 	ring = request->ring;
   3109 	dev_priv = ring->dev->dev_private;
   3110 	ringbuf = request->ringbuf;
   3111 
   3112 	/*
   3113 	 * To ensure that this call will not fail, space for its emissions
   3114 	 * should already have been reserved in the ring buffer. Let the ring
   3115 	 * know that it is time to use that space up.
   3116 	 */
   3117 	intel_ring_reserved_space_use(ringbuf);
   3118 
   3119 	request_start = intel_ring_get_tail(ringbuf);
   3120 	/*
   3121 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
   3122 	 * after having emitted the batchbuffer command. Hence we need to fix
   3123 	 * things up similar to emitting the lazy request. The difference here
   3124 	 * is that the flush _must_ happen before the next request, no matter
   3125 	 * what.
   3126 	 */
   3127 	if (flush_caches) {
   3128 		if (i915.enable_execlists)
   3129 			ret = logical_ring_flush_all_caches(request);
   3130 		else
   3131 			ret = intel_ring_flush_all_caches(request);
   3132 		/* Not allowed to fail! */
   3133 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
   3134 	}
   3135 
   3136 	/* Record the position of the start of the request so that
   3137 	 * should we detect the updated seqno part-way through the
   3138 	 * GPU processing the request, we never over-estimate the
   3139 	 * position of the head.
   3140 	 */
   3141 	request->postfix = intel_ring_get_tail(ringbuf);
   3142 
   3143 	if (i915.enable_execlists)
   3144 		ret = ring->emit_request(request);
   3145 	else {
   3146 		ret = ring->add_request(request);
   3147 
   3148 		request->tail = intel_ring_get_tail(ringbuf);
   3149 	}
   3150 	/* Not allowed to fail! */
   3151 	WARN(ret, "emit|add_request failed: %d!\n", ret);
   3152 
   3153 	request->head = request_start;
   3154 
   3155 	/* Whilst this request exists, batch_obj will be on the
   3156 	 * active_list, and so will hold the active reference. Only when this
   3157 	 * request is retired will the the batch_obj be moved onto the
   3158 	 * inactive_list and lose its active reference. Hence we do not need
   3159 	 * to explicitly hold another reference here.
   3160 	 */
   3161 	request->batch_obj = obj;
   3162 
   3163 	request->emitted_jiffies = jiffies;
   3164 	request->previous_seqno = ring->last_submitted_seqno;
   3165 	ring->last_submitted_seqno = request->seqno;
   3166 	list_add_tail(&request->list, &ring->request_list);
   3167 
   3168 	trace_i915_gem_request_add(request);
   3169 
   3170 	i915_queue_hangcheck(ring->dev);
   3171 
   3172 	queue_delayed_work(dev_priv->wq,
   3173 			   &dev_priv->mm.retire_work,
   3174 			   round_jiffies_up_relative(HZ));
   3175 	intel_mark_busy(dev_priv->dev);
   3176 
   3177 	/* Sanity check that the reserved size was large enough. */
   3178 	intel_ring_reserved_space_end(ringbuf);
   3179 }
   3180 
   3181 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
   3182 				   const struct intel_context *ctx)
   3183 {
   3184 	unsigned long elapsed;
   3185 
   3186 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
   3187 
   3188 	if (ctx->hang_stats.banned)
   3189 		return true;
   3190 
   3191 	if (ctx->hang_stats.ban_period_seconds &&
   3192 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
   3193 		if (!i915_gem_context_is_default(ctx)) {
   3194 			DRM_DEBUG("context hanging too fast, banning!\n");
   3195 			return true;
   3196 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
   3197 			if (i915_stop_ring_allow_warn(dev_priv))
   3198 				DRM_ERROR("gpu hanging too fast, banning!\n");
   3199 			return true;
   3200 		}
   3201 	}
   3202 
   3203 	return false;
   3204 }
   3205 
   3206 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
   3207 				  struct intel_context *ctx,
   3208 				  const bool guilty)
   3209 {
   3210 	struct i915_ctx_hang_stats *hs;
   3211 
   3212 	if (WARN_ON(!ctx))
   3213 		return;
   3214 
   3215 	hs = &ctx->hang_stats;
   3216 
   3217 	if (guilty) {
   3218 		hs->banned = i915_context_is_banned(dev_priv, ctx);
   3219 		hs->batch_active++;
   3220 		hs->guilty_ts = get_seconds();
   3221 	} else {
   3222 		hs->batch_pending++;
   3223 	}
   3224 }
   3225 
   3226 void i915_gem_request_free(struct kref *req_ref)
   3227 {
   3228 	struct drm_i915_gem_request *req = container_of(req_ref,
   3229 						 typeof(*req), ref);
   3230 	struct intel_context *ctx = req->ctx;
   3231 
   3232 	if (req->file_priv)
   3233 		i915_gem_request_remove_from_client(req);
   3234 
   3235 	if (ctx) {
   3236 		if (i915.enable_execlists) {
   3237 			if (ctx != req->ring->default_context)
   3238 				intel_lr_context_unpin(req);
   3239 		}
   3240 
   3241 		i915_gem_context_unreference(ctx);
   3242 	}
   3243 
   3244 	kmem_cache_free(req->i915->requests, req);
   3245 }
   3246 
   3247 int i915_gem_request_alloc(struct intel_engine_cs *ring,
   3248 			   struct intel_context *ctx,
   3249 			   struct drm_i915_gem_request **req_out)
   3250 {
   3251 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
   3252 	struct drm_i915_gem_request *req;
   3253 	int ret;
   3254 
   3255 	if (!req_out)
   3256 		return -EINVAL;
   3257 
   3258 	*req_out = NULL;
   3259 
   3260 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
   3261 	if (req == NULL)
   3262 		return -ENOMEM;
   3263 
   3264 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
   3265 	if (ret)
   3266 		goto err;
   3267 
   3268 	kref_init(&req->ref);
   3269 	req->i915 = dev_priv;
   3270 	req->ring = ring;
   3271 	req->ctx  = ctx;
   3272 	i915_gem_context_reference(req->ctx);
   3273 
   3274 	if (i915.enable_execlists)
   3275 		ret = intel_logical_ring_alloc_request_extras(req);
   3276 	else
   3277 		ret = intel_ring_alloc_request_extras(req);
   3278 	if (ret) {
   3279 		i915_gem_context_unreference(req->ctx);
   3280 		goto err;
   3281 	}
   3282 
   3283 	/*
   3284 	 * Reserve space in the ring buffer for all the commands required to
   3285 	 * eventually emit this request. This is to guarantee that the
   3286 	 * i915_add_request() call can't fail. Note that the reserve may need
   3287 	 * to be redone if the request is not actually submitted straight
   3288 	 * away, e.g. because a GPU scheduler has deferred it.
   3289 	 */
   3290 	if (i915.enable_execlists)
   3291 		ret = intel_logical_ring_reserve_space(req);
   3292 	else
   3293 		ret = intel_ring_reserve_space(req);
   3294 	if (ret) {
   3295 		/*
   3296 		 * At this point, the request is fully allocated even if not
   3297 		 * fully prepared. Thus it can be cleaned up using the proper
   3298 		 * free code.
   3299 		 */
   3300 		i915_gem_request_cancel(req);
   3301 		return ret;
   3302 	}
   3303 
   3304 	*req_out = req;
   3305 	return 0;
   3306 
   3307 err:
   3308 	kmem_cache_free(dev_priv->requests, req);
   3309 	return ret;
   3310 }
   3311 
   3312 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
   3313 {
   3314 	intel_ring_reserved_space_cancel(req->ringbuf);
   3315 
   3316 	i915_gem_request_unreference(req);
   3317 }
   3318 
   3319 struct drm_i915_gem_request *
   3320 i915_gem_find_active_request(struct intel_engine_cs *ring)
   3321 {
   3322 	struct drm_i915_gem_request *request;
   3323 
   3324 	list_for_each_entry(request, &ring->request_list, list) {
   3325 		if (i915_gem_request_completed(request, false))
   3326 			continue;
   3327 
   3328 		return request;
   3329 	}
   3330 
   3331 	return NULL;
   3332 }
   3333 
   3334 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
   3335 				       struct intel_engine_cs *ring)
   3336 {
   3337 	struct drm_i915_gem_request *request;
   3338 	bool ring_hung;
   3339 
   3340 	request = i915_gem_find_active_request(ring);
   3341 
   3342 	if (request == NULL)
   3343 		return;
   3344 
   3345 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
   3346 
   3347 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
   3348 
   3349 	list_for_each_entry_continue(request, &ring->request_list, list)
   3350 		i915_set_reset_status(dev_priv, request->ctx, false);
   3351 }
   3352 
   3353 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
   3354 					struct intel_engine_cs *ring)
   3355 {
   3356 	while (!list_empty(&ring->active_list)) {
   3357 		struct drm_i915_gem_object *obj;
   3358 
   3359 		obj = list_first_entry(&ring->active_list,
   3360 				       struct drm_i915_gem_object,
   3361 				       ring_list[ring->id]);
   3362 
   3363 		i915_gem_object_retire__read(obj, ring->id);
   3364 	}
   3365 
   3366 	/*
   3367 	 * Clear the execlists queue up before freeing the requests, as those
   3368 	 * are the ones that keep the context and ringbuffer backing objects
   3369 	 * pinned in place.
   3370 	 */
   3371 	while (!list_empty(&ring->execlist_queue)) {
   3372 		struct drm_i915_gem_request *submit_req;
   3373 
   3374 		submit_req = list_first_entry(&ring->execlist_queue,
   3375 				struct drm_i915_gem_request,
   3376 				execlist_link);
   3377 		list_del(&submit_req->execlist_link);
   3378 
   3379 		if (submit_req->ctx != ring->default_context)
   3380 			intel_lr_context_unpin(submit_req);
   3381 
   3382 		i915_gem_request_unreference(submit_req);
   3383 	}
   3384 
   3385 	/*
   3386 	 * We must free the requests after all the corresponding objects have
   3387 	 * been moved off active lists. Which is the same order as the normal
   3388 	 * retire_requests function does. This is important if object hold
   3389 	 * implicit references on things like e.g. ppgtt address spaces through
   3390 	 * the request.
   3391 	 */
   3392 	while (!list_empty(&ring->request_list)) {
   3393 		struct drm_i915_gem_request *request;
   3394 
   3395 		request = list_first_entry(&ring->request_list,
   3396 					   struct drm_i915_gem_request,
   3397 					   list);
   3398 
   3399 		i915_gem_request_retire(request);
   3400 	}
   3401 }
   3402 
   3403 void i915_gem_reset(struct drm_device *dev)
   3404 {
   3405 	struct drm_i915_private *dev_priv = dev->dev_private;
   3406 	struct intel_engine_cs *ring;
   3407 	int i;
   3408 
   3409 	/*
   3410 	 * Before we free the objects from the requests, we need to inspect
   3411 	 * them for finding the guilty party. As the requests only borrow
   3412 	 * their reference to the objects, the inspection must be done first.
   3413 	 */
   3414 	for_each_ring(ring, dev_priv, i)
   3415 		i915_gem_reset_ring_status(dev_priv, ring);
   3416 
   3417 	for_each_ring(ring, dev_priv, i)
   3418 		i915_gem_reset_ring_cleanup(dev_priv, ring);
   3419 
   3420 	i915_gem_context_reset(dev);
   3421 
   3422 	i915_gem_restore_fences(dev);
   3423 
   3424 	WARN_ON(i915_verify_lists(dev));
   3425 }
   3426 
   3427 /**
   3428  * This function clears the request list as sequence numbers are passed.
   3429  */
   3430 void
   3431 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
   3432 {
   3433 	WARN_ON(i915_verify_lists(ring->dev));
   3434 
   3435 	/* Retire requests first as we use it above for the early return.
   3436 	 * If we retire requests last, we may use a later seqno and so clear
   3437 	 * the requests lists without clearing the active list, leading to
   3438 	 * confusion.
   3439 	 */
   3440 	while (!list_empty(&ring->request_list)) {
   3441 		struct drm_i915_gem_request *request;
   3442 
   3443 		request = list_first_entry(&ring->request_list,
   3444 					   struct drm_i915_gem_request,
   3445 					   list);
   3446 
   3447 		if (!i915_gem_request_completed(request, true))
   3448 			break;
   3449 
   3450 		i915_gem_request_retire(request);
   3451 	}
   3452 
   3453 	/* Move any buffers on the active list that are no longer referenced
   3454 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
   3455 	 * before we free the context associated with the requests.
   3456 	 */
   3457 	while (!list_empty(&ring->active_list)) {
   3458 		struct drm_i915_gem_object *obj;
   3459 
   3460 		obj = list_first_entry(&ring->active_list,
   3461 				      struct drm_i915_gem_object,
   3462 				      ring_list[ring->id]);
   3463 
   3464 		if (!list_empty(&obj->last_read_req[ring->id]->list))
   3465 			break;
   3466 
   3467 		i915_gem_object_retire__read(obj, ring->id);
   3468 	}
   3469 
   3470 	if (unlikely(ring->trace_irq_req &&
   3471 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
   3472 		ring->irq_put(ring);
   3473 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
   3474 	}
   3475 
   3476 	WARN_ON(i915_verify_lists(ring->dev));
   3477 }
   3478 
   3479 bool
   3480 i915_gem_retire_requests(struct drm_device *dev)
   3481 {
   3482 	struct drm_i915_private *dev_priv = dev->dev_private;
   3483 	struct intel_engine_cs *ring;
   3484 	bool idle = true;
   3485 	int i;
   3486 
   3487 	for_each_ring(ring, dev_priv, i) {
   3488 		i915_gem_retire_requests_ring(ring);
   3489 		idle &= list_empty(&ring->request_list);
   3490 		if (i915.enable_execlists) {
   3491 			unsigned long flags;
   3492 
   3493 			spin_lock_irqsave(&ring->execlist_lock, flags);
   3494 			idle &= list_empty(&ring->execlist_queue);
   3495 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
   3496 
   3497 			intel_execlists_retire_requests(ring);
   3498 		}
   3499 	}
   3500 
   3501 	if (idle)
   3502 		mod_delayed_work(dev_priv->wq,
   3503 				   &dev_priv->mm.idle_work,
   3504 				   msecs_to_jiffies(100));
   3505 
   3506 	return idle;
   3507 }
   3508 
   3509 static void
   3510 i915_gem_retire_work_handler(struct work_struct *work)
   3511 {
   3512 	struct drm_i915_private *dev_priv =
   3513 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
   3514 	struct drm_device *dev = dev_priv->dev;
   3515 	bool idle;
   3516 
   3517 	/* Come back later if the device is busy... */
   3518 	idle = false;
   3519 	if (mutex_trylock(&dev->struct_mutex)) {
   3520 		idle = i915_gem_retire_requests(dev);
   3521 		mutex_unlock(&dev->struct_mutex);
   3522 	}
   3523 	if (!idle)
   3524 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
   3525 				   round_jiffies_up_relative(HZ));
   3526 }
   3527 
   3528 static void
   3529 i915_gem_idle_work_handler(struct work_struct *work)
   3530 {
   3531 	struct drm_i915_private *dev_priv =
   3532 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
   3533 	struct drm_device *dev = dev_priv->dev;
   3534 	struct intel_engine_cs *ring;
   3535 	int i;
   3536 
   3537 	for_each_ring(ring, dev_priv, i)
   3538 		if (!list_empty(&ring->request_list))
   3539 			return;
   3540 
   3541 	intel_mark_idle(dev);
   3542 
   3543 	if (mutex_trylock(&dev->struct_mutex)) {
   3544 		struct intel_engine_cs *ring;
   3545 		int i;
   3546 
   3547 		for_each_ring(ring, dev_priv, i)
   3548 			i915_gem_batch_pool_fini(&ring->batch_pool);
   3549 
   3550 		mutex_unlock(&dev->struct_mutex);
   3551 	}
   3552 }
   3553 
   3554 /**
   3555  * Ensures that an object will eventually get non-busy by flushing any required
   3556  * write domains, emitting any outstanding lazy request and retiring and
   3557  * completed requests.
   3558  */
   3559 static int
   3560 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
   3561 {
   3562 	int i;
   3563 
   3564 	if (!obj->active)
   3565 		return 0;
   3566 
   3567 	for (i = 0; i < I915_NUM_RINGS; i++) {
   3568 		struct drm_i915_gem_request *req;
   3569 
   3570 		req = obj->last_read_req[i];
   3571 		if (req == NULL)
   3572 			continue;
   3573 
   3574 		if (list_empty(&req->list))
   3575 			goto retire;
   3576 
   3577 		if (i915_gem_request_completed(req, true)) {
   3578 			__i915_gem_request_retire__upto(req);
   3579 retire:
   3580 			i915_gem_object_retire__read(obj, i);
   3581 		}
   3582 	}
   3583 
   3584 	return 0;
   3585 }
   3586 
   3587 /**
   3588  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
   3589  * @DRM_IOCTL_ARGS: standard ioctl arguments
   3590  *
   3591  * Returns 0 if successful, else an error is returned with the remaining time in
   3592  * the timeout parameter.
   3593  *  -ETIME: object is still busy after timeout
   3594  *  -ERESTARTSYS: signal interrupted the wait
   3595  *  -ENONENT: object doesn't exist
   3596  * Also possible, but rare:
   3597  *  -EAGAIN: GPU wedged
   3598  *  -ENOMEM: damn
   3599  *  -ENODEV: Internal IRQ fail
   3600  *  -E?: The add request failed
   3601  *
   3602  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
   3603  * non-zero timeout parameter the wait ioctl will wait for the given number of
   3604  * nanoseconds on an object becoming unbusy. Since the wait itself does so
   3605  * without holding struct_mutex the object may become re-busied before this
   3606  * function completes. A similar but shorter * race condition exists in the busy
   3607  * ioctl
   3608  */
   3609 int
   3610 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
   3611 {
   3612 	struct drm_i915_private *dev_priv = dev->dev_private;
   3613 	struct drm_i915_gem_wait *args = data;
   3614 	struct drm_gem_object *gobj;
   3615 	struct drm_i915_gem_object *obj;
   3616 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
   3617 	unsigned reset_counter;
   3618 	int i, n = 0;
   3619 	int ret;
   3620 
   3621 	if (args->flags != 0)
   3622 		return -EINVAL;
   3623 
   3624 	ret = i915_mutex_lock_interruptible(dev);
   3625 	if (ret)
   3626 		return ret;
   3627 
   3628 	gobj = drm_gem_object_lookup(dev, file, args->bo_handle);
   3629 	if (gobj == NULL) {
   3630 		mutex_unlock(&dev->struct_mutex);
   3631 		return -ENOENT;
   3632 	}
   3633 	obj = to_intel_bo(gobj);
   3634 
   3635 	/* Need to make sure the object gets inactive eventually. */
   3636 	ret = i915_gem_object_flush_active(obj);
   3637 	if (ret)
   3638 		goto out;
   3639 
   3640 	if (!obj->active)
   3641 		goto out;
   3642 
   3643 	/* Do this after OLR check to make sure we make forward progress polling
   3644 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
   3645 	 */
   3646 	if (args->timeout_ns == 0) {
   3647 		ret = -ETIME;
   3648 		goto out;
   3649 	}
   3650 
   3651 	drm_gem_object_unreference(&obj->base);
   3652 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   3653 
   3654 	for (i = 0; i < I915_NUM_RINGS; i++) {
   3655 		if (obj->last_read_req[i] == NULL)
   3656 			continue;
   3657 
   3658 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
   3659 	}
   3660 
   3661 	mutex_unlock(&dev->struct_mutex);
   3662 
   3663 	for (i = 0; i < n; i++) {
   3664 		if (ret == 0)
   3665 			ret = __i915_wait_request(req[i], reset_counter, true,
   3666 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
   3667 						  file->driver_priv);
   3668 		i915_gem_request_unreference__unlocked(req[i]);
   3669 	}
   3670 	return ret;
   3671 
   3672 out:
   3673 	drm_gem_object_unreference(&obj->base);
   3674 	mutex_unlock(&dev->struct_mutex);
   3675 	return ret;
   3676 }
   3677 
   3678 static int
   3679 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
   3680 		       struct intel_engine_cs *to,
   3681 		       struct drm_i915_gem_request *from_req,
   3682 		       struct drm_i915_gem_request **to_req)
   3683 {
   3684 	struct intel_engine_cs *from;
   3685 	int ret;
   3686 
   3687 	from = i915_gem_request_get_ring(from_req);
   3688 	if (to == from)
   3689 		return 0;
   3690 
   3691 	if (i915_gem_request_completed(from_req, true))
   3692 		return 0;
   3693 
   3694 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
   3695 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
   3696 		ret = __i915_wait_request(from_req,
   3697 					  atomic_read(&i915->gpu_error.reset_counter),
   3698 					  i915->mm.interruptible,
   3699 					  NULL,
   3700 					  &i915->rps.semaphores);
   3701 		if (ret)
   3702 			return ret;
   3703 
   3704 		i915_gem_object_retire_request(obj, from_req);
   3705 	} else {
   3706 		int idx = intel_ring_sync_index(from, to);
   3707 		u32 seqno = i915_gem_request_get_seqno(from_req);
   3708 
   3709 		WARN_ON(!to_req);
   3710 
   3711 		if (seqno <= from->semaphore.sync_seqno[idx])
   3712 			return 0;
   3713 
   3714 		if (*to_req == NULL) {
   3715 			ret = i915_gem_request_alloc(to, to->default_context, to_req);
   3716 			if (ret)
   3717 				return ret;
   3718 		}
   3719 
   3720 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
   3721 		ret = to->semaphore.sync_to(*to_req, from, seqno);
   3722 		if (ret)
   3723 			return ret;
   3724 
   3725 		/* We use last_read_req because sync_to()
   3726 		 * might have just caused seqno wrap under
   3727 		 * the radar.
   3728 		 */
   3729 		from->semaphore.sync_seqno[idx] =
   3730 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
   3731 	}
   3732 
   3733 	return 0;
   3734 }
   3735 
   3736 /**
   3737  * i915_gem_object_sync - sync an object to a ring.
   3738  *
   3739  * @obj: object which may be in use on another ring.
   3740  * @to: ring we wish to use the object on. May be NULL.
   3741  * @to_req: request we wish to use the object for. See below.
   3742  *          This will be allocated and returned if a request is
   3743  *          required but not passed in.
   3744  *
   3745  * This code is meant to abstract object synchronization with the GPU.
   3746  * Calling with NULL implies synchronizing the object with the CPU
   3747  * rather than a particular GPU ring. Conceptually we serialise writes
   3748  * between engines inside the GPU. We only allow one engine to write
   3749  * into a buffer at any time, but multiple readers. To ensure each has
   3750  * a coherent view of memory, we must:
   3751  *
   3752  * - If there is an outstanding write request to the object, the new
   3753  *   request must wait for it to complete (either CPU or in hw, requests
   3754  *   on the same ring will be naturally ordered).
   3755  *
   3756  * - If we are a write request (pending_write_domain is set), the new
   3757  *   request must wait for outstanding read requests to complete.
   3758  *
   3759  * For CPU synchronisation (NULL to) no request is required. For syncing with
   3760  * rings to_req must be non-NULL. However, a request does not have to be
   3761  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
   3762  * request will be allocated automatically and returned through *to_req. Note
   3763  * that it is not guaranteed that commands will be emitted (because the system
   3764  * might already be idle). Hence there is no need to create a request that
   3765  * might never have any work submitted. Note further that if a request is
   3766  * returned in *to_req, it is the responsibility of the caller to submit
   3767  * that request (after potentially adding more work to it).
   3768  *
   3769  * Returns 0 if successful, else propagates up the lower layer error.
   3770  */
   3771 int
   3772 i915_gem_object_sync(struct drm_i915_gem_object *obj,
   3773 		     struct intel_engine_cs *to,
   3774 		     struct drm_i915_gem_request **to_req)
   3775 {
   3776 	const bool readonly = obj->base.pending_write_domain == 0;
   3777 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
   3778 	int ret, i, n;
   3779 
   3780 	if (!obj->active)
   3781 		return 0;
   3782 
   3783 	if (to == NULL)
   3784 		return i915_gem_object_wait_rendering(obj, readonly);
   3785 
   3786 	n = 0;
   3787 	if (readonly) {
   3788 		if (obj->last_write_req)
   3789 			req[n++] = obj->last_write_req;
   3790 	} else {
   3791 		for (i = 0; i < I915_NUM_RINGS; i++)
   3792 			if (obj->last_read_req[i])
   3793 				req[n++] = obj->last_read_req[i];
   3794 	}
   3795 	for (i = 0; i < n; i++) {
   3796 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
   3797 		if (ret)
   3798 			return ret;
   3799 	}
   3800 
   3801 	return 0;
   3802 }
   3803 
   3804 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
   3805 {
   3806 	u32 old_write_domain, old_read_domains;
   3807 
   3808 	/* Force a pagefault for domain tracking on next user access */
   3809 	i915_gem_release_mmap(obj);
   3810 
   3811 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   3812 		return;
   3813 
   3814 	/* Wait for any direct GTT access to complete */
   3815 	mb();
   3816 
   3817 	old_read_domains = obj->base.read_domains;
   3818 	old_write_domain = obj->base.write_domain;
   3819 
   3820 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
   3821 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
   3822 
   3823 	trace_i915_gem_object_change_domain(obj,
   3824 					    old_read_domains,
   3825 					    old_write_domain);
   3826 }
   3827 
   3828 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
   3829 {
   3830 	struct drm_i915_gem_object *obj = vma->obj;
   3831 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3832 	int ret;
   3833 
   3834 	if (list_empty(&vma->vma_link))
   3835 		return 0;
   3836 
   3837 	if (!drm_mm_node_allocated(&vma->node)) {
   3838 		i915_gem_vma_destroy(vma);
   3839 		return 0;
   3840 	}
   3841 
   3842 	if (vma->pin_count)
   3843 		return -EBUSY;
   3844 
   3845 	BUG_ON(obj->pages == NULL);
   3846 
   3847 	if (wait) {
   3848 		ret = i915_gem_object_wait_rendering(obj, false);
   3849 		if (ret)
   3850 			return ret;
   3851 	}
   3852 
   3853 	if (i915_is_ggtt(vma->vm) &&
   3854 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
   3855 		i915_gem_object_finish_gtt(obj);
   3856 
   3857 		/* release the fence reg _after_ flushing */
   3858 		ret = i915_gem_object_put_fence(obj);
   3859 		if (ret)
   3860 			return ret;
   3861 	}
   3862 
   3863 	trace_i915_vma_unbind(vma);
   3864 
   3865 	vma->vm->unbind_vma(vma);
   3866 	vma->bound = 0;
   3867 
   3868 	list_del_init(&vma->mm_list);
   3869 	if (i915_is_ggtt(vma->vm)) {
   3870 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
   3871 			obj->map_and_fenceable = false;
   3872 		} else if (vma->ggtt_view.pages) {
   3873 #ifdef __NetBSD__
   3874 			panic("rotated/partial views can't happen");
   3875 #else
   3876 			sg_free_table(vma->ggtt_view.pages);
   3877 			kfree(vma->ggtt_view.pages);
   3878 #endif
   3879 		}
   3880 		vma->ggtt_view.pages = NULL;
   3881 	}
   3882 
   3883 	drm_mm_remove_node(&vma->node);
   3884 	i915_gem_vma_destroy(vma);
   3885 
   3886 	/* Since the unbound list is global, only move to that list if
   3887 	 * no more VMAs exist. */
   3888 	if (list_empty(&obj->vma_list))
   3889 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   3890 
   3891 	/* And finally now the object is completely decoupled from this vma,
   3892 	 * we can drop its hold on the backing storage and allow it to be
   3893 	 * reaped by the shrinker.
   3894 	 */
   3895 	i915_gem_object_unpin_pages(obj);
   3896 
   3897 	return 0;
   3898 }
   3899 
   3900 int i915_vma_unbind(struct i915_vma *vma)
   3901 {
   3902 	return __i915_vma_unbind(vma, true);
   3903 }
   3904 
   3905 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
   3906 {
   3907 	return __i915_vma_unbind(vma, false);
   3908 }
   3909 
   3910 int i915_gpu_idle(struct drm_device *dev)
   3911 {
   3912 	struct drm_i915_private *dev_priv = dev->dev_private;
   3913 	struct intel_engine_cs *ring;
   3914 	int ret, i;
   3915 
   3916 	/* Flush everything onto the inactive list. */
   3917 	for_each_ring(ring, dev_priv, i) {
   3918 		if (!i915.enable_execlists) {
   3919 			struct drm_i915_gem_request *req;
   3920 
   3921 			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
   3922 			if (ret)
   3923 				return ret;
   3924 
   3925 			ret = i915_switch_context(req);
   3926 			if (ret) {
   3927 				i915_gem_request_cancel(req);
   3928 				return ret;
   3929 			}
   3930 
   3931 			i915_add_request_no_flush(req);
   3932 		}
   3933 
   3934 		ret = intel_ring_idle(ring);
   3935 		if (ret)
   3936 			return ret;
   3937 	}
   3938 
   3939 	WARN_ON(i915_verify_lists(dev));
   3940 	return 0;
   3941 }
   3942 
   3943 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
   3944 				     unsigned long cache_level)
   3945 {
   3946 	struct drm_mm_node *gtt_space = &vma->node;
   3947 	struct drm_mm_node *other;
   3948 
   3949 	/*
   3950 	 * On some machines we have to be careful when putting differing types
   3951 	 * of snoopable memory together to avoid the prefetcher crossing memory
   3952 	 * domains and dying. During vm initialisation, we decide whether or not
   3953 	 * these constraints apply and set the drm_mm.color_adjust
   3954 	 * appropriately.
   3955 	 */
   3956 	if (vma->vm->mm.color_adjust == NULL)
   3957 		return true;
   3958 
   3959 	if (!drm_mm_node_allocated(gtt_space))
   3960 		return true;
   3961 
   3962 	if (list_empty(&gtt_space->node_list))
   3963 		return true;
   3964 
   3965 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
   3966 	if (other->allocated && !other->hole_follows && other->color != cache_level)
   3967 		return false;
   3968 
   3969 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
   3970 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
   3971 		return false;
   3972 
   3973 	return true;
   3974 }
   3975 
   3976 /**
   3977  * Finds free space in the GTT aperture and binds the object or a view of it
   3978  * there.
   3979  */
   3980 static struct i915_vma *
   3981 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
   3982 			   struct i915_address_space *vm,
   3983 			   const struct i915_ggtt_view *ggtt_view,
   3984 			   unsigned alignment,
   3985 			   uint64_t flags)
   3986 {
   3987 	struct drm_device *dev = obj->base.dev;
   3988 	struct drm_i915_private *dev_priv = dev->dev_private;
   3989 	u32 fence_alignment, unfenced_alignment;
   3990 	u32 search_flag, alloc_flag;
   3991 	u64 start, end;
   3992 	u64 size, fence_size;
   3993 	struct i915_vma *vma;
   3994 	int ret;
   3995 
   3996 	if (i915_is_ggtt(vm)) {
   3997 		u32 view_size;
   3998 
   3999 		if (WARN_ON(!ggtt_view))
   4000 			return ERR_PTR(-EINVAL);
   4001 
   4002 		view_size = i915_ggtt_view_size(obj, ggtt_view);
   4003 
   4004 		fence_size = i915_gem_get_gtt_size(dev,
   4005 						   view_size,
   4006 						   obj->tiling_mode);
   4007 		fence_alignment = i915_gem_get_gtt_alignment(dev,
   4008 							     view_size,
   4009 							     obj->tiling_mode,
   4010 							     true);
   4011 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
   4012 								view_size,
   4013 								obj->tiling_mode,
   4014 								false);
   4015 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
   4016 	} else {
   4017 		fence_size = i915_gem_get_gtt_size(dev,
   4018 						   obj->base.size,
   4019 						   obj->tiling_mode);
   4020 		fence_alignment = i915_gem_get_gtt_alignment(dev,
   4021 							     obj->base.size,
   4022 							     obj->tiling_mode,
   4023 							     true);
   4024 		unfenced_alignment =
   4025 			i915_gem_get_gtt_alignment(dev,
   4026 						   obj->base.size,
   4027 						   obj->tiling_mode,
   4028 						   false);
   4029 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
   4030 	}
   4031 
   4032 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
   4033 	end = vm->total;
   4034 	if (flags & PIN_MAPPABLE)
   4035 		end = min_t(u64, end, dev_priv->gtt.mappable_end);
   4036 	if (flags & PIN_ZONE_4G)
   4037 		end = min_t(u64, end, (1ULL << 32));
   4038 
   4039 	if (alignment == 0)
   4040 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
   4041 						unfenced_alignment;
   4042 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
   4043 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
   4044 			  ggtt_view ? ggtt_view->type : 0,
   4045 			  alignment);
   4046 		return ERR_PTR(-EINVAL);
   4047 	}
   4048 
   4049 	/* If binding the object/GGTT view requires more space than the entire
   4050 	 * aperture has, reject it early before evicting everything in a vain
   4051 	 * attempt to find space.
   4052 	 */
   4053 	if (size > end) {
   4054 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%"PRIx64" > %s aperture=%"PRIx64"\n",
   4055 			  ggtt_view ? ggtt_view->type : 0,
   4056 			  size,
   4057 			  flags & PIN_MAPPABLE ? "mappable" : "total",
   4058 			  end);
   4059 		return ERR_PTR(-E2BIG);
   4060 	}
   4061 
   4062 	ret = i915_gem_object_get_pages(obj);
   4063 	if (ret)
   4064 		return ERR_PTR(ret);
   4065 
   4066 	i915_gem_object_pin_pages(obj);
   4067 
   4068 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
   4069 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
   4070 
   4071 	if (IS_ERR(vma))
   4072 		goto err_unpin;
   4073 
   4074 	if (flags & PIN_HIGH) {
   4075 		search_flag = DRM_MM_SEARCH_BELOW;
   4076 		alloc_flag = DRM_MM_CREATE_TOP;
   4077 	} else {
   4078 		search_flag = DRM_MM_SEARCH_DEFAULT;
   4079 		alloc_flag = DRM_MM_CREATE_DEFAULT;
   4080 	}
   4081 
   4082 search_free:
   4083 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
   4084 						  size, alignment,
   4085 						  obj->cache_level,
   4086 						  start, end,
   4087 						  search_flag,
   4088 						  alloc_flag);
   4089 	if (ret) {
   4090 		ret = i915_gem_evict_something(dev, vm, size, alignment,
   4091 					       obj->cache_level,
   4092 					       start, end,
   4093 					       flags);
   4094 		if (ret == 0)
   4095 			goto search_free;
   4096 
   4097 		goto err_free_vma;
   4098 	}
   4099 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
   4100 		ret = -EINVAL;
   4101 		goto err_remove_node;
   4102 	}
   4103 
   4104 	trace_i915_vma_bind(vma, flags);
   4105 	ret = i915_vma_bind(vma, obj->cache_level, flags);
   4106 	if (ret)
   4107 		goto err_remove_node;
   4108 
   4109 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
   4110 	list_add_tail(&vma->mm_list, &vm->inactive_list);
   4111 
   4112 	return vma;
   4113 
   4114 err_remove_node:
   4115 	drm_mm_remove_node(&vma->node);
   4116 err_free_vma:
   4117 	i915_gem_vma_destroy(vma);
   4118 	vma = ERR_PTR(ret);
   4119 err_unpin:
   4120 	i915_gem_object_unpin_pages(obj);
   4121 	return vma;
   4122 }
   4123 
   4124 bool
   4125 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
   4126 			bool force)
   4127 {
   4128 	/* If we don't have a page list set up, then we're not pinned
   4129 	 * to GPU, and we can ignore the cache flush because it'll happen
   4130 	 * again at bind time.
   4131 	 */
   4132 	if (obj->pages == NULL)
   4133 		return false;
   4134 
   4135 	/*
   4136 	 * Stolen memory is always coherent with the GPU as it is explicitly
   4137 	 * marked as wc by the system, or the system is cache-coherent.
   4138 	 */
   4139 	if (obj->stolen || obj->phys_handle)
   4140 		return false;
   4141 
   4142 	/* If the GPU is snooping the contents of the CPU cache,
   4143 	 * we do not need to manually clear the CPU cache lines.  However,
   4144 	 * the caches are only snooped when the render cache is
   4145 	 * flushed/invalidated.  As we always have to emit invalidations
   4146 	 * and flushes when moving into and out of the RENDER domain, correct
   4147 	 * snooping behaviour occurs naturally as the result of our domain
   4148 	 * tracking.
   4149 	 */
   4150 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
   4151 		obj->cache_dirty = true;
   4152 		return false;
   4153 	}
   4154 
   4155 	trace_i915_gem_object_clflush(obj);
   4156 #ifdef __NetBSD__
   4157 	drm_clflush_pglist(&obj->pageq);
   4158 #else
   4159 	drm_clflush_sg(obj->pages);
   4160 #endif
   4161 	obj->cache_dirty = false;
   4162 
   4163 	return true;
   4164 }
   4165 
   4166 /** Flushes the GTT write domain for the object if it's dirty. */
   4167 static void
   4168 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
   4169 {
   4170 	uint32_t old_write_domain;
   4171 
   4172 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
   4173 		return;
   4174 
   4175 	/* No actual flushing is required for the GTT write domain.  Writes
   4176 	 * to it immediately go to main memory as far as we know, so there's
   4177 	 * no chipset flush.  It also doesn't land in render cache.
   4178 	 *
   4179 	 * However, we do have to enforce the order so that all writes through
   4180 	 * the GTT land before any writes to the device, such as updates to
   4181 	 * the GATT itself.
   4182 	 */
   4183 	wmb();
   4184 
   4185 	old_write_domain = obj->base.write_domain;
   4186 	obj->base.write_domain = 0;
   4187 
   4188 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
   4189 
   4190 	trace_i915_gem_object_change_domain(obj,
   4191 					    obj->base.read_domains,
   4192 					    old_write_domain);
   4193 }
   4194 
   4195 /** Flushes the CPU write domain for the object if it's dirty. */
   4196 static void
   4197 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
   4198 {
   4199 	uint32_t old_write_domain;
   4200 
   4201 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
   4202 		return;
   4203 
   4204 	if (i915_gem_clflush_object(obj, obj->pin_display))
   4205 		i915_gem_chipset_flush(obj->base.dev);
   4206 
   4207 	old_write_domain = obj->base.write_domain;
   4208 	obj->base.write_domain = 0;
   4209 
   4210 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
   4211 
   4212 	trace_i915_gem_object_change_domain(obj,
   4213 					    obj->base.read_domains,
   4214 					    old_write_domain);
   4215 }
   4216 
   4217 /**
   4218  * Moves a single object to the GTT read, and possibly write domain.
   4219  *
   4220  * This function returns when the move is complete, including waiting on
   4221  * flushes to occur.
   4222  */
   4223 int
   4224 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
   4225 {
   4226 	uint32_t old_write_domain, old_read_domains;
   4227 	struct i915_vma *vma;
   4228 	int ret;
   4229 
   4230 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
   4231 		return 0;
   4232 
   4233 	ret = i915_gem_object_wait_rendering(obj, !write);
   4234 	if (ret)
   4235 		return ret;
   4236 
   4237 	/* Flush and acquire obj->pages so that we are coherent through
   4238 	 * direct access in memory with previous cached writes through
   4239 	 * shmemfs and that our cache domain tracking remains valid.
   4240 	 * For example, if the obj->filp was moved to swap without us
   4241 	 * being notified and releasing the pages, we would mistakenly
   4242 	 * continue to assume that the obj remained out of the CPU cached
   4243 	 * domain.
   4244 	 */
   4245 	ret = i915_gem_object_get_pages(obj);
   4246 	if (ret)
   4247 		return ret;
   4248 
   4249 	i915_gem_object_flush_cpu_write_domain(obj);
   4250 
   4251 	/* Serialise direct access to this object with the barriers for
   4252 	 * coherent writes from the GPU, by effectively invalidating the
   4253 	 * GTT domain upon first access.
   4254 	 */
   4255 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   4256 		mb();
   4257 
   4258 	old_write_domain = obj->base.write_domain;
   4259 	old_read_domains = obj->base.read_domains;
   4260 
   4261 	/* It should now be out of any other write domains, and we can update
   4262 	 * the domain values for our changes.
   4263 	 */
   4264 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
   4265 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4266 	if (write) {
   4267 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
   4268 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
   4269 		obj->dirty = 1;
   4270 	}
   4271 
   4272 	trace_i915_gem_object_change_domain(obj,
   4273 					    old_read_domains,
   4274 					    old_write_domain);
   4275 
   4276 	/* And bump the LRU for this access */
   4277 	vma = i915_gem_obj_to_ggtt(obj);
   4278 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
   4279 		list_move_tail(&vma->mm_list,
   4280 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
   4281 
   4282 	return 0;
   4283 }
   4284 
   4285 /**
   4286  * Changes the cache-level of an object across all VMA.
   4287  *
   4288  * After this function returns, the object will be in the new cache-level
   4289  * across all GTT and the contents of the backing storage will be coherent,
   4290  * with respect to the new cache-level. In order to keep the backing storage
   4291  * coherent for all users, we only allow a single cache level to be set
   4292  * globally on the object and prevent it from being changed whilst the
   4293  * hardware is reading from the object. That is if the object is currently
   4294  * on the scanout it will be set to uncached (or equivalent display
   4295  * cache coherency) and all non-MOCS GPU access will also be uncached so
   4296  * that all direct access to the scanout remains coherent.
   4297  */
   4298 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
   4299 				    enum i915_cache_level cache_level)
   4300 {
   4301 	struct drm_device *dev = obj->base.dev;
   4302 	struct i915_vma *vma, *next;
   4303 	bool bound = false;
   4304 	int ret = 0;
   4305 
   4306 	if (obj->cache_level == cache_level)
   4307 		goto out;
   4308 
   4309 	/* Inspect the list of currently bound VMA and unbind any that would
   4310 	 * be invalid given the new cache-level. This is principally to
   4311 	 * catch the issue of the CS prefetch crossing page boundaries and
   4312 	 * reading an invalid PTE on older architectures.
   4313 	 */
   4314 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   4315 		if (!drm_mm_node_allocated(&vma->node))
   4316 			continue;
   4317 
   4318 		if (vma->pin_count) {
   4319 			DRM_DEBUG("can not change the cache level of pinned objects\n");
   4320 			return -EBUSY;
   4321 		}
   4322 
   4323 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
   4324 			ret = i915_vma_unbind(vma);
   4325 			if (ret)
   4326 				return ret;
   4327 		} else
   4328 			bound = true;
   4329 	}
   4330 
   4331 	/* We can reuse the existing drm_mm nodes but need to change the
   4332 	 * cache-level on the PTE. We could simply unbind them all and
   4333 	 * rebind with the correct cache-level on next use. However since
   4334 	 * we already have a valid slot, dma mapping, pages etc, we may as
   4335 	 * rewrite the PTE in the belief that doing so tramples upon less
   4336 	 * state and so involves less work.
   4337 	 */
   4338 	if (bound) {
   4339 		/* Before we change the PTE, the GPU must not be accessing it.
   4340 		 * If we wait upon the object, we know that all the bound
   4341 		 * VMA are no longer active.
   4342 		 */
   4343 		ret = i915_gem_object_wait_rendering(obj, false);
   4344 		if (ret)
   4345 			return ret;
   4346 
   4347 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
   4348 			/* Access to snoopable pages through the GTT is
   4349 			 * incoherent and on some machines causes a hard
   4350 			 * lockup. Relinquish the CPU mmaping to force
   4351 			 * userspace to refault in the pages and we can
   4352 			 * then double check if the GTT mapping is still
   4353 			 * valid for that pointer access.
   4354 			 */
   4355 			i915_gem_release_mmap(obj);
   4356 
   4357 			/* As we no longer need a fence for GTT access,
   4358 			 * we can relinquish it now (and so prevent having
   4359 			 * to steal a fence from someone else on the next
   4360 			 * fence request). Note GPU activity would have
   4361 			 * dropped the fence as all snoopable access is
   4362 			 * supposed to be linear.
   4363 			 */
   4364 			ret = i915_gem_object_put_fence(obj);
   4365 			if (ret)
   4366 				return ret;
   4367 		} else {
   4368 			/* We either have incoherent backing store and
   4369 			 * so no GTT access or the architecture is fully
   4370 			 * coherent. In such cases, existing GTT mmaps
   4371 			 * ignore the cache bit in the PTE and we can
   4372 			 * rewrite it without confusing the GPU or having
   4373 			 * to force userspace to fault back in its mmaps.
   4374 			 */
   4375 		}
   4376 
   4377 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
   4378 			if (!drm_mm_node_allocated(&vma->node))
   4379 				continue;
   4380 
   4381 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
   4382 			if (ret)
   4383 				return ret;
   4384 		}
   4385 	}
   4386 
   4387 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   4388 		vma->node.color = cache_level;
   4389 	obj->cache_level = cache_level;
   4390 
   4391 out:
   4392 	/* Flush the dirty CPU caches to the backing storage so that the
   4393 	 * object is now coherent at its new cache level (with respect
   4394 	 * to the access domain).
   4395 	 */
   4396 	if (obj->cache_dirty &&
   4397 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
   4398 	    cpu_write_needs_clflush(obj)) {
   4399 		if (i915_gem_clflush_object(obj, true))
   4400 			i915_gem_chipset_flush(obj->base.dev);
   4401 	}
   4402 
   4403 	return 0;
   4404 }
   4405 
   4406 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
   4407 			       struct drm_file *file)
   4408 {
   4409 	struct drm_i915_gem_caching *args = data;
   4410 	struct drm_gem_object *gobj;
   4411 	struct drm_i915_gem_object *obj;
   4412 
   4413 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4414 	if (gobj == NULL)
   4415 		return -ENOENT;
   4416 	obj = to_intel_bo(gobj);
   4417 
   4418 	switch (obj->cache_level) {
   4419 	case I915_CACHE_LLC:
   4420 	case I915_CACHE_L3_LLC:
   4421 		args->caching = I915_CACHING_CACHED;
   4422 		break;
   4423 
   4424 	case I915_CACHE_WT:
   4425 		args->caching = I915_CACHING_DISPLAY;
   4426 		break;
   4427 
   4428 	default:
   4429 		args->caching = I915_CACHING_NONE;
   4430 		break;
   4431 	}
   4432 
   4433 	drm_gem_object_unreference_unlocked(&obj->base);
   4434 	return 0;
   4435 }
   4436 
   4437 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
   4438 			       struct drm_file *file)
   4439 {
   4440 	struct drm_i915_private *dev_priv = dev->dev_private;
   4441 	struct drm_i915_gem_caching *args = data;
   4442 	struct drm_gem_object *gobj;
   4443 	struct drm_i915_gem_object *obj;
   4444 	enum i915_cache_level level;
   4445 	int ret;
   4446 
   4447 	switch (args->caching) {
   4448 	case I915_CACHING_NONE:
   4449 		level = I915_CACHE_NONE;
   4450 		break;
   4451 	case I915_CACHING_CACHED:
   4452 		/*
   4453 		 * Due to a HW issue on BXT A stepping, GPU stores via a
   4454 		 * snooped mapping may leave stale data in a corresponding CPU
   4455 		 * cacheline, whereas normally such cachelines would get
   4456 		 * invalidated.
   4457 		 */
   4458 		if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
   4459 			return -ENODEV;
   4460 
   4461 		level = I915_CACHE_LLC;
   4462 		break;
   4463 	case I915_CACHING_DISPLAY:
   4464 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
   4465 		break;
   4466 	default:
   4467 		return -EINVAL;
   4468 	}
   4469 
   4470 	intel_runtime_pm_get(dev_priv);
   4471 
   4472 	ret = i915_mutex_lock_interruptible(dev);
   4473 	if (ret)
   4474 		goto rpm_put;
   4475 
   4476 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4477 	if (gobj == NULL) {
   4478 		ret = -ENOENT;
   4479 		goto unlock;
   4480 	}
   4481 	obj = to_intel_bo(gobj);
   4482 
   4483 	ret = i915_gem_object_set_cache_level(obj, level);
   4484 
   4485 	drm_gem_object_unreference(&obj->base);
   4486 unlock:
   4487 	mutex_unlock(&dev->struct_mutex);
   4488 rpm_put:
   4489 	intel_runtime_pm_put(dev_priv);
   4490 
   4491 	return ret;
   4492 }
   4493 
   4494 /*
   4495  * Prepare buffer for display plane (scanout, cursors, etc).
   4496  * Can be called from an uninterruptible phase (modesetting) and allows
   4497  * any flushes to be pipelined (for pageflips).
   4498  */
   4499 int
   4500 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
   4501 				     u32 alignment,
   4502 				     struct intel_engine_cs *pipelined,
   4503 				     struct drm_i915_gem_request **pipelined_request,
   4504 				     const struct i915_ggtt_view *view)
   4505 {
   4506 	u32 old_read_domains, old_write_domain;
   4507 	int ret;
   4508 
   4509 	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
   4510 	if (ret)
   4511 		return ret;
   4512 
   4513 	/* Mark the pin_display early so that we account for the
   4514 	 * display coherency whilst setting up the cache domains.
   4515 	 */
   4516 	obj->pin_display++;
   4517 
   4518 	/* The display engine is not coherent with the LLC cache on gen6.  As
   4519 	 * a result, we make sure that the pinning that is about to occur is
   4520 	 * done with uncached PTEs. This is lowest common denominator for all
   4521 	 * chipsets.
   4522 	 *
   4523 	 * However for gen6+, we could do better by using the GFDT bit instead
   4524 	 * of uncaching, which would allow us to flush all the LLC-cached data
   4525 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
   4526 	 */
   4527 	ret = i915_gem_object_set_cache_level(obj,
   4528 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
   4529 	if (ret)
   4530 		goto err_unpin_display;
   4531 
   4532 	/* As the user may map the buffer once pinned in the display plane
   4533 	 * (e.g. libkms for the bootup splash), we have to ensure that we
   4534 	 * always use map_and_fenceable for all scanout buffers.
   4535 	 */
   4536 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
   4537 				       view->type == I915_GGTT_VIEW_NORMAL ?
   4538 				       PIN_MAPPABLE : 0);
   4539 	if (ret)
   4540 		goto err_unpin_display;
   4541 
   4542 	i915_gem_object_flush_cpu_write_domain(obj);
   4543 
   4544 	old_write_domain = obj->base.write_domain;
   4545 	old_read_domains = obj->base.read_domains;
   4546 
   4547 	/* It should now be out of any other write domains, and we can update
   4548 	 * the domain values for our changes.
   4549 	 */
   4550 	obj->base.write_domain = 0;
   4551 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4552 
   4553 	trace_i915_gem_object_change_domain(obj,
   4554 					    old_read_domains,
   4555 					    old_write_domain);
   4556 
   4557 	return 0;
   4558 
   4559 err_unpin_display:
   4560 	obj->pin_display--;
   4561 	return ret;
   4562 }
   4563 
   4564 void
   4565 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
   4566 					 const struct i915_ggtt_view *view)
   4567 {
   4568 	if (WARN_ON(obj->pin_display == 0))
   4569 		return;
   4570 
   4571 	i915_gem_object_ggtt_unpin_view(obj, view);
   4572 
   4573 	obj->pin_display--;
   4574 }
   4575 
   4576 /**
   4577  * Moves a single object to the CPU read, and possibly write domain.
   4578  *
   4579  * This function returns when the move is complete, including waiting on
   4580  * flushes to occur.
   4581  */
   4582 int
   4583 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
   4584 {
   4585 	uint32_t old_write_domain, old_read_domains;
   4586 	int ret;
   4587 
   4588 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
   4589 		return 0;
   4590 
   4591 	ret = i915_gem_object_wait_rendering(obj, !write);
   4592 	if (ret)
   4593 		return ret;
   4594 
   4595 	i915_gem_object_flush_gtt_write_domain(obj);
   4596 
   4597 	old_write_domain = obj->base.write_domain;
   4598 	old_read_domains = obj->base.read_domains;
   4599 
   4600 	/* Flush the CPU cache if it's still invalid. */
   4601 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
   4602 		i915_gem_clflush_object(obj, false);
   4603 
   4604 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
   4605 	}
   4606 
   4607 	/* It should now be out of any other write domains, and we can update
   4608 	 * the domain values for our changes.
   4609 	 */
   4610 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
   4611 
   4612 	/* If we're writing through the CPU, then the GPU read domains will
   4613 	 * need to be invalidated at next use.
   4614 	 */
   4615 	if (write) {
   4616 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4617 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4618 	}
   4619 
   4620 	trace_i915_gem_object_change_domain(obj,
   4621 					    old_read_domains,
   4622 					    old_write_domain);
   4623 
   4624 	return 0;
   4625 }
   4626 
   4627 /* Throttle our rendering by waiting until the ring has completed our requests
   4628  * emitted over 20 msec ago.
   4629  *
   4630  * Note that if we were to use the current jiffies each time around the loop,
   4631  * we wouldn't escape the function with any frames outstanding if the time to
   4632  * render a frame was over 20ms.
   4633  *
   4634  * This should get us reasonable parallelism between CPU and GPU but also
   4635  * relatively low latency when blocking on a particular request to finish.
   4636  */
   4637 static int
   4638 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
   4639 {
   4640 	struct drm_i915_private *dev_priv = dev->dev_private;
   4641 	struct drm_i915_file_private *file_priv = file->driver_priv;
   4642 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
   4643 	struct drm_i915_gem_request *request, *target = NULL;
   4644 	unsigned reset_counter;
   4645 	int ret;
   4646 
   4647 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
   4648 	if (ret)
   4649 		return ret;
   4650 
   4651 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
   4652 	if (ret)
   4653 		return ret;
   4654 
   4655 	spin_lock(&file_priv->mm.lock);
   4656 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
   4657 		if (time_after_eq(request->emitted_jiffies, recent_enough))
   4658 			break;
   4659 
   4660 		/*
   4661 		 * Note that the request might not have been submitted yet.
   4662 		 * In which case emitted_jiffies will be zero.
   4663 		 */
   4664 		if (!request->emitted_jiffies)
   4665 			continue;
   4666 
   4667 		target = request;
   4668 	}
   4669 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   4670 	if (target)
   4671 		i915_gem_request_reference(target);
   4672 	spin_unlock(&file_priv->mm.lock);
   4673 
   4674 	if (target == NULL)
   4675 		return 0;
   4676 
   4677 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
   4678 	if (ret == 0)
   4679 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
   4680 
   4681 	i915_gem_request_unreference__unlocked(target);
   4682 
   4683 	return ret;
   4684 }
   4685 
   4686 static bool
   4687 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
   4688 {
   4689 	struct drm_i915_gem_object *obj = vma->obj;
   4690 
   4691 	if (alignment &&
   4692 	    vma->node.start & (alignment - 1))
   4693 		return true;
   4694 
   4695 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
   4696 		return true;
   4697 
   4698 	if (flags & PIN_OFFSET_BIAS &&
   4699 	    vma->node.start < (flags & PIN_OFFSET_MASK))
   4700 		return true;
   4701 
   4702 	return false;
   4703 }
   4704 
   4705 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
   4706 {
   4707 	struct drm_i915_gem_object *obj = vma->obj;
   4708 	bool mappable, fenceable;
   4709 	u32 fence_size, fence_alignment;
   4710 
   4711 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
   4712 					   obj->base.size,
   4713 					   obj->tiling_mode);
   4714 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
   4715 						     obj->base.size,
   4716 						     obj->tiling_mode,
   4717 						     true);
   4718 
   4719 	fenceable = (vma->node.size == fence_size &&
   4720 		     (vma->node.start & (fence_alignment - 1)) == 0);
   4721 
   4722 	mappable = (vma->node.start + fence_size <=
   4723 		    to_i915(obj->base.dev)->gtt.mappable_end);
   4724 
   4725 	obj->map_and_fenceable = mappable && fenceable;
   4726 }
   4727 
   4728 static int
   4729 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
   4730 		       struct i915_address_space *vm,
   4731 		       const struct i915_ggtt_view *ggtt_view,
   4732 		       uint32_t alignment,
   4733 		       uint64_t flags)
   4734 {
   4735 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   4736 	struct i915_vma *vma;
   4737 	unsigned bound;
   4738 	int ret;
   4739 
   4740 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
   4741 		return -ENODEV;
   4742 
   4743 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
   4744 		return -EINVAL;
   4745 
   4746 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
   4747 		return -EINVAL;
   4748 
   4749 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
   4750 		return -EINVAL;
   4751 
   4752 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
   4753 			  i915_gem_obj_to_vma(obj, vm);
   4754 
   4755 	if (IS_ERR(vma))
   4756 		return PTR_ERR(vma);
   4757 
   4758 	if (vma) {
   4759 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
   4760 			return -EBUSY;
   4761 
   4762 		if (i915_vma_misplaced(vma, alignment, flags)) {
   4763 			WARN(vma->pin_count,
   4764 			     "bo is already pinned in %s with incorrect alignment:"
   4765 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
   4766 			     " obj->map_and_fenceable=%d\n",
   4767 			     ggtt_view ? "ggtt" : "ppgtt",
   4768 			     upper_32_bits(vma->node.start),
   4769 			     lower_32_bits(vma->node.start),
   4770 			     alignment,
   4771 			     !!(flags & PIN_MAPPABLE),
   4772 			     obj->map_and_fenceable);
   4773 			ret = i915_vma_unbind(vma);
   4774 			if (ret)
   4775 				return ret;
   4776 
   4777 			vma = NULL;
   4778 		}
   4779 	}
   4780 
   4781 	bound = vma ? vma->bound : 0;
   4782 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
   4783 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
   4784 						 flags);
   4785 		if (IS_ERR(vma))
   4786 			return PTR_ERR(vma);
   4787 	} else {
   4788 		ret = i915_vma_bind(vma, obj->cache_level, flags);
   4789 		if (ret)
   4790 			return ret;
   4791 	}
   4792 
   4793 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
   4794 	    (bound ^ vma->bound) & GLOBAL_BIND) {
   4795 		__i915_vma_set_map_and_fenceable(vma);
   4796 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
   4797 	}
   4798 
   4799 	vma->pin_count++;
   4800 	return 0;
   4801 }
   4802 
   4803 int
   4804 i915_gem_object_pin(struct drm_i915_gem_object *obj,
   4805 		    struct i915_address_space *vm,
   4806 		    uint32_t alignment,
   4807 		    uint64_t flags)
   4808 {
   4809 	return i915_gem_object_do_pin(obj, vm,
   4810 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
   4811 				      alignment, flags);
   4812 }
   4813 
   4814 int
   4815 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
   4816 			 const struct i915_ggtt_view *view,
   4817 			 uint32_t alignment,
   4818 			 uint64_t flags)
   4819 {
   4820 	if (WARN_ONCE(!view, "no view specified"))
   4821 		return -EINVAL;
   4822 
   4823 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
   4824 				      alignment, flags | PIN_GLOBAL);
   4825 }
   4826 
   4827 void
   4828 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
   4829 				const struct i915_ggtt_view *view)
   4830 {
   4831 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
   4832 
   4833 	BUG_ON(!vma);
   4834 	WARN_ON(vma->pin_count == 0);
   4835 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
   4836 
   4837 	--vma->pin_count;
   4838 }
   4839 
   4840 int
   4841 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
   4842 		    struct drm_file *file)
   4843 {
   4844 	struct drm_i915_gem_busy *args = data;
   4845 	struct drm_gem_object *gobj;
   4846 	struct drm_i915_gem_object *obj;
   4847 	int ret;
   4848 
   4849 	ret = i915_mutex_lock_interruptible(dev);
   4850 	if (ret)
   4851 		return ret;
   4852 
   4853 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4854 	if (gobj == NULL) {
   4855 		ret = -ENOENT;
   4856 		goto unlock;
   4857 	}
   4858 	obj = to_intel_bo(gobj);
   4859 
   4860 	/* Count all active objects as busy, even if they are currently not used
   4861 	 * by the gpu. Users of this interface expect objects to eventually
   4862 	 * become non-busy without any further actions, therefore emit any
   4863 	 * necessary flushes here.
   4864 	 */
   4865 	ret = i915_gem_object_flush_active(obj);
   4866 	if (ret)
   4867 		goto unref;
   4868 
   4869 	BUILD_BUG_ON(I915_NUM_RINGS > 16);
   4870 	args->busy = obj->active << 16;
   4871 	if (obj->last_write_req)
   4872 		args->busy |= obj->last_write_req->ring->id;
   4873 
   4874 unref:
   4875 	drm_gem_object_unreference(&obj->base);
   4876 unlock:
   4877 	mutex_unlock(&dev->struct_mutex);
   4878 	return ret;
   4879 }
   4880 
   4881 int
   4882 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
   4883 			struct drm_file *file_priv)
   4884 {
   4885 	return i915_gem_ring_throttle(dev, file_priv);
   4886 }
   4887 
   4888 int
   4889 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   4890 		       struct drm_file *file_priv)
   4891 {
   4892 	struct drm_i915_private *dev_priv = dev->dev_private;
   4893 	struct drm_i915_gem_madvise *args = data;
   4894 	struct drm_gem_object *gobj;
   4895 	struct drm_i915_gem_object *obj;
   4896 	int ret;
   4897 
   4898 	switch (args->madv) {
   4899 	case I915_MADV_DONTNEED:
   4900 	case I915_MADV_WILLNEED:
   4901 	    break;
   4902 	default:
   4903 	    return -EINVAL;
   4904 	}
   4905 
   4906 	ret = i915_mutex_lock_interruptible(dev);
   4907 	if (ret)
   4908 		return ret;
   4909 
   4910 	gobj = drm_gem_object_lookup(dev, file_priv, args->handle);
   4911 	if (gobj == NULL) {
   4912 		ret = -ENOENT;
   4913 		goto unlock;
   4914 	}
   4915 	obj = to_intel_bo(gobj);
   4916 
   4917 	if (i915_gem_obj_is_pinned(obj)) {
   4918 		ret = -EINVAL;
   4919 		goto out;
   4920 	}
   4921 
   4922 	if (obj->pages &&
   4923 	    obj->tiling_mode != I915_TILING_NONE &&
   4924 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
   4925 		if (obj->madv == I915_MADV_WILLNEED)
   4926 			i915_gem_object_unpin_pages(obj);
   4927 		if (args->madv == I915_MADV_WILLNEED)
   4928 			i915_gem_object_pin_pages(obj);
   4929 	}
   4930 
   4931 	if (obj->madv != __I915_MADV_PURGED)
   4932 		obj->madv = args->madv;
   4933 
   4934 	/* if the object is no longer attached, discard its backing storage */
   4935 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
   4936 		i915_gem_object_truncate(obj);
   4937 
   4938 	args->retained = obj->madv != __I915_MADV_PURGED;
   4939 
   4940 out:
   4941 	drm_gem_object_unreference(&obj->base);
   4942 unlock:
   4943 	mutex_unlock(&dev->struct_mutex);
   4944 	return ret;
   4945 }
   4946 
   4947 void i915_gem_object_init(struct drm_i915_gem_object *obj,
   4948 			  const struct drm_i915_gem_object_ops *ops)
   4949 {
   4950 	int i;
   4951 
   4952 	INIT_LIST_HEAD(&obj->global_list);
   4953 	for (i = 0; i < I915_NUM_RINGS; i++)
   4954 		INIT_LIST_HEAD(&obj->ring_list[i]);
   4955 	INIT_LIST_HEAD(&obj->obj_exec_link);
   4956 	INIT_LIST_HEAD(&obj->vma_list);
   4957 	INIT_LIST_HEAD(&obj->batch_pool_link);
   4958 
   4959 	obj->ops = ops;
   4960 
   4961 	obj->fence_reg = I915_FENCE_REG_NONE;
   4962 	obj->madv = I915_MADV_WILLNEED;
   4963 
   4964 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
   4965 }
   4966 
   4967 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
   4968 	.get_pages = i915_gem_object_get_pages_gtt,
   4969 	.put_pages = i915_gem_object_put_pages_gtt,
   4970 };
   4971 
   4972 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
   4973 						  size_t size)
   4974 {
   4975 #ifdef __NetBSD__
   4976 	struct drm_i915_private *const dev_priv = dev->dev_private;
   4977 #endif
   4978 	struct drm_i915_gem_object *obj;
   4979 #ifndef __NetBSD__
   4980 	struct address_space *mapping;
   4981 	gfp_t mask;
   4982 #endif
   4983 
   4984 	obj = i915_gem_object_alloc(dev);
   4985 	if (obj == NULL)
   4986 		return NULL;
   4987 
   4988 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
   4989 		i915_gem_object_free(obj);
   4990 		return NULL;
   4991 	}
   4992 
   4993 #ifdef __NetBSD__
   4994 	uao_set_pgfl(obj->base.filp, dev_priv->gtt.pgfl);
   4995 #else
   4996 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
   4997 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
   4998 		/* 965gm cannot relocate objects above 4GiB. */
   4999 		mask &= ~__GFP_HIGHMEM;
   5000 		mask |= __GFP_DMA32;
   5001 	}
   5002 
   5003 	mapping = file_inode(obj->base.filp)->i_mapping;
   5004 	mapping_set_gfp_mask(mapping, mask);
   5005 #endif
   5006 
   5007 	i915_gem_object_init(obj, &i915_gem_object_ops);
   5008 
   5009 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   5010 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   5011 
   5012 	if (HAS_LLC(dev)) {
   5013 		/* On some devices, we can have the GPU use the LLC (the CPU
   5014 		 * cache) for about a 10% performance improvement
   5015 		 * compared to uncached.  Graphics requests other than
   5016 		 * display scanout are coherent with the CPU in
   5017 		 * accessing this cache.  This means in this mode we
   5018 		 * don't need to clflush on the CPU side, and on the
   5019 		 * GPU side we only need to flush internal caches to
   5020 		 * get data visible to the CPU.
   5021 		 *
   5022 		 * However, we maintain the display planes as UC, and so
   5023 		 * need to rebind when first used as such.
   5024 		 */
   5025 		obj->cache_level = I915_CACHE_LLC;
   5026 	} else
   5027 		obj->cache_level = I915_CACHE_NONE;
   5028 
   5029 	trace_i915_gem_object_create(obj);
   5030 
   5031 	return obj;
   5032 }
   5033 
   5034 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
   5035 {
   5036 	/* If we are the last user of the backing storage (be it shmemfs
   5037 	 * pages or stolen etc), we know that the pages are going to be
   5038 	 * immediately released. In this case, we can then skip copying
   5039 	 * back the contents from the GPU.
   5040 	 */
   5041 
   5042 	if (obj->madv != I915_MADV_WILLNEED)
   5043 		return false;
   5044 
   5045 	if (obj->base.filp == NULL)
   5046 		return true;
   5047 
   5048 	/* At first glance, this looks racy, but then again so would be
   5049 	 * userspace racing mmap against close. However, the first external
   5050 	 * reference to the filp can only be obtained through the
   5051 	 * i915_gem_mmap_ioctl() which safeguards us against the user
   5052 	 * acquiring such a reference whilst we are in the middle of
   5053 	 * freeing the object.
   5054 	 */
   5055 #ifdef __NetBSD__
   5056 	/* XXX This number might be a fencepost.  */
   5057 	return obj->base.filp->uo_refs == 1;
   5058 #else
   5059 	return atomic_long_read(&obj->base.filp->f_count) == 1;
   5060 #endif
   5061 }
   5062 
   5063 void i915_gem_free_object(struct drm_gem_object *gem_obj)
   5064 {
   5065 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   5066 	struct drm_device *dev = obj->base.dev;
   5067 	struct drm_i915_private *dev_priv = dev->dev_private;
   5068 	struct i915_vma *vma, *next;
   5069 
   5070 	intel_runtime_pm_get(dev_priv);
   5071 
   5072 	trace_i915_gem_object_destroy(obj);
   5073 
   5074 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   5075 		int ret;
   5076 
   5077 		vma->pin_count = 0;
   5078 		ret = i915_vma_unbind(vma);
   5079 		if (WARN_ON(ret == -ERESTARTSYS)) {
   5080 			bool was_interruptible;
   5081 
   5082 			was_interruptible = dev_priv->mm.interruptible;
   5083 			dev_priv->mm.interruptible = false;
   5084 
   5085 			WARN_ON(i915_vma_unbind(vma));
   5086 
   5087 			dev_priv->mm.interruptible = was_interruptible;
   5088 		}
   5089 	}
   5090 
   5091 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
   5092 	 * before progressing. */
   5093 	if (obj->stolen)
   5094 		i915_gem_object_unpin_pages(obj);
   5095 
   5096 	WARN_ON(obj->frontbuffer_bits);
   5097 
   5098 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
   5099 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
   5100 	    obj->tiling_mode != I915_TILING_NONE)
   5101 		i915_gem_object_unpin_pages(obj);
   5102 
   5103 	if (WARN_ON(obj->pages_pin_count))
   5104 		obj->pages_pin_count = 0;
   5105 	if (discard_backing_storage(obj))
   5106 		obj->madv = I915_MADV_DONTNEED;
   5107 	i915_gem_object_put_pages(obj);
   5108 	i915_gem_object_free_mmap_offset(obj);
   5109 
   5110 	BUG_ON(obj->pages);
   5111 
   5112 	if (obj->base.import_attach)
   5113 		drm_prime_gem_destroy(&obj->base, NULL);
   5114 
   5115 	if (obj->ops->release)
   5116 		obj->ops->release(obj);
   5117 
   5118 	drm_gem_object_release(&obj->base);
   5119 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
   5120 
   5121 	kfree(obj->bit_17);
   5122 	i915_gem_object_free(obj);
   5123 
   5124 	intel_runtime_pm_put(dev_priv);
   5125 }
   5126 
   5127 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
   5128 				     struct i915_address_space *vm)
   5129 {
   5130 	struct i915_vma *vma;
   5131 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
   5132 		if (i915_is_ggtt(vma->vm) &&
   5133 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5134 			continue;
   5135 		if (vma->vm == vm)
   5136 			return vma;
   5137 	}
   5138 	return NULL;
   5139 }
   5140 
   5141 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
   5142 					   const struct i915_ggtt_view *view)
   5143 {
   5144 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
   5145 	struct i915_vma *vma;
   5146 
   5147 	if (WARN_ONCE(!view, "no view specified"))
   5148 		return ERR_PTR(-EINVAL);
   5149 
   5150 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   5151 		if (vma->vm == ggtt &&
   5152 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
   5153 			return vma;
   5154 	return NULL;
   5155 }
   5156 
   5157 void i915_gem_vma_destroy(struct i915_vma *vma)
   5158 {
   5159 	struct i915_address_space *vm = NULL;
   5160 	WARN_ON(vma->node.allocated);
   5161 
   5162 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
   5163 	if (!list_empty(&vma->exec_list))
   5164 		return;
   5165 
   5166 	vm = vma->vm;
   5167 
   5168 	if (!i915_is_ggtt(vm))
   5169 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
   5170 
   5171 	list_del(&vma->vma_link);
   5172 
   5173 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
   5174 }
   5175 
   5176 static void
   5177 i915_gem_stop_ringbuffers(struct drm_device *dev)
   5178 {
   5179 	struct drm_i915_private *dev_priv = dev->dev_private;
   5180 	struct intel_engine_cs *ring;
   5181 	int i;
   5182 
   5183 	for_each_ring(ring, dev_priv, i)
   5184 		dev_priv->gt.stop_ring(ring);
   5185 }
   5186 
   5187 int
   5188 i915_gem_suspend(struct drm_device *dev)
   5189 {
   5190 	struct drm_i915_private *dev_priv = dev->dev_private;
   5191 	int ret = 0;
   5192 
   5193 	mutex_lock(&dev->struct_mutex);
   5194 	ret = i915_gpu_idle(dev);
   5195 	if (ret)
   5196 		goto err;
   5197 
   5198 	i915_gem_retire_requests(dev);
   5199 
   5200 	i915_gem_stop_ringbuffers(dev);
   5201 	mutex_unlock(&dev->struct_mutex);
   5202 
   5203 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
   5204 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
   5205 	flush_delayed_work(&dev_priv->mm.idle_work);
   5206 
   5207 	/* Assert that we sucessfully flushed all the work and
   5208 	 * reset the GPU back to its idle, low power state.
   5209 	 */
   5210 	WARN_ON(dev_priv->mm.busy);
   5211 
   5212 	return 0;
   5213 
   5214 err:
   5215 	mutex_unlock(&dev->struct_mutex);
   5216 	return ret;
   5217 }
   5218 
   5219 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
   5220 {
   5221 	struct intel_engine_cs *ring = req->ring;
   5222 	struct drm_device *dev = ring->dev;
   5223 	struct drm_i915_private *dev_priv = dev->dev_private;
   5224 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
   5225 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
   5226 	int i, ret;
   5227 
   5228 	if (!HAS_L3_DPF(dev) || !remap_info)
   5229 		return 0;
   5230 
   5231 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
   5232 	if (ret)
   5233 		return ret;
   5234 
   5235 	/*
   5236 	 * Note: We do not worry about the concurrent register cacheline hang
   5237 	 * here because no other code should access these registers other than
   5238 	 * at initialization time.
   5239 	 */
   5240 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
   5241 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
   5242 		intel_ring_emit(ring, reg_base + i);
   5243 		intel_ring_emit(ring, remap_info[i/4]);
   5244 	}
   5245 
   5246 	intel_ring_advance(ring);
   5247 
   5248 	return ret;
   5249 }
   5250 
   5251 void i915_gem_init_swizzling(struct drm_device *dev)
   5252 {
   5253 	struct drm_i915_private *dev_priv = dev->dev_private;
   5254 
   5255 	if (INTEL_INFO(dev)->gen < 5 ||
   5256 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
   5257 		return;
   5258 
   5259 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
   5260 				 DISP_TILE_SURFACE_SWIZZLING);
   5261 
   5262 	if (IS_GEN5(dev))
   5263 		return;
   5264 
   5265 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
   5266 	if (IS_GEN6(dev))
   5267 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
   5268 	else if (IS_GEN7(dev))
   5269 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
   5270 	else if (IS_GEN8(dev))
   5271 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
   5272 	else
   5273 		BUG();
   5274 }
   5275 
   5276 static void init_unused_ring(struct drm_device *dev, u32 base)
   5277 {
   5278 	struct drm_i915_private *dev_priv = dev->dev_private;
   5279 
   5280 	I915_WRITE(RING_CTL(base), 0);
   5281 	I915_WRITE(RING_HEAD(base), 0);
   5282 	I915_WRITE(RING_TAIL(base), 0);
   5283 	I915_WRITE(RING_START(base), 0);
   5284 }
   5285 
   5286 static void init_unused_rings(struct drm_device *dev)
   5287 {
   5288 	if (IS_I830(dev)) {
   5289 		init_unused_ring(dev, PRB1_BASE);
   5290 		init_unused_ring(dev, SRB0_BASE);
   5291 		init_unused_ring(dev, SRB1_BASE);
   5292 		init_unused_ring(dev, SRB2_BASE);
   5293 		init_unused_ring(dev, SRB3_BASE);
   5294 	} else if (IS_GEN2(dev)) {
   5295 		init_unused_ring(dev, SRB0_BASE);
   5296 		init_unused_ring(dev, SRB1_BASE);
   5297 	} else if (IS_GEN3(dev)) {
   5298 		init_unused_ring(dev, PRB1_BASE);
   5299 		init_unused_ring(dev, PRB2_BASE);
   5300 	}
   5301 }
   5302 
   5303 int i915_gem_init_rings(struct drm_device *dev)
   5304 {
   5305 	struct drm_i915_private *dev_priv = dev->dev_private;
   5306 	int ret;
   5307 
   5308 	ret = intel_init_render_ring_buffer(dev);
   5309 	if (ret)
   5310 		return ret;
   5311 
   5312 	if (HAS_BSD(dev)) {
   5313 		ret = intel_init_bsd_ring_buffer(dev);
   5314 		if (ret)
   5315 			goto cleanup_render_ring;
   5316 	}
   5317 
   5318 	if (HAS_BLT(dev)) {
   5319 		ret = intel_init_blt_ring_buffer(dev);
   5320 		if (ret)
   5321 			goto cleanup_bsd_ring;
   5322 	}
   5323 
   5324 	if (HAS_VEBOX(dev)) {
   5325 		ret = intel_init_vebox_ring_buffer(dev);
   5326 		if (ret)
   5327 			goto cleanup_blt_ring;
   5328 	}
   5329 
   5330 	if (HAS_BSD2(dev)) {
   5331 		ret = intel_init_bsd2_ring_buffer(dev);
   5332 		if (ret)
   5333 			goto cleanup_vebox_ring;
   5334 	}
   5335 
   5336 	return 0;
   5337 
   5338 cleanup_vebox_ring:
   5339 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
   5340 cleanup_blt_ring:
   5341 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
   5342 cleanup_bsd_ring:
   5343 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
   5344 cleanup_render_ring:
   5345 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
   5346 
   5347 	return ret;
   5348 }
   5349 
   5350 int
   5351 i915_gem_init_hw(struct drm_device *dev)
   5352 {
   5353 	struct drm_i915_private *dev_priv = dev->dev_private;
   5354 	struct intel_engine_cs *ring;
   5355 	int ret, i, j;
   5356 
   5357 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
   5358 		return -EIO;
   5359 
   5360 	/* Double layer security blanket, see i915_gem_init() */
   5361 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5362 
   5363 	if (dev_priv->ellc_size)
   5364 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
   5365 
   5366 	if (IS_HASWELL(dev))
   5367 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
   5368 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
   5369 
   5370 	if (HAS_PCH_NOP(dev)) {
   5371 		if (IS_IVYBRIDGE(dev)) {
   5372 			u32 temp = I915_READ(GEN7_MSG_CTL);
   5373 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
   5374 			I915_WRITE(GEN7_MSG_CTL, temp);
   5375 		} else if (INTEL_INFO(dev)->gen >= 7) {
   5376 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
   5377 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
   5378 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
   5379 		}
   5380 	}
   5381 
   5382 	i915_gem_init_swizzling(dev);
   5383 
   5384 	/*
   5385 	 * At least 830 can leave some of the unused rings
   5386 	 * "active" (ie. head != tail) after resume which
   5387 	 * will prevent c3 entry. Makes sure all unused rings
   5388 	 * are totally idle.
   5389 	 */
   5390 	init_unused_rings(dev);
   5391 
   5392 	BUG_ON(!dev_priv->ring[RCS].default_context);
   5393 
   5394 	ret = i915_ppgtt_init_hw(dev);
   5395 	if (ret) {
   5396 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
   5397 		goto out;
   5398 	}
   5399 
   5400 	/* Need to do basic initialisation of all rings first: */
   5401 	for_each_ring(ring, dev_priv, i) {
   5402 		ret = ring->init_hw(ring);
   5403 		if (ret)
   5404 			goto out;
   5405 	}
   5406 
   5407 	/* We can't enable contexts until all firmware is loaded */
   5408 	if (HAS_GUC_UCODE(dev)) {
   5409 		ret = intel_guc_ucode_load(dev);
   5410 		if (ret) {
   5411 			/*
   5412 			 * If we got an error and GuC submission is enabled, map
   5413 			 * the error to -EIO so the GPU will be declared wedged.
   5414 			 * OTOH, if we didn't intend to use the GuC anyway, just
   5415 			 * discard the error and carry on.
   5416 			 */
   5417 			DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
   5418 				  i915.enable_guc_submission ? "" :
   5419 				  " (ignored)");
   5420 			ret = i915.enable_guc_submission ? -EIO : 0;
   5421 			if (ret)
   5422 				goto out;
   5423 		}
   5424 	}
   5425 
   5426 	/*
   5427 	 * Increment the next seqno by 0x100 so we have a visible break
   5428 	 * on re-initialisation
   5429 	 */
   5430 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
   5431 	if (ret)
   5432 		goto out;
   5433 
   5434 	/* Now it is safe to go back round and do everything else: */
   5435 	for_each_ring(ring, dev_priv, i) {
   5436 		struct drm_i915_gem_request *req;
   5437 
   5438 		WARN_ON(!ring->default_context);
   5439 
   5440 		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
   5441 		if (ret) {
   5442 			i915_gem_cleanup_ringbuffer(dev);
   5443 			goto out;
   5444 		}
   5445 
   5446 		if (ring->id == RCS) {
   5447 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
   5448 				i915_gem_l3_remap(req, j);
   5449 		}
   5450 
   5451 		ret = i915_ppgtt_init_ring(req);
   5452 		if (ret && ret != -EIO) {
   5453 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
   5454 			i915_gem_request_cancel(req);
   5455 			i915_gem_cleanup_ringbuffer(dev);
   5456 			goto out;
   5457 		}
   5458 
   5459 		ret = i915_gem_context_enable(req);
   5460 		if (ret && ret != -EIO) {
   5461 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
   5462 			i915_gem_request_cancel(req);
   5463 			i915_gem_cleanup_ringbuffer(dev);
   5464 			goto out;
   5465 		}
   5466 
   5467 		i915_add_request_no_flush(req);
   5468 	}
   5469 
   5470 out:
   5471 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5472 	return ret;
   5473 }
   5474 
   5475 int i915_gem_init(struct drm_device *dev)
   5476 {
   5477 	struct drm_i915_private *dev_priv = dev->dev_private;
   5478 	int ret;
   5479 
   5480 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
   5481 			i915.enable_execlists);
   5482 
   5483 	idr_preload(GFP_KERNEL);	/* gem context */
   5484 	mutex_lock(&dev->struct_mutex);
   5485 
   5486 	if (IS_VALLEYVIEW(dev)) {
   5487 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
   5488 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
   5489 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
   5490 			      VLV_GTLC_ALLOWWAKEACK), 10))
   5491 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
   5492 	}
   5493 
   5494 	if (!i915.enable_execlists) {
   5495 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
   5496 		dev_priv->gt.init_rings = i915_gem_init_rings;
   5497 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
   5498 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
   5499 	} else {
   5500 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
   5501 		dev_priv->gt.init_rings = intel_logical_rings_init;
   5502 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
   5503 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
   5504 	}
   5505 
   5506 	/* This is just a security blanket to placate dragons.
   5507 	 * On some systems, we very sporadically observe that the first TLBs
   5508 	 * used by the CS may be stale, despite us poking the TLB reset. If
   5509 	 * we hold the forcewake during initialisation these problems
   5510 	 * just magically go away.
   5511 	 */
   5512 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5513 
   5514 	ret = i915_gem_init_userptr(dev);
   5515 	if (ret)
   5516 		goto out_unlock;
   5517 
   5518 	i915_gem_init_global_gtt(dev);
   5519 
   5520 	ret = i915_gem_context_init(dev);
   5521 	if (ret)
   5522 		goto out_unlock;
   5523 
   5524 	ret = dev_priv->gt.init_rings(dev);
   5525 	if (ret)
   5526 		goto out_unlock;
   5527 
   5528 	ret = i915_gem_init_hw(dev);
   5529 	if (ret == -EIO) {
   5530 		/* Allow ring initialisation to fail by marking the GPU as
   5531 		 * wedged. But we only want to do this where the GPU is angry,
   5532 		 * for all other failure, such as an allocation failure, bail.
   5533 		 */
   5534 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
   5535 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
   5536 		ret = 0;
   5537 	}
   5538 
   5539 out_unlock:
   5540 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5541 	mutex_unlock(&dev->struct_mutex);
   5542 	idr_preload_end();
   5543 
   5544 	return ret;
   5545 }
   5546 
   5547 void
   5548 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
   5549 {
   5550 	struct drm_i915_private *dev_priv = dev->dev_private;
   5551 	struct intel_engine_cs *ring;
   5552 	int i;
   5553 
   5554 	for_each_ring(ring, dev_priv, i)
   5555 		dev_priv->gt.cleanup_ring(ring);
   5556 
   5557     if (i915.enable_execlists)
   5558             /*
   5559              * Neither the BIOS, ourselves or any other kernel
   5560              * expects the system to be in execlists mode on startup,
   5561              * so we need to reset the GPU back to legacy mode.
   5562              */
   5563             intel_gpu_reset(dev);
   5564 }
   5565 
   5566 static void
   5567 init_ring_lists(struct intel_engine_cs *ring)
   5568 {
   5569 	INIT_LIST_HEAD(&ring->active_list);
   5570 	INIT_LIST_HEAD(&ring->request_list);
   5571 }
   5572 
   5573 void
   5574 i915_gem_load(struct drm_device *dev)
   5575 {
   5576 	struct drm_i915_private *dev_priv = dev->dev_private;
   5577 	int i;
   5578 
   5579 	dev_priv->objects =
   5580 		kmem_cache_create("i915_gem_object",
   5581 				  sizeof(struct drm_i915_gem_object), 0,
   5582 				  SLAB_HWCACHE_ALIGN,
   5583 				  NULL);
   5584 	dev_priv->vmas =
   5585 		kmem_cache_create("i915_gem_vma",
   5586 				  sizeof(struct i915_vma), 0,
   5587 				  SLAB_HWCACHE_ALIGN,
   5588 				  NULL);
   5589 	dev_priv->requests =
   5590 		kmem_cache_create("i915_gem_request",
   5591 				  sizeof(struct drm_i915_gem_request), 0,
   5592 				  SLAB_HWCACHE_ALIGN,
   5593 				  NULL);
   5594 
   5595 	INIT_LIST_HEAD(&dev_priv->vm_list);
   5596 	INIT_LIST_HEAD(&dev_priv->context_list);
   5597 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
   5598 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
   5599 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5600 	for (i = 0; i < I915_NUM_RINGS; i++)
   5601 		init_ring_lists(&dev_priv->ring[i]);
   5602 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
   5603 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
   5604 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
   5605 			  i915_gem_retire_work_handler);
   5606 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
   5607 			  i915_gem_idle_work_handler);
   5608 #ifdef __NetBSD__
   5609 	spin_lock_init(&dev_priv->gpu_error.reset_lock);
   5610 	DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
   5611 #else
   5612 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
   5613 #endif
   5614 
   5615 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
   5616 
   5617 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
   5618 		dev_priv->num_fence_regs = 32;
   5619 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
   5620 		dev_priv->num_fence_regs = 16;
   5621 	else
   5622 		dev_priv->num_fence_regs = 8;
   5623 
   5624 	if (intel_vgpu_active(dev))
   5625 		dev_priv->num_fence_regs =
   5626 				I915_READ(vgtif_reg(avail_rs.fence_num));
   5627 
   5628 	/*
   5629 	 * Set initial sequence number for requests.
   5630 	 * Using this number allows the wraparound to happen early,
   5631 	 * catching any obvious problems.
   5632 	 */
   5633 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
   5634 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
   5635 
   5636 	/* Initialize fence registers to zero */
   5637 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5638 	i915_gem_restore_fences(dev);
   5639 
   5640 	i915_gem_detect_bit_6_swizzle(dev);
   5641 #ifdef __NetBSD__
   5642 	DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
   5643 	spin_lock_init(&dev_priv->pending_flip_lock);
   5644 #else
   5645 	init_waitqueue_head(&dev_priv->pending_flip_queue);
   5646 #endif
   5647 
   5648 	dev_priv->mm.interruptible = true;
   5649 
   5650 	i915_gem_shrinker_init(dev_priv);
   5651 #ifdef __NetBSD__
   5652 	linux_mutex_init(&dev_priv->fb_tracking.lock);
   5653 #else
   5654 	mutex_init(&dev_priv->fb_tracking.lock);
   5655 #endif
   5656 }
   5657 
   5658 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   5659 {
   5660 	struct drm_i915_file_private *file_priv = file->driver_priv;
   5661 
   5662 	/* Clean up our request list when the client is going away, so that
   5663 	 * later retire_requests won't dereference our soon-to-be-gone
   5664 	 * file_priv.
   5665 	 */
   5666 	spin_lock(&file_priv->mm.lock);
   5667 	while (!list_empty(&file_priv->mm.request_list)) {
   5668 		struct drm_i915_gem_request *request;
   5669 
   5670 		request = list_first_entry(&file_priv->mm.request_list,
   5671 					   struct drm_i915_gem_request,
   5672 					   client_list);
   5673 		list_del(&request->client_list);
   5674 		request->file_priv = NULL;
   5675 	}
   5676 	spin_unlock(&file_priv->mm.lock);
   5677 
   5678 	if (!list_empty(&file_priv->rps.link)) {
   5679 		spin_lock(&to_i915(dev)->rps.client_lock);
   5680 		list_del(&file_priv->rps.link);
   5681 		spin_unlock(&to_i915(dev)->rps.client_lock);
   5682 	}
   5683 }
   5684 
   5685 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
   5686 {
   5687 	struct drm_i915_file_private *file_priv;
   5688 	int ret;
   5689 
   5690 	DRM_DEBUG_DRIVER("\n");
   5691 
   5692 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
   5693 	if (!file_priv)
   5694 		return -ENOMEM;
   5695 
   5696 	file->driver_priv = file_priv;
   5697 	file_priv->dev_priv = dev->dev_private;
   5698 	file_priv->file = file;
   5699 	INIT_LIST_HEAD(&file_priv->rps.link);
   5700 
   5701 	spin_lock_init(&file_priv->mm.lock);
   5702 	INIT_LIST_HEAD(&file_priv->mm.request_list);
   5703 
   5704 	ret = i915_gem_context_open(dev, file);
   5705 	if (ret)
   5706 		kfree(file_priv);
   5707 
   5708 	return ret;
   5709 }
   5710 
   5711 /**
   5712  * i915_gem_track_fb - update frontbuffer tracking
   5713  * @old: current GEM buffer for the frontbuffer slots
   5714  * @new: new GEM buffer for the frontbuffer slots
   5715  * @frontbuffer_bits: bitmask of frontbuffer slots
   5716  *
   5717  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
   5718  * from @old and setting them in @new. Both @old and @new can be NULL.
   5719  */
   5720 void i915_gem_track_fb(struct drm_i915_gem_object *old,
   5721 		       struct drm_i915_gem_object *new,
   5722 		       unsigned frontbuffer_bits)
   5723 {
   5724 	if (old) {
   5725 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
   5726 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
   5727 		old->frontbuffer_bits &= ~frontbuffer_bits;
   5728 	}
   5729 
   5730 	if (new) {
   5731 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
   5732 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
   5733 		new->frontbuffer_bits |= frontbuffer_bits;
   5734 	}
   5735 }
   5736 
   5737 /* All the new VM stuff */
   5738 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
   5739 			struct i915_address_space *vm)
   5740 {
   5741 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5742 	struct i915_vma *vma;
   5743 
   5744 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
   5745 
   5746 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5747 		if (i915_is_ggtt(vma->vm) &&
   5748 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5749 			continue;
   5750 		if (vma->vm == vm)
   5751 			return vma->node.start;
   5752 	}
   5753 
   5754 	WARN(1, "%s vma for this object not found.\n",
   5755 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
   5756 	return -1;
   5757 }
   5758 
   5759 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
   5760 				  const struct i915_ggtt_view *view)
   5761 {
   5762 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
   5763 	struct i915_vma *vma;
   5764 
   5765 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5766 		if (vma->vm == ggtt &&
   5767 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
   5768 			return vma->node.start;
   5769 
   5770 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
   5771 	return -1;
   5772 }
   5773 
   5774 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
   5775 			struct i915_address_space *vm)
   5776 {
   5777 	struct i915_vma *vma;
   5778 
   5779 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5780 		if (i915_is_ggtt(vma->vm) &&
   5781 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5782 			continue;
   5783 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
   5784 			return true;
   5785 	}
   5786 
   5787 	return false;
   5788 }
   5789 
   5790 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
   5791 				  const struct i915_ggtt_view *view)
   5792 {
   5793 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
   5794 	struct i915_vma *vma;
   5795 
   5796 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5797 		if (vma->vm == ggtt &&
   5798 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
   5799 		    drm_mm_node_allocated(&vma->node))
   5800 			return true;
   5801 
   5802 	return false;
   5803 }
   5804 
   5805 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
   5806 {
   5807 	struct i915_vma *vma;
   5808 
   5809 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5810 		if (drm_mm_node_allocated(&vma->node))
   5811 			return true;
   5812 
   5813 	return false;
   5814 }
   5815 
   5816 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
   5817 				struct i915_address_space *vm)
   5818 {
   5819 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5820 	struct i915_vma *vma;
   5821 
   5822 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
   5823 
   5824 	BUG_ON(list_empty(&o->vma_list));
   5825 
   5826 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5827 		if (i915_is_ggtt(vma->vm) &&
   5828 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5829 			continue;
   5830 		if (vma->vm == vm)
   5831 			return vma->node.size;
   5832 	}
   5833 	return 0;
   5834 }
   5835 
   5836 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
   5837 {
   5838 	struct i915_vma *vma;
   5839 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   5840 		if (vma->pin_count > 0)
   5841 			return true;
   5842 
   5843 	return false;
   5844 }
   5845 
   5846 /* Allocate a new GEM object and fill it with the supplied data */
   5847 struct drm_i915_gem_object *
   5848 i915_gem_object_create_from_data(struct drm_device *dev,
   5849 			         const void *data, size_t size)
   5850 {
   5851 	struct drm_i915_gem_object *obj;
   5852 #ifdef __NetBSD__
   5853 	struct iovec iov = { .iov_base = __UNCONST(data), .iov_len = size };
   5854 	struct uio uio = {
   5855 	    .uio_iov = &iov,
   5856 	    .uio_iovcnt = 1,
   5857 	    .uio_offset = 0,
   5858 	    .uio_resid = size,
   5859 	    .uio_rw = UIO_WRITE,
   5860 	};
   5861 #else
   5862 	struct sg_table *sg;
   5863 #endif
   5864 	size_t bytes;
   5865 	int ret;
   5866 
   5867 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
   5868 	if (IS_ERR_OR_NULL(obj))
   5869 		return obj;
   5870 
   5871 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   5872 	if (ret)
   5873 		goto fail;
   5874 
   5875 	ret = i915_gem_object_get_pages(obj);
   5876 	if (ret)
   5877 		goto fail;
   5878 
   5879 	i915_gem_object_pin_pages(obj);
   5880 #ifdef __NetBSD__
   5881 	UIO_SETUP_SYSSPACE(&uio);
   5882 	/* XXX errno NetBSD->Linux */
   5883 	ret = -ubc_uiomove(obj->base.filp, &uio, size, UVM_ADV_NORMAL,
   5884 	    UBC_WRITE);
   5885 	if (ret)
   5886 		goto fail;
   5887 	bytes = size - uio.uio_resid;
   5888 #else
   5889 	sg = obj->pages;
   5890 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
   5891 #endif
   5892 	i915_gem_object_unpin_pages(obj);
   5893 
   5894 	if (WARN_ON(bytes != size)) {
   5895 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
   5896 		ret = -EFAULT;
   5897 		goto fail;
   5898 	}
   5899 
   5900 	return obj;
   5901 
   5902 fail:
   5903 	drm_gem_object_unreference(&obj->base);
   5904 	return ERR_PTR(ret);
   5905 }
   5906