Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.61
      1 /*	$NetBSD: i915_gem.c,v 1.61 2020/02/23 15:46:40 ad Exp $	*/
      2 
      3 /*
      4  * Copyright  2008-2015 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  * Authors:
     26  *    Eric Anholt <eric (at) anholt.net>
     27  *
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: i915_gem.c,v 1.61 2020/02/23 15:46:40 ad Exp $");
     32 
     33 #ifdef __NetBSD__
     34 #if 0				/* XXX uvmhist option?  */
     35 #include "opt_uvmhist.h"
     36 #endif
     37 
     38 #include <sys/types.h>
     39 #include <sys/param.h>
     40 
     41 #include <uvm/uvm.h>
     42 #include <uvm/uvm_extern.h>
     43 #include <uvm/uvm_fault.h>
     44 #include <uvm/uvm_page.h>
     45 #include <uvm/uvm_pmap.h>
     46 #include <uvm/uvm_prot.h>
     47 
     48 #include <drm/bus_dma_hacks.h>
     49 #endif
     50 
     51 #include <drm/drmP.h>
     52 #include <drm/drm_vma_manager.h>
     53 #include <drm/i915_drm.h>
     54 #include "i915_drv.h"
     55 #include "i915_vgpu.h"
     56 #include "i915_trace.h"
     57 #include "intel_drv.h"
     58 #include <linux/shmem_fs.h>
     59 #include <linux/slab.h>
     60 #include <linux/swap.h>
     61 #include <linux/pci.h>
     62 #include <linux/dma-buf.h>
     63 #include <asm/page.h>
     64 #include <asm/cpufeature.h>
     65 
     66 #include <linux/nbsd-namespace.h>
     67 
     68 #define RQ_BUG_ON(expr)
     69 
     70 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
     71 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
     72 static void
     73 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
     74 static void
     75 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
     76 
     77 static bool cpu_cache_is_coherent(struct drm_device *dev,
     78 				  enum i915_cache_level level)
     79 {
     80 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
     81 }
     82 
     83 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
     84 {
     85 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
     86 		return true;
     87 
     88 	return obj->pin_display;
     89 }
     90 
     91 /* some bookkeeping */
     92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
     93 				  size_t size)
     94 {
     95 	spin_lock(&dev_priv->mm.object_stat_lock);
     96 	dev_priv->mm.object_count++;
     97 	dev_priv->mm.object_memory += size;
     98 	spin_unlock(&dev_priv->mm.object_stat_lock);
     99 }
    100 
    101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
    102 				     size_t size)
    103 {
    104 	spin_lock(&dev_priv->mm.object_stat_lock);
    105 	dev_priv->mm.object_count--;
    106 	dev_priv->mm.object_memory -= size;
    107 	spin_unlock(&dev_priv->mm.object_stat_lock);
    108 }
    109 
    110 static int
    111 i915_gem_wait_for_error(struct i915_gpu_error *error)
    112 {
    113 	int ret;
    114 
    115 #define EXIT_COND (!i915_reset_in_progress(error) || \
    116 		   i915_terminally_wedged(error))
    117 	if (EXIT_COND)
    118 		return 0;
    119 
    120 	/*
    121 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
    122 	 * userspace. If it takes that long something really bad is going on and
    123 	 * we should simply try to bail out and fail as gracefully as possible.
    124 	 */
    125 #ifdef __NetBSD__
    126 	spin_lock(&error->reset_lock);
    127 	DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
    128 	    10*HZ, EXIT_COND);
    129 	spin_unlock(&error->reset_lock);
    130 #else
    131 	ret = wait_event_interruptible_timeout(error->reset_queue,
    132 					       EXIT_COND,
    133 					       10*HZ);
    134 #endif
    135 	if (ret == 0) {
    136 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
    137 		return -EIO;
    138 	} else if (ret < 0) {
    139 		return ret;
    140 	}
    141 #undef EXIT_COND
    142 
    143 	return 0;
    144 }
    145 
    146 int i915_mutex_lock_interruptible(struct drm_device *dev)
    147 {
    148 	struct drm_i915_private *dev_priv = dev->dev_private;
    149 	int ret;
    150 
    151 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
    152 	if (ret)
    153 		return ret;
    154 
    155 	ret = mutex_lock_interruptible(&dev->struct_mutex);
    156 	if (ret)
    157 		return ret;
    158 
    159 	WARN_ON(i915_verify_lists(dev));
    160 	return 0;
    161 }
    162 
    163 int
    164 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    165 			    struct drm_file *file)
    166 {
    167 	struct drm_i915_private *dev_priv = dev->dev_private;
    168 	struct drm_i915_gem_get_aperture *args = data;
    169 	struct i915_gtt *ggtt = &dev_priv->gtt;
    170 	struct i915_vma *vma;
    171 	size_t pinned;
    172 
    173 	pinned = 0;
    174 	mutex_lock(&dev->struct_mutex);
    175 	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
    176 		if (vma->pin_count)
    177 			pinned += vma->node.size;
    178 	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
    179 		if (vma->pin_count)
    180 			pinned += vma->node.size;
    181 	mutex_unlock(&dev->struct_mutex);
    182 
    183 	args->aper_size = dev_priv->gtt.base.total;
    184 	args->aper_available_size = args->aper_size - pinned;
    185 
    186 	return 0;
    187 }
    188 
    189 static int
    190 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
    191 {
    192 #ifndef __NetBSD__
    193 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    194 #endif
    195 	char *vaddr = obj->phys_handle->vaddr;
    196 #ifndef __NetBSD__
    197 	struct sg_table *st;
    198 	struct scatterlist *sg;
    199 #endif
    200 	int i;
    201 
    202 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
    203 		return -EINVAL;
    204 
    205 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    206 		struct page *page;
    207 		char *src;
    208 
    209 #ifdef __NetBSD__
    210 		struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
    211 		int ret;
    212 		/* XXX errno NetBSD->Linux */
    213 		ret = -uvm_obj_wirepages(obj->base.filp, i*PAGE_SIZE,
    214 		    (i + 1)*PAGE_SIZE, &pages);
    215 		if (ret)
    216 			return ret;
    217 		page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
    218 #else
    219 		page = shmem_read_mapping_page(mapping, i);
    220 		if (IS_ERR(page))
    221 			return PTR_ERR(page);
    222 #endif
    223 
    224 		src = kmap_atomic(page);
    225 		memcpy(vaddr, src, PAGE_SIZE);
    226 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
    227 		kunmap_atomic(src);
    228 
    229 #ifdef __NetBSD__
    230 		uvm_obj_unwirepages(obj->base.filp, i*PAGE_SIZE,
    231 		    (i + 1)*PAGE_SIZE);
    232 #else
    233 		page_cache_release(page);
    234 #endif
    235 		vaddr += PAGE_SIZE;
    236 	}
    237 
    238 	i915_gem_chipset_flush(obj->base.dev);
    239 
    240 #ifdef __NetBSD__
    241 	obj->pages = obj->phys_handle->dmah_map;
    242 #else
    243 	st = kmalloc(sizeof(*st), GFP_KERNEL);
    244 	if (st == NULL)
    245 		return -ENOMEM;
    246 
    247 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
    248 		kfree(st);
    249 		return -ENOMEM;
    250 	}
    251 
    252 	sg = st->sgl;
    253 	sg->offset = 0;
    254 	sg->length = obj->base.size;
    255 
    256 	sg_dma_address(sg) = obj->phys_handle->busaddr;
    257 	sg_dma_len(sg) = obj->base.size;
    258 
    259 	obj->pages = st;
    260 #endif
    261 	return 0;
    262 }
    263 
    264 static void
    265 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
    266 {
    267 	int ret;
    268 
    269 	BUG_ON(obj->madv == __I915_MADV_PURGED);
    270 
    271 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
    272 	if (ret) {
    273 		/* In the event of a disaster, abandon all caches and
    274 		 * hope for the best.
    275 		 */
    276 		WARN_ON(ret != -EIO);
    277 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
    278 	}
    279 
    280 	if (obj->madv == I915_MADV_DONTNEED)
    281 		obj->dirty = 0;
    282 
    283 	if (obj->dirty) {
    284 #ifndef __NetBSD__
    285 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    286 #endif
    287 		const char *vaddr = obj->phys_handle->vaddr;
    288 		int i;
    289 
    290 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    291 			struct page *page;
    292 			char *dst;
    293 
    294 #ifdef __NetBSD__
    295 			struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
    296 			/* XXX errno NetBSD->Linux */
    297 			ret = -uvm_obj_wirepages(obj->base.filp,
    298 			    i*PAGE_SIZE, (i + 1)*PAGE_SIZE, &pages);
    299 			if (ret)
    300 				continue;
    301 			page = container_of(TAILQ_FIRST(&pages), struct page,
    302 			    p_vmp);
    303 #endif
    304 
    305 			dst = kmap_atomic(page);
    306 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
    307 			memcpy(dst, vaddr, PAGE_SIZE);
    308 			kunmap_atomic(dst);
    309 
    310 			set_page_dirty(page);
    311 #ifdef __NetBSD__
    312 			/* XXX mark page accessed */
    313 			uvm_obj_unwirepages(obj->base.filp, i*PAGE_SIZE,
    314 			    (i+1)*PAGE_SIZE);
    315 #else
    316 			if (obj->madv == I915_MADV_WILLNEED)
    317 				mark_page_accessed(page);
    318 			page_cache_release(page);
    319 #endif
    320 			vaddr += PAGE_SIZE;
    321 		}
    322 		obj->dirty = 0;
    323 	}
    324 
    325 #ifdef __NetBSD__
    326 	obj->pages = NULL;
    327 #else
    328 	sg_free_table(obj->pages);
    329 	kfree(obj->pages);
    330 #endif
    331 }
    332 
    333 static void
    334 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
    335 {
    336 	drm_pci_free(obj->base.dev, obj->phys_handle);
    337 }
    338 
    339 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
    340 	.get_pages = i915_gem_object_get_pages_phys,
    341 	.put_pages = i915_gem_object_put_pages_phys,
    342 	.release = i915_gem_object_release_phys,
    343 };
    344 
    345 static int
    346 drop_pages(struct drm_i915_gem_object *obj)
    347 {
    348 	struct i915_vma *vma, *next;
    349 	int ret;
    350 
    351 	drm_gem_object_reference(&obj->base);
    352 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
    353 		if (i915_vma_unbind(vma))
    354 			break;
    355 
    356 	ret = i915_gem_object_put_pages(obj);
    357 	drm_gem_object_unreference(&obj->base);
    358 
    359 	return ret;
    360 }
    361 
    362 int
    363 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
    364 			    int align)
    365 {
    366 	drm_dma_handle_t *phys;
    367 	int ret;
    368 
    369 	if (obj->phys_handle) {
    370 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
    371 			return -EBUSY;
    372 
    373 		return 0;
    374 	}
    375 
    376 	if (obj->madv != I915_MADV_WILLNEED)
    377 		return -EFAULT;
    378 
    379 	if (obj->base.filp == NULL)
    380 		return -EINVAL;
    381 
    382 	ret = drop_pages(obj);
    383 	if (ret)
    384 		return ret;
    385 
    386 	/* create a new object */
    387 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
    388 	if (!phys)
    389 		return -ENOMEM;
    390 
    391 	obj->phys_handle = phys;
    392 	obj->ops = &i915_gem_phys_ops;
    393 
    394 	return i915_gem_object_get_pages(obj);
    395 }
    396 
    397 static int
    398 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
    399 		     struct drm_i915_gem_pwrite *args,
    400 		     struct drm_file *file_priv)
    401 {
    402 	struct drm_device *dev = obj->base.dev;
    403 	void *vaddr = obj->phys_handle->vaddr + args->offset;
    404 	char __user *user_data = to_user_ptr(args->data_ptr);
    405 	int ret = 0;
    406 
    407 	/* We manually control the domain here and pretend that it
    408 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
    409 	 */
    410 	ret = i915_gem_object_wait_rendering(obj, false);
    411 	if (ret)
    412 		return ret;
    413 
    414 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
    415 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
    416 		unsigned long unwritten;
    417 
    418 		/* The physical object once assigned is fixed for the lifetime
    419 		 * of the obj, so we can safely drop the lock and continue
    420 		 * to access vaddr.
    421 		 */
    422 		mutex_unlock(&dev->struct_mutex);
    423 		unwritten = copy_from_user(vaddr, user_data, args->size);
    424 		mutex_lock(&dev->struct_mutex);
    425 		if (unwritten) {
    426 			ret = -EFAULT;
    427 			goto out;
    428 		}
    429 	}
    430 
    431 	drm_clflush_virt_range(vaddr, args->size);
    432 	i915_gem_chipset_flush(dev);
    433 
    434 out:
    435 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
    436 	return ret;
    437 }
    438 
    439 void *i915_gem_object_alloc(struct drm_device *dev)
    440 {
    441 	struct drm_i915_private *dev_priv = dev->dev_private;
    442 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
    443 }
    444 
    445 void i915_gem_object_free(struct drm_i915_gem_object *obj)
    446 {
    447 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
    448 	kmem_cache_free(dev_priv->objects, obj);
    449 }
    450 
    451 static int
    452 i915_gem_create(struct drm_file *file,
    453 		struct drm_device *dev,
    454 		uint64_t size,
    455 		uint32_t *handle_p)
    456 {
    457 	struct drm_i915_gem_object *obj;
    458 	int ret;
    459 	u32 handle;
    460 
    461 	size = roundup(size, PAGE_SIZE);
    462 	if (size == 0)
    463 		return -EINVAL;
    464 
    465 	/* Allocate the new object */
    466 	obj = i915_gem_alloc_object(dev, size);
    467 	if (obj == NULL)
    468 		return -ENOMEM;
    469 
    470 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    471 	/* drop reference from allocate - handle holds it now */
    472 	drm_gem_object_unreference_unlocked(&obj->base);
    473 	if (ret)
    474 		return ret;
    475 
    476 	*handle_p = handle;
    477 	return 0;
    478 }
    479 
    480 int
    481 i915_gem_dumb_create(struct drm_file *file,
    482 		     struct drm_device *dev,
    483 		     struct drm_mode_create_dumb *args)
    484 {
    485 	/* have to work out size/pitch and return them */
    486 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    487 	args->size = args->pitch * args->height;
    488 	return i915_gem_create(file, dev,
    489 			       args->size, &args->handle);
    490 }
    491 
    492 /**
    493  * Creates a new mm object and returns a handle to it.
    494  */
    495 int
    496 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    497 		      struct drm_file *file)
    498 {
    499 	struct drm_i915_gem_create *args = data;
    500 
    501 	return i915_gem_create(file, dev,
    502 			       args->size, &args->handle);
    503 }
    504 
    505 static inline int
    506 __copy_to_user_swizzled(char __user *cpu_vaddr,
    507 			const char *gpu_vaddr, int gpu_offset,
    508 			int length)
    509 {
    510 	int ret, cpu_offset = 0;
    511 
    512 	while (length > 0) {
    513 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    514 		int this_length = min(cacheline_end - gpu_offset, length);
    515 		int swizzled_gpu_offset = gpu_offset ^ 64;
    516 
    517 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
    518 				     gpu_vaddr + swizzled_gpu_offset,
    519 				     this_length);
    520 		if (ret)
    521 			return ret + length;
    522 
    523 		cpu_offset += this_length;
    524 		gpu_offset += this_length;
    525 		length -= this_length;
    526 	}
    527 
    528 	return 0;
    529 }
    530 
    531 static inline int
    532 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
    533 			  const char __user *cpu_vaddr,
    534 			  int length)
    535 {
    536 	int ret, cpu_offset = 0;
    537 
    538 	while (length > 0) {
    539 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    540 		int this_length = min(cacheline_end - gpu_offset, length);
    541 		int swizzled_gpu_offset = gpu_offset ^ 64;
    542 
    543 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
    544 				       cpu_vaddr + cpu_offset,
    545 				       this_length);
    546 		if (ret)
    547 			return ret + length;
    548 
    549 		cpu_offset += this_length;
    550 		gpu_offset += this_length;
    551 		length -= this_length;
    552 	}
    553 
    554 	return 0;
    555 }
    556 
    557 /*
    558  * Pins the specified object's pages and synchronizes the object with
    559  * GPU accesses. Sets needs_clflush to non-zero if the caller should
    560  * flush the object from the CPU cache.
    561  */
    562 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
    563 				    int *needs_clflush)
    564 {
    565 	int ret;
    566 
    567 	*needs_clflush = 0;
    568 
    569 	if (!obj->base.filp)
    570 		return -EINVAL;
    571 
    572 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
    573 		/* If we're not in the cpu read domain, set ourself into the gtt
    574 		 * read domain and manually flush cachelines (if required). This
    575 		 * optimizes for the case when the gpu will dirty the data
    576 		 * anyway again before the next pread happens. */
    577 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
    578 							obj->cache_level);
    579 		ret = i915_gem_object_wait_rendering(obj, true);
    580 		if (ret)
    581 			return ret;
    582 	}
    583 
    584 	ret = i915_gem_object_get_pages(obj);
    585 	if (ret)
    586 		return ret;
    587 
    588 	i915_gem_object_pin_pages(obj);
    589 
    590 	return ret;
    591 }
    592 
    593 /* Per-page copy function for the shmem pread fastpath.
    594  * Flushes invalid cachelines before reading the target if
    595  * needs_clflush is set. */
    596 static int
    597 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
    598 		 char __user *user_data,
    599 		 bool page_do_bit17_swizzling, bool needs_clflush)
    600 {
    601 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    602 	return -EFAULT;
    603 #else
    604 	char *vaddr;
    605 	int ret;
    606 
    607 	if (unlikely(page_do_bit17_swizzling))
    608 		return -EINVAL;
    609 
    610 	vaddr = kmap_atomic(page);
    611 	if (needs_clflush)
    612 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    613 				       page_length);
    614 	ret = __copy_to_user_inatomic(user_data,
    615 				      vaddr + shmem_page_offset,
    616 				      page_length);
    617 	kunmap_atomic(vaddr);
    618 
    619 	return ret ? -EFAULT : 0;
    620 #endif
    621 }
    622 
    623 static void
    624 shmem_clflush_swizzled_range(char *addr, unsigned long length,
    625 			     bool swizzled)
    626 {
    627 	if (unlikely(swizzled)) {
    628 		unsigned long start = (unsigned long) addr;
    629 		unsigned long end = (unsigned long) addr + length;
    630 
    631 		/* For swizzling simply ensure that we always flush both
    632 		 * channels. Lame, but simple and it works. Swizzled
    633 		 * pwrite/pread is far from a hotpath - current userspace
    634 		 * doesn't use it at all. */
    635 		start = round_down(start, 128);
    636 		end = round_up(end, 128);
    637 
    638 		drm_clflush_virt_range((void *)start, end - start);
    639 	} else {
    640 		drm_clflush_virt_range(addr, length);
    641 	}
    642 
    643 }
    644 
    645 /* Only difference to the fast-path function is that this can handle bit17
    646  * and uses non-atomic copy and kmap functions. */
    647 static int
    648 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
    649 		 char __user *user_data,
    650 		 bool page_do_bit17_swizzling, bool needs_clflush)
    651 {
    652 	char *vaddr;
    653 	int ret;
    654 
    655 	vaddr = kmap(page);
    656 	if (needs_clflush)
    657 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    658 					     page_length,
    659 					     page_do_bit17_swizzling);
    660 
    661 	if (page_do_bit17_swizzling)
    662 		ret = __copy_to_user_swizzled(user_data,
    663 					      vaddr, shmem_page_offset,
    664 					      page_length);
    665 	else
    666 		ret = __copy_to_user(user_data,
    667 				     vaddr + shmem_page_offset,
    668 				     page_length);
    669 	kunmap(page);
    670 
    671 	return ret ? - EFAULT : 0;
    672 }
    673 
    674 static int
    675 i915_gem_shmem_pread(struct drm_device *dev,
    676 		     struct drm_i915_gem_object *obj,
    677 		     struct drm_i915_gem_pread *args,
    678 		     struct drm_file *file)
    679 {
    680 	char __user *user_data;
    681 	ssize_t remain;
    682 	loff_t offset;
    683 	int shmem_page_offset, page_length, ret = 0;
    684 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    685 #ifndef __NetBSD__		/* XXX */
    686 	int prefaulted = 0;
    687 #endif
    688 	int needs_clflush = 0;
    689 #ifndef __NetBSD__
    690 	struct sg_page_iter sg_iter;
    691 #endif
    692 
    693 	user_data = to_user_ptr(args->data_ptr);
    694 	remain = args->size;
    695 
    696 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    697 
    698 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
    699 	if (ret)
    700 		return ret;
    701 
    702 	offset = args->offset;
    703 
    704 #ifdef __NetBSD__
    705 	while (0 < remain)
    706 #else
    707 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
    708 			 offset >> PAGE_SHIFT)
    709 #endif
    710 	{
    711 #ifdef __NetBSD__
    712 		struct page *const page = i915_gem_object_get_page(obj,
    713 		    atop(offset));
    714 #else
    715 		struct page *page = sg_page_iter_page(&sg_iter);
    716 
    717 		if (remain <= 0)
    718 			break;
    719 #endif
    720 
    721 		/* Operation in this page
    722 		 *
    723 		 * shmem_page_offset = offset within page in shmem file
    724 		 * page_length = bytes to copy for this page
    725 		 */
    726 		shmem_page_offset = offset_in_page(offset);
    727 		page_length = remain;
    728 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    729 			page_length = PAGE_SIZE - shmem_page_offset;
    730 
    731 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    732 			(page_to_phys(page) & (1 << 17)) != 0;
    733 
    734 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    735 				       user_data, page_do_bit17_swizzling,
    736 				       needs_clflush);
    737 		if (ret == 0)
    738 			goto next_page;
    739 
    740 		mutex_unlock(&dev->struct_mutex);
    741 #ifndef __NetBSD__
    742 		if (likely(!i915.prefault_disable) && !prefaulted) {
    743 			ret = fault_in_multipages_writeable(user_data, remain);
    744 			/* Userspace is tricking us, but we've already clobbered
    745 			 * its pages with the prefault and promised to write the
    746 			 * data up to the first fault. Hence ignore any errors
    747 			 * and just continue. */
    748 			(void)ret;
    749 			prefaulted = 1;
    750 		}
    751 #endif
    752 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    753 				       user_data, page_do_bit17_swizzling,
    754 				       needs_clflush);
    755 
    756 		mutex_lock(&dev->struct_mutex);
    757 
    758 		if (ret)
    759 			goto out;
    760 
    761 next_page:
    762 		remain -= page_length;
    763 		user_data += page_length;
    764 		offset += page_length;
    765 	}
    766 
    767 out:
    768 	i915_gem_object_unpin_pages(obj);
    769 
    770 	return ret;
    771 }
    772 
    773 /**
    774  * Reads data from the object referenced by handle.
    775  *
    776  * On error, the contents of *data are undefined.
    777  */
    778 int
    779 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    780 		     struct drm_file *file)
    781 {
    782 	struct drm_i915_gem_pread *args = data;
    783 	struct drm_gem_object *gobj;
    784 	struct drm_i915_gem_object *obj;
    785 	int ret = 0;
    786 
    787 	if (args->size == 0)
    788 		return 0;
    789 
    790 	if (!access_ok(VERIFY_WRITE,
    791 		       to_user_ptr(args->data_ptr),
    792 		       args->size))
    793 		return -EFAULT;
    794 
    795 	ret = i915_mutex_lock_interruptible(dev);
    796 	if (ret)
    797 		return ret;
    798 
    799 	gobj = drm_gem_object_lookup(dev, file, args->handle);
    800 	if (gobj == NULL) {
    801 		ret = -ENOENT;
    802 		goto unlock;
    803 	}
    804 	obj = to_intel_bo(gobj);
    805 
    806 	/* Bounds check source.  */
    807 	if (args->offset > obj->base.size ||
    808 	    args->size > obj->base.size - args->offset) {
    809 		ret = -EINVAL;
    810 		goto out;
    811 	}
    812 
    813 	/* prime objects have no backing filp to GEM pread/pwrite
    814 	 * pages from.
    815 	 */
    816 	if (!obj->base.filp) {
    817 		ret = -EINVAL;
    818 		goto out;
    819 	}
    820 
    821 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    822 
    823 	ret = i915_gem_shmem_pread(dev, obj, args, file);
    824 
    825 out:
    826 	drm_gem_object_unreference(&obj->base);
    827 unlock:
    828 	mutex_unlock(&dev->struct_mutex);
    829 	return ret;
    830 }
    831 
    832 /* This is the fast write path which cannot handle
    833  * page faults in the source data
    834  */
    835 
    836 static inline int
    837 fast_user_write(struct io_mapping *mapping,
    838 		loff_t page_base, int page_offset,
    839 		char __user *user_data,
    840 		int length)
    841 {
    842 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
    843 	return -EFAULT;
    844 #else
    845 	void __iomem *vaddr_atomic;
    846 	void *vaddr;
    847 	unsigned long unwritten;
    848 
    849 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
    850 	/* We can use the cpu mem copy function because this is X86. */
    851 	vaddr = (void __force*)vaddr_atomic + page_offset;
    852 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
    853 						      user_data, length);
    854 	io_mapping_unmap_atomic(vaddr_atomic);
    855 	return unwritten;
    856 #endif
    857 }
    858 
    859 /**
    860  * This is the fast pwrite path, where we copy the data directly from the
    861  * user into the GTT, uncached.
    862  */
    863 static int
    864 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
    865 			 struct drm_i915_gem_object *obj,
    866 			 struct drm_i915_gem_pwrite *args,
    867 			 struct drm_file *file)
    868 {
    869 	struct drm_i915_private *dev_priv = dev->dev_private;
    870 	ssize_t remain;
    871 	loff_t offset, page_base;
    872 	char __user *user_data;
    873 	int page_offset, page_length, ret;
    874 
    875 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
    876 	if (ret)
    877 		goto out;
    878 
    879 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    880 	if (ret)
    881 		goto out_unpin;
    882 
    883 	ret = i915_gem_object_put_fence(obj);
    884 	if (ret)
    885 		goto out_unpin;
    886 
    887 	user_data = to_user_ptr(args->data_ptr);
    888 	remain = args->size;
    889 
    890 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
    891 
    892 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
    893 
    894 	while (remain > 0) {
    895 		/* Operation in this page
    896 		 *
    897 		 * page_base = page offset within aperture
    898 		 * page_offset = offset within page
    899 		 * page_length = bytes to copy for this page
    900 		 */
    901 		page_base = offset & PAGE_MASK;
    902 		page_offset = offset_in_page(offset);
    903 		page_length = remain;
    904 		if ((page_offset + remain) > PAGE_SIZE)
    905 			page_length = PAGE_SIZE - page_offset;
    906 
    907 		/* If we get a fault while copying data, then (presumably) our
    908 		 * source page isn't available.  Return the error and we'll
    909 		 * retry in the slow path.
    910 		 */
    911 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
    912 				    page_offset, user_data, page_length)) {
    913 			ret = -EFAULT;
    914 			goto out_flush;
    915 		}
    916 
    917 		remain -= page_length;
    918 		user_data += page_length;
    919 		offset += page_length;
    920 	}
    921 
    922 out_flush:
    923 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
    924 out_unpin:
    925 	i915_gem_object_ggtt_unpin(obj);
    926 out:
    927 	return ret;
    928 }
    929 
    930 /* Per-page copy function for the shmem pwrite fastpath.
    931  * Flushes invalid cachelines before writing to the target if
    932  * needs_clflush_before is set and flushes out any written cachelines after
    933  * writing if needs_clflush is set. */
    934 static int
    935 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
    936 		  char __user *user_data,
    937 		  bool page_do_bit17_swizzling,
    938 		  bool needs_clflush_before,
    939 		  bool needs_clflush_after)
    940 {
    941 #ifdef __NetBSD__
    942 	return -EFAULT;
    943 #else
    944 	char *vaddr;
    945 	int ret;
    946 
    947 	if (unlikely(page_do_bit17_swizzling))
    948 		return -EINVAL;
    949 
    950 	vaddr = kmap_atomic(page);
    951 	if (needs_clflush_before)
    952 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    953 				       page_length);
    954 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
    955 					user_data, page_length);
    956 	if (needs_clflush_after)
    957 		drm_clflush_virt_range(vaddr + shmem_page_offset,
    958 				       page_length);
    959 	kunmap_atomic(vaddr);
    960 
    961 	return ret ? -EFAULT : 0;
    962 #endif
    963 }
    964 
    965 /* Only difference to the fast-path function is that this can handle bit17
    966  * and uses non-atomic copy and kmap functions. */
    967 static int
    968 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
    969 		  char __user *user_data,
    970 		  bool page_do_bit17_swizzling,
    971 		  bool needs_clflush_before,
    972 		  bool needs_clflush_after)
    973 {
    974 	char *vaddr;
    975 	int ret;
    976 
    977 	vaddr = kmap(page);
    978 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
    979 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    980 					     page_length,
    981 					     page_do_bit17_swizzling);
    982 	if (page_do_bit17_swizzling)
    983 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
    984 						user_data,
    985 						page_length);
    986 	else
    987 		ret = __copy_from_user(vaddr + shmem_page_offset,
    988 				       user_data,
    989 				       page_length);
    990 	if (needs_clflush_after)
    991 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    992 					     page_length,
    993 					     page_do_bit17_swizzling);
    994 	kunmap(page);
    995 
    996 	return ret ? -EFAULT : 0;
    997 }
    998 
    999 static int
   1000 i915_gem_shmem_pwrite(struct drm_device *dev,
   1001 		      struct drm_i915_gem_object *obj,
   1002 		      struct drm_i915_gem_pwrite *args,
   1003 		      struct drm_file *file)
   1004 {
   1005 	ssize_t remain;
   1006 	loff_t offset;
   1007 	char __user *user_data;
   1008 	int shmem_page_offset, page_length, ret = 0;
   1009 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
   1010 	int hit_slowpath = 0;
   1011 	int needs_clflush_after = 0;
   1012 	int needs_clflush_before = 0;
   1013 #ifndef __NetBSD__
   1014 	struct sg_page_iter sg_iter;
   1015 	int flush_mask = boot_cpu_data.x86_clflush_size - 1;
   1016 #else
   1017 	int flush_mask = cpu_info_primary.ci_cflush_lsize - 1;
   1018 #endif
   1019 
   1020 	user_data = to_user_ptr(args->data_ptr);
   1021 	remain = args->size;
   1022 
   1023 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
   1024 
   1025 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1026 		/* If we're not in the cpu write domain, set ourself into the gtt
   1027 		 * write domain and manually flush cachelines (if required). This
   1028 		 * optimizes for the case when the gpu will use the data
   1029 		 * right away and we therefore have to clflush anyway. */
   1030 		needs_clflush_after = cpu_write_needs_clflush(obj);
   1031 		ret = i915_gem_object_wait_rendering(obj, false);
   1032 		if (ret)
   1033 			return ret;
   1034 	}
   1035 	/* Same trick applies to invalidate partially written cachelines read
   1036 	 * before writing. */
   1037 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
   1038 		needs_clflush_before =
   1039 			!cpu_cache_is_coherent(dev, obj->cache_level);
   1040 
   1041 	ret = i915_gem_object_get_pages(obj);
   1042 	if (ret)
   1043 		return ret;
   1044 
   1045 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
   1046 
   1047 	i915_gem_object_pin_pages(obj);
   1048 
   1049 	offset = args->offset;
   1050 	obj->dirty = 1;
   1051 
   1052 #ifdef __NetBSD__
   1053 	while (0 < remain)
   1054 #else
   1055 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
   1056 			 offset >> PAGE_SHIFT)
   1057 #endif
   1058 	{
   1059 #ifdef __NetBSD__
   1060 		struct page *const page = i915_gem_object_get_page(obj,
   1061 		    atop(offset));
   1062 #else
   1063 		struct page *page = sg_page_iter_page(&sg_iter);
   1064 
   1065 		if (remain <= 0)
   1066 			break;
   1067 #endif
   1068 
   1069 		/* Operation in this page
   1070 		 *
   1071 		 * shmem_page_offset = offset within page in shmem file
   1072 		 * page_length = bytes to copy for this page
   1073 		 */
   1074 		shmem_page_offset = offset_in_page(offset);
   1075 
   1076 		page_length = remain;
   1077 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
   1078 			page_length = PAGE_SIZE - shmem_page_offset;
   1079 
   1080 		/* If we don't overwrite a cacheline completely we need to be
   1081 		 * careful to have up-to-date data by first clflushing. Don't
   1082 		 * overcomplicate things and flush the entire patch. */
   1083 		const int partial_cacheline_write = needs_clflush_before &&
   1084 			((shmem_page_offset | page_length) & flush_mask);
   1085 
   1086 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
   1087 			(page_to_phys(page) & (1 << 17)) != 0;
   1088 
   1089 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
   1090 					user_data, page_do_bit17_swizzling,
   1091 					partial_cacheline_write,
   1092 					needs_clflush_after);
   1093 		if (ret == 0)
   1094 			goto next_page;
   1095 
   1096 		hit_slowpath = 1;
   1097 		mutex_unlock(&dev->struct_mutex);
   1098 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
   1099 					user_data, page_do_bit17_swizzling,
   1100 					partial_cacheline_write,
   1101 					needs_clflush_after);
   1102 
   1103 		mutex_lock(&dev->struct_mutex);
   1104 
   1105 		if (ret)
   1106 			goto out;
   1107 
   1108 next_page:
   1109 		remain -= page_length;
   1110 		user_data += page_length;
   1111 		offset += page_length;
   1112 	}
   1113 
   1114 out:
   1115 	i915_gem_object_unpin_pages(obj);
   1116 
   1117 	if (hit_slowpath) {
   1118 		/*
   1119 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
   1120 		 * cachelines in-line while writing and the object moved
   1121 		 * out of the cpu write domain while we've dropped the lock.
   1122 		 */
   1123 		if (!needs_clflush_after &&
   1124 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
   1125 			if (i915_gem_clflush_object(obj, obj->pin_display))
   1126 				needs_clflush_after = true;
   1127 		}
   1128 	}
   1129 
   1130 	if (needs_clflush_after)
   1131 		i915_gem_chipset_flush(dev);
   1132 	else
   1133 		obj->cache_dirty = true;
   1134 
   1135 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
   1136 	return ret;
   1137 }
   1138 
   1139 /**
   1140  * Writes data to the object referenced by handle.
   1141  *
   1142  * On error, the contents of the buffer that were to be modified are undefined.
   1143  */
   1144 int
   1145 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
   1146 		      struct drm_file *file)
   1147 {
   1148 	struct drm_i915_private *dev_priv = dev->dev_private;
   1149 	struct drm_i915_gem_pwrite *args = data;
   1150 	struct drm_gem_object *gobj;
   1151 	struct drm_i915_gem_object *obj;
   1152 	int ret;
   1153 
   1154 	if (args->size == 0)
   1155 		return 0;
   1156 
   1157 	if (!access_ok(VERIFY_READ,
   1158 		       to_user_ptr(args->data_ptr),
   1159 		       args->size))
   1160 		return -EFAULT;
   1161 
   1162 #ifndef __NetBSD__		/* XXX prefault */
   1163 	if (likely(!i915.prefault_disable)) {
   1164 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
   1165 						   args->size);
   1166 		if (ret)
   1167 			return -EFAULT;
   1168 	}
   1169 #endif
   1170 
   1171 	intel_runtime_pm_get(dev_priv);
   1172 
   1173 	ret = i915_mutex_lock_interruptible(dev);
   1174 	if (ret)
   1175 		goto put_rpm;
   1176 
   1177 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1178 	if (gobj == NULL) {
   1179 		ret = -ENOENT;
   1180 		goto unlock;
   1181 	}
   1182 	obj = to_intel_bo(gobj);
   1183 
   1184 	/* Bounds check destination. */
   1185 	if (args->offset > obj->base.size ||
   1186 	    args->size > obj->base.size - args->offset) {
   1187 		ret = -EINVAL;
   1188 		goto out;
   1189 	}
   1190 
   1191 	/* prime objects have no backing filp to GEM pread/pwrite
   1192 	 * pages from.
   1193 	 */
   1194 	if (!obj->base.filp) {
   1195 		ret = -EINVAL;
   1196 		goto out;
   1197 	}
   1198 
   1199 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
   1200 
   1201 	ret = -EFAULT;
   1202 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
   1203 	 * it would end up going through the fenced access, and we'll get
   1204 	 * different detiling behavior between reading and writing.
   1205 	 * pread/pwrite currently are reading and writing from the CPU
   1206 	 * perspective, requiring manual detiling by the client.
   1207 	 */
   1208 	if (obj->tiling_mode == I915_TILING_NONE &&
   1209 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
   1210 	    cpu_write_needs_clflush(obj)) {
   1211 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
   1212 		/* Note that the gtt paths might fail with non-page-backed user
   1213 		 * pointers (e.g. gtt mappings when moving data between
   1214 		 * textures). Fallback to the shmem path in that case. */
   1215 	}
   1216 
   1217 	if (ret == -EFAULT || ret == -ENOSPC) {
   1218 		if (obj->phys_handle)
   1219 			ret = i915_gem_phys_pwrite(obj, args, file);
   1220 		else
   1221 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
   1222 	}
   1223 
   1224 out:
   1225 	drm_gem_object_unreference(&obj->base);
   1226 unlock:
   1227 	mutex_unlock(&dev->struct_mutex);
   1228 put_rpm:
   1229 	intel_runtime_pm_put(dev_priv);
   1230 
   1231 	return ret;
   1232 }
   1233 
   1234 int
   1235 i915_gem_check_wedge(struct i915_gpu_error *error,
   1236 		     bool interruptible)
   1237 {
   1238 	if (i915_reset_in_progress(error)) {
   1239 		/* Non-interruptible callers can't handle -EAGAIN, hence return
   1240 		 * -EIO unconditionally for these. */
   1241 		if (!interruptible)
   1242 			return -EIO;
   1243 
   1244 		/* Recovery complete, but the reset failed ... */
   1245 		if (i915_terminally_wedged(error))
   1246 			return -EIO;
   1247 
   1248 		/*
   1249 		 * Check if GPU Reset is in progress - we need intel_ring_begin
   1250 		 * to work properly to reinit the hw state while the gpu is
   1251 		 * still marked as reset-in-progress. Handle this with a flag.
   1252 		 */
   1253 		if (!error->reload_in_reset)
   1254 			return -EAGAIN;
   1255 	}
   1256 
   1257 	return 0;
   1258 }
   1259 
   1260 #ifndef __NetBSD__
   1261 static void fake_irq(unsigned long data)
   1262 {
   1263 	wake_up_process((struct task_struct *)data);
   1264 }
   1265 #endif
   1266 
   1267 static bool missed_irq(struct drm_i915_private *dev_priv,
   1268 		       struct intel_engine_cs *ring)
   1269 {
   1270 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
   1271 }
   1272 
   1273 #ifndef __NetBSD__
   1274 static unsigned long local_clock_us(unsigned *cpu)
   1275 {
   1276 	unsigned long t;
   1277 
   1278 	/* Cheaply and approximately convert from nanoseconds to microseconds.
   1279 	 * The result and subsequent calculations are also defined in the same
   1280 	 * approximate microseconds units. The principal source of timing
   1281 	 * error here is from the simple truncation.
   1282 	 *
   1283 	 * Note that local_clock() is only defined wrt to the current CPU;
   1284 	 * the comparisons are no longer valid if we switch CPUs. Instead of
   1285 	 * blocking preemption for the entire busywait, we can detect the CPU
   1286 	 * switch and use that as indicator of system load and a reason to
   1287 	 * stop busywaiting, see busywait_stop().
   1288 	 */
   1289 	*cpu = get_cpu();
   1290 	t = local_clock() >> 10;
   1291 	put_cpu();
   1292 
   1293 	return t;
   1294 }
   1295 
   1296 static bool busywait_stop(unsigned long timeout, unsigned cpu)
   1297 {
   1298 	unsigned this_cpu;
   1299 
   1300 	if (time_after(local_clock_us(&this_cpu), timeout))
   1301 		return true;
   1302 
   1303 	return this_cpu != cpu;
   1304 }
   1305 #endif
   1306 
   1307 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
   1308 {
   1309 #ifndef __NetBSD__
   1310 	unsigned long timeout;
   1311 	unsigned cpu;
   1312 #endif
   1313 
   1314 	/* When waiting for high frequency requests, e.g. during synchronous
   1315 	 * rendering split between the CPU and GPU, the finite amount of time
   1316 	 * required to set up the irq and wait upon it limits the response
   1317 	 * rate. By busywaiting on the request completion for a short while we
   1318 	 * can service the high frequency waits as quick as possible. However,
   1319 	 * if it is a slow request, we want to sleep as quickly as possible.
   1320 	 * The tradeoff between waiting and sleeping is roughly the time it
   1321 	 * takes to sleep on a request, on the order of a microsecond.
   1322 	 */
   1323 
   1324 	if (req->ring->irq_refcount)
   1325 		return -EBUSY;
   1326 
   1327 	/* Only spin if we know the GPU is processing this request */
   1328 	if (!i915_gem_request_started(req, true))
   1329 		return -EAGAIN;
   1330 
   1331 #ifndef __NetBSD__		/* XXX No local clock in usec.  */
   1332 	timeout = local_clock_us(&cpu) + 5;
   1333 	while (!need_resched()) {
   1334 		if (i915_gem_request_completed(req, true))
   1335 			return 0;
   1336 
   1337 		if (signal_pending_state(state, current))
   1338 			break;
   1339 
   1340 		if (busywait_stop(timeout, cpu))
   1341 			break;
   1342 
   1343 		cpu_relax_lowlatency();
   1344 	}
   1345 #endif
   1346 
   1347 	if (i915_gem_request_completed(req, false))
   1348 		return 0;
   1349 
   1350 	return -EAGAIN;
   1351 }
   1352 
   1353 /**
   1354  * __i915_wait_request - wait until execution of request has finished
   1355  * @req: duh!
   1356  * @reset_counter: reset sequence associated with the given request
   1357  * @interruptible: do an interruptible wait (normally yes)
   1358  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
   1359  *
   1360  * Note: It is of utmost importance that the passed in seqno and reset_counter
   1361  * values have been read by the caller in an smp safe manner. Where read-side
   1362  * locks are involved, it is sufficient to read the reset_counter before
   1363  * unlocking the lock that protects the seqno. For lockless tricks, the
   1364  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
   1365  * inserted.
   1366  *
   1367  * Returns 0 if the request was found within the alloted time. Else returns the
   1368  * errno with remaining time filled in timeout argument.
   1369  */
   1370 int __i915_wait_request(struct drm_i915_gem_request *req,
   1371 			unsigned reset_counter,
   1372 			bool interruptible,
   1373 			s64 *timeout,
   1374 			struct intel_rps_client *rps)
   1375 {
   1376 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
   1377 	struct drm_device *dev = ring->dev;
   1378 	struct drm_i915_private *dev_priv = dev->dev_private;
   1379 	const bool irq_test_in_progress =
   1380 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
   1381 #ifdef __NetBSD__
   1382 	int state = 0;
   1383 	bool wedged;
   1384 #else
   1385 	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
   1386 	DEFINE_WAIT(wait);
   1387 	unsigned long timeout_expire;
   1388 #endif
   1389 	s64 before, now;
   1390 	int ret;
   1391 
   1392 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
   1393 
   1394 	if (list_empty(&req->list))
   1395 		return 0;
   1396 
   1397 	if (i915_gem_request_completed(req, true))
   1398 		return 0;
   1399 
   1400 #ifndef __NetBSD__
   1401 	timeout_expire = 0;
   1402 	if (timeout) {
   1403 		if (WARN_ON(*timeout < 0))
   1404 			return -EINVAL;
   1405 
   1406 		if (*timeout == 0)
   1407 			return -ETIME;
   1408 
   1409 		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
   1410 	}
   1411 #endif
   1412 
   1413 	if (INTEL_INFO(dev_priv)->gen >= 6)
   1414 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
   1415 
   1416 	/* Record current time in case interrupted by signal, or wedged */
   1417 	trace_i915_gem_request_wait_begin(req);
   1418 	before = ktime_get_raw_ns();
   1419 
   1420 	/* Optimistic spin for the next jiffie before touching IRQs */
   1421 	ret = __i915_spin_request(req, state);
   1422 	if (ret == 0)
   1423 		goto out;
   1424 
   1425 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
   1426 		ret = -ENODEV;
   1427 		goto out;
   1428 	}
   1429 
   1430 #ifdef __NetBSD__
   1431 #  define	EXIT_COND						      \
   1432 	((wedged = (reset_counter !=					      \
   1433 		atomic_read(&dev_priv->gpu_error.reset_counter))) ||	      \
   1434 	    i915_gem_request_completed(req, false))
   1435 	spin_lock(&dev_priv->irq_lock);
   1436 	if (timeout) {
   1437 		int ticks = missed_irq(dev_priv, ring) ? 1 :
   1438 		    nsecs_to_jiffies_timeout(*timeout);
   1439 		if (interruptible) {
   1440 			DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
   1441 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1442 		} else {
   1443 			DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1444 			    &dev_priv->irq_lock, ticks, EXIT_COND);
   1445 		}
   1446 		if (ret < 0)	/* Failure: return negative error as is.  */
   1447 			;
   1448 		else if (ret == 0) /* Timed out: return -ETIME.  */
   1449 			ret = -ETIME;
   1450 		else		/* Succeeded (ret > 0): return 0.  */
   1451 			ret = 0;
   1452 	} else {
   1453 		if (interruptible) {
   1454 			DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
   1455 			    &dev_priv->irq_lock, EXIT_COND);
   1456 		} else {
   1457 			DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
   1458 			    &dev_priv->irq_lock, EXIT_COND);
   1459 		}
   1460 		/* ret is negative on failure or zero on success.  */
   1461 	}
   1462 	spin_unlock(&dev_priv->irq_lock);
   1463 	if (wedged) {
   1464 		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1465 		if (ret == 0)
   1466 			ret = -EAGAIN;
   1467 	}
   1468 #else
   1469 	for (;;) {
   1470 		struct timer_list timer;
   1471 
   1472 		prepare_to_wait(&ring->irq_queue, &wait, state);
   1473 
   1474 		/* We need to check whether any gpu reset happened in between
   1475 		 * the caller grabbing the seqno and now ... */
   1476 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
   1477 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
   1478 			 * is truely gone. */
   1479 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1480 			if (ret == 0)
   1481 				ret = -EAGAIN;
   1482 			break;
   1483 		}
   1484 
   1485 		if (i915_gem_request_completed(req, false)) {
   1486 			ret = 0;
   1487 			break;
   1488 		}
   1489 
   1490 		if (signal_pending_state(state, current)) {
   1491 			ret = -ERESTARTSYS;
   1492 			break;
   1493 		}
   1494 
   1495 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
   1496 			ret = -ETIME;
   1497 			break;
   1498 		}
   1499 
   1500 		timer.function = NULL;
   1501 		if (timeout || missed_irq(dev_priv, ring)) {
   1502 			unsigned long expire;
   1503 
   1504 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
   1505 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
   1506 			mod_timer(&timer, expire);
   1507 		}
   1508 
   1509 		io_schedule();
   1510 
   1511 		if (timer.function) {
   1512 			del_singleshot_timer_sync(&timer);
   1513 			destroy_timer_on_stack(&timer);
   1514 		}
   1515 	}
   1516 #endif
   1517 	if (!irq_test_in_progress)
   1518 		ring->irq_put(ring);
   1519 
   1520 #ifndef __NetBSD__
   1521 	finish_wait(&ring->irq_queue, &wait);
   1522 #endif
   1523 
   1524 out:
   1525 	now = ktime_get_raw_ns();
   1526 	trace_i915_gem_request_wait_end(req);
   1527 
   1528 	if (timeout) {
   1529 		s64 tres = *timeout - (now - before);
   1530 
   1531 		*timeout = tres < 0 ? 0 : tres;
   1532 
   1533 		/*
   1534 		 * Apparently ktime isn't accurate enough and occasionally has a
   1535 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
   1536 		 * things up to make the test happy. We allow up to 1 jiffy.
   1537 		 *
   1538 		 * This is a regrssion from the timespec->ktime conversion.
   1539 		 */
   1540 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
   1541 			*timeout = 0;
   1542 	}
   1543 
   1544 	return ret;
   1545 }
   1546 
   1547 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
   1548 				   struct drm_file *file)
   1549 {
   1550 	struct drm_i915_private *dev_private __unused;
   1551 	struct drm_i915_file_private *file_priv;
   1552 
   1553 	WARN_ON(!req || !file || req->file_priv);
   1554 
   1555 	if (!req || !file)
   1556 		return -EINVAL;
   1557 
   1558 	if (req->file_priv)
   1559 		return -EINVAL;
   1560 
   1561 	dev_private = req->ring->dev->dev_private;
   1562 	file_priv = file->driver_priv;
   1563 
   1564 	spin_lock(&file_priv->mm.lock);
   1565 	req->file_priv = file_priv;
   1566 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
   1567 	spin_unlock(&file_priv->mm.lock);
   1568 
   1569 #ifndef __NetBSD__
   1570 	req->pid = get_pid(task_pid(current));
   1571 #endif
   1572 
   1573 	return 0;
   1574 }
   1575 
   1576 static inline void
   1577 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
   1578 {
   1579 	struct drm_i915_file_private *file_priv = request->file_priv;
   1580 
   1581 	if (!file_priv)
   1582 		return;
   1583 
   1584 	spin_lock(&file_priv->mm.lock);
   1585 	list_del(&request->client_list);
   1586 	request->file_priv = NULL;
   1587 	spin_unlock(&file_priv->mm.lock);
   1588 
   1589 #ifndef __NetBSD__
   1590 	put_pid(request->pid);
   1591 	request->pid = NULL;
   1592 #endif
   1593 }
   1594 
   1595 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
   1596 {
   1597 	trace_i915_gem_request_retire(request);
   1598 
   1599 	/* We know the GPU must have read the request to have
   1600 	 * sent us the seqno + interrupt, so use the position
   1601 	 * of tail of the request to update the last known position
   1602 	 * of the GPU head.
   1603 	 *
   1604 	 * Note this requires that we are always called in request
   1605 	 * completion order.
   1606 	 */
   1607 	request->ringbuf->last_retired_head = request->postfix;
   1608 
   1609 	list_del_init(&request->list);
   1610 	i915_gem_request_remove_from_client(request);
   1611 
   1612 	i915_gem_request_unreference(request);
   1613 }
   1614 
   1615 static void
   1616 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
   1617 {
   1618 	struct intel_engine_cs *engine = req->ring;
   1619 	struct drm_i915_gem_request *tmp;
   1620 
   1621 	lockdep_assert_held(&engine->dev->struct_mutex);
   1622 
   1623 	if (list_empty(&req->list))
   1624 		return;
   1625 
   1626 	do {
   1627 		tmp = list_first_entry(&engine->request_list,
   1628 				       typeof(*tmp), list);
   1629 
   1630 		i915_gem_request_retire(tmp);
   1631 	} while (tmp != req);
   1632 
   1633 	WARN_ON(i915_verify_lists(engine->dev));
   1634 }
   1635 
   1636 /**
   1637  * Waits for a request to be signaled, and cleans up the
   1638  * request and object lists appropriately for that event.
   1639  */
   1640 int
   1641 i915_wait_request(struct drm_i915_gem_request *req)
   1642 {
   1643 	struct drm_device *dev;
   1644 	struct drm_i915_private *dev_priv;
   1645 	bool interruptible;
   1646 	int ret;
   1647 
   1648 	BUG_ON(req == NULL);
   1649 
   1650 	dev = req->ring->dev;
   1651 	dev_priv = dev->dev_private;
   1652 	interruptible = dev_priv->mm.interruptible;
   1653 
   1654 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1655 
   1656 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
   1657 	if (ret)
   1658 		return ret;
   1659 
   1660 	ret = __i915_wait_request(req,
   1661 				  atomic_read(&dev_priv->gpu_error.reset_counter),
   1662 				  interruptible, NULL, NULL);
   1663 	if (ret)
   1664 		return ret;
   1665 
   1666 	__i915_gem_request_retire__upto(req);
   1667 	return 0;
   1668 }
   1669 
   1670 /**
   1671  * Ensures that all rendering to the object has completed and the object is
   1672  * safe to unbind from the GTT or access from the CPU.
   1673  */
   1674 int
   1675 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
   1676 			       bool readonly)
   1677 {
   1678 	int ret, i;
   1679 
   1680 	if (!obj->active)
   1681 		return 0;
   1682 
   1683 	if (readonly) {
   1684 		if (obj->last_write_req != NULL) {
   1685 			ret = i915_wait_request(obj->last_write_req);
   1686 			if (ret)
   1687 				return ret;
   1688 
   1689 			i = obj->last_write_req->ring->id;
   1690 			if (obj->last_read_req[i] == obj->last_write_req)
   1691 				i915_gem_object_retire__read(obj, i);
   1692 			else
   1693 				i915_gem_object_retire__write(obj);
   1694 		}
   1695 	} else {
   1696 		for (i = 0; i < I915_NUM_RINGS; i++) {
   1697 			if (obj->last_read_req[i] == NULL)
   1698 				continue;
   1699 
   1700 			ret = i915_wait_request(obj->last_read_req[i]);
   1701 			if (ret)
   1702 				return ret;
   1703 
   1704 			i915_gem_object_retire__read(obj, i);
   1705 		}
   1706 		RQ_BUG_ON(obj->active);
   1707 	}
   1708 
   1709 	return 0;
   1710 }
   1711 
   1712 static void
   1713 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
   1714 			       struct drm_i915_gem_request *req)
   1715 {
   1716 	int ring = req->ring->id;
   1717 
   1718 	if (obj->last_read_req[ring] == req)
   1719 		i915_gem_object_retire__read(obj, ring);
   1720 	else if (obj->last_write_req == req)
   1721 		i915_gem_object_retire__write(obj);
   1722 
   1723 	__i915_gem_request_retire__upto(req);
   1724 }
   1725 
   1726 /* A nonblocking variant of the above wait. This is a highly dangerous routine
   1727  * as the object state may change during this call.
   1728  */
   1729 static __must_check int
   1730 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
   1731 					    struct intel_rps_client *rps,
   1732 					    bool readonly)
   1733 {
   1734 	struct drm_device *dev = obj->base.dev;
   1735 	struct drm_i915_private *dev_priv = dev->dev_private;
   1736 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
   1737 	unsigned reset_counter;
   1738 	int ret, i, n = 0;
   1739 
   1740 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
   1741 	BUG_ON(!dev_priv->mm.interruptible);
   1742 
   1743 	if (!obj->active)
   1744 		return 0;
   1745 
   1746 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
   1747 	if (ret)
   1748 		return ret;
   1749 
   1750 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   1751 
   1752 	if (readonly) {
   1753 		struct drm_i915_gem_request *req;
   1754 
   1755 		req = obj->last_write_req;
   1756 		if (req == NULL)
   1757 			return 0;
   1758 
   1759 		requests[n++] = i915_gem_request_reference(req);
   1760 	} else {
   1761 		for (i = 0; i < I915_NUM_RINGS; i++) {
   1762 			struct drm_i915_gem_request *req;
   1763 
   1764 			req = obj->last_read_req[i];
   1765 			if (req == NULL)
   1766 				continue;
   1767 
   1768 			requests[n++] = i915_gem_request_reference(req);
   1769 		}
   1770 	}
   1771 
   1772 	mutex_unlock(&dev->struct_mutex);
   1773 	for (i = 0; ret == 0 && i < n; i++)
   1774 		ret = __i915_wait_request(requests[i], reset_counter, true,
   1775 					  NULL, rps);
   1776 	mutex_lock(&dev->struct_mutex);
   1777 
   1778 	for (i = 0; i < n; i++) {
   1779 		if (ret == 0)
   1780 			i915_gem_object_retire_request(obj, requests[i]);
   1781 		i915_gem_request_unreference(requests[i]);
   1782 	}
   1783 
   1784 	return ret;
   1785 }
   1786 
   1787 static struct intel_rps_client *to_rps_client(struct drm_file *file)
   1788 {
   1789 	struct drm_i915_file_private *fpriv = file->driver_priv;
   1790 	return &fpriv->rps;
   1791 }
   1792 
   1793 /**
   1794  * Called when user space prepares to use an object with the CPU, either
   1795  * through the mmap ioctl's mapping or a GTT mapping.
   1796  */
   1797 int
   1798 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
   1799 			  struct drm_file *file)
   1800 {
   1801 	struct drm_i915_gem_set_domain *args = data;
   1802 	struct drm_gem_object *gobj;
   1803 	struct drm_i915_gem_object *obj;
   1804 	uint32_t read_domains = args->read_domains;
   1805 	uint32_t write_domain = args->write_domain;
   1806 	int ret;
   1807 
   1808 	/* Only handle setting domains to types used by the CPU. */
   1809 	if (write_domain & I915_GEM_GPU_DOMAINS)
   1810 		return -EINVAL;
   1811 
   1812 	if (read_domains & I915_GEM_GPU_DOMAINS)
   1813 		return -EINVAL;
   1814 
   1815 	/* Having something in the write domain implies it's in the read
   1816 	 * domain, and only that read domain.  Enforce that in the request.
   1817 	 */
   1818 	if (write_domain != 0 && read_domains != write_domain)
   1819 		return -EINVAL;
   1820 
   1821 	ret = i915_mutex_lock_interruptible(dev);
   1822 	if (ret)
   1823 		return ret;
   1824 
   1825 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1826 	if (gobj == NULL) {
   1827 		ret = -ENOENT;
   1828 		goto unlock;
   1829 	}
   1830 	obj = to_intel_bo(gobj);
   1831 
   1832 	/* Try to flush the object off the GPU without holding the lock.
   1833 	 * We will repeat the flush holding the lock in the normal manner
   1834 	 * to catch cases where we are gazumped.
   1835 	 */
   1836 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
   1837 							  to_rps_client(file),
   1838 							  !write_domain);
   1839 	if (ret)
   1840 		goto unref;
   1841 
   1842 	if (read_domains & I915_GEM_DOMAIN_GTT)
   1843 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
   1844 	else
   1845 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
   1846 
   1847 	if (write_domain != 0)
   1848 		intel_fb_obj_invalidate(obj,
   1849 					write_domain == I915_GEM_DOMAIN_GTT ?
   1850 					ORIGIN_GTT : ORIGIN_CPU);
   1851 
   1852 unref:
   1853 	drm_gem_object_unreference(&obj->base);
   1854 unlock:
   1855 	mutex_unlock(&dev->struct_mutex);
   1856 	return ret;
   1857 }
   1858 
   1859 /**
   1860  * Called when user space has done writes to this buffer
   1861  */
   1862 int
   1863 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
   1864 			 struct drm_file *file)
   1865 {
   1866 	struct drm_i915_gem_sw_finish *args = data;
   1867 	struct drm_gem_object *gobj;
   1868 	struct drm_i915_gem_object *obj;
   1869 	int ret = 0;
   1870 
   1871 	ret = i915_mutex_lock_interruptible(dev);
   1872 	if (ret)
   1873 		return ret;
   1874 
   1875 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   1876 	if (gobj == NULL) {
   1877 		ret = -ENOENT;
   1878 		goto unlock;
   1879 	}
   1880 	obj = to_intel_bo(gobj);
   1881 
   1882 	/* Pinned buffers may be scanout, so flush the cache */
   1883 	if (obj->pin_display)
   1884 		i915_gem_object_flush_cpu_write_domain(obj);
   1885 
   1886 	drm_gem_object_unreference(&obj->base);
   1887 unlock:
   1888 	mutex_unlock(&dev->struct_mutex);
   1889 	return ret;
   1890 }
   1891 
   1892 /**
   1893  * Maps the contents of an object, returning the address it is mapped
   1894  * into.
   1895  *
   1896  * While the mapping holds a reference on the contents of the object, it doesn't
   1897  * imply a ref on the object itself.
   1898  *
   1899  * IMPORTANT:
   1900  *
   1901  * DRM driver writers who look a this function as an example for how to do GEM
   1902  * mmap support, please don't implement mmap support like here. The modern way
   1903  * to implement DRM mmap support is with an mmap offset ioctl (like
   1904  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
   1905  * That way debug tooling like valgrind will understand what's going on, hiding
   1906  * the mmap call in a driver private ioctl will break that. The i915 driver only
   1907  * does cpu mmaps this way because we didn't know better.
   1908  */
   1909 int
   1910 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
   1911 		    struct drm_file *file)
   1912 {
   1913 	struct drm_i915_gem_mmap *args = data;
   1914 	struct drm_gem_object *obj;
   1915 	unsigned long addr;
   1916 #ifdef __NetBSD__
   1917 	struct drm_i915_private *dev_priv = dev->dev_private;
   1918 	int ret;
   1919 
   1920 	if ((dev_priv->quirks & QUIRK_NETBSD_VERSION_CALLED) == 0)
   1921 		args->flags = 0;
   1922 #endif
   1923 
   1924 	if (args->flags & ~(I915_MMAP_WC))
   1925 		return -EINVAL;
   1926 
   1927 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
   1928 		return -ENODEV;
   1929 
   1930 	obj = drm_gem_object_lookup(dev, file, args->handle);
   1931 	if (obj == NULL)
   1932 		return -ENOENT;
   1933 
   1934 	/* prime objects have no backing filp to GEM mmap
   1935 	 * pages from.
   1936 	 */
   1937 	if (!obj->filp) {
   1938 		drm_gem_object_unreference_unlocked(obj);
   1939 		return -EINVAL;
   1940 	}
   1941 
   1942 #ifdef __NetBSD__
   1943 	/* Acquire a reference for uvm_map to consume.  */
   1944 	uao_reference(obj->filp);
   1945 	addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
   1946 	    (vaddr_t)curproc->p_vmspace->vm_daddr, args->size,
   1947 	    curproc->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1948 	/* XXX errno NetBSD->Linux */
   1949 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
   1950 	    obj->filp, args->offset, 0,
   1951 	    UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
   1952 		(VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
   1953 		0));
   1954 	if (ret) {
   1955 		uao_detach(obj->filp);
   1956 		drm_gem_object_unreference_unlocked(obj);
   1957 		return ret;
   1958 	}
   1959 	drm_gem_object_unreference_unlocked(obj);
   1960 #else
   1961 	addr = vm_mmap(obj->filp, 0, args->size,
   1962 		       PROT_READ | PROT_WRITE, MAP_SHARED,
   1963 		       args->offset);
   1964 	if (args->flags & I915_MMAP_WC) {
   1965 		struct mm_struct *mm = current->mm;
   1966 		struct vm_area_struct *vma;
   1967 
   1968 		down_write(&mm->mmap_sem);
   1969 		vma = find_vma(mm, addr);
   1970 		if (vma)
   1971 			vma->vm_page_prot =
   1972 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
   1973 		else
   1974 			addr = -ENOMEM;
   1975 		up_write(&mm->mmap_sem);
   1976 	}
   1977 	drm_gem_object_unreference_unlocked(obj);
   1978 	if (IS_ERR((void *)addr))
   1979 		return addr;
   1980 #endif
   1981 
   1982 	args->addr_ptr = (uint64_t) addr;
   1983 
   1984 	return 0;
   1985 }
   1986 
   1987 #ifdef __NetBSD__		/* XXX gem gtt fault */
   1988 static int	i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
   1989 		    struct vm_page **, int, int, vm_prot_t, int, paddr_t);
   1990 
   1991 int
   1992 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   1993     int npages, int centeridx, vm_prot_t access_type, int flags)
   1994 {
   1995 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1996 	struct drm_gem_object *gem_obj =
   1997 	    container_of(uobj, struct drm_gem_object, gemo_uvmobj);
   1998 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   1999 	struct drm_device *dev = obj->base.dev;
   2000 	struct drm_i915_private *dev_priv = dev->dev_private;
   2001 	voff_t byte_offset;
   2002 	pgoff_t page_offset;
   2003 	int ret = 0;
   2004 	bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
   2005 
   2006 	byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
   2007 	KASSERT(byte_offset <= obj->base.size);
   2008 	page_offset = (byte_offset >> PAGE_SHIFT);
   2009 
   2010 	intel_runtime_pm_get(dev_priv);
   2011 
   2012 	/* Thanks, uvm, but we don't need this lock.  */
   2013 	rw_exit(uobj->vmobjlock);
   2014 
   2015 	ret = i915_mutex_lock_interruptible(dev);
   2016 	if (ret)
   2017 		goto out;
   2018 
   2019 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   2020 
   2021 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   2022 	if (ret)
   2023 		goto unlock;
   2024 
   2025 	if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
   2026 		ret = -EINVAL;
   2027 		goto unlock;
   2028 	}
   2029 
   2030 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
   2031 	if (ret)
   2032 		goto unlock;
   2033 
   2034 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   2035 	if (ret)
   2036 		goto unpin;
   2037 
   2038 	ret = i915_gem_object_get_fence(obj);
   2039 	if (ret)
   2040 		goto unpin;
   2041 
   2042 	obj->fault_mappable = true;
   2043 
   2044 	/* XXX errno NetBSD->Linux */
   2045 	ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
   2046 	    flags,
   2047 	    (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
   2048 unpin:
   2049 	i915_gem_object_ggtt_unpin(obj);
   2050 unlock:
   2051 	mutex_unlock(&dev->struct_mutex);
   2052 out:
   2053 	rw_enter(uobj->vmobjlock, RW_WRITER);
   2054 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
   2055 
   2056 	/*
   2057 	 * Remap EINTR to success, so that we return to userland.
   2058 	 * On the way out, we'll deliver the signal, and if the signal
   2059 	 * is not fatal then the user code which faulted will most likely
   2060 	 * fault again, and we'll come back here for another try.
   2061 	 */
   2062 	if (ret == -EINTR)
   2063 		ret = 0;
   2064 	/* XXX Deal with GPU hangs here...  */
   2065 	intel_runtime_pm_put(dev_priv);
   2066 	/* XXX errno Linux->NetBSD */
   2067 	return -ret;
   2068 }
   2069 
   2070 /*
   2071  * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
   2072  *
   2073  * XXX pmap_enter_default instead of pmap_enter because of a problem
   2074  * with using weak aliases in kernel modules or something.
   2075  */
   2076 int	pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
   2077 
   2078 static int
   2079 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
   2080     int npages, int centeridx, vm_prot_t access_type, int flags,
   2081     paddr_t gtt_paddr)
   2082 {
   2083 	struct vm_map_entry *entry = ufi->entry;
   2084 	vaddr_t curr_va;
   2085 	off_t curr_offset;
   2086 	paddr_t paddr;
   2087 	u_int mmapflags;
   2088 	int lcv;
   2089 	vm_prot_t mapprot;
   2090 	UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
   2091 	UVMHIST_LOG(maphist,"  flags=%jd", flags,0,0,0);
   2092 
   2093 	/*
   2094 	 * we do not allow device mappings to be mapped copy-on-write
   2095 	 * so we kill any attempt to do so here.
   2096 	 */
   2097 
   2098 	if (UVM_ET_ISCOPYONWRITE(entry)) {
   2099 		UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%jx)",
   2100 		entry->etype, 0,0,0);
   2101 		return(EIO);
   2102 	}
   2103 
   2104 	/*
   2105 	 * now we must determine the offset in udv to use and the VA to
   2106 	 * use for pmap_enter.  note that we always use orig_map's pmap
   2107 	 * for pmap_enter (even if we have a submap).   since virtual
   2108 	 * addresses in a submap must match the main map, this is ok.
   2109 	 */
   2110 
   2111 	/* udv offset = (offset from start of entry) + entry's offset */
   2112 	curr_offset = entry->offset + (vaddr - entry->start);
   2113 	/* pmap va = vaddr (virtual address of pps[0]) */
   2114 	curr_va = vaddr;
   2115 
   2116 	/*
   2117 	 * loop over the page range entering in as needed
   2118 	 */
   2119 
   2120 	for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
   2121 	    curr_va += PAGE_SIZE) {
   2122 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
   2123 			continue;
   2124 
   2125 		if (pps[lcv] == PGO_DONTCARE)
   2126 			continue;
   2127 
   2128 		paddr = (gtt_paddr + curr_offset);
   2129 		mmapflags = 0;
   2130 		mapprot = ufi->entry->protection;
   2131 		UVMHIST_LOG(maphist,
   2132 		    "  MAPPING: device: pm=0x%#jx, va=0x%jx, pa=0x%jx, at=%jd",
   2133 		    (uintptr_t)ufi->orig_map->pmap, curr_va, paddr, mapprot);
   2134 		if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
   2135 		    PMAP_CANFAIL | mapprot | mmapflags) != 0) {
   2136 			/*
   2137 			 * pmap_enter() didn't have the resource to
   2138 			 * enter this mapping.  Unlock everything,
   2139 			 * wait for the pagedaemon to free up some
   2140 			 * pages, and then tell uvm_fault() to start
   2141 			 * the fault again.
   2142 			 *
   2143 			 * XXX Needs some rethinking for the PGO_ALLPAGES
   2144 			 * XXX case.
   2145 			 */
   2146 			pmap_update(ufi->orig_map->pmap);	/* sync what we have so far */
   2147 			return ENOMEM;
   2148 		}
   2149 	}
   2150 
   2151 	pmap_update(ufi->orig_map->pmap);
   2152 	return 0;
   2153 }
   2154 #else
   2155 /**
   2156  * i915_gem_fault - fault a page into the GTT
   2157  * @vma: VMA in question
   2158  * @vmf: fault info
   2159  *
   2160  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
   2161  * from userspace.  The fault handler takes care of binding the object to
   2162  * the GTT (if needed), allocating and programming a fence register (again,
   2163  * only if needed based on whether the old reg is still valid or the object
   2164  * is tiled) and inserting a new PTE into the faulting process.
   2165  *
   2166  * Note that the faulting process may involve evicting existing objects
   2167  * from the GTT and/or fence registers to make room.  So performance may
   2168  * suffer if the GTT working set is large or there are few fence registers
   2169  * left.
   2170  */
   2171 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
   2172 {
   2173 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
   2174 	struct drm_device *dev = obj->base.dev;
   2175 	struct drm_i915_private *dev_priv = dev->dev_private;
   2176 	struct i915_ggtt_view view = i915_ggtt_view_normal;
   2177 	pgoff_t page_offset;
   2178 	unsigned long pfn;
   2179 	int ret = 0;
   2180 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
   2181 
   2182 	intel_runtime_pm_get(dev_priv);
   2183 
   2184 	/* We don't use vmf->pgoff since that has the fake offset */
   2185 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
   2186 		PAGE_SHIFT;
   2187 
   2188 	ret = i915_mutex_lock_interruptible(dev);
   2189 	if (ret)
   2190 		goto out;
   2191 
   2192 	trace_i915_gem_object_fault(obj, page_offset, true, write);
   2193 
   2194 	/* Try to flush the object off the GPU first without holding the lock.
   2195 	 * Upon reacquiring the lock, we will perform our sanity checks and then
   2196 	 * repeat the flush holding the lock in the normal manner to catch cases
   2197 	 * where we are gazumped.
   2198 	 */
   2199 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
   2200 	if (ret)
   2201 		goto unlock;
   2202 
   2203 	/* Access to snoopable pages through the GTT is incoherent. */
   2204 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
   2205 		ret = -EFAULT;
   2206 		goto unlock;
   2207 	}
   2208 
   2209 	/* Use a partial view if the object is bigger than the aperture. */
   2210 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
   2211 	    obj->tiling_mode == I915_TILING_NONE) {
   2212 		static const unsigned int chunk_size = 256; // 1 MiB
   2213 
   2214 		memset(&view, 0, sizeof(view));
   2215 		view.type = I915_GGTT_VIEW_PARTIAL;
   2216 		view.params.partial.offset = rounddown(page_offset, chunk_size);
   2217 		view.params.partial.size =
   2218 			min_t(unsigned int,
   2219 			      chunk_size,
   2220 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
   2221 			      view.params.partial.offset);
   2222 	}
   2223 
   2224 	/* Now pin it into the GTT if needed */
   2225 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
   2226 	if (ret)
   2227 		goto unlock;
   2228 
   2229 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
   2230 	if (ret)
   2231 		goto unpin;
   2232 
   2233 	ret = i915_gem_object_get_fence(obj);
   2234 	if (ret)
   2235 		goto unpin;
   2236 
   2237 	/* Finally, remap it using the new GTT offset */
   2238 	pfn = dev_priv->gtt.mappable_base +
   2239 		i915_gem_obj_ggtt_offset_view(obj, &view);
   2240 	pfn >>= PAGE_SHIFT;
   2241 
   2242 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
   2243 		/* Overriding existing pages in partial view does not cause
   2244 		 * us any trouble as TLBs are still valid because the fault
   2245 		 * is due to userspace losing part of the mapping or never
   2246 		 * having accessed it before (at this partials' range).
   2247 		 */
   2248 		unsigned long base = vma->vm_start +
   2249 				     (view.params.partial.offset << PAGE_SHIFT);
   2250 		unsigned int i;
   2251 
   2252 		for (i = 0; i < view.params.partial.size; i++) {
   2253 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
   2254 			if (ret)
   2255 				break;
   2256 		}
   2257 
   2258 		obj->fault_mappable = true;
   2259 	} else {
   2260 		if (!obj->fault_mappable) {
   2261 			unsigned long size = min_t(unsigned long,
   2262 						   vma->vm_end - vma->vm_start,
   2263 						   obj->base.size);
   2264 			int i;
   2265 
   2266 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
   2267 				ret = vm_insert_pfn(vma,
   2268 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
   2269 						    pfn + i);
   2270 				if (ret)
   2271 					break;
   2272 			}
   2273 
   2274 			obj->fault_mappable = true;
   2275 		} else
   2276 			ret = vm_insert_pfn(vma,
   2277 					    (unsigned long)vmf->virtual_address,
   2278 					    pfn + page_offset);
   2279 	}
   2280 unpin:
   2281 	i915_gem_object_ggtt_unpin_view(obj, &view);
   2282 unlock:
   2283 	mutex_unlock(&dev->struct_mutex);
   2284 out:
   2285 	switch (ret) {
   2286 	case -EIO:
   2287 		/*
   2288 		 * We eat errors when the gpu is terminally wedged to avoid
   2289 		 * userspace unduly crashing (gl has no provisions for mmaps to
   2290 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
   2291 		 * and so needs to be reported.
   2292 		 */
   2293 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
   2294 			ret = VM_FAULT_SIGBUS;
   2295 			break;
   2296 		}
   2297 	case -EAGAIN:
   2298 		/*
   2299 		 * EAGAIN means the gpu is hung and we'll wait for the error
   2300 		 * handler to reset everything when re-faulting in
   2301 		 * i915_mutex_lock_interruptible.
   2302 		 */
   2303 	case 0:
   2304 	case -ERESTARTSYS:
   2305 	case -EINTR:
   2306 	case -EBUSY:
   2307 		/*
   2308 		 * EBUSY is ok: this just means that another thread
   2309 		 * already did the job.
   2310 		 */
   2311 		ret = VM_FAULT_NOPAGE;
   2312 		break;
   2313 	case -ENOMEM:
   2314 		ret = VM_FAULT_OOM;
   2315 		break;
   2316 	case -ENOSPC:
   2317 	case -EFAULT:
   2318 		ret = VM_FAULT_SIGBUS;
   2319 		break;
   2320 	default:
   2321 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
   2322 		ret = VM_FAULT_SIGBUS;
   2323 		break;
   2324 	}
   2325 
   2326 	intel_runtime_pm_put(dev_priv);
   2327 	return ret;
   2328 }
   2329 #endif
   2330 
   2331 /**
   2332  * i915_gem_release_mmap - remove physical page mappings
   2333  * @obj: obj in question
   2334  *
   2335  * Preserve the reservation of the mmapping with the DRM core code, but
   2336  * relinquish ownership of the pages back to the system.
   2337  *
   2338  * It is vital that we remove the page mapping if we have mapped a tiled
   2339  * object through the GTT and then lose the fence register due to
   2340  * resource pressure. Similarly if the object has been moved out of the
   2341  * aperture, than pages mapped into userspace must be revoked. Removing the
   2342  * mapping will then trigger a page fault on the next user access, allowing
   2343  * fixup by i915_gem_fault().
   2344  */
   2345 void
   2346 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
   2347 {
   2348 	if (!obj->fault_mappable)
   2349 		return;
   2350 
   2351 #ifdef __NetBSD__		/* XXX gem gtt fault */
   2352 	{
   2353 		struct drm_device *const dev = obj->base.dev;
   2354 		struct drm_i915_private *const dev_priv = dev->dev_private;
   2355 		const paddr_t start = dev_priv->gtt.mappable_base +
   2356 		    i915_gem_obj_ggtt_offset(obj);
   2357 		const size_t size = obj->base.size;
   2358 		const paddr_t end = start + size;
   2359 		paddr_t pa;
   2360 
   2361 		KASSERT((start & (PAGE_SIZE - 1)) == 0);
   2362 		KASSERT((size & (PAGE_SIZE - 1)) == 0);
   2363 
   2364 		for (pa = start; pa < end; pa += PAGE_SIZE)
   2365 			pmap_pv_protect(pa, VM_PROT_NONE);
   2366 	}
   2367 #else
   2368 	drm_vma_node_unmap(&obj->base.vma_node,
   2369 			   obj->base.dev->anon_inode->i_mapping);
   2370 #endif
   2371 	obj->fault_mappable = false;
   2372 }
   2373 
   2374 void
   2375 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
   2376 {
   2377 	struct drm_i915_gem_object *obj;
   2378 
   2379 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
   2380 		i915_gem_release_mmap(obj);
   2381 }
   2382 
   2383 uint32_t
   2384 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
   2385 {
   2386 	uint32_t gtt_size;
   2387 
   2388 	if (INTEL_INFO(dev)->gen >= 4 ||
   2389 	    tiling_mode == I915_TILING_NONE)
   2390 		return size;
   2391 
   2392 	/* Previous chips need a power-of-two fence region when tiling */
   2393 	if (INTEL_INFO(dev)->gen == 3)
   2394 		gtt_size = 1024*1024;
   2395 	else
   2396 		gtt_size = 512*1024;
   2397 
   2398 	while (gtt_size < size)
   2399 		gtt_size <<= 1;
   2400 
   2401 	return gtt_size;
   2402 }
   2403 
   2404 /**
   2405  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
   2406  * @obj: object to check
   2407  *
   2408  * Return the required GTT alignment for an object, taking into account
   2409  * potential fence register mapping.
   2410  */
   2411 uint32_t
   2412 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
   2413 			   int tiling_mode, bool fenced)
   2414 {
   2415 	/*
   2416 	 * Minimum alignment is 4k (GTT page size), but might be greater
   2417 	 * if a fence register is needed for the object.
   2418 	 */
   2419 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
   2420 	    tiling_mode == I915_TILING_NONE)
   2421 		return 4096;
   2422 
   2423 	/*
   2424 	 * Previous chips need to be aligned to the size of the smallest
   2425 	 * fence register that can contain the object.
   2426 	 */
   2427 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
   2428 }
   2429 
   2430 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
   2431 {
   2432 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2433 	int ret;
   2434 
   2435 	if (drm_vma_node_has_offset(&obj->base.vma_node))
   2436 		return 0;
   2437 
   2438 	dev_priv->mm.shrinker_no_lock_stealing = true;
   2439 
   2440 	ret = drm_gem_create_mmap_offset(&obj->base);
   2441 	if (ret != -ENOSPC)
   2442 		goto out;
   2443 
   2444 	/* Badly fragmented mmap space? The only way we can recover
   2445 	 * space is by destroying unwanted objects. We can't randomly release
   2446 	 * mmap_offsets as userspace expects them to be persistent for the
   2447 	 * lifetime of the objects. The closest we can is to release the
   2448 	 * offsets on purgeable objects by truncating it and marking it purged,
   2449 	 * which prevents userspace from ever using that object again.
   2450 	 */
   2451 	i915_gem_shrink(dev_priv,
   2452 			obj->base.size >> PAGE_SHIFT,
   2453 			I915_SHRINK_BOUND |
   2454 			I915_SHRINK_UNBOUND |
   2455 			I915_SHRINK_PURGEABLE);
   2456 	ret = drm_gem_create_mmap_offset(&obj->base);
   2457 	if (ret != -ENOSPC)
   2458 		goto out;
   2459 
   2460 	i915_gem_shrink_all(dev_priv);
   2461 	ret = drm_gem_create_mmap_offset(&obj->base);
   2462 out:
   2463 	dev_priv->mm.shrinker_no_lock_stealing = false;
   2464 
   2465 	return ret;
   2466 }
   2467 
   2468 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
   2469 {
   2470 	drm_gem_free_mmap_offset(&obj->base);
   2471 }
   2472 
   2473 int
   2474 i915_gem_mmap_gtt(struct drm_file *file,
   2475 		  struct drm_device *dev,
   2476 		  uint32_t handle,
   2477 		  uint64_t *offset)
   2478 {
   2479 	struct drm_gem_object *gobj;
   2480 	struct drm_i915_gem_object *obj;
   2481 	int ret;
   2482 
   2483 	ret = i915_mutex_lock_interruptible(dev);
   2484 	if (ret)
   2485 		return ret;
   2486 
   2487 	gobj = drm_gem_object_lookup(dev, file, handle);
   2488 	if (gobj == NULL) {
   2489 		ret = -ENOENT;
   2490 		goto unlock;
   2491 	}
   2492 	obj = to_intel_bo(gobj);
   2493 
   2494 	if (obj->madv != I915_MADV_WILLNEED) {
   2495 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
   2496 		ret = -EFAULT;
   2497 		goto out;
   2498 	}
   2499 
   2500 	ret = i915_gem_object_create_mmap_offset(obj);
   2501 	if (ret)
   2502 		goto out;
   2503 
   2504 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
   2505 
   2506 out:
   2507 	drm_gem_object_unreference(&obj->base);
   2508 unlock:
   2509 	mutex_unlock(&dev->struct_mutex);
   2510 	return ret;
   2511 }
   2512 
   2513 /**
   2514  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
   2515  * @dev: DRM device
   2516  * @data: GTT mapping ioctl data
   2517  * @file: GEM object info
   2518  *
   2519  * Simply returns the fake offset to userspace so it can mmap it.
   2520  * The mmap call will end up in drm_gem_mmap(), which will set things
   2521  * up so we can get faults in the handler above.
   2522  *
   2523  * The fault handler will take care of binding the object into the GTT
   2524  * (since it may have been evicted to make room for something), allocating
   2525  * a fence register, and mapping the appropriate aperture address into
   2526  * userspace.
   2527  */
   2528 int
   2529 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
   2530 			struct drm_file *file)
   2531 {
   2532 	struct drm_i915_gem_mmap_gtt *args = data;
   2533 
   2534 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
   2535 }
   2536 
   2537 /* Immediately discard the backing storage */
   2538 static void
   2539 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
   2540 {
   2541 	i915_gem_object_free_mmap_offset(obj);
   2542 
   2543 	if (obj->base.filp == NULL)
   2544 		return;
   2545 
   2546 #ifdef __NetBSD__
   2547 	{
   2548 		struct uvm_object *const uobj = obj->base.filp;
   2549 
   2550 		if (uobj != NULL) {
   2551 			/* XXX Calling pgo_put like this is bogus.  */
   2552 			rw_enter(uobj->vmobjlock, RW_WRITER);
   2553 			(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   2554 			    (PGO_ALLPAGES | PGO_FREE));
   2555 		}
   2556 	}
   2557 #else
   2558 	/* Our goal here is to return as much of the memory as
   2559 	 * is possible back to the system as we are called from OOM.
   2560 	 * To do this we must instruct the shmfs to drop all of its
   2561 	 * backing pages, *now*.
   2562 	 */
   2563 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
   2564 #endif
   2565 	obj->madv = __I915_MADV_PURGED;
   2566 }
   2567 
   2568 /* Try to discard unwanted pages */
   2569 static void
   2570 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
   2571 {
   2572 #ifdef __NetBSD__
   2573 	struct uvm_object *uobj;
   2574 #else
   2575 	struct address_space *mapping;
   2576 #endif
   2577 
   2578 	switch (obj->madv) {
   2579 	case I915_MADV_DONTNEED:
   2580 		i915_gem_object_truncate(obj);
   2581 	case __I915_MADV_PURGED:
   2582 		return;
   2583 	}
   2584 
   2585 	if (obj->base.filp == NULL)
   2586 		return;
   2587 
   2588 #ifdef __NetBSD__
   2589 	uobj = obj->base.filp;
   2590 	rw_enter(uobj->vmobjlock, RW_WRITER);
   2591 	(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
   2592 	    PGO_ALLPAGES|PGO_DEACTIVATE|PGO_CLEANIT);
   2593 #else
   2594 	mapping = file_inode(obj->base.filp)->i_mapping,
   2595 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
   2596 #endif
   2597 }
   2598 
   2599 static void
   2600 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
   2601 {
   2602 #ifdef __NetBSD__
   2603 	struct drm_device *const dev = obj->base.dev;
   2604 	struct vm_page *page;
   2605 	int ret;
   2606 
   2607 	/* XXX Cargo-culted from the Linux code.  */
   2608 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2609 
   2610 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2611 	if (ret) {
   2612 		WARN_ON(ret != -EIO);
   2613 		i915_gem_clflush_object(obj, true);
   2614 		obj->base.read_domains = obj->base.write_domain =
   2615 		    I915_GEM_DOMAIN_CPU;
   2616 	}
   2617 
   2618 	i915_gem_gtt_finish_object(obj);
   2619 
   2620 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2621 		i915_gem_object_save_bit_17_swizzle(obj);
   2622 
   2623 	if (obj->madv == I915_MADV_DONTNEED)
   2624 		obj->dirty = 0;
   2625 
   2626 	if (obj->dirty) {
   2627 		rw_enter(obj->base.filp->vmobjlock, RW_WRITER);
   2628 		TAILQ_FOREACH(page, &obj->pageq, pageq.queue) {
   2629 			uvm_pagemarkdirty(page, UVM_PAGE_STATUS_DIRTY);
   2630 			/* XXX mark page accessed */
   2631 		}
   2632 		rw_exit(obj->base.filp->vmobjlock);
   2633 	}
   2634 	obj->dirty = 0;
   2635 
   2636 	uvm_obj_unwirepages(obj->base.filp, 0, obj->base.size);
   2637 	bus_dmamap_destroy(dev->dmat, obj->pages);
   2638 #else
   2639 	struct sg_page_iter sg_iter;
   2640 	int ret;
   2641 
   2642 	BUG_ON(obj->madv == __I915_MADV_PURGED);
   2643 
   2644 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   2645 	if (ret) {
   2646 		/* In the event of a disaster, abandon all caches and
   2647 		 * hope for the best.
   2648 		 */
   2649 		WARN_ON(ret != -EIO);
   2650 		i915_gem_clflush_object(obj, true);
   2651 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   2652 	}
   2653 
   2654 	i915_gem_gtt_finish_object(obj);
   2655 
   2656 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2657 		i915_gem_object_save_bit_17_swizzle(obj);
   2658 
   2659 	if (obj->madv == I915_MADV_DONTNEED)
   2660 		obj->dirty = 0;
   2661 
   2662 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
   2663 		struct page *page = sg_page_iter_page(&sg_iter);
   2664 
   2665 		if (obj->dirty)
   2666 			set_page_dirty(page);
   2667 
   2668 		if (obj->madv == I915_MADV_WILLNEED)
   2669 			mark_page_accessed(page);
   2670 
   2671 		page_cache_release(page);
   2672 	}
   2673 	obj->dirty = 0;
   2674 
   2675 	sg_free_table(obj->pages);
   2676 	kfree(obj->pages);
   2677 #endif
   2678 }
   2679 
   2680 int
   2681 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
   2682 {
   2683 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2684 
   2685 	if (obj->pages == NULL)
   2686 		return 0;
   2687 
   2688 	if (obj->pages_pin_count)
   2689 		return -EBUSY;
   2690 
   2691 	BUG_ON(i915_gem_obj_bound_any(obj));
   2692 
   2693 	/* ->put_pages might need to allocate memory for the bit17 swizzle
   2694 	 * array, hence protect them from being reaped by removing them from gtt
   2695 	 * lists early. */
   2696 	list_del(&obj->global_list);
   2697 
   2698 	ops->put_pages(obj);
   2699 	obj->pages = NULL;
   2700 
   2701 	i915_gem_object_invalidate(obj);
   2702 
   2703 	return 0;
   2704 }
   2705 
   2706 static int
   2707 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
   2708 {
   2709 #ifdef __NetBSD__
   2710 	struct drm_device *const dev = obj->base.dev;
   2711 	struct drm_i915_private *dev_priv = dev->dev_private;
   2712 	struct vm_page *page;
   2713 	int ret;
   2714 
   2715 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2716 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2717 
   2718 	KASSERT(obj->pages == NULL);
   2719 	TAILQ_INIT(&obj->pageq);
   2720 
   2721 	/* XXX errno NetBSD->Linux */
   2722 	ret = -bus_dmamap_create(dev->dmat, obj->base.size,
   2723 	    obj->base.size/PAGE_SIZE, PAGE_SIZE, 0, BUS_DMA_NOWAIT,
   2724 	    &obj->pages);
   2725 	if (ret)
   2726 		goto fail0;
   2727 
   2728 	/* XXX errno NetBSD->Linux */
   2729 	ret = -uvm_obj_wirepages(obj->base.filp, 0, obj->base.size,
   2730 	    &obj->pageq);
   2731 	if (ret)		/* XXX Try purge, shrink.  */
   2732 		goto fail1;
   2733 
   2734 	/*
   2735 	 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
   2736 	 *
   2737 	 * XXX This should be unnecessary: the uao should guarantee
   2738 	 * this constraint after uao_set_pgfl.
   2739 	 *
   2740 	 * XXX This should also be expanded for newer devices.
   2741 	 */
   2742 	TAILQ_FOREACH(page, &obj->pageq, pageq.queue) {
   2743 		const uint64_t mask =
   2744 		    (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
   2745 			0xffffffffULL : 0xffffffffffULL);
   2746 		if (VM_PAGE_TO_PHYS(page) & ~mask) {
   2747 			DRM_ERROR("GEM physical address exceeds %u bits"
   2748 			    ": %"PRIxMAX"\n",
   2749 			    popcount64(mask),
   2750 			    (uintmax_t)VM_PAGE_TO_PHYS(page));
   2751 			ret = -EIO;
   2752 			goto fail2;
   2753 		}
   2754 	}
   2755 
   2756 	ret = i915_gem_gtt_prepare_object(obj);
   2757 	if (ret)
   2758 		goto fail2;
   2759 
   2760 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2761 		i915_gem_object_do_bit_17_swizzle(obj);
   2762 
   2763 	if (obj->tiling_mode != I915_TILING_NONE &&
   2764 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
   2765 		i915_gem_object_pin_pages(obj);
   2766 
   2767 	/* Success!  */
   2768 	return 0;
   2769 
   2770 fail3: __unused
   2771 	i915_gem_gtt_finish_object(obj);
   2772 fail2:	uvm_obj_unwirepages(obj->base.filp, 0, obj->base.size);
   2773 fail1:	bus_dmamap_destroy(dev->dmat, obj->pages);
   2774 	obj->pages = NULL;
   2775 fail0:	KASSERT(ret);
   2776 	return ret;
   2777 #else
   2778 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2779 	int page_count, i;
   2780 	struct address_space *mapping;
   2781 	struct sg_table *st;
   2782 	struct scatterlist *sg;
   2783 	struct sg_page_iter sg_iter;
   2784 	struct page *page;
   2785 	unsigned long last_pfn = 0;	/* suppress gcc warning */
   2786 	int ret;
   2787 	gfp_t gfp;
   2788 
   2789 	/* Assert that the object is not currently in any GPU domain. As it
   2790 	 * wasn't in the GTT, there shouldn't be any way it could have been in
   2791 	 * a GPU cache
   2792 	 */
   2793 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
   2794 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
   2795 
   2796 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   2797 	if (st == NULL)
   2798 		return -ENOMEM;
   2799 
   2800 	page_count = obj->base.size / PAGE_SIZE;
   2801 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
   2802 		kfree(st);
   2803 		return -ENOMEM;
   2804 	}
   2805 
   2806 	/* Get the list of pages out of our struct file.  They'll be pinned
   2807 	 * at this point until we release them.
   2808 	 *
   2809 	 * Fail silently without starting the shrinker
   2810 	 */
   2811 	mapping = file_inode(obj->base.filp)->i_mapping;
   2812 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
   2813 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
   2814 	sg = st->sgl;
   2815 	st->nents = 0;
   2816 	for (i = 0; i < page_count; i++) {
   2817 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2818 		if (IS_ERR(page)) {
   2819 			i915_gem_shrink(dev_priv,
   2820 					page_count,
   2821 					I915_SHRINK_BOUND |
   2822 					I915_SHRINK_UNBOUND |
   2823 					I915_SHRINK_PURGEABLE);
   2824 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
   2825 		}
   2826 		if (IS_ERR(page)) {
   2827 			/* We've tried hard to allocate the memory by reaping
   2828 			 * our own buffer, now let the real VM do its job and
   2829 			 * go down in flames if truly OOM.
   2830 			 */
   2831 			i915_gem_shrink_all(dev_priv);
   2832 			page = shmem_read_mapping_page(mapping, i);
   2833 			if (IS_ERR(page)) {
   2834 				ret = PTR_ERR(page);
   2835 				goto err_pages;
   2836 			}
   2837 		}
   2838 #ifdef CONFIG_SWIOTLB
   2839 		if (swiotlb_nr_tbl()) {
   2840 			st->nents++;
   2841 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2842 			sg = sg_next(sg);
   2843 			continue;
   2844 		}
   2845 #endif
   2846 		if (!i || page_to_pfn(page) != last_pfn + 1) {
   2847 			if (i)
   2848 				sg = sg_next(sg);
   2849 			st->nents++;
   2850 			sg_set_page(sg, page, PAGE_SIZE, 0);
   2851 		} else {
   2852 			sg->length += PAGE_SIZE;
   2853 		}
   2854 		last_pfn = page_to_pfn(page);
   2855 
   2856 		/* Check that the i965g/gm workaround works. */
   2857 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
   2858 	}
   2859 #ifdef CONFIG_SWIOTLB
   2860 	if (!swiotlb_nr_tbl())
   2861 #endif
   2862 		sg_mark_end(sg);
   2863 	obj->pages = st;
   2864 
   2865 	ret = i915_gem_gtt_prepare_object(obj);
   2866 	if (ret)
   2867 		goto err_pages;
   2868 
   2869 	if (i915_gem_object_needs_bit17_swizzle(obj))
   2870 		i915_gem_object_do_bit_17_swizzle(obj);
   2871 
   2872 	if (obj->tiling_mode != I915_TILING_NONE &&
   2873 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
   2874 		i915_gem_object_pin_pages(obj);
   2875 
   2876 	return 0;
   2877 
   2878 err_pages:
   2879 	sg_mark_end(sg);
   2880 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
   2881 		page_cache_release(sg_page_iter_page(&sg_iter));
   2882 	sg_free_table(st);
   2883 	kfree(st);
   2884 
   2885 	/* shmemfs first checks if there is enough memory to allocate the page
   2886 	 * and reports ENOSPC should there be insufficient, along with the usual
   2887 	 * ENOMEM for a genuine allocation failure.
   2888 	 *
   2889 	 * We use ENOSPC in our driver to mean that we have run out of aperture
   2890 	 * space and so want to translate the error from shmemfs back to our
   2891 	 * usual understanding of ENOMEM.
   2892 	 */
   2893 	if (ret == -ENOSPC)
   2894 		ret = -ENOMEM;
   2895 
   2896 	return ret;
   2897 #endif
   2898 }
   2899 
   2900 /* Ensure that the associated pages are gathered from the backing storage
   2901  * and pinned into our object. i915_gem_object_get_pages() may be called
   2902  * multiple times before they are released by a single call to
   2903  * i915_gem_object_put_pages() - once the pages are no longer referenced
   2904  * either as a result of memory pressure (reaping pages under the shrinker)
   2905  * or as the object is itself released.
   2906  */
   2907 int
   2908 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
   2909 {
   2910 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   2911 	const struct drm_i915_gem_object_ops *ops = obj->ops;
   2912 	int ret;
   2913 
   2914 	if (obj->pages)
   2915 		return 0;
   2916 
   2917 	if (obj->madv != I915_MADV_WILLNEED) {
   2918 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
   2919 		return -EFAULT;
   2920 	}
   2921 
   2922 	BUG_ON(obj->pages_pin_count);
   2923 
   2924 	ret = ops->get_pages(obj);
   2925 	if (ret)
   2926 		return ret;
   2927 
   2928 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   2929 
   2930 #ifndef __NetBSD__
   2931 	obj->get_page.sg = obj->pages->sgl;
   2932 	obj->get_page.last = 0;
   2933 #endif
   2934 
   2935 	return 0;
   2936 }
   2937 
   2938 void i915_vma_move_to_active(struct i915_vma *vma,
   2939 			     struct drm_i915_gem_request *req)
   2940 {
   2941 	struct drm_i915_gem_object *obj = vma->obj;
   2942 	struct intel_engine_cs *ring;
   2943 
   2944 	ring = i915_gem_request_get_ring(req);
   2945 
   2946 	/* Add a reference if we're newly entering the active list. */
   2947 	if (obj->active == 0)
   2948 		drm_gem_object_reference(&obj->base);
   2949 	obj->active |= intel_ring_flag(ring);
   2950 
   2951 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
   2952 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
   2953 
   2954 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
   2955 }
   2956 
   2957 static void
   2958 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
   2959 {
   2960 	RQ_BUG_ON(obj->last_write_req == NULL);
   2961 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
   2962 
   2963 	i915_gem_request_assign(&obj->last_write_req, NULL);
   2964 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
   2965 }
   2966 
   2967 static void
   2968 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
   2969 {
   2970 	struct i915_vma *vma;
   2971 
   2972 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
   2973 	RQ_BUG_ON(!(obj->active & (1 << ring)));
   2974 
   2975 	list_del_init(&obj->ring_list[ring]);
   2976 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
   2977 
   2978 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
   2979 		i915_gem_object_retire__write(obj);
   2980 
   2981 	obj->active &= ~(1 << ring);
   2982 	if (obj->active)
   2983 		return;
   2984 
   2985 	/* Bump our place on the bound list to keep it roughly in LRU order
   2986 	 * so that we don't steal from recently used but inactive objects
   2987 	 * (unless we are forced to ofc!)
   2988 	 */
   2989 	list_move_tail(&obj->global_list,
   2990 		       &to_i915(obj->base.dev)->mm.bound_list);
   2991 
   2992 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
   2993 		if (!list_empty(&vma->mm_list))
   2994 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
   2995 	}
   2996 
   2997 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
   2998 	drm_gem_object_unreference(&obj->base);
   2999 }
   3000 
   3001 static int
   3002 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
   3003 {
   3004 	struct drm_i915_private *dev_priv = dev->dev_private;
   3005 	struct intel_engine_cs *ring;
   3006 	int ret, i, j;
   3007 
   3008 	/* Carefully retire all requests without writing to the rings */
   3009 	for_each_ring(ring, dev_priv, i) {
   3010 		ret = intel_ring_idle(ring);
   3011 		if (ret)
   3012 			return ret;
   3013 	}
   3014 	i915_gem_retire_requests(dev);
   3015 
   3016 	/* Finally reset hw state */
   3017 	for_each_ring(ring, dev_priv, i) {
   3018 		intel_ring_init_seqno(ring, seqno);
   3019 
   3020 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
   3021 			ring->semaphore.sync_seqno[j] = 0;
   3022 	}
   3023 
   3024 	return 0;
   3025 }
   3026 
   3027 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
   3028 {
   3029 	struct drm_i915_private *dev_priv = dev->dev_private;
   3030 	int ret;
   3031 
   3032 	if (seqno == 0)
   3033 		return -EINVAL;
   3034 
   3035 	/* HWS page needs to be set less than what we
   3036 	 * will inject to ring
   3037 	 */
   3038 	ret = i915_gem_init_seqno(dev, seqno - 1);
   3039 	if (ret)
   3040 		return ret;
   3041 
   3042 	/* Carefully set the last_seqno value so that wrap
   3043 	 * detection still works
   3044 	 */
   3045 	dev_priv->next_seqno = seqno;
   3046 	dev_priv->last_seqno = seqno - 1;
   3047 	if (dev_priv->last_seqno == 0)
   3048 		dev_priv->last_seqno--;
   3049 
   3050 	return 0;
   3051 }
   3052 
   3053 int
   3054 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
   3055 {
   3056 	struct drm_i915_private *dev_priv = dev->dev_private;
   3057 
   3058 	/* reserve 0 for non-seqno */
   3059 	if (dev_priv->next_seqno == 0) {
   3060 		int ret = i915_gem_init_seqno(dev, 0);
   3061 		if (ret)
   3062 			return ret;
   3063 
   3064 		dev_priv->next_seqno = 1;
   3065 	}
   3066 
   3067 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
   3068 	return 0;
   3069 }
   3070 
   3071 /*
   3072  * NB: This function is not allowed to fail. Doing so would mean the the
   3073  * request is not being tracked for completion but the work itself is
   3074  * going to happen on the hardware. This would be a Bad Thing(tm).
   3075  */
   3076 void __i915_add_request(struct drm_i915_gem_request *request,
   3077 			struct drm_i915_gem_object *obj,
   3078 			bool flush_caches)
   3079 {
   3080 	struct intel_engine_cs *ring;
   3081 	struct drm_i915_private *dev_priv;
   3082 	struct intel_ringbuffer *ringbuf;
   3083 	u32 request_start;
   3084 	int ret;
   3085 
   3086 	if (WARN_ON(request == NULL))
   3087 		return;
   3088 
   3089 	ring = request->ring;
   3090 	dev_priv = ring->dev->dev_private;
   3091 	ringbuf = request->ringbuf;
   3092 
   3093 	/*
   3094 	 * To ensure that this call will not fail, space for its emissions
   3095 	 * should already have been reserved in the ring buffer. Let the ring
   3096 	 * know that it is time to use that space up.
   3097 	 */
   3098 	intel_ring_reserved_space_use(ringbuf);
   3099 
   3100 	request_start = intel_ring_get_tail(ringbuf);
   3101 	/*
   3102 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
   3103 	 * after having emitted the batchbuffer command. Hence we need to fix
   3104 	 * things up similar to emitting the lazy request. The difference here
   3105 	 * is that the flush _must_ happen before the next request, no matter
   3106 	 * what.
   3107 	 */
   3108 	if (flush_caches) {
   3109 		if (i915.enable_execlists)
   3110 			ret = logical_ring_flush_all_caches(request);
   3111 		else
   3112 			ret = intel_ring_flush_all_caches(request);
   3113 		/* Not allowed to fail! */
   3114 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
   3115 	}
   3116 
   3117 	/* Record the position of the start of the request so that
   3118 	 * should we detect the updated seqno part-way through the
   3119 	 * GPU processing the request, we never over-estimate the
   3120 	 * position of the head.
   3121 	 */
   3122 	request->postfix = intel_ring_get_tail(ringbuf);
   3123 
   3124 	if (i915.enable_execlists)
   3125 		ret = ring->emit_request(request);
   3126 	else {
   3127 		ret = ring->add_request(request);
   3128 
   3129 		request->tail = intel_ring_get_tail(ringbuf);
   3130 	}
   3131 	/* Not allowed to fail! */
   3132 	WARN(ret, "emit|add_request failed: %d!\n", ret);
   3133 
   3134 	request->head = request_start;
   3135 
   3136 	/* Whilst this request exists, batch_obj will be on the
   3137 	 * active_list, and so will hold the active reference. Only when this
   3138 	 * request is retired will the the batch_obj be moved onto the
   3139 	 * inactive_list and lose its active reference. Hence we do not need
   3140 	 * to explicitly hold another reference here.
   3141 	 */
   3142 	request->batch_obj = obj;
   3143 
   3144 	request->emitted_jiffies = jiffies;
   3145 	request->previous_seqno = ring->last_submitted_seqno;
   3146 	ring->last_submitted_seqno = request->seqno;
   3147 	list_add_tail(&request->list, &ring->request_list);
   3148 
   3149 	trace_i915_gem_request_add(request);
   3150 
   3151 	i915_queue_hangcheck(ring->dev);
   3152 
   3153 	queue_delayed_work(dev_priv->wq,
   3154 			   &dev_priv->mm.retire_work,
   3155 			   round_jiffies_up_relative(HZ));
   3156 	intel_mark_busy(dev_priv->dev);
   3157 
   3158 	/* Sanity check that the reserved size was large enough. */
   3159 	intel_ring_reserved_space_end(ringbuf);
   3160 }
   3161 
   3162 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
   3163 				   const struct intel_context *ctx)
   3164 {
   3165 	unsigned long elapsed;
   3166 
   3167 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
   3168 
   3169 	if (ctx->hang_stats.banned)
   3170 		return true;
   3171 
   3172 	if (ctx->hang_stats.ban_period_seconds &&
   3173 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
   3174 		if (!i915_gem_context_is_default(ctx)) {
   3175 			DRM_DEBUG("context hanging too fast, banning!\n");
   3176 			return true;
   3177 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
   3178 			if (i915_stop_ring_allow_warn(dev_priv))
   3179 				DRM_ERROR("gpu hanging too fast, banning!\n");
   3180 			return true;
   3181 		}
   3182 	}
   3183 
   3184 	return false;
   3185 }
   3186 
   3187 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
   3188 				  struct intel_context *ctx,
   3189 				  const bool guilty)
   3190 {
   3191 	struct i915_ctx_hang_stats *hs;
   3192 
   3193 	if (WARN_ON(!ctx))
   3194 		return;
   3195 
   3196 	hs = &ctx->hang_stats;
   3197 
   3198 	if (guilty) {
   3199 		hs->banned = i915_context_is_banned(dev_priv, ctx);
   3200 		hs->batch_active++;
   3201 		hs->guilty_ts = get_seconds();
   3202 	} else {
   3203 		hs->batch_pending++;
   3204 	}
   3205 }
   3206 
   3207 void i915_gem_request_free(struct kref *req_ref)
   3208 {
   3209 	struct drm_i915_gem_request *req = container_of(req_ref,
   3210 						 typeof(*req), ref);
   3211 	struct intel_context *ctx = req->ctx;
   3212 
   3213 	if (req->file_priv)
   3214 		i915_gem_request_remove_from_client(req);
   3215 
   3216 	if (ctx) {
   3217 		if (i915.enable_execlists) {
   3218 			if (ctx != req->ring->default_context)
   3219 				intel_lr_context_unpin(req);
   3220 		}
   3221 
   3222 		i915_gem_context_unreference(ctx);
   3223 	}
   3224 
   3225 	kmem_cache_free(req->i915->requests, req);
   3226 }
   3227 
   3228 int i915_gem_request_alloc(struct intel_engine_cs *ring,
   3229 			   struct intel_context *ctx,
   3230 			   struct drm_i915_gem_request **req_out)
   3231 {
   3232 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
   3233 	struct drm_i915_gem_request *req;
   3234 	int ret;
   3235 
   3236 	if (!req_out)
   3237 		return -EINVAL;
   3238 
   3239 	*req_out = NULL;
   3240 
   3241 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
   3242 	if (req == NULL)
   3243 		return -ENOMEM;
   3244 
   3245 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
   3246 	if (ret)
   3247 		goto err;
   3248 
   3249 	kref_init(&req->ref);
   3250 	req->i915 = dev_priv;
   3251 	req->ring = ring;
   3252 	req->ctx  = ctx;
   3253 	i915_gem_context_reference(req->ctx);
   3254 
   3255 	if (i915.enable_execlists)
   3256 		ret = intel_logical_ring_alloc_request_extras(req);
   3257 	else
   3258 		ret = intel_ring_alloc_request_extras(req);
   3259 	if (ret) {
   3260 		i915_gem_context_unreference(req->ctx);
   3261 		goto err;
   3262 	}
   3263 
   3264 	/*
   3265 	 * Reserve space in the ring buffer for all the commands required to
   3266 	 * eventually emit this request. This is to guarantee that the
   3267 	 * i915_add_request() call can't fail. Note that the reserve may need
   3268 	 * to be redone if the request is not actually submitted straight
   3269 	 * away, e.g. because a GPU scheduler has deferred it.
   3270 	 */
   3271 	if (i915.enable_execlists)
   3272 		ret = intel_logical_ring_reserve_space(req);
   3273 	else
   3274 		ret = intel_ring_reserve_space(req);
   3275 	if (ret) {
   3276 		/*
   3277 		 * At this point, the request is fully allocated even if not
   3278 		 * fully prepared. Thus it can be cleaned up using the proper
   3279 		 * free code.
   3280 		 */
   3281 		i915_gem_request_cancel(req);
   3282 		return ret;
   3283 	}
   3284 
   3285 	*req_out = req;
   3286 	return 0;
   3287 
   3288 err:
   3289 	kmem_cache_free(dev_priv->requests, req);
   3290 	return ret;
   3291 }
   3292 
   3293 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
   3294 {
   3295 	intel_ring_reserved_space_cancel(req->ringbuf);
   3296 
   3297 	i915_gem_request_unreference(req);
   3298 }
   3299 
   3300 struct drm_i915_gem_request *
   3301 i915_gem_find_active_request(struct intel_engine_cs *ring)
   3302 {
   3303 	struct drm_i915_gem_request *request;
   3304 
   3305 	list_for_each_entry(request, &ring->request_list, list) {
   3306 		if (i915_gem_request_completed(request, false))
   3307 			continue;
   3308 
   3309 		return request;
   3310 	}
   3311 
   3312 	return NULL;
   3313 }
   3314 
   3315 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
   3316 				       struct intel_engine_cs *ring)
   3317 {
   3318 	struct drm_i915_gem_request *request;
   3319 	bool ring_hung;
   3320 
   3321 	request = i915_gem_find_active_request(ring);
   3322 
   3323 	if (request == NULL)
   3324 		return;
   3325 
   3326 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
   3327 
   3328 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
   3329 
   3330 	list_for_each_entry_continue(request, &ring->request_list, list)
   3331 		i915_set_reset_status(dev_priv, request->ctx, false);
   3332 }
   3333 
   3334 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
   3335 					struct intel_engine_cs *ring)
   3336 {
   3337 	while (!list_empty(&ring->active_list)) {
   3338 		struct drm_i915_gem_object *obj;
   3339 
   3340 		obj = list_first_entry(&ring->active_list,
   3341 				       struct drm_i915_gem_object,
   3342 				       ring_list[ring->id]);
   3343 
   3344 		i915_gem_object_retire__read(obj, ring->id);
   3345 	}
   3346 
   3347 	/*
   3348 	 * Clear the execlists queue up before freeing the requests, as those
   3349 	 * are the ones that keep the context and ringbuffer backing objects
   3350 	 * pinned in place.
   3351 	 */
   3352 	while (!list_empty(&ring->execlist_queue)) {
   3353 		struct drm_i915_gem_request *submit_req;
   3354 
   3355 		submit_req = list_first_entry(&ring->execlist_queue,
   3356 				struct drm_i915_gem_request,
   3357 				execlist_link);
   3358 		list_del(&submit_req->execlist_link);
   3359 
   3360 		if (submit_req->ctx != ring->default_context)
   3361 			intel_lr_context_unpin(submit_req);
   3362 
   3363 		i915_gem_request_unreference(submit_req);
   3364 	}
   3365 
   3366 	/*
   3367 	 * We must free the requests after all the corresponding objects have
   3368 	 * been moved off active lists. Which is the same order as the normal
   3369 	 * retire_requests function does. This is important if object hold
   3370 	 * implicit references on things like e.g. ppgtt address spaces through
   3371 	 * the request.
   3372 	 */
   3373 	while (!list_empty(&ring->request_list)) {
   3374 		struct drm_i915_gem_request *request;
   3375 
   3376 		request = list_first_entry(&ring->request_list,
   3377 					   struct drm_i915_gem_request,
   3378 					   list);
   3379 
   3380 		i915_gem_request_retire(request);
   3381 	}
   3382 }
   3383 
   3384 void i915_gem_reset(struct drm_device *dev)
   3385 {
   3386 	struct drm_i915_private *dev_priv = dev->dev_private;
   3387 	struct intel_engine_cs *ring;
   3388 	int i;
   3389 
   3390 	/*
   3391 	 * Before we free the objects from the requests, we need to inspect
   3392 	 * them for finding the guilty party. As the requests only borrow
   3393 	 * their reference to the objects, the inspection must be done first.
   3394 	 */
   3395 	for_each_ring(ring, dev_priv, i)
   3396 		i915_gem_reset_ring_status(dev_priv, ring);
   3397 
   3398 	for_each_ring(ring, dev_priv, i)
   3399 		i915_gem_reset_ring_cleanup(dev_priv, ring);
   3400 
   3401 	i915_gem_context_reset(dev);
   3402 
   3403 	i915_gem_restore_fences(dev);
   3404 
   3405 	WARN_ON(i915_verify_lists(dev));
   3406 }
   3407 
   3408 /**
   3409  * This function clears the request list as sequence numbers are passed.
   3410  */
   3411 void
   3412 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
   3413 {
   3414 	WARN_ON(i915_verify_lists(ring->dev));
   3415 
   3416 	/* Retire requests first as we use it above for the early return.
   3417 	 * If we retire requests last, we may use a later seqno and so clear
   3418 	 * the requests lists without clearing the active list, leading to
   3419 	 * confusion.
   3420 	 */
   3421 	while (!list_empty(&ring->request_list)) {
   3422 		struct drm_i915_gem_request *request;
   3423 
   3424 		request = list_first_entry(&ring->request_list,
   3425 					   struct drm_i915_gem_request,
   3426 					   list);
   3427 
   3428 		if (!i915_gem_request_completed(request, true))
   3429 			break;
   3430 
   3431 		i915_gem_request_retire(request);
   3432 	}
   3433 
   3434 	/* Move any buffers on the active list that are no longer referenced
   3435 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
   3436 	 * before we free the context associated with the requests.
   3437 	 */
   3438 	while (!list_empty(&ring->active_list)) {
   3439 		struct drm_i915_gem_object *obj;
   3440 
   3441 		obj = list_first_entry(&ring->active_list,
   3442 				      struct drm_i915_gem_object,
   3443 				      ring_list[ring->id]);
   3444 
   3445 		if (!list_empty(&obj->last_read_req[ring->id]->list))
   3446 			break;
   3447 
   3448 		i915_gem_object_retire__read(obj, ring->id);
   3449 	}
   3450 
   3451 	if (unlikely(ring->trace_irq_req &&
   3452 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
   3453 		ring->irq_put(ring);
   3454 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
   3455 	}
   3456 
   3457 	WARN_ON(i915_verify_lists(ring->dev));
   3458 }
   3459 
   3460 bool
   3461 i915_gem_retire_requests(struct drm_device *dev)
   3462 {
   3463 	struct drm_i915_private *dev_priv = dev->dev_private;
   3464 	struct intel_engine_cs *ring;
   3465 	bool idle = true;
   3466 	int i;
   3467 
   3468 	for_each_ring(ring, dev_priv, i) {
   3469 		i915_gem_retire_requests_ring(ring);
   3470 		idle &= list_empty(&ring->request_list);
   3471 		if (i915.enable_execlists) {
   3472 			unsigned long flags;
   3473 
   3474 			spin_lock_irqsave(&ring->execlist_lock, flags);
   3475 			idle &= list_empty(&ring->execlist_queue);
   3476 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
   3477 
   3478 			intel_execlists_retire_requests(ring);
   3479 		}
   3480 	}
   3481 
   3482 	if (idle)
   3483 		mod_delayed_work(dev_priv->wq,
   3484 				   &dev_priv->mm.idle_work,
   3485 				   msecs_to_jiffies(100));
   3486 
   3487 	return idle;
   3488 }
   3489 
   3490 static void
   3491 i915_gem_retire_work_handler(struct work_struct *work)
   3492 {
   3493 	struct drm_i915_private *dev_priv =
   3494 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
   3495 	struct drm_device *dev = dev_priv->dev;
   3496 	bool idle;
   3497 
   3498 	/* Come back later if the device is busy... */
   3499 	idle = false;
   3500 	if (mutex_trylock(&dev->struct_mutex)) {
   3501 		idle = i915_gem_retire_requests(dev);
   3502 		mutex_unlock(&dev->struct_mutex);
   3503 	}
   3504 	if (!idle)
   3505 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
   3506 				   round_jiffies_up_relative(HZ));
   3507 }
   3508 
   3509 static void
   3510 i915_gem_idle_work_handler(struct work_struct *work)
   3511 {
   3512 	struct drm_i915_private *dev_priv =
   3513 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
   3514 	struct drm_device *dev = dev_priv->dev;
   3515 	struct intel_engine_cs *ring;
   3516 	int i;
   3517 
   3518 	for_each_ring(ring, dev_priv, i)
   3519 		if (!list_empty(&ring->request_list))
   3520 			return;
   3521 
   3522 	intel_mark_idle(dev);
   3523 
   3524 	if (mutex_trylock(&dev->struct_mutex)) {
   3525 		struct intel_engine_cs *ring;
   3526 		int i;
   3527 
   3528 		for_each_ring(ring, dev_priv, i)
   3529 			i915_gem_batch_pool_fini(&ring->batch_pool);
   3530 
   3531 		mutex_unlock(&dev->struct_mutex);
   3532 	}
   3533 }
   3534 
   3535 /**
   3536  * Ensures that an object will eventually get non-busy by flushing any required
   3537  * write domains, emitting any outstanding lazy request and retiring and
   3538  * completed requests.
   3539  */
   3540 static int
   3541 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
   3542 {
   3543 	int i;
   3544 
   3545 	if (!obj->active)
   3546 		return 0;
   3547 
   3548 	for (i = 0; i < I915_NUM_RINGS; i++) {
   3549 		struct drm_i915_gem_request *req;
   3550 
   3551 		req = obj->last_read_req[i];
   3552 		if (req == NULL)
   3553 			continue;
   3554 
   3555 		if (list_empty(&req->list))
   3556 			goto retire;
   3557 
   3558 		if (i915_gem_request_completed(req, true)) {
   3559 			__i915_gem_request_retire__upto(req);
   3560 retire:
   3561 			i915_gem_object_retire__read(obj, i);
   3562 		}
   3563 	}
   3564 
   3565 	return 0;
   3566 }
   3567 
   3568 /**
   3569  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
   3570  * @DRM_IOCTL_ARGS: standard ioctl arguments
   3571  *
   3572  * Returns 0 if successful, else an error is returned with the remaining time in
   3573  * the timeout parameter.
   3574  *  -ETIME: object is still busy after timeout
   3575  *  -ERESTARTSYS: signal interrupted the wait
   3576  *  -ENONENT: object doesn't exist
   3577  * Also possible, but rare:
   3578  *  -EAGAIN: GPU wedged
   3579  *  -ENOMEM: damn
   3580  *  -ENODEV: Internal IRQ fail
   3581  *  -E?: The add request failed
   3582  *
   3583  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
   3584  * non-zero timeout parameter the wait ioctl will wait for the given number of
   3585  * nanoseconds on an object becoming unbusy. Since the wait itself does so
   3586  * without holding struct_mutex the object may become re-busied before this
   3587  * function completes. A similar but shorter * race condition exists in the busy
   3588  * ioctl
   3589  */
   3590 int
   3591 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
   3592 {
   3593 	struct drm_i915_private *dev_priv = dev->dev_private;
   3594 	struct drm_i915_gem_wait *args = data;
   3595 	struct drm_gem_object *gobj;
   3596 	struct drm_i915_gem_object *obj;
   3597 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
   3598 	unsigned reset_counter;
   3599 	int i, n = 0;
   3600 	int ret;
   3601 
   3602 	if (args->flags != 0)
   3603 		return -EINVAL;
   3604 
   3605 	ret = i915_mutex_lock_interruptible(dev);
   3606 	if (ret)
   3607 		return ret;
   3608 
   3609 	gobj = drm_gem_object_lookup(dev, file, args->bo_handle);
   3610 	if (gobj == NULL) {
   3611 		mutex_unlock(&dev->struct_mutex);
   3612 		return -ENOENT;
   3613 	}
   3614 	obj = to_intel_bo(gobj);
   3615 
   3616 	/* Need to make sure the object gets inactive eventually. */
   3617 	ret = i915_gem_object_flush_active(obj);
   3618 	if (ret)
   3619 		goto out;
   3620 
   3621 	if (!obj->active)
   3622 		goto out;
   3623 
   3624 	/* Do this after OLR check to make sure we make forward progress polling
   3625 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
   3626 	 */
   3627 	if (args->timeout_ns == 0) {
   3628 		ret = -ETIME;
   3629 		goto out;
   3630 	}
   3631 
   3632 	drm_gem_object_unreference(&obj->base);
   3633 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   3634 
   3635 	for (i = 0; i < I915_NUM_RINGS; i++) {
   3636 		if (obj->last_read_req[i] == NULL)
   3637 			continue;
   3638 
   3639 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
   3640 	}
   3641 
   3642 	mutex_unlock(&dev->struct_mutex);
   3643 
   3644 	for (i = 0; i < n; i++) {
   3645 		if (ret == 0)
   3646 			ret = __i915_wait_request(req[i], reset_counter, true,
   3647 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
   3648 						  file->driver_priv);
   3649 		i915_gem_request_unreference__unlocked(req[i]);
   3650 	}
   3651 	return ret;
   3652 
   3653 out:
   3654 	drm_gem_object_unreference(&obj->base);
   3655 	mutex_unlock(&dev->struct_mutex);
   3656 	return ret;
   3657 }
   3658 
   3659 static int
   3660 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
   3661 		       struct intel_engine_cs *to,
   3662 		       struct drm_i915_gem_request *from_req,
   3663 		       struct drm_i915_gem_request **to_req)
   3664 {
   3665 	struct intel_engine_cs *from;
   3666 	int ret;
   3667 
   3668 	from = i915_gem_request_get_ring(from_req);
   3669 	if (to == from)
   3670 		return 0;
   3671 
   3672 	if (i915_gem_request_completed(from_req, true))
   3673 		return 0;
   3674 
   3675 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
   3676 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
   3677 		ret = __i915_wait_request(from_req,
   3678 					  atomic_read(&i915->gpu_error.reset_counter),
   3679 					  i915->mm.interruptible,
   3680 					  NULL,
   3681 					  &i915->rps.semaphores);
   3682 		if (ret)
   3683 			return ret;
   3684 
   3685 		i915_gem_object_retire_request(obj, from_req);
   3686 	} else {
   3687 		int idx = intel_ring_sync_index(from, to);
   3688 		u32 seqno = i915_gem_request_get_seqno(from_req);
   3689 
   3690 		WARN_ON(!to_req);
   3691 
   3692 		if (seqno <= from->semaphore.sync_seqno[idx])
   3693 			return 0;
   3694 
   3695 		if (*to_req == NULL) {
   3696 			ret = i915_gem_request_alloc(to, to->default_context, to_req);
   3697 			if (ret)
   3698 				return ret;
   3699 		}
   3700 
   3701 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
   3702 		ret = to->semaphore.sync_to(*to_req, from, seqno);
   3703 		if (ret)
   3704 			return ret;
   3705 
   3706 		/* We use last_read_req because sync_to()
   3707 		 * might have just caused seqno wrap under
   3708 		 * the radar.
   3709 		 */
   3710 		from->semaphore.sync_seqno[idx] =
   3711 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
   3712 	}
   3713 
   3714 	return 0;
   3715 }
   3716 
   3717 /**
   3718  * i915_gem_object_sync - sync an object to a ring.
   3719  *
   3720  * @obj: object which may be in use on another ring.
   3721  * @to: ring we wish to use the object on. May be NULL.
   3722  * @to_req: request we wish to use the object for. See below.
   3723  *          This will be allocated and returned if a request is
   3724  *          required but not passed in.
   3725  *
   3726  * This code is meant to abstract object synchronization with the GPU.
   3727  * Calling with NULL implies synchronizing the object with the CPU
   3728  * rather than a particular GPU ring. Conceptually we serialise writes
   3729  * between engines inside the GPU. We only allow one engine to write
   3730  * into a buffer at any time, but multiple readers. To ensure each has
   3731  * a coherent view of memory, we must:
   3732  *
   3733  * - If there is an outstanding write request to the object, the new
   3734  *   request must wait for it to complete (either CPU or in hw, requests
   3735  *   on the same ring will be naturally ordered).
   3736  *
   3737  * - If we are a write request (pending_write_domain is set), the new
   3738  *   request must wait for outstanding read requests to complete.
   3739  *
   3740  * For CPU synchronisation (NULL to) no request is required. For syncing with
   3741  * rings to_req must be non-NULL. However, a request does not have to be
   3742  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
   3743  * request will be allocated automatically and returned through *to_req. Note
   3744  * that it is not guaranteed that commands will be emitted (because the system
   3745  * might already be idle). Hence there is no need to create a request that
   3746  * might never have any work submitted. Note further that if a request is
   3747  * returned in *to_req, it is the responsibility of the caller to submit
   3748  * that request (after potentially adding more work to it).
   3749  *
   3750  * Returns 0 if successful, else propagates up the lower layer error.
   3751  */
   3752 int
   3753 i915_gem_object_sync(struct drm_i915_gem_object *obj,
   3754 		     struct intel_engine_cs *to,
   3755 		     struct drm_i915_gem_request **to_req)
   3756 {
   3757 	const bool readonly = obj->base.pending_write_domain == 0;
   3758 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
   3759 	int ret, i, n;
   3760 
   3761 	if (!obj->active)
   3762 		return 0;
   3763 
   3764 	if (to == NULL)
   3765 		return i915_gem_object_wait_rendering(obj, readonly);
   3766 
   3767 	n = 0;
   3768 	if (readonly) {
   3769 		if (obj->last_write_req)
   3770 			req[n++] = obj->last_write_req;
   3771 	} else {
   3772 		for (i = 0; i < I915_NUM_RINGS; i++)
   3773 			if (obj->last_read_req[i])
   3774 				req[n++] = obj->last_read_req[i];
   3775 	}
   3776 	for (i = 0; i < n; i++) {
   3777 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
   3778 		if (ret)
   3779 			return ret;
   3780 	}
   3781 
   3782 	return 0;
   3783 }
   3784 
   3785 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
   3786 {
   3787 	u32 old_write_domain, old_read_domains;
   3788 
   3789 	/* Force a pagefault for domain tracking on next user access */
   3790 	i915_gem_release_mmap(obj);
   3791 
   3792 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   3793 		return;
   3794 
   3795 	/* Wait for any direct GTT access to complete */
   3796 	mb();
   3797 
   3798 	old_read_domains = obj->base.read_domains;
   3799 	old_write_domain = obj->base.write_domain;
   3800 
   3801 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
   3802 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
   3803 
   3804 	trace_i915_gem_object_change_domain(obj,
   3805 					    old_read_domains,
   3806 					    old_write_domain);
   3807 }
   3808 
   3809 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
   3810 {
   3811 	struct drm_i915_gem_object *obj = vma->obj;
   3812 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   3813 	int ret;
   3814 
   3815 	if (list_empty(&vma->vma_link))
   3816 		return 0;
   3817 
   3818 	if (!drm_mm_node_allocated(&vma->node)) {
   3819 		i915_gem_vma_destroy(vma);
   3820 		return 0;
   3821 	}
   3822 
   3823 	if (vma->pin_count)
   3824 		return -EBUSY;
   3825 
   3826 	BUG_ON(obj->pages == NULL);
   3827 
   3828 	if (wait) {
   3829 		ret = i915_gem_object_wait_rendering(obj, false);
   3830 		if (ret)
   3831 			return ret;
   3832 	}
   3833 
   3834 	if (i915_is_ggtt(vma->vm) &&
   3835 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
   3836 		i915_gem_object_finish_gtt(obj);
   3837 
   3838 		/* release the fence reg _after_ flushing */
   3839 		ret = i915_gem_object_put_fence(obj);
   3840 		if (ret)
   3841 			return ret;
   3842 	}
   3843 
   3844 	trace_i915_vma_unbind(vma);
   3845 
   3846 	vma->vm->unbind_vma(vma);
   3847 	vma->bound = 0;
   3848 
   3849 	list_del_init(&vma->mm_list);
   3850 	if (i915_is_ggtt(vma->vm)) {
   3851 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
   3852 			obj->map_and_fenceable = false;
   3853 		} else if (vma->ggtt_view.pages) {
   3854 #ifdef __NetBSD__
   3855 			panic("rotated/partial views can't happen");
   3856 #else
   3857 			sg_free_table(vma->ggtt_view.pages);
   3858 			kfree(vma->ggtt_view.pages);
   3859 #endif
   3860 		}
   3861 		vma->ggtt_view.pages = NULL;
   3862 	}
   3863 
   3864 	drm_mm_remove_node(&vma->node);
   3865 	i915_gem_vma_destroy(vma);
   3866 
   3867 	/* Since the unbound list is global, only move to that list if
   3868 	 * no more VMAs exist. */
   3869 	if (list_empty(&obj->vma_list))
   3870 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
   3871 
   3872 	/* And finally now the object is completely decoupled from this vma,
   3873 	 * we can drop its hold on the backing storage and allow it to be
   3874 	 * reaped by the shrinker.
   3875 	 */
   3876 	i915_gem_object_unpin_pages(obj);
   3877 
   3878 	return 0;
   3879 }
   3880 
   3881 int i915_vma_unbind(struct i915_vma *vma)
   3882 {
   3883 	return __i915_vma_unbind(vma, true);
   3884 }
   3885 
   3886 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
   3887 {
   3888 	return __i915_vma_unbind(vma, false);
   3889 }
   3890 
   3891 int i915_gpu_idle(struct drm_device *dev)
   3892 {
   3893 	struct drm_i915_private *dev_priv = dev->dev_private;
   3894 	struct intel_engine_cs *ring;
   3895 	int ret, i;
   3896 
   3897 	/* Flush everything onto the inactive list. */
   3898 	for_each_ring(ring, dev_priv, i) {
   3899 		if (!i915.enable_execlists) {
   3900 			struct drm_i915_gem_request *req;
   3901 
   3902 			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
   3903 			if (ret)
   3904 				return ret;
   3905 
   3906 			ret = i915_switch_context(req);
   3907 			if (ret) {
   3908 				i915_gem_request_cancel(req);
   3909 				return ret;
   3910 			}
   3911 
   3912 			i915_add_request_no_flush(req);
   3913 		}
   3914 
   3915 		ret = intel_ring_idle(ring);
   3916 		if (ret)
   3917 			return ret;
   3918 	}
   3919 
   3920 	WARN_ON(i915_verify_lists(dev));
   3921 	return 0;
   3922 }
   3923 
   3924 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
   3925 				     unsigned long cache_level)
   3926 {
   3927 	struct drm_mm_node *gtt_space = &vma->node;
   3928 	struct drm_mm_node *other;
   3929 
   3930 	/*
   3931 	 * On some machines we have to be careful when putting differing types
   3932 	 * of snoopable memory together to avoid the prefetcher crossing memory
   3933 	 * domains and dying. During vm initialisation, we decide whether or not
   3934 	 * these constraints apply and set the drm_mm.color_adjust
   3935 	 * appropriately.
   3936 	 */
   3937 	if (vma->vm->mm.color_adjust == NULL)
   3938 		return true;
   3939 
   3940 	if (!drm_mm_node_allocated(gtt_space))
   3941 		return true;
   3942 
   3943 	if (list_empty(&gtt_space->node_list))
   3944 		return true;
   3945 
   3946 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
   3947 	if (other->allocated && !other->hole_follows && other->color != cache_level)
   3948 		return false;
   3949 
   3950 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
   3951 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
   3952 		return false;
   3953 
   3954 	return true;
   3955 }
   3956 
   3957 /**
   3958  * Finds free space in the GTT aperture and binds the object or a view of it
   3959  * there.
   3960  */
   3961 static struct i915_vma *
   3962 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
   3963 			   struct i915_address_space *vm,
   3964 			   const struct i915_ggtt_view *ggtt_view,
   3965 			   unsigned alignment,
   3966 			   uint64_t flags)
   3967 {
   3968 	struct drm_device *dev = obj->base.dev;
   3969 	struct drm_i915_private *dev_priv = dev->dev_private;
   3970 	u32 fence_alignment, unfenced_alignment;
   3971 	u32 search_flag, alloc_flag;
   3972 	u64 start, end;
   3973 	u64 size, fence_size;
   3974 	struct i915_vma *vma;
   3975 	int ret;
   3976 
   3977 	if (i915_is_ggtt(vm)) {
   3978 		u32 view_size;
   3979 
   3980 		if (WARN_ON(!ggtt_view))
   3981 			return ERR_PTR(-EINVAL);
   3982 
   3983 		view_size = i915_ggtt_view_size(obj, ggtt_view);
   3984 
   3985 		fence_size = i915_gem_get_gtt_size(dev,
   3986 						   view_size,
   3987 						   obj->tiling_mode);
   3988 		fence_alignment = i915_gem_get_gtt_alignment(dev,
   3989 							     view_size,
   3990 							     obj->tiling_mode,
   3991 							     true);
   3992 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
   3993 								view_size,
   3994 								obj->tiling_mode,
   3995 								false);
   3996 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
   3997 	} else {
   3998 		fence_size = i915_gem_get_gtt_size(dev,
   3999 						   obj->base.size,
   4000 						   obj->tiling_mode);
   4001 		fence_alignment = i915_gem_get_gtt_alignment(dev,
   4002 							     obj->base.size,
   4003 							     obj->tiling_mode,
   4004 							     true);
   4005 		unfenced_alignment =
   4006 			i915_gem_get_gtt_alignment(dev,
   4007 						   obj->base.size,
   4008 						   obj->tiling_mode,
   4009 						   false);
   4010 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
   4011 	}
   4012 
   4013 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
   4014 	end = vm->total;
   4015 	if (flags & PIN_MAPPABLE)
   4016 		end = min_t(u64, end, dev_priv->gtt.mappable_end);
   4017 	if (flags & PIN_ZONE_4G)
   4018 		end = min_t(u64, end, (1ULL << 32));
   4019 
   4020 	if (alignment == 0)
   4021 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
   4022 						unfenced_alignment;
   4023 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
   4024 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
   4025 			  ggtt_view ? ggtt_view->type : 0,
   4026 			  alignment);
   4027 		return ERR_PTR(-EINVAL);
   4028 	}
   4029 
   4030 	/* If binding the object/GGTT view requires more space than the entire
   4031 	 * aperture has, reject it early before evicting everything in a vain
   4032 	 * attempt to find space.
   4033 	 */
   4034 	if (size > end) {
   4035 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%"PRIx64" > %s aperture=%"PRIx64"\n",
   4036 			  ggtt_view ? ggtt_view->type : 0,
   4037 			  size,
   4038 			  flags & PIN_MAPPABLE ? "mappable" : "total",
   4039 			  end);
   4040 		return ERR_PTR(-E2BIG);
   4041 	}
   4042 
   4043 	ret = i915_gem_object_get_pages(obj);
   4044 	if (ret)
   4045 		return ERR_PTR(ret);
   4046 
   4047 	i915_gem_object_pin_pages(obj);
   4048 
   4049 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
   4050 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
   4051 
   4052 	if (IS_ERR(vma))
   4053 		goto err_unpin;
   4054 
   4055 	if (flags & PIN_HIGH) {
   4056 		search_flag = DRM_MM_SEARCH_BELOW;
   4057 		alloc_flag = DRM_MM_CREATE_TOP;
   4058 	} else {
   4059 		search_flag = DRM_MM_SEARCH_DEFAULT;
   4060 		alloc_flag = DRM_MM_CREATE_DEFAULT;
   4061 	}
   4062 
   4063 search_free:
   4064 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
   4065 						  size, alignment,
   4066 						  obj->cache_level,
   4067 						  start, end,
   4068 						  search_flag,
   4069 						  alloc_flag);
   4070 	if (ret) {
   4071 		ret = i915_gem_evict_something(dev, vm, size, alignment,
   4072 					       obj->cache_level,
   4073 					       start, end,
   4074 					       flags);
   4075 		if (ret == 0)
   4076 			goto search_free;
   4077 
   4078 		goto err_free_vma;
   4079 	}
   4080 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
   4081 		ret = -EINVAL;
   4082 		goto err_remove_node;
   4083 	}
   4084 
   4085 	trace_i915_vma_bind(vma, flags);
   4086 	ret = i915_vma_bind(vma, obj->cache_level, flags);
   4087 	if (ret)
   4088 		goto err_remove_node;
   4089 
   4090 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
   4091 	list_add_tail(&vma->mm_list, &vm->inactive_list);
   4092 
   4093 	return vma;
   4094 
   4095 err_remove_node:
   4096 	drm_mm_remove_node(&vma->node);
   4097 err_free_vma:
   4098 	i915_gem_vma_destroy(vma);
   4099 	vma = ERR_PTR(ret);
   4100 err_unpin:
   4101 	i915_gem_object_unpin_pages(obj);
   4102 	return vma;
   4103 }
   4104 
   4105 bool
   4106 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
   4107 			bool force)
   4108 {
   4109 	/* If we don't have a page list set up, then we're not pinned
   4110 	 * to GPU, and we can ignore the cache flush because it'll happen
   4111 	 * again at bind time.
   4112 	 */
   4113 	if (obj->pages == NULL)
   4114 		return false;
   4115 
   4116 	/*
   4117 	 * Stolen memory is always coherent with the GPU as it is explicitly
   4118 	 * marked as wc by the system, or the system is cache-coherent.
   4119 	 */
   4120 	if (obj->stolen || obj->phys_handle)
   4121 		return false;
   4122 
   4123 	/* If the GPU is snooping the contents of the CPU cache,
   4124 	 * we do not need to manually clear the CPU cache lines.  However,
   4125 	 * the caches are only snooped when the render cache is
   4126 	 * flushed/invalidated.  As we always have to emit invalidations
   4127 	 * and flushes when moving into and out of the RENDER domain, correct
   4128 	 * snooping behaviour occurs naturally as the result of our domain
   4129 	 * tracking.
   4130 	 */
   4131 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
   4132 		obj->cache_dirty = true;
   4133 		return false;
   4134 	}
   4135 
   4136 	trace_i915_gem_object_clflush(obj);
   4137 #ifdef __NetBSD__
   4138 	drm_clflush_pglist(&obj->pageq);
   4139 #else
   4140 	drm_clflush_sg(obj->pages);
   4141 #endif
   4142 	obj->cache_dirty = false;
   4143 
   4144 	return true;
   4145 }
   4146 
   4147 /** Flushes the GTT write domain for the object if it's dirty. */
   4148 static void
   4149 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
   4150 {
   4151 	uint32_t old_write_domain;
   4152 
   4153 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
   4154 		return;
   4155 
   4156 	/* No actual flushing is required for the GTT write domain.  Writes
   4157 	 * to it immediately go to main memory as far as we know, so there's
   4158 	 * no chipset flush.  It also doesn't land in render cache.
   4159 	 *
   4160 	 * However, we do have to enforce the order so that all writes through
   4161 	 * the GTT land before any writes to the device, such as updates to
   4162 	 * the GATT itself.
   4163 	 */
   4164 	wmb();
   4165 
   4166 	old_write_domain = obj->base.write_domain;
   4167 	obj->base.write_domain = 0;
   4168 
   4169 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
   4170 
   4171 	trace_i915_gem_object_change_domain(obj,
   4172 					    obj->base.read_domains,
   4173 					    old_write_domain);
   4174 }
   4175 
   4176 /** Flushes the CPU write domain for the object if it's dirty. */
   4177 static void
   4178 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
   4179 {
   4180 	uint32_t old_write_domain;
   4181 
   4182 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
   4183 		return;
   4184 
   4185 	if (i915_gem_clflush_object(obj, obj->pin_display))
   4186 		i915_gem_chipset_flush(obj->base.dev);
   4187 
   4188 	old_write_domain = obj->base.write_domain;
   4189 	obj->base.write_domain = 0;
   4190 
   4191 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
   4192 
   4193 	trace_i915_gem_object_change_domain(obj,
   4194 					    obj->base.read_domains,
   4195 					    old_write_domain);
   4196 }
   4197 
   4198 /**
   4199  * Moves a single object to the GTT read, and possibly write domain.
   4200  *
   4201  * This function returns when the move is complete, including waiting on
   4202  * flushes to occur.
   4203  */
   4204 int
   4205 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
   4206 {
   4207 	uint32_t old_write_domain, old_read_domains;
   4208 	struct i915_vma *vma;
   4209 	int ret;
   4210 
   4211 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
   4212 		return 0;
   4213 
   4214 	ret = i915_gem_object_wait_rendering(obj, !write);
   4215 	if (ret)
   4216 		return ret;
   4217 
   4218 	/* Flush and acquire obj->pages so that we are coherent through
   4219 	 * direct access in memory with previous cached writes through
   4220 	 * shmemfs and that our cache domain tracking remains valid.
   4221 	 * For example, if the obj->filp was moved to swap without us
   4222 	 * being notified and releasing the pages, we would mistakenly
   4223 	 * continue to assume that the obj remained out of the CPU cached
   4224 	 * domain.
   4225 	 */
   4226 	ret = i915_gem_object_get_pages(obj);
   4227 	if (ret)
   4228 		return ret;
   4229 
   4230 	i915_gem_object_flush_cpu_write_domain(obj);
   4231 
   4232 	/* Serialise direct access to this object with the barriers for
   4233 	 * coherent writes from the GPU, by effectively invalidating the
   4234 	 * GTT domain upon first access.
   4235 	 */
   4236 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
   4237 		mb();
   4238 
   4239 	old_write_domain = obj->base.write_domain;
   4240 	old_read_domains = obj->base.read_domains;
   4241 
   4242 	/* It should now be out of any other write domains, and we can update
   4243 	 * the domain values for our changes.
   4244 	 */
   4245 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
   4246 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4247 	if (write) {
   4248 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
   4249 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
   4250 		obj->dirty = 1;
   4251 	}
   4252 
   4253 	trace_i915_gem_object_change_domain(obj,
   4254 					    old_read_domains,
   4255 					    old_write_domain);
   4256 
   4257 	/* And bump the LRU for this access */
   4258 	vma = i915_gem_obj_to_ggtt(obj);
   4259 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
   4260 		list_move_tail(&vma->mm_list,
   4261 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
   4262 
   4263 	return 0;
   4264 }
   4265 
   4266 /**
   4267  * Changes the cache-level of an object across all VMA.
   4268  *
   4269  * After this function returns, the object will be in the new cache-level
   4270  * across all GTT and the contents of the backing storage will be coherent,
   4271  * with respect to the new cache-level. In order to keep the backing storage
   4272  * coherent for all users, we only allow a single cache level to be set
   4273  * globally on the object and prevent it from being changed whilst the
   4274  * hardware is reading from the object. That is if the object is currently
   4275  * on the scanout it will be set to uncached (or equivalent display
   4276  * cache coherency) and all non-MOCS GPU access will also be uncached so
   4277  * that all direct access to the scanout remains coherent.
   4278  */
   4279 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
   4280 				    enum i915_cache_level cache_level)
   4281 {
   4282 	struct drm_device *dev = obj->base.dev;
   4283 	struct i915_vma *vma, *next;
   4284 	bool bound = false;
   4285 	int ret = 0;
   4286 
   4287 	if (obj->cache_level == cache_level)
   4288 		goto out;
   4289 
   4290 	/* Inspect the list of currently bound VMA and unbind any that would
   4291 	 * be invalid given the new cache-level. This is principally to
   4292 	 * catch the issue of the CS prefetch crossing page boundaries and
   4293 	 * reading an invalid PTE on older architectures.
   4294 	 */
   4295 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   4296 		if (!drm_mm_node_allocated(&vma->node))
   4297 			continue;
   4298 
   4299 		if (vma->pin_count) {
   4300 			DRM_DEBUG("can not change the cache level of pinned objects\n");
   4301 			return -EBUSY;
   4302 		}
   4303 
   4304 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
   4305 			ret = i915_vma_unbind(vma);
   4306 			if (ret)
   4307 				return ret;
   4308 		} else
   4309 			bound = true;
   4310 	}
   4311 
   4312 	/* We can reuse the existing drm_mm nodes but need to change the
   4313 	 * cache-level on the PTE. We could simply unbind them all and
   4314 	 * rebind with the correct cache-level on next use. However since
   4315 	 * we already have a valid slot, dma mapping, pages etc, we may as
   4316 	 * rewrite the PTE in the belief that doing so tramples upon less
   4317 	 * state and so involves less work.
   4318 	 */
   4319 	if (bound) {
   4320 		/* Before we change the PTE, the GPU must not be accessing it.
   4321 		 * If we wait upon the object, we know that all the bound
   4322 		 * VMA are no longer active.
   4323 		 */
   4324 		ret = i915_gem_object_wait_rendering(obj, false);
   4325 		if (ret)
   4326 			return ret;
   4327 
   4328 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
   4329 			/* Access to snoopable pages through the GTT is
   4330 			 * incoherent and on some machines causes a hard
   4331 			 * lockup. Relinquish the CPU mmaping to force
   4332 			 * userspace to refault in the pages and we can
   4333 			 * then double check if the GTT mapping is still
   4334 			 * valid for that pointer access.
   4335 			 */
   4336 			i915_gem_release_mmap(obj);
   4337 
   4338 			/* As we no longer need a fence for GTT access,
   4339 			 * we can relinquish it now (and so prevent having
   4340 			 * to steal a fence from someone else on the next
   4341 			 * fence request). Note GPU activity would have
   4342 			 * dropped the fence as all snoopable access is
   4343 			 * supposed to be linear.
   4344 			 */
   4345 			ret = i915_gem_object_put_fence(obj);
   4346 			if (ret)
   4347 				return ret;
   4348 		} else {
   4349 			/* We either have incoherent backing store and
   4350 			 * so no GTT access or the architecture is fully
   4351 			 * coherent. In such cases, existing GTT mmaps
   4352 			 * ignore the cache bit in the PTE and we can
   4353 			 * rewrite it without confusing the GPU or having
   4354 			 * to force userspace to fault back in its mmaps.
   4355 			 */
   4356 		}
   4357 
   4358 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
   4359 			if (!drm_mm_node_allocated(&vma->node))
   4360 				continue;
   4361 
   4362 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
   4363 			if (ret)
   4364 				return ret;
   4365 		}
   4366 	}
   4367 
   4368 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   4369 		vma->node.color = cache_level;
   4370 	obj->cache_level = cache_level;
   4371 
   4372 out:
   4373 	/* Flush the dirty CPU caches to the backing storage so that the
   4374 	 * object is now coherent at its new cache level (with respect
   4375 	 * to the access domain).
   4376 	 */
   4377 	if (obj->cache_dirty &&
   4378 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
   4379 	    cpu_write_needs_clflush(obj)) {
   4380 		if (i915_gem_clflush_object(obj, true))
   4381 			i915_gem_chipset_flush(obj->base.dev);
   4382 	}
   4383 
   4384 	return 0;
   4385 }
   4386 
   4387 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
   4388 			       struct drm_file *file)
   4389 {
   4390 	struct drm_i915_gem_caching *args = data;
   4391 	struct drm_gem_object *gobj;
   4392 	struct drm_i915_gem_object *obj;
   4393 
   4394 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4395 	if (gobj == NULL)
   4396 		return -ENOENT;
   4397 	obj = to_intel_bo(gobj);
   4398 
   4399 	switch (obj->cache_level) {
   4400 	case I915_CACHE_LLC:
   4401 	case I915_CACHE_L3_LLC:
   4402 		args->caching = I915_CACHING_CACHED;
   4403 		break;
   4404 
   4405 	case I915_CACHE_WT:
   4406 		args->caching = I915_CACHING_DISPLAY;
   4407 		break;
   4408 
   4409 	default:
   4410 		args->caching = I915_CACHING_NONE;
   4411 		break;
   4412 	}
   4413 
   4414 	drm_gem_object_unreference_unlocked(&obj->base);
   4415 	return 0;
   4416 }
   4417 
   4418 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
   4419 			       struct drm_file *file)
   4420 {
   4421 	struct drm_i915_private *dev_priv = dev->dev_private;
   4422 	struct drm_i915_gem_caching *args = data;
   4423 	struct drm_gem_object *gobj;
   4424 	struct drm_i915_gem_object *obj;
   4425 	enum i915_cache_level level;
   4426 	int ret;
   4427 
   4428 	switch (args->caching) {
   4429 	case I915_CACHING_NONE:
   4430 		level = I915_CACHE_NONE;
   4431 		break;
   4432 	case I915_CACHING_CACHED:
   4433 		/*
   4434 		 * Due to a HW issue on BXT A stepping, GPU stores via a
   4435 		 * snooped mapping may leave stale data in a corresponding CPU
   4436 		 * cacheline, whereas normally such cachelines would get
   4437 		 * invalidated.
   4438 		 */
   4439 		if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
   4440 			return -ENODEV;
   4441 
   4442 		level = I915_CACHE_LLC;
   4443 		break;
   4444 	case I915_CACHING_DISPLAY:
   4445 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
   4446 		break;
   4447 	default:
   4448 		return -EINVAL;
   4449 	}
   4450 
   4451 	intel_runtime_pm_get(dev_priv);
   4452 
   4453 	ret = i915_mutex_lock_interruptible(dev);
   4454 	if (ret)
   4455 		goto rpm_put;
   4456 
   4457 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4458 	if (gobj == NULL) {
   4459 		ret = -ENOENT;
   4460 		goto unlock;
   4461 	}
   4462 	obj = to_intel_bo(gobj);
   4463 
   4464 	ret = i915_gem_object_set_cache_level(obj, level);
   4465 
   4466 	drm_gem_object_unreference(&obj->base);
   4467 unlock:
   4468 	mutex_unlock(&dev->struct_mutex);
   4469 rpm_put:
   4470 	intel_runtime_pm_put(dev_priv);
   4471 
   4472 	return ret;
   4473 }
   4474 
   4475 /*
   4476  * Prepare buffer for display plane (scanout, cursors, etc).
   4477  * Can be called from an uninterruptible phase (modesetting) and allows
   4478  * any flushes to be pipelined (for pageflips).
   4479  */
   4480 int
   4481 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
   4482 				     u32 alignment,
   4483 				     struct intel_engine_cs *pipelined,
   4484 				     struct drm_i915_gem_request **pipelined_request,
   4485 				     const struct i915_ggtt_view *view)
   4486 {
   4487 	u32 old_read_domains, old_write_domain;
   4488 	int ret;
   4489 
   4490 	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
   4491 	if (ret)
   4492 		return ret;
   4493 
   4494 	/* Mark the pin_display early so that we account for the
   4495 	 * display coherency whilst setting up the cache domains.
   4496 	 */
   4497 	obj->pin_display++;
   4498 
   4499 	/* The display engine is not coherent with the LLC cache on gen6.  As
   4500 	 * a result, we make sure that the pinning that is about to occur is
   4501 	 * done with uncached PTEs. This is lowest common denominator for all
   4502 	 * chipsets.
   4503 	 *
   4504 	 * However for gen6+, we could do better by using the GFDT bit instead
   4505 	 * of uncaching, which would allow us to flush all the LLC-cached data
   4506 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
   4507 	 */
   4508 	ret = i915_gem_object_set_cache_level(obj,
   4509 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
   4510 	if (ret)
   4511 		goto err_unpin_display;
   4512 
   4513 	/* As the user may map the buffer once pinned in the display plane
   4514 	 * (e.g. libkms for the bootup splash), we have to ensure that we
   4515 	 * always use map_and_fenceable for all scanout buffers.
   4516 	 */
   4517 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
   4518 				       view->type == I915_GGTT_VIEW_NORMAL ?
   4519 				       PIN_MAPPABLE : 0);
   4520 	if (ret)
   4521 		goto err_unpin_display;
   4522 
   4523 	i915_gem_object_flush_cpu_write_domain(obj);
   4524 
   4525 	old_write_domain = obj->base.write_domain;
   4526 	old_read_domains = obj->base.read_domains;
   4527 
   4528 	/* It should now be out of any other write domains, and we can update
   4529 	 * the domain values for our changes.
   4530 	 */
   4531 	obj->base.write_domain = 0;
   4532 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
   4533 
   4534 	trace_i915_gem_object_change_domain(obj,
   4535 					    old_read_domains,
   4536 					    old_write_domain);
   4537 
   4538 	return 0;
   4539 
   4540 err_unpin_display:
   4541 	obj->pin_display--;
   4542 	return ret;
   4543 }
   4544 
   4545 void
   4546 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
   4547 					 const struct i915_ggtt_view *view)
   4548 {
   4549 	if (WARN_ON(obj->pin_display == 0))
   4550 		return;
   4551 
   4552 	i915_gem_object_ggtt_unpin_view(obj, view);
   4553 
   4554 	obj->pin_display--;
   4555 }
   4556 
   4557 /**
   4558  * Moves a single object to the CPU read, and possibly write domain.
   4559  *
   4560  * This function returns when the move is complete, including waiting on
   4561  * flushes to occur.
   4562  */
   4563 int
   4564 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
   4565 {
   4566 	uint32_t old_write_domain, old_read_domains;
   4567 	int ret;
   4568 
   4569 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
   4570 		return 0;
   4571 
   4572 	ret = i915_gem_object_wait_rendering(obj, !write);
   4573 	if (ret)
   4574 		return ret;
   4575 
   4576 	i915_gem_object_flush_gtt_write_domain(obj);
   4577 
   4578 	old_write_domain = obj->base.write_domain;
   4579 	old_read_domains = obj->base.read_domains;
   4580 
   4581 	/* Flush the CPU cache if it's still invalid. */
   4582 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
   4583 		i915_gem_clflush_object(obj, false);
   4584 
   4585 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
   4586 	}
   4587 
   4588 	/* It should now be out of any other write domains, and we can update
   4589 	 * the domain values for our changes.
   4590 	 */
   4591 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
   4592 
   4593 	/* If we're writing through the CPU, then the GPU read domains will
   4594 	 * need to be invalidated at next use.
   4595 	 */
   4596 	if (write) {
   4597 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4598 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4599 	}
   4600 
   4601 	trace_i915_gem_object_change_domain(obj,
   4602 					    old_read_domains,
   4603 					    old_write_domain);
   4604 
   4605 	return 0;
   4606 }
   4607 
   4608 /* Throttle our rendering by waiting until the ring has completed our requests
   4609  * emitted over 20 msec ago.
   4610  *
   4611  * Note that if we were to use the current jiffies each time around the loop,
   4612  * we wouldn't escape the function with any frames outstanding if the time to
   4613  * render a frame was over 20ms.
   4614  *
   4615  * This should get us reasonable parallelism between CPU and GPU but also
   4616  * relatively low latency when blocking on a particular request to finish.
   4617  */
   4618 static int
   4619 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
   4620 {
   4621 	struct drm_i915_private *dev_priv = dev->dev_private;
   4622 	struct drm_i915_file_private *file_priv = file->driver_priv;
   4623 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
   4624 	struct drm_i915_gem_request *request, *target = NULL;
   4625 	unsigned reset_counter;
   4626 	int ret;
   4627 
   4628 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
   4629 	if (ret)
   4630 		return ret;
   4631 
   4632 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
   4633 	if (ret)
   4634 		return ret;
   4635 
   4636 	spin_lock(&file_priv->mm.lock);
   4637 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
   4638 		if (time_after_eq(request->emitted_jiffies, recent_enough))
   4639 			break;
   4640 
   4641 		/*
   4642 		 * Note that the request might not have been submitted yet.
   4643 		 * In which case emitted_jiffies will be zero.
   4644 		 */
   4645 		if (!request->emitted_jiffies)
   4646 			continue;
   4647 
   4648 		target = request;
   4649 	}
   4650 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
   4651 	if (target)
   4652 		i915_gem_request_reference(target);
   4653 	spin_unlock(&file_priv->mm.lock);
   4654 
   4655 	if (target == NULL)
   4656 		return 0;
   4657 
   4658 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
   4659 	if (ret == 0)
   4660 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
   4661 
   4662 	i915_gem_request_unreference__unlocked(target);
   4663 
   4664 	return ret;
   4665 }
   4666 
   4667 static bool
   4668 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
   4669 {
   4670 	struct drm_i915_gem_object *obj = vma->obj;
   4671 
   4672 	if (alignment &&
   4673 	    vma->node.start & (alignment - 1))
   4674 		return true;
   4675 
   4676 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
   4677 		return true;
   4678 
   4679 	if (flags & PIN_OFFSET_BIAS &&
   4680 	    vma->node.start < (flags & PIN_OFFSET_MASK))
   4681 		return true;
   4682 
   4683 	return false;
   4684 }
   4685 
   4686 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
   4687 {
   4688 	struct drm_i915_gem_object *obj = vma->obj;
   4689 	bool mappable, fenceable;
   4690 	u32 fence_size, fence_alignment;
   4691 
   4692 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
   4693 					   obj->base.size,
   4694 					   obj->tiling_mode);
   4695 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
   4696 						     obj->base.size,
   4697 						     obj->tiling_mode,
   4698 						     true);
   4699 
   4700 	fenceable = (vma->node.size == fence_size &&
   4701 		     (vma->node.start & (fence_alignment - 1)) == 0);
   4702 
   4703 	mappable = (vma->node.start + fence_size <=
   4704 		    to_i915(obj->base.dev)->gtt.mappable_end);
   4705 
   4706 	obj->map_and_fenceable = mappable && fenceable;
   4707 }
   4708 
   4709 static int
   4710 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
   4711 		       struct i915_address_space *vm,
   4712 		       const struct i915_ggtt_view *ggtt_view,
   4713 		       uint32_t alignment,
   4714 		       uint64_t flags)
   4715 {
   4716 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
   4717 	struct i915_vma *vma;
   4718 	unsigned bound;
   4719 	int ret;
   4720 
   4721 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
   4722 		return -ENODEV;
   4723 
   4724 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
   4725 		return -EINVAL;
   4726 
   4727 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
   4728 		return -EINVAL;
   4729 
   4730 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
   4731 		return -EINVAL;
   4732 
   4733 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
   4734 			  i915_gem_obj_to_vma(obj, vm);
   4735 
   4736 	if (IS_ERR(vma))
   4737 		return PTR_ERR(vma);
   4738 
   4739 	if (vma) {
   4740 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
   4741 			return -EBUSY;
   4742 
   4743 		if (i915_vma_misplaced(vma, alignment, flags)) {
   4744 			WARN(vma->pin_count,
   4745 			     "bo is already pinned in %s with incorrect alignment:"
   4746 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
   4747 			     " obj->map_and_fenceable=%d\n",
   4748 			     ggtt_view ? "ggtt" : "ppgtt",
   4749 			     upper_32_bits(vma->node.start),
   4750 			     lower_32_bits(vma->node.start),
   4751 			     alignment,
   4752 			     !!(flags & PIN_MAPPABLE),
   4753 			     obj->map_and_fenceable);
   4754 			ret = i915_vma_unbind(vma);
   4755 			if (ret)
   4756 				return ret;
   4757 
   4758 			vma = NULL;
   4759 		}
   4760 	}
   4761 
   4762 	bound = vma ? vma->bound : 0;
   4763 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
   4764 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
   4765 						 flags);
   4766 		if (IS_ERR(vma))
   4767 			return PTR_ERR(vma);
   4768 	} else {
   4769 		ret = i915_vma_bind(vma, obj->cache_level, flags);
   4770 		if (ret)
   4771 			return ret;
   4772 	}
   4773 
   4774 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
   4775 	    (bound ^ vma->bound) & GLOBAL_BIND) {
   4776 		__i915_vma_set_map_and_fenceable(vma);
   4777 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
   4778 	}
   4779 
   4780 	vma->pin_count++;
   4781 	return 0;
   4782 }
   4783 
   4784 int
   4785 i915_gem_object_pin(struct drm_i915_gem_object *obj,
   4786 		    struct i915_address_space *vm,
   4787 		    uint32_t alignment,
   4788 		    uint64_t flags)
   4789 {
   4790 	return i915_gem_object_do_pin(obj, vm,
   4791 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
   4792 				      alignment, flags);
   4793 }
   4794 
   4795 int
   4796 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
   4797 			 const struct i915_ggtt_view *view,
   4798 			 uint32_t alignment,
   4799 			 uint64_t flags)
   4800 {
   4801 	if (WARN_ONCE(!view, "no view specified"))
   4802 		return -EINVAL;
   4803 
   4804 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
   4805 				      alignment, flags | PIN_GLOBAL);
   4806 }
   4807 
   4808 void
   4809 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
   4810 				const struct i915_ggtt_view *view)
   4811 {
   4812 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
   4813 
   4814 	BUG_ON(!vma);
   4815 	WARN_ON(vma->pin_count == 0);
   4816 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
   4817 
   4818 	--vma->pin_count;
   4819 }
   4820 
   4821 int
   4822 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
   4823 		    struct drm_file *file)
   4824 {
   4825 	struct drm_i915_gem_busy *args = data;
   4826 	struct drm_gem_object *gobj;
   4827 	struct drm_i915_gem_object *obj;
   4828 	int ret;
   4829 
   4830 	ret = i915_mutex_lock_interruptible(dev);
   4831 	if (ret)
   4832 		return ret;
   4833 
   4834 	gobj = drm_gem_object_lookup(dev, file, args->handle);
   4835 	if (gobj == NULL) {
   4836 		ret = -ENOENT;
   4837 		goto unlock;
   4838 	}
   4839 	obj = to_intel_bo(gobj);
   4840 
   4841 	/* Count all active objects as busy, even if they are currently not used
   4842 	 * by the gpu. Users of this interface expect objects to eventually
   4843 	 * become non-busy without any further actions, therefore emit any
   4844 	 * necessary flushes here.
   4845 	 */
   4846 	ret = i915_gem_object_flush_active(obj);
   4847 	if (ret)
   4848 		goto unref;
   4849 
   4850 	BUILD_BUG_ON(I915_NUM_RINGS > 16);
   4851 	args->busy = obj->active << 16;
   4852 	if (obj->last_write_req)
   4853 		args->busy |= obj->last_write_req->ring->id;
   4854 
   4855 unref:
   4856 	drm_gem_object_unreference(&obj->base);
   4857 unlock:
   4858 	mutex_unlock(&dev->struct_mutex);
   4859 	return ret;
   4860 }
   4861 
   4862 int
   4863 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
   4864 			struct drm_file *file_priv)
   4865 {
   4866 	return i915_gem_ring_throttle(dev, file_priv);
   4867 }
   4868 
   4869 int
   4870 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   4871 		       struct drm_file *file_priv)
   4872 {
   4873 	struct drm_i915_private *dev_priv = dev->dev_private;
   4874 	struct drm_i915_gem_madvise *args = data;
   4875 	struct drm_gem_object *gobj;
   4876 	struct drm_i915_gem_object *obj;
   4877 	int ret;
   4878 
   4879 	switch (args->madv) {
   4880 	case I915_MADV_DONTNEED:
   4881 	case I915_MADV_WILLNEED:
   4882 	    break;
   4883 	default:
   4884 	    return -EINVAL;
   4885 	}
   4886 
   4887 	ret = i915_mutex_lock_interruptible(dev);
   4888 	if (ret)
   4889 		return ret;
   4890 
   4891 	gobj = drm_gem_object_lookup(dev, file_priv, args->handle);
   4892 	if (gobj == NULL) {
   4893 		ret = -ENOENT;
   4894 		goto unlock;
   4895 	}
   4896 	obj = to_intel_bo(gobj);
   4897 
   4898 	if (i915_gem_obj_is_pinned(obj)) {
   4899 		ret = -EINVAL;
   4900 		goto out;
   4901 	}
   4902 
   4903 	if (obj->pages &&
   4904 	    obj->tiling_mode != I915_TILING_NONE &&
   4905 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
   4906 		if (obj->madv == I915_MADV_WILLNEED)
   4907 			i915_gem_object_unpin_pages(obj);
   4908 		if (args->madv == I915_MADV_WILLNEED)
   4909 			i915_gem_object_pin_pages(obj);
   4910 	}
   4911 
   4912 	if (obj->madv != __I915_MADV_PURGED)
   4913 		obj->madv = args->madv;
   4914 
   4915 	/* if the object is no longer attached, discard its backing storage */
   4916 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
   4917 		i915_gem_object_truncate(obj);
   4918 
   4919 	args->retained = obj->madv != __I915_MADV_PURGED;
   4920 
   4921 out:
   4922 	drm_gem_object_unreference(&obj->base);
   4923 unlock:
   4924 	mutex_unlock(&dev->struct_mutex);
   4925 	return ret;
   4926 }
   4927 
   4928 void i915_gem_object_init(struct drm_i915_gem_object *obj,
   4929 			  const struct drm_i915_gem_object_ops *ops)
   4930 {
   4931 	int i;
   4932 
   4933 	INIT_LIST_HEAD(&obj->global_list);
   4934 	for (i = 0; i < I915_NUM_RINGS; i++)
   4935 		INIT_LIST_HEAD(&obj->ring_list[i]);
   4936 	INIT_LIST_HEAD(&obj->obj_exec_link);
   4937 	INIT_LIST_HEAD(&obj->vma_list);
   4938 	INIT_LIST_HEAD(&obj->batch_pool_link);
   4939 
   4940 	obj->ops = ops;
   4941 
   4942 	obj->fence_reg = I915_FENCE_REG_NONE;
   4943 	obj->madv = I915_MADV_WILLNEED;
   4944 
   4945 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
   4946 }
   4947 
   4948 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
   4949 	.get_pages = i915_gem_object_get_pages_gtt,
   4950 	.put_pages = i915_gem_object_put_pages_gtt,
   4951 };
   4952 
   4953 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
   4954 						  size_t size)
   4955 {
   4956 #ifdef __NetBSD__
   4957 	struct drm_i915_private *const dev_priv = dev->dev_private;
   4958 #endif
   4959 	struct drm_i915_gem_object *obj;
   4960 #ifndef __NetBSD__
   4961 	struct address_space *mapping;
   4962 	gfp_t mask;
   4963 #endif
   4964 
   4965 	obj = i915_gem_object_alloc(dev);
   4966 	if (obj == NULL)
   4967 		return NULL;
   4968 
   4969 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
   4970 		i915_gem_object_free(obj);
   4971 		return NULL;
   4972 	}
   4973 
   4974 #ifdef __NetBSD__
   4975 	uao_set_pgfl(obj->base.filp, dev_priv->gtt.pgfl);
   4976 #else
   4977 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
   4978 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
   4979 		/* 965gm cannot relocate objects above 4GiB. */
   4980 		mask &= ~__GFP_HIGHMEM;
   4981 		mask |= __GFP_DMA32;
   4982 	}
   4983 
   4984 	mapping = file_inode(obj->base.filp)->i_mapping;
   4985 	mapping_set_gfp_mask(mapping, mask);
   4986 #endif
   4987 
   4988 	i915_gem_object_init(obj, &i915_gem_object_ops);
   4989 
   4990 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
   4991 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
   4992 
   4993 	if (HAS_LLC(dev)) {
   4994 		/* On some devices, we can have the GPU use the LLC (the CPU
   4995 		 * cache) for about a 10% performance improvement
   4996 		 * compared to uncached.  Graphics requests other than
   4997 		 * display scanout are coherent with the CPU in
   4998 		 * accessing this cache.  This means in this mode we
   4999 		 * don't need to clflush on the CPU side, and on the
   5000 		 * GPU side we only need to flush internal caches to
   5001 		 * get data visible to the CPU.
   5002 		 *
   5003 		 * However, we maintain the display planes as UC, and so
   5004 		 * need to rebind when first used as such.
   5005 		 */
   5006 		obj->cache_level = I915_CACHE_LLC;
   5007 	} else
   5008 		obj->cache_level = I915_CACHE_NONE;
   5009 
   5010 	trace_i915_gem_object_create(obj);
   5011 
   5012 	return obj;
   5013 }
   5014 
   5015 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
   5016 {
   5017 	/* If we are the last user of the backing storage (be it shmemfs
   5018 	 * pages or stolen etc), we know that the pages are going to be
   5019 	 * immediately released. In this case, we can then skip copying
   5020 	 * back the contents from the GPU.
   5021 	 */
   5022 
   5023 	if (obj->madv != I915_MADV_WILLNEED)
   5024 		return false;
   5025 
   5026 	if (obj->base.filp == NULL)
   5027 		return true;
   5028 
   5029 	/* At first glance, this looks racy, but then again so would be
   5030 	 * userspace racing mmap against close. However, the first external
   5031 	 * reference to the filp can only be obtained through the
   5032 	 * i915_gem_mmap_ioctl() which safeguards us against the user
   5033 	 * acquiring such a reference whilst we are in the middle of
   5034 	 * freeing the object.
   5035 	 */
   5036 #ifdef __NetBSD__
   5037 	/* XXX This number might be a fencepost.  */
   5038 	return obj->base.filp->uo_refs == 1;
   5039 #else
   5040 	return atomic_long_read(&obj->base.filp->f_count) == 1;
   5041 #endif
   5042 }
   5043 
   5044 void i915_gem_free_object(struct drm_gem_object *gem_obj)
   5045 {
   5046 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
   5047 	struct drm_device *dev = obj->base.dev;
   5048 	struct drm_i915_private *dev_priv = dev->dev_private;
   5049 	struct i915_vma *vma, *next;
   5050 
   5051 	intel_runtime_pm_get(dev_priv);
   5052 
   5053 	trace_i915_gem_object_destroy(obj);
   5054 
   5055 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
   5056 		int ret;
   5057 
   5058 		vma->pin_count = 0;
   5059 		ret = i915_vma_unbind(vma);
   5060 		if (WARN_ON(ret == -ERESTARTSYS)) {
   5061 			bool was_interruptible;
   5062 
   5063 			was_interruptible = dev_priv->mm.interruptible;
   5064 			dev_priv->mm.interruptible = false;
   5065 
   5066 			WARN_ON(i915_vma_unbind(vma));
   5067 
   5068 			dev_priv->mm.interruptible = was_interruptible;
   5069 		}
   5070 	}
   5071 
   5072 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
   5073 	 * before progressing. */
   5074 	if (obj->stolen)
   5075 		i915_gem_object_unpin_pages(obj);
   5076 
   5077 	WARN_ON(obj->frontbuffer_bits);
   5078 
   5079 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
   5080 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
   5081 	    obj->tiling_mode != I915_TILING_NONE)
   5082 		i915_gem_object_unpin_pages(obj);
   5083 
   5084 	if (WARN_ON(obj->pages_pin_count))
   5085 		obj->pages_pin_count = 0;
   5086 	if (discard_backing_storage(obj))
   5087 		obj->madv = I915_MADV_DONTNEED;
   5088 	i915_gem_object_put_pages(obj);
   5089 	i915_gem_object_free_mmap_offset(obj);
   5090 
   5091 	BUG_ON(obj->pages);
   5092 
   5093 	if (obj->base.import_attach)
   5094 		drm_prime_gem_destroy(&obj->base, NULL);
   5095 
   5096 	if (obj->ops->release)
   5097 		obj->ops->release(obj);
   5098 
   5099 	drm_gem_object_release(&obj->base);
   5100 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
   5101 
   5102 	kfree(obj->bit_17);
   5103 	i915_gem_object_free(obj);
   5104 
   5105 	intel_runtime_pm_put(dev_priv);
   5106 }
   5107 
   5108 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
   5109 				     struct i915_address_space *vm)
   5110 {
   5111 	struct i915_vma *vma;
   5112 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
   5113 		if (i915_is_ggtt(vma->vm) &&
   5114 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5115 			continue;
   5116 		if (vma->vm == vm)
   5117 			return vma;
   5118 	}
   5119 	return NULL;
   5120 }
   5121 
   5122 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
   5123 					   const struct i915_ggtt_view *view)
   5124 {
   5125 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
   5126 	struct i915_vma *vma;
   5127 
   5128 	if (WARN_ONCE(!view, "no view specified"))
   5129 		return ERR_PTR(-EINVAL);
   5130 
   5131 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   5132 		if (vma->vm == ggtt &&
   5133 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
   5134 			return vma;
   5135 	return NULL;
   5136 }
   5137 
   5138 void i915_gem_vma_destroy(struct i915_vma *vma)
   5139 {
   5140 	struct i915_address_space *vm = NULL;
   5141 	WARN_ON(vma->node.allocated);
   5142 
   5143 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
   5144 	if (!list_empty(&vma->exec_list))
   5145 		return;
   5146 
   5147 	vm = vma->vm;
   5148 
   5149 	if (!i915_is_ggtt(vm))
   5150 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
   5151 
   5152 	list_del(&vma->vma_link);
   5153 
   5154 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
   5155 }
   5156 
   5157 static void
   5158 i915_gem_stop_ringbuffers(struct drm_device *dev)
   5159 {
   5160 	struct drm_i915_private *dev_priv = dev->dev_private;
   5161 	struct intel_engine_cs *ring;
   5162 	int i;
   5163 
   5164 	for_each_ring(ring, dev_priv, i)
   5165 		dev_priv->gt.stop_ring(ring);
   5166 }
   5167 
   5168 int
   5169 i915_gem_suspend(struct drm_device *dev)
   5170 {
   5171 	struct drm_i915_private *dev_priv = dev->dev_private;
   5172 	int ret = 0;
   5173 
   5174 	mutex_lock(&dev->struct_mutex);
   5175 	ret = i915_gpu_idle(dev);
   5176 	if (ret)
   5177 		goto err;
   5178 
   5179 	i915_gem_retire_requests(dev);
   5180 
   5181 	i915_gem_stop_ringbuffers(dev);
   5182 	mutex_unlock(&dev->struct_mutex);
   5183 
   5184 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
   5185 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
   5186 	flush_delayed_work(&dev_priv->mm.idle_work);
   5187 
   5188 	/* Assert that we sucessfully flushed all the work and
   5189 	 * reset the GPU back to its idle, low power state.
   5190 	 */
   5191 	WARN_ON(dev_priv->mm.busy);
   5192 
   5193 	return 0;
   5194 
   5195 err:
   5196 	mutex_unlock(&dev->struct_mutex);
   5197 	return ret;
   5198 }
   5199 
   5200 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
   5201 {
   5202 	struct intel_engine_cs *ring = req->ring;
   5203 	struct drm_device *dev = ring->dev;
   5204 	struct drm_i915_private *dev_priv = dev->dev_private;
   5205 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
   5206 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
   5207 	int i, ret;
   5208 
   5209 	if (!HAS_L3_DPF(dev) || !remap_info)
   5210 		return 0;
   5211 
   5212 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
   5213 	if (ret)
   5214 		return ret;
   5215 
   5216 	/*
   5217 	 * Note: We do not worry about the concurrent register cacheline hang
   5218 	 * here because no other code should access these registers other than
   5219 	 * at initialization time.
   5220 	 */
   5221 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
   5222 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
   5223 		intel_ring_emit(ring, reg_base + i);
   5224 		intel_ring_emit(ring, remap_info[i/4]);
   5225 	}
   5226 
   5227 	intel_ring_advance(ring);
   5228 
   5229 	return ret;
   5230 }
   5231 
   5232 void i915_gem_init_swizzling(struct drm_device *dev)
   5233 {
   5234 	struct drm_i915_private *dev_priv = dev->dev_private;
   5235 
   5236 	if (INTEL_INFO(dev)->gen < 5 ||
   5237 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
   5238 		return;
   5239 
   5240 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
   5241 				 DISP_TILE_SURFACE_SWIZZLING);
   5242 
   5243 	if (IS_GEN5(dev))
   5244 		return;
   5245 
   5246 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
   5247 	if (IS_GEN6(dev))
   5248 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
   5249 	else if (IS_GEN7(dev))
   5250 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
   5251 	else if (IS_GEN8(dev))
   5252 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
   5253 	else
   5254 		BUG();
   5255 }
   5256 
   5257 static void init_unused_ring(struct drm_device *dev, u32 base)
   5258 {
   5259 	struct drm_i915_private *dev_priv = dev->dev_private;
   5260 
   5261 	I915_WRITE(RING_CTL(base), 0);
   5262 	I915_WRITE(RING_HEAD(base), 0);
   5263 	I915_WRITE(RING_TAIL(base), 0);
   5264 	I915_WRITE(RING_START(base), 0);
   5265 }
   5266 
   5267 static void init_unused_rings(struct drm_device *dev)
   5268 {
   5269 	if (IS_I830(dev)) {
   5270 		init_unused_ring(dev, PRB1_BASE);
   5271 		init_unused_ring(dev, SRB0_BASE);
   5272 		init_unused_ring(dev, SRB1_BASE);
   5273 		init_unused_ring(dev, SRB2_BASE);
   5274 		init_unused_ring(dev, SRB3_BASE);
   5275 	} else if (IS_GEN2(dev)) {
   5276 		init_unused_ring(dev, SRB0_BASE);
   5277 		init_unused_ring(dev, SRB1_BASE);
   5278 	} else if (IS_GEN3(dev)) {
   5279 		init_unused_ring(dev, PRB1_BASE);
   5280 		init_unused_ring(dev, PRB2_BASE);
   5281 	}
   5282 }
   5283 
   5284 int i915_gem_init_rings(struct drm_device *dev)
   5285 {
   5286 	struct drm_i915_private *dev_priv = dev->dev_private;
   5287 	int ret;
   5288 
   5289 	ret = intel_init_render_ring_buffer(dev);
   5290 	if (ret)
   5291 		return ret;
   5292 
   5293 	if (HAS_BSD(dev)) {
   5294 		ret = intel_init_bsd_ring_buffer(dev);
   5295 		if (ret)
   5296 			goto cleanup_render_ring;
   5297 	}
   5298 
   5299 	if (HAS_BLT(dev)) {
   5300 		ret = intel_init_blt_ring_buffer(dev);
   5301 		if (ret)
   5302 			goto cleanup_bsd_ring;
   5303 	}
   5304 
   5305 	if (HAS_VEBOX(dev)) {
   5306 		ret = intel_init_vebox_ring_buffer(dev);
   5307 		if (ret)
   5308 			goto cleanup_blt_ring;
   5309 	}
   5310 
   5311 	if (HAS_BSD2(dev)) {
   5312 		ret = intel_init_bsd2_ring_buffer(dev);
   5313 		if (ret)
   5314 			goto cleanup_vebox_ring;
   5315 	}
   5316 
   5317 	return 0;
   5318 
   5319 cleanup_vebox_ring:
   5320 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
   5321 cleanup_blt_ring:
   5322 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
   5323 cleanup_bsd_ring:
   5324 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
   5325 cleanup_render_ring:
   5326 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
   5327 
   5328 	return ret;
   5329 }
   5330 
   5331 int
   5332 i915_gem_init_hw(struct drm_device *dev)
   5333 {
   5334 	struct drm_i915_private *dev_priv = dev->dev_private;
   5335 	struct intel_engine_cs *ring;
   5336 	int ret, i, j;
   5337 
   5338 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
   5339 		return -EIO;
   5340 
   5341 	/* Double layer security blanket, see i915_gem_init() */
   5342 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5343 
   5344 	if (dev_priv->ellc_size)
   5345 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
   5346 
   5347 	if (IS_HASWELL(dev))
   5348 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
   5349 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
   5350 
   5351 	if (HAS_PCH_NOP(dev)) {
   5352 		if (IS_IVYBRIDGE(dev)) {
   5353 			u32 temp = I915_READ(GEN7_MSG_CTL);
   5354 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
   5355 			I915_WRITE(GEN7_MSG_CTL, temp);
   5356 		} else if (INTEL_INFO(dev)->gen >= 7) {
   5357 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
   5358 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
   5359 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
   5360 		}
   5361 	}
   5362 
   5363 	i915_gem_init_swizzling(dev);
   5364 
   5365 	/*
   5366 	 * At least 830 can leave some of the unused rings
   5367 	 * "active" (ie. head != tail) after resume which
   5368 	 * will prevent c3 entry. Makes sure all unused rings
   5369 	 * are totally idle.
   5370 	 */
   5371 	init_unused_rings(dev);
   5372 
   5373 	BUG_ON(!dev_priv->ring[RCS].default_context);
   5374 
   5375 	ret = i915_ppgtt_init_hw(dev);
   5376 	if (ret) {
   5377 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
   5378 		goto out;
   5379 	}
   5380 
   5381 	/* Need to do basic initialisation of all rings first: */
   5382 	for_each_ring(ring, dev_priv, i) {
   5383 		ret = ring->init_hw(ring);
   5384 		if (ret)
   5385 			goto out;
   5386 	}
   5387 
   5388 	/* We can't enable contexts until all firmware is loaded */
   5389 	if (HAS_GUC_UCODE(dev)) {
   5390 		ret = intel_guc_ucode_load(dev);
   5391 		if (ret) {
   5392 			/*
   5393 			 * If we got an error and GuC submission is enabled, map
   5394 			 * the error to -EIO so the GPU will be declared wedged.
   5395 			 * OTOH, if we didn't intend to use the GuC anyway, just
   5396 			 * discard the error and carry on.
   5397 			 */
   5398 			DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
   5399 				  i915.enable_guc_submission ? "" :
   5400 				  " (ignored)");
   5401 			ret = i915.enable_guc_submission ? -EIO : 0;
   5402 			if (ret)
   5403 				goto out;
   5404 		}
   5405 	}
   5406 
   5407 	/*
   5408 	 * Increment the next seqno by 0x100 so we have a visible break
   5409 	 * on re-initialisation
   5410 	 */
   5411 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
   5412 	if (ret)
   5413 		goto out;
   5414 
   5415 	/* Now it is safe to go back round and do everything else: */
   5416 	for_each_ring(ring, dev_priv, i) {
   5417 		struct drm_i915_gem_request *req;
   5418 
   5419 		WARN_ON(!ring->default_context);
   5420 
   5421 		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
   5422 		if (ret) {
   5423 			i915_gem_cleanup_ringbuffer(dev);
   5424 			goto out;
   5425 		}
   5426 
   5427 		if (ring->id == RCS) {
   5428 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
   5429 				i915_gem_l3_remap(req, j);
   5430 		}
   5431 
   5432 		ret = i915_ppgtt_init_ring(req);
   5433 		if (ret && ret != -EIO) {
   5434 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
   5435 			i915_gem_request_cancel(req);
   5436 			i915_gem_cleanup_ringbuffer(dev);
   5437 			goto out;
   5438 		}
   5439 
   5440 		ret = i915_gem_context_enable(req);
   5441 		if (ret && ret != -EIO) {
   5442 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
   5443 			i915_gem_request_cancel(req);
   5444 			i915_gem_cleanup_ringbuffer(dev);
   5445 			goto out;
   5446 		}
   5447 
   5448 		i915_add_request_no_flush(req);
   5449 	}
   5450 
   5451 out:
   5452 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5453 	return ret;
   5454 }
   5455 
   5456 int i915_gem_init(struct drm_device *dev)
   5457 {
   5458 	struct drm_i915_private *dev_priv = dev->dev_private;
   5459 	int ret;
   5460 
   5461 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
   5462 			i915.enable_execlists);
   5463 
   5464 	idr_preload(GFP_KERNEL);	/* gem context */
   5465 	mutex_lock(&dev->struct_mutex);
   5466 
   5467 	if (IS_VALLEYVIEW(dev)) {
   5468 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
   5469 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
   5470 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
   5471 			      VLV_GTLC_ALLOWWAKEACK), 10))
   5472 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
   5473 	}
   5474 
   5475 	if (!i915.enable_execlists) {
   5476 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
   5477 		dev_priv->gt.init_rings = i915_gem_init_rings;
   5478 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
   5479 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
   5480 	} else {
   5481 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
   5482 		dev_priv->gt.init_rings = intel_logical_rings_init;
   5483 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
   5484 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
   5485 	}
   5486 
   5487 	/* This is just a security blanket to placate dragons.
   5488 	 * On some systems, we very sporadically observe that the first TLBs
   5489 	 * used by the CS may be stale, despite us poking the TLB reset. If
   5490 	 * we hold the forcewake during initialisation these problems
   5491 	 * just magically go away.
   5492 	 */
   5493 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5494 
   5495 	ret = i915_gem_init_userptr(dev);
   5496 	if (ret)
   5497 		goto out_unlock;
   5498 
   5499 	i915_gem_init_global_gtt(dev);
   5500 
   5501 	ret = i915_gem_context_init(dev);
   5502 	if (ret)
   5503 		goto out_unlock;
   5504 
   5505 	ret = dev_priv->gt.init_rings(dev);
   5506 	if (ret)
   5507 		goto out_unlock;
   5508 
   5509 	ret = i915_gem_init_hw(dev);
   5510 	if (ret == -EIO) {
   5511 		/* Allow ring initialisation to fail by marking the GPU as
   5512 		 * wedged. But we only want to do this where the GPU is angry,
   5513 		 * for all other failure, such as an allocation failure, bail.
   5514 		 */
   5515 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
   5516 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
   5517 		ret = 0;
   5518 	}
   5519 
   5520 out_unlock:
   5521 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5522 	mutex_unlock(&dev->struct_mutex);
   5523 	idr_preload_end();
   5524 
   5525 	return ret;
   5526 }
   5527 
   5528 void
   5529 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
   5530 {
   5531 	struct drm_i915_private *dev_priv = dev->dev_private;
   5532 	struct intel_engine_cs *ring;
   5533 	int i;
   5534 
   5535 	for_each_ring(ring, dev_priv, i)
   5536 		dev_priv->gt.cleanup_ring(ring);
   5537 
   5538     if (i915.enable_execlists)
   5539             /*
   5540              * Neither the BIOS, ourselves or any other kernel
   5541              * expects the system to be in execlists mode on startup,
   5542              * so we need to reset the GPU back to legacy mode.
   5543              */
   5544             intel_gpu_reset(dev);
   5545 }
   5546 
   5547 static void
   5548 init_ring_lists(struct intel_engine_cs *ring)
   5549 {
   5550 	INIT_LIST_HEAD(&ring->active_list);
   5551 	INIT_LIST_HEAD(&ring->request_list);
   5552 }
   5553 
   5554 void
   5555 i915_gem_load(struct drm_device *dev)
   5556 {
   5557 	struct drm_i915_private *dev_priv = dev->dev_private;
   5558 	int i;
   5559 
   5560 	dev_priv->objects =
   5561 		kmem_cache_create("i915_gem_object",
   5562 				  sizeof(struct drm_i915_gem_object), 0,
   5563 				  SLAB_HWCACHE_ALIGN,
   5564 				  NULL);
   5565 	dev_priv->vmas =
   5566 		kmem_cache_create("i915_gem_vma",
   5567 				  sizeof(struct i915_vma), 0,
   5568 				  SLAB_HWCACHE_ALIGN,
   5569 				  NULL);
   5570 	dev_priv->requests =
   5571 		kmem_cache_create("i915_gem_request",
   5572 				  sizeof(struct drm_i915_gem_request), 0,
   5573 				  SLAB_HWCACHE_ALIGN,
   5574 				  NULL);
   5575 
   5576 	INIT_LIST_HEAD(&dev_priv->vm_list);
   5577 	INIT_LIST_HEAD(&dev_priv->context_list);
   5578 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
   5579 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
   5580 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5581 	for (i = 0; i < I915_NUM_RINGS; i++)
   5582 		init_ring_lists(&dev_priv->ring[i]);
   5583 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
   5584 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
   5585 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
   5586 			  i915_gem_retire_work_handler);
   5587 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
   5588 			  i915_gem_idle_work_handler);
   5589 #ifdef __NetBSD__
   5590 	spin_lock_init(&dev_priv->gpu_error.reset_lock);
   5591 	DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
   5592 #else
   5593 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
   5594 #endif
   5595 
   5596 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
   5597 
   5598 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
   5599 		dev_priv->num_fence_regs = 32;
   5600 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
   5601 		dev_priv->num_fence_regs = 16;
   5602 	else
   5603 		dev_priv->num_fence_regs = 8;
   5604 
   5605 	if (intel_vgpu_active(dev))
   5606 		dev_priv->num_fence_regs =
   5607 				I915_READ(vgtif_reg(avail_rs.fence_num));
   5608 
   5609 	/*
   5610 	 * Set initial sequence number for requests.
   5611 	 * Using this number allows the wraparound to happen early,
   5612 	 * catching any obvious problems.
   5613 	 */
   5614 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
   5615 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
   5616 
   5617 	/* Initialize fence registers to zero */
   5618 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
   5619 	i915_gem_restore_fences(dev);
   5620 
   5621 	i915_gem_detect_bit_6_swizzle(dev);
   5622 #ifdef __NetBSD__
   5623 	DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
   5624 	spin_lock_init(&dev_priv->pending_flip_lock);
   5625 #else
   5626 	init_waitqueue_head(&dev_priv->pending_flip_queue);
   5627 #endif
   5628 
   5629 	dev_priv->mm.interruptible = true;
   5630 
   5631 	i915_gem_shrinker_init(dev_priv);
   5632 	mutex_init(&dev_priv->fb_tracking.lock);
   5633 }
   5634 
   5635 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   5636 {
   5637 	struct drm_i915_file_private *file_priv = file->driver_priv;
   5638 
   5639 	/* Clean up our request list when the client is going away, so that
   5640 	 * later retire_requests won't dereference our soon-to-be-gone
   5641 	 * file_priv.
   5642 	 */
   5643 	spin_lock(&file_priv->mm.lock);
   5644 	while (!list_empty(&file_priv->mm.request_list)) {
   5645 		struct drm_i915_gem_request *request;
   5646 
   5647 		request = list_first_entry(&file_priv->mm.request_list,
   5648 					   struct drm_i915_gem_request,
   5649 					   client_list);
   5650 		list_del(&request->client_list);
   5651 		request->file_priv = NULL;
   5652 	}
   5653 	spin_unlock(&file_priv->mm.lock);
   5654 
   5655 	if (!list_empty(&file_priv->rps.link)) {
   5656 		spin_lock(&to_i915(dev)->rps.client_lock);
   5657 		list_del(&file_priv->rps.link);
   5658 		spin_unlock(&to_i915(dev)->rps.client_lock);
   5659 	}
   5660 }
   5661 
   5662 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
   5663 {
   5664 	struct drm_i915_file_private *file_priv;
   5665 	int ret;
   5666 
   5667 	DRM_DEBUG_DRIVER("\n");
   5668 
   5669 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
   5670 	if (!file_priv)
   5671 		return -ENOMEM;
   5672 
   5673 	file->driver_priv = file_priv;
   5674 	file_priv->dev_priv = dev->dev_private;
   5675 	file_priv->file = file;
   5676 	INIT_LIST_HEAD(&file_priv->rps.link);
   5677 
   5678 	spin_lock_init(&file_priv->mm.lock);
   5679 	INIT_LIST_HEAD(&file_priv->mm.request_list);
   5680 
   5681 	ret = i915_gem_context_open(dev, file);
   5682 	if (ret)
   5683 		kfree(file_priv);
   5684 
   5685 	return ret;
   5686 }
   5687 
   5688 /**
   5689  * i915_gem_track_fb - update frontbuffer tracking
   5690  * @old: current GEM buffer for the frontbuffer slots
   5691  * @new: new GEM buffer for the frontbuffer slots
   5692  * @frontbuffer_bits: bitmask of frontbuffer slots
   5693  *
   5694  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
   5695  * from @old and setting them in @new. Both @old and @new can be NULL.
   5696  */
   5697 void i915_gem_track_fb(struct drm_i915_gem_object *old,
   5698 		       struct drm_i915_gem_object *new,
   5699 		       unsigned frontbuffer_bits)
   5700 {
   5701 	if (old) {
   5702 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
   5703 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
   5704 		old->frontbuffer_bits &= ~frontbuffer_bits;
   5705 	}
   5706 
   5707 	if (new) {
   5708 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
   5709 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
   5710 		new->frontbuffer_bits |= frontbuffer_bits;
   5711 	}
   5712 }
   5713 
   5714 /* All the new VM stuff */
   5715 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
   5716 			struct i915_address_space *vm)
   5717 {
   5718 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5719 	struct i915_vma *vma;
   5720 
   5721 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
   5722 
   5723 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5724 		if (i915_is_ggtt(vma->vm) &&
   5725 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5726 			continue;
   5727 		if (vma->vm == vm)
   5728 			return vma->node.start;
   5729 	}
   5730 
   5731 	WARN(1, "%s vma for this object not found.\n",
   5732 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
   5733 	return -1;
   5734 }
   5735 
   5736 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
   5737 				  const struct i915_ggtt_view *view)
   5738 {
   5739 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
   5740 	struct i915_vma *vma;
   5741 
   5742 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5743 		if (vma->vm == ggtt &&
   5744 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
   5745 			return vma->node.start;
   5746 
   5747 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
   5748 	return -1;
   5749 }
   5750 
   5751 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
   5752 			struct i915_address_space *vm)
   5753 {
   5754 	struct i915_vma *vma;
   5755 
   5756 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5757 		if (i915_is_ggtt(vma->vm) &&
   5758 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5759 			continue;
   5760 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
   5761 			return true;
   5762 	}
   5763 
   5764 	return false;
   5765 }
   5766 
   5767 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
   5768 				  const struct i915_ggtt_view *view)
   5769 {
   5770 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
   5771 	struct i915_vma *vma;
   5772 
   5773 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5774 		if (vma->vm == ggtt &&
   5775 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
   5776 		    drm_mm_node_allocated(&vma->node))
   5777 			return true;
   5778 
   5779 	return false;
   5780 }
   5781 
   5782 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
   5783 {
   5784 	struct i915_vma *vma;
   5785 
   5786 	list_for_each_entry(vma, &o->vma_list, vma_link)
   5787 		if (drm_mm_node_allocated(&vma->node))
   5788 			return true;
   5789 
   5790 	return false;
   5791 }
   5792 
   5793 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
   5794 				struct i915_address_space *vm)
   5795 {
   5796 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
   5797 	struct i915_vma *vma;
   5798 
   5799 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
   5800 
   5801 	BUG_ON(list_empty(&o->vma_list));
   5802 
   5803 	list_for_each_entry(vma, &o->vma_list, vma_link) {
   5804 		if (i915_is_ggtt(vma->vm) &&
   5805 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
   5806 			continue;
   5807 		if (vma->vm == vm)
   5808 			return vma->node.size;
   5809 	}
   5810 	return 0;
   5811 }
   5812 
   5813 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
   5814 {
   5815 	struct i915_vma *vma;
   5816 	list_for_each_entry(vma, &obj->vma_list, vma_link)
   5817 		if (vma->pin_count > 0)
   5818 			return true;
   5819 
   5820 	return false;
   5821 }
   5822 
   5823 /* Allocate a new GEM object and fill it with the supplied data */
   5824 struct drm_i915_gem_object *
   5825 i915_gem_object_create_from_data(struct drm_device *dev,
   5826 			         const void *data, size_t size)
   5827 {
   5828 	struct drm_i915_gem_object *obj;
   5829 #ifdef __NetBSD__
   5830 	struct iovec iov = { .iov_base = __UNCONST(data), .iov_len = size };
   5831 	struct uio uio = {
   5832 	    .uio_iov = &iov,
   5833 	    .uio_iovcnt = 1,
   5834 	    .uio_offset = 0,
   5835 	    .uio_resid = size,
   5836 	    .uio_rw = UIO_WRITE,
   5837 	};
   5838 #else
   5839 	struct sg_table *sg;
   5840 #endif
   5841 	size_t bytes;
   5842 	int ret;
   5843 
   5844 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
   5845 	if (IS_ERR_OR_NULL(obj))
   5846 		return obj;
   5847 
   5848 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
   5849 	if (ret)
   5850 		goto fail;
   5851 
   5852 	ret = i915_gem_object_get_pages(obj);
   5853 	if (ret)
   5854 		goto fail;
   5855 
   5856 	i915_gem_object_pin_pages(obj);
   5857 #ifdef __NetBSD__
   5858 	UIO_SETUP_SYSSPACE(&uio);
   5859 	/* XXX errno NetBSD->Linux */
   5860 	ret = -ubc_uiomove(obj->base.filp, &uio, size, UVM_ADV_NORMAL,
   5861 	    UBC_WRITE);
   5862 	if (ret)
   5863 		goto fail;
   5864 	bytes = size - uio.uio_resid;
   5865 #else
   5866 	sg = obj->pages;
   5867 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
   5868 #endif
   5869 	i915_gem_object_unpin_pages(obj);
   5870 
   5871 	if (WARN_ON(bytes != size)) {
   5872 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
   5873 		ret = -EFAULT;
   5874 		goto fail;
   5875 	}
   5876 
   5877 	return obj;
   5878 
   5879 fail:
   5880 	drm_gem_object_unreference(&obj->base);
   5881 	return ERR_PTR(ret);
   5882 }
   5883