Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.65
      1 /*	$NetBSD: i915_gem.c,v 1.65 2021/12/19 01:50:47 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright  2008-2015 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  * Authors:
     26  *    Eric Anholt <eric (at) anholt.net>
     27  *
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: i915_gem.c,v 1.65 2021/12/19 01:50:47 riastradh Exp $");
     32 
     33 #ifdef __NetBSD__
     34 #if 0				/* XXX uvmhist option?  */
     35 #include "opt_uvmhist.h"
     36 #endif
     37 
     38 #include <sys/types.h>
     39 #include <sys/param.h>
     40 
     41 #include <uvm/uvm.h>
     42 #include <uvm/uvm_extern.h>
     43 #include <uvm/uvm_fault.h>
     44 #include <uvm/uvm_page.h>
     45 #include <uvm/uvm_pmap.h>
     46 #include <uvm/uvm_prot.h>
     47 
     48 #include <drm/bus_dma_hacks.h>
     49 #endif
     50 
     51 #include <drm/drm_vma_manager.h>
     52 #include <drm/i915_drm.h>
     53 #include <linux/dma-fence-array.h>
     54 #include <linux/kthread.h>
     55 #include <linux/dma-resv.h>
     56 #include <linux/shmem_fs.h>
     57 #include <linux/slab.h>
     58 #include <linux/stop_machine.h>
     59 #include <linux/swap.h>
     60 #include <linux/pci.h>
     61 #include <linux/dma-buf.h>
     62 #include <linux/mman.h>
     63 #include <linux/nbsd-namespace.h>
     64 
     65 #include "display/intel_display.h"
     66 #include "display/intel_frontbuffer.h"
     67 
     68 #include "gem/i915_gem_clflush.h"
     69 #include "gem/i915_gem_context.h"
     70 #include "gem/i915_gem_ioctls.h"
     71 #include "gem/i915_gem_mman.h"
     72 #include "gem/i915_gem_region.h"
     73 #include "gt/intel_engine_user.h"
     74 #include "gt/intel_gt.h"
     75 #include "gt/intel_gt_pm.h"
     76 #include "gt/intel_workarounds.h"
     77 
     78 #include "i915_drv.h"
     79 #include "i915_trace.h"
     80 #include "i915_vgpu.h"
     81 
     82 #include "intel_pm.h"
     83 
     84 static int
     85 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
     86 {
     87 	int err;
     88 
     89 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
     90 	if (err)
     91 		return err;
     92 
     93 	memset(node, 0, sizeof(*node));
     94 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
     95 					  size, 0, I915_COLOR_UNEVICTABLE,
     96 					  0, ggtt->mappable_end,
     97 					  DRM_MM_INSERT_LOW);
     98 
     99 	mutex_unlock(&ggtt->vm.mutex);
    100 
    101 	return err;
    102 }
    103 
    104 static void
    105 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
    106 {
    107 	mutex_lock(&ggtt->vm.mutex);
    108 	drm_mm_remove_node(node);
    109 	mutex_unlock(&ggtt->vm.mutex);
    110 }
    111 
    112 int
    113 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    114 			    struct drm_file *file)
    115 {
    116 	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
    117 	struct drm_i915_gem_get_aperture *args = data;
    118 	struct i915_vma *vma;
    119 	u64 pinned;
    120 
    121 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
    122 		return -EINTR;
    123 
    124 	pinned = ggtt->vm.reserved;
    125 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
    126 		if (i915_vma_is_pinned(vma))
    127 			pinned += vma->node.size;
    128 
    129 	mutex_unlock(&ggtt->vm.mutex);
    130 
    131 	args->aper_size = ggtt->vm.total;
    132 	args->aper_available_size = args->aper_size - pinned;
    133 
    134 	return 0;
    135 }
    136 
    137 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
    138 			   unsigned long flags)
    139 {
    140 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
    141 	LIST_HEAD(still_in_list);
    142 	intel_wakeref_t wakeref;
    143 	struct i915_vma *vma;
    144 	int ret;
    145 
    146 	if (!atomic_read(&obj->bind_count))
    147 		return 0;
    148 
    149 	/*
    150 	 * As some machines use ACPI to handle runtime-resume callbacks, and
    151 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
    152 	 * as they are required by the shrinker. Ergo, we wake the device up
    153 	 * first just in case.
    154 	 */
    155 	wakeref = intel_runtime_pm_get(rpm);
    156 
    157 try_again:
    158 	ret = 0;
    159 	spin_lock(&obj->vma.lock);
    160 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
    161 						       struct i915_vma,
    162 						       obj_link))) {
    163 		struct i915_address_space *vm = vma->vm;
    164 
    165 		list_move_tail(&vma->obj_link, &still_in_list);
    166 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
    167 			continue;
    168 
    169 		ret = -EAGAIN;
    170 		if (!i915_vm_tryopen(vm))
    171 			break;
    172 
    173 		/* Prevent vma being freed by i915_vma_parked as we unbind */
    174 		vma = __i915_vma_get(vma);
    175 		spin_unlock(&obj->vma.lock);
    176 
    177 		if (vma) {
    178 			ret = -EBUSY;
    179 			if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
    180 			    !i915_vma_is_active(vma))
    181 				ret = i915_vma_unbind(vma);
    182 
    183 			__i915_vma_put(vma);
    184 		}
    185 
    186 		i915_vm_close(vm);
    187 		spin_lock(&obj->vma.lock);
    188 	}
    189 	list_splice_init(&still_in_list, &obj->vma.list);
    190 	spin_unlock(&obj->vma.lock);
    191 
    192 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
    193 		rcu_barrier(); /* flush the i915_vm_release() */
    194 		goto try_again;
    195 	}
    196 
    197 	intel_runtime_pm_put(rpm, wakeref);
    198 
    199 	return ret;
    200 }
    201 
    202 static int
    203 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
    204 		     struct drm_i915_gem_pwrite *args,
    205 		     struct drm_file *file)
    206 {
    207 	void *vaddr = sg_page(obj->mm.pages->sgl) + args->offset;
    208 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
    209 
    210 	/*
    211 	 * We manually control the domain here and pretend that it
    212 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
    213 	 */
    214 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
    215 
    216 	if (copy_from_user(vaddr, user_data, args->size))
    217 		return -EFAULT;
    218 
    219 	drm_clflush_virt_range(vaddr, args->size);
    220 	intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
    221 
    222 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
    223 	return 0;
    224 }
    225 
    226 static int
    227 i915_gem_create(struct drm_file *file,
    228 		struct intel_memory_region *mr,
    229 		u64 *size_p,
    230 		u32 *handle_p)
    231 {
    232 	struct drm_i915_gem_object *obj;
    233 	u32 handle;
    234 	u64 size;
    235 	int ret;
    236 
    237 	GEM_BUG_ON(!is_power_of_2(mr->min_page_size));
    238 	size = round_up(*size_p, mr->min_page_size);
    239 	if (size == 0)
    240 		return -EINVAL;
    241 
    242 	/* For most of the ABI (e.g. mmap) we think in system pages */
    243 	GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
    244 
    245 	/* Allocate the new object */
    246 	obj = i915_gem_object_create_region(mr, size, 0);
    247 	if (IS_ERR(obj))
    248 		return PTR_ERR(obj);
    249 
    250 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    251 	/* drop reference from allocate - handle holds it now */
    252 	i915_gem_object_put(obj);
    253 	if (ret)
    254 		return ret;
    255 
    256 	*handle_p = handle;
    257 	*size_p = size;
    258 	return 0;
    259 }
    260 
    261 int
    262 i915_gem_dumb_create(struct drm_file *file,
    263 		     struct drm_device *dev,
    264 		     struct drm_mode_create_dumb *args)
    265 {
    266 
    267 	enum intel_memory_type mem_type;
    268 	int cpp = DIV_ROUND_UP(args->bpp, 8);
    269 	u32 format;
    270 
    271 	switch (cpp) {
    272 	case 1:
    273 		format = DRM_FORMAT_C8;
    274 		break;
    275 	case 2:
    276 		format = DRM_FORMAT_RGB565;
    277 		break;
    278 	case 4:
    279 		format = DRM_FORMAT_XRGB8888;
    280 		break;
    281 	default:
    282 		return -EINVAL;
    283 	}
    284 
    285 	/* have to work out size/pitch and return them */
    286 	args->pitch = round_up(args->width * cpp, 64);
    287 
    288 	/* align stride to page size so that we can remap */
    289 	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
    290 						    DRM_FORMAT_MOD_LINEAR))
    291 		args->pitch = round_up(args->pitch, 4096);
    292 
    293 	if (args->pitch < args->width)
    294 		return -EINVAL;
    295 
    296 	args->size = mul_u32_u32(args->pitch, args->height);
    297 
    298 	mem_type = INTEL_MEMORY_SYSTEM;
    299 	if (HAS_LMEM(to_i915(dev)))
    300 		mem_type = INTEL_MEMORY_LOCAL;
    301 
    302 	return i915_gem_create(file,
    303 			       intel_memory_region_by_type(to_i915(dev),
    304 							   mem_type),
    305 			       &args->size, &args->handle);
    306 }
    307 
    308 /**
    309  * Creates a new mm object and returns a handle to it.
    310  * @dev: drm device pointer
    311  * @data: ioctl data blob
    312  * @file: drm file pointer
    313  */
    314 int
    315 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    316 		      struct drm_file *file)
    317 {
    318 	struct drm_i915_private *i915 = to_i915(dev);
    319 	struct drm_i915_gem_create *args = data;
    320 
    321 	i915_gem_flush_free_objects(i915);
    322 
    323 	return i915_gem_create(file,
    324 			       intel_memory_region_by_type(i915,
    325 							   INTEL_MEMORY_SYSTEM),
    326 			       &args->size, &args->handle);
    327 }
    328 
    329 static int
    330 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
    331 	    bool needs_clflush)
    332 {
    333 	char *vaddr;
    334 	int ret;
    335 
    336 	vaddr = kmap(page);
    337 
    338 	if (needs_clflush)
    339 		drm_clflush_virt_range(vaddr + offset, len);
    340 
    341 	ret = __copy_to_user(user_data, vaddr + offset, len);
    342 
    343 	kunmap(page);
    344 
    345 	return ret ? -EFAULT : 0;
    346 }
    347 
    348 static int
    349 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
    350 		     struct drm_i915_gem_pread *args)
    351 {
    352 	unsigned int needs_clflush;
    353 	unsigned int idx, offset;
    354 	struct dma_fence *fence;
    355 	char __user *user_data;
    356 	u64 remain;
    357 	int ret;
    358 
    359 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
    360 
    361 	if (ret)
    362 		return ret;
    363 
    364 	fence = i915_gem_object_lock_fence(obj);
    365 	i915_gem_object_finish_access(obj);
    366 	if (!fence)
    367 		return -ENOMEM;
    368 
    369 	remain = args->size;
    370 	user_data = u64_to_user_ptr(args->data_ptr);
    371 	offset = offset_in_page(args->offset);
    372 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
    373 		struct page *page = i915_gem_object_get_page(obj, idx);
    374 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
    375 
    376 		ret = shmem_pread(page, offset, length, user_data,
    377 				  needs_clflush);
    378 		if (ret)
    379 			break;
    380 
    381 		remain -= length;
    382 		user_data += length;
    383 		offset = 0;
    384 	}
    385 
    386 	i915_gem_object_unlock_fence(obj, fence);
    387 	return ret;
    388 }
    389 
    390 static inline bool
    391 gtt_user_read(struct io_mapping *mapping,
    392 	      loff_t base, int offset,
    393 	      char __user *user_data, int length)
    394 {
    395 	void __iomem *vaddr;
    396 	unsigned long unwritten;
    397 
    398 	/* We can use the cpu mem copy function because this is X86. */
    399 	vaddr = io_mapping_map_atomic_wc(mapping, base);
    400 	unwritten = __copy_to_user_inatomic(user_data,
    401 					    (void __force *)vaddr + offset,
    402 					    length);
    403 	io_mapping_unmap_atomic(vaddr);
    404 	if (unwritten) {
    405 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
    406 		unwritten = copy_to_user(user_data,
    407 					 (void __force *)vaddr + offset,
    408 					 length);
    409 		io_mapping_unmap(vaddr);
    410 	}
    411 	return unwritten;
    412 }
    413 
    414 static int
    415 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
    416 		   const struct drm_i915_gem_pread *args)
    417 {
    418 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
    419 	struct i915_ggtt *ggtt = &i915->ggtt;
    420 	intel_wakeref_t wakeref;
    421 	struct drm_mm_node node;
    422 	struct dma_fence *fence;
    423 	void __user *user_data;
    424 	struct i915_vma *vma;
    425 	u64 remain, offset;
    426 	int ret;
    427 
    428 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
    429 	vma = ERR_PTR(-ENODEV);
    430 	if (!i915_gem_object_is_tiled(obj))
    431 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
    432 					       PIN_MAPPABLE |
    433 					       PIN_NONBLOCK /* NOWARN */ |
    434 					       PIN_NOEVICT);
    435 	if (!IS_ERR(vma)) {
    436 		node.start = i915_ggtt_offset(vma);
    437 		node.flags = 0;
    438 	} else {
    439 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
    440 		if (ret)
    441 			goto out_rpm;
    442 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
    443 	}
    444 
    445 	ret = i915_gem_object_lock_interruptible(obj);
    446 	if (ret)
    447 		goto out_unpin;
    448 
    449 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
    450 	if (ret) {
    451 		i915_gem_object_unlock(obj);
    452 		goto out_unpin;
    453 	}
    454 
    455 	fence = i915_gem_object_lock_fence(obj);
    456 	i915_gem_object_unlock(obj);
    457 	if (!fence) {
    458 		ret = -ENOMEM;
    459 		goto out_unpin;
    460 	}
    461 
    462 	user_data = u64_to_user_ptr(args->data_ptr);
    463 	remain = args->size;
    464 	offset = args->offset;
    465 
    466 	while (remain > 0) {
    467 		/* Operation in this page
    468 		 *
    469 		 * page_base = page offset within aperture
    470 		 * page_offset = offset within page
    471 		 * page_length = bytes to copy for this page
    472 		 */
    473 		u32 page_base = node.start;
    474 		unsigned page_offset = offset_in_page(offset);
    475 		unsigned page_length = PAGE_SIZE - page_offset;
    476 		page_length = remain < page_length ? remain : page_length;
    477 		if (drm_mm_node_allocated(&node)) {
    478 			ggtt->vm.insert_page(&ggtt->vm,
    479 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
    480 					     node.start, I915_CACHE_NONE, 0);
    481 		} else {
    482 			page_base += offset & PAGE_MASK;
    483 		}
    484 
    485 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
    486 				  user_data, page_length)) {
    487 			ret = -EFAULT;
    488 			break;
    489 		}
    490 
    491 		remain -= page_length;
    492 		user_data += page_length;
    493 		offset += page_length;
    494 	}
    495 
    496 	i915_gem_object_unlock_fence(obj, fence);
    497 out_unpin:
    498 	if (drm_mm_node_allocated(&node)) {
    499 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
    500 		remove_mappable_node(ggtt, &node);
    501 	} else {
    502 		i915_vma_unpin(vma);
    503 	}
    504 out_rpm:
    505 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
    506 	return ret;
    507 }
    508 
    509 /**
    510  * Reads data from the object referenced by handle.
    511  * @dev: drm device pointer
    512  * @data: ioctl data blob
    513  * @file: drm file pointer
    514  *
    515  * On error, the contents of *data are undefined.
    516  */
    517 int
    518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    519 		     struct drm_file *file)
    520 {
    521 	struct drm_i915_gem_pread *args = data;
    522 	struct drm_i915_gem_object *obj;
    523 	int ret;
    524 
    525 	if (args->size == 0)
    526 		return 0;
    527 
    528 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
    529 		       args->size))
    530 		return -EFAULT;
    531 
    532 	obj = i915_gem_object_lookup(file, args->handle);
    533 	if (!obj)
    534 		return -ENOENT;
    535 
    536 	/* Bounds check source.  */
    537 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
    538 		ret = -EINVAL;
    539 		goto out;
    540 	}
    541 
    542 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    543 
    544 	ret = i915_gem_object_wait(obj,
    545 				   I915_WAIT_INTERRUPTIBLE,
    546 				   MAX_SCHEDULE_TIMEOUT);
    547 	if (ret)
    548 		goto out;
    549 
    550 	ret = i915_gem_object_pin_pages(obj);
    551 	if (ret)
    552 		goto out;
    553 
    554 	ret = i915_gem_shmem_pread(obj, args);
    555 	if (ret == -EFAULT || ret == -ENODEV)
    556 		ret = i915_gem_gtt_pread(obj, args);
    557 
    558 	i915_gem_object_unpin_pages(obj);
    559 out:
    560 	i915_gem_object_put(obj);
    561 	return ret;
    562 }
    563 
    564 /* This is the fast write path which cannot handle
    565  * page faults in the source data
    566  */
    567 
    568 static inline bool
    569 ggtt_write(struct io_mapping *mapping,
    570 	   loff_t base, int offset,
    571 	   char __user *user_data, int length)
    572 {
    573 	void __iomem *vaddr;
    574 	unsigned long unwritten;
    575 
    576 	/* We can use the cpu mem copy function because this is X86. */
    577 	vaddr = io_mapping_map_atomic_wc(mapping, base);
    578 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
    579 						      user_data, length);
    580 	io_mapping_unmap_atomic(vaddr);
    581 	if (unwritten) {
    582 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
    583 		unwritten = copy_from_user((void __force *)vaddr + offset,
    584 					   user_data, length);
    585 		io_mapping_unmap(vaddr);
    586 	}
    587 
    588 	return unwritten;
    589 }
    590 
    591 /**
    592  * This is the fast pwrite path, where we copy the data directly from the
    593  * user into the GTT, uncached.
    594  * @obj: i915 GEM object
    595  * @args: pwrite arguments structure
    596  */
    597 static int
    598 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
    599 			 const struct drm_i915_gem_pwrite *args)
    600 {
    601 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
    602 	struct i915_ggtt *ggtt = &i915->ggtt;
    603 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
    604 	intel_wakeref_t wakeref;
    605 	struct drm_mm_node node;
    606 	struct dma_fence *fence;
    607 	struct i915_vma *vma;
    608 	u64 remain, offset;
    609 	void __user *user_data;
    610 	int ret;
    611 
    612 	if (i915_gem_object_has_struct_page(obj)) {
    613 		/*
    614 		 * Avoid waking the device up if we can fallback, as
    615 		 * waking/resuming is very slow (worst-case 10-100 ms
    616 		 * depending on PCI sleeps and our own resume time).
    617 		 * This easily dwarfs any performance advantage from
    618 		 * using the cache bypass of indirect GGTT access.
    619 		 */
    620 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
    621 		if (!wakeref)
    622 			return -EFAULT;
    623 	} else {
    624 		/* No backing pages, no fallback, we must force GGTT access */
    625 		wakeref = intel_runtime_pm_get(rpm);
    626 	}
    627 
    628 	vma = ERR_PTR(-ENODEV);
    629 	if (!i915_gem_object_is_tiled(obj))
    630 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
    631 					       PIN_MAPPABLE |
    632 					       PIN_NONBLOCK /* NOWARN */ |
    633 					       PIN_NOEVICT);
    634 	if (!IS_ERR(vma)) {
    635 		node.start = i915_ggtt_offset(vma);
    636 		node.flags = 0;
    637 	} else {
    638 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
    639 		if (ret)
    640 			goto out_rpm;
    641 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
    642 	}
    643 
    644 	ret = i915_gem_object_lock_interruptible(obj);
    645 	if (ret)
    646 		goto out_unpin;
    647 
    648 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    649 	if (ret) {
    650 		i915_gem_object_unlock(obj);
    651 		goto out_unpin;
    652 	}
    653 
    654 	fence = i915_gem_object_lock_fence(obj);
    655 	i915_gem_object_unlock(obj);
    656 	if (!fence) {
    657 		ret = -ENOMEM;
    658 		goto out_unpin;
    659 	}
    660 
    661 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
    662 
    663 	user_data = u64_to_user_ptr(args->data_ptr);
    664 	offset = args->offset;
    665 	remain = args->size;
    666 	while (remain) {
    667 		/* Operation in this page
    668 		 *
    669 		 * page_base = page offset within aperture
    670 		 * page_offset = offset within page
    671 		 * page_length = bytes to copy for this page
    672 		 */
    673 		u32 page_base = node.start;
    674 		unsigned int page_offset = offset_in_page(offset);
    675 		unsigned int page_length = PAGE_SIZE - page_offset;
    676 		page_length = remain < page_length ? remain : page_length;
    677 		if (drm_mm_node_allocated(&node)) {
    678 			/* flush the write before we modify the GGTT */
    679 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
    680 			ggtt->vm.insert_page(&ggtt->vm,
    681 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
    682 					     node.start, I915_CACHE_NONE, 0);
    683 			wmb(); /* flush modifications to the GGTT (insert_page) */
    684 		} else {
    685 			page_base += offset & PAGE_MASK;
    686 		}
    687 		/* If we get a fault while copying data, then (presumably) our
    688 		 * source page isn't available.  Return the error and we'll
    689 		 * retry in the slow path.
    690 		 * If the object is non-shmem backed, we retry again with the
    691 		 * path that handles page fault.
    692 		 */
    693 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
    694 			       user_data, page_length)) {
    695 			ret = -EFAULT;
    696 			break;
    697 		}
    698 
    699 		remain -= page_length;
    700 		user_data += page_length;
    701 		offset += page_length;
    702 	}
    703 
    704 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
    705 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
    706 
    707 	i915_gem_object_unlock_fence(obj, fence);
    708 out_unpin:
    709 	if (drm_mm_node_allocated(&node)) {
    710 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
    711 		remove_mappable_node(ggtt, &node);
    712 	} else {
    713 		i915_vma_unpin(vma);
    714 	}
    715 out_rpm:
    716 	intel_runtime_pm_put(rpm, wakeref);
    717 	return ret;
    718 }
    719 
    720 /* Per-page copy function for the shmem pwrite fastpath.
    721  * Flushes invalid cachelines before writing to the target if
    722  * needs_clflush_before is set and flushes out any written cachelines after
    723  * writing if needs_clflush is set.
    724  */
    725 static int
    726 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
    727 	     bool needs_clflush_before,
    728 	     bool needs_clflush_after)
    729 {
    730 #ifdef __NetBSD__
    731 	return -EFAULT;
    732 #else
    733 	char *vaddr;
    734 	int ret;
    735 
    736 	vaddr = kmap(page);
    737 
    738 	if (needs_clflush_before)
    739 		drm_clflush_virt_range(vaddr + offset, len);
    740 
    741 	ret = __copy_from_user(vaddr + offset, user_data, len);
    742 	if (!ret && needs_clflush_after)
    743 		drm_clflush_virt_range(vaddr + offset, len);
    744 
    745 	kunmap(page);
    746 
    747 	return ret ? -EFAULT : 0;
    748 #endif
    749 }
    750 
    751 static int
    752 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
    753 		      const struct drm_i915_gem_pwrite *args)
    754 {
    755 	unsigned int partial_cacheline_write;
    756 	unsigned int needs_clflush;
    757 	unsigned int offset, idx;
    758 	struct dma_fence *fence;
    759 	void __user *user_data;
    760 	u64 remain;
    761 	int ret;
    762 
    763 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
    764 	if (ret)
    765 		return ret;
    766 
    767 	fence = i915_gem_object_lock_fence(obj);
    768 	i915_gem_object_finish_access(obj);
    769 	if (!fence)
    770 		return -ENOMEM;
    771 
    772 	/* If we don't overwrite a cacheline completely we need to be
    773 	 * careful to have up-to-date data by first clflushing. Don't
    774 	 * overcomplicate things and flush the entire patch.
    775 	 */
    776 	partial_cacheline_write = 0;
    777 	if (needs_clflush & CLFLUSH_BEFORE)
    778 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
    779 
    780 	user_data = u64_to_user_ptr(args->data_ptr);
    781 	remain = args->size;
    782 	offset = offset_in_page(args->offset);
    783 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
    784 		struct page *page = i915_gem_object_get_page(obj, idx);
    785 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
    786 
    787 		ret = shmem_pwrite(page, offset, length, user_data,
    788 				   (offset | length) & partial_cacheline_write,
    789 				   needs_clflush & CLFLUSH_AFTER);
    790 		if (ret)
    791 			break;
    792 
    793 		remain -= length;
    794 		user_data += length;
    795 		offset = 0;
    796 	}
    797 
    798 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
    799 	i915_gem_object_unlock_fence(obj, fence);
    800 
    801 	return ret;
    802 }
    803 
    804 /**
    805  * Writes data to the object referenced by handle.
    806  * @dev: drm device
    807  * @data: ioctl data blob
    808  * @file: drm file
    809  *
    810  * On error, the contents of the buffer that were to be modified are undefined.
    811  */
    812 int
    813 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
    814 		      struct drm_file *file)
    815 {
    816 	struct drm_i915_gem_pwrite *args = data;
    817 	struct drm_i915_gem_object *obj;
    818 	int ret;
    819 
    820 	if (args->size == 0)
    821 		return 0;
    822 
    823 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
    824 		return -EFAULT;
    825 
    826 	obj = i915_gem_object_lookup(file, args->handle);
    827 	if (!obj)
    828 		return -ENOENT;
    829 
    830 	/* Bounds check destination. */
    831 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
    832 		ret = -EINVAL;
    833 		goto err;
    834 	}
    835 
    836 	/* Writes not allowed into this read-only object */
    837 	if (i915_gem_object_is_readonly(obj)) {
    838 		ret = -EINVAL;
    839 		goto err;
    840 	}
    841 
    842 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
    843 
    844 	ret = -ENODEV;
    845 	if (obj->ops->pwrite)
    846 		ret = obj->ops->pwrite(obj, args);
    847 	if (ret != -ENODEV)
    848 		goto err;
    849 
    850 	ret = i915_gem_object_wait(obj,
    851 				   I915_WAIT_INTERRUPTIBLE |
    852 				   I915_WAIT_ALL,
    853 				   MAX_SCHEDULE_TIMEOUT);
    854 	if (ret)
    855 		goto err;
    856 
    857 	ret = i915_gem_object_pin_pages(obj);
    858 	if (ret)
    859 		goto err;
    860 
    861 	ret = -EFAULT;
    862 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
    863 	 * it would end up going through the fenced access, and we'll get
    864 	 * different detiling behavior between reading and writing.
    865 	 * pread/pwrite currently are reading and writing from the CPU
    866 	 * perspective, requiring manual detiling by the client.
    867 	 */
    868 	if (!i915_gem_object_has_struct_page(obj) ||
    869 	    cpu_write_needs_clflush(obj))
    870 		/* Note that the gtt paths might fail with non-page-backed user
    871 		 * pointers (e.g. gtt mappings when moving data between
    872 		 * textures). Fallback to the shmem path in that case.
    873 		 */
    874 		ret = i915_gem_gtt_pwrite_fast(obj, args);
    875 
    876 	if (ret == -EFAULT || ret == -ENOSPC) {
    877 		if (i915_gem_object_has_struct_page(obj))
    878 			ret = i915_gem_shmem_pwrite(obj, args);
    879 		else
    880 			ret = i915_gem_phys_pwrite(obj, args, file);
    881 	}
    882 
    883 	i915_gem_object_unpin_pages(obj);
    884 err:
    885 	i915_gem_object_put(obj);
    886 	return ret;
    887 }
    888 
    889 /**
    890  * Called when user space has done writes to this buffer
    891  * @dev: drm device
    892  * @data: ioctl data blob
    893  * @file: drm file
    894  */
    895 int
    896 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
    897 			 struct drm_file *file)
    898 {
    899 	struct drm_i915_gem_sw_finish *args = data;
    900 	struct drm_i915_gem_object *obj;
    901 
    902 	obj = i915_gem_object_lookup(file, args->handle);
    903 	if (!obj)
    904 		return -ENOENT;
    905 
    906 	/*
    907 	 * Proxy objects are barred from CPU access, so there is no
    908 	 * need to ban sw_finish as it is a nop.
    909 	 */
    910 
    911 	/* Pinned buffers may be scanout, so flush the cache */
    912 	i915_gem_object_flush_if_display(obj);
    913 	i915_gem_object_put(obj);
    914 
    915 	return 0;
    916 }
    917 
    918 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
    919 {
    920 	struct drm_i915_gem_object *obj, *on;
    921 	int i;
    922 
    923 	/*
    924 	 * Only called during RPM suspend. All users of the userfault_list
    925 	 * must be holding an RPM wakeref to ensure that this can not
    926 	 * run concurrently with themselves (and use the struct_mutex for
    927 	 * protection between themselves).
    928 	 */
    929 
    930 	list_for_each_entry_safe(obj, on,
    931 				 &i915->ggtt.userfault_list, userfault_link)
    932 		__i915_gem_object_release_mmap_gtt(obj);
    933 
    934 	/*
    935 	 * The fence will be lost when the device powers down. If any were
    936 	 * in use by hardware (i.e. they are pinned), we should not be powering
    937 	 * down! All other fences will be reacquired by the user upon waking.
    938 	 */
    939 	for (i = 0; i < i915->ggtt.num_fences; i++) {
    940 		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
    941 
    942 		/*
    943 		 * Ideally we want to assert that the fence register is not
    944 		 * live at this point (i.e. that no piece of code will be
    945 		 * trying to write through fence + GTT, as that both violates
    946 		 * our tracking of activity and associated locking/barriers,
    947 		 * but also is illegal given that the hw is powered down).
    948 		 *
    949 		 * Previously we used reg->pin_count as a "liveness" indicator.
    950 		 * That is not sufficient, and we need a more fine-grained
    951 		 * tool if we want to have a sanity check here.
    952 		 */
    953 
    954 		if (!reg->vma)
    955 			continue;
    956 
    957 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
    958 		reg->dirty = true;
    959 	}
    960 }
    961 
    962 struct i915_vma *
    963 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
    964 			 const struct i915_ggtt_view *view,
    965 			 u64 size,
    966 			 u64 alignment,
    967 			 u64 flags)
    968 {
    969 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
    970 	struct i915_ggtt *ggtt = &i915->ggtt;
    971 	struct i915_vma *vma;
    972 	int ret;
    973 
    974 	if (i915_gem_object_never_bind_ggtt(obj))
    975 		return ERR_PTR(-ENODEV);
    976 
    977 	if (flags & PIN_MAPPABLE &&
    978 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
    979 		/*
    980 		 * If the required space is larger than the available
    981 		 * aperture, we will not able to find a slot for the
    982 		 * object and unbinding the object now will be in
    983 		 * vain. Worse, doing so may cause us to ping-pong
    984 		 * the object in and out of the Global GTT and
    985 		 * waste a lot of cycles under the mutex.
    986 		 */
    987 		if (obj->base.size > ggtt->mappable_end)
    988 			return ERR_PTR(-E2BIG);
    989 
    990 		/*
    991 		 * If NONBLOCK is set the caller is optimistically
    992 		 * trying to cache the full object within the mappable
    993 		 * aperture, and *must* have a fallback in place for
    994 		 * situations where we cannot bind the object. We
    995 		 * can be a little more lax here and use the fallback
    996 		 * more often to avoid costly migrations of ourselves
    997 		 * and other objects within the aperture.
    998 		 *
    999 		 * Half-the-aperture is used as a simple heuristic.
   1000 		 * More interesting would to do search for a free
   1001 		 * block prior to making the commitment to unbind.
   1002 		 * That caters for the self-harm case, and with a
   1003 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
   1004 		 * we could try to minimise harm to others.
   1005 		 */
   1006 		if (flags & PIN_NONBLOCK &&
   1007 		    obj->base.size > ggtt->mappable_end / 2)
   1008 			return ERR_PTR(-ENOSPC);
   1009 	}
   1010 
   1011 	vma = i915_vma_instance(obj, &ggtt->vm, view);
   1012 	if (IS_ERR(vma))
   1013 		return vma;
   1014 
   1015 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
   1016 		if (flags & PIN_NONBLOCK) {
   1017 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
   1018 				return ERR_PTR(-ENOSPC);
   1019 
   1020 			if (flags & PIN_MAPPABLE &&
   1021 			    vma->fence_size > ggtt->mappable_end / 2)
   1022 				return ERR_PTR(-ENOSPC);
   1023 		}
   1024 
   1025 		ret = i915_vma_unbind(vma);
   1026 		if (ret)
   1027 			return ERR_PTR(ret);
   1028 	}
   1029 
   1030 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
   1031 		mutex_lock(&ggtt->vm.mutex);
   1032 		ret = i915_vma_revoke_fence(vma);
   1033 		mutex_unlock(&ggtt->vm.mutex);
   1034 		if (ret)
   1035 			return ERR_PTR(ret);
   1036 	}
   1037 
   1038 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
   1039 	if (ret)
   1040 		return ERR_PTR(ret);
   1041 
   1042 	return vma;
   1043 }
   1044 
   1045 int
   1046 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   1047 		       struct drm_file *file_priv)
   1048 {
   1049 	struct drm_i915_private *i915 = to_i915(dev);
   1050 	struct drm_i915_gem_madvise *args = data;
   1051 	struct drm_i915_gem_object *obj;
   1052 	int err;
   1053 
   1054 	switch (args->madv) {
   1055 	case I915_MADV_DONTNEED:
   1056 	case I915_MADV_WILLNEED:
   1057 	    break;
   1058 	default:
   1059 	    return -EINVAL;
   1060 	}
   1061 
   1062 	obj = i915_gem_object_lookup(file_priv, args->handle);
   1063 	if (!obj)
   1064 		return -ENOENT;
   1065 
   1066 	err = mutex_lock_interruptible(&obj->mm.lock);
   1067 	if (err)
   1068 		goto out;
   1069 
   1070 	if (i915_gem_object_has_pages(obj) &&
   1071 	    i915_gem_object_is_tiled(obj) &&
   1072 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
   1073 		if (obj->mm.madv == I915_MADV_WILLNEED) {
   1074 			GEM_BUG_ON(!obj->mm.quirked);
   1075 			__i915_gem_object_unpin_pages(obj);
   1076 			obj->mm.quirked = false;
   1077 		}
   1078 		if (args->madv == I915_MADV_WILLNEED) {
   1079 			GEM_BUG_ON(obj->mm.quirked);
   1080 			__i915_gem_object_pin_pages(obj);
   1081 			obj->mm.quirked = true;
   1082 		}
   1083 	}
   1084 
   1085 	if (obj->mm.madv != __I915_MADV_PURGED)
   1086 		obj->mm.madv = args->madv;
   1087 
   1088 	if (i915_gem_object_has_pages(obj)) {
   1089 		struct list_head *list;
   1090 
   1091 		if (i915_gem_object_is_shrinkable(obj)) {
   1092 			unsigned long flags;
   1093 
   1094 			spin_lock_irqsave(&i915->mm.obj_lock, flags);
   1095 
   1096 			if (obj->mm.madv != I915_MADV_WILLNEED)
   1097 				list = &i915->mm.purge_list;
   1098 			else
   1099 				list = &i915->mm.shrink_list;
   1100 			list_move_tail(&obj->mm.link, list);
   1101 
   1102 			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
   1103 		}
   1104 	}
   1105 
   1106 	/* if the object is no longer attached, discard its backing storage */
   1107 	if (obj->mm.madv == I915_MADV_DONTNEED &&
   1108 	    !i915_gem_object_has_pages(obj))
   1109 		i915_gem_object_truncate(obj);
   1110 
   1111 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
   1112 	mutex_unlock(&obj->mm.lock);
   1113 
   1114 out:
   1115 	i915_gem_object_put(obj);
   1116 	return err;
   1117 }
   1118 
   1119 int i915_gem_init(struct drm_i915_private *dev_priv)
   1120 {
   1121 	int ret;
   1122 
   1123 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
   1124 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
   1125 		mkwrite_device_info(dev_priv)->page_sizes =
   1126 			I915_GTT_PAGE_SIZE_4K;
   1127 
   1128 	ret = i915_gem_init_userptr(dev_priv);
   1129 	if (ret)
   1130 		return ret;
   1131 
   1132 	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
   1133 	intel_wopcm_init(&dev_priv->wopcm);
   1134 
   1135 	ret = i915_init_ggtt(dev_priv);
   1136 	if (ret) {
   1137 		GEM_BUG_ON(ret == -EIO);
   1138 		goto err_unlock;
   1139 	}
   1140 
   1141 	/*
   1142 	 * Despite its name intel_init_clock_gating applies both display
   1143 	 * clock gating workarounds; GT mmio workarounds and the occasional
   1144 	 * GT power context workaround. Worse, sometimes it includes a context
   1145 	 * register workaround which we need to apply before we record the
   1146 	 * default HW state for all contexts.
   1147 	 *
   1148 	 * FIXME: break up the workarounds and apply them at the right time!
   1149 	 */
   1150 	intel_init_clock_gating(dev_priv);
   1151 
   1152 	ret = intel_gt_init(&dev_priv->gt);
   1153 	if (ret)
   1154 		goto err_unlock;
   1155 
   1156 	return 0;
   1157 
   1158 	/*
   1159 	 * Unwinding is complicated by that we want to handle -EIO to mean
   1160 	 * disable GPU submission but keep KMS alive. We want to mark the
   1161 	 * HW as irrevisibly wedged, but keep enough state around that the
   1162 	 * driver doesn't explode during runtime.
   1163 	 */
   1164 err_unlock:
   1165 	i915_gem_drain_workqueue(dev_priv);
   1166 
   1167 	if (ret != -EIO) {
   1168 		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
   1169 		i915_gem_cleanup_userptr(dev_priv);
   1170 	}
   1171 
   1172 	if (ret == -EIO) {
   1173 		/*
   1174 		 * Allow engines or uC initialisation to fail by marking the GPU
   1175 		 * as wedged. But we only want to do this when the GPU is angry,
   1176 		 * for all other failure, such as an allocation failure, bail.
   1177 		 */
   1178 		if (!intel_gt_is_wedged(&dev_priv->gt)) {
   1179 			i915_probe_error(dev_priv,
   1180 					 "Failed to initialize GPU, declaring it wedged!\n");
   1181 			intel_gt_set_wedged(&dev_priv->gt);
   1182 		}
   1183 
   1184 		/* Minimal basic recovery for KMS */
   1185 		ret = i915_ggtt_enable_hw(dev_priv);
   1186 		i915_gem_restore_gtt_mappings(dev_priv);
   1187 		i915_gem_restore_fences(&dev_priv->ggtt);
   1188 		intel_init_clock_gating(dev_priv);
   1189 	}
   1190 
   1191 	i915_gem_drain_freed_objects(dev_priv);
   1192 	return ret;
   1193 }
   1194 
   1195 void i915_gem_driver_register(struct drm_i915_private *i915)
   1196 {
   1197 	i915_gem_driver_register__shrinker(i915);
   1198 
   1199 	intel_engines_driver_register(i915);
   1200 }
   1201 
   1202 void i915_gem_driver_unregister(struct drm_i915_private *i915)
   1203 {
   1204 	i915_gem_driver_unregister__shrinker(i915);
   1205 }
   1206 
   1207 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
   1208 {
   1209 	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
   1210 
   1211 	i915_gem_suspend_late(dev_priv);
   1212 	intel_gt_driver_remove(&dev_priv->gt);
   1213 	dev_priv->uabi_engines = RB_ROOT;
   1214 
   1215 	/* Flush any outstanding unpin_work. */
   1216 	i915_gem_drain_workqueue(dev_priv);
   1217 
   1218 	i915_gem_drain_freed_objects(dev_priv);
   1219 }
   1220 
   1221 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
   1222 {
   1223 	i915_gem_driver_release__contexts(dev_priv);
   1224 
   1225 	intel_gt_driver_release(&dev_priv->gt);
   1226 
   1227 	intel_wa_list_free(&dev_priv->gt_wa_list);
   1228 
   1229 	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
   1230 	i915_gem_cleanup_userptr(dev_priv);
   1231 
   1232 	i915_gem_drain_freed_objects(dev_priv);
   1233 
   1234 	WARN_ON(!list_empty(&dev_priv->gem.contexts.list));
   1235 }
   1236 
   1237 static void i915_gem_init__mm(struct drm_i915_private *i915)
   1238 {
   1239 	spin_lock_init(&i915->mm.obj_lock);
   1240 
   1241 	init_llist_head(&i915->mm.free_list);
   1242 
   1243 	INIT_LIST_HEAD(&i915->mm.purge_list);
   1244 	INIT_LIST_HEAD(&i915->mm.shrink_list);
   1245 
   1246 	i915_gem_init__objects(i915);
   1247 }
   1248 
   1249 void i915_gem_init_early(struct drm_i915_private *dev_priv)
   1250 {
   1251 	i915_gem_init__mm(dev_priv);
   1252 	i915_gem_init__contexts(dev_priv);
   1253 
   1254 	spin_lock_init(&dev_priv->fb_tracking.lock);
   1255 }
   1256 
   1257 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
   1258 {
   1259 	i915_gem_drain_freed_objects(dev_priv);
   1260 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
   1261 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
   1262 	WARN_ON(dev_priv->mm.shrink_count);
   1263 }
   1264 
   1265 int i915_gem_freeze(struct drm_i915_private *dev_priv)
   1266 {
   1267 	/* Discard all purgeable objects, let userspace recover those as
   1268 	 * required after resuming.
   1269 	 */
   1270 	i915_gem_shrink_all(dev_priv);
   1271 
   1272 	return 0;
   1273 }
   1274 
   1275 int i915_gem_freeze_late(struct drm_i915_private *i915)
   1276 {
   1277 	struct drm_i915_gem_object *obj;
   1278 	intel_wakeref_t wakeref;
   1279 
   1280 	/*
   1281 	 * Called just before we write the hibernation image.
   1282 	 *
   1283 	 * We need to update the domain tracking to reflect that the CPU
   1284 	 * will be accessing all the pages to create and restore from the
   1285 	 * hibernation, and so upon restoration those pages will be in the
   1286 	 * CPU domain.
   1287 	 *
   1288 	 * To make sure the hibernation image contains the latest state,
   1289 	 * we update that state just before writing out the image.
   1290 	 *
   1291 	 * To try and reduce the hibernation image, we manually shrink
   1292 	 * the objects as well, see i915_gem_freeze()
   1293 	 */
   1294 
   1295 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
   1296 
   1297 	i915_gem_shrink(i915, -1UL, NULL, ~0);
   1298 	i915_gem_drain_freed_objects(i915);
   1299 
   1300 	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
   1301 		i915_gem_object_lock(obj);
   1302 		WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
   1303 		i915_gem_object_unlock(obj);
   1304 	}
   1305 
   1306 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
   1307 
   1308 	return 0;
   1309 }
   1310 
   1311 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   1312 {
   1313 	struct drm_i915_file_private *file_priv = file->driver_priv;
   1314 	struct i915_request *request;
   1315 
   1316 	/* Clean up our request list when the client is going away, so that
   1317 	 * later retire_requests won't dereference our soon-to-be-gone
   1318 	 * file_priv.
   1319 	 */
   1320 	spin_lock(&file_priv->mm.lock);
   1321 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
   1322 		request->file_priv = NULL;
   1323 	spin_unlock(&file_priv->mm.lock);
   1324 }
   1325 
   1326 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
   1327 {
   1328 	struct drm_i915_file_private *file_priv;
   1329 	int ret;
   1330 
   1331 	DRM_DEBUG("\n");
   1332 
   1333 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
   1334 	if (!file_priv)
   1335 		return -ENOMEM;
   1336 
   1337 	file->driver_priv = file_priv;
   1338 	file_priv->dev_priv = i915;
   1339 	file_priv->file = file;
   1340 
   1341 	spin_lock_init(&file_priv->mm.lock);
   1342 	INIT_LIST_HEAD(&file_priv->mm.request_list);
   1343 
   1344 	file_priv->bsd_engine = -1;
   1345 	file_priv->hang_timestamp = jiffies;
   1346 
   1347 	ret = i915_gem_context_open(i915, file);
   1348 	if (ret)
   1349 		kfree(file_priv);
   1350 
   1351 	return ret;
   1352 }
   1353 
   1354 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
   1355 #include "selftests/mock_gem_device.c"
   1356 #include "selftests/i915_gem.c"
   1357 #endif
   1358