i915_gem.c revision 1.61 1 /* $NetBSD: i915_gem.c,v 1.61 2020/02/23 15:46:40 ad Exp $ */
2
3 /*
4 * Copyright 2008-2015 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 *
25 * Authors:
26 * Eric Anholt <eric (at) anholt.net>
27 *
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: i915_gem.c,v 1.61 2020/02/23 15:46:40 ad Exp $");
32
33 #ifdef __NetBSD__
34 #if 0 /* XXX uvmhist option? */
35 #include "opt_uvmhist.h"
36 #endif
37
38 #include <sys/types.h>
39 #include <sys/param.h>
40
41 #include <uvm/uvm.h>
42 #include <uvm/uvm_extern.h>
43 #include <uvm/uvm_fault.h>
44 #include <uvm/uvm_page.h>
45 #include <uvm/uvm_pmap.h>
46 #include <uvm/uvm_prot.h>
47
48 #include <drm/bus_dma_hacks.h>
49 #endif
50
51 #include <drm/drmP.h>
52 #include <drm/drm_vma_manager.h>
53 #include <drm/i915_drm.h>
54 #include "i915_drv.h"
55 #include "i915_vgpu.h"
56 #include "i915_trace.h"
57 #include "intel_drv.h"
58 #include <linux/shmem_fs.h>
59 #include <linux/slab.h>
60 #include <linux/swap.h>
61 #include <linux/pci.h>
62 #include <linux/dma-buf.h>
63 #include <asm/page.h>
64 #include <asm/cpufeature.h>
65
66 #include <linux/nbsd-namespace.h>
67
68 #define RQ_BUG_ON(expr)
69
70 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
71 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
72 static void
73 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
74 static void
75 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
76
77 static bool cpu_cache_is_coherent(struct drm_device *dev,
78 enum i915_cache_level level)
79 {
80 return HAS_LLC(dev) || level != I915_CACHE_NONE;
81 }
82
83 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
84 {
85 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
86 return true;
87
88 return obj->pin_display;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94 {
95 spin_lock(&dev_priv->mm.object_stat_lock);
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
98 spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103 {
104 spin_lock(&dev_priv->mm.object_stat_lock);
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113 int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
117 if (EXIT_COND)
118 return 0;
119
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
125 #ifdef __NetBSD__
126 spin_lock(&error->reset_lock);
127 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
128 10*HZ, EXIT_COND);
129 spin_unlock(&error->reset_lock);
130 #else
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
134 #endif
135 if (ret == 0) {
136 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
137 return -EIO;
138 } else if (ret < 0) {
139 return ret;
140 }
141 #undef EXIT_COND
142
143 return 0;
144 }
145
146 int i915_mutex_lock_interruptible(struct drm_device *dev)
147 {
148 struct drm_i915_private *dev_priv = dev->dev_private;
149 int ret;
150
151 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
152 if (ret)
153 return ret;
154
155 ret = mutex_lock_interruptible(&dev->struct_mutex);
156 if (ret)
157 return ret;
158
159 WARN_ON(i915_verify_lists(dev));
160 return 0;
161 }
162
163 int
164 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
166 {
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_get_aperture *args = data;
169 struct i915_gtt *ggtt = &dev_priv->gtt;
170 struct i915_vma *vma;
171 size_t pinned;
172
173 pinned = 0;
174 mutex_lock(&dev->struct_mutex);
175 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
176 if (vma->pin_count)
177 pinned += vma->node.size;
178 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
179 if (vma->pin_count)
180 pinned += vma->node.size;
181 mutex_unlock(&dev->struct_mutex);
182
183 args->aper_size = dev_priv->gtt.base.total;
184 args->aper_available_size = args->aper_size - pinned;
185
186 return 0;
187 }
188
189 static int
190 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
191 {
192 #ifndef __NetBSD__
193 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
194 #endif
195 char *vaddr = obj->phys_handle->vaddr;
196 #ifndef __NetBSD__
197 struct sg_table *st;
198 struct scatterlist *sg;
199 #endif
200 int i;
201
202 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
203 return -EINVAL;
204
205 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
206 struct page *page;
207 char *src;
208
209 #ifdef __NetBSD__
210 struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
211 int ret;
212 /* XXX errno NetBSD->Linux */
213 ret = -uvm_obj_wirepages(obj->base.filp, i*PAGE_SIZE,
214 (i + 1)*PAGE_SIZE, &pages);
215 if (ret)
216 return ret;
217 page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
218 #else
219 page = shmem_read_mapping_page(mapping, i);
220 if (IS_ERR(page))
221 return PTR_ERR(page);
222 #endif
223
224 src = kmap_atomic(page);
225 memcpy(vaddr, src, PAGE_SIZE);
226 drm_clflush_virt_range(vaddr, PAGE_SIZE);
227 kunmap_atomic(src);
228
229 #ifdef __NetBSD__
230 uvm_obj_unwirepages(obj->base.filp, i*PAGE_SIZE,
231 (i + 1)*PAGE_SIZE);
232 #else
233 page_cache_release(page);
234 #endif
235 vaddr += PAGE_SIZE;
236 }
237
238 i915_gem_chipset_flush(obj->base.dev);
239
240 #ifdef __NetBSD__
241 obj->pages = obj->phys_handle->dmah_map;
242 #else
243 st = kmalloc(sizeof(*st), GFP_KERNEL);
244 if (st == NULL)
245 return -ENOMEM;
246
247 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
248 kfree(st);
249 return -ENOMEM;
250 }
251
252 sg = st->sgl;
253 sg->offset = 0;
254 sg->length = obj->base.size;
255
256 sg_dma_address(sg) = obj->phys_handle->busaddr;
257 sg_dma_len(sg) = obj->base.size;
258
259 obj->pages = st;
260 #endif
261 return 0;
262 }
263
264 static void
265 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
266 {
267 int ret;
268
269 BUG_ON(obj->madv == __I915_MADV_PURGED);
270
271 ret = i915_gem_object_set_to_cpu_domain(obj, true);
272 if (ret) {
273 /* In the event of a disaster, abandon all caches and
274 * hope for the best.
275 */
276 WARN_ON(ret != -EIO);
277 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
278 }
279
280 if (obj->madv == I915_MADV_DONTNEED)
281 obj->dirty = 0;
282
283 if (obj->dirty) {
284 #ifndef __NetBSD__
285 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
286 #endif
287 const char *vaddr = obj->phys_handle->vaddr;
288 int i;
289
290 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
291 struct page *page;
292 char *dst;
293
294 #ifdef __NetBSD__
295 struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
296 /* XXX errno NetBSD->Linux */
297 ret = -uvm_obj_wirepages(obj->base.filp,
298 i*PAGE_SIZE, (i + 1)*PAGE_SIZE, &pages);
299 if (ret)
300 continue;
301 page = container_of(TAILQ_FIRST(&pages), struct page,
302 p_vmp);
303 #endif
304
305 dst = kmap_atomic(page);
306 drm_clflush_virt_range(vaddr, PAGE_SIZE);
307 memcpy(dst, vaddr, PAGE_SIZE);
308 kunmap_atomic(dst);
309
310 set_page_dirty(page);
311 #ifdef __NetBSD__
312 /* XXX mark page accessed */
313 uvm_obj_unwirepages(obj->base.filp, i*PAGE_SIZE,
314 (i+1)*PAGE_SIZE);
315 #else
316 if (obj->madv == I915_MADV_WILLNEED)
317 mark_page_accessed(page);
318 page_cache_release(page);
319 #endif
320 vaddr += PAGE_SIZE;
321 }
322 obj->dirty = 0;
323 }
324
325 #ifdef __NetBSD__
326 obj->pages = NULL;
327 #else
328 sg_free_table(obj->pages);
329 kfree(obj->pages);
330 #endif
331 }
332
333 static void
334 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
335 {
336 drm_pci_free(obj->base.dev, obj->phys_handle);
337 }
338
339 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
340 .get_pages = i915_gem_object_get_pages_phys,
341 .put_pages = i915_gem_object_put_pages_phys,
342 .release = i915_gem_object_release_phys,
343 };
344
345 static int
346 drop_pages(struct drm_i915_gem_object *obj)
347 {
348 struct i915_vma *vma, *next;
349 int ret;
350
351 drm_gem_object_reference(&obj->base);
352 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
353 if (i915_vma_unbind(vma))
354 break;
355
356 ret = i915_gem_object_put_pages(obj);
357 drm_gem_object_unreference(&obj->base);
358
359 return ret;
360 }
361
362 int
363 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
364 int align)
365 {
366 drm_dma_handle_t *phys;
367 int ret;
368
369 if (obj->phys_handle) {
370 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
371 return -EBUSY;
372
373 return 0;
374 }
375
376 if (obj->madv != I915_MADV_WILLNEED)
377 return -EFAULT;
378
379 if (obj->base.filp == NULL)
380 return -EINVAL;
381
382 ret = drop_pages(obj);
383 if (ret)
384 return ret;
385
386 /* create a new object */
387 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
388 if (!phys)
389 return -ENOMEM;
390
391 obj->phys_handle = phys;
392 obj->ops = &i915_gem_phys_ops;
393
394 return i915_gem_object_get_pages(obj);
395 }
396
397 static int
398 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
399 struct drm_i915_gem_pwrite *args,
400 struct drm_file *file_priv)
401 {
402 struct drm_device *dev = obj->base.dev;
403 void *vaddr = obj->phys_handle->vaddr + args->offset;
404 char __user *user_data = to_user_ptr(args->data_ptr);
405 int ret = 0;
406
407 /* We manually control the domain here and pretend that it
408 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
409 */
410 ret = i915_gem_object_wait_rendering(obj, false);
411 if (ret)
412 return ret;
413
414 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
415 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
416 unsigned long unwritten;
417
418 /* The physical object once assigned is fixed for the lifetime
419 * of the obj, so we can safely drop the lock and continue
420 * to access vaddr.
421 */
422 mutex_unlock(&dev->struct_mutex);
423 unwritten = copy_from_user(vaddr, user_data, args->size);
424 mutex_lock(&dev->struct_mutex);
425 if (unwritten) {
426 ret = -EFAULT;
427 goto out;
428 }
429 }
430
431 drm_clflush_virt_range(vaddr, args->size);
432 i915_gem_chipset_flush(dev);
433
434 out:
435 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
436 return ret;
437 }
438
439 void *i915_gem_object_alloc(struct drm_device *dev)
440 {
441 struct drm_i915_private *dev_priv = dev->dev_private;
442 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
443 }
444
445 void i915_gem_object_free(struct drm_i915_gem_object *obj)
446 {
447 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
448 kmem_cache_free(dev_priv->objects, obj);
449 }
450
451 static int
452 i915_gem_create(struct drm_file *file,
453 struct drm_device *dev,
454 uint64_t size,
455 uint32_t *handle_p)
456 {
457 struct drm_i915_gem_object *obj;
458 int ret;
459 u32 handle;
460
461 size = roundup(size, PAGE_SIZE);
462 if (size == 0)
463 return -EINVAL;
464
465 /* Allocate the new object */
466 obj = i915_gem_alloc_object(dev, size);
467 if (obj == NULL)
468 return -ENOMEM;
469
470 ret = drm_gem_handle_create(file, &obj->base, &handle);
471 /* drop reference from allocate - handle holds it now */
472 drm_gem_object_unreference_unlocked(&obj->base);
473 if (ret)
474 return ret;
475
476 *handle_p = handle;
477 return 0;
478 }
479
480 int
481 i915_gem_dumb_create(struct drm_file *file,
482 struct drm_device *dev,
483 struct drm_mode_create_dumb *args)
484 {
485 /* have to work out size/pitch and return them */
486 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
487 args->size = args->pitch * args->height;
488 return i915_gem_create(file, dev,
489 args->size, &args->handle);
490 }
491
492 /**
493 * Creates a new mm object and returns a handle to it.
494 */
495 int
496 i915_gem_create_ioctl(struct drm_device *dev, void *data,
497 struct drm_file *file)
498 {
499 struct drm_i915_gem_create *args = data;
500
501 return i915_gem_create(file, dev,
502 args->size, &args->handle);
503 }
504
505 static inline int
506 __copy_to_user_swizzled(char __user *cpu_vaddr,
507 const char *gpu_vaddr, int gpu_offset,
508 int length)
509 {
510 int ret, cpu_offset = 0;
511
512 while (length > 0) {
513 int cacheline_end = ALIGN(gpu_offset + 1, 64);
514 int this_length = min(cacheline_end - gpu_offset, length);
515 int swizzled_gpu_offset = gpu_offset ^ 64;
516
517 ret = __copy_to_user(cpu_vaddr + cpu_offset,
518 gpu_vaddr + swizzled_gpu_offset,
519 this_length);
520 if (ret)
521 return ret + length;
522
523 cpu_offset += this_length;
524 gpu_offset += this_length;
525 length -= this_length;
526 }
527
528 return 0;
529 }
530
531 static inline int
532 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
533 const char __user *cpu_vaddr,
534 int length)
535 {
536 int ret, cpu_offset = 0;
537
538 while (length > 0) {
539 int cacheline_end = ALIGN(gpu_offset + 1, 64);
540 int this_length = min(cacheline_end - gpu_offset, length);
541 int swizzled_gpu_offset = gpu_offset ^ 64;
542
543 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
544 cpu_vaddr + cpu_offset,
545 this_length);
546 if (ret)
547 return ret + length;
548
549 cpu_offset += this_length;
550 gpu_offset += this_length;
551 length -= this_length;
552 }
553
554 return 0;
555 }
556
557 /*
558 * Pins the specified object's pages and synchronizes the object with
559 * GPU accesses. Sets needs_clflush to non-zero if the caller should
560 * flush the object from the CPU cache.
561 */
562 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
563 int *needs_clflush)
564 {
565 int ret;
566
567 *needs_clflush = 0;
568
569 if (!obj->base.filp)
570 return -EINVAL;
571
572 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
573 /* If we're not in the cpu read domain, set ourself into the gtt
574 * read domain and manually flush cachelines (if required). This
575 * optimizes for the case when the gpu will dirty the data
576 * anyway again before the next pread happens. */
577 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
578 obj->cache_level);
579 ret = i915_gem_object_wait_rendering(obj, true);
580 if (ret)
581 return ret;
582 }
583
584 ret = i915_gem_object_get_pages(obj);
585 if (ret)
586 return ret;
587
588 i915_gem_object_pin_pages(obj);
589
590 return ret;
591 }
592
593 /* Per-page copy function for the shmem pread fastpath.
594 * Flushes invalid cachelines before reading the target if
595 * needs_clflush is set. */
596 static int
597 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
598 char __user *user_data,
599 bool page_do_bit17_swizzling, bool needs_clflush)
600 {
601 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
602 return -EFAULT;
603 #else
604 char *vaddr;
605 int ret;
606
607 if (unlikely(page_do_bit17_swizzling))
608 return -EINVAL;
609
610 vaddr = kmap_atomic(page);
611 if (needs_clflush)
612 drm_clflush_virt_range(vaddr + shmem_page_offset,
613 page_length);
614 ret = __copy_to_user_inatomic(user_data,
615 vaddr + shmem_page_offset,
616 page_length);
617 kunmap_atomic(vaddr);
618
619 return ret ? -EFAULT : 0;
620 #endif
621 }
622
623 static void
624 shmem_clflush_swizzled_range(char *addr, unsigned long length,
625 bool swizzled)
626 {
627 if (unlikely(swizzled)) {
628 unsigned long start = (unsigned long) addr;
629 unsigned long end = (unsigned long) addr + length;
630
631 /* For swizzling simply ensure that we always flush both
632 * channels. Lame, but simple and it works. Swizzled
633 * pwrite/pread is far from a hotpath - current userspace
634 * doesn't use it at all. */
635 start = round_down(start, 128);
636 end = round_up(end, 128);
637
638 drm_clflush_virt_range((void *)start, end - start);
639 } else {
640 drm_clflush_virt_range(addr, length);
641 }
642
643 }
644
645 /* Only difference to the fast-path function is that this can handle bit17
646 * and uses non-atomic copy and kmap functions. */
647 static int
648 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
649 char __user *user_data,
650 bool page_do_bit17_swizzling, bool needs_clflush)
651 {
652 char *vaddr;
653 int ret;
654
655 vaddr = kmap(page);
656 if (needs_clflush)
657 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
658 page_length,
659 page_do_bit17_swizzling);
660
661 if (page_do_bit17_swizzling)
662 ret = __copy_to_user_swizzled(user_data,
663 vaddr, shmem_page_offset,
664 page_length);
665 else
666 ret = __copy_to_user(user_data,
667 vaddr + shmem_page_offset,
668 page_length);
669 kunmap(page);
670
671 return ret ? - EFAULT : 0;
672 }
673
674 static int
675 i915_gem_shmem_pread(struct drm_device *dev,
676 struct drm_i915_gem_object *obj,
677 struct drm_i915_gem_pread *args,
678 struct drm_file *file)
679 {
680 char __user *user_data;
681 ssize_t remain;
682 loff_t offset;
683 int shmem_page_offset, page_length, ret = 0;
684 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
685 #ifndef __NetBSD__ /* XXX */
686 int prefaulted = 0;
687 #endif
688 int needs_clflush = 0;
689 #ifndef __NetBSD__
690 struct sg_page_iter sg_iter;
691 #endif
692
693 user_data = to_user_ptr(args->data_ptr);
694 remain = args->size;
695
696 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
697
698 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
699 if (ret)
700 return ret;
701
702 offset = args->offset;
703
704 #ifdef __NetBSD__
705 while (0 < remain)
706 #else
707 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
708 offset >> PAGE_SHIFT)
709 #endif
710 {
711 #ifdef __NetBSD__
712 struct page *const page = i915_gem_object_get_page(obj,
713 atop(offset));
714 #else
715 struct page *page = sg_page_iter_page(&sg_iter);
716
717 if (remain <= 0)
718 break;
719 #endif
720
721 /* Operation in this page
722 *
723 * shmem_page_offset = offset within page in shmem file
724 * page_length = bytes to copy for this page
725 */
726 shmem_page_offset = offset_in_page(offset);
727 page_length = remain;
728 if ((shmem_page_offset + page_length) > PAGE_SIZE)
729 page_length = PAGE_SIZE - shmem_page_offset;
730
731 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
732 (page_to_phys(page) & (1 << 17)) != 0;
733
734 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
735 user_data, page_do_bit17_swizzling,
736 needs_clflush);
737 if (ret == 0)
738 goto next_page;
739
740 mutex_unlock(&dev->struct_mutex);
741 #ifndef __NetBSD__
742 if (likely(!i915.prefault_disable) && !prefaulted) {
743 ret = fault_in_multipages_writeable(user_data, remain);
744 /* Userspace is tricking us, but we've already clobbered
745 * its pages with the prefault and promised to write the
746 * data up to the first fault. Hence ignore any errors
747 * and just continue. */
748 (void)ret;
749 prefaulted = 1;
750 }
751 #endif
752 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
753 user_data, page_do_bit17_swizzling,
754 needs_clflush);
755
756 mutex_lock(&dev->struct_mutex);
757
758 if (ret)
759 goto out;
760
761 next_page:
762 remain -= page_length;
763 user_data += page_length;
764 offset += page_length;
765 }
766
767 out:
768 i915_gem_object_unpin_pages(obj);
769
770 return ret;
771 }
772
773 /**
774 * Reads data from the object referenced by handle.
775 *
776 * On error, the contents of *data are undefined.
777 */
778 int
779 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
780 struct drm_file *file)
781 {
782 struct drm_i915_gem_pread *args = data;
783 struct drm_gem_object *gobj;
784 struct drm_i915_gem_object *obj;
785 int ret = 0;
786
787 if (args->size == 0)
788 return 0;
789
790 if (!access_ok(VERIFY_WRITE,
791 to_user_ptr(args->data_ptr),
792 args->size))
793 return -EFAULT;
794
795 ret = i915_mutex_lock_interruptible(dev);
796 if (ret)
797 return ret;
798
799 gobj = drm_gem_object_lookup(dev, file, args->handle);
800 if (gobj == NULL) {
801 ret = -ENOENT;
802 goto unlock;
803 }
804 obj = to_intel_bo(gobj);
805
806 /* Bounds check source. */
807 if (args->offset > obj->base.size ||
808 args->size > obj->base.size - args->offset) {
809 ret = -EINVAL;
810 goto out;
811 }
812
813 /* prime objects have no backing filp to GEM pread/pwrite
814 * pages from.
815 */
816 if (!obj->base.filp) {
817 ret = -EINVAL;
818 goto out;
819 }
820
821 trace_i915_gem_object_pread(obj, args->offset, args->size);
822
823 ret = i915_gem_shmem_pread(dev, obj, args, file);
824
825 out:
826 drm_gem_object_unreference(&obj->base);
827 unlock:
828 mutex_unlock(&dev->struct_mutex);
829 return ret;
830 }
831
832 /* This is the fast write path which cannot handle
833 * page faults in the source data
834 */
835
836 static inline int
837 fast_user_write(struct io_mapping *mapping,
838 loff_t page_base, int page_offset,
839 char __user *user_data,
840 int length)
841 {
842 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
843 return -EFAULT;
844 #else
845 void __iomem *vaddr_atomic;
846 void *vaddr;
847 unsigned long unwritten;
848
849 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
850 /* We can use the cpu mem copy function because this is X86. */
851 vaddr = (void __force*)vaddr_atomic + page_offset;
852 unwritten = __copy_from_user_inatomic_nocache(vaddr,
853 user_data, length);
854 io_mapping_unmap_atomic(vaddr_atomic);
855 return unwritten;
856 #endif
857 }
858
859 /**
860 * This is the fast pwrite path, where we copy the data directly from the
861 * user into the GTT, uncached.
862 */
863 static int
864 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
865 struct drm_i915_gem_object *obj,
866 struct drm_i915_gem_pwrite *args,
867 struct drm_file *file)
868 {
869 struct drm_i915_private *dev_priv = dev->dev_private;
870 ssize_t remain;
871 loff_t offset, page_base;
872 char __user *user_data;
873 int page_offset, page_length, ret;
874
875 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
876 if (ret)
877 goto out;
878
879 ret = i915_gem_object_set_to_gtt_domain(obj, true);
880 if (ret)
881 goto out_unpin;
882
883 ret = i915_gem_object_put_fence(obj);
884 if (ret)
885 goto out_unpin;
886
887 user_data = to_user_ptr(args->data_ptr);
888 remain = args->size;
889
890 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
891
892 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
893
894 while (remain > 0) {
895 /* Operation in this page
896 *
897 * page_base = page offset within aperture
898 * page_offset = offset within page
899 * page_length = bytes to copy for this page
900 */
901 page_base = offset & PAGE_MASK;
902 page_offset = offset_in_page(offset);
903 page_length = remain;
904 if ((page_offset + remain) > PAGE_SIZE)
905 page_length = PAGE_SIZE - page_offset;
906
907 /* If we get a fault while copying data, then (presumably) our
908 * source page isn't available. Return the error and we'll
909 * retry in the slow path.
910 */
911 if (fast_user_write(dev_priv->gtt.mappable, page_base,
912 page_offset, user_data, page_length)) {
913 ret = -EFAULT;
914 goto out_flush;
915 }
916
917 remain -= page_length;
918 user_data += page_length;
919 offset += page_length;
920 }
921
922 out_flush:
923 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
924 out_unpin:
925 i915_gem_object_ggtt_unpin(obj);
926 out:
927 return ret;
928 }
929
930 /* Per-page copy function for the shmem pwrite fastpath.
931 * Flushes invalid cachelines before writing to the target if
932 * needs_clflush_before is set and flushes out any written cachelines after
933 * writing if needs_clflush is set. */
934 static int
935 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
936 char __user *user_data,
937 bool page_do_bit17_swizzling,
938 bool needs_clflush_before,
939 bool needs_clflush_after)
940 {
941 #ifdef __NetBSD__
942 return -EFAULT;
943 #else
944 char *vaddr;
945 int ret;
946
947 if (unlikely(page_do_bit17_swizzling))
948 return -EINVAL;
949
950 vaddr = kmap_atomic(page);
951 if (needs_clflush_before)
952 drm_clflush_virt_range(vaddr + shmem_page_offset,
953 page_length);
954 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
955 user_data, page_length);
956 if (needs_clflush_after)
957 drm_clflush_virt_range(vaddr + shmem_page_offset,
958 page_length);
959 kunmap_atomic(vaddr);
960
961 return ret ? -EFAULT : 0;
962 #endif
963 }
964
965 /* Only difference to the fast-path function is that this can handle bit17
966 * and uses non-atomic copy and kmap functions. */
967 static int
968 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
969 char __user *user_data,
970 bool page_do_bit17_swizzling,
971 bool needs_clflush_before,
972 bool needs_clflush_after)
973 {
974 char *vaddr;
975 int ret;
976
977 vaddr = kmap(page);
978 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
979 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
980 page_length,
981 page_do_bit17_swizzling);
982 if (page_do_bit17_swizzling)
983 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
984 user_data,
985 page_length);
986 else
987 ret = __copy_from_user(vaddr + shmem_page_offset,
988 user_data,
989 page_length);
990 if (needs_clflush_after)
991 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
992 page_length,
993 page_do_bit17_swizzling);
994 kunmap(page);
995
996 return ret ? -EFAULT : 0;
997 }
998
999 static int
1000 i915_gem_shmem_pwrite(struct drm_device *dev,
1001 struct drm_i915_gem_object *obj,
1002 struct drm_i915_gem_pwrite *args,
1003 struct drm_file *file)
1004 {
1005 ssize_t remain;
1006 loff_t offset;
1007 char __user *user_data;
1008 int shmem_page_offset, page_length, ret = 0;
1009 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1010 int hit_slowpath = 0;
1011 int needs_clflush_after = 0;
1012 int needs_clflush_before = 0;
1013 #ifndef __NetBSD__
1014 struct sg_page_iter sg_iter;
1015 int flush_mask = boot_cpu_data.x86_clflush_size - 1;
1016 #else
1017 int flush_mask = cpu_info_primary.ci_cflush_lsize - 1;
1018 #endif
1019
1020 user_data = to_user_ptr(args->data_ptr);
1021 remain = args->size;
1022
1023 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1024
1025 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1026 /* If we're not in the cpu write domain, set ourself into the gtt
1027 * write domain and manually flush cachelines (if required). This
1028 * optimizes for the case when the gpu will use the data
1029 * right away and we therefore have to clflush anyway. */
1030 needs_clflush_after = cpu_write_needs_clflush(obj);
1031 ret = i915_gem_object_wait_rendering(obj, false);
1032 if (ret)
1033 return ret;
1034 }
1035 /* Same trick applies to invalidate partially written cachelines read
1036 * before writing. */
1037 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1038 needs_clflush_before =
1039 !cpu_cache_is_coherent(dev, obj->cache_level);
1040
1041 ret = i915_gem_object_get_pages(obj);
1042 if (ret)
1043 return ret;
1044
1045 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1046
1047 i915_gem_object_pin_pages(obj);
1048
1049 offset = args->offset;
1050 obj->dirty = 1;
1051
1052 #ifdef __NetBSD__
1053 while (0 < remain)
1054 #else
1055 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1056 offset >> PAGE_SHIFT)
1057 #endif
1058 {
1059 #ifdef __NetBSD__
1060 struct page *const page = i915_gem_object_get_page(obj,
1061 atop(offset));
1062 #else
1063 struct page *page = sg_page_iter_page(&sg_iter);
1064
1065 if (remain <= 0)
1066 break;
1067 #endif
1068
1069 /* Operation in this page
1070 *
1071 * shmem_page_offset = offset within page in shmem file
1072 * page_length = bytes to copy for this page
1073 */
1074 shmem_page_offset = offset_in_page(offset);
1075
1076 page_length = remain;
1077 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1078 page_length = PAGE_SIZE - shmem_page_offset;
1079
1080 /* If we don't overwrite a cacheline completely we need to be
1081 * careful to have up-to-date data by first clflushing. Don't
1082 * overcomplicate things and flush the entire patch. */
1083 const int partial_cacheline_write = needs_clflush_before &&
1084 ((shmem_page_offset | page_length) & flush_mask);
1085
1086 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1087 (page_to_phys(page) & (1 << 17)) != 0;
1088
1089 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1090 user_data, page_do_bit17_swizzling,
1091 partial_cacheline_write,
1092 needs_clflush_after);
1093 if (ret == 0)
1094 goto next_page;
1095
1096 hit_slowpath = 1;
1097 mutex_unlock(&dev->struct_mutex);
1098 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1099 user_data, page_do_bit17_swizzling,
1100 partial_cacheline_write,
1101 needs_clflush_after);
1102
1103 mutex_lock(&dev->struct_mutex);
1104
1105 if (ret)
1106 goto out;
1107
1108 next_page:
1109 remain -= page_length;
1110 user_data += page_length;
1111 offset += page_length;
1112 }
1113
1114 out:
1115 i915_gem_object_unpin_pages(obj);
1116
1117 if (hit_slowpath) {
1118 /*
1119 * Fixup: Flush cpu caches in case we didn't flush the dirty
1120 * cachelines in-line while writing and the object moved
1121 * out of the cpu write domain while we've dropped the lock.
1122 */
1123 if (!needs_clflush_after &&
1124 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1125 if (i915_gem_clflush_object(obj, obj->pin_display))
1126 needs_clflush_after = true;
1127 }
1128 }
1129
1130 if (needs_clflush_after)
1131 i915_gem_chipset_flush(dev);
1132 else
1133 obj->cache_dirty = true;
1134
1135 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1136 return ret;
1137 }
1138
1139 /**
1140 * Writes data to the object referenced by handle.
1141 *
1142 * On error, the contents of the buffer that were to be modified are undefined.
1143 */
1144 int
1145 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1146 struct drm_file *file)
1147 {
1148 struct drm_i915_private *dev_priv = dev->dev_private;
1149 struct drm_i915_gem_pwrite *args = data;
1150 struct drm_gem_object *gobj;
1151 struct drm_i915_gem_object *obj;
1152 int ret;
1153
1154 if (args->size == 0)
1155 return 0;
1156
1157 if (!access_ok(VERIFY_READ,
1158 to_user_ptr(args->data_ptr),
1159 args->size))
1160 return -EFAULT;
1161
1162 #ifndef __NetBSD__ /* XXX prefault */
1163 if (likely(!i915.prefault_disable)) {
1164 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1165 args->size);
1166 if (ret)
1167 return -EFAULT;
1168 }
1169 #endif
1170
1171 intel_runtime_pm_get(dev_priv);
1172
1173 ret = i915_mutex_lock_interruptible(dev);
1174 if (ret)
1175 goto put_rpm;
1176
1177 gobj = drm_gem_object_lookup(dev, file, args->handle);
1178 if (gobj == NULL) {
1179 ret = -ENOENT;
1180 goto unlock;
1181 }
1182 obj = to_intel_bo(gobj);
1183
1184 /* Bounds check destination. */
1185 if (args->offset > obj->base.size ||
1186 args->size > obj->base.size - args->offset) {
1187 ret = -EINVAL;
1188 goto out;
1189 }
1190
1191 /* prime objects have no backing filp to GEM pread/pwrite
1192 * pages from.
1193 */
1194 if (!obj->base.filp) {
1195 ret = -EINVAL;
1196 goto out;
1197 }
1198
1199 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1200
1201 ret = -EFAULT;
1202 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1203 * it would end up going through the fenced access, and we'll get
1204 * different detiling behavior between reading and writing.
1205 * pread/pwrite currently are reading and writing from the CPU
1206 * perspective, requiring manual detiling by the client.
1207 */
1208 if (obj->tiling_mode == I915_TILING_NONE &&
1209 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1210 cpu_write_needs_clflush(obj)) {
1211 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1212 /* Note that the gtt paths might fail with non-page-backed user
1213 * pointers (e.g. gtt mappings when moving data between
1214 * textures). Fallback to the shmem path in that case. */
1215 }
1216
1217 if (ret == -EFAULT || ret == -ENOSPC) {
1218 if (obj->phys_handle)
1219 ret = i915_gem_phys_pwrite(obj, args, file);
1220 else
1221 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1222 }
1223
1224 out:
1225 drm_gem_object_unreference(&obj->base);
1226 unlock:
1227 mutex_unlock(&dev->struct_mutex);
1228 put_rpm:
1229 intel_runtime_pm_put(dev_priv);
1230
1231 return ret;
1232 }
1233
1234 int
1235 i915_gem_check_wedge(struct i915_gpu_error *error,
1236 bool interruptible)
1237 {
1238 if (i915_reset_in_progress(error)) {
1239 /* Non-interruptible callers can't handle -EAGAIN, hence return
1240 * -EIO unconditionally for these. */
1241 if (!interruptible)
1242 return -EIO;
1243
1244 /* Recovery complete, but the reset failed ... */
1245 if (i915_terminally_wedged(error))
1246 return -EIO;
1247
1248 /*
1249 * Check if GPU Reset is in progress - we need intel_ring_begin
1250 * to work properly to reinit the hw state while the gpu is
1251 * still marked as reset-in-progress. Handle this with a flag.
1252 */
1253 if (!error->reload_in_reset)
1254 return -EAGAIN;
1255 }
1256
1257 return 0;
1258 }
1259
1260 #ifndef __NetBSD__
1261 static void fake_irq(unsigned long data)
1262 {
1263 wake_up_process((struct task_struct *)data);
1264 }
1265 #endif
1266
1267 static bool missed_irq(struct drm_i915_private *dev_priv,
1268 struct intel_engine_cs *ring)
1269 {
1270 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1271 }
1272
1273 #ifndef __NetBSD__
1274 static unsigned long local_clock_us(unsigned *cpu)
1275 {
1276 unsigned long t;
1277
1278 /* Cheaply and approximately convert from nanoseconds to microseconds.
1279 * The result and subsequent calculations are also defined in the same
1280 * approximate microseconds units. The principal source of timing
1281 * error here is from the simple truncation.
1282 *
1283 * Note that local_clock() is only defined wrt to the current CPU;
1284 * the comparisons are no longer valid if we switch CPUs. Instead of
1285 * blocking preemption for the entire busywait, we can detect the CPU
1286 * switch and use that as indicator of system load and a reason to
1287 * stop busywaiting, see busywait_stop().
1288 */
1289 *cpu = get_cpu();
1290 t = local_clock() >> 10;
1291 put_cpu();
1292
1293 return t;
1294 }
1295
1296 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1297 {
1298 unsigned this_cpu;
1299
1300 if (time_after(local_clock_us(&this_cpu), timeout))
1301 return true;
1302
1303 return this_cpu != cpu;
1304 }
1305 #endif
1306
1307 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1308 {
1309 #ifndef __NetBSD__
1310 unsigned long timeout;
1311 unsigned cpu;
1312 #endif
1313
1314 /* When waiting for high frequency requests, e.g. during synchronous
1315 * rendering split between the CPU and GPU, the finite amount of time
1316 * required to set up the irq and wait upon it limits the response
1317 * rate. By busywaiting on the request completion for a short while we
1318 * can service the high frequency waits as quick as possible. However,
1319 * if it is a slow request, we want to sleep as quickly as possible.
1320 * The tradeoff between waiting and sleeping is roughly the time it
1321 * takes to sleep on a request, on the order of a microsecond.
1322 */
1323
1324 if (req->ring->irq_refcount)
1325 return -EBUSY;
1326
1327 /* Only spin if we know the GPU is processing this request */
1328 if (!i915_gem_request_started(req, true))
1329 return -EAGAIN;
1330
1331 #ifndef __NetBSD__ /* XXX No local clock in usec. */
1332 timeout = local_clock_us(&cpu) + 5;
1333 while (!need_resched()) {
1334 if (i915_gem_request_completed(req, true))
1335 return 0;
1336
1337 if (signal_pending_state(state, current))
1338 break;
1339
1340 if (busywait_stop(timeout, cpu))
1341 break;
1342
1343 cpu_relax_lowlatency();
1344 }
1345 #endif
1346
1347 if (i915_gem_request_completed(req, false))
1348 return 0;
1349
1350 return -EAGAIN;
1351 }
1352
1353 /**
1354 * __i915_wait_request - wait until execution of request has finished
1355 * @req: duh!
1356 * @reset_counter: reset sequence associated with the given request
1357 * @interruptible: do an interruptible wait (normally yes)
1358 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1359 *
1360 * Note: It is of utmost importance that the passed in seqno and reset_counter
1361 * values have been read by the caller in an smp safe manner. Where read-side
1362 * locks are involved, it is sufficient to read the reset_counter before
1363 * unlocking the lock that protects the seqno. For lockless tricks, the
1364 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1365 * inserted.
1366 *
1367 * Returns 0 if the request was found within the alloted time. Else returns the
1368 * errno with remaining time filled in timeout argument.
1369 */
1370 int __i915_wait_request(struct drm_i915_gem_request *req,
1371 unsigned reset_counter,
1372 bool interruptible,
1373 s64 *timeout,
1374 struct intel_rps_client *rps)
1375 {
1376 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1377 struct drm_device *dev = ring->dev;
1378 struct drm_i915_private *dev_priv = dev->dev_private;
1379 const bool irq_test_in_progress =
1380 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1381 #ifdef __NetBSD__
1382 int state = 0;
1383 bool wedged;
1384 #else
1385 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1386 DEFINE_WAIT(wait);
1387 unsigned long timeout_expire;
1388 #endif
1389 s64 before, now;
1390 int ret;
1391
1392 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1393
1394 if (list_empty(&req->list))
1395 return 0;
1396
1397 if (i915_gem_request_completed(req, true))
1398 return 0;
1399
1400 #ifndef __NetBSD__
1401 timeout_expire = 0;
1402 if (timeout) {
1403 if (WARN_ON(*timeout < 0))
1404 return -EINVAL;
1405
1406 if (*timeout == 0)
1407 return -ETIME;
1408
1409 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1410 }
1411 #endif
1412
1413 if (INTEL_INFO(dev_priv)->gen >= 6)
1414 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1415
1416 /* Record current time in case interrupted by signal, or wedged */
1417 trace_i915_gem_request_wait_begin(req);
1418 before = ktime_get_raw_ns();
1419
1420 /* Optimistic spin for the next jiffie before touching IRQs */
1421 ret = __i915_spin_request(req, state);
1422 if (ret == 0)
1423 goto out;
1424
1425 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1426 ret = -ENODEV;
1427 goto out;
1428 }
1429
1430 #ifdef __NetBSD__
1431 # define EXIT_COND \
1432 ((wedged = (reset_counter != \
1433 atomic_read(&dev_priv->gpu_error.reset_counter))) || \
1434 i915_gem_request_completed(req, false))
1435 spin_lock(&dev_priv->irq_lock);
1436 if (timeout) {
1437 int ticks = missed_irq(dev_priv, ring) ? 1 :
1438 nsecs_to_jiffies_timeout(*timeout);
1439 if (interruptible) {
1440 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
1441 &dev_priv->irq_lock, ticks, EXIT_COND);
1442 } else {
1443 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
1444 &dev_priv->irq_lock, ticks, EXIT_COND);
1445 }
1446 if (ret < 0) /* Failure: return negative error as is. */
1447 ;
1448 else if (ret == 0) /* Timed out: return -ETIME. */
1449 ret = -ETIME;
1450 else /* Succeeded (ret > 0): return 0. */
1451 ret = 0;
1452 } else {
1453 if (interruptible) {
1454 DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
1455 &dev_priv->irq_lock, EXIT_COND);
1456 } else {
1457 DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
1458 &dev_priv->irq_lock, EXIT_COND);
1459 }
1460 /* ret is negative on failure or zero on success. */
1461 }
1462 spin_unlock(&dev_priv->irq_lock);
1463 if (wedged) {
1464 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1465 if (ret == 0)
1466 ret = -EAGAIN;
1467 }
1468 #else
1469 for (;;) {
1470 struct timer_list timer;
1471
1472 prepare_to_wait(&ring->irq_queue, &wait, state);
1473
1474 /* We need to check whether any gpu reset happened in between
1475 * the caller grabbing the seqno and now ... */
1476 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1477 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1478 * is truely gone. */
1479 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1480 if (ret == 0)
1481 ret = -EAGAIN;
1482 break;
1483 }
1484
1485 if (i915_gem_request_completed(req, false)) {
1486 ret = 0;
1487 break;
1488 }
1489
1490 if (signal_pending_state(state, current)) {
1491 ret = -ERESTARTSYS;
1492 break;
1493 }
1494
1495 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1496 ret = -ETIME;
1497 break;
1498 }
1499
1500 timer.function = NULL;
1501 if (timeout || missed_irq(dev_priv, ring)) {
1502 unsigned long expire;
1503
1504 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1505 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1506 mod_timer(&timer, expire);
1507 }
1508
1509 io_schedule();
1510
1511 if (timer.function) {
1512 del_singleshot_timer_sync(&timer);
1513 destroy_timer_on_stack(&timer);
1514 }
1515 }
1516 #endif
1517 if (!irq_test_in_progress)
1518 ring->irq_put(ring);
1519
1520 #ifndef __NetBSD__
1521 finish_wait(&ring->irq_queue, &wait);
1522 #endif
1523
1524 out:
1525 now = ktime_get_raw_ns();
1526 trace_i915_gem_request_wait_end(req);
1527
1528 if (timeout) {
1529 s64 tres = *timeout - (now - before);
1530
1531 *timeout = tres < 0 ? 0 : tres;
1532
1533 /*
1534 * Apparently ktime isn't accurate enough and occasionally has a
1535 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1536 * things up to make the test happy. We allow up to 1 jiffy.
1537 *
1538 * This is a regrssion from the timespec->ktime conversion.
1539 */
1540 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1541 *timeout = 0;
1542 }
1543
1544 return ret;
1545 }
1546
1547 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1548 struct drm_file *file)
1549 {
1550 struct drm_i915_private *dev_private __unused;
1551 struct drm_i915_file_private *file_priv;
1552
1553 WARN_ON(!req || !file || req->file_priv);
1554
1555 if (!req || !file)
1556 return -EINVAL;
1557
1558 if (req->file_priv)
1559 return -EINVAL;
1560
1561 dev_private = req->ring->dev->dev_private;
1562 file_priv = file->driver_priv;
1563
1564 spin_lock(&file_priv->mm.lock);
1565 req->file_priv = file_priv;
1566 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1567 spin_unlock(&file_priv->mm.lock);
1568
1569 #ifndef __NetBSD__
1570 req->pid = get_pid(task_pid(current));
1571 #endif
1572
1573 return 0;
1574 }
1575
1576 static inline void
1577 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1578 {
1579 struct drm_i915_file_private *file_priv = request->file_priv;
1580
1581 if (!file_priv)
1582 return;
1583
1584 spin_lock(&file_priv->mm.lock);
1585 list_del(&request->client_list);
1586 request->file_priv = NULL;
1587 spin_unlock(&file_priv->mm.lock);
1588
1589 #ifndef __NetBSD__
1590 put_pid(request->pid);
1591 request->pid = NULL;
1592 #endif
1593 }
1594
1595 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1596 {
1597 trace_i915_gem_request_retire(request);
1598
1599 /* We know the GPU must have read the request to have
1600 * sent us the seqno + interrupt, so use the position
1601 * of tail of the request to update the last known position
1602 * of the GPU head.
1603 *
1604 * Note this requires that we are always called in request
1605 * completion order.
1606 */
1607 request->ringbuf->last_retired_head = request->postfix;
1608
1609 list_del_init(&request->list);
1610 i915_gem_request_remove_from_client(request);
1611
1612 i915_gem_request_unreference(request);
1613 }
1614
1615 static void
1616 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1617 {
1618 struct intel_engine_cs *engine = req->ring;
1619 struct drm_i915_gem_request *tmp;
1620
1621 lockdep_assert_held(&engine->dev->struct_mutex);
1622
1623 if (list_empty(&req->list))
1624 return;
1625
1626 do {
1627 tmp = list_first_entry(&engine->request_list,
1628 typeof(*tmp), list);
1629
1630 i915_gem_request_retire(tmp);
1631 } while (tmp != req);
1632
1633 WARN_ON(i915_verify_lists(engine->dev));
1634 }
1635
1636 /**
1637 * Waits for a request to be signaled, and cleans up the
1638 * request and object lists appropriately for that event.
1639 */
1640 int
1641 i915_wait_request(struct drm_i915_gem_request *req)
1642 {
1643 struct drm_device *dev;
1644 struct drm_i915_private *dev_priv;
1645 bool interruptible;
1646 int ret;
1647
1648 BUG_ON(req == NULL);
1649
1650 dev = req->ring->dev;
1651 dev_priv = dev->dev_private;
1652 interruptible = dev_priv->mm.interruptible;
1653
1654 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1655
1656 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1657 if (ret)
1658 return ret;
1659
1660 ret = __i915_wait_request(req,
1661 atomic_read(&dev_priv->gpu_error.reset_counter),
1662 interruptible, NULL, NULL);
1663 if (ret)
1664 return ret;
1665
1666 __i915_gem_request_retire__upto(req);
1667 return 0;
1668 }
1669
1670 /**
1671 * Ensures that all rendering to the object has completed and the object is
1672 * safe to unbind from the GTT or access from the CPU.
1673 */
1674 int
1675 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1676 bool readonly)
1677 {
1678 int ret, i;
1679
1680 if (!obj->active)
1681 return 0;
1682
1683 if (readonly) {
1684 if (obj->last_write_req != NULL) {
1685 ret = i915_wait_request(obj->last_write_req);
1686 if (ret)
1687 return ret;
1688
1689 i = obj->last_write_req->ring->id;
1690 if (obj->last_read_req[i] == obj->last_write_req)
1691 i915_gem_object_retire__read(obj, i);
1692 else
1693 i915_gem_object_retire__write(obj);
1694 }
1695 } else {
1696 for (i = 0; i < I915_NUM_RINGS; i++) {
1697 if (obj->last_read_req[i] == NULL)
1698 continue;
1699
1700 ret = i915_wait_request(obj->last_read_req[i]);
1701 if (ret)
1702 return ret;
1703
1704 i915_gem_object_retire__read(obj, i);
1705 }
1706 RQ_BUG_ON(obj->active);
1707 }
1708
1709 return 0;
1710 }
1711
1712 static void
1713 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1714 struct drm_i915_gem_request *req)
1715 {
1716 int ring = req->ring->id;
1717
1718 if (obj->last_read_req[ring] == req)
1719 i915_gem_object_retire__read(obj, ring);
1720 else if (obj->last_write_req == req)
1721 i915_gem_object_retire__write(obj);
1722
1723 __i915_gem_request_retire__upto(req);
1724 }
1725
1726 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1727 * as the object state may change during this call.
1728 */
1729 static __must_check int
1730 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1731 struct intel_rps_client *rps,
1732 bool readonly)
1733 {
1734 struct drm_device *dev = obj->base.dev;
1735 struct drm_i915_private *dev_priv = dev->dev_private;
1736 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1737 unsigned reset_counter;
1738 int ret, i, n = 0;
1739
1740 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1741 BUG_ON(!dev_priv->mm.interruptible);
1742
1743 if (!obj->active)
1744 return 0;
1745
1746 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1747 if (ret)
1748 return ret;
1749
1750 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1751
1752 if (readonly) {
1753 struct drm_i915_gem_request *req;
1754
1755 req = obj->last_write_req;
1756 if (req == NULL)
1757 return 0;
1758
1759 requests[n++] = i915_gem_request_reference(req);
1760 } else {
1761 for (i = 0; i < I915_NUM_RINGS; i++) {
1762 struct drm_i915_gem_request *req;
1763
1764 req = obj->last_read_req[i];
1765 if (req == NULL)
1766 continue;
1767
1768 requests[n++] = i915_gem_request_reference(req);
1769 }
1770 }
1771
1772 mutex_unlock(&dev->struct_mutex);
1773 for (i = 0; ret == 0 && i < n; i++)
1774 ret = __i915_wait_request(requests[i], reset_counter, true,
1775 NULL, rps);
1776 mutex_lock(&dev->struct_mutex);
1777
1778 for (i = 0; i < n; i++) {
1779 if (ret == 0)
1780 i915_gem_object_retire_request(obj, requests[i]);
1781 i915_gem_request_unreference(requests[i]);
1782 }
1783
1784 return ret;
1785 }
1786
1787 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1788 {
1789 struct drm_i915_file_private *fpriv = file->driver_priv;
1790 return &fpriv->rps;
1791 }
1792
1793 /**
1794 * Called when user space prepares to use an object with the CPU, either
1795 * through the mmap ioctl's mapping or a GTT mapping.
1796 */
1797 int
1798 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1799 struct drm_file *file)
1800 {
1801 struct drm_i915_gem_set_domain *args = data;
1802 struct drm_gem_object *gobj;
1803 struct drm_i915_gem_object *obj;
1804 uint32_t read_domains = args->read_domains;
1805 uint32_t write_domain = args->write_domain;
1806 int ret;
1807
1808 /* Only handle setting domains to types used by the CPU. */
1809 if (write_domain & I915_GEM_GPU_DOMAINS)
1810 return -EINVAL;
1811
1812 if (read_domains & I915_GEM_GPU_DOMAINS)
1813 return -EINVAL;
1814
1815 /* Having something in the write domain implies it's in the read
1816 * domain, and only that read domain. Enforce that in the request.
1817 */
1818 if (write_domain != 0 && read_domains != write_domain)
1819 return -EINVAL;
1820
1821 ret = i915_mutex_lock_interruptible(dev);
1822 if (ret)
1823 return ret;
1824
1825 gobj = drm_gem_object_lookup(dev, file, args->handle);
1826 if (gobj == NULL) {
1827 ret = -ENOENT;
1828 goto unlock;
1829 }
1830 obj = to_intel_bo(gobj);
1831
1832 /* Try to flush the object off the GPU without holding the lock.
1833 * We will repeat the flush holding the lock in the normal manner
1834 * to catch cases where we are gazumped.
1835 */
1836 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1837 to_rps_client(file),
1838 !write_domain);
1839 if (ret)
1840 goto unref;
1841
1842 if (read_domains & I915_GEM_DOMAIN_GTT)
1843 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1844 else
1845 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1846
1847 if (write_domain != 0)
1848 intel_fb_obj_invalidate(obj,
1849 write_domain == I915_GEM_DOMAIN_GTT ?
1850 ORIGIN_GTT : ORIGIN_CPU);
1851
1852 unref:
1853 drm_gem_object_unreference(&obj->base);
1854 unlock:
1855 mutex_unlock(&dev->struct_mutex);
1856 return ret;
1857 }
1858
1859 /**
1860 * Called when user space has done writes to this buffer
1861 */
1862 int
1863 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1864 struct drm_file *file)
1865 {
1866 struct drm_i915_gem_sw_finish *args = data;
1867 struct drm_gem_object *gobj;
1868 struct drm_i915_gem_object *obj;
1869 int ret = 0;
1870
1871 ret = i915_mutex_lock_interruptible(dev);
1872 if (ret)
1873 return ret;
1874
1875 gobj = drm_gem_object_lookup(dev, file, args->handle);
1876 if (gobj == NULL) {
1877 ret = -ENOENT;
1878 goto unlock;
1879 }
1880 obj = to_intel_bo(gobj);
1881
1882 /* Pinned buffers may be scanout, so flush the cache */
1883 if (obj->pin_display)
1884 i915_gem_object_flush_cpu_write_domain(obj);
1885
1886 drm_gem_object_unreference(&obj->base);
1887 unlock:
1888 mutex_unlock(&dev->struct_mutex);
1889 return ret;
1890 }
1891
1892 /**
1893 * Maps the contents of an object, returning the address it is mapped
1894 * into.
1895 *
1896 * While the mapping holds a reference on the contents of the object, it doesn't
1897 * imply a ref on the object itself.
1898 *
1899 * IMPORTANT:
1900 *
1901 * DRM driver writers who look a this function as an example for how to do GEM
1902 * mmap support, please don't implement mmap support like here. The modern way
1903 * to implement DRM mmap support is with an mmap offset ioctl (like
1904 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1905 * That way debug tooling like valgrind will understand what's going on, hiding
1906 * the mmap call in a driver private ioctl will break that. The i915 driver only
1907 * does cpu mmaps this way because we didn't know better.
1908 */
1909 int
1910 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1911 struct drm_file *file)
1912 {
1913 struct drm_i915_gem_mmap *args = data;
1914 struct drm_gem_object *obj;
1915 unsigned long addr;
1916 #ifdef __NetBSD__
1917 struct drm_i915_private *dev_priv = dev->dev_private;
1918 int ret;
1919
1920 if ((dev_priv->quirks & QUIRK_NETBSD_VERSION_CALLED) == 0)
1921 args->flags = 0;
1922 #endif
1923
1924 if (args->flags & ~(I915_MMAP_WC))
1925 return -EINVAL;
1926
1927 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1928 return -ENODEV;
1929
1930 obj = drm_gem_object_lookup(dev, file, args->handle);
1931 if (obj == NULL)
1932 return -ENOENT;
1933
1934 /* prime objects have no backing filp to GEM mmap
1935 * pages from.
1936 */
1937 if (!obj->filp) {
1938 drm_gem_object_unreference_unlocked(obj);
1939 return -EINVAL;
1940 }
1941
1942 #ifdef __NetBSD__
1943 /* Acquire a reference for uvm_map to consume. */
1944 uao_reference(obj->filp);
1945 addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
1946 (vaddr_t)curproc->p_vmspace->vm_daddr, args->size,
1947 curproc->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1948 /* XXX errno NetBSD->Linux */
1949 ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
1950 obj->filp, args->offset, 0,
1951 UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
1952 (VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
1953 0));
1954 if (ret) {
1955 uao_detach(obj->filp);
1956 drm_gem_object_unreference_unlocked(obj);
1957 return ret;
1958 }
1959 drm_gem_object_unreference_unlocked(obj);
1960 #else
1961 addr = vm_mmap(obj->filp, 0, args->size,
1962 PROT_READ | PROT_WRITE, MAP_SHARED,
1963 args->offset);
1964 if (args->flags & I915_MMAP_WC) {
1965 struct mm_struct *mm = current->mm;
1966 struct vm_area_struct *vma;
1967
1968 down_write(&mm->mmap_sem);
1969 vma = find_vma(mm, addr);
1970 if (vma)
1971 vma->vm_page_prot =
1972 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1973 else
1974 addr = -ENOMEM;
1975 up_write(&mm->mmap_sem);
1976 }
1977 drm_gem_object_unreference_unlocked(obj);
1978 if (IS_ERR((void *)addr))
1979 return addr;
1980 #endif
1981
1982 args->addr_ptr = (uint64_t) addr;
1983
1984 return 0;
1985 }
1986
1987 #ifdef __NetBSD__ /* XXX gem gtt fault */
1988 static int i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
1989 struct vm_page **, int, int, vm_prot_t, int, paddr_t);
1990
1991 int
1992 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1993 int npages, int centeridx, vm_prot_t access_type, int flags)
1994 {
1995 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1996 struct drm_gem_object *gem_obj =
1997 container_of(uobj, struct drm_gem_object, gemo_uvmobj);
1998 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
1999 struct drm_device *dev = obj->base.dev;
2000 struct drm_i915_private *dev_priv = dev->dev_private;
2001 voff_t byte_offset;
2002 pgoff_t page_offset;
2003 int ret = 0;
2004 bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
2005
2006 byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
2007 KASSERT(byte_offset <= obj->base.size);
2008 page_offset = (byte_offset >> PAGE_SHIFT);
2009
2010 intel_runtime_pm_get(dev_priv);
2011
2012 /* Thanks, uvm, but we don't need this lock. */
2013 rw_exit(uobj->vmobjlock);
2014
2015 ret = i915_mutex_lock_interruptible(dev);
2016 if (ret)
2017 goto out;
2018
2019 trace_i915_gem_object_fault(obj, page_offset, true, write);
2020
2021 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2022 if (ret)
2023 goto unlock;
2024
2025 if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
2026 ret = -EINVAL;
2027 goto unlock;
2028 }
2029
2030 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
2031 if (ret)
2032 goto unlock;
2033
2034 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2035 if (ret)
2036 goto unpin;
2037
2038 ret = i915_gem_object_get_fence(obj);
2039 if (ret)
2040 goto unpin;
2041
2042 obj->fault_mappable = true;
2043
2044 /* XXX errno NetBSD->Linux */
2045 ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
2046 flags,
2047 (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
2048 unpin:
2049 i915_gem_object_ggtt_unpin(obj);
2050 unlock:
2051 mutex_unlock(&dev->struct_mutex);
2052 out:
2053 rw_enter(uobj->vmobjlock, RW_WRITER);
2054 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
2055
2056 /*
2057 * Remap EINTR to success, so that we return to userland.
2058 * On the way out, we'll deliver the signal, and if the signal
2059 * is not fatal then the user code which faulted will most likely
2060 * fault again, and we'll come back here for another try.
2061 */
2062 if (ret == -EINTR)
2063 ret = 0;
2064 /* XXX Deal with GPU hangs here... */
2065 intel_runtime_pm_put(dev_priv);
2066 /* XXX errno Linux->NetBSD */
2067 return -ret;
2068 }
2069
2070 /*
2071 * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
2072 *
2073 * XXX pmap_enter_default instead of pmap_enter because of a problem
2074 * with using weak aliases in kernel modules or something.
2075 */
2076 int pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
2077
2078 static int
2079 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
2080 int npages, int centeridx, vm_prot_t access_type, int flags,
2081 paddr_t gtt_paddr)
2082 {
2083 struct vm_map_entry *entry = ufi->entry;
2084 vaddr_t curr_va;
2085 off_t curr_offset;
2086 paddr_t paddr;
2087 u_int mmapflags;
2088 int lcv;
2089 vm_prot_t mapprot;
2090 UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
2091 UVMHIST_LOG(maphist," flags=%jd", flags,0,0,0);
2092
2093 /*
2094 * we do not allow device mappings to be mapped copy-on-write
2095 * so we kill any attempt to do so here.
2096 */
2097
2098 if (UVM_ET_ISCOPYONWRITE(entry)) {
2099 UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%jx)",
2100 entry->etype, 0,0,0);
2101 return(EIO);
2102 }
2103
2104 /*
2105 * now we must determine the offset in udv to use and the VA to
2106 * use for pmap_enter. note that we always use orig_map's pmap
2107 * for pmap_enter (even if we have a submap). since virtual
2108 * addresses in a submap must match the main map, this is ok.
2109 */
2110
2111 /* udv offset = (offset from start of entry) + entry's offset */
2112 curr_offset = entry->offset + (vaddr - entry->start);
2113 /* pmap va = vaddr (virtual address of pps[0]) */
2114 curr_va = vaddr;
2115
2116 /*
2117 * loop over the page range entering in as needed
2118 */
2119
2120 for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
2121 curr_va += PAGE_SIZE) {
2122 if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
2123 continue;
2124
2125 if (pps[lcv] == PGO_DONTCARE)
2126 continue;
2127
2128 paddr = (gtt_paddr + curr_offset);
2129 mmapflags = 0;
2130 mapprot = ufi->entry->protection;
2131 UVMHIST_LOG(maphist,
2132 " MAPPING: device: pm=0x%#jx, va=0x%jx, pa=0x%jx, at=%jd",
2133 (uintptr_t)ufi->orig_map->pmap, curr_va, paddr, mapprot);
2134 if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
2135 PMAP_CANFAIL | mapprot | mmapflags) != 0) {
2136 /*
2137 * pmap_enter() didn't have the resource to
2138 * enter this mapping. Unlock everything,
2139 * wait for the pagedaemon to free up some
2140 * pages, and then tell uvm_fault() to start
2141 * the fault again.
2142 *
2143 * XXX Needs some rethinking for the PGO_ALLPAGES
2144 * XXX case.
2145 */
2146 pmap_update(ufi->orig_map->pmap); /* sync what we have so far */
2147 return ENOMEM;
2148 }
2149 }
2150
2151 pmap_update(ufi->orig_map->pmap);
2152 return 0;
2153 }
2154 #else
2155 /**
2156 * i915_gem_fault - fault a page into the GTT
2157 * @vma: VMA in question
2158 * @vmf: fault info
2159 *
2160 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2161 * from userspace. The fault handler takes care of binding the object to
2162 * the GTT (if needed), allocating and programming a fence register (again,
2163 * only if needed based on whether the old reg is still valid or the object
2164 * is tiled) and inserting a new PTE into the faulting process.
2165 *
2166 * Note that the faulting process may involve evicting existing objects
2167 * from the GTT and/or fence registers to make room. So performance may
2168 * suffer if the GTT working set is large or there are few fence registers
2169 * left.
2170 */
2171 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2172 {
2173 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2174 struct drm_device *dev = obj->base.dev;
2175 struct drm_i915_private *dev_priv = dev->dev_private;
2176 struct i915_ggtt_view view = i915_ggtt_view_normal;
2177 pgoff_t page_offset;
2178 unsigned long pfn;
2179 int ret = 0;
2180 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2181
2182 intel_runtime_pm_get(dev_priv);
2183
2184 /* We don't use vmf->pgoff since that has the fake offset */
2185 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2186 PAGE_SHIFT;
2187
2188 ret = i915_mutex_lock_interruptible(dev);
2189 if (ret)
2190 goto out;
2191
2192 trace_i915_gem_object_fault(obj, page_offset, true, write);
2193
2194 /* Try to flush the object off the GPU first without holding the lock.
2195 * Upon reacquiring the lock, we will perform our sanity checks and then
2196 * repeat the flush holding the lock in the normal manner to catch cases
2197 * where we are gazumped.
2198 */
2199 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2200 if (ret)
2201 goto unlock;
2202
2203 /* Access to snoopable pages through the GTT is incoherent. */
2204 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2205 ret = -EFAULT;
2206 goto unlock;
2207 }
2208
2209 /* Use a partial view if the object is bigger than the aperture. */
2210 if (obj->base.size >= dev_priv->gtt.mappable_end &&
2211 obj->tiling_mode == I915_TILING_NONE) {
2212 static const unsigned int chunk_size = 256; // 1 MiB
2213
2214 memset(&view, 0, sizeof(view));
2215 view.type = I915_GGTT_VIEW_PARTIAL;
2216 view.params.partial.offset = rounddown(page_offset, chunk_size);
2217 view.params.partial.size =
2218 min_t(unsigned int,
2219 chunk_size,
2220 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2221 view.params.partial.offset);
2222 }
2223
2224 /* Now pin it into the GTT if needed */
2225 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2226 if (ret)
2227 goto unlock;
2228
2229 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2230 if (ret)
2231 goto unpin;
2232
2233 ret = i915_gem_object_get_fence(obj);
2234 if (ret)
2235 goto unpin;
2236
2237 /* Finally, remap it using the new GTT offset */
2238 pfn = dev_priv->gtt.mappable_base +
2239 i915_gem_obj_ggtt_offset_view(obj, &view);
2240 pfn >>= PAGE_SHIFT;
2241
2242 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2243 /* Overriding existing pages in partial view does not cause
2244 * us any trouble as TLBs are still valid because the fault
2245 * is due to userspace losing part of the mapping or never
2246 * having accessed it before (at this partials' range).
2247 */
2248 unsigned long base = vma->vm_start +
2249 (view.params.partial.offset << PAGE_SHIFT);
2250 unsigned int i;
2251
2252 for (i = 0; i < view.params.partial.size; i++) {
2253 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2254 if (ret)
2255 break;
2256 }
2257
2258 obj->fault_mappable = true;
2259 } else {
2260 if (!obj->fault_mappable) {
2261 unsigned long size = min_t(unsigned long,
2262 vma->vm_end - vma->vm_start,
2263 obj->base.size);
2264 int i;
2265
2266 for (i = 0; i < size >> PAGE_SHIFT; i++) {
2267 ret = vm_insert_pfn(vma,
2268 (unsigned long)vma->vm_start + i * PAGE_SIZE,
2269 pfn + i);
2270 if (ret)
2271 break;
2272 }
2273
2274 obj->fault_mappable = true;
2275 } else
2276 ret = vm_insert_pfn(vma,
2277 (unsigned long)vmf->virtual_address,
2278 pfn + page_offset);
2279 }
2280 unpin:
2281 i915_gem_object_ggtt_unpin_view(obj, &view);
2282 unlock:
2283 mutex_unlock(&dev->struct_mutex);
2284 out:
2285 switch (ret) {
2286 case -EIO:
2287 /*
2288 * We eat errors when the gpu is terminally wedged to avoid
2289 * userspace unduly crashing (gl has no provisions for mmaps to
2290 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2291 * and so needs to be reported.
2292 */
2293 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2294 ret = VM_FAULT_SIGBUS;
2295 break;
2296 }
2297 case -EAGAIN:
2298 /*
2299 * EAGAIN means the gpu is hung and we'll wait for the error
2300 * handler to reset everything when re-faulting in
2301 * i915_mutex_lock_interruptible.
2302 */
2303 case 0:
2304 case -ERESTARTSYS:
2305 case -EINTR:
2306 case -EBUSY:
2307 /*
2308 * EBUSY is ok: this just means that another thread
2309 * already did the job.
2310 */
2311 ret = VM_FAULT_NOPAGE;
2312 break;
2313 case -ENOMEM:
2314 ret = VM_FAULT_OOM;
2315 break;
2316 case -ENOSPC:
2317 case -EFAULT:
2318 ret = VM_FAULT_SIGBUS;
2319 break;
2320 default:
2321 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2322 ret = VM_FAULT_SIGBUS;
2323 break;
2324 }
2325
2326 intel_runtime_pm_put(dev_priv);
2327 return ret;
2328 }
2329 #endif
2330
2331 /**
2332 * i915_gem_release_mmap - remove physical page mappings
2333 * @obj: obj in question
2334 *
2335 * Preserve the reservation of the mmapping with the DRM core code, but
2336 * relinquish ownership of the pages back to the system.
2337 *
2338 * It is vital that we remove the page mapping if we have mapped a tiled
2339 * object through the GTT and then lose the fence register due to
2340 * resource pressure. Similarly if the object has been moved out of the
2341 * aperture, than pages mapped into userspace must be revoked. Removing the
2342 * mapping will then trigger a page fault on the next user access, allowing
2343 * fixup by i915_gem_fault().
2344 */
2345 void
2346 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2347 {
2348 if (!obj->fault_mappable)
2349 return;
2350
2351 #ifdef __NetBSD__ /* XXX gem gtt fault */
2352 {
2353 struct drm_device *const dev = obj->base.dev;
2354 struct drm_i915_private *const dev_priv = dev->dev_private;
2355 const paddr_t start = dev_priv->gtt.mappable_base +
2356 i915_gem_obj_ggtt_offset(obj);
2357 const size_t size = obj->base.size;
2358 const paddr_t end = start + size;
2359 paddr_t pa;
2360
2361 KASSERT((start & (PAGE_SIZE - 1)) == 0);
2362 KASSERT((size & (PAGE_SIZE - 1)) == 0);
2363
2364 for (pa = start; pa < end; pa += PAGE_SIZE)
2365 pmap_pv_protect(pa, VM_PROT_NONE);
2366 }
2367 #else
2368 drm_vma_node_unmap(&obj->base.vma_node,
2369 obj->base.dev->anon_inode->i_mapping);
2370 #endif
2371 obj->fault_mappable = false;
2372 }
2373
2374 void
2375 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2376 {
2377 struct drm_i915_gem_object *obj;
2378
2379 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2380 i915_gem_release_mmap(obj);
2381 }
2382
2383 uint32_t
2384 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2385 {
2386 uint32_t gtt_size;
2387
2388 if (INTEL_INFO(dev)->gen >= 4 ||
2389 tiling_mode == I915_TILING_NONE)
2390 return size;
2391
2392 /* Previous chips need a power-of-two fence region when tiling */
2393 if (INTEL_INFO(dev)->gen == 3)
2394 gtt_size = 1024*1024;
2395 else
2396 gtt_size = 512*1024;
2397
2398 while (gtt_size < size)
2399 gtt_size <<= 1;
2400
2401 return gtt_size;
2402 }
2403
2404 /**
2405 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2406 * @obj: object to check
2407 *
2408 * Return the required GTT alignment for an object, taking into account
2409 * potential fence register mapping.
2410 */
2411 uint32_t
2412 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2413 int tiling_mode, bool fenced)
2414 {
2415 /*
2416 * Minimum alignment is 4k (GTT page size), but might be greater
2417 * if a fence register is needed for the object.
2418 */
2419 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2420 tiling_mode == I915_TILING_NONE)
2421 return 4096;
2422
2423 /*
2424 * Previous chips need to be aligned to the size of the smallest
2425 * fence register that can contain the object.
2426 */
2427 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2428 }
2429
2430 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2431 {
2432 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2433 int ret;
2434
2435 if (drm_vma_node_has_offset(&obj->base.vma_node))
2436 return 0;
2437
2438 dev_priv->mm.shrinker_no_lock_stealing = true;
2439
2440 ret = drm_gem_create_mmap_offset(&obj->base);
2441 if (ret != -ENOSPC)
2442 goto out;
2443
2444 /* Badly fragmented mmap space? The only way we can recover
2445 * space is by destroying unwanted objects. We can't randomly release
2446 * mmap_offsets as userspace expects them to be persistent for the
2447 * lifetime of the objects. The closest we can is to release the
2448 * offsets on purgeable objects by truncating it and marking it purged,
2449 * which prevents userspace from ever using that object again.
2450 */
2451 i915_gem_shrink(dev_priv,
2452 obj->base.size >> PAGE_SHIFT,
2453 I915_SHRINK_BOUND |
2454 I915_SHRINK_UNBOUND |
2455 I915_SHRINK_PURGEABLE);
2456 ret = drm_gem_create_mmap_offset(&obj->base);
2457 if (ret != -ENOSPC)
2458 goto out;
2459
2460 i915_gem_shrink_all(dev_priv);
2461 ret = drm_gem_create_mmap_offset(&obj->base);
2462 out:
2463 dev_priv->mm.shrinker_no_lock_stealing = false;
2464
2465 return ret;
2466 }
2467
2468 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2469 {
2470 drm_gem_free_mmap_offset(&obj->base);
2471 }
2472
2473 int
2474 i915_gem_mmap_gtt(struct drm_file *file,
2475 struct drm_device *dev,
2476 uint32_t handle,
2477 uint64_t *offset)
2478 {
2479 struct drm_gem_object *gobj;
2480 struct drm_i915_gem_object *obj;
2481 int ret;
2482
2483 ret = i915_mutex_lock_interruptible(dev);
2484 if (ret)
2485 return ret;
2486
2487 gobj = drm_gem_object_lookup(dev, file, handle);
2488 if (gobj == NULL) {
2489 ret = -ENOENT;
2490 goto unlock;
2491 }
2492 obj = to_intel_bo(gobj);
2493
2494 if (obj->madv != I915_MADV_WILLNEED) {
2495 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2496 ret = -EFAULT;
2497 goto out;
2498 }
2499
2500 ret = i915_gem_object_create_mmap_offset(obj);
2501 if (ret)
2502 goto out;
2503
2504 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2505
2506 out:
2507 drm_gem_object_unreference(&obj->base);
2508 unlock:
2509 mutex_unlock(&dev->struct_mutex);
2510 return ret;
2511 }
2512
2513 /**
2514 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2515 * @dev: DRM device
2516 * @data: GTT mapping ioctl data
2517 * @file: GEM object info
2518 *
2519 * Simply returns the fake offset to userspace so it can mmap it.
2520 * The mmap call will end up in drm_gem_mmap(), which will set things
2521 * up so we can get faults in the handler above.
2522 *
2523 * The fault handler will take care of binding the object into the GTT
2524 * (since it may have been evicted to make room for something), allocating
2525 * a fence register, and mapping the appropriate aperture address into
2526 * userspace.
2527 */
2528 int
2529 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2530 struct drm_file *file)
2531 {
2532 struct drm_i915_gem_mmap_gtt *args = data;
2533
2534 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2535 }
2536
2537 /* Immediately discard the backing storage */
2538 static void
2539 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2540 {
2541 i915_gem_object_free_mmap_offset(obj);
2542
2543 if (obj->base.filp == NULL)
2544 return;
2545
2546 #ifdef __NetBSD__
2547 {
2548 struct uvm_object *const uobj = obj->base.filp;
2549
2550 if (uobj != NULL) {
2551 /* XXX Calling pgo_put like this is bogus. */
2552 rw_enter(uobj->vmobjlock, RW_WRITER);
2553 (*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
2554 (PGO_ALLPAGES | PGO_FREE));
2555 }
2556 }
2557 #else
2558 /* Our goal here is to return as much of the memory as
2559 * is possible back to the system as we are called from OOM.
2560 * To do this we must instruct the shmfs to drop all of its
2561 * backing pages, *now*.
2562 */
2563 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2564 #endif
2565 obj->madv = __I915_MADV_PURGED;
2566 }
2567
2568 /* Try to discard unwanted pages */
2569 static void
2570 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2571 {
2572 #ifdef __NetBSD__
2573 struct uvm_object *uobj;
2574 #else
2575 struct address_space *mapping;
2576 #endif
2577
2578 switch (obj->madv) {
2579 case I915_MADV_DONTNEED:
2580 i915_gem_object_truncate(obj);
2581 case __I915_MADV_PURGED:
2582 return;
2583 }
2584
2585 if (obj->base.filp == NULL)
2586 return;
2587
2588 #ifdef __NetBSD__
2589 uobj = obj->base.filp;
2590 rw_enter(uobj->vmobjlock, RW_WRITER);
2591 (*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
2592 PGO_ALLPAGES|PGO_DEACTIVATE|PGO_CLEANIT);
2593 #else
2594 mapping = file_inode(obj->base.filp)->i_mapping,
2595 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2596 #endif
2597 }
2598
2599 static void
2600 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2601 {
2602 #ifdef __NetBSD__
2603 struct drm_device *const dev = obj->base.dev;
2604 struct vm_page *page;
2605 int ret;
2606
2607 /* XXX Cargo-culted from the Linux code. */
2608 BUG_ON(obj->madv == __I915_MADV_PURGED);
2609
2610 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2611 if (ret) {
2612 WARN_ON(ret != -EIO);
2613 i915_gem_clflush_object(obj, true);
2614 obj->base.read_domains = obj->base.write_domain =
2615 I915_GEM_DOMAIN_CPU;
2616 }
2617
2618 i915_gem_gtt_finish_object(obj);
2619
2620 if (i915_gem_object_needs_bit17_swizzle(obj))
2621 i915_gem_object_save_bit_17_swizzle(obj);
2622
2623 if (obj->madv == I915_MADV_DONTNEED)
2624 obj->dirty = 0;
2625
2626 if (obj->dirty) {
2627 rw_enter(obj->base.filp->vmobjlock, RW_WRITER);
2628 TAILQ_FOREACH(page, &obj->pageq, pageq.queue) {
2629 uvm_pagemarkdirty(page, UVM_PAGE_STATUS_DIRTY);
2630 /* XXX mark page accessed */
2631 }
2632 rw_exit(obj->base.filp->vmobjlock);
2633 }
2634 obj->dirty = 0;
2635
2636 uvm_obj_unwirepages(obj->base.filp, 0, obj->base.size);
2637 bus_dmamap_destroy(dev->dmat, obj->pages);
2638 #else
2639 struct sg_page_iter sg_iter;
2640 int ret;
2641
2642 BUG_ON(obj->madv == __I915_MADV_PURGED);
2643
2644 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2645 if (ret) {
2646 /* In the event of a disaster, abandon all caches and
2647 * hope for the best.
2648 */
2649 WARN_ON(ret != -EIO);
2650 i915_gem_clflush_object(obj, true);
2651 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2652 }
2653
2654 i915_gem_gtt_finish_object(obj);
2655
2656 if (i915_gem_object_needs_bit17_swizzle(obj))
2657 i915_gem_object_save_bit_17_swizzle(obj);
2658
2659 if (obj->madv == I915_MADV_DONTNEED)
2660 obj->dirty = 0;
2661
2662 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2663 struct page *page = sg_page_iter_page(&sg_iter);
2664
2665 if (obj->dirty)
2666 set_page_dirty(page);
2667
2668 if (obj->madv == I915_MADV_WILLNEED)
2669 mark_page_accessed(page);
2670
2671 page_cache_release(page);
2672 }
2673 obj->dirty = 0;
2674
2675 sg_free_table(obj->pages);
2676 kfree(obj->pages);
2677 #endif
2678 }
2679
2680 int
2681 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2682 {
2683 const struct drm_i915_gem_object_ops *ops = obj->ops;
2684
2685 if (obj->pages == NULL)
2686 return 0;
2687
2688 if (obj->pages_pin_count)
2689 return -EBUSY;
2690
2691 BUG_ON(i915_gem_obj_bound_any(obj));
2692
2693 /* ->put_pages might need to allocate memory for the bit17 swizzle
2694 * array, hence protect them from being reaped by removing them from gtt
2695 * lists early. */
2696 list_del(&obj->global_list);
2697
2698 ops->put_pages(obj);
2699 obj->pages = NULL;
2700
2701 i915_gem_object_invalidate(obj);
2702
2703 return 0;
2704 }
2705
2706 static int
2707 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2708 {
2709 #ifdef __NetBSD__
2710 struct drm_device *const dev = obj->base.dev;
2711 struct drm_i915_private *dev_priv = dev->dev_private;
2712 struct vm_page *page;
2713 int ret;
2714
2715 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2716 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2717
2718 KASSERT(obj->pages == NULL);
2719 TAILQ_INIT(&obj->pageq);
2720
2721 /* XXX errno NetBSD->Linux */
2722 ret = -bus_dmamap_create(dev->dmat, obj->base.size,
2723 obj->base.size/PAGE_SIZE, PAGE_SIZE, 0, BUS_DMA_NOWAIT,
2724 &obj->pages);
2725 if (ret)
2726 goto fail0;
2727
2728 /* XXX errno NetBSD->Linux */
2729 ret = -uvm_obj_wirepages(obj->base.filp, 0, obj->base.size,
2730 &obj->pageq);
2731 if (ret) /* XXX Try purge, shrink. */
2732 goto fail1;
2733
2734 /*
2735 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
2736 *
2737 * XXX This should be unnecessary: the uao should guarantee
2738 * this constraint after uao_set_pgfl.
2739 *
2740 * XXX This should also be expanded for newer devices.
2741 */
2742 TAILQ_FOREACH(page, &obj->pageq, pageq.queue) {
2743 const uint64_t mask =
2744 (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
2745 0xffffffffULL : 0xffffffffffULL);
2746 if (VM_PAGE_TO_PHYS(page) & ~mask) {
2747 DRM_ERROR("GEM physical address exceeds %u bits"
2748 ": %"PRIxMAX"\n",
2749 popcount64(mask),
2750 (uintmax_t)VM_PAGE_TO_PHYS(page));
2751 ret = -EIO;
2752 goto fail2;
2753 }
2754 }
2755
2756 ret = i915_gem_gtt_prepare_object(obj);
2757 if (ret)
2758 goto fail2;
2759
2760 if (i915_gem_object_needs_bit17_swizzle(obj))
2761 i915_gem_object_do_bit_17_swizzle(obj);
2762
2763 if (obj->tiling_mode != I915_TILING_NONE &&
2764 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2765 i915_gem_object_pin_pages(obj);
2766
2767 /* Success! */
2768 return 0;
2769
2770 fail3: __unused
2771 i915_gem_gtt_finish_object(obj);
2772 fail2: uvm_obj_unwirepages(obj->base.filp, 0, obj->base.size);
2773 fail1: bus_dmamap_destroy(dev->dmat, obj->pages);
2774 obj->pages = NULL;
2775 fail0: KASSERT(ret);
2776 return ret;
2777 #else
2778 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2779 int page_count, i;
2780 struct address_space *mapping;
2781 struct sg_table *st;
2782 struct scatterlist *sg;
2783 struct sg_page_iter sg_iter;
2784 struct page *page;
2785 unsigned long last_pfn = 0; /* suppress gcc warning */
2786 int ret;
2787 gfp_t gfp;
2788
2789 /* Assert that the object is not currently in any GPU domain. As it
2790 * wasn't in the GTT, there shouldn't be any way it could have been in
2791 * a GPU cache
2792 */
2793 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2794 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2795
2796 st = kmalloc(sizeof(*st), GFP_KERNEL);
2797 if (st == NULL)
2798 return -ENOMEM;
2799
2800 page_count = obj->base.size / PAGE_SIZE;
2801 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2802 kfree(st);
2803 return -ENOMEM;
2804 }
2805
2806 /* Get the list of pages out of our struct file. They'll be pinned
2807 * at this point until we release them.
2808 *
2809 * Fail silently without starting the shrinker
2810 */
2811 mapping = file_inode(obj->base.filp)->i_mapping;
2812 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2813 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2814 sg = st->sgl;
2815 st->nents = 0;
2816 for (i = 0; i < page_count; i++) {
2817 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2818 if (IS_ERR(page)) {
2819 i915_gem_shrink(dev_priv,
2820 page_count,
2821 I915_SHRINK_BOUND |
2822 I915_SHRINK_UNBOUND |
2823 I915_SHRINK_PURGEABLE);
2824 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2825 }
2826 if (IS_ERR(page)) {
2827 /* We've tried hard to allocate the memory by reaping
2828 * our own buffer, now let the real VM do its job and
2829 * go down in flames if truly OOM.
2830 */
2831 i915_gem_shrink_all(dev_priv);
2832 page = shmem_read_mapping_page(mapping, i);
2833 if (IS_ERR(page)) {
2834 ret = PTR_ERR(page);
2835 goto err_pages;
2836 }
2837 }
2838 #ifdef CONFIG_SWIOTLB
2839 if (swiotlb_nr_tbl()) {
2840 st->nents++;
2841 sg_set_page(sg, page, PAGE_SIZE, 0);
2842 sg = sg_next(sg);
2843 continue;
2844 }
2845 #endif
2846 if (!i || page_to_pfn(page) != last_pfn + 1) {
2847 if (i)
2848 sg = sg_next(sg);
2849 st->nents++;
2850 sg_set_page(sg, page, PAGE_SIZE, 0);
2851 } else {
2852 sg->length += PAGE_SIZE;
2853 }
2854 last_pfn = page_to_pfn(page);
2855
2856 /* Check that the i965g/gm workaround works. */
2857 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2858 }
2859 #ifdef CONFIG_SWIOTLB
2860 if (!swiotlb_nr_tbl())
2861 #endif
2862 sg_mark_end(sg);
2863 obj->pages = st;
2864
2865 ret = i915_gem_gtt_prepare_object(obj);
2866 if (ret)
2867 goto err_pages;
2868
2869 if (i915_gem_object_needs_bit17_swizzle(obj))
2870 i915_gem_object_do_bit_17_swizzle(obj);
2871
2872 if (obj->tiling_mode != I915_TILING_NONE &&
2873 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2874 i915_gem_object_pin_pages(obj);
2875
2876 return 0;
2877
2878 err_pages:
2879 sg_mark_end(sg);
2880 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2881 page_cache_release(sg_page_iter_page(&sg_iter));
2882 sg_free_table(st);
2883 kfree(st);
2884
2885 /* shmemfs first checks if there is enough memory to allocate the page
2886 * and reports ENOSPC should there be insufficient, along with the usual
2887 * ENOMEM for a genuine allocation failure.
2888 *
2889 * We use ENOSPC in our driver to mean that we have run out of aperture
2890 * space and so want to translate the error from shmemfs back to our
2891 * usual understanding of ENOMEM.
2892 */
2893 if (ret == -ENOSPC)
2894 ret = -ENOMEM;
2895
2896 return ret;
2897 #endif
2898 }
2899
2900 /* Ensure that the associated pages are gathered from the backing storage
2901 * and pinned into our object. i915_gem_object_get_pages() may be called
2902 * multiple times before they are released by a single call to
2903 * i915_gem_object_put_pages() - once the pages are no longer referenced
2904 * either as a result of memory pressure (reaping pages under the shrinker)
2905 * or as the object is itself released.
2906 */
2907 int
2908 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2909 {
2910 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2911 const struct drm_i915_gem_object_ops *ops = obj->ops;
2912 int ret;
2913
2914 if (obj->pages)
2915 return 0;
2916
2917 if (obj->madv != I915_MADV_WILLNEED) {
2918 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2919 return -EFAULT;
2920 }
2921
2922 BUG_ON(obj->pages_pin_count);
2923
2924 ret = ops->get_pages(obj);
2925 if (ret)
2926 return ret;
2927
2928 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2929
2930 #ifndef __NetBSD__
2931 obj->get_page.sg = obj->pages->sgl;
2932 obj->get_page.last = 0;
2933 #endif
2934
2935 return 0;
2936 }
2937
2938 void i915_vma_move_to_active(struct i915_vma *vma,
2939 struct drm_i915_gem_request *req)
2940 {
2941 struct drm_i915_gem_object *obj = vma->obj;
2942 struct intel_engine_cs *ring;
2943
2944 ring = i915_gem_request_get_ring(req);
2945
2946 /* Add a reference if we're newly entering the active list. */
2947 if (obj->active == 0)
2948 drm_gem_object_reference(&obj->base);
2949 obj->active |= intel_ring_flag(ring);
2950
2951 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2952 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2953
2954 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2955 }
2956
2957 static void
2958 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2959 {
2960 RQ_BUG_ON(obj->last_write_req == NULL);
2961 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2962
2963 i915_gem_request_assign(&obj->last_write_req, NULL);
2964 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2965 }
2966
2967 static void
2968 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2969 {
2970 struct i915_vma *vma;
2971
2972 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2973 RQ_BUG_ON(!(obj->active & (1 << ring)));
2974
2975 list_del_init(&obj->ring_list[ring]);
2976 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2977
2978 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2979 i915_gem_object_retire__write(obj);
2980
2981 obj->active &= ~(1 << ring);
2982 if (obj->active)
2983 return;
2984
2985 /* Bump our place on the bound list to keep it roughly in LRU order
2986 * so that we don't steal from recently used but inactive objects
2987 * (unless we are forced to ofc!)
2988 */
2989 list_move_tail(&obj->global_list,
2990 &to_i915(obj->base.dev)->mm.bound_list);
2991
2992 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2993 if (!list_empty(&vma->mm_list))
2994 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2995 }
2996
2997 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2998 drm_gem_object_unreference(&obj->base);
2999 }
3000
3001 static int
3002 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
3003 {
3004 struct drm_i915_private *dev_priv = dev->dev_private;
3005 struct intel_engine_cs *ring;
3006 int ret, i, j;
3007
3008 /* Carefully retire all requests without writing to the rings */
3009 for_each_ring(ring, dev_priv, i) {
3010 ret = intel_ring_idle(ring);
3011 if (ret)
3012 return ret;
3013 }
3014 i915_gem_retire_requests(dev);
3015
3016 /* Finally reset hw state */
3017 for_each_ring(ring, dev_priv, i) {
3018 intel_ring_init_seqno(ring, seqno);
3019
3020 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
3021 ring->semaphore.sync_seqno[j] = 0;
3022 }
3023
3024 return 0;
3025 }
3026
3027 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
3028 {
3029 struct drm_i915_private *dev_priv = dev->dev_private;
3030 int ret;
3031
3032 if (seqno == 0)
3033 return -EINVAL;
3034
3035 /* HWS page needs to be set less than what we
3036 * will inject to ring
3037 */
3038 ret = i915_gem_init_seqno(dev, seqno - 1);
3039 if (ret)
3040 return ret;
3041
3042 /* Carefully set the last_seqno value so that wrap
3043 * detection still works
3044 */
3045 dev_priv->next_seqno = seqno;
3046 dev_priv->last_seqno = seqno - 1;
3047 if (dev_priv->last_seqno == 0)
3048 dev_priv->last_seqno--;
3049
3050 return 0;
3051 }
3052
3053 int
3054 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
3055 {
3056 struct drm_i915_private *dev_priv = dev->dev_private;
3057
3058 /* reserve 0 for non-seqno */
3059 if (dev_priv->next_seqno == 0) {
3060 int ret = i915_gem_init_seqno(dev, 0);
3061 if (ret)
3062 return ret;
3063
3064 dev_priv->next_seqno = 1;
3065 }
3066
3067 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
3068 return 0;
3069 }
3070
3071 /*
3072 * NB: This function is not allowed to fail. Doing so would mean the the
3073 * request is not being tracked for completion but the work itself is
3074 * going to happen on the hardware. This would be a Bad Thing(tm).
3075 */
3076 void __i915_add_request(struct drm_i915_gem_request *request,
3077 struct drm_i915_gem_object *obj,
3078 bool flush_caches)
3079 {
3080 struct intel_engine_cs *ring;
3081 struct drm_i915_private *dev_priv;
3082 struct intel_ringbuffer *ringbuf;
3083 u32 request_start;
3084 int ret;
3085
3086 if (WARN_ON(request == NULL))
3087 return;
3088
3089 ring = request->ring;
3090 dev_priv = ring->dev->dev_private;
3091 ringbuf = request->ringbuf;
3092
3093 /*
3094 * To ensure that this call will not fail, space for its emissions
3095 * should already have been reserved in the ring buffer. Let the ring
3096 * know that it is time to use that space up.
3097 */
3098 intel_ring_reserved_space_use(ringbuf);
3099
3100 request_start = intel_ring_get_tail(ringbuf);
3101 /*
3102 * Emit any outstanding flushes - execbuf can fail to emit the flush
3103 * after having emitted the batchbuffer command. Hence we need to fix
3104 * things up similar to emitting the lazy request. The difference here
3105 * is that the flush _must_ happen before the next request, no matter
3106 * what.
3107 */
3108 if (flush_caches) {
3109 if (i915.enable_execlists)
3110 ret = logical_ring_flush_all_caches(request);
3111 else
3112 ret = intel_ring_flush_all_caches(request);
3113 /* Not allowed to fail! */
3114 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
3115 }
3116
3117 /* Record the position of the start of the request so that
3118 * should we detect the updated seqno part-way through the
3119 * GPU processing the request, we never over-estimate the
3120 * position of the head.
3121 */
3122 request->postfix = intel_ring_get_tail(ringbuf);
3123
3124 if (i915.enable_execlists)
3125 ret = ring->emit_request(request);
3126 else {
3127 ret = ring->add_request(request);
3128
3129 request->tail = intel_ring_get_tail(ringbuf);
3130 }
3131 /* Not allowed to fail! */
3132 WARN(ret, "emit|add_request failed: %d!\n", ret);
3133
3134 request->head = request_start;
3135
3136 /* Whilst this request exists, batch_obj will be on the
3137 * active_list, and so will hold the active reference. Only when this
3138 * request is retired will the the batch_obj be moved onto the
3139 * inactive_list and lose its active reference. Hence we do not need
3140 * to explicitly hold another reference here.
3141 */
3142 request->batch_obj = obj;
3143
3144 request->emitted_jiffies = jiffies;
3145 request->previous_seqno = ring->last_submitted_seqno;
3146 ring->last_submitted_seqno = request->seqno;
3147 list_add_tail(&request->list, &ring->request_list);
3148
3149 trace_i915_gem_request_add(request);
3150
3151 i915_queue_hangcheck(ring->dev);
3152
3153 queue_delayed_work(dev_priv->wq,
3154 &dev_priv->mm.retire_work,
3155 round_jiffies_up_relative(HZ));
3156 intel_mark_busy(dev_priv->dev);
3157
3158 /* Sanity check that the reserved size was large enough. */
3159 intel_ring_reserved_space_end(ringbuf);
3160 }
3161
3162 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
3163 const struct intel_context *ctx)
3164 {
3165 unsigned long elapsed;
3166
3167 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
3168
3169 if (ctx->hang_stats.banned)
3170 return true;
3171
3172 if (ctx->hang_stats.ban_period_seconds &&
3173 elapsed <= ctx->hang_stats.ban_period_seconds) {
3174 if (!i915_gem_context_is_default(ctx)) {
3175 DRM_DEBUG("context hanging too fast, banning!\n");
3176 return true;
3177 } else if (i915_stop_ring_allow_ban(dev_priv)) {
3178 if (i915_stop_ring_allow_warn(dev_priv))
3179 DRM_ERROR("gpu hanging too fast, banning!\n");
3180 return true;
3181 }
3182 }
3183
3184 return false;
3185 }
3186
3187 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
3188 struct intel_context *ctx,
3189 const bool guilty)
3190 {
3191 struct i915_ctx_hang_stats *hs;
3192
3193 if (WARN_ON(!ctx))
3194 return;
3195
3196 hs = &ctx->hang_stats;
3197
3198 if (guilty) {
3199 hs->banned = i915_context_is_banned(dev_priv, ctx);
3200 hs->batch_active++;
3201 hs->guilty_ts = get_seconds();
3202 } else {
3203 hs->batch_pending++;
3204 }
3205 }
3206
3207 void i915_gem_request_free(struct kref *req_ref)
3208 {
3209 struct drm_i915_gem_request *req = container_of(req_ref,
3210 typeof(*req), ref);
3211 struct intel_context *ctx = req->ctx;
3212
3213 if (req->file_priv)
3214 i915_gem_request_remove_from_client(req);
3215
3216 if (ctx) {
3217 if (i915.enable_execlists) {
3218 if (ctx != req->ring->default_context)
3219 intel_lr_context_unpin(req);
3220 }
3221
3222 i915_gem_context_unreference(ctx);
3223 }
3224
3225 kmem_cache_free(req->i915->requests, req);
3226 }
3227
3228 int i915_gem_request_alloc(struct intel_engine_cs *ring,
3229 struct intel_context *ctx,
3230 struct drm_i915_gem_request **req_out)
3231 {
3232 struct drm_i915_private *dev_priv = to_i915(ring->dev);
3233 struct drm_i915_gem_request *req;
3234 int ret;
3235
3236 if (!req_out)
3237 return -EINVAL;
3238
3239 *req_out = NULL;
3240
3241 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
3242 if (req == NULL)
3243 return -ENOMEM;
3244
3245 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
3246 if (ret)
3247 goto err;
3248
3249 kref_init(&req->ref);
3250 req->i915 = dev_priv;
3251 req->ring = ring;
3252 req->ctx = ctx;
3253 i915_gem_context_reference(req->ctx);
3254
3255 if (i915.enable_execlists)
3256 ret = intel_logical_ring_alloc_request_extras(req);
3257 else
3258 ret = intel_ring_alloc_request_extras(req);
3259 if (ret) {
3260 i915_gem_context_unreference(req->ctx);
3261 goto err;
3262 }
3263
3264 /*
3265 * Reserve space in the ring buffer for all the commands required to
3266 * eventually emit this request. This is to guarantee that the
3267 * i915_add_request() call can't fail. Note that the reserve may need
3268 * to be redone if the request is not actually submitted straight
3269 * away, e.g. because a GPU scheduler has deferred it.
3270 */
3271 if (i915.enable_execlists)
3272 ret = intel_logical_ring_reserve_space(req);
3273 else
3274 ret = intel_ring_reserve_space(req);
3275 if (ret) {
3276 /*
3277 * At this point, the request is fully allocated even if not
3278 * fully prepared. Thus it can be cleaned up using the proper
3279 * free code.
3280 */
3281 i915_gem_request_cancel(req);
3282 return ret;
3283 }
3284
3285 *req_out = req;
3286 return 0;
3287
3288 err:
3289 kmem_cache_free(dev_priv->requests, req);
3290 return ret;
3291 }
3292
3293 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
3294 {
3295 intel_ring_reserved_space_cancel(req->ringbuf);
3296
3297 i915_gem_request_unreference(req);
3298 }
3299
3300 struct drm_i915_gem_request *
3301 i915_gem_find_active_request(struct intel_engine_cs *ring)
3302 {
3303 struct drm_i915_gem_request *request;
3304
3305 list_for_each_entry(request, &ring->request_list, list) {
3306 if (i915_gem_request_completed(request, false))
3307 continue;
3308
3309 return request;
3310 }
3311
3312 return NULL;
3313 }
3314
3315 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
3316 struct intel_engine_cs *ring)
3317 {
3318 struct drm_i915_gem_request *request;
3319 bool ring_hung;
3320
3321 request = i915_gem_find_active_request(ring);
3322
3323 if (request == NULL)
3324 return;
3325
3326 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3327
3328 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3329
3330 list_for_each_entry_continue(request, &ring->request_list, list)
3331 i915_set_reset_status(dev_priv, request->ctx, false);
3332 }
3333
3334 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
3335 struct intel_engine_cs *ring)
3336 {
3337 while (!list_empty(&ring->active_list)) {
3338 struct drm_i915_gem_object *obj;
3339
3340 obj = list_first_entry(&ring->active_list,
3341 struct drm_i915_gem_object,
3342 ring_list[ring->id]);
3343
3344 i915_gem_object_retire__read(obj, ring->id);
3345 }
3346
3347 /*
3348 * Clear the execlists queue up before freeing the requests, as those
3349 * are the ones that keep the context and ringbuffer backing objects
3350 * pinned in place.
3351 */
3352 while (!list_empty(&ring->execlist_queue)) {
3353 struct drm_i915_gem_request *submit_req;
3354
3355 submit_req = list_first_entry(&ring->execlist_queue,
3356 struct drm_i915_gem_request,
3357 execlist_link);
3358 list_del(&submit_req->execlist_link);
3359
3360 if (submit_req->ctx != ring->default_context)
3361 intel_lr_context_unpin(submit_req);
3362
3363 i915_gem_request_unreference(submit_req);
3364 }
3365
3366 /*
3367 * We must free the requests after all the corresponding objects have
3368 * been moved off active lists. Which is the same order as the normal
3369 * retire_requests function does. This is important if object hold
3370 * implicit references on things like e.g. ppgtt address spaces through
3371 * the request.
3372 */
3373 while (!list_empty(&ring->request_list)) {
3374 struct drm_i915_gem_request *request;
3375
3376 request = list_first_entry(&ring->request_list,
3377 struct drm_i915_gem_request,
3378 list);
3379
3380 i915_gem_request_retire(request);
3381 }
3382 }
3383
3384 void i915_gem_reset(struct drm_device *dev)
3385 {
3386 struct drm_i915_private *dev_priv = dev->dev_private;
3387 struct intel_engine_cs *ring;
3388 int i;
3389
3390 /*
3391 * Before we free the objects from the requests, we need to inspect
3392 * them for finding the guilty party. As the requests only borrow
3393 * their reference to the objects, the inspection must be done first.
3394 */
3395 for_each_ring(ring, dev_priv, i)
3396 i915_gem_reset_ring_status(dev_priv, ring);
3397
3398 for_each_ring(ring, dev_priv, i)
3399 i915_gem_reset_ring_cleanup(dev_priv, ring);
3400
3401 i915_gem_context_reset(dev);
3402
3403 i915_gem_restore_fences(dev);
3404
3405 WARN_ON(i915_verify_lists(dev));
3406 }
3407
3408 /**
3409 * This function clears the request list as sequence numbers are passed.
3410 */
3411 void
3412 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
3413 {
3414 WARN_ON(i915_verify_lists(ring->dev));
3415
3416 /* Retire requests first as we use it above for the early return.
3417 * If we retire requests last, we may use a later seqno and so clear
3418 * the requests lists without clearing the active list, leading to
3419 * confusion.
3420 */
3421 while (!list_empty(&ring->request_list)) {
3422 struct drm_i915_gem_request *request;
3423
3424 request = list_first_entry(&ring->request_list,
3425 struct drm_i915_gem_request,
3426 list);
3427
3428 if (!i915_gem_request_completed(request, true))
3429 break;
3430
3431 i915_gem_request_retire(request);
3432 }
3433
3434 /* Move any buffers on the active list that are no longer referenced
3435 * by the ringbuffer to the flushing/inactive lists as appropriate,
3436 * before we free the context associated with the requests.
3437 */
3438 while (!list_empty(&ring->active_list)) {
3439 struct drm_i915_gem_object *obj;
3440
3441 obj = list_first_entry(&ring->active_list,
3442 struct drm_i915_gem_object,
3443 ring_list[ring->id]);
3444
3445 if (!list_empty(&obj->last_read_req[ring->id]->list))
3446 break;
3447
3448 i915_gem_object_retire__read(obj, ring->id);
3449 }
3450
3451 if (unlikely(ring->trace_irq_req &&
3452 i915_gem_request_completed(ring->trace_irq_req, true))) {
3453 ring->irq_put(ring);
3454 i915_gem_request_assign(&ring->trace_irq_req, NULL);
3455 }
3456
3457 WARN_ON(i915_verify_lists(ring->dev));
3458 }
3459
3460 bool
3461 i915_gem_retire_requests(struct drm_device *dev)
3462 {
3463 struct drm_i915_private *dev_priv = dev->dev_private;
3464 struct intel_engine_cs *ring;
3465 bool idle = true;
3466 int i;
3467
3468 for_each_ring(ring, dev_priv, i) {
3469 i915_gem_retire_requests_ring(ring);
3470 idle &= list_empty(&ring->request_list);
3471 if (i915.enable_execlists) {
3472 unsigned long flags;
3473
3474 spin_lock_irqsave(&ring->execlist_lock, flags);
3475 idle &= list_empty(&ring->execlist_queue);
3476 spin_unlock_irqrestore(&ring->execlist_lock, flags);
3477
3478 intel_execlists_retire_requests(ring);
3479 }
3480 }
3481
3482 if (idle)
3483 mod_delayed_work(dev_priv->wq,
3484 &dev_priv->mm.idle_work,
3485 msecs_to_jiffies(100));
3486
3487 return idle;
3488 }
3489
3490 static void
3491 i915_gem_retire_work_handler(struct work_struct *work)
3492 {
3493 struct drm_i915_private *dev_priv =
3494 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3495 struct drm_device *dev = dev_priv->dev;
3496 bool idle;
3497
3498 /* Come back later if the device is busy... */
3499 idle = false;
3500 if (mutex_trylock(&dev->struct_mutex)) {
3501 idle = i915_gem_retire_requests(dev);
3502 mutex_unlock(&dev->struct_mutex);
3503 }
3504 if (!idle)
3505 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3506 round_jiffies_up_relative(HZ));
3507 }
3508
3509 static void
3510 i915_gem_idle_work_handler(struct work_struct *work)
3511 {
3512 struct drm_i915_private *dev_priv =
3513 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3514 struct drm_device *dev = dev_priv->dev;
3515 struct intel_engine_cs *ring;
3516 int i;
3517
3518 for_each_ring(ring, dev_priv, i)
3519 if (!list_empty(&ring->request_list))
3520 return;
3521
3522 intel_mark_idle(dev);
3523
3524 if (mutex_trylock(&dev->struct_mutex)) {
3525 struct intel_engine_cs *ring;
3526 int i;
3527
3528 for_each_ring(ring, dev_priv, i)
3529 i915_gem_batch_pool_fini(&ring->batch_pool);
3530
3531 mutex_unlock(&dev->struct_mutex);
3532 }
3533 }
3534
3535 /**
3536 * Ensures that an object will eventually get non-busy by flushing any required
3537 * write domains, emitting any outstanding lazy request and retiring and
3538 * completed requests.
3539 */
3540 static int
3541 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3542 {
3543 int i;
3544
3545 if (!obj->active)
3546 return 0;
3547
3548 for (i = 0; i < I915_NUM_RINGS; i++) {
3549 struct drm_i915_gem_request *req;
3550
3551 req = obj->last_read_req[i];
3552 if (req == NULL)
3553 continue;
3554
3555 if (list_empty(&req->list))
3556 goto retire;
3557
3558 if (i915_gem_request_completed(req, true)) {
3559 __i915_gem_request_retire__upto(req);
3560 retire:
3561 i915_gem_object_retire__read(obj, i);
3562 }
3563 }
3564
3565 return 0;
3566 }
3567
3568 /**
3569 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3570 * @DRM_IOCTL_ARGS: standard ioctl arguments
3571 *
3572 * Returns 0 if successful, else an error is returned with the remaining time in
3573 * the timeout parameter.
3574 * -ETIME: object is still busy after timeout
3575 * -ERESTARTSYS: signal interrupted the wait
3576 * -ENONENT: object doesn't exist
3577 * Also possible, but rare:
3578 * -EAGAIN: GPU wedged
3579 * -ENOMEM: damn
3580 * -ENODEV: Internal IRQ fail
3581 * -E?: The add request failed
3582 *
3583 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3584 * non-zero timeout parameter the wait ioctl will wait for the given number of
3585 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3586 * without holding struct_mutex the object may become re-busied before this
3587 * function completes. A similar but shorter * race condition exists in the busy
3588 * ioctl
3589 */
3590 int
3591 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3592 {
3593 struct drm_i915_private *dev_priv = dev->dev_private;
3594 struct drm_i915_gem_wait *args = data;
3595 struct drm_gem_object *gobj;
3596 struct drm_i915_gem_object *obj;
3597 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3598 unsigned reset_counter;
3599 int i, n = 0;
3600 int ret;
3601
3602 if (args->flags != 0)
3603 return -EINVAL;
3604
3605 ret = i915_mutex_lock_interruptible(dev);
3606 if (ret)
3607 return ret;
3608
3609 gobj = drm_gem_object_lookup(dev, file, args->bo_handle);
3610 if (gobj == NULL) {
3611 mutex_unlock(&dev->struct_mutex);
3612 return -ENOENT;
3613 }
3614 obj = to_intel_bo(gobj);
3615
3616 /* Need to make sure the object gets inactive eventually. */
3617 ret = i915_gem_object_flush_active(obj);
3618 if (ret)
3619 goto out;
3620
3621 if (!obj->active)
3622 goto out;
3623
3624 /* Do this after OLR check to make sure we make forward progress polling
3625 * on this IOCTL with a timeout == 0 (like busy ioctl)
3626 */
3627 if (args->timeout_ns == 0) {
3628 ret = -ETIME;
3629 goto out;
3630 }
3631
3632 drm_gem_object_unreference(&obj->base);
3633 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3634
3635 for (i = 0; i < I915_NUM_RINGS; i++) {
3636 if (obj->last_read_req[i] == NULL)
3637 continue;
3638
3639 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3640 }
3641
3642 mutex_unlock(&dev->struct_mutex);
3643
3644 for (i = 0; i < n; i++) {
3645 if (ret == 0)
3646 ret = __i915_wait_request(req[i], reset_counter, true,
3647 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3648 file->driver_priv);
3649 i915_gem_request_unreference__unlocked(req[i]);
3650 }
3651 return ret;
3652
3653 out:
3654 drm_gem_object_unreference(&obj->base);
3655 mutex_unlock(&dev->struct_mutex);
3656 return ret;
3657 }
3658
3659 static int
3660 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3661 struct intel_engine_cs *to,
3662 struct drm_i915_gem_request *from_req,
3663 struct drm_i915_gem_request **to_req)
3664 {
3665 struct intel_engine_cs *from;
3666 int ret;
3667
3668 from = i915_gem_request_get_ring(from_req);
3669 if (to == from)
3670 return 0;
3671
3672 if (i915_gem_request_completed(from_req, true))
3673 return 0;
3674
3675 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3676 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3677 ret = __i915_wait_request(from_req,
3678 atomic_read(&i915->gpu_error.reset_counter),
3679 i915->mm.interruptible,
3680 NULL,
3681 &i915->rps.semaphores);
3682 if (ret)
3683 return ret;
3684
3685 i915_gem_object_retire_request(obj, from_req);
3686 } else {
3687 int idx = intel_ring_sync_index(from, to);
3688 u32 seqno = i915_gem_request_get_seqno(from_req);
3689
3690 WARN_ON(!to_req);
3691
3692 if (seqno <= from->semaphore.sync_seqno[idx])
3693 return 0;
3694
3695 if (*to_req == NULL) {
3696 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3697 if (ret)
3698 return ret;
3699 }
3700
3701 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3702 ret = to->semaphore.sync_to(*to_req, from, seqno);
3703 if (ret)
3704 return ret;
3705
3706 /* We use last_read_req because sync_to()
3707 * might have just caused seqno wrap under
3708 * the radar.
3709 */
3710 from->semaphore.sync_seqno[idx] =
3711 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3712 }
3713
3714 return 0;
3715 }
3716
3717 /**
3718 * i915_gem_object_sync - sync an object to a ring.
3719 *
3720 * @obj: object which may be in use on another ring.
3721 * @to: ring we wish to use the object on. May be NULL.
3722 * @to_req: request we wish to use the object for. See below.
3723 * This will be allocated and returned if a request is
3724 * required but not passed in.
3725 *
3726 * This code is meant to abstract object synchronization with the GPU.
3727 * Calling with NULL implies synchronizing the object with the CPU
3728 * rather than a particular GPU ring. Conceptually we serialise writes
3729 * between engines inside the GPU. We only allow one engine to write
3730 * into a buffer at any time, but multiple readers. To ensure each has
3731 * a coherent view of memory, we must:
3732 *
3733 * - If there is an outstanding write request to the object, the new
3734 * request must wait for it to complete (either CPU or in hw, requests
3735 * on the same ring will be naturally ordered).
3736 *
3737 * - If we are a write request (pending_write_domain is set), the new
3738 * request must wait for outstanding read requests to complete.
3739 *
3740 * For CPU synchronisation (NULL to) no request is required. For syncing with
3741 * rings to_req must be non-NULL. However, a request does not have to be
3742 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3743 * request will be allocated automatically and returned through *to_req. Note
3744 * that it is not guaranteed that commands will be emitted (because the system
3745 * might already be idle). Hence there is no need to create a request that
3746 * might never have any work submitted. Note further that if a request is
3747 * returned in *to_req, it is the responsibility of the caller to submit
3748 * that request (after potentially adding more work to it).
3749 *
3750 * Returns 0 if successful, else propagates up the lower layer error.
3751 */
3752 int
3753 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3754 struct intel_engine_cs *to,
3755 struct drm_i915_gem_request **to_req)
3756 {
3757 const bool readonly = obj->base.pending_write_domain == 0;
3758 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3759 int ret, i, n;
3760
3761 if (!obj->active)
3762 return 0;
3763
3764 if (to == NULL)
3765 return i915_gem_object_wait_rendering(obj, readonly);
3766
3767 n = 0;
3768 if (readonly) {
3769 if (obj->last_write_req)
3770 req[n++] = obj->last_write_req;
3771 } else {
3772 for (i = 0; i < I915_NUM_RINGS; i++)
3773 if (obj->last_read_req[i])
3774 req[n++] = obj->last_read_req[i];
3775 }
3776 for (i = 0; i < n; i++) {
3777 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3778 if (ret)
3779 return ret;
3780 }
3781
3782 return 0;
3783 }
3784
3785 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3786 {
3787 u32 old_write_domain, old_read_domains;
3788
3789 /* Force a pagefault for domain tracking on next user access */
3790 i915_gem_release_mmap(obj);
3791
3792 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3793 return;
3794
3795 /* Wait for any direct GTT access to complete */
3796 mb();
3797
3798 old_read_domains = obj->base.read_domains;
3799 old_write_domain = obj->base.write_domain;
3800
3801 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3802 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3803
3804 trace_i915_gem_object_change_domain(obj,
3805 old_read_domains,
3806 old_write_domain);
3807 }
3808
3809 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3810 {
3811 struct drm_i915_gem_object *obj = vma->obj;
3812 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3813 int ret;
3814
3815 if (list_empty(&vma->vma_link))
3816 return 0;
3817
3818 if (!drm_mm_node_allocated(&vma->node)) {
3819 i915_gem_vma_destroy(vma);
3820 return 0;
3821 }
3822
3823 if (vma->pin_count)
3824 return -EBUSY;
3825
3826 BUG_ON(obj->pages == NULL);
3827
3828 if (wait) {
3829 ret = i915_gem_object_wait_rendering(obj, false);
3830 if (ret)
3831 return ret;
3832 }
3833
3834 if (i915_is_ggtt(vma->vm) &&
3835 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3836 i915_gem_object_finish_gtt(obj);
3837
3838 /* release the fence reg _after_ flushing */
3839 ret = i915_gem_object_put_fence(obj);
3840 if (ret)
3841 return ret;
3842 }
3843
3844 trace_i915_vma_unbind(vma);
3845
3846 vma->vm->unbind_vma(vma);
3847 vma->bound = 0;
3848
3849 list_del_init(&vma->mm_list);
3850 if (i915_is_ggtt(vma->vm)) {
3851 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3852 obj->map_and_fenceable = false;
3853 } else if (vma->ggtt_view.pages) {
3854 #ifdef __NetBSD__
3855 panic("rotated/partial views can't happen");
3856 #else
3857 sg_free_table(vma->ggtt_view.pages);
3858 kfree(vma->ggtt_view.pages);
3859 #endif
3860 }
3861 vma->ggtt_view.pages = NULL;
3862 }
3863
3864 drm_mm_remove_node(&vma->node);
3865 i915_gem_vma_destroy(vma);
3866
3867 /* Since the unbound list is global, only move to that list if
3868 * no more VMAs exist. */
3869 if (list_empty(&obj->vma_list))
3870 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3871
3872 /* And finally now the object is completely decoupled from this vma,
3873 * we can drop its hold on the backing storage and allow it to be
3874 * reaped by the shrinker.
3875 */
3876 i915_gem_object_unpin_pages(obj);
3877
3878 return 0;
3879 }
3880
3881 int i915_vma_unbind(struct i915_vma *vma)
3882 {
3883 return __i915_vma_unbind(vma, true);
3884 }
3885
3886 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3887 {
3888 return __i915_vma_unbind(vma, false);
3889 }
3890
3891 int i915_gpu_idle(struct drm_device *dev)
3892 {
3893 struct drm_i915_private *dev_priv = dev->dev_private;
3894 struct intel_engine_cs *ring;
3895 int ret, i;
3896
3897 /* Flush everything onto the inactive list. */
3898 for_each_ring(ring, dev_priv, i) {
3899 if (!i915.enable_execlists) {
3900 struct drm_i915_gem_request *req;
3901
3902 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3903 if (ret)
3904 return ret;
3905
3906 ret = i915_switch_context(req);
3907 if (ret) {
3908 i915_gem_request_cancel(req);
3909 return ret;
3910 }
3911
3912 i915_add_request_no_flush(req);
3913 }
3914
3915 ret = intel_ring_idle(ring);
3916 if (ret)
3917 return ret;
3918 }
3919
3920 WARN_ON(i915_verify_lists(dev));
3921 return 0;
3922 }
3923
3924 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3925 unsigned long cache_level)
3926 {
3927 struct drm_mm_node *gtt_space = &vma->node;
3928 struct drm_mm_node *other;
3929
3930 /*
3931 * On some machines we have to be careful when putting differing types
3932 * of snoopable memory together to avoid the prefetcher crossing memory
3933 * domains and dying. During vm initialisation, we decide whether or not
3934 * these constraints apply and set the drm_mm.color_adjust
3935 * appropriately.
3936 */
3937 if (vma->vm->mm.color_adjust == NULL)
3938 return true;
3939
3940 if (!drm_mm_node_allocated(gtt_space))
3941 return true;
3942
3943 if (list_empty(>t_space->node_list))
3944 return true;
3945
3946 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3947 if (other->allocated && !other->hole_follows && other->color != cache_level)
3948 return false;
3949
3950 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3951 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3952 return false;
3953
3954 return true;
3955 }
3956
3957 /**
3958 * Finds free space in the GTT aperture and binds the object or a view of it
3959 * there.
3960 */
3961 static struct i915_vma *
3962 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3963 struct i915_address_space *vm,
3964 const struct i915_ggtt_view *ggtt_view,
3965 unsigned alignment,
3966 uint64_t flags)
3967 {
3968 struct drm_device *dev = obj->base.dev;
3969 struct drm_i915_private *dev_priv = dev->dev_private;
3970 u32 fence_alignment, unfenced_alignment;
3971 u32 search_flag, alloc_flag;
3972 u64 start, end;
3973 u64 size, fence_size;
3974 struct i915_vma *vma;
3975 int ret;
3976
3977 if (i915_is_ggtt(vm)) {
3978 u32 view_size;
3979
3980 if (WARN_ON(!ggtt_view))
3981 return ERR_PTR(-EINVAL);
3982
3983 view_size = i915_ggtt_view_size(obj, ggtt_view);
3984
3985 fence_size = i915_gem_get_gtt_size(dev,
3986 view_size,
3987 obj->tiling_mode);
3988 fence_alignment = i915_gem_get_gtt_alignment(dev,
3989 view_size,
3990 obj->tiling_mode,
3991 true);
3992 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3993 view_size,
3994 obj->tiling_mode,
3995 false);
3996 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3997 } else {
3998 fence_size = i915_gem_get_gtt_size(dev,
3999 obj->base.size,
4000 obj->tiling_mode);
4001 fence_alignment = i915_gem_get_gtt_alignment(dev,
4002 obj->base.size,
4003 obj->tiling_mode,
4004 true);
4005 unfenced_alignment =
4006 i915_gem_get_gtt_alignment(dev,
4007 obj->base.size,
4008 obj->tiling_mode,
4009 false);
4010 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
4011 }
4012
4013 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
4014 end = vm->total;
4015 if (flags & PIN_MAPPABLE)
4016 end = min_t(u64, end, dev_priv->gtt.mappable_end);
4017 if (flags & PIN_ZONE_4G)
4018 end = min_t(u64, end, (1ULL << 32));
4019
4020 if (alignment == 0)
4021 alignment = flags & PIN_MAPPABLE ? fence_alignment :
4022 unfenced_alignment;
4023 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
4024 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
4025 ggtt_view ? ggtt_view->type : 0,
4026 alignment);
4027 return ERR_PTR(-EINVAL);
4028 }
4029
4030 /* If binding the object/GGTT view requires more space than the entire
4031 * aperture has, reject it early before evicting everything in a vain
4032 * attempt to find space.
4033 */
4034 if (size > end) {
4035 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%"PRIx64" > %s aperture=%"PRIx64"\n",
4036 ggtt_view ? ggtt_view->type : 0,
4037 size,
4038 flags & PIN_MAPPABLE ? "mappable" : "total",
4039 end);
4040 return ERR_PTR(-E2BIG);
4041 }
4042
4043 ret = i915_gem_object_get_pages(obj);
4044 if (ret)
4045 return ERR_PTR(ret);
4046
4047 i915_gem_object_pin_pages(obj);
4048
4049 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
4050 i915_gem_obj_lookup_or_create_vma(obj, vm);
4051
4052 if (IS_ERR(vma))
4053 goto err_unpin;
4054
4055 if (flags & PIN_HIGH) {
4056 search_flag = DRM_MM_SEARCH_BELOW;
4057 alloc_flag = DRM_MM_CREATE_TOP;
4058 } else {
4059 search_flag = DRM_MM_SEARCH_DEFAULT;
4060 alloc_flag = DRM_MM_CREATE_DEFAULT;
4061 }
4062
4063 search_free:
4064 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
4065 size, alignment,
4066 obj->cache_level,
4067 start, end,
4068 search_flag,
4069 alloc_flag);
4070 if (ret) {
4071 ret = i915_gem_evict_something(dev, vm, size, alignment,
4072 obj->cache_level,
4073 start, end,
4074 flags);
4075 if (ret == 0)
4076 goto search_free;
4077
4078 goto err_free_vma;
4079 }
4080 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
4081 ret = -EINVAL;
4082 goto err_remove_node;
4083 }
4084
4085 trace_i915_vma_bind(vma, flags);
4086 ret = i915_vma_bind(vma, obj->cache_level, flags);
4087 if (ret)
4088 goto err_remove_node;
4089
4090 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
4091 list_add_tail(&vma->mm_list, &vm->inactive_list);
4092
4093 return vma;
4094
4095 err_remove_node:
4096 drm_mm_remove_node(&vma->node);
4097 err_free_vma:
4098 i915_gem_vma_destroy(vma);
4099 vma = ERR_PTR(ret);
4100 err_unpin:
4101 i915_gem_object_unpin_pages(obj);
4102 return vma;
4103 }
4104
4105 bool
4106 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
4107 bool force)
4108 {
4109 /* If we don't have a page list set up, then we're not pinned
4110 * to GPU, and we can ignore the cache flush because it'll happen
4111 * again at bind time.
4112 */
4113 if (obj->pages == NULL)
4114 return false;
4115
4116 /*
4117 * Stolen memory is always coherent with the GPU as it is explicitly
4118 * marked as wc by the system, or the system is cache-coherent.
4119 */
4120 if (obj->stolen || obj->phys_handle)
4121 return false;
4122
4123 /* If the GPU is snooping the contents of the CPU cache,
4124 * we do not need to manually clear the CPU cache lines. However,
4125 * the caches are only snooped when the render cache is
4126 * flushed/invalidated. As we always have to emit invalidations
4127 * and flushes when moving into and out of the RENDER domain, correct
4128 * snooping behaviour occurs naturally as the result of our domain
4129 * tracking.
4130 */
4131 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
4132 obj->cache_dirty = true;
4133 return false;
4134 }
4135
4136 trace_i915_gem_object_clflush(obj);
4137 #ifdef __NetBSD__
4138 drm_clflush_pglist(&obj->pageq);
4139 #else
4140 drm_clflush_sg(obj->pages);
4141 #endif
4142 obj->cache_dirty = false;
4143
4144 return true;
4145 }
4146
4147 /** Flushes the GTT write domain for the object if it's dirty. */
4148 static void
4149 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
4150 {
4151 uint32_t old_write_domain;
4152
4153 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
4154 return;
4155
4156 /* No actual flushing is required for the GTT write domain. Writes
4157 * to it immediately go to main memory as far as we know, so there's
4158 * no chipset flush. It also doesn't land in render cache.
4159 *
4160 * However, we do have to enforce the order so that all writes through
4161 * the GTT land before any writes to the device, such as updates to
4162 * the GATT itself.
4163 */
4164 wmb();
4165
4166 old_write_domain = obj->base.write_domain;
4167 obj->base.write_domain = 0;
4168
4169 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
4170
4171 trace_i915_gem_object_change_domain(obj,
4172 obj->base.read_domains,
4173 old_write_domain);
4174 }
4175
4176 /** Flushes the CPU write domain for the object if it's dirty. */
4177 static void
4178 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
4179 {
4180 uint32_t old_write_domain;
4181
4182 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4183 return;
4184
4185 if (i915_gem_clflush_object(obj, obj->pin_display))
4186 i915_gem_chipset_flush(obj->base.dev);
4187
4188 old_write_domain = obj->base.write_domain;
4189 obj->base.write_domain = 0;
4190
4191 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
4192
4193 trace_i915_gem_object_change_domain(obj,
4194 obj->base.read_domains,
4195 old_write_domain);
4196 }
4197
4198 /**
4199 * Moves a single object to the GTT read, and possibly write domain.
4200 *
4201 * This function returns when the move is complete, including waiting on
4202 * flushes to occur.
4203 */
4204 int
4205 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4206 {
4207 uint32_t old_write_domain, old_read_domains;
4208 struct i915_vma *vma;
4209 int ret;
4210
4211 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4212 return 0;
4213
4214 ret = i915_gem_object_wait_rendering(obj, !write);
4215 if (ret)
4216 return ret;
4217
4218 /* Flush and acquire obj->pages so that we are coherent through
4219 * direct access in memory with previous cached writes through
4220 * shmemfs and that our cache domain tracking remains valid.
4221 * For example, if the obj->filp was moved to swap without us
4222 * being notified and releasing the pages, we would mistakenly
4223 * continue to assume that the obj remained out of the CPU cached
4224 * domain.
4225 */
4226 ret = i915_gem_object_get_pages(obj);
4227 if (ret)
4228 return ret;
4229
4230 i915_gem_object_flush_cpu_write_domain(obj);
4231
4232 /* Serialise direct access to this object with the barriers for
4233 * coherent writes from the GPU, by effectively invalidating the
4234 * GTT domain upon first access.
4235 */
4236 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4237 mb();
4238
4239 old_write_domain = obj->base.write_domain;
4240 old_read_domains = obj->base.read_domains;
4241
4242 /* It should now be out of any other write domains, and we can update
4243 * the domain values for our changes.
4244 */
4245 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4246 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4247 if (write) {
4248 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4249 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4250 obj->dirty = 1;
4251 }
4252
4253 trace_i915_gem_object_change_domain(obj,
4254 old_read_domains,
4255 old_write_domain);
4256
4257 /* And bump the LRU for this access */
4258 vma = i915_gem_obj_to_ggtt(obj);
4259 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4260 list_move_tail(&vma->mm_list,
4261 &to_i915(obj->base.dev)->gtt.base.inactive_list);
4262
4263 return 0;
4264 }
4265
4266 /**
4267 * Changes the cache-level of an object across all VMA.
4268 *
4269 * After this function returns, the object will be in the new cache-level
4270 * across all GTT and the contents of the backing storage will be coherent,
4271 * with respect to the new cache-level. In order to keep the backing storage
4272 * coherent for all users, we only allow a single cache level to be set
4273 * globally on the object and prevent it from being changed whilst the
4274 * hardware is reading from the object. That is if the object is currently
4275 * on the scanout it will be set to uncached (or equivalent display
4276 * cache coherency) and all non-MOCS GPU access will also be uncached so
4277 * that all direct access to the scanout remains coherent.
4278 */
4279 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4280 enum i915_cache_level cache_level)
4281 {
4282 struct drm_device *dev = obj->base.dev;
4283 struct i915_vma *vma, *next;
4284 bool bound = false;
4285 int ret = 0;
4286
4287 if (obj->cache_level == cache_level)
4288 goto out;
4289
4290 /* Inspect the list of currently bound VMA and unbind any that would
4291 * be invalid given the new cache-level. This is principally to
4292 * catch the issue of the CS prefetch crossing page boundaries and
4293 * reading an invalid PTE on older architectures.
4294 */
4295 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4296 if (!drm_mm_node_allocated(&vma->node))
4297 continue;
4298
4299 if (vma->pin_count) {
4300 DRM_DEBUG("can not change the cache level of pinned objects\n");
4301 return -EBUSY;
4302 }
4303
4304 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4305 ret = i915_vma_unbind(vma);
4306 if (ret)
4307 return ret;
4308 } else
4309 bound = true;
4310 }
4311
4312 /* We can reuse the existing drm_mm nodes but need to change the
4313 * cache-level on the PTE. We could simply unbind them all and
4314 * rebind with the correct cache-level on next use. However since
4315 * we already have a valid slot, dma mapping, pages etc, we may as
4316 * rewrite the PTE in the belief that doing so tramples upon less
4317 * state and so involves less work.
4318 */
4319 if (bound) {
4320 /* Before we change the PTE, the GPU must not be accessing it.
4321 * If we wait upon the object, we know that all the bound
4322 * VMA are no longer active.
4323 */
4324 ret = i915_gem_object_wait_rendering(obj, false);
4325 if (ret)
4326 return ret;
4327
4328 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4329 /* Access to snoopable pages through the GTT is
4330 * incoherent and on some machines causes a hard
4331 * lockup. Relinquish the CPU mmaping to force
4332 * userspace to refault in the pages and we can
4333 * then double check if the GTT mapping is still
4334 * valid for that pointer access.
4335 */
4336 i915_gem_release_mmap(obj);
4337
4338 /* As we no longer need a fence for GTT access,
4339 * we can relinquish it now (and so prevent having
4340 * to steal a fence from someone else on the next
4341 * fence request). Note GPU activity would have
4342 * dropped the fence as all snoopable access is
4343 * supposed to be linear.
4344 */
4345 ret = i915_gem_object_put_fence(obj);
4346 if (ret)
4347 return ret;
4348 } else {
4349 /* We either have incoherent backing store and
4350 * so no GTT access or the architecture is fully
4351 * coherent. In such cases, existing GTT mmaps
4352 * ignore the cache bit in the PTE and we can
4353 * rewrite it without confusing the GPU or having
4354 * to force userspace to fault back in its mmaps.
4355 */
4356 }
4357
4358 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4359 if (!drm_mm_node_allocated(&vma->node))
4360 continue;
4361
4362 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4363 if (ret)
4364 return ret;
4365 }
4366 }
4367
4368 list_for_each_entry(vma, &obj->vma_list, vma_link)
4369 vma->node.color = cache_level;
4370 obj->cache_level = cache_level;
4371
4372 out:
4373 /* Flush the dirty CPU caches to the backing storage so that the
4374 * object is now coherent at its new cache level (with respect
4375 * to the access domain).
4376 */
4377 if (obj->cache_dirty &&
4378 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4379 cpu_write_needs_clflush(obj)) {
4380 if (i915_gem_clflush_object(obj, true))
4381 i915_gem_chipset_flush(obj->base.dev);
4382 }
4383
4384 return 0;
4385 }
4386
4387 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4388 struct drm_file *file)
4389 {
4390 struct drm_i915_gem_caching *args = data;
4391 struct drm_gem_object *gobj;
4392 struct drm_i915_gem_object *obj;
4393
4394 gobj = drm_gem_object_lookup(dev, file, args->handle);
4395 if (gobj == NULL)
4396 return -ENOENT;
4397 obj = to_intel_bo(gobj);
4398
4399 switch (obj->cache_level) {
4400 case I915_CACHE_LLC:
4401 case I915_CACHE_L3_LLC:
4402 args->caching = I915_CACHING_CACHED;
4403 break;
4404
4405 case I915_CACHE_WT:
4406 args->caching = I915_CACHING_DISPLAY;
4407 break;
4408
4409 default:
4410 args->caching = I915_CACHING_NONE;
4411 break;
4412 }
4413
4414 drm_gem_object_unreference_unlocked(&obj->base);
4415 return 0;
4416 }
4417
4418 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4419 struct drm_file *file)
4420 {
4421 struct drm_i915_private *dev_priv = dev->dev_private;
4422 struct drm_i915_gem_caching *args = data;
4423 struct drm_gem_object *gobj;
4424 struct drm_i915_gem_object *obj;
4425 enum i915_cache_level level;
4426 int ret;
4427
4428 switch (args->caching) {
4429 case I915_CACHING_NONE:
4430 level = I915_CACHE_NONE;
4431 break;
4432 case I915_CACHING_CACHED:
4433 /*
4434 * Due to a HW issue on BXT A stepping, GPU stores via a
4435 * snooped mapping may leave stale data in a corresponding CPU
4436 * cacheline, whereas normally such cachelines would get
4437 * invalidated.
4438 */
4439 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
4440 return -ENODEV;
4441
4442 level = I915_CACHE_LLC;
4443 break;
4444 case I915_CACHING_DISPLAY:
4445 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4446 break;
4447 default:
4448 return -EINVAL;
4449 }
4450
4451 intel_runtime_pm_get(dev_priv);
4452
4453 ret = i915_mutex_lock_interruptible(dev);
4454 if (ret)
4455 goto rpm_put;
4456
4457 gobj = drm_gem_object_lookup(dev, file, args->handle);
4458 if (gobj == NULL) {
4459 ret = -ENOENT;
4460 goto unlock;
4461 }
4462 obj = to_intel_bo(gobj);
4463
4464 ret = i915_gem_object_set_cache_level(obj, level);
4465
4466 drm_gem_object_unreference(&obj->base);
4467 unlock:
4468 mutex_unlock(&dev->struct_mutex);
4469 rpm_put:
4470 intel_runtime_pm_put(dev_priv);
4471
4472 return ret;
4473 }
4474
4475 /*
4476 * Prepare buffer for display plane (scanout, cursors, etc).
4477 * Can be called from an uninterruptible phase (modesetting) and allows
4478 * any flushes to be pipelined (for pageflips).
4479 */
4480 int
4481 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4482 u32 alignment,
4483 struct intel_engine_cs *pipelined,
4484 struct drm_i915_gem_request **pipelined_request,
4485 const struct i915_ggtt_view *view)
4486 {
4487 u32 old_read_domains, old_write_domain;
4488 int ret;
4489
4490 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
4491 if (ret)
4492 return ret;
4493
4494 /* Mark the pin_display early so that we account for the
4495 * display coherency whilst setting up the cache domains.
4496 */
4497 obj->pin_display++;
4498
4499 /* The display engine is not coherent with the LLC cache on gen6. As
4500 * a result, we make sure that the pinning that is about to occur is
4501 * done with uncached PTEs. This is lowest common denominator for all
4502 * chipsets.
4503 *
4504 * However for gen6+, we could do better by using the GFDT bit instead
4505 * of uncaching, which would allow us to flush all the LLC-cached data
4506 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4507 */
4508 ret = i915_gem_object_set_cache_level(obj,
4509 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4510 if (ret)
4511 goto err_unpin_display;
4512
4513 /* As the user may map the buffer once pinned in the display plane
4514 * (e.g. libkms for the bootup splash), we have to ensure that we
4515 * always use map_and_fenceable for all scanout buffers.
4516 */
4517 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4518 view->type == I915_GGTT_VIEW_NORMAL ?
4519 PIN_MAPPABLE : 0);
4520 if (ret)
4521 goto err_unpin_display;
4522
4523 i915_gem_object_flush_cpu_write_domain(obj);
4524
4525 old_write_domain = obj->base.write_domain;
4526 old_read_domains = obj->base.read_domains;
4527
4528 /* It should now be out of any other write domains, and we can update
4529 * the domain values for our changes.
4530 */
4531 obj->base.write_domain = 0;
4532 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4533
4534 trace_i915_gem_object_change_domain(obj,
4535 old_read_domains,
4536 old_write_domain);
4537
4538 return 0;
4539
4540 err_unpin_display:
4541 obj->pin_display--;
4542 return ret;
4543 }
4544
4545 void
4546 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4547 const struct i915_ggtt_view *view)
4548 {
4549 if (WARN_ON(obj->pin_display == 0))
4550 return;
4551
4552 i915_gem_object_ggtt_unpin_view(obj, view);
4553
4554 obj->pin_display--;
4555 }
4556
4557 /**
4558 * Moves a single object to the CPU read, and possibly write domain.
4559 *
4560 * This function returns when the move is complete, including waiting on
4561 * flushes to occur.
4562 */
4563 int
4564 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4565 {
4566 uint32_t old_write_domain, old_read_domains;
4567 int ret;
4568
4569 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4570 return 0;
4571
4572 ret = i915_gem_object_wait_rendering(obj, !write);
4573 if (ret)
4574 return ret;
4575
4576 i915_gem_object_flush_gtt_write_domain(obj);
4577
4578 old_write_domain = obj->base.write_domain;
4579 old_read_domains = obj->base.read_domains;
4580
4581 /* Flush the CPU cache if it's still invalid. */
4582 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4583 i915_gem_clflush_object(obj, false);
4584
4585 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4586 }
4587
4588 /* It should now be out of any other write domains, and we can update
4589 * the domain values for our changes.
4590 */
4591 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4592
4593 /* If we're writing through the CPU, then the GPU read domains will
4594 * need to be invalidated at next use.
4595 */
4596 if (write) {
4597 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4598 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4599 }
4600
4601 trace_i915_gem_object_change_domain(obj,
4602 old_read_domains,
4603 old_write_domain);
4604
4605 return 0;
4606 }
4607
4608 /* Throttle our rendering by waiting until the ring has completed our requests
4609 * emitted over 20 msec ago.
4610 *
4611 * Note that if we were to use the current jiffies each time around the loop,
4612 * we wouldn't escape the function with any frames outstanding if the time to
4613 * render a frame was over 20ms.
4614 *
4615 * This should get us reasonable parallelism between CPU and GPU but also
4616 * relatively low latency when blocking on a particular request to finish.
4617 */
4618 static int
4619 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4620 {
4621 struct drm_i915_private *dev_priv = dev->dev_private;
4622 struct drm_i915_file_private *file_priv = file->driver_priv;
4623 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4624 struct drm_i915_gem_request *request, *target = NULL;
4625 unsigned reset_counter;
4626 int ret;
4627
4628 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4629 if (ret)
4630 return ret;
4631
4632 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4633 if (ret)
4634 return ret;
4635
4636 spin_lock(&file_priv->mm.lock);
4637 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4638 if (time_after_eq(request->emitted_jiffies, recent_enough))
4639 break;
4640
4641 /*
4642 * Note that the request might not have been submitted yet.
4643 * In which case emitted_jiffies will be zero.
4644 */
4645 if (!request->emitted_jiffies)
4646 continue;
4647
4648 target = request;
4649 }
4650 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4651 if (target)
4652 i915_gem_request_reference(target);
4653 spin_unlock(&file_priv->mm.lock);
4654
4655 if (target == NULL)
4656 return 0;
4657
4658 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4659 if (ret == 0)
4660 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4661
4662 i915_gem_request_unreference__unlocked(target);
4663
4664 return ret;
4665 }
4666
4667 static bool
4668 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4669 {
4670 struct drm_i915_gem_object *obj = vma->obj;
4671
4672 if (alignment &&
4673 vma->node.start & (alignment - 1))
4674 return true;
4675
4676 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4677 return true;
4678
4679 if (flags & PIN_OFFSET_BIAS &&
4680 vma->node.start < (flags & PIN_OFFSET_MASK))
4681 return true;
4682
4683 return false;
4684 }
4685
4686 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4687 {
4688 struct drm_i915_gem_object *obj = vma->obj;
4689 bool mappable, fenceable;
4690 u32 fence_size, fence_alignment;
4691
4692 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4693 obj->base.size,
4694 obj->tiling_mode);
4695 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4696 obj->base.size,
4697 obj->tiling_mode,
4698 true);
4699
4700 fenceable = (vma->node.size == fence_size &&
4701 (vma->node.start & (fence_alignment - 1)) == 0);
4702
4703 mappable = (vma->node.start + fence_size <=
4704 to_i915(obj->base.dev)->gtt.mappable_end);
4705
4706 obj->map_and_fenceable = mappable && fenceable;
4707 }
4708
4709 static int
4710 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4711 struct i915_address_space *vm,
4712 const struct i915_ggtt_view *ggtt_view,
4713 uint32_t alignment,
4714 uint64_t flags)
4715 {
4716 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4717 struct i915_vma *vma;
4718 unsigned bound;
4719 int ret;
4720
4721 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4722 return -ENODEV;
4723
4724 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4725 return -EINVAL;
4726
4727 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4728 return -EINVAL;
4729
4730 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4731 return -EINVAL;
4732
4733 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4734 i915_gem_obj_to_vma(obj, vm);
4735
4736 if (IS_ERR(vma))
4737 return PTR_ERR(vma);
4738
4739 if (vma) {
4740 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4741 return -EBUSY;
4742
4743 if (i915_vma_misplaced(vma, alignment, flags)) {
4744 WARN(vma->pin_count,
4745 "bo is already pinned in %s with incorrect alignment:"
4746 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4747 " obj->map_and_fenceable=%d\n",
4748 ggtt_view ? "ggtt" : "ppgtt",
4749 upper_32_bits(vma->node.start),
4750 lower_32_bits(vma->node.start),
4751 alignment,
4752 !!(flags & PIN_MAPPABLE),
4753 obj->map_and_fenceable);
4754 ret = i915_vma_unbind(vma);
4755 if (ret)
4756 return ret;
4757
4758 vma = NULL;
4759 }
4760 }
4761
4762 bound = vma ? vma->bound : 0;
4763 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4764 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4765 flags);
4766 if (IS_ERR(vma))
4767 return PTR_ERR(vma);
4768 } else {
4769 ret = i915_vma_bind(vma, obj->cache_level, flags);
4770 if (ret)
4771 return ret;
4772 }
4773
4774 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4775 (bound ^ vma->bound) & GLOBAL_BIND) {
4776 __i915_vma_set_map_and_fenceable(vma);
4777 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4778 }
4779
4780 vma->pin_count++;
4781 return 0;
4782 }
4783
4784 int
4785 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4786 struct i915_address_space *vm,
4787 uint32_t alignment,
4788 uint64_t flags)
4789 {
4790 return i915_gem_object_do_pin(obj, vm,
4791 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4792 alignment, flags);
4793 }
4794
4795 int
4796 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4797 const struct i915_ggtt_view *view,
4798 uint32_t alignment,
4799 uint64_t flags)
4800 {
4801 if (WARN_ONCE(!view, "no view specified"))
4802 return -EINVAL;
4803
4804 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4805 alignment, flags | PIN_GLOBAL);
4806 }
4807
4808 void
4809 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4810 const struct i915_ggtt_view *view)
4811 {
4812 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4813
4814 BUG_ON(!vma);
4815 WARN_ON(vma->pin_count == 0);
4816 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4817
4818 --vma->pin_count;
4819 }
4820
4821 int
4822 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4823 struct drm_file *file)
4824 {
4825 struct drm_i915_gem_busy *args = data;
4826 struct drm_gem_object *gobj;
4827 struct drm_i915_gem_object *obj;
4828 int ret;
4829
4830 ret = i915_mutex_lock_interruptible(dev);
4831 if (ret)
4832 return ret;
4833
4834 gobj = drm_gem_object_lookup(dev, file, args->handle);
4835 if (gobj == NULL) {
4836 ret = -ENOENT;
4837 goto unlock;
4838 }
4839 obj = to_intel_bo(gobj);
4840
4841 /* Count all active objects as busy, even if they are currently not used
4842 * by the gpu. Users of this interface expect objects to eventually
4843 * become non-busy without any further actions, therefore emit any
4844 * necessary flushes here.
4845 */
4846 ret = i915_gem_object_flush_active(obj);
4847 if (ret)
4848 goto unref;
4849
4850 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4851 args->busy = obj->active << 16;
4852 if (obj->last_write_req)
4853 args->busy |= obj->last_write_req->ring->id;
4854
4855 unref:
4856 drm_gem_object_unreference(&obj->base);
4857 unlock:
4858 mutex_unlock(&dev->struct_mutex);
4859 return ret;
4860 }
4861
4862 int
4863 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4864 struct drm_file *file_priv)
4865 {
4866 return i915_gem_ring_throttle(dev, file_priv);
4867 }
4868
4869 int
4870 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4871 struct drm_file *file_priv)
4872 {
4873 struct drm_i915_private *dev_priv = dev->dev_private;
4874 struct drm_i915_gem_madvise *args = data;
4875 struct drm_gem_object *gobj;
4876 struct drm_i915_gem_object *obj;
4877 int ret;
4878
4879 switch (args->madv) {
4880 case I915_MADV_DONTNEED:
4881 case I915_MADV_WILLNEED:
4882 break;
4883 default:
4884 return -EINVAL;
4885 }
4886
4887 ret = i915_mutex_lock_interruptible(dev);
4888 if (ret)
4889 return ret;
4890
4891 gobj = drm_gem_object_lookup(dev, file_priv, args->handle);
4892 if (gobj == NULL) {
4893 ret = -ENOENT;
4894 goto unlock;
4895 }
4896 obj = to_intel_bo(gobj);
4897
4898 if (i915_gem_obj_is_pinned(obj)) {
4899 ret = -EINVAL;
4900 goto out;
4901 }
4902
4903 if (obj->pages &&
4904 obj->tiling_mode != I915_TILING_NONE &&
4905 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4906 if (obj->madv == I915_MADV_WILLNEED)
4907 i915_gem_object_unpin_pages(obj);
4908 if (args->madv == I915_MADV_WILLNEED)
4909 i915_gem_object_pin_pages(obj);
4910 }
4911
4912 if (obj->madv != __I915_MADV_PURGED)
4913 obj->madv = args->madv;
4914
4915 /* if the object is no longer attached, discard its backing storage */
4916 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4917 i915_gem_object_truncate(obj);
4918
4919 args->retained = obj->madv != __I915_MADV_PURGED;
4920
4921 out:
4922 drm_gem_object_unreference(&obj->base);
4923 unlock:
4924 mutex_unlock(&dev->struct_mutex);
4925 return ret;
4926 }
4927
4928 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4929 const struct drm_i915_gem_object_ops *ops)
4930 {
4931 int i;
4932
4933 INIT_LIST_HEAD(&obj->global_list);
4934 for (i = 0; i < I915_NUM_RINGS; i++)
4935 INIT_LIST_HEAD(&obj->ring_list[i]);
4936 INIT_LIST_HEAD(&obj->obj_exec_link);
4937 INIT_LIST_HEAD(&obj->vma_list);
4938 INIT_LIST_HEAD(&obj->batch_pool_link);
4939
4940 obj->ops = ops;
4941
4942 obj->fence_reg = I915_FENCE_REG_NONE;
4943 obj->madv = I915_MADV_WILLNEED;
4944
4945 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4946 }
4947
4948 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4949 .get_pages = i915_gem_object_get_pages_gtt,
4950 .put_pages = i915_gem_object_put_pages_gtt,
4951 };
4952
4953 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4954 size_t size)
4955 {
4956 #ifdef __NetBSD__
4957 struct drm_i915_private *const dev_priv = dev->dev_private;
4958 #endif
4959 struct drm_i915_gem_object *obj;
4960 #ifndef __NetBSD__
4961 struct address_space *mapping;
4962 gfp_t mask;
4963 #endif
4964
4965 obj = i915_gem_object_alloc(dev);
4966 if (obj == NULL)
4967 return NULL;
4968
4969 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4970 i915_gem_object_free(obj);
4971 return NULL;
4972 }
4973
4974 #ifdef __NetBSD__
4975 uao_set_pgfl(obj->base.filp, dev_priv->gtt.pgfl);
4976 #else
4977 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4978 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4979 /* 965gm cannot relocate objects above 4GiB. */
4980 mask &= ~__GFP_HIGHMEM;
4981 mask |= __GFP_DMA32;
4982 }
4983
4984 mapping = file_inode(obj->base.filp)->i_mapping;
4985 mapping_set_gfp_mask(mapping, mask);
4986 #endif
4987
4988 i915_gem_object_init(obj, &i915_gem_object_ops);
4989
4990 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4991 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4992
4993 if (HAS_LLC(dev)) {
4994 /* On some devices, we can have the GPU use the LLC (the CPU
4995 * cache) for about a 10% performance improvement
4996 * compared to uncached. Graphics requests other than
4997 * display scanout are coherent with the CPU in
4998 * accessing this cache. This means in this mode we
4999 * don't need to clflush on the CPU side, and on the
5000 * GPU side we only need to flush internal caches to
5001 * get data visible to the CPU.
5002 *
5003 * However, we maintain the display planes as UC, and so
5004 * need to rebind when first used as such.
5005 */
5006 obj->cache_level = I915_CACHE_LLC;
5007 } else
5008 obj->cache_level = I915_CACHE_NONE;
5009
5010 trace_i915_gem_object_create(obj);
5011
5012 return obj;
5013 }
5014
5015 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
5016 {
5017 /* If we are the last user of the backing storage (be it shmemfs
5018 * pages or stolen etc), we know that the pages are going to be
5019 * immediately released. In this case, we can then skip copying
5020 * back the contents from the GPU.
5021 */
5022
5023 if (obj->madv != I915_MADV_WILLNEED)
5024 return false;
5025
5026 if (obj->base.filp == NULL)
5027 return true;
5028
5029 /* At first glance, this looks racy, but then again so would be
5030 * userspace racing mmap against close. However, the first external
5031 * reference to the filp can only be obtained through the
5032 * i915_gem_mmap_ioctl() which safeguards us against the user
5033 * acquiring such a reference whilst we are in the middle of
5034 * freeing the object.
5035 */
5036 #ifdef __NetBSD__
5037 /* XXX This number might be a fencepost. */
5038 return obj->base.filp->uo_refs == 1;
5039 #else
5040 return atomic_long_read(&obj->base.filp->f_count) == 1;
5041 #endif
5042 }
5043
5044 void i915_gem_free_object(struct drm_gem_object *gem_obj)
5045 {
5046 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
5047 struct drm_device *dev = obj->base.dev;
5048 struct drm_i915_private *dev_priv = dev->dev_private;
5049 struct i915_vma *vma, *next;
5050
5051 intel_runtime_pm_get(dev_priv);
5052
5053 trace_i915_gem_object_destroy(obj);
5054
5055 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
5056 int ret;
5057
5058 vma->pin_count = 0;
5059 ret = i915_vma_unbind(vma);
5060 if (WARN_ON(ret == -ERESTARTSYS)) {
5061 bool was_interruptible;
5062
5063 was_interruptible = dev_priv->mm.interruptible;
5064 dev_priv->mm.interruptible = false;
5065
5066 WARN_ON(i915_vma_unbind(vma));
5067
5068 dev_priv->mm.interruptible = was_interruptible;
5069 }
5070 }
5071
5072 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
5073 * before progressing. */
5074 if (obj->stolen)
5075 i915_gem_object_unpin_pages(obj);
5076
5077 WARN_ON(obj->frontbuffer_bits);
5078
5079 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
5080 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
5081 obj->tiling_mode != I915_TILING_NONE)
5082 i915_gem_object_unpin_pages(obj);
5083
5084 if (WARN_ON(obj->pages_pin_count))
5085 obj->pages_pin_count = 0;
5086 if (discard_backing_storage(obj))
5087 obj->madv = I915_MADV_DONTNEED;
5088 i915_gem_object_put_pages(obj);
5089 i915_gem_object_free_mmap_offset(obj);
5090
5091 BUG_ON(obj->pages);
5092
5093 if (obj->base.import_attach)
5094 drm_prime_gem_destroy(&obj->base, NULL);
5095
5096 if (obj->ops->release)
5097 obj->ops->release(obj);
5098
5099 drm_gem_object_release(&obj->base);
5100 i915_gem_info_remove_obj(dev_priv, obj->base.size);
5101
5102 kfree(obj->bit_17);
5103 i915_gem_object_free(obj);
5104
5105 intel_runtime_pm_put(dev_priv);
5106 }
5107
5108 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
5109 struct i915_address_space *vm)
5110 {
5111 struct i915_vma *vma;
5112 list_for_each_entry(vma, &obj->vma_list, vma_link) {
5113 if (i915_is_ggtt(vma->vm) &&
5114 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5115 continue;
5116 if (vma->vm == vm)
5117 return vma;
5118 }
5119 return NULL;
5120 }
5121
5122 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
5123 const struct i915_ggtt_view *view)
5124 {
5125 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5126 struct i915_vma *vma;
5127
5128 if (WARN_ONCE(!view, "no view specified"))
5129 return ERR_PTR(-EINVAL);
5130
5131 list_for_each_entry(vma, &obj->vma_list, vma_link)
5132 if (vma->vm == ggtt &&
5133 i915_ggtt_view_equal(&vma->ggtt_view, view))
5134 return vma;
5135 return NULL;
5136 }
5137
5138 void i915_gem_vma_destroy(struct i915_vma *vma)
5139 {
5140 struct i915_address_space *vm = NULL;
5141 WARN_ON(vma->node.allocated);
5142
5143 /* Keep the vma as a placeholder in the execbuffer reservation lists */
5144 if (!list_empty(&vma->exec_list))
5145 return;
5146
5147 vm = vma->vm;
5148
5149 if (!i915_is_ggtt(vm))
5150 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
5151
5152 list_del(&vma->vma_link);
5153
5154 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
5155 }
5156
5157 static void
5158 i915_gem_stop_ringbuffers(struct drm_device *dev)
5159 {
5160 struct drm_i915_private *dev_priv = dev->dev_private;
5161 struct intel_engine_cs *ring;
5162 int i;
5163
5164 for_each_ring(ring, dev_priv, i)
5165 dev_priv->gt.stop_ring(ring);
5166 }
5167
5168 int
5169 i915_gem_suspend(struct drm_device *dev)
5170 {
5171 struct drm_i915_private *dev_priv = dev->dev_private;
5172 int ret = 0;
5173
5174 mutex_lock(&dev->struct_mutex);
5175 ret = i915_gpu_idle(dev);
5176 if (ret)
5177 goto err;
5178
5179 i915_gem_retire_requests(dev);
5180
5181 i915_gem_stop_ringbuffers(dev);
5182 mutex_unlock(&dev->struct_mutex);
5183
5184 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
5185 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
5186 flush_delayed_work(&dev_priv->mm.idle_work);
5187
5188 /* Assert that we sucessfully flushed all the work and
5189 * reset the GPU back to its idle, low power state.
5190 */
5191 WARN_ON(dev_priv->mm.busy);
5192
5193 return 0;
5194
5195 err:
5196 mutex_unlock(&dev->struct_mutex);
5197 return ret;
5198 }
5199
5200 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
5201 {
5202 struct intel_engine_cs *ring = req->ring;
5203 struct drm_device *dev = ring->dev;
5204 struct drm_i915_private *dev_priv = dev->dev_private;
5205 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
5206 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
5207 int i, ret;
5208
5209 if (!HAS_L3_DPF(dev) || !remap_info)
5210 return 0;
5211
5212 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
5213 if (ret)
5214 return ret;
5215
5216 /*
5217 * Note: We do not worry about the concurrent register cacheline hang
5218 * here because no other code should access these registers other than
5219 * at initialization time.
5220 */
5221 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
5222 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
5223 intel_ring_emit(ring, reg_base + i);
5224 intel_ring_emit(ring, remap_info[i/4]);
5225 }
5226
5227 intel_ring_advance(ring);
5228
5229 return ret;
5230 }
5231
5232 void i915_gem_init_swizzling(struct drm_device *dev)
5233 {
5234 struct drm_i915_private *dev_priv = dev->dev_private;
5235
5236 if (INTEL_INFO(dev)->gen < 5 ||
5237 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5238 return;
5239
5240 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5241 DISP_TILE_SURFACE_SWIZZLING);
5242
5243 if (IS_GEN5(dev))
5244 return;
5245
5246 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5247 if (IS_GEN6(dev))
5248 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5249 else if (IS_GEN7(dev))
5250 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5251 else if (IS_GEN8(dev))
5252 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5253 else
5254 BUG();
5255 }
5256
5257 static void init_unused_ring(struct drm_device *dev, u32 base)
5258 {
5259 struct drm_i915_private *dev_priv = dev->dev_private;
5260
5261 I915_WRITE(RING_CTL(base), 0);
5262 I915_WRITE(RING_HEAD(base), 0);
5263 I915_WRITE(RING_TAIL(base), 0);
5264 I915_WRITE(RING_START(base), 0);
5265 }
5266
5267 static void init_unused_rings(struct drm_device *dev)
5268 {
5269 if (IS_I830(dev)) {
5270 init_unused_ring(dev, PRB1_BASE);
5271 init_unused_ring(dev, SRB0_BASE);
5272 init_unused_ring(dev, SRB1_BASE);
5273 init_unused_ring(dev, SRB2_BASE);
5274 init_unused_ring(dev, SRB3_BASE);
5275 } else if (IS_GEN2(dev)) {
5276 init_unused_ring(dev, SRB0_BASE);
5277 init_unused_ring(dev, SRB1_BASE);
5278 } else if (IS_GEN3(dev)) {
5279 init_unused_ring(dev, PRB1_BASE);
5280 init_unused_ring(dev, PRB2_BASE);
5281 }
5282 }
5283
5284 int i915_gem_init_rings(struct drm_device *dev)
5285 {
5286 struct drm_i915_private *dev_priv = dev->dev_private;
5287 int ret;
5288
5289 ret = intel_init_render_ring_buffer(dev);
5290 if (ret)
5291 return ret;
5292
5293 if (HAS_BSD(dev)) {
5294 ret = intel_init_bsd_ring_buffer(dev);
5295 if (ret)
5296 goto cleanup_render_ring;
5297 }
5298
5299 if (HAS_BLT(dev)) {
5300 ret = intel_init_blt_ring_buffer(dev);
5301 if (ret)
5302 goto cleanup_bsd_ring;
5303 }
5304
5305 if (HAS_VEBOX(dev)) {
5306 ret = intel_init_vebox_ring_buffer(dev);
5307 if (ret)
5308 goto cleanup_blt_ring;
5309 }
5310
5311 if (HAS_BSD2(dev)) {
5312 ret = intel_init_bsd2_ring_buffer(dev);
5313 if (ret)
5314 goto cleanup_vebox_ring;
5315 }
5316
5317 return 0;
5318
5319 cleanup_vebox_ring:
5320 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5321 cleanup_blt_ring:
5322 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5323 cleanup_bsd_ring:
5324 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5325 cleanup_render_ring:
5326 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5327
5328 return ret;
5329 }
5330
5331 int
5332 i915_gem_init_hw(struct drm_device *dev)
5333 {
5334 struct drm_i915_private *dev_priv = dev->dev_private;
5335 struct intel_engine_cs *ring;
5336 int ret, i, j;
5337
5338 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5339 return -EIO;
5340
5341 /* Double layer security blanket, see i915_gem_init() */
5342 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5343
5344 if (dev_priv->ellc_size)
5345 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5346
5347 if (IS_HASWELL(dev))
5348 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5349 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5350
5351 if (HAS_PCH_NOP(dev)) {
5352 if (IS_IVYBRIDGE(dev)) {
5353 u32 temp = I915_READ(GEN7_MSG_CTL);
5354 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5355 I915_WRITE(GEN7_MSG_CTL, temp);
5356 } else if (INTEL_INFO(dev)->gen >= 7) {
5357 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5358 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5359 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5360 }
5361 }
5362
5363 i915_gem_init_swizzling(dev);
5364
5365 /*
5366 * At least 830 can leave some of the unused rings
5367 * "active" (ie. head != tail) after resume which
5368 * will prevent c3 entry. Makes sure all unused rings
5369 * are totally idle.
5370 */
5371 init_unused_rings(dev);
5372
5373 BUG_ON(!dev_priv->ring[RCS].default_context);
5374
5375 ret = i915_ppgtt_init_hw(dev);
5376 if (ret) {
5377 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5378 goto out;
5379 }
5380
5381 /* Need to do basic initialisation of all rings first: */
5382 for_each_ring(ring, dev_priv, i) {
5383 ret = ring->init_hw(ring);
5384 if (ret)
5385 goto out;
5386 }
5387
5388 /* We can't enable contexts until all firmware is loaded */
5389 if (HAS_GUC_UCODE(dev)) {
5390 ret = intel_guc_ucode_load(dev);
5391 if (ret) {
5392 /*
5393 * If we got an error and GuC submission is enabled, map
5394 * the error to -EIO so the GPU will be declared wedged.
5395 * OTOH, if we didn't intend to use the GuC anyway, just
5396 * discard the error and carry on.
5397 */
5398 DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
5399 i915.enable_guc_submission ? "" :
5400 " (ignored)");
5401 ret = i915.enable_guc_submission ? -EIO : 0;
5402 if (ret)
5403 goto out;
5404 }
5405 }
5406
5407 /*
5408 * Increment the next seqno by 0x100 so we have a visible break
5409 * on re-initialisation
5410 */
5411 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
5412 if (ret)
5413 goto out;
5414
5415 /* Now it is safe to go back round and do everything else: */
5416 for_each_ring(ring, dev_priv, i) {
5417 struct drm_i915_gem_request *req;
5418
5419 WARN_ON(!ring->default_context);
5420
5421 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
5422 if (ret) {
5423 i915_gem_cleanup_ringbuffer(dev);
5424 goto out;
5425 }
5426
5427 if (ring->id == RCS) {
5428 for (j = 0; j < NUM_L3_SLICES(dev); j++)
5429 i915_gem_l3_remap(req, j);
5430 }
5431
5432 ret = i915_ppgtt_init_ring(req);
5433 if (ret && ret != -EIO) {
5434 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5435 i915_gem_request_cancel(req);
5436 i915_gem_cleanup_ringbuffer(dev);
5437 goto out;
5438 }
5439
5440 ret = i915_gem_context_enable(req);
5441 if (ret && ret != -EIO) {
5442 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5443 i915_gem_request_cancel(req);
5444 i915_gem_cleanup_ringbuffer(dev);
5445 goto out;
5446 }
5447
5448 i915_add_request_no_flush(req);
5449 }
5450
5451 out:
5452 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5453 return ret;
5454 }
5455
5456 int i915_gem_init(struct drm_device *dev)
5457 {
5458 struct drm_i915_private *dev_priv = dev->dev_private;
5459 int ret;
5460
5461 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5462 i915.enable_execlists);
5463
5464 idr_preload(GFP_KERNEL); /* gem context */
5465 mutex_lock(&dev->struct_mutex);
5466
5467 if (IS_VALLEYVIEW(dev)) {
5468 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5469 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5470 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5471 VLV_GTLC_ALLOWWAKEACK), 10))
5472 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5473 }
5474
5475 if (!i915.enable_execlists) {
5476 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5477 dev_priv->gt.init_rings = i915_gem_init_rings;
5478 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5479 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5480 } else {
5481 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5482 dev_priv->gt.init_rings = intel_logical_rings_init;
5483 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5484 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5485 }
5486
5487 /* This is just a security blanket to placate dragons.
5488 * On some systems, we very sporadically observe that the first TLBs
5489 * used by the CS may be stale, despite us poking the TLB reset. If
5490 * we hold the forcewake during initialisation these problems
5491 * just magically go away.
5492 */
5493 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5494
5495 ret = i915_gem_init_userptr(dev);
5496 if (ret)
5497 goto out_unlock;
5498
5499 i915_gem_init_global_gtt(dev);
5500
5501 ret = i915_gem_context_init(dev);
5502 if (ret)
5503 goto out_unlock;
5504
5505 ret = dev_priv->gt.init_rings(dev);
5506 if (ret)
5507 goto out_unlock;
5508
5509 ret = i915_gem_init_hw(dev);
5510 if (ret == -EIO) {
5511 /* Allow ring initialisation to fail by marking the GPU as
5512 * wedged. But we only want to do this where the GPU is angry,
5513 * for all other failure, such as an allocation failure, bail.
5514 */
5515 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5516 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5517 ret = 0;
5518 }
5519
5520 out_unlock:
5521 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5522 mutex_unlock(&dev->struct_mutex);
5523 idr_preload_end();
5524
5525 return ret;
5526 }
5527
5528 void
5529 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5530 {
5531 struct drm_i915_private *dev_priv = dev->dev_private;
5532 struct intel_engine_cs *ring;
5533 int i;
5534
5535 for_each_ring(ring, dev_priv, i)
5536 dev_priv->gt.cleanup_ring(ring);
5537
5538 if (i915.enable_execlists)
5539 /*
5540 * Neither the BIOS, ourselves or any other kernel
5541 * expects the system to be in execlists mode on startup,
5542 * so we need to reset the GPU back to legacy mode.
5543 */
5544 intel_gpu_reset(dev);
5545 }
5546
5547 static void
5548 init_ring_lists(struct intel_engine_cs *ring)
5549 {
5550 INIT_LIST_HEAD(&ring->active_list);
5551 INIT_LIST_HEAD(&ring->request_list);
5552 }
5553
5554 void
5555 i915_gem_load(struct drm_device *dev)
5556 {
5557 struct drm_i915_private *dev_priv = dev->dev_private;
5558 int i;
5559
5560 dev_priv->objects =
5561 kmem_cache_create("i915_gem_object",
5562 sizeof(struct drm_i915_gem_object), 0,
5563 SLAB_HWCACHE_ALIGN,
5564 NULL);
5565 dev_priv->vmas =
5566 kmem_cache_create("i915_gem_vma",
5567 sizeof(struct i915_vma), 0,
5568 SLAB_HWCACHE_ALIGN,
5569 NULL);
5570 dev_priv->requests =
5571 kmem_cache_create("i915_gem_request",
5572 sizeof(struct drm_i915_gem_request), 0,
5573 SLAB_HWCACHE_ALIGN,
5574 NULL);
5575
5576 INIT_LIST_HEAD(&dev_priv->vm_list);
5577 INIT_LIST_HEAD(&dev_priv->context_list);
5578 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5579 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5580 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5581 for (i = 0; i < I915_NUM_RINGS; i++)
5582 init_ring_lists(&dev_priv->ring[i]);
5583 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5584 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5585 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5586 i915_gem_retire_work_handler);
5587 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5588 i915_gem_idle_work_handler);
5589 #ifdef __NetBSD__
5590 spin_lock_init(&dev_priv->gpu_error.reset_lock);
5591 DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
5592 #else
5593 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5594 #endif
5595
5596 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5597
5598 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5599 dev_priv->num_fence_regs = 32;
5600 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5601 dev_priv->num_fence_regs = 16;
5602 else
5603 dev_priv->num_fence_regs = 8;
5604
5605 if (intel_vgpu_active(dev))
5606 dev_priv->num_fence_regs =
5607 I915_READ(vgtif_reg(avail_rs.fence_num));
5608
5609 /*
5610 * Set initial sequence number for requests.
5611 * Using this number allows the wraparound to happen early,
5612 * catching any obvious problems.
5613 */
5614 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5615 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5616
5617 /* Initialize fence registers to zero */
5618 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5619 i915_gem_restore_fences(dev);
5620
5621 i915_gem_detect_bit_6_swizzle(dev);
5622 #ifdef __NetBSD__
5623 DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
5624 spin_lock_init(&dev_priv->pending_flip_lock);
5625 #else
5626 init_waitqueue_head(&dev_priv->pending_flip_queue);
5627 #endif
5628
5629 dev_priv->mm.interruptible = true;
5630
5631 i915_gem_shrinker_init(dev_priv);
5632 mutex_init(&dev_priv->fb_tracking.lock);
5633 }
5634
5635 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5636 {
5637 struct drm_i915_file_private *file_priv = file->driver_priv;
5638
5639 /* Clean up our request list when the client is going away, so that
5640 * later retire_requests won't dereference our soon-to-be-gone
5641 * file_priv.
5642 */
5643 spin_lock(&file_priv->mm.lock);
5644 while (!list_empty(&file_priv->mm.request_list)) {
5645 struct drm_i915_gem_request *request;
5646
5647 request = list_first_entry(&file_priv->mm.request_list,
5648 struct drm_i915_gem_request,
5649 client_list);
5650 list_del(&request->client_list);
5651 request->file_priv = NULL;
5652 }
5653 spin_unlock(&file_priv->mm.lock);
5654
5655 if (!list_empty(&file_priv->rps.link)) {
5656 spin_lock(&to_i915(dev)->rps.client_lock);
5657 list_del(&file_priv->rps.link);
5658 spin_unlock(&to_i915(dev)->rps.client_lock);
5659 }
5660 }
5661
5662 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5663 {
5664 struct drm_i915_file_private *file_priv;
5665 int ret;
5666
5667 DRM_DEBUG_DRIVER("\n");
5668
5669 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5670 if (!file_priv)
5671 return -ENOMEM;
5672
5673 file->driver_priv = file_priv;
5674 file_priv->dev_priv = dev->dev_private;
5675 file_priv->file = file;
5676 INIT_LIST_HEAD(&file_priv->rps.link);
5677
5678 spin_lock_init(&file_priv->mm.lock);
5679 INIT_LIST_HEAD(&file_priv->mm.request_list);
5680
5681 ret = i915_gem_context_open(dev, file);
5682 if (ret)
5683 kfree(file_priv);
5684
5685 return ret;
5686 }
5687
5688 /**
5689 * i915_gem_track_fb - update frontbuffer tracking
5690 * @old: current GEM buffer for the frontbuffer slots
5691 * @new: new GEM buffer for the frontbuffer slots
5692 * @frontbuffer_bits: bitmask of frontbuffer slots
5693 *
5694 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5695 * from @old and setting them in @new. Both @old and @new can be NULL.
5696 */
5697 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5698 struct drm_i915_gem_object *new,
5699 unsigned frontbuffer_bits)
5700 {
5701 if (old) {
5702 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5703 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5704 old->frontbuffer_bits &= ~frontbuffer_bits;
5705 }
5706
5707 if (new) {
5708 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5709 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5710 new->frontbuffer_bits |= frontbuffer_bits;
5711 }
5712 }
5713
5714 /* All the new VM stuff */
5715 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5716 struct i915_address_space *vm)
5717 {
5718 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5719 struct i915_vma *vma;
5720
5721 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5722
5723 list_for_each_entry(vma, &o->vma_list, vma_link) {
5724 if (i915_is_ggtt(vma->vm) &&
5725 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5726 continue;
5727 if (vma->vm == vm)
5728 return vma->node.start;
5729 }
5730
5731 WARN(1, "%s vma for this object not found.\n",
5732 i915_is_ggtt(vm) ? "global" : "ppgtt");
5733 return -1;
5734 }
5735
5736 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5737 const struct i915_ggtt_view *view)
5738 {
5739 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5740 struct i915_vma *vma;
5741
5742 list_for_each_entry(vma, &o->vma_list, vma_link)
5743 if (vma->vm == ggtt &&
5744 i915_ggtt_view_equal(&vma->ggtt_view, view))
5745 return vma->node.start;
5746
5747 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5748 return -1;
5749 }
5750
5751 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5752 struct i915_address_space *vm)
5753 {
5754 struct i915_vma *vma;
5755
5756 list_for_each_entry(vma, &o->vma_list, vma_link) {
5757 if (i915_is_ggtt(vma->vm) &&
5758 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5759 continue;
5760 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5761 return true;
5762 }
5763
5764 return false;
5765 }
5766
5767 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5768 const struct i915_ggtt_view *view)
5769 {
5770 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5771 struct i915_vma *vma;
5772
5773 list_for_each_entry(vma, &o->vma_list, vma_link)
5774 if (vma->vm == ggtt &&
5775 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5776 drm_mm_node_allocated(&vma->node))
5777 return true;
5778
5779 return false;
5780 }
5781
5782 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5783 {
5784 struct i915_vma *vma;
5785
5786 list_for_each_entry(vma, &o->vma_list, vma_link)
5787 if (drm_mm_node_allocated(&vma->node))
5788 return true;
5789
5790 return false;
5791 }
5792
5793 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5794 struct i915_address_space *vm)
5795 {
5796 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5797 struct i915_vma *vma;
5798
5799 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5800
5801 BUG_ON(list_empty(&o->vma_list));
5802
5803 list_for_each_entry(vma, &o->vma_list, vma_link) {
5804 if (i915_is_ggtt(vma->vm) &&
5805 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5806 continue;
5807 if (vma->vm == vm)
5808 return vma->node.size;
5809 }
5810 return 0;
5811 }
5812
5813 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5814 {
5815 struct i915_vma *vma;
5816 list_for_each_entry(vma, &obj->vma_list, vma_link)
5817 if (vma->pin_count > 0)
5818 return true;
5819
5820 return false;
5821 }
5822
5823 /* Allocate a new GEM object and fill it with the supplied data */
5824 struct drm_i915_gem_object *
5825 i915_gem_object_create_from_data(struct drm_device *dev,
5826 const void *data, size_t size)
5827 {
5828 struct drm_i915_gem_object *obj;
5829 #ifdef __NetBSD__
5830 struct iovec iov = { .iov_base = __UNCONST(data), .iov_len = size };
5831 struct uio uio = {
5832 .uio_iov = &iov,
5833 .uio_iovcnt = 1,
5834 .uio_offset = 0,
5835 .uio_resid = size,
5836 .uio_rw = UIO_WRITE,
5837 };
5838 #else
5839 struct sg_table *sg;
5840 #endif
5841 size_t bytes;
5842 int ret;
5843
5844 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5845 if (IS_ERR_OR_NULL(obj))
5846 return obj;
5847
5848 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5849 if (ret)
5850 goto fail;
5851
5852 ret = i915_gem_object_get_pages(obj);
5853 if (ret)
5854 goto fail;
5855
5856 i915_gem_object_pin_pages(obj);
5857 #ifdef __NetBSD__
5858 UIO_SETUP_SYSSPACE(&uio);
5859 /* XXX errno NetBSD->Linux */
5860 ret = -ubc_uiomove(obj->base.filp, &uio, size, UVM_ADV_NORMAL,
5861 UBC_WRITE);
5862 if (ret)
5863 goto fail;
5864 bytes = size - uio.uio_resid;
5865 #else
5866 sg = obj->pages;
5867 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5868 #endif
5869 i915_gem_object_unpin_pages(obj);
5870
5871 if (WARN_ON(bytes != size)) {
5872 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5873 ret = -EFAULT;
5874 goto fail;
5875 }
5876
5877 return obj;
5878
5879 fail:
5880 drm_gem_object_unreference(&obj->base);
5881 return ERR_PTR(ret);
5882 }
5883