Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.63
      1 /*	$NetBSD: i915_gem.c,v 1.63 2021/12/19 01:24:25 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright  2008-2015 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  * Authors:
     26  *    Eric Anholt <eric (at) anholt.net>
     27  *
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: i915_gem.c,v 1.63 2021/12/19 01:24:25 riastradh Exp $");
     32 
     33 #ifdef __NetBSD__
     34 #if 0				/* XXX uvmhist option?  */
     35 #include "opt_uvmhist.h"
     36 #endif
     37 
     38 #include <sys/types.h>
     39 #include <sys/param.h>
     40 
     41 #include <uvm/uvm.h>
     42 #include <uvm/uvm_extern.h>
     43 #include <uvm/uvm_fault.h>
     44 #include <uvm/uvm_page.h>
     45 #include <uvm/uvm_pmap.h>
     46 #include <uvm/uvm_prot.h>
     47 
     48 #include <drm/bus_dma_hacks.h>
     49 #endif
     50 
     51 #include <drm/drm_vma_manager.h>
     52 #include <drm/i915_drm.h>
     53 #include <linux/dma-fence-array.h>
     54 #include <linux/kthread.h>
     55 #include <linux/dma-resv.h>
     56 #include <linux/shmem_fs.h>
     57 #include <linux/slab.h>
     58 #include <linux/stop_machine.h>
     59 #include <linux/swap.h>
     60 #include <linux/pci.h>
     61 #include <linux/dma-buf.h>
     62 #include <linux/mman.h>
     63 #include <linux/nbsd-namespace.h>
     64 
     65 #include "display/intel_display.h"
     66 #include "display/intel_frontbuffer.h"
     67 
     68 #include "gem/i915_gem_clflush.h"
     69 #include "gem/i915_gem_context.h"
     70 #include "gem/i915_gem_ioctls.h"
     71 #include "gem/i915_gem_mman.h"
     72 #include "gem/i915_gem_region.h"
     73 #include "gt/intel_engine_user.h"
     74 #include "gt/intel_gt.h"
     75 #include "gt/intel_gt_pm.h"
     76 #include "gt/intel_workarounds.h"
     77 
     78 #include "i915_drv.h"
     79 #include "i915_trace.h"
     80 #include "i915_vgpu.h"
     81 
     82 #include "intel_pm.h"
     83 
     84 static int
     85 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
     86 {
     87 	int err;
     88 
     89 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
     90 	if (err)
     91 		return err;
     92 
     93 	memset(node, 0, sizeof(*node));
     94 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
     95 					  size, 0, I915_COLOR_UNEVICTABLE,
     96 					  0, ggtt->mappable_end,
     97 					  DRM_MM_INSERT_LOW);
     98 
     99 	mutex_unlock(&ggtt->vm.mutex);
    100 
    101 	return err;
    102 }
    103 
    104 static void
    105 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
    106 {
    107 	mutex_lock(&ggtt->vm.mutex);
    108 	drm_mm_remove_node(node);
    109 	mutex_unlock(&ggtt->vm.mutex);
    110 }
    111 
    112 int
    113 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    114 			    struct drm_file *file)
    115 {
    116 	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
    117 	struct drm_i915_gem_get_aperture *args = data;
    118 	struct i915_vma *vma;
    119 	u64 pinned;
    120 
    121 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
    122 		return -EINTR;
    123 
    124 	pinned = ggtt->vm.reserved;
    125 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
    126 		if (i915_vma_is_pinned(vma))
    127 			pinned += vma->node.size;
    128 
    129 	mutex_unlock(&ggtt->vm.mutex);
    130 
    131 	args->aper_size = ggtt->vm.total;
    132 	args->aper_available_size = args->aper_size - pinned;
    133 
    134 	return 0;
    135 }
    136 
    137 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
    138 			   unsigned long flags)
    139 {
    140 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
    141 	LIST_HEAD(still_in_list);
    142 	intel_wakeref_t wakeref;
    143 	struct i915_vma *vma;
    144 	int ret;
    145 
    146 	if (!atomic_read(&obj->bind_count))
    147 		return 0;
    148 
    149 	/*
    150 	 * As some machines use ACPI to handle runtime-resume callbacks, and
    151 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
    152 	 * as they are required by the shrinker. Ergo, we wake the device up
    153 	 * first just in case.
    154 	 */
    155 	wakeref = intel_runtime_pm_get(rpm);
    156 
    157 try_again:
    158 	ret = 0;
    159 	spin_lock(&obj->vma.lock);
    160 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
    161 						       struct i915_vma,
    162 						       obj_link))) {
    163 		struct i915_address_space *vm = vma->vm;
    164 
    165 		list_move_tail(&vma->obj_link, &still_in_list);
    166 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
    167 			continue;
    168 
    169 		ret = -EAGAIN;
    170 		if (!i915_vm_tryopen(vm))
    171 			break;
    172 
    173 		/* Prevent vma being freed by i915_vma_parked as we unbind */
    174 		vma = __i915_vma_get(vma);
    175 		spin_unlock(&obj->vma.lock);
    176 
    177 		if (vma) {
    178 			ret = -EBUSY;
    179 			if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
    180 			    !i915_vma_is_active(vma))
    181 				ret = i915_vma_unbind(vma);
    182 
    183 			__i915_vma_put(vma);
    184 		}
    185 
    186 		i915_vm_close(vm);
    187 		spin_lock(&obj->vma.lock);
    188 	}
    189 	list_splice_init(&still_in_list, &obj->vma.list);
    190 	spin_unlock(&obj->vma.lock);
    191 
    192 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
    193 		rcu_barrier(); /* flush the i915_vm_release() */
    194 		goto try_again;
    195 	}
    196 
    197 	intel_runtime_pm_put(rpm, wakeref);
    198 
    199 	return ret;
    200 }
    201 
    202 static int
    203 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
    204 		     struct drm_i915_gem_pwrite *args,
    205 		     struct drm_file *file)
    206 {
    207 	void *vaddr = sg_page(obj->mm.pages->sgl) + args->offset;
    208 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
    209 
    210 	/*
    211 	 * We manually control the domain here and pretend that it
    212 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
    213 	 */
    214 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
    215 
    216 	if (copy_from_user(vaddr, user_data, args->size))
    217 		return -EFAULT;
    218 
    219 	drm_clflush_virt_range(vaddr, args->size);
    220 	intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
    221 
    222 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
    223 	return 0;
    224 }
    225 
    226 static int
    227 i915_gem_create(struct drm_file *file,
    228 		struct intel_memory_region *mr,
    229 		u64 *size_p,
    230 		u32 *handle_p)
    231 {
    232 	struct drm_i915_gem_object *obj;
    233 	u32 handle;
    234 	u64 size;
    235 	int ret;
    236 
    237 	GEM_BUG_ON(!is_power_of_2(mr->min_page_size));
    238 	size = round_up(*size_p, mr->min_page_size);
    239 	if (size == 0)
    240 		return -EINVAL;
    241 
    242 	/* For most of the ABI (e.g. mmap) we think in system pages */
    243 	GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
    244 
    245 	/* Allocate the new object */
    246 	obj = i915_gem_object_create_region(mr, size, 0);
    247 	if (IS_ERR(obj))
    248 		return PTR_ERR(obj);
    249 
    250 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    251 	/* drop reference from allocate - handle holds it now */
    252 	i915_gem_object_put(obj);
    253 	if (ret)
    254 		return ret;
    255 
    256 	*handle_p = handle;
    257 	*size_p = size;
    258 	return 0;
    259 }
    260 
    261 int
    262 i915_gem_dumb_create(struct drm_file *file,
    263 		     struct drm_device *dev,
    264 		     struct drm_mode_create_dumb *args)
    265 {
    266 
    267 	enum intel_memory_type mem_type;
    268 	int cpp = DIV_ROUND_UP(args->bpp, 8);
    269 	u32 format;
    270 
    271 	switch (cpp) {
    272 	case 1:
    273 		format = DRM_FORMAT_C8;
    274 		break;
    275 	case 2:
    276 		format = DRM_FORMAT_RGB565;
    277 		break;
    278 	case 4:
    279 		format = DRM_FORMAT_XRGB8888;
    280 		break;
    281 	default:
    282 		return -EINVAL;
    283 	}
    284 
    285 	/* have to work out size/pitch and return them */
    286 	args->pitch = ALIGN(args->width * cpp, 64);
    287 
    288 	/* align stride to page size so that we can remap */
    289 	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
    290 						    DRM_FORMAT_MOD_LINEAR))
    291 #ifdef __NetBSD__               /* ALIGN means something else.  */
    292 		args->pitch = round_up(args->pitch, 4096);
    293 #else
    294 		args->pitch = ALIGN(args->pitch, 4096);
    295 #endif
    296 
    297 	if (args->pitch < args->width)
    298 		return -EINVAL;
    299 
    300 	args->size = mul_u32_u32(args->pitch, args->height);
    301 
    302 	mem_type = INTEL_MEMORY_SYSTEM;
    303 	if (HAS_LMEM(to_i915(dev)))
    304 		mem_type = INTEL_MEMORY_LOCAL;
    305 
    306 	return i915_gem_create(file,
    307 			       intel_memory_region_by_type(to_i915(dev),
    308 							   mem_type),
    309 			       &args->size, &args->handle);
    310 }
    311 
    312 /**
    313  * Creates a new mm object and returns a handle to it.
    314  * @dev: drm device pointer
    315  * @data: ioctl data blob
    316  * @file: drm file pointer
    317  */
    318 int
    319 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    320 		      struct drm_file *file)
    321 {
    322 	struct drm_i915_private *i915 = to_i915(dev);
    323 	struct drm_i915_gem_create *args = data;
    324 
    325 	i915_gem_flush_free_objects(i915);
    326 
    327 	return i915_gem_create(file,
    328 			       intel_memory_region_by_type(i915,
    329 							   INTEL_MEMORY_SYSTEM),
    330 			       &args->size, &args->handle);
    331 }
    332 
    333 static int
    334 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
    335 	    bool needs_clflush)
    336 {
    337 	char *vaddr;
    338 	int ret;
    339 
    340 	vaddr = kmap(page);
    341 
    342 	if (needs_clflush)
    343 		drm_clflush_virt_range(vaddr + offset, len);
    344 
    345 	ret = __copy_to_user(user_data, vaddr + offset, len);
    346 
    347 	kunmap(page);
    348 
    349 	return ret ? -EFAULT : 0;
    350 }
    351 
    352 static int
    353 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
    354 		     struct drm_i915_gem_pread *args)
    355 {
    356 	unsigned int needs_clflush;
    357 	unsigned int idx, offset;
    358 	struct dma_fence *fence;
    359 	char __user *user_data;
    360 	u64 remain;
    361 	int ret;
    362 
    363 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
    364 
    365 	if (ret)
    366 		return ret;
    367 
    368 	fence = i915_gem_object_lock_fence(obj);
    369 	i915_gem_object_finish_access(obj);
    370 	if (!fence)
    371 		return -ENOMEM;
    372 
    373 	remain = args->size;
    374 	user_data = u64_to_user_ptr(args->data_ptr);
    375 	offset = offset_in_page(args->offset);
    376 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
    377 		struct page *page = i915_gem_object_get_page(obj, idx);
    378 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
    379 
    380 		ret = shmem_pread(page, offset, length, user_data,
    381 				  needs_clflush);
    382 		if (ret)
    383 			break;
    384 
    385 		remain -= length;
    386 		user_data += length;
    387 		offset = 0;
    388 	}
    389 
    390 	i915_gem_object_unlock_fence(obj, fence);
    391 	return ret;
    392 }
    393 
    394 static inline bool
    395 gtt_user_read(struct io_mapping *mapping,
    396 	      loff_t base, int offset,
    397 	      char __user *user_data, int length)
    398 {
    399 	void __iomem *vaddr;
    400 	unsigned long unwritten;
    401 
    402 	/* We can use the cpu mem copy function because this is X86. */
    403 	vaddr = io_mapping_map_atomic_wc(mapping, base);
    404 	unwritten = __copy_to_user_inatomic(user_data,
    405 					    (void __force *)vaddr + offset,
    406 					    length);
    407 	io_mapping_unmap_atomic(vaddr);
    408 	if (unwritten) {
    409 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
    410 		unwritten = copy_to_user(user_data,
    411 					 (void __force *)vaddr + offset,
    412 					 length);
    413 		io_mapping_unmap(vaddr);
    414 	}
    415 	return unwritten;
    416 }
    417 
    418 static int
    419 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
    420 		   const struct drm_i915_gem_pread *args)
    421 {
    422 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
    423 	struct i915_ggtt *ggtt = &i915->ggtt;
    424 	intel_wakeref_t wakeref;
    425 	struct drm_mm_node node;
    426 	struct dma_fence *fence;
    427 	void __user *user_data;
    428 	struct i915_vma *vma;
    429 	u64 remain, offset;
    430 	int ret;
    431 
    432 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
    433 	vma = ERR_PTR(-ENODEV);
    434 	if (!i915_gem_object_is_tiled(obj))
    435 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
    436 					       PIN_MAPPABLE |
    437 					       PIN_NONBLOCK /* NOWARN */ |
    438 					       PIN_NOEVICT);
    439 	if (!IS_ERR(vma)) {
    440 		node.start = i915_ggtt_offset(vma);
    441 		node.flags = 0;
    442 	} else {
    443 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
    444 		if (ret)
    445 			goto out_rpm;
    446 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
    447 	}
    448 
    449 	ret = i915_gem_object_lock_interruptible(obj);
    450 	if (ret)
    451 		goto out_unpin;
    452 
    453 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
    454 	if (ret) {
    455 		i915_gem_object_unlock(obj);
    456 		goto out_unpin;
    457 	}
    458 
    459 	fence = i915_gem_object_lock_fence(obj);
    460 	i915_gem_object_unlock(obj);
    461 	if (!fence) {
    462 		ret = -ENOMEM;
    463 		goto out_unpin;
    464 	}
    465 
    466 	user_data = u64_to_user_ptr(args->data_ptr);
    467 	remain = args->size;
    468 	offset = args->offset;
    469 
    470 	while (remain > 0) {
    471 		/* Operation in this page
    472 		 *
    473 		 * page_base = page offset within aperture
    474 		 * page_offset = offset within page
    475 		 * page_length = bytes to copy for this page
    476 		 */
    477 		u32 page_base = node.start;
    478 		unsigned page_offset = offset_in_page(offset);
    479 		unsigned page_length = PAGE_SIZE - page_offset;
    480 		page_length = remain < page_length ? remain : page_length;
    481 		if (drm_mm_node_allocated(&node)) {
    482 			ggtt->vm.insert_page(&ggtt->vm,
    483 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
    484 					     node.start, I915_CACHE_NONE, 0);
    485 		} else {
    486 			page_base += offset & PAGE_MASK;
    487 		}
    488 
    489 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
    490 				  user_data, page_length)) {
    491 			ret = -EFAULT;
    492 			break;
    493 		}
    494 
    495 		remain -= page_length;
    496 		user_data += page_length;
    497 		offset += page_length;
    498 	}
    499 
    500 	i915_gem_object_unlock_fence(obj, fence);
    501 out_unpin:
    502 	if (drm_mm_node_allocated(&node)) {
    503 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
    504 		remove_mappable_node(ggtt, &node);
    505 	} else {
    506 		i915_vma_unpin(vma);
    507 	}
    508 out_rpm:
    509 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
    510 	return ret;
    511 }
    512 
    513 /**
    514  * Reads data from the object referenced by handle.
    515  * @dev: drm device pointer
    516  * @data: ioctl data blob
    517  * @file: drm file pointer
    518  *
    519  * On error, the contents of *data are undefined.
    520  */
    521 int
    522 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    523 		     struct drm_file *file)
    524 {
    525 	struct drm_i915_gem_pread *args = data;
    526 	struct drm_i915_gem_object *obj;
    527 	int ret;
    528 
    529 	if (args->size == 0)
    530 		return 0;
    531 
    532 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
    533 		       args->size))
    534 		return -EFAULT;
    535 
    536 	obj = i915_gem_object_lookup(file, args->handle);
    537 	if (!obj)
    538 		return -ENOENT;
    539 
    540 	/* Bounds check source.  */
    541 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
    542 		ret = -EINVAL;
    543 		goto out;
    544 	}
    545 
    546 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    547 
    548 	ret = i915_gem_object_wait(obj,
    549 				   I915_WAIT_INTERRUPTIBLE,
    550 				   MAX_SCHEDULE_TIMEOUT);
    551 	if (ret)
    552 		goto out;
    553 
    554 	ret = i915_gem_object_pin_pages(obj);
    555 	if (ret)
    556 		goto out;
    557 
    558 	ret = i915_gem_shmem_pread(obj, args);
    559 	if (ret == -EFAULT || ret == -ENODEV)
    560 		ret = i915_gem_gtt_pread(obj, args);
    561 
    562 	i915_gem_object_unpin_pages(obj);
    563 out:
    564 	i915_gem_object_put(obj);
    565 	return ret;
    566 }
    567 
    568 /* This is the fast write path which cannot handle
    569  * page faults in the source data
    570  */
    571 
    572 static inline bool
    573 ggtt_write(struct io_mapping *mapping,
    574 	   loff_t base, int offset,
    575 	   char __user *user_data, int length)
    576 {
    577 	void __iomem *vaddr;
    578 	unsigned long unwritten;
    579 
    580 	/* We can use the cpu mem copy function because this is X86. */
    581 	vaddr = io_mapping_map_atomic_wc(mapping, base);
    582 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
    583 						      user_data, length);
    584 	io_mapping_unmap_atomic(vaddr);
    585 	if (unwritten) {
    586 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
    587 		unwritten = copy_from_user((void __force *)vaddr + offset,
    588 					   user_data, length);
    589 		io_mapping_unmap(vaddr);
    590 	}
    591 
    592 	return unwritten;
    593 }
    594 
    595 /**
    596  * This is the fast pwrite path, where we copy the data directly from the
    597  * user into the GTT, uncached.
    598  * @obj: i915 GEM object
    599  * @args: pwrite arguments structure
    600  */
    601 static int
    602 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
    603 			 const struct drm_i915_gem_pwrite *args)
    604 {
    605 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
    606 	struct i915_ggtt *ggtt = &i915->ggtt;
    607 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
    608 	intel_wakeref_t wakeref;
    609 	struct drm_mm_node node;
    610 	struct dma_fence *fence;
    611 	struct i915_vma *vma;
    612 	u64 remain, offset;
    613 	void __user *user_data;
    614 	int ret;
    615 
    616 	if (i915_gem_object_has_struct_page(obj)) {
    617 		/*
    618 		 * Avoid waking the device up if we can fallback, as
    619 		 * waking/resuming is very slow (worst-case 10-100 ms
    620 		 * depending on PCI sleeps and our own resume time).
    621 		 * This easily dwarfs any performance advantage from
    622 		 * using the cache bypass of indirect GGTT access.
    623 		 */
    624 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
    625 		if (!wakeref)
    626 			return -EFAULT;
    627 	} else {
    628 		/* No backing pages, no fallback, we must force GGTT access */
    629 		wakeref = intel_runtime_pm_get(rpm);
    630 	}
    631 
    632 	vma = ERR_PTR(-ENODEV);
    633 	if (!i915_gem_object_is_tiled(obj))
    634 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
    635 					       PIN_MAPPABLE |
    636 					       PIN_NONBLOCK /* NOWARN */ |
    637 					       PIN_NOEVICT);
    638 	if (!IS_ERR(vma)) {
    639 		node.start = i915_ggtt_offset(vma);
    640 		node.flags = 0;
    641 	} else {
    642 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
    643 		if (ret)
    644 			goto out_rpm;
    645 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
    646 	}
    647 
    648 	ret = i915_gem_object_lock_interruptible(obj);
    649 	if (ret)
    650 		goto out_unpin;
    651 
    652 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    653 	if (ret) {
    654 		i915_gem_object_unlock(obj);
    655 		goto out_unpin;
    656 	}
    657 
    658 	fence = i915_gem_object_lock_fence(obj);
    659 	i915_gem_object_unlock(obj);
    660 	if (!fence) {
    661 		ret = -ENOMEM;
    662 		goto out_unpin;
    663 	}
    664 
    665 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
    666 
    667 	user_data = u64_to_user_ptr(args->data_ptr);
    668 	offset = args->offset;
    669 	remain = args->size;
    670 	while (remain) {
    671 		/* Operation in this page
    672 		 *
    673 		 * page_base = page offset within aperture
    674 		 * page_offset = offset within page
    675 		 * page_length = bytes to copy for this page
    676 		 */
    677 		u32 page_base = node.start;
    678 		unsigned int page_offset = offset_in_page(offset);
    679 		unsigned int page_length = PAGE_SIZE - page_offset;
    680 		page_length = remain < page_length ? remain : page_length;
    681 		if (drm_mm_node_allocated(&node)) {
    682 			/* flush the write before we modify the GGTT */
    683 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
    684 			ggtt->vm.insert_page(&ggtt->vm,
    685 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
    686 					     node.start, I915_CACHE_NONE, 0);
    687 			wmb(); /* flush modifications to the GGTT (insert_page) */
    688 		} else {
    689 			page_base += offset & PAGE_MASK;
    690 		}
    691 		/* If we get a fault while copying data, then (presumably) our
    692 		 * source page isn't available.  Return the error and we'll
    693 		 * retry in the slow path.
    694 		 * If the object is non-shmem backed, we retry again with the
    695 		 * path that handles page fault.
    696 		 */
    697 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
    698 			       user_data, page_length)) {
    699 			ret = -EFAULT;
    700 			break;
    701 		}
    702 
    703 		remain -= page_length;
    704 		user_data += page_length;
    705 		offset += page_length;
    706 	}
    707 
    708 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
    709 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
    710 
    711 	i915_gem_object_unlock_fence(obj, fence);
    712 out_unpin:
    713 	if (drm_mm_node_allocated(&node)) {
    714 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
    715 		remove_mappable_node(ggtt, &node);
    716 	} else {
    717 		i915_vma_unpin(vma);
    718 	}
    719 out_rpm:
    720 	intel_runtime_pm_put(rpm, wakeref);
    721 	return ret;
    722 }
    723 
    724 /* Per-page copy function for the shmem pwrite fastpath.
    725  * Flushes invalid cachelines before writing to the target if
    726  * needs_clflush_before is set and flushes out any written cachelines after
    727  * writing if needs_clflush is set.
    728  */
    729 static int
    730 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
    731 	     bool needs_clflush_before,
    732 	     bool needs_clflush_after)
    733 {
    734 #ifdef __NetBSD__
    735 	return -EFAULT;
    736 #else
    737 	char *vaddr;
    738 	int ret;
    739 
    740 	vaddr = kmap(page);
    741 
    742 	if (needs_clflush_before)
    743 		drm_clflush_virt_range(vaddr + offset, len);
    744 
    745 	ret = __copy_from_user(vaddr + offset, user_data, len);
    746 	if (!ret && needs_clflush_after)
    747 		drm_clflush_virt_range(vaddr + offset, len);
    748 
    749 	kunmap(page);
    750 
    751 	return ret ? -EFAULT : 0;
    752 #endif
    753 }
    754 
    755 static int
    756 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
    757 		      const struct drm_i915_gem_pwrite *args)
    758 {
    759 	unsigned int partial_cacheline_write;
    760 	unsigned int needs_clflush;
    761 	unsigned int offset, idx;
    762 	struct dma_fence *fence;
    763 	void __user *user_data;
    764 	u64 remain;
    765 	int ret;
    766 
    767 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
    768 	if (ret)
    769 		return ret;
    770 
    771 	fence = i915_gem_object_lock_fence(obj);
    772 	i915_gem_object_finish_access(obj);
    773 	if (!fence)
    774 		return -ENOMEM;
    775 
    776 	/* If we don't overwrite a cacheline completely we need to be
    777 	 * careful to have up-to-date data by first clflushing. Don't
    778 	 * overcomplicate things and flush the entire patch.
    779 	 */
    780 	partial_cacheline_write = 0;
    781 	if (needs_clflush & CLFLUSH_BEFORE)
    782 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
    783 
    784 	user_data = u64_to_user_ptr(args->data_ptr);
    785 	remain = args->size;
    786 	offset = offset_in_page(args->offset);
    787 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
    788 		struct page *page = i915_gem_object_get_page(obj, idx);
    789 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
    790 
    791 		ret = shmem_pwrite(page, offset, length, user_data,
    792 				   (offset | length) & partial_cacheline_write,
    793 				   needs_clflush & CLFLUSH_AFTER);
    794 		if (ret)
    795 			break;
    796 
    797 		remain -= length;
    798 		user_data += length;
    799 		offset = 0;
    800 	}
    801 
    802 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
    803 	i915_gem_object_unlock_fence(obj, fence);
    804 
    805 	return ret;
    806 }
    807 
    808 /**
    809  * Writes data to the object referenced by handle.
    810  * @dev: drm device
    811  * @data: ioctl data blob
    812  * @file: drm file
    813  *
    814  * On error, the contents of the buffer that were to be modified are undefined.
    815  */
    816 int
    817 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
    818 		      struct drm_file *file)
    819 {
    820 	struct drm_i915_gem_pwrite *args = data;
    821 	struct drm_i915_gem_object *obj;
    822 	int ret;
    823 
    824 	if (args->size == 0)
    825 		return 0;
    826 
    827 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
    828 		return -EFAULT;
    829 
    830 	obj = i915_gem_object_lookup(file, args->handle);
    831 	if (!obj)
    832 		return -ENOENT;
    833 
    834 	/* Bounds check destination. */
    835 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
    836 		ret = -EINVAL;
    837 		goto err;
    838 	}
    839 
    840 	/* Writes not allowed into this read-only object */
    841 	if (i915_gem_object_is_readonly(obj)) {
    842 		ret = -EINVAL;
    843 		goto err;
    844 	}
    845 
    846 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
    847 
    848 	ret = -ENODEV;
    849 	if (obj->ops->pwrite)
    850 		ret = obj->ops->pwrite(obj, args);
    851 	if (ret != -ENODEV)
    852 		goto err;
    853 
    854 	ret = i915_gem_object_wait(obj,
    855 				   I915_WAIT_INTERRUPTIBLE |
    856 				   I915_WAIT_ALL,
    857 				   MAX_SCHEDULE_TIMEOUT);
    858 	if (ret)
    859 		goto err;
    860 
    861 	ret = i915_gem_object_pin_pages(obj);
    862 	if (ret)
    863 		goto err;
    864 
    865 	ret = -EFAULT;
    866 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
    867 	 * it would end up going through the fenced access, and we'll get
    868 	 * different detiling behavior between reading and writing.
    869 	 * pread/pwrite currently are reading and writing from the CPU
    870 	 * perspective, requiring manual detiling by the client.
    871 	 */
    872 	if (!i915_gem_object_has_struct_page(obj) ||
    873 	    cpu_write_needs_clflush(obj))
    874 		/* Note that the gtt paths might fail with non-page-backed user
    875 		 * pointers (e.g. gtt mappings when moving data between
    876 		 * textures). Fallback to the shmem path in that case.
    877 		 */
    878 		ret = i915_gem_gtt_pwrite_fast(obj, args);
    879 
    880 	if (ret == -EFAULT || ret == -ENOSPC) {
    881 		if (i915_gem_object_has_struct_page(obj))
    882 			ret = i915_gem_shmem_pwrite(obj, args);
    883 		else
    884 			ret = i915_gem_phys_pwrite(obj, args, file);
    885 	}
    886 
    887 	i915_gem_object_unpin_pages(obj);
    888 err:
    889 	i915_gem_object_put(obj);
    890 	return ret;
    891 }
    892 
    893 /**
    894  * Called when user space has done writes to this buffer
    895  * @dev: drm device
    896  * @data: ioctl data blob
    897  * @file: drm file
    898  */
    899 int
    900 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
    901 			 struct drm_file *file)
    902 {
    903 	struct drm_i915_gem_sw_finish *args = data;
    904 	struct drm_i915_gem_object *obj;
    905 
    906 	obj = i915_gem_object_lookup(file, args->handle);
    907 	if (!obj)
    908 		return -ENOENT;
    909 
    910 	/*
    911 	 * Proxy objects are barred from CPU access, so there is no
    912 	 * need to ban sw_finish as it is a nop.
    913 	 */
    914 
    915 	/* Pinned buffers may be scanout, so flush the cache */
    916 	i915_gem_object_flush_if_display(obj);
    917 	i915_gem_object_put(obj);
    918 
    919 	return 0;
    920 }
    921 
    922 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
    923 {
    924 	struct drm_i915_gem_object *obj, *on;
    925 	int i;
    926 
    927 	/*
    928 	 * Only called during RPM suspend. All users of the userfault_list
    929 	 * must be holding an RPM wakeref to ensure that this can not
    930 	 * run concurrently with themselves (and use the struct_mutex for
    931 	 * protection between themselves).
    932 	 */
    933 
    934 	list_for_each_entry_safe(obj, on,
    935 				 &i915->ggtt.userfault_list, userfault_link)
    936 		__i915_gem_object_release_mmap_gtt(obj);
    937 
    938 	/*
    939 	 * The fence will be lost when the device powers down. If any were
    940 	 * in use by hardware (i.e. they are pinned), we should not be powering
    941 	 * down! All other fences will be reacquired by the user upon waking.
    942 	 */
    943 	for (i = 0; i < i915->ggtt.num_fences; i++) {
    944 		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
    945 
    946 		/*
    947 		 * Ideally we want to assert that the fence register is not
    948 		 * live at this point (i.e. that no piece of code will be
    949 		 * trying to write through fence + GTT, as that both violates
    950 		 * our tracking of activity and associated locking/barriers,
    951 		 * but also is illegal given that the hw is powered down).
    952 		 *
    953 		 * Previously we used reg->pin_count as a "liveness" indicator.
    954 		 * That is not sufficient, and we need a more fine-grained
    955 		 * tool if we want to have a sanity check here.
    956 		 */
    957 
    958 		if (!reg->vma)
    959 			continue;
    960 
    961 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
    962 		reg->dirty = true;
    963 	}
    964 }
    965 
    966 struct i915_vma *
    967 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
    968 			 const struct i915_ggtt_view *view,
    969 			 u64 size,
    970 			 u64 alignment,
    971 			 u64 flags)
    972 {
    973 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
    974 	struct i915_ggtt *ggtt = &i915->ggtt;
    975 	struct i915_vma *vma;
    976 	int ret;
    977 
    978 	if (i915_gem_object_never_bind_ggtt(obj))
    979 		return ERR_PTR(-ENODEV);
    980 
    981 	if (flags & PIN_MAPPABLE &&
    982 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
    983 		/*
    984 		 * If the required space is larger than the available
    985 		 * aperture, we will not able to find a slot for the
    986 		 * object and unbinding the object now will be in
    987 		 * vain. Worse, doing so may cause us to ping-pong
    988 		 * the object in and out of the Global GTT and
    989 		 * waste a lot of cycles under the mutex.
    990 		 */
    991 		if (obj->base.size > ggtt->mappable_end)
    992 			return ERR_PTR(-E2BIG);
    993 
    994 		/*
    995 		 * If NONBLOCK is set the caller is optimistically
    996 		 * trying to cache the full object within the mappable
    997 		 * aperture, and *must* have a fallback in place for
    998 		 * situations where we cannot bind the object. We
    999 		 * can be a little more lax here and use the fallback
   1000 		 * more often to avoid costly migrations of ourselves
   1001 		 * and other objects within the aperture.
   1002 		 *
   1003 		 * Half-the-aperture is used as a simple heuristic.
   1004 		 * More interesting would to do search for a free
   1005 		 * block prior to making the commitment to unbind.
   1006 		 * That caters for the self-harm case, and with a
   1007 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
   1008 		 * we could try to minimise harm to others.
   1009 		 */
   1010 		if (flags & PIN_NONBLOCK &&
   1011 		    obj->base.size > ggtt->mappable_end / 2)
   1012 			return ERR_PTR(-ENOSPC);
   1013 	}
   1014 
   1015 	vma = i915_vma_instance(obj, &ggtt->vm, view);
   1016 	if (IS_ERR(vma))
   1017 		return vma;
   1018 
   1019 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
   1020 		if (flags & PIN_NONBLOCK) {
   1021 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
   1022 				return ERR_PTR(-ENOSPC);
   1023 
   1024 			if (flags & PIN_MAPPABLE &&
   1025 			    vma->fence_size > ggtt->mappable_end / 2)
   1026 				return ERR_PTR(-ENOSPC);
   1027 		}
   1028 
   1029 		ret = i915_vma_unbind(vma);
   1030 		if (ret)
   1031 			return ERR_PTR(ret);
   1032 	}
   1033 
   1034 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
   1035 		mutex_lock(&ggtt->vm.mutex);
   1036 		ret = i915_vma_revoke_fence(vma);
   1037 		mutex_unlock(&ggtt->vm.mutex);
   1038 		if (ret)
   1039 			return ERR_PTR(ret);
   1040 	}
   1041 
   1042 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
   1043 	if (ret)
   1044 		return ERR_PTR(ret);
   1045 
   1046 	return vma;
   1047 }
   1048 
   1049 int
   1050 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   1051 		       struct drm_file *file_priv)
   1052 {
   1053 	struct drm_i915_private *i915 = to_i915(dev);
   1054 	struct drm_i915_gem_madvise *args = data;
   1055 	struct drm_i915_gem_object *obj;
   1056 	int err;
   1057 
   1058 	switch (args->madv) {
   1059 	case I915_MADV_DONTNEED:
   1060 	case I915_MADV_WILLNEED:
   1061 	    break;
   1062 	default:
   1063 	    return -EINVAL;
   1064 	}
   1065 
   1066 	obj = i915_gem_object_lookup(file_priv, args->handle);
   1067 	if (!obj)
   1068 		return -ENOENT;
   1069 
   1070 	err = mutex_lock_interruptible(&obj->mm.lock);
   1071 	if (err)
   1072 		goto out;
   1073 
   1074 	if (i915_gem_object_has_pages(obj) &&
   1075 	    i915_gem_object_is_tiled(obj) &&
   1076 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
   1077 		if (obj->mm.madv == I915_MADV_WILLNEED) {
   1078 			GEM_BUG_ON(!obj->mm.quirked);
   1079 			__i915_gem_object_unpin_pages(obj);
   1080 			obj->mm.quirked = false;
   1081 		}
   1082 		if (args->madv == I915_MADV_WILLNEED) {
   1083 			GEM_BUG_ON(obj->mm.quirked);
   1084 			__i915_gem_object_pin_pages(obj);
   1085 			obj->mm.quirked = true;
   1086 		}
   1087 	}
   1088 
   1089 	if (obj->mm.madv != __I915_MADV_PURGED)
   1090 		obj->mm.madv = args->madv;
   1091 
   1092 	if (i915_gem_object_has_pages(obj)) {
   1093 		struct list_head *list;
   1094 
   1095 		if (i915_gem_object_is_shrinkable(obj)) {
   1096 			unsigned long flags;
   1097 
   1098 			spin_lock_irqsave(&i915->mm.obj_lock, flags);
   1099 
   1100 			if (obj->mm.madv != I915_MADV_WILLNEED)
   1101 				list = &i915->mm.purge_list;
   1102 			else
   1103 				list = &i915->mm.shrink_list;
   1104 			list_move_tail(&obj->mm.link, list);
   1105 
   1106 			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
   1107 		}
   1108 	}
   1109 
   1110 	/* if the object is no longer attached, discard its backing storage */
   1111 	if (obj->mm.madv == I915_MADV_DONTNEED &&
   1112 	    !i915_gem_object_has_pages(obj))
   1113 		i915_gem_object_truncate(obj);
   1114 
   1115 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
   1116 	mutex_unlock(&obj->mm.lock);
   1117 
   1118 out:
   1119 	i915_gem_object_put(obj);
   1120 	return err;
   1121 }
   1122 
   1123 int i915_gem_init(struct drm_i915_private *dev_priv)
   1124 {
   1125 	int ret;
   1126 
   1127 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
   1128 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
   1129 		mkwrite_device_info(dev_priv)->page_sizes =
   1130 			I915_GTT_PAGE_SIZE_4K;
   1131 
   1132 	ret = i915_gem_init_userptr(dev_priv);
   1133 	if (ret)
   1134 		return ret;
   1135 
   1136 	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
   1137 	intel_wopcm_init(&dev_priv->wopcm);
   1138 
   1139 	ret = i915_init_ggtt(dev_priv);
   1140 	if (ret) {
   1141 		GEM_BUG_ON(ret == -EIO);
   1142 		goto err_unlock;
   1143 	}
   1144 
   1145 	/*
   1146 	 * Despite its name intel_init_clock_gating applies both display
   1147 	 * clock gating workarounds; GT mmio workarounds and the occasional
   1148 	 * GT power context workaround. Worse, sometimes it includes a context
   1149 	 * register workaround which we need to apply before we record the
   1150 	 * default HW state for all contexts.
   1151 	 *
   1152 	 * FIXME: break up the workarounds and apply them at the right time!
   1153 	 */
   1154 	intel_init_clock_gating(dev_priv);
   1155 
   1156 	ret = intel_gt_init(&dev_priv->gt);
   1157 	if (ret)
   1158 		goto err_unlock;
   1159 
   1160 	return 0;
   1161 
   1162 	/*
   1163 	 * Unwinding is complicated by that we want to handle -EIO to mean
   1164 	 * disable GPU submission but keep KMS alive. We want to mark the
   1165 	 * HW as irrevisibly wedged, but keep enough state around that the
   1166 	 * driver doesn't explode during runtime.
   1167 	 */
   1168 err_unlock:
   1169 	i915_gem_drain_workqueue(dev_priv);
   1170 
   1171 	if (ret != -EIO) {
   1172 		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
   1173 		i915_gem_cleanup_userptr(dev_priv);
   1174 	}
   1175 
   1176 	if (ret == -EIO) {
   1177 		/*
   1178 		 * Allow engines or uC initialisation to fail by marking the GPU
   1179 		 * as wedged. But we only want to do this when the GPU is angry,
   1180 		 * for all other failure, such as an allocation failure, bail.
   1181 		 */
   1182 		if (!intel_gt_is_wedged(&dev_priv->gt)) {
   1183 			i915_probe_error(dev_priv,
   1184 					 "Failed to initialize GPU, declaring it wedged!\n");
   1185 			intel_gt_set_wedged(&dev_priv->gt);
   1186 		}
   1187 
   1188 		/* Minimal basic recovery for KMS */
   1189 		ret = i915_ggtt_enable_hw(dev_priv);
   1190 		i915_gem_restore_gtt_mappings(dev_priv);
   1191 		i915_gem_restore_fences(&dev_priv->ggtt);
   1192 		intel_init_clock_gating(dev_priv);
   1193 	}
   1194 
   1195 	i915_gem_drain_freed_objects(dev_priv);
   1196 	return ret;
   1197 }
   1198 
   1199 void i915_gem_driver_register(struct drm_i915_private *i915)
   1200 {
   1201 	i915_gem_driver_register__shrinker(i915);
   1202 
   1203 	intel_engines_driver_register(i915);
   1204 }
   1205 
   1206 void i915_gem_driver_unregister(struct drm_i915_private *i915)
   1207 {
   1208 	i915_gem_driver_unregister__shrinker(i915);
   1209 }
   1210 
   1211 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
   1212 {
   1213 	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
   1214 
   1215 	i915_gem_suspend_late(dev_priv);
   1216 	intel_gt_driver_remove(&dev_priv->gt);
   1217 	dev_priv->uabi_engines = RB_ROOT;
   1218 
   1219 	/* Flush any outstanding unpin_work. */
   1220 	i915_gem_drain_workqueue(dev_priv);
   1221 
   1222 	i915_gem_drain_freed_objects(dev_priv);
   1223 }
   1224 
   1225 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
   1226 {
   1227 	i915_gem_driver_release__contexts(dev_priv);
   1228 
   1229 	intel_gt_driver_release(&dev_priv->gt);
   1230 
   1231 	intel_wa_list_free(&dev_priv->gt_wa_list);
   1232 
   1233 	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
   1234 	i915_gem_cleanup_userptr(dev_priv);
   1235 
   1236 	i915_gem_drain_freed_objects(dev_priv);
   1237 
   1238 	WARN_ON(!list_empty(&dev_priv->gem.contexts.list));
   1239 }
   1240 
   1241 static void i915_gem_init__mm(struct drm_i915_private *i915)
   1242 {
   1243 	spin_lock_init(&i915->mm.obj_lock);
   1244 
   1245 	init_llist_head(&i915->mm.free_list);
   1246 
   1247 	INIT_LIST_HEAD(&i915->mm.purge_list);
   1248 	INIT_LIST_HEAD(&i915->mm.shrink_list);
   1249 
   1250 	i915_gem_init__objects(i915);
   1251 }
   1252 
   1253 void i915_gem_init_early(struct drm_i915_private *dev_priv)
   1254 {
   1255 	i915_gem_init__mm(dev_priv);
   1256 	i915_gem_init__contexts(dev_priv);
   1257 
   1258 	spin_lock_init(&dev_priv->fb_tracking.lock);
   1259 }
   1260 
   1261 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
   1262 {
   1263 	i915_gem_drain_freed_objects(dev_priv);
   1264 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
   1265 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
   1266 	WARN_ON(dev_priv->mm.shrink_count);
   1267 }
   1268 
   1269 int i915_gem_freeze(struct drm_i915_private *dev_priv)
   1270 {
   1271 	/* Discard all purgeable objects, let userspace recover those as
   1272 	 * required after resuming.
   1273 	 */
   1274 	i915_gem_shrink_all(dev_priv);
   1275 
   1276 	return 0;
   1277 }
   1278 
   1279 int i915_gem_freeze_late(struct drm_i915_private *i915)
   1280 {
   1281 	struct drm_i915_gem_object *obj;
   1282 	intel_wakeref_t wakeref;
   1283 
   1284 	/*
   1285 	 * Called just before we write the hibernation image.
   1286 	 *
   1287 	 * We need to update the domain tracking to reflect that the CPU
   1288 	 * will be accessing all the pages to create and restore from the
   1289 	 * hibernation, and so upon restoration those pages will be in the
   1290 	 * CPU domain.
   1291 	 *
   1292 	 * To make sure the hibernation image contains the latest state,
   1293 	 * we update that state just before writing out the image.
   1294 	 *
   1295 	 * To try and reduce the hibernation image, we manually shrink
   1296 	 * the objects as well, see i915_gem_freeze()
   1297 	 */
   1298 
   1299 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
   1300 
   1301 	i915_gem_shrink(i915, -1UL, NULL, ~0);
   1302 	i915_gem_drain_freed_objects(i915);
   1303 
   1304 	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
   1305 		i915_gem_object_lock(obj);
   1306 		WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
   1307 		i915_gem_object_unlock(obj);
   1308 	}
   1309 
   1310 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
   1311 
   1312 	return 0;
   1313 }
   1314 
   1315 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   1316 {
   1317 	struct drm_i915_file_private *file_priv = file->driver_priv;
   1318 	struct i915_request *request;
   1319 
   1320 	/* Clean up our request list when the client is going away, so that
   1321 	 * later retire_requests won't dereference our soon-to-be-gone
   1322 	 * file_priv.
   1323 	 */
   1324 	spin_lock(&file_priv->mm.lock);
   1325 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
   1326 		request->file_priv = NULL;
   1327 	spin_unlock(&file_priv->mm.lock);
   1328 }
   1329 
   1330 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
   1331 {
   1332 	struct drm_i915_file_private *file_priv;
   1333 	int ret;
   1334 
   1335 	DRM_DEBUG("\n");
   1336 
   1337 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
   1338 	if (!file_priv)
   1339 		return -ENOMEM;
   1340 
   1341 	file->driver_priv = file_priv;
   1342 	file_priv->dev_priv = i915;
   1343 	file_priv->file = file;
   1344 
   1345 	spin_lock_init(&file_priv->mm.lock);
   1346 	INIT_LIST_HEAD(&file_priv->mm.request_list);
   1347 
   1348 	file_priv->bsd_engine = -1;
   1349 	file_priv->hang_timestamp = jiffies;
   1350 
   1351 	ret = i915_gem_context_open(i915, file);
   1352 	if (ret)
   1353 		kfree(file_priv);
   1354 
   1355 	return ret;
   1356 }
   1357 
   1358 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
   1359 #include "selftests/mock_gem_device.c"
   1360 #include "selftests/i915_gem.c"
   1361 #endif
   1362