Home | History | Annotate | Line # | Download | only in i915
i915_gem.c revision 1.69
      1 /*	$NetBSD: i915_gem.c,v 1.69 2021/12/19 11:24:29 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright  2008-2015 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  * Authors:
     26  *    Eric Anholt <eric (at) anholt.net>
     27  *
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: i915_gem.c,v 1.69 2021/12/19 11:24:29 riastradh Exp $");
     32 
     33 #ifdef __NetBSD__
     34 #if 0				/* XXX uvmhist option?  */
     35 #include "opt_uvmhist.h"
     36 #endif
     37 
     38 #include <sys/types.h>
     39 #include <sys/param.h>
     40 
     41 #include <uvm/uvm.h>
     42 #include <uvm/uvm_extern.h>
     43 #include <uvm/uvm_fault.h>
     44 #include <uvm/uvm_page.h>
     45 #include <uvm/uvm_pmap.h>
     46 #include <uvm/uvm_prot.h>
     47 
     48 #include <drm/bus_dma_hacks.h>
     49 #endif
     50 
     51 #include <drm/drm_vma_manager.h>
     52 #include <drm/i915_drm.h>
     53 #include <linux/dma-fence-array.h>
     54 #include <linux/kthread.h>
     55 #include <linux/dma-resv.h>
     56 #include <linux/shmem_fs.h>
     57 #include <linux/slab.h>
     58 #include <linux/stop_machine.h>
     59 #include <linux/swap.h>
     60 #include <linux/pci.h>
     61 #include <linux/dma-buf.h>
     62 #include <linux/mman.h>
     63 #include <linux/uaccess.h>
     64 
     65 #include "display/intel_display.h"
     66 #include "display/intel_frontbuffer.h"
     67 
     68 #include "gem/i915_gem_clflush.h"
     69 #include "gem/i915_gem_context.h"
     70 #include "gem/i915_gem_ioctls.h"
     71 #include "gem/i915_gem_mman.h"
     72 #include "gem/i915_gem_region.h"
     73 #include "gt/intel_engine_user.h"
     74 #include "gt/intel_gt.h"
     75 #include "gt/intel_gt_pm.h"
     76 #include "gt/intel_workarounds.h"
     77 
     78 #include "i915_drv.h"
     79 #include "i915_trace.h"
     80 #include "i915_vgpu.h"
     81 
     82 #include "intel_pm.h"
     83 
     84 #include <linux/nbsd-namespace.h>
     85 
     86 static int
     87 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
     88 {
     89 	int err;
     90 
     91 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
     92 	if (err)
     93 		return err;
     94 
     95 	memset(node, 0, sizeof(*node));
     96 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
     97 					  size, 0, I915_COLOR_UNEVICTABLE,
     98 					  0, ggtt->mappable_end,
     99 					  DRM_MM_INSERT_LOW);
    100 
    101 	mutex_unlock(&ggtt->vm.mutex);
    102 
    103 	return err;
    104 }
    105 
    106 static void
    107 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
    108 {
    109 	mutex_lock(&ggtt->vm.mutex);
    110 	drm_mm_remove_node(node);
    111 	mutex_unlock(&ggtt->vm.mutex);
    112 }
    113 
    114 int
    115 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    116 			    struct drm_file *file)
    117 {
    118 	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
    119 	struct drm_i915_gem_get_aperture *args = data;
    120 	struct i915_vma *vma;
    121 	u64 pinned;
    122 
    123 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
    124 		return -EINTR;
    125 
    126 	pinned = ggtt->vm.reserved;
    127 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
    128 		if (i915_vma_is_pinned(vma))
    129 			pinned += vma->node.size;
    130 
    131 	mutex_unlock(&ggtt->vm.mutex);
    132 
    133 	args->aper_size = ggtt->vm.total;
    134 	args->aper_available_size = args->aper_size - pinned;
    135 
    136 	return 0;
    137 }
    138 
    139 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
    140 			   unsigned long flags)
    141 {
    142 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
    143 	LIST_HEAD(still_in_list);
    144 	intel_wakeref_t wakeref;
    145 	struct i915_vma *vma;
    146 	int ret;
    147 
    148 	if (!atomic_read(&obj->bind_count))
    149 		return 0;
    150 
    151 	/*
    152 	 * As some machines use ACPI to handle runtime-resume callbacks, and
    153 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
    154 	 * as they are required by the shrinker. Ergo, we wake the device up
    155 	 * first just in case.
    156 	 */
    157 	wakeref = intel_runtime_pm_get(rpm);
    158 
    159 try_again:
    160 	ret = 0;
    161 	spin_lock(&obj->vma.lock);
    162 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
    163 						       struct i915_vma,
    164 						       obj_link))) {
    165 		struct i915_address_space *vm = vma->vm;
    166 
    167 		list_move_tail(&vma->obj_link, &still_in_list);
    168 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
    169 			continue;
    170 
    171 		ret = -EAGAIN;
    172 		if (!i915_vm_tryopen(vm))
    173 			break;
    174 
    175 		/* Prevent vma being freed by i915_vma_parked as we unbind */
    176 		vma = __i915_vma_get(vma);
    177 		spin_unlock(&obj->vma.lock);
    178 
    179 		if (vma) {
    180 			ret = -EBUSY;
    181 			if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
    182 			    !i915_vma_is_active(vma))
    183 				ret = i915_vma_unbind(vma);
    184 
    185 			__i915_vma_put(vma);
    186 		}
    187 
    188 		i915_vm_close(vm);
    189 		spin_lock(&obj->vma.lock);
    190 	}
    191 	list_splice_init(&still_in_list, &obj->vma.list);
    192 	spin_unlock(&obj->vma.lock);
    193 
    194 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
    195 		rcu_barrier(); /* flush the i915_vm_release() */
    196 		goto try_again;
    197 	}
    198 
    199 	intel_runtime_pm_put(rpm, wakeref);
    200 
    201 	return ret;
    202 }
    203 
    204 static int
    205 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
    206 		     struct drm_i915_gem_pwrite *args,
    207 		     struct drm_file *file)
    208 {
    209 #ifdef __NetBSD__
    210 	panic("TODO");
    211 #else
    212 	void *vaddr = sg_page(obj->mm.pages->sgl) + args->offset;
    213 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
    214 
    215 	/*
    216 	 * We manually control the domain here and pretend that it
    217 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
    218 	 */
    219 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
    220 
    221 	if (copy_from_user(vaddr, user_data, args->size))
    222 		return -EFAULT;
    223 
    224 	drm_clflush_virt_range(vaddr, args->size);
    225 	intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
    226 
    227 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
    228 #endif
    229 	return 0;
    230 }
    231 
    232 static int
    233 i915_gem_create(struct drm_file *file,
    234 		struct intel_memory_region *mr,
    235 		u64 *size_p,
    236 		u32 *handle_p)
    237 {
    238 	struct drm_i915_gem_object *obj;
    239 	u32 handle;
    240 	u64 size;
    241 	int ret;
    242 
    243 	GEM_BUG_ON(!is_power_of_2(mr->min_page_size));
    244 	size = round_up(*size_p, mr->min_page_size);
    245 	if (size == 0)
    246 		return -EINVAL;
    247 
    248 	/* For most of the ABI (e.g. mmap) we think in system pages */
    249 	GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
    250 
    251 	/* Allocate the new object */
    252 	obj = i915_gem_object_create_region(mr, size, 0);
    253 	if (IS_ERR(obj))
    254 		return PTR_ERR(obj);
    255 
    256 	ret = drm_gem_handle_create(file, &obj->base, &handle);
    257 	/* drop reference from allocate - handle holds it now */
    258 	i915_gem_object_put(obj);
    259 	if (ret)
    260 		return ret;
    261 
    262 	*handle_p = handle;
    263 	*size_p = size;
    264 	return 0;
    265 }
    266 
    267 int
    268 i915_gem_dumb_create(struct drm_file *file,
    269 		     struct drm_device *dev,
    270 		     struct drm_mode_create_dumb *args)
    271 {
    272 
    273 	enum intel_memory_type mem_type;
    274 	int cpp = DIV_ROUND_UP(args->bpp, 8);
    275 	u32 format;
    276 
    277 	switch (cpp) {
    278 	case 1:
    279 		format = DRM_FORMAT_C8;
    280 		break;
    281 	case 2:
    282 		format = DRM_FORMAT_RGB565;
    283 		break;
    284 	case 4:
    285 		format = DRM_FORMAT_XRGB8888;
    286 		break;
    287 	default:
    288 		return -EINVAL;
    289 	}
    290 
    291 	/* have to work out size/pitch and return them */
    292 	args->pitch = round_up(args->width * cpp, 64);
    293 
    294 	/* align stride to page size so that we can remap */
    295 	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
    296 						    DRM_FORMAT_MOD_LINEAR))
    297 		args->pitch = round_up(args->pitch, 4096);
    298 
    299 	if (args->pitch < args->width)
    300 		return -EINVAL;
    301 
    302 	args->size = mul_u32_u32(args->pitch, args->height);
    303 
    304 	mem_type = INTEL_MEMORY_SYSTEM;
    305 	if (HAS_LMEM(to_i915(dev)))
    306 		mem_type = INTEL_MEMORY_LOCAL;
    307 
    308 	return i915_gem_create(file,
    309 			       intel_memory_region_by_type(to_i915(dev),
    310 							   mem_type),
    311 			       &args->size, &args->handle);
    312 }
    313 
    314 /**
    315  * Creates a new mm object and returns a handle to it.
    316  * @dev: drm device pointer
    317  * @data: ioctl data blob
    318  * @file: drm file pointer
    319  */
    320 int
    321 i915_gem_create_ioctl(struct drm_device *dev, void *data,
    322 		      struct drm_file *file)
    323 {
    324 	struct drm_i915_private *i915 = to_i915(dev);
    325 	struct drm_i915_gem_create *args = data;
    326 
    327 	i915_gem_flush_free_objects(i915);
    328 
    329 	return i915_gem_create(file,
    330 			       intel_memory_region_by_type(i915,
    331 							   INTEL_MEMORY_SYSTEM),
    332 			       &args->size, &args->handle);
    333 }
    334 
    335 static int
    336 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
    337 	    bool needs_clflush)
    338 {
    339 	char *vaddr;
    340 	int ret;
    341 
    342 	vaddr = kmap(page);
    343 
    344 	if (needs_clflush)
    345 		drm_clflush_virt_range(vaddr + offset, len);
    346 
    347 	ret = __copy_to_user(user_data, vaddr + offset, len);
    348 
    349 	kunmap(page);
    350 
    351 	return ret ? -EFAULT : 0;
    352 }
    353 
    354 static int
    355 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
    356 		     struct drm_i915_gem_pread *args)
    357 {
    358 	unsigned int needs_clflush;
    359 	unsigned int idx, offset;
    360 	struct dma_fence *fence;
    361 	char __user *user_data;
    362 	u64 remain;
    363 	int ret;
    364 
    365 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
    366 
    367 	if (ret)
    368 		return ret;
    369 
    370 	fence = i915_gem_object_lock_fence(obj);
    371 	i915_gem_object_finish_access(obj);
    372 	if (!fence)
    373 		return -ENOMEM;
    374 
    375 	remain = args->size;
    376 	user_data = u64_to_user_ptr(args->data_ptr);
    377 	offset = offset_in_page(args->offset);
    378 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
    379 		struct page *page = i915_gem_object_get_page(obj, idx);
    380 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
    381 
    382 		ret = shmem_pread(page, offset, length, user_data,
    383 				  needs_clflush);
    384 		if (ret)
    385 			break;
    386 
    387 		remain -= length;
    388 		user_data += length;
    389 		offset = 0;
    390 	}
    391 
    392 	i915_gem_object_unlock_fence(obj, fence);
    393 	return ret;
    394 }
    395 
    396 #ifdef __NetBSD__
    397 #define __iomem
    398 #endif
    399 static inline bool
    400 gtt_user_read(struct io_mapping *mapping,
    401 	      loff_t base, int offset,
    402 	      char __user *user_data, int length)
    403 {
    404 	void __iomem *vaddr;
    405 	unsigned long unwritten;
    406 
    407 #ifdef __NetBSD__
    408 	// No fast path for us.
    409 	unwritten = -EFAULT;
    410 #else
    411 	/* We can use the cpu mem copy function because this is X86. */
    412 	vaddr = io_mapping_map_atomic_wc(mapping, base);
    413 	unwritten = __copy_to_user_inatomic(user_data,
    414 					    (void __force *)vaddr + offset,
    415 					    length);
    416 	io_mapping_unmap_atomic(vaddr);
    417 #endif
    418 	if (unwritten) {
    419 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
    420 		unwritten = copy_to_user(user_data,
    421 					 (void __force *)vaddr + offset,
    422 					 length);
    423 #ifdef __NetBSD__
    424 		io_mapping_unmap(mapping, vaddr);
    425 #else
    426 		io_mapping_unmap(vaddr);
    427 #endif
    428 	}
    429 	return unwritten;
    430 }
    431 #ifdef __NetBSD__
    432 #undef __iomem
    433 #endif
    434 
    435 static int
    436 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
    437 		   const struct drm_i915_gem_pread *args)
    438 {
    439 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
    440 	struct i915_ggtt *ggtt = &i915->ggtt;
    441 	intel_wakeref_t wakeref;
    442 	struct drm_mm_node node;
    443 	struct dma_fence *fence;
    444 	void __user *user_data;
    445 	struct i915_vma *vma;
    446 	u64 remain, offset;
    447 	int ret;
    448 
    449 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
    450 	vma = ERR_PTR(-ENODEV);
    451 	if (!i915_gem_object_is_tiled(obj))
    452 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
    453 					       PIN_MAPPABLE |
    454 					       PIN_NONBLOCK /* NOWARN */ |
    455 					       PIN_NOEVICT);
    456 	if (!IS_ERR(vma)) {
    457 		node.start = i915_ggtt_offset(vma);
    458 		node.flags = 0;
    459 	} else {
    460 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
    461 		if (ret)
    462 			goto out_rpm;
    463 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
    464 	}
    465 
    466 	ret = i915_gem_object_lock_interruptible(obj);
    467 	if (ret)
    468 		goto out_unpin;
    469 
    470 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
    471 	if (ret) {
    472 		i915_gem_object_unlock(obj);
    473 		goto out_unpin;
    474 	}
    475 
    476 	fence = i915_gem_object_lock_fence(obj);
    477 	i915_gem_object_unlock(obj);
    478 	if (!fence) {
    479 		ret = -ENOMEM;
    480 		goto out_unpin;
    481 	}
    482 
    483 	user_data = u64_to_user_ptr(args->data_ptr);
    484 	remain = args->size;
    485 	offset = args->offset;
    486 
    487 	while (remain > 0) {
    488 		/* Operation in this page
    489 		 *
    490 		 * page_base = page offset within aperture
    491 		 * page_offset = offset within page
    492 		 * page_length = bytes to copy for this page
    493 		 */
    494 		u32 page_base = node.start;
    495 		unsigned page_offset = offset_in_page(offset);
    496 		unsigned page_length = PAGE_SIZE - page_offset;
    497 		page_length = remain < page_length ? remain : page_length;
    498 		if (drm_mm_node_allocated(&node)) {
    499 			ggtt->vm.insert_page(&ggtt->vm,
    500 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
    501 					     node.start, I915_CACHE_NONE, 0);
    502 		} else {
    503 			page_base += offset & PAGE_MASK;
    504 		}
    505 
    506 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
    507 				  user_data, page_length)) {
    508 			ret = -EFAULT;
    509 			break;
    510 		}
    511 
    512 		remain -= page_length;
    513 		user_data += page_length;
    514 		offset += page_length;
    515 	}
    516 
    517 	i915_gem_object_unlock_fence(obj, fence);
    518 out_unpin:
    519 	if (drm_mm_node_allocated(&node)) {
    520 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
    521 		remove_mappable_node(ggtt, &node);
    522 	} else {
    523 		i915_vma_unpin(vma);
    524 	}
    525 out_rpm:
    526 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
    527 	return ret;
    528 }
    529 
    530 /**
    531  * Reads data from the object referenced by handle.
    532  * @dev: drm device pointer
    533  * @data: ioctl data blob
    534  * @file: drm file pointer
    535  *
    536  * On error, the contents of *data are undefined.
    537  */
    538 int
    539 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    540 		     struct drm_file *file)
    541 {
    542 	struct drm_i915_gem_pread *args = data;
    543 	struct drm_i915_gem_object *obj;
    544 	int ret;
    545 
    546 	if (args->size == 0)
    547 		return 0;
    548 
    549 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
    550 		       args->size))
    551 		return -EFAULT;
    552 
    553 	obj = i915_gem_object_lookup(file, args->handle);
    554 	if (!obj)
    555 		return -ENOENT;
    556 
    557 	/* Bounds check source.  */
    558 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
    559 		ret = -EINVAL;
    560 		goto out;
    561 	}
    562 
    563 	trace_i915_gem_object_pread(obj, args->offset, args->size);
    564 
    565 	ret = i915_gem_object_wait(obj,
    566 				   I915_WAIT_INTERRUPTIBLE,
    567 				   MAX_SCHEDULE_TIMEOUT);
    568 	if (ret)
    569 		goto out;
    570 
    571 	ret = i915_gem_object_pin_pages(obj);
    572 	if (ret)
    573 		goto out;
    574 
    575 	ret = i915_gem_shmem_pread(obj, args);
    576 	if (ret == -EFAULT || ret == -ENODEV)
    577 		ret = i915_gem_gtt_pread(obj, args);
    578 
    579 	i915_gem_object_unpin_pages(obj);
    580 out:
    581 	i915_gem_object_put(obj);
    582 	return ret;
    583 }
    584 
    585 /* This is the fast write path which cannot handle
    586  * page faults in the source data
    587  */
    588 
    589 static inline bool
    590 ggtt_write(struct io_mapping *mapping,
    591 	   loff_t base, int offset,
    592 	   char __user *user_data, int length)
    593 {
    594 #ifdef __NetBSD__
    595 	return length;
    596 #else
    597 	void __iomem *vaddr;
    598 	unsigned long unwritten;
    599 
    600 	/* We can use the cpu mem copy function because this is X86. */
    601 	vaddr = io_mapping_map_atomic_wc(mapping, base);
    602 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
    603 						      user_data, length);
    604 	io_mapping_unmap_atomic(vaddr);
    605 	if (unwritten) {
    606 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
    607 		unwritten = copy_from_user((void __force *)vaddr + offset,
    608 					   user_data, length);
    609 		io_mapping_unmap(vaddr);
    610 	}
    611 
    612 	return unwritten;
    613 #endif
    614 }
    615 
    616 /**
    617  * This is the fast pwrite path, where we copy the data directly from the
    618  * user into the GTT, uncached.
    619  * @obj: i915 GEM object
    620  * @args: pwrite arguments structure
    621  */
    622 static int
    623 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
    624 			 const struct drm_i915_gem_pwrite *args)
    625 {
    626 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
    627 	struct i915_ggtt *ggtt = &i915->ggtt;
    628 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
    629 	intel_wakeref_t wakeref;
    630 	struct drm_mm_node node;
    631 	struct dma_fence *fence;
    632 	struct i915_vma *vma;
    633 	u64 remain, offset;
    634 	void __user *user_data;
    635 	int ret;
    636 
    637 	if (i915_gem_object_has_struct_page(obj)) {
    638 		/*
    639 		 * Avoid waking the device up if we can fallback, as
    640 		 * waking/resuming is very slow (worst-case 10-100 ms
    641 		 * depending on PCI sleeps and our own resume time).
    642 		 * This easily dwarfs any performance advantage from
    643 		 * using the cache bypass of indirect GGTT access.
    644 		 */
    645 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
    646 		if (!wakeref)
    647 			return -EFAULT;
    648 	} else {
    649 		/* No backing pages, no fallback, we must force GGTT access */
    650 		wakeref = intel_runtime_pm_get(rpm);
    651 	}
    652 
    653 	vma = ERR_PTR(-ENODEV);
    654 	if (!i915_gem_object_is_tiled(obj))
    655 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
    656 					       PIN_MAPPABLE |
    657 					       PIN_NONBLOCK /* NOWARN */ |
    658 					       PIN_NOEVICT);
    659 	if (!IS_ERR(vma)) {
    660 		node.start = i915_ggtt_offset(vma);
    661 		node.flags = 0;
    662 	} else {
    663 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
    664 		if (ret)
    665 			goto out_rpm;
    666 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
    667 	}
    668 
    669 	ret = i915_gem_object_lock_interruptible(obj);
    670 	if (ret)
    671 		goto out_unpin;
    672 
    673 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    674 	if (ret) {
    675 		i915_gem_object_unlock(obj);
    676 		goto out_unpin;
    677 	}
    678 
    679 	fence = i915_gem_object_lock_fence(obj);
    680 	i915_gem_object_unlock(obj);
    681 	if (!fence) {
    682 		ret = -ENOMEM;
    683 		goto out_unpin;
    684 	}
    685 
    686 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
    687 
    688 	user_data = u64_to_user_ptr(args->data_ptr);
    689 	offset = args->offset;
    690 	remain = args->size;
    691 	while (remain) {
    692 		/* Operation in this page
    693 		 *
    694 		 * page_base = page offset within aperture
    695 		 * page_offset = offset within page
    696 		 * page_length = bytes to copy for this page
    697 		 */
    698 		u32 page_base = node.start;
    699 		unsigned int page_offset = offset_in_page(offset);
    700 		unsigned int page_length = PAGE_SIZE - page_offset;
    701 		page_length = remain < page_length ? remain : page_length;
    702 		if (drm_mm_node_allocated(&node)) {
    703 			/* flush the write before we modify the GGTT */
    704 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
    705 			ggtt->vm.insert_page(&ggtt->vm,
    706 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
    707 					     node.start, I915_CACHE_NONE, 0);
    708 			wmb(); /* flush modifications to the GGTT (insert_page) */
    709 		} else {
    710 			page_base += offset & PAGE_MASK;
    711 		}
    712 		/* If we get a fault while copying data, then (presumably) our
    713 		 * source page isn't available.  Return the error and we'll
    714 		 * retry in the slow path.
    715 		 * If the object is non-shmem backed, we retry again with the
    716 		 * path that handles page fault.
    717 		 */
    718 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
    719 			       user_data, page_length)) {
    720 			ret = -EFAULT;
    721 			break;
    722 		}
    723 
    724 		remain -= page_length;
    725 		user_data += page_length;
    726 		offset += page_length;
    727 	}
    728 
    729 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
    730 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
    731 
    732 	i915_gem_object_unlock_fence(obj, fence);
    733 out_unpin:
    734 	if (drm_mm_node_allocated(&node)) {
    735 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
    736 		remove_mappable_node(ggtt, &node);
    737 	} else {
    738 		i915_vma_unpin(vma);
    739 	}
    740 out_rpm:
    741 	intel_runtime_pm_put(rpm, wakeref);
    742 	return ret;
    743 }
    744 
    745 /* Per-page copy function for the shmem pwrite fastpath.
    746  * Flushes invalid cachelines before writing to the target if
    747  * needs_clflush_before is set and flushes out any written cachelines after
    748  * writing if needs_clflush is set.
    749  */
    750 static int
    751 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
    752 	     bool needs_clflush_before,
    753 	     bool needs_clflush_after)
    754 {
    755 #ifdef __NetBSD__
    756 	return -EFAULT;
    757 #else
    758 	char *vaddr;
    759 	int ret;
    760 
    761 	vaddr = kmap(page);
    762 
    763 	if (needs_clflush_before)
    764 		drm_clflush_virt_range(vaddr + offset, len);
    765 
    766 	ret = __copy_from_user(vaddr + offset, user_data, len);
    767 	if (!ret && needs_clflush_after)
    768 		drm_clflush_virt_range(vaddr + offset, len);
    769 
    770 	kunmap(page);
    771 
    772 	return ret ? -EFAULT : 0;
    773 #endif
    774 }
    775 
    776 static int
    777 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
    778 		      const struct drm_i915_gem_pwrite *args)
    779 {
    780 	unsigned int partial_cacheline_write;
    781 	unsigned int needs_clflush;
    782 	unsigned int offset, idx;
    783 	struct dma_fence *fence;
    784 	void __user *user_data;
    785 	u64 remain;
    786 	int ret;
    787 
    788 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
    789 	if (ret)
    790 		return ret;
    791 
    792 	fence = i915_gem_object_lock_fence(obj);
    793 	i915_gem_object_finish_access(obj);
    794 	if (!fence)
    795 		return -ENOMEM;
    796 
    797 	/* If we don't overwrite a cacheline completely we need to be
    798 	 * careful to have up-to-date data by first clflushing. Don't
    799 	 * overcomplicate things and flush the entire patch.
    800 	 */
    801 	partial_cacheline_write = 0;
    802 	if (needs_clflush & CLFLUSH_BEFORE)
    803 #ifdef __NetBSD__
    804 		partial_cacheline_write = cpu_info_primary.ci_cflush_lsize - 1;
    805 #else
    806 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
    807 #endif
    808 
    809 	user_data = u64_to_user_ptr(args->data_ptr);
    810 	remain = args->size;
    811 	offset = offset_in_page(args->offset);
    812 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
    813 		struct page *page = i915_gem_object_get_page(obj, idx);
    814 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
    815 
    816 		ret = shmem_pwrite(page, offset, length, user_data,
    817 				   (offset | length) & partial_cacheline_write,
    818 				   needs_clflush & CLFLUSH_AFTER);
    819 		if (ret)
    820 			break;
    821 
    822 		remain -= length;
    823 		user_data += length;
    824 		offset = 0;
    825 	}
    826 
    827 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
    828 	i915_gem_object_unlock_fence(obj, fence);
    829 
    830 	return ret;
    831 }
    832 
    833 /**
    834  * Writes data to the object referenced by handle.
    835  * @dev: drm device
    836  * @data: ioctl data blob
    837  * @file: drm file
    838  *
    839  * On error, the contents of the buffer that were to be modified are undefined.
    840  */
    841 int
    842 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
    843 		      struct drm_file *file)
    844 {
    845 	struct drm_i915_gem_pwrite *args = data;
    846 	struct drm_i915_gem_object *obj;
    847 	int ret;
    848 
    849 	if (args->size == 0)
    850 		return 0;
    851 
    852 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
    853 		return -EFAULT;
    854 
    855 	obj = i915_gem_object_lookup(file, args->handle);
    856 	if (!obj)
    857 		return -ENOENT;
    858 
    859 	/* Bounds check destination. */
    860 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
    861 		ret = -EINVAL;
    862 		goto err;
    863 	}
    864 
    865 	/* Writes not allowed into this read-only object */
    866 	if (i915_gem_object_is_readonly(obj)) {
    867 		ret = -EINVAL;
    868 		goto err;
    869 	}
    870 
    871 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
    872 
    873 	ret = -ENODEV;
    874 	if (obj->ops->pwrite)
    875 		ret = obj->ops->pwrite(obj, args);
    876 	if (ret != -ENODEV)
    877 		goto err;
    878 
    879 	ret = i915_gem_object_wait(obj,
    880 				   I915_WAIT_INTERRUPTIBLE |
    881 				   I915_WAIT_ALL,
    882 				   MAX_SCHEDULE_TIMEOUT);
    883 	if (ret)
    884 		goto err;
    885 
    886 	ret = i915_gem_object_pin_pages(obj);
    887 	if (ret)
    888 		goto err;
    889 
    890 	ret = -EFAULT;
    891 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
    892 	 * it would end up going through the fenced access, and we'll get
    893 	 * different detiling behavior between reading and writing.
    894 	 * pread/pwrite currently are reading and writing from the CPU
    895 	 * perspective, requiring manual detiling by the client.
    896 	 */
    897 	if (!i915_gem_object_has_struct_page(obj) ||
    898 	    cpu_write_needs_clflush(obj))
    899 		/* Note that the gtt paths might fail with non-page-backed user
    900 		 * pointers (e.g. gtt mappings when moving data between
    901 		 * textures). Fallback to the shmem path in that case.
    902 		 */
    903 		ret = i915_gem_gtt_pwrite_fast(obj, args);
    904 
    905 	if (ret == -EFAULT || ret == -ENOSPC) {
    906 		if (i915_gem_object_has_struct_page(obj))
    907 			ret = i915_gem_shmem_pwrite(obj, args);
    908 		else
    909 			ret = i915_gem_phys_pwrite(obj, args, file);
    910 	}
    911 
    912 	i915_gem_object_unpin_pages(obj);
    913 err:
    914 	i915_gem_object_put(obj);
    915 	return ret;
    916 }
    917 
    918 /**
    919  * Called when user space has done writes to this buffer
    920  * @dev: drm device
    921  * @data: ioctl data blob
    922  * @file: drm file
    923  */
    924 int
    925 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
    926 			 struct drm_file *file)
    927 {
    928 	struct drm_i915_gem_sw_finish *args = data;
    929 	struct drm_i915_gem_object *obj;
    930 
    931 	obj = i915_gem_object_lookup(file, args->handle);
    932 	if (!obj)
    933 		return -ENOENT;
    934 
    935 	/*
    936 	 * Proxy objects are barred from CPU access, so there is no
    937 	 * need to ban sw_finish as it is a nop.
    938 	 */
    939 
    940 	/* Pinned buffers may be scanout, so flush the cache */
    941 	i915_gem_object_flush_if_display(obj);
    942 	i915_gem_object_put(obj);
    943 
    944 	return 0;
    945 }
    946 
    947 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
    948 {
    949 	struct drm_i915_gem_object *obj, *on;
    950 	int i;
    951 
    952 	/*
    953 	 * Only called during RPM suspend. All users of the userfault_list
    954 	 * must be holding an RPM wakeref to ensure that this can not
    955 	 * run concurrently with themselves (and use the struct_mutex for
    956 	 * protection between themselves).
    957 	 */
    958 
    959 	list_for_each_entry_safe(obj, on,
    960 				 &i915->ggtt.userfault_list, userfault_link)
    961 		__i915_gem_object_release_mmap_gtt(obj);
    962 
    963 	/*
    964 	 * The fence will be lost when the device powers down. If any were
    965 	 * in use by hardware (i.e. they are pinned), we should not be powering
    966 	 * down! All other fences will be reacquired by the user upon waking.
    967 	 */
    968 	for (i = 0; i < i915->ggtt.num_fences; i++) {
    969 		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
    970 
    971 		/*
    972 		 * Ideally we want to assert that the fence register is not
    973 		 * live at this point (i.e. that no piece of code will be
    974 		 * trying to write through fence + GTT, as that both violates
    975 		 * our tracking of activity and associated locking/barriers,
    976 		 * but also is illegal given that the hw is powered down).
    977 		 *
    978 		 * Previously we used reg->pin_count as a "liveness" indicator.
    979 		 * That is not sufficient, and we need a more fine-grained
    980 		 * tool if we want to have a sanity check here.
    981 		 */
    982 
    983 		if (!reg->vma)
    984 			continue;
    985 
    986 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
    987 		reg->dirty = true;
    988 	}
    989 }
    990 
    991 struct i915_vma *
    992 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
    993 			 const struct i915_ggtt_view *view,
    994 			 u64 size,
    995 			 u64 alignment,
    996 			 u64 flags)
    997 {
    998 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
    999 	struct i915_ggtt *ggtt = &i915->ggtt;
   1000 	struct i915_vma *vma;
   1001 	int ret;
   1002 
   1003 	if (i915_gem_object_never_bind_ggtt(obj))
   1004 		return ERR_PTR(-ENODEV);
   1005 
   1006 	if (flags & PIN_MAPPABLE &&
   1007 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
   1008 		/*
   1009 		 * If the required space is larger than the available
   1010 		 * aperture, we will not able to find a slot for the
   1011 		 * object and unbinding the object now will be in
   1012 		 * vain. Worse, doing so may cause us to ping-pong
   1013 		 * the object in and out of the Global GTT and
   1014 		 * waste a lot of cycles under the mutex.
   1015 		 */
   1016 		if (obj->base.size > ggtt->mappable_end)
   1017 			return ERR_PTR(-E2BIG);
   1018 
   1019 		/*
   1020 		 * If NONBLOCK is set the caller is optimistically
   1021 		 * trying to cache the full object within the mappable
   1022 		 * aperture, and *must* have a fallback in place for
   1023 		 * situations where we cannot bind the object. We
   1024 		 * can be a little more lax here and use the fallback
   1025 		 * more often to avoid costly migrations of ourselves
   1026 		 * and other objects within the aperture.
   1027 		 *
   1028 		 * Half-the-aperture is used as a simple heuristic.
   1029 		 * More interesting would to do search for a free
   1030 		 * block prior to making the commitment to unbind.
   1031 		 * That caters for the self-harm case, and with a
   1032 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
   1033 		 * we could try to minimise harm to others.
   1034 		 */
   1035 		if (flags & PIN_NONBLOCK &&
   1036 		    obj->base.size > ggtt->mappable_end / 2)
   1037 			return ERR_PTR(-ENOSPC);
   1038 	}
   1039 
   1040 	vma = i915_vma_instance(obj, &ggtt->vm, view);
   1041 	if (IS_ERR(vma))
   1042 		return vma;
   1043 
   1044 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
   1045 		if (flags & PIN_NONBLOCK) {
   1046 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
   1047 				return ERR_PTR(-ENOSPC);
   1048 
   1049 			if (flags & PIN_MAPPABLE &&
   1050 			    vma->fence_size > ggtt->mappable_end / 2)
   1051 				return ERR_PTR(-ENOSPC);
   1052 		}
   1053 
   1054 		ret = i915_vma_unbind(vma);
   1055 		if (ret)
   1056 			return ERR_PTR(ret);
   1057 	}
   1058 
   1059 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
   1060 		mutex_lock(&ggtt->vm.mutex);
   1061 		ret = i915_vma_revoke_fence(vma);
   1062 		mutex_unlock(&ggtt->vm.mutex);
   1063 		if (ret)
   1064 			return ERR_PTR(ret);
   1065 	}
   1066 
   1067 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
   1068 	if (ret)
   1069 		return ERR_PTR(ret);
   1070 
   1071 	return vma;
   1072 }
   1073 
   1074 int
   1075 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
   1076 		       struct drm_file *file_priv)
   1077 {
   1078 	struct drm_i915_private *i915 = to_i915(dev);
   1079 	struct drm_i915_gem_madvise *args = data;
   1080 	struct drm_i915_gem_object *obj;
   1081 	int err;
   1082 
   1083 	switch (args->madv) {
   1084 	case I915_MADV_DONTNEED:
   1085 	case I915_MADV_WILLNEED:
   1086 	    break;
   1087 	default:
   1088 	    return -EINVAL;
   1089 	}
   1090 
   1091 	obj = i915_gem_object_lookup(file_priv, args->handle);
   1092 	if (!obj)
   1093 		return -ENOENT;
   1094 
   1095 	err = mutex_lock_interruptible(&obj->mm.lock);
   1096 	if (err)
   1097 		goto out;
   1098 
   1099 	if (i915_gem_object_has_pages(obj) &&
   1100 	    i915_gem_object_is_tiled(obj) &&
   1101 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
   1102 		if (obj->mm.madv == I915_MADV_WILLNEED) {
   1103 			GEM_BUG_ON(!obj->mm.quirked);
   1104 			__i915_gem_object_unpin_pages(obj);
   1105 			obj->mm.quirked = false;
   1106 		}
   1107 		if (args->madv == I915_MADV_WILLNEED) {
   1108 			GEM_BUG_ON(obj->mm.quirked);
   1109 			__i915_gem_object_pin_pages(obj);
   1110 			obj->mm.quirked = true;
   1111 		}
   1112 	}
   1113 
   1114 	if (obj->mm.madv != __I915_MADV_PURGED)
   1115 		obj->mm.madv = args->madv;
   1116 
   1117 	if (i915_gem_object_has_pages(obj)) {
   1118 		struct list_head *list;
   1119 
   1120 		if (i915_gem_object_is_shrinkable(obj)) {
   1121 			unsigned long flags;
   1122 
   1123 			spin_lock_irqsave(&i915->mm.obj_lock, flags);
   1124 
   1125 			if (obj->mm.madv != I915_MADV_WILLNEED)
   1126 				list = &i915->mm.purge_list;
   1127 			else
   1128 				list = &i915->mm.shrink_list;
   1129 			list_move_tail(&obj->mm.link, list);
   1130 
   1131 			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
   1132 		}
   1133 	}
   1134 
   1135 	/* if the object is no longer attached, discard its backing storage */
   1136 	if (obj->mm.madv == I915_MADV_DONTNEED &&
   1137 	    !i915_gem_object_has_pages(obj))
   1138 		i915_gem_object_truncate(obj);
   1139 
   1140 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
   1141 	mutex_unlock(&obj->mm.lock);
   1142 
   1143 out:
   1144 	i915_gem_object_put(obj);
   1145 	return err;
   1146 }
   1147 
   1148 int i915_gem_init(struct drm_i915_private *dev_priv)
   1149 {
   1150 	int ret;
   1151 
   1152 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
   1153 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
   1154 		mkwrite_device_info(dev_priv)->page_sizes =
   1155 			I915_GTT_PAGE_SIZE_4K;
   1156 
   1157 	ret = i915_gem_init_userptr(dev_priv);
   1158 	if (ret)
   1159 		return ret;
   1160 
   1161 	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
   1162 	intel_wopcm_init(&dev_priv->wopcm);
   1163 
   1164 	ret = i915_init_ggtt(dev_priv);
   1165 	if (ret) {
   1166 		GEM_BUG_ON(ret == -EIO);
   1167 		goto err_unlock;
   1168 	}
   1169 
   1170 	/*
   1171 	 * Despite its name intel_init_clock_gating applies both display
   1172 	 * clock gating workarounds; GT mmio workarounds and the occasional
   1173 	 * GT power context workaround. Worse, sometimes it includes a context
   1174 	 * register workaround which we need to apply before we record the
   1175 	 * default HW state for all contexts.
   1176 	 *
   1177 	 * FIXME: break up the workarounds and apply them at the right time!
   1178 	 */
   1179 	intel_init_clock_gating(dev_priv);
   1180 
   1181 	ret = intel_gt_init(&dev_priv->gt);
   1182 	if (ret)
   1183 		goto err_unlock;
   1184 
   1185 	return 0;
   1186 
   1187 	/*
   1188 	 * Unwinding is complicated by that we want to handle -EIO to mean
   1189 	 * disable GPU submission but keep KMS alive. We want to mark the
   1190 	 * HW as irrevisibly wedged, but keep enough state around that the
   1191 	 * driver doesn't explode during runtime.
   1192 	 */
   1193 err_unlock:
   1194 	i915_gem_drain_workqueue(dev_priv);
   1195 
   1196 	if (ret != -EIO) {
   1197 		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
   1198 		i915_gem_cleanup_userptr(dev_priv);
   1199 	}
   1200 
   1201 	if (ret == -EIO) {
   1202 		/*
   1203 		 * Allow engines or uC initialisation to fail by marking the GPU
   1204 		 * as wedged. But we only want to do this when the GPU is angry,
   1205 		 * for all other failure, such as an allocation failure, bail.
   1206 		 */
   1207 		if (!intel_gt_is_wedged(&dev_priv->gt)) {
   1208 			i915_probe_error(dev_priv,
   1209 					 "Failed to initialize GPU, declaring it wedged!\n");
   1210 			intel_gt_set_wedged(&dev_priv->gt);
   1211 		}
   1212 
   1213 		/* Minimal basic recovery for KMS */
   1214 		ret = i915_ggtt_enable_hw(dev_priv);
   1215 		i915_gem_restore_gtt_mappings(dev_priv);
   1216 		i915_gem_restore_fences(&dev_priv->ggtt);
   1217 		intel_init_clock_gating(dev_priv);
   1218 	}
   1219 
   1220 	i915_gem_drain_freed_objects(dev_priv);
   1221 	return ret;
   1222 }
   1223 
   1224 void i915_gem_driver_register(struct drm_i915_private *i915)
   1225 {
   1226 	i915_gem_driver_register__shrinker(i915);
   1227 
   1228 	intel_engines_driver_register(i915);
   1229 }
   1230 
   1231 void i915_gem_driver_unregister(struct drm_i915_private *i915)
   1232 {
   1233 	i915_gem_driver_unregister__shrinker(i915);
   1234 }
   1235 
   1236 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
   1237 {
   1238 	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
   1239 
   1240 	i915_gem_suspend_late(dev_priv);
   1241 	intel_gt_driver_remove(&dev_priv->gt);
   1242 	dev_priv->uabi_engines = RB_ROOT;
   1243 
   1244 	/* Flush any outstanding unpin_work. */
   1245 	i915_gem_drain_workqueue(dev_priv);
   1246 
   1247 	i915_gem_drain_freed_objects(dev_priv);
   1248 }
   1249 
   1250 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
   1251 {
   1252 	i915_gem_driver_release__contexts(dev_priv);
   1253 
   1254 	intel_gt_driver_release(&dev_priv->gt);
   1255 
   1256 	intel_wa_list_free(&dev_priv->gt_wa_list);
   1257 
   1258 	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
   1259 	i915_gem_cleanup_userptr(dev_priv);
   1260 
   1261 	i915_gem_drain_freed_objects(dev_priv);
   1262 
   1263 	WARN_ON(!list_empty(&dev_priv->gem.contexts.list));
   1264 }
   1265 
   1266 static void i915_gem_init__mm(struct drm_i915_private *i915)
   1267 {
   1268 	spin_lock_init(&i915->mm.obj_lock);
   1269 
   1270 	init_llist_head(&i915->mm.free_list);
   1271 
   1272 	INIT_LIST_HEAD(&i915->mm.purge_list);
   1273 	INIT_LIST_HEAD(&i915->mm.shrink_list);
   1274 
   1275 	i915_gem_init__objects(i915);
   1276 }
   1277 
   1278 void i915_gem_init_early(struct drm_i915_private *dev_priv)
   1279 {
   1280 	i915_gem_init__mm(dev_priv);
   1281 	i915_gem_init__contexts(dev_priv);
   1282 
   1283 	spin_lock_init(&dev_priv->fb_tracking.lock);
   1284 }
   1285 
   1286 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
   1287 {
   1288 	i915_gem_drain_freed_objects(dev_priv);
   1289 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
   1290 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
   1291 	WARN_ON(dev_priv->mm.shrink_count);
   1292 	spin_lock_destroy(&dev_priv->fb_tracking.lock);
   1293 }
   1294 
   1295 int i915_gem_freeze(struct drm_i915_private *dev_priv)
   1296 {
   1297 	/* Discard all purgeable objects, let userspace recover those as
   1298 	 * required after resuming.
   1299 	 */
   1300 	i915_gem_shrink_all(dev_priv);
   1301 
   1302 	return 0;
   1303 }
   1304 
   1305 int i915_gem_freeze_late(struct drm_i915_private *i915)
   1306 {
   1307 	struct drm_i915_gem_object *obj;
   1308 	intel_wakeref_t wakeref;
   1309 
   1310 	/*
   1311 	 * Called just before we write the hibernation image.
   1312 	 *
   1313 	 * We need to update the domain tracking to reflect that the CPU
   1314 	 * will be accessing all the pages to create and restore from the
   1315 	 * hibernation, and so upon restoration those pages will be in the
   1316 	 * CPU domain.
   1317 	 *
   1318 	 * To make sure the hibernation image contains the latest state,
   1319 	 * we update that state just before writing out the image.
   1320 	 *
   1321 	 * To try and reduce the hibernation image, we manually shrink
   1322 	 * the objects as well, see i915_gem_freeze()
   1323 	 */
   1324 
   1325 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
   1326 
   1327 	i915_gem_shrink(i915, -1UL, NULL, ~0);
   1328 	i915_gem_drain_freed_objects(i915);
   1329 
   1330 	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
   1331 		i915_gem_object_lock(obj);
   1332 		WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
   1333 		i915_gem_object_unlock(obj);
   1334 	}
   1335 
   1336 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
   1337 
   1338 	return 0;
   1339 }
   1340 
   1341 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
   1342 {
   1343 	struct drm_i915_file_private *file_priv = file->driver_priv;
   1344 	struct i915_request *request;
   1345 
   1346 	/* Clean up our request list when the client is going away, so that
   1347 	 * later retire_requests won't dereference our soon-to-be-gone
   1348 	 * file_priv.
   1349 	 */
   1350 	spin_lock(&file_priv->mm.lock);
   1351 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
   1352 		request->file_priv = NULL;
   1353 	spin_unlock(&file_priv->mm.lock);
   1354 
   1355 	/*
   1356 	 * XXX This is probably too early -- need to defer with
   1357 	 * callrcu; caller already defers free with kfree_rcu.
   1358 	 */
   1359 	spin_lock_destroy(&file_priv->mm.lock);
   1360 }
   1361 
   1362 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
   1363 {
   1364 	struct drm_i915_file_private *file_priv;
   1365 	int ret;
   1366 
   1367 	DRM_DEBUG("\n");
   1368 
   1369 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
   1370 	if (!file_priv)
   1371 		return -ENOMEM;
   1372 
   1373 	file->driver_priv = file_priv;
   1374 	file_priv->dev_priv = i915;
   1375 	file_priv->file = file;
   1376 
   1377 	spin_lock_init(&file_priv->mm.lock);
   1378 	INIT_LIST_HEAD(&file_priv->mm.request_list);
   1379 
   1380 	file_priv->bsd_engine = -1;
   1381 	file_priv->hang_timestamp = jiffies;
   1382 
   1383 	ret = i915_gem_context_open(i915, file);
   1384 	if (ret)
   1385 		kfree(file_priv);
   1386 
   1387 	return ret;
   1388 }
   1389 
   1390 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
   1391 #include "selftests/mock_gem_device.c"
   1392 #include "selftests/i915_gem.c"
   1393 #endif
   1394