i915_gem.c revision 1.9 1 /*
2 * Copyright 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric (at) anholt.net>
25 *
26 */
27
28 #ifdef __NetBSD__
29 #if 0 /* XXX uvmhist option? */
30 #include "opt_uvmhist.h"
31 #endif
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35
36 #include <uvm/uvm.h>
37 #include <uvm/uvm_extern.h>
38 #include <uvm/uvm_fault.h>
39 #include <uvm/uvm_page.h>
40 #include <uvm/uvm_pmap.h>
41 #include <uvm/uvm_prot.h>
42 #endif
43
44 #include <drm/drmP.h>
45 #include <drm/i915_drm.h>
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_drv.h"
49 #include <linux/shmem_fs.h>
50 #include <linux/slab.h>
51 #include <linux/swap.h>
52 #include <linux/pci.h>
53 #include <linux/dma-buf.h>
54 #include <linux/errno.h>
55 #include <linux/time.h>
56 #include <linux/err.h>
57 #include <asm/param.h>
58
59 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
60 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
62 unsigned alignment,
63 bool map_and_fenceable,
64 bool nonblocking);
65 static int i915_gem_phys_pwrite(struct drm_device *dev,
66 struct drm_i915_gem_object *obj,
67 struct drm_i915_gem_pwrite *args,
68 struct drm_file *file);
69
70 static void i915_gem_write_fence(struct drm_device *dev, int reg,
71 struct drm_i915_gem_object *obj);
72 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
73 struct drm_i915_fence_reg *fence,
74 bool enable);
75
76 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
77 struct shrink_control *sc);
78 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
79 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
80 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
81
82 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
83 {
84 if (obj->tiling_mode)
85 i915_gem_release_mmap(obj);
86
87 /* As we do not have an associated fence register, we will force
88 * a tiling change if we ever need to acquire one.
89 */
90 obj->fence_dirty = false;
91 obj->fence_reg = I915_FENCE_REG_NONE;
92 }
93
94 /* some bookkeeping */
95 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
96 size_t size)
97 {
98 dev_priv->mm.object_count++;
99 dev_priv->mm.object_memory += size;
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104 {
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 }
108
109 static int
110 i915_gem_wait_for_error(struct drm_device *dev)
111 {
112 struct drm_i915_private *dev_priv = dev->dev_private;
113 struct completion *x = &dev_priv->error_completion;
114 #ifndef __NetBSD__
115 unsigned long flags;
116 #endif
117 int ret;
118
119 if (!atomic_read(&dev_priv->mm.wedged))
120 return 0;
121
122 /*
123 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
124 * userspace. If it takes that long something really bad is going on and
125 * we should simply try to bail out and fail as gracefully as possible.
126 */
127 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134
135 if (atomic_read(&dev_priv->mm.wedged)) {
136 /* GPU is hung, bump the completion count to account for
137 * the token we just consumed so that we never hit zero and
138 * end up waiting upon a subsequent completion event that
139 * will never happen.
140 */
141 #ifdef __NetBSD__
142 /* XXX Hope it's not a problem that we might wake someone. */
143 complete(x);
144 #else
145 spin_lock_irqsave(&x->wait.lock, flags);
146 x->done++;
147 spin_unlock_irqrestore(&x->wait.lock, flags);
148 #endif
149 }
150 return 0;
151 }
152
153 int i915_mutex_lock_interruptible(struct drm_device *dev)
154 {
155 int ret;
156
157 ret = i915_gem_wait_for_error(dev);
158 if (ret)
159 return ret;
160
161 ret = mutex_lock_interruptible(&dev->struct_mutex);
162 if (ret)
163 return ret;
164
165 WARN_ON(i915_verify_lists(dev));
166 return 0;
167 }
168
169 static inline bool
170 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
171 {
172 return obj->gtt_space && !obj->active;
173 }
174
175 int
176 i915_gem_init_ioctl(struct drm_device *dev, void *data,
177 struct drm_file *file)
178 {
179 struct drm_i915_gem_init *args = data;
180
181 if (drm_core_check_feature(dev, DRIVER_MODESET))
182 return -ENODEV;
183
184 if (args->gtt_start >= args->gtt_end ||
185 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
186 return -EINVAL;
187
188 /* GEM with user mode setting was never supported on ilk and later. */
189 if (INTEL_INFO(dev)->gen >= 5)
190 return -ENODEV;
191
192 mutex_lock(&dev->struct_mutex);
193 i915_gem_init_global_gtt(dev, args->gtt_start,
194 args->gtt_end, args->gtt_end);
195 mutex_unlock(&dev->struct_mutex);
196
197 return 0;
198 }
199
200 int
201 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
202 struct drm_file *file)
203 {
204 struct drm_i915_private *dev_priv = dev->dev_private;
205 struct drm_i915_gem_get_aperture *args = data;
206 struct drm_i915_gem_object *obj;
207 size_t pinned;
208
209 pinned = 0;
210 mutex_lock(&dev->struct_mutex);
211 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
212 if (obj->pin_count)
213 pinned += obj->gtt_space->size;
214 mutex_unlock(&dev->struct_mutex);
215
216 args->aper_size = dev_priv->mm.gtt_total;
217 args->aper_available_size = args->aper_size - pinned;
218
219 return 0;
220 }
221
222 static int
223 i915_gem_create(struct drm_file *file,
224 struct drm_device *dev,
225 uint64_t size,
226 uint32_t *handle_p)
227 {
228 struct drm_i915_gem_object *obj;
229 int ret;
230 u32 handle;
231
232 size = roundup(size, PAGE_SIZE);
233 if (size == 0)
234 return -EINVAL;
235
236 /* Allocate the new object */
237 obj = i915_gem_alloc_object(dev, size);
238 if (obj == NULL)
239 return -ENOMEM;
240
241 ret = drm_gem_handle_create(file, &obj->base, &handle);
242 if (ret) {
243 drm_gem_object_release(&obj->base);
244 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
245 kfree(obj);
246 return ret;
247 }
248
249 /* drop reference from allocate - handle holds it now */
250 drm_gem_object_unreference(&obj->base);
251 trace_i915_gem_object_create(obj);
252
253 *handle_p = handle;
254 return 0;
255 }
256
257 int
258 i915_gem_dumb_create(struct drm_file *file,
259 struct drm_device *dev,
260 struct drm_mode_create_dumb *args)
261 {
262 /* have to work out size/pitch and return them */
263 #ifdef __NetBSD__ /* ALIGN already means something. */
264 args->pitch = round_up(args->width * ((args->bpp + 7) / 8), 64);
265 #else
266 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
267 #endif
268 args->size = args->pitch * args->height;
269 return i915_gem_create(file, dev,
270 args->size, &args->handle);
271 }
272
273 int i915_gem_dumb_destroy(struct drm_file *file,
274 struct drm_device *dev,
275 uint32_t handle)
276 {
277 return drm_gem_handle_delete(file, handle);
278 }
279
280 /**
281 * Creates a new mm object and returns a handle to it.
282 */
283 int
284 i915_gem_create_ioctl(struct drm_device *dev, void *data,
285 struct drm_file *file)
286 {
287 struct drm_i915_gem_create *args = data;
288
289 return i915_gem_create(file, dev,
290 args->size, &args->handle);
291 }
292
293 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
294 {
295 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
296
297 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
298 obj->tiling_mode != I915_TILING_NONE;
299 }
300
301 static inline int
302 __copy_to_user_swizzled(char __user *cpu_vaddr,
303 const char *gpu_vaddr, int gpu_offset,
304 int length)
305 {
306 int ret, cpu_offset = 0;
307
308 while (length > 0) {
309 #ifdef __NetBSD__
310 int cacheline_end = round_up(gpu_offset + 1, 64);
311 #else
312 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313 #endif
314 int this_length = min(cacheline_end - gpu_offset, length);
315 int swizzled_gpu_offset = gpu_offset ^ 64;
316
317 ret = __copy_to_user(cpu_vaddr + cpu_offset,
318 gpu_vaddr + swizzled_gpu_offset,
319 this_length);
320 if (ret)
321 return ret + length;
322
323 cpu_offset += this_length;
324 gpu_offset += this_length;
325 length -= this_length;
326 }
327
328 return 0;
329 }
330
331 static inline int
332 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
333 const char __user *cpu_vaddr,
334 int length)
335 {
336 int ret, cpu_offset = 0;
337
338 while (length > 0) {
339 #ifdef __NetBSD__
340 int cacheline_end = round_up(gpu_offset + 1, 64);
341 #else
342 int cacheline_end = ALIGN(gpu_offset + 1, 64);
343 #endif
344 int this_length = min(cacheline_end - gpu_offset, length);
345 int swizzled_gpu_offset = gpu_offset ^ 64;
346
347 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
348 cpu_vaddr + cpu_offset,
349 this_length);
350 if (ret)
351 return ret + length;
352
353 cpu_offset += this_length;
354 gpu_offset += this_length;
355 length -= this_length;
356 }
357
358 return 0;
359 }
360
361 /* Per-page copy function for the shmem pread fastpath.
362 * Flushes invalid cachelines before reading the target if
363 * needs_clflush is set. */
364 static int
365 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
366 char __user *user_data,
367 bool page_do_bit17_swizzling, bool needs_clflush)
368 {
369 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
370 return -EFAULT;
371 #else
372 char *vaddr;
373 int ret;
374
375 if (unlikely(page_do_bit17_swizzling))
376 return -EINVAL;
377
378 vaddr = kmap_atomic(page);
379 if (needs_clflush)
380 drm_clflush_virt_range(vaddr + shmem_page_offset,
381 page_length);
382 ret = __copy_to_user_inatomic(user_data,
383 vaddr + shmem_page_offset,
384 page_length);
385 kunmap_atomic(vaddr);
386
387 return ret ? -EFAULT : 0;
388 #endif
389 }
390
391 static void
392 shmem_clflush_swizzled_range(char *addr, unsigned long length,
393 bool swizzled)
394 {
395 if (unlikely(swizzled)) {
396 unsigned long start = (unsigned long) addr;
397 unsigned long end = (unsigned long) addr + length;
398
399 /* For swizzling simply ensure that we always flush both
400 * channels. Lame, but simple and it works. Swizzled
401 * pwrite/pread is far from a hotpath - current userspace
402 * doesn't use it at all. */
403 start = round_down(start, 128);
404 end = round_up(end, 128);
405
406 drm_clflush_virt_range((void *)start, end - start);
407 } else {
408 drm_clflush_virt_range(addr, length);
409 }
410
411 }
412
413 /* Only difference to the fast-path function is that this can handle bit17
414 * and uses non-atomic copy and kmap functions. */
415 static int
416 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
417 char __user *user_data,
418 bool page_do_bit17_swizzling, bool needs_clflush)
419 {
420 char *vaddr;
421 int ret;
422
423 vaddr = kmap(page);
424 if (needs_clflush)
425 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
426 page_length,
427 page_do_bit17_swizzling);
428
429 if (page_do_bit17_swizzling)
430 ret = __copy_to_user_swizzled(user_data,
431 vaddr, shmem_page_offset,
432 page_length);
433 else
434 ret = __copy_to_user(user_data,
435 vaddr + shmem_page_offset,
436 page_length);
437 kunmap(page);
438
439 return ret ? - EFAULT : 0;
440 }
441
442 static int
443 i915_gem_shmem_pread(struct drm_device *dev,
444 struct drm_i915_gem_object *obj,
445 struct drm_i915_gem_pread *args,
446 struct drm_file *file)
447 {
448 char __user *user_data;
449 ssize_t remain;
450 loff_t offset;
451 int shmem_page_offset, page_length, ret = 0;
452 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
453 int hit_slowpath = 0;
454 #ifndef __NetBSD__ /* XXX */
455 int prefaulted = 0;
456 #endif
457 int needs_clflush = 0;
458 #ifndef __NetBSD__
459 struct scatterlist *sg;
460 int i;
461 #endif
462
463 user_data = (char __user *) (uintptr_t) args->data_ptr;
464 remain = args->size;
465
466 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
467
468 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
469 /* If we're not in the cpu read domain, set ourself into the gtt
470 * read domain and manually flush cachelines (if required). This
471 * optimizes for the case when the gpu will dirty the data
472 * anyway again before the next pread happens. */
473 if (obj->cache_level == I915_CACHE_NONE)
474 needs_clflush = 1;
475 if (obj->gtt_space) {
476 ret = i915_gem_object_set_to_gtt_domain(obj, false);
477 if (ret)
478 return ret;
479 }
480 }
481
482 ret = i915_gem_object_get_pages(obj);
483 if (ret)
484 return ret;
485
486 i915_gem_object_pin_pages(obj);
487
488 offset = args->offset;
489
490 #ifdef __NetBSD__
491 /*
492 * XXX This is a big #ifdef with a lot of duplicated code, but
493 * factoring out the loop head -- which is all that
494 * substantially differs -- is probably more trouble than it's
495 * worth at the moment.
496 */
497 while (0 < remain) {
498 /* Get the next page. */
499 shmem_page_offset = offset_in_page(offset);
500 KASSERT(shmem_page_offset < PAGE_SIZE);
501 page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
502 struct page *const page = i915_gem_object_get_page(obj,
503 atop(offset));
504
505 /* Decide whether to swizzle bit 17. */
506 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
507 (page_to_phys(page) & (1 << 17)) != 0;
508
509 /* Try the fast path. */
510 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
511 user_data, page_do_bit17_swizzling, needs_clflush);
512 if (ret == 0)
513 goto next_page;
514
515 /* Fast path failed. Try the slow path. */
516 hit_slowpath = 1;
517 mutex_unlock(&dev->struct_mutex);
518 /* XXX prefault */
519 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
520 user_data, page_do_bit17_swizzling, needs_clflush);
521 mutex_lock(&dev->struct_mutex);
522
523 next_page:
524 /* XXX mark page accessed */
525 if (ret)
526 goto out;
527
528 KASSERT(page_length <= remain);
529 remain -= page_length;
530 user_data += page_length;
531 offset += page_length;
532 }
533 #else
534 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
535 struct page *page;
536
537 if (i < offset >> PAGE_SHIFT)
538 continue;
539
540 if (remain <= 0)
541 break;
542
543 /* Operation in this page
544 *
545 * shmem_page_offset = offset within page in shmem file
546 * page_length = bytes to copy for this page
547 */
548 shmem_page_offset = offset_in_page(offset);
549 page_length = remain;
550 if ((shmem_page_offset + page_length) > PAGE_SIZE)
551 page_length = PAGE_SIZE - shmem_page_offset;
552
553 page = sg_page(sg);
554 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
555 (page_to_phys(page) & (1 << 17)) != 0;
556
557 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
558 user_data, page_do_bit17_swizzling,
559 needs_clflush);
560 if (ret == 0)
561 goto next_page;
562
563 hit_slowpath = 1;
564 mutex_unlock(&dev->struct_mutex);
565
566 if (!prefaulted) {
567 ret = fault_in_multipages_writeable(user_data, remain);
568 /* Userspace is tricking us, but we've already clobbered
569 * its pages with the prefault and promised to write the
570 * data up to the first fault. Hence ignore any errors
571 * and just continue. */
572 (void)ret;
573 prefaulted = 1;
574 }
575
576 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
577 user_data, page_do_bit17_swizzling,
578 needs_clflush);
579
580 mutex_lock(&dev->struct_mutex);
581
582 next_page:
583 mark_page_accessed(page);
584
585 if (ret)
586 goto out;
587
588 remain -= page_length;
589 user_data += page_length;
590 offset += page_length;
591 }
592 #endif
593
594 out:
595 i915_gem_object_unpin_pages(obj);
596
597 if (hit_slowpath) {
598 /* Fixup: Kill any reinstated backing storage pages */
599 if (obj->madv == __I915_MADV_PURGED)
600 i915_gem_object_truncate(obj);
601 }
602
603 return ret;
604 }
605
606 /**
607 * Reads data from the object referenced by handle.
608 *
609 * On error, the contents of *data are undefined.
610 */
611 int
612 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
613 struct drm_file *file)
614 {
615 struct drm_i915_gem_pread *args = data;
616 struct drm_i915_gem_object *obj;
617 int ret = 0;
618
619 if (args->size == 0)
620 return 0;
621
622 if (!access_ok(VERIFY_WRITE,
623 (char __user *)(uintptr_t)args->data_ptr,
624 args->size))
625 return -EFAULT;
626
627 ret = i915_mutex_lock_interruptible(dev);
628 if (ret)
629 return ret;
630
631 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
632 if (&obj->base == NULL) {
633 ret = -ENOENT;
634 goto unlock;
635 }
636
637 /* Bounds check source. */
638 if (args->offset > obj->base.size ||
639 args->size > obj->base.size - args->offset) {
640 ret = -EINVAL;
641 goto out;
642 }
643
644 #ifndef __NetBSD__ /* XXX drm prime */
645 /* prime objects have no backing filp to GEM pread/pwrite
646 * pages from.
647 */
648 if (!obj->base.filp) {
649 ret = -EINVAL;
650 goto out;
651 }
652 #endif
653
654 trace_i915_gem_object_pread(obj, args->offset, args->size);
655
656 ret = i915_gem_shmem_pread(dev, obj, args, file);
657
658 out:
659 drm_gem_object_unreference(&obj->base);
660 unlock:
661 mutex_unlock(&dev->struct_mutex);
662 return ret;
663 }
664
665 /* This is the fast write path which cannot handle
666 * page faults in the source data
667 */
668
669 static inline int
670 fast_user_write(struct io_mapping *mapping,
671 loff_t page_base, int page_offset,
672 char __user *user_data,
673 int length)
674 {
675 #ifdef __NetBSD__ /* XXX atomic shmem fast path */
676 return -EFAULT;
677 #else
678 void __iomem *vaddr_atomic;
679 void *vaddr;
680 unsigned long unwritten;
681
682 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
683 /* We can use the cpu mem copy function because this is X86. */
684 vaddr = (void __force*)vaddr_atomic + page_offset;
685 unwritten = __copy_from_user_inatomic_nocache(vaddr,
686 user_data, length);
687 io_mapping_unmap_atomic(vaddr_atomic);
688 return unwritten;
689 #endif
690 }
691
692 /**
693 * This is the fast pwrite path, where we copy the data directly from the
694 * user into the GTT, uncached.
695 */
696 static int
697 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
698 struct drm_i915_gem_object *obj,
699 struct drm_i915_gem_pwrite *args,
700 struct drm_file *file)
701 {
702 drm_i915_private_t *dev_priv = dev->dev_private;
703 ssize_t remain;
704 loff_t offset, page_base;
705 char __user *user_data;
706 int page_offset, page_length, ret;
707
708 ret = i915_gem_object_pin(obj, 0, true, true);
709 if (ret)
710 goto out;
711
712 ret = i915_gem_object_set_to_gtt_domain(obj, true);
713 if (ret)
714 goto out_unpin;
715
716 ret = i915_gem_object_put_fence(obj);
717 if (ret)
718 goto out_unpin;
719
720 user_data = (char __user *) (uintptr_t) args->data_ptr;
721 remain = args->size;
722
723 offset = obj->gtt_offset + args->offset;
724
725 while (remain > 0) {
726 /* Operation in this page
727 *
728 * page_base = page offset within aperture
729 * page_offset = offset within page
730 * page_length = bytes to copy for this page
731 */
732 page_base = offset & PAGE_MASK;
733 page_offset = offset_in_page(offset);
734 page_length = remain;
735 if ((page_offset + remain) > PAGE_SIZE)
736 page_length = PAGE_SIZE - page_offset;
737
738 /* If we get a fault while copying data, then (presumably) our
739 * source page isn't available. Return the error and we'll
740 * retry in the slow path.
741 */
742 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
743 page_offset, user_data, page_length)) {
744 ret = -EFAULT;
745 goto out_unpin;
746 }
747
748 remain -= page_length;
749 user_data += page_length;
750 offset += page_length;
751 }
752
753 out_unpin:
754 i915_gem_object_unpin(obj);
755 out:
756 return ret;
757 }
758
759 /* Per-page copy function for the shmem pwrite fastpath.
760 * Flushes invalid cachelines before writing to the target if
761 * needs_clflush_before is set and flushes out any written cachelines after
762 * writing if needs_clflush is set. */
763 static int
764 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
765 char __user *user_data,
766 bool page_do_bit17_swizzling,
767 bool needs_clflush_before,
768 bool needs_clflush_after)
769 {
770 #ifdef __NetBSD__
771 return -EFAULT;
772 #else
773 char *vaddr;
774 int ret;
775
776 if (unlikely(page_do_bit17_swizzling))
777 return -EINVAL;
778
779 vaddr = kmap_atomic(page);
780 if (needs_clflush_before)
781 drm_clflush_virt_range(vaddr + shmem_page_offset,
782 page_length);
783 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
784 user_data,
785 page_length);
786 if (needs_clflush_after)
787 drm_clflush_virt_range(vaddr + shmem_page_offset,
788 page_length);
789 kunmap_atomic(vaddr);
790
791 return ret ? -EFAULT : 0;
792 #endif
793 }
794
795 /* Only difference to the fast-path function is that this can handle bit17
796 * and uses non-atomic copy and kmap functions. */
797 static int
798 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
799 char __user *user_data,
800 bool page_do_bit17_swizzling,
801 bool needs_clflush_before,
802 bool needs_clflush_after)
803 {
804 char *vaddr;
805 int ret;
806
807 vaddr = kmap(page);
808 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
809 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
810 page_length,
811 page_do_bit17_swizzling);
812 if (page_do_bit17_swizzling)
813 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
814 user_data,
815 page_length);
816 else
817 ret = __copy_from_user(vaddr + shmem_page_offset,
818 user_data,
819 page_length);
820 if (needs_clflush_after)
821 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
822 page_length,
823 page_do_bit17_swizzling);
824 kunmap(page);
825
826 return ret ? -EFAULT : 0;
827 }
828
829 static int
830 i915_gem_shmem_pwrite(struct drm_device *dev,
831 struct drm_i915_gem_object *obj,
832 struct drm_i915_gem_pwrite *args,
833 struct drm_file *file)
834 {
835 ssize_t remain;
836 loff_t offset;
837 char __user *user_data;
838 int shmem_page_offset, page_length, ret = 0;
839 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
840 int hit_slowpath = 0;
841 int needs_clflush_after = 0;
842 int needs_clflush_before = 0;
843 #ifndef __NetBSD__
844 int i;
845 struct scatterlist *sg;
846 #endif
847
848 user_data = (char __user *) (uintptr_t) args->data_ptr;
849 remain = args->size;
850
851 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
852
853 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
854 /* If we're not in the cpu write domain, set ourself into the gtt
855 * write domain and manually flush cachelines (if required). This
856 * optimizes for the case when the gpu will use the data
857 * right away and we therefore have to clflush anyway. */
858 if (obj->cache_level == I915_CACHE_NONE)
859 needs_clflush_after = 1;
860 if (obj->gtt_space) {
861 ret = i915_gem_object_set_to_gtt_domain(obj, true);
862 if (ret)
863 return ret;
864 }
865 }
866 /* Same trick applies for invalidate partially written cachelines before
867 * writing. */
868 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
869 && obj->cache_level == I915_CACHE_NONE)
870 needs_clflush_before = 1;
871
872 ret = i915_gem_object_get_pages(obj);
873 if (ret)
874 return ret;
875
876 i915_gem_object_pin_pages(obj);
877
878 offset = args->offset;
879 obj->dirty = 1;
880
881 #ifdef __NetBSD__
882 while (0 < remain) {
883 /* Get the next page. */
884 shmem_page_offset = offset_in_page(offset);
885 KASSERT(shmem_page_offset < PAGE_SIZE);
886 page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
887 struct page *const page = i915_gem_object_get_page(obj,
888 atop(offset));
889
890 /* Decide whether to flush the cache or swizzle bit 17. */
891 const bool partial_cacheline_write = needs_clflush_before &&
892 ((shmem_page_offset | page_length)
893 & (cpu_info_primary.ci_cflush_lsize - 1));
894 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
895 (page_to_phys(page) & (1 << 17)) != 0;
896
897 /* Try the fast path. */
898 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
899 user_data, page_do_bit17_swizzling,
900 partial_cacheline_write, needs_clflush_after);
901 if (ret == 0)
902 goto next_page;
903
904 /* Fast path failed. Try the slow path. */
905 hit_slowpath = 1;
906 mutex_unlock(&dev->struct_mutex);
907 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
908 user_data, page_do_bit17_swizzling,
909 partial_cacheline_write, needs_clflush_after);
910 mutex_lock(&dev->struct_mutex);
911
912 next_page:
913 page->p_vmp.flags &= ~PG_CLEAN;
914 /* XXX mark page accessed */
915 if (ret)
916 goto out;
917
918 KASSERT(page_length <= remain);
919 remain -= page_length;
920 user_data += page_length;
921 offset += page_length;
922 }
923 #else
924 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
925 struct page *page;
926 int partial_cacheline_write;
927
928 if (i < offset >> PAGE_SHIFT)
929 continue;
930
931 if (remain <= 0)
932 break;
933
934 /* Operation in this page
935 *
936 * shmem_page_offset = offset within page in shmem file
937 * page_length = bytes to copy for this page
938 */
939 shmem_page_offset = offset_in_page(offset);
940
941 page_length = remain;
942 if ((shmem_page_offset + page_length) > PAGE_SIZE)
943 page_length = PAGE_SIZE - shmem_page_offset;
944
945 /* If we don't overwrite a cacheline completely we need to be
946 * careful to have up-to-date data by first clflushing. Don't
947 * overcomplicate things and flush the entire patch. */
948 partial_cacheline_write = needs_clflush_before &&
949 ((shmem_page_offset | page_length)
950 & (boot_cpu_data.x86_clflush_size - 1));
951
952 page = sg_page(sg);
953 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
954 (page_to_phys(page) & (1 << 17)) != 0;
955
956 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
957 user_data, page_do_bit17_swizzling,
958 partial_cacheline_write,
959 needs_clflush_after);
960 if (ret == 0)
961 goto next_page;
962
963 hit_slowpath = 1;
964 mutex_unlock(&dev->struct_mutex);
965 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
966 user_data, page_do_bit17_swizzling,
967 partial_cacheline_write,
968 needs_clflush_after);
969
970 mutex_lock(&dev->struct_mutex);
971
972 next_page:
973 set_page_dirty(page);
974 mark_page_accessed(page);
975
976 if (ret)
977 goto out;
978
979 remain -= page_length;
980 user_data += page_length;
981 offset += page_length;
982 }
983 #endif
984
985 out:
986 i915_gem_object_unpin_pages(obj);
987
988 if (hit_slowpath) {
989 /* Fixup: Kill any reinstated backing storage pages */
990 if (obj->madv == __I915_MADV_PURGED)
991 i915_gem_object_truncate(obj);
992 /* and flush dirty cachelines in case the object isn't in the cpu write
993 * domain anymore. */
994 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
995 i915_gem_clflush_object(obj);
996 i915_gem_chipset_flush(dev);
997 }
998 }
999
1000 if (needs_clflush_after)
1001 i915_gem_chipset_flush(dev);
1002
1003 return ret;
1004 }
1005
1006 /**
1007 * Writes data to the object referenced by handle.
1008 *
1009 * On error, the contents of the buffer that were to be modified are undefined.
1010 */
1011 int
1012 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1013 struct drm_file *file)
1014 {
1015 struct drm_i915_gem_pwrite *args = data;
1016 struct drm_i915_gem_object *obj;
1017 int ret;
1018
1019 if (args->size == 0)
1020 return 0;
1021
1022 if (!access_ok(VERIFY_READ,
1023 (char __user *)(uintptr_t)args->data_ptr,
1024 args->size))
1025 return -EFAULT;
1026
1027 #ifndef __NetBSD__ /* XXX prefault */
1028 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
1029 args->size);
1030 if (ret)
1031 return -EFAULT;
1032 #endif
1033
1034 ret = i915_mutex_lock_interruptible(dev);
1035 if (ret)
1036 return ret;
1037
1038 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1039 if (&obj->base == NULL) {
1040 ret = -ENOENT;
1041 goto unlock;
1042 }
1043
1044 /* Bounds check destination. */
1045 if (args->offset > obj->base.size ||
1046 args->size > obj->base.size - args->offset) {
1047 ret = -EINVAL;
1048 goto out;
1049 }
1050
1051 #ifndef __NetBSD__ /* XXX drm prime */
1052 /* prime objects have no backing filp to GEM pread/pwrite
1053 * pages from.
1054 */
1055 if (!obj->base.filp) {
1056 ret = -EINVAL;
1057 goto out;
1058 }
1059 #endif
1060
1061 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1062
1063 ret = -EFAULT;
1064 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1065 * it would end up going through the fenced access, and we'll get
1066 * different detiling behavior between reading and writing.
1067 * pread/pwrite currently are reading and writing from the CPU
1068 * perspective, requiring manual detiling by the client.
1069 */
1070 if (obj->phys_obj) {
1071 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1072 goto out;
1073 }
1074
1075 if (obj->cache_level == I915_CACHE_NONE &&
1076 obj->tiling_mode == I915_TILING_NONE &&
1077 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1078 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1079 /* Note that the gtt paths might fail with non-page-backed user
1080 * pointers (e.g. gtt mappings when moving data between
1081 * textures). Fallback to the shmem path in that case. */
1082 }
1083
1084 if (ret == -EFAULT || ret == -ENOSPC)
1085 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1086
1087 out:
1088 drm_gem_object_unreference(&obj->base);
1089 unlock:
1090 mutex_unlock(&dev->struct_mutex);
1091 return ret;
1092 }
1093
1094 int
1095 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1096 bool interruptible)
1097 {
1098 if (atomic_read(&dev_priv->mm.wedged)) {
1099 struct completion *x = &dev_priv->error_completion;
1100 bool recovery_complete;
1101 #ifndef __NetBSD__
1102 unsigned long flags;
1103 #endif
1104
1105 #ifdef __NetBSD__
1106 /*
1107 * XXX This is a horrible kludge. Reading internal
1108 * fields is no good, nor is reading them unlocked, and
1109 * neither is locking it and then unlocking it before
1110 * making a decision.
1111 */
1112 recovery_complete = x->c_done > 0;
1113 #else
1114 /* Give the error handler a chance to run. */
1115 spin_lock_irqsave(&x->wait.lock, flags);
1116 recovery_complete = x->done > 0;
1117 spin_unlock_irqrestore(&x->wait.lock, flags);
1118 #endif
1119
1120 /* Non-interruptible callers can't handle -EAGAIN, hence return
1121 * -EIO unconditionally for these. */
1122 if (!interruptible)
1123 return -EIO;
1124
1125 /* Recovery complete, but still wedged means reset failure. */
1126 if (recovery_complete)
1127 return -EIO;
1128
1129 return -EAGAIN;
1130 }
1131
1132 return 0;
1133 }
1134
1135 /*
1136 * Compare seqno against outstanding lazy request. Emit a request if they are
1137 * equal.
1138 */
1139 static int
1140 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1141 {
1142 int ret;
1143
1144 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1145
1146 ret = 0;
1147 if (seqno == ring->outstanding_lazy_request)
1148 ret = i915_add_request(ring, NULL, NULL);
1149
1150 return ret;
1151 }
1152
1153 /**
1154 * __wait_seqno - wait until execution of seqno has finished
1155 * @ring: the ring expected to report seqno
1156 * @seqno: duh!
1157 * @interruptible: do an interruptible wait (normally yes)
1158 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1159 *
1160 * Returns 0 if the seqno was found within the alloted time. Else returns the
1161 * errno with remaining time filled in timeout argument.
1162 */
1163 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1164 bool interruptible, struct timespec *timeout)
1165 {
1166 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1167 struct timespec before, now, wait_time={1,0};
1168 unsigned long timeout_jiffies;
1169 long end;
1170 bool wait_forever = true;
1171 int ret;
1172
1173 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1174 return 0;
1175
1176 trace_i915_gem_request_wait_begin(ring, seqno);
1177
1178 if (timeout != NULL) {
1179 wait_time = *timeout;
1180 wait_forever = false;
1181 }
1182
1183 timeout_jiffies = timespec_to_jiffies(&wait_time);
1184
1185 if (WARN_ON(!ring->irq_get(ring)))
1186 return -ENODEV;
1187
1188 /* Record current time in case interrupted by signal, or wedged * */
1189 getrawmonotonic(&before);
1190
1191 #define EXIT_COND \
1192 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1193 atomic_read(&dev_priv->mm.wedged))
1194 do {
1195 #ifdef __NetBSD__
1196 unsigned long flags;
1197 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1198 if (interruptible)
1199 DRM_SPIN_TIMED_WAIT_UNTIL(end, &ring->irq_queue,
1200 &dev_priv->irq_lock,
1201 timeout_jiffies,
1202 EXIT_COND);
1203 else
1204 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(end, &ring->irq_queue,
1205 &dev_priv->irq_lock,
1206 timeout_jiffies,
1207 EXIT_COND);
1208 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1209 #else
1210 if (interruptible)
1211 end = wait_event_interruptible_timeout(ring->irq_queue,
1212 EXIT_COND,
1213 timeout_jiffies);
1214 else
1215 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1216 timeout_jiffies);
1217
1218 #endif
1219 ret = i915_gem_check_wedge(dev_priv, interruptible);
1220 if (ret)
1221 end = ret;
1222 } while (end == 0 && wait_forever);
1223
1224 getrawmonotonic(&now);
1225
1226 ring->irq_put(ring);
1227 trace_i915_gem_request_wait_end(ring, seqno);
1228 #undef EXIT_COND
1229
1230 if (timeout) {
1231 struct timespec sleep_time = timespec_sub(now, before);
1232 *timeout = timespec_sub(*timeout, sleep_time);
1233 }
1234
1235 switch (end) {
1236 case -EIO:
1237 case -EAGAIN: /* Wedged */
1238 case -ERESTARTSYS: /* Signal */
1239 case -EINTR:
1240 return (int)end;
1241 case 0: /* Timeout */
1242 if (timeout)
1243 set_normalized_timespec(timeout, 0, 0);
1244 return -ETIME;
1245 default: /* Completed */
1246 WARN_ON(end < 0); /* We're not aware of other errors */
1247 return 0;
1248 }
1249 }
1250
1251 /**
1252 * Waits for a sequence number to be signaled, and cleans up the
1253 * request and object lists appropriately for that event.
1254 */
1255 int
1256 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1257 {
1258 struct drm_device *dev = ring->dev;
1259 struct drm_i915_private *dev_priv = dev->dev_private;
1260 bool interruptible = dev_priv->mm.interruptible;
1261 int ret;
1262
1263 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1264 BUG_ON(seqno == 0);
1265
1266 ret = i915_gem_check_wedge(dev_priv, interruptible);
1267 if (ret)
1268 return ret;
1269
1270 ret = i915_gem_check_olr(ring, seqno);
1271 if (ret)
1272 return ret;
1273
1274 return __wait_seqno(ring, seqno, interruptible, NULL);
1275 }
1276
1277 /**
1278 * Ensures that all rendering to the object has completed and the object is
1279 * safe to unbind from the GTT or access from the CPU.
1280 */
1281 static __must_check int
1282 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1283 bool readonly)
1284 {
1285 struct intel_ring_buffer *ring = obj->ring;
1286 u32 seqno;
1287 int ret;
1288
1289 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1290 if (seqno == 0)
1291 return 0;
1292
1293 ret = i915_wait_seqno(ring, seqno);
1294 if (ret)
1295 return ret;
1296
1297 i915_gem_retire_requests_ring(ring);
1298
1299 /* Manually manage the write flush as we may have not yet
1300 * retired the buffer.
1301 */
1302 if (obj->last_write_seqno &&
1303 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1304 obj->last_write_seqno = 0;
1305 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1306 }
1307
1308 return 0;
1309 }
1310
1311 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1312 * as the object state may change during this call.
1313 */
1314 static __must_check int
1315 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1316 bool readonly)
1317 {
1318 struct drm_device *dev = obj->base.dev;
1319 struct drm_i915_private *dev_priv = dev->dev_private;
1320 struct intel_ring_buffer *ring = obj->ring;
1321 u32 seqno;
1322 int ret;
1323
1324 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1325 BUG_ON(!dev_priv->mm.interruptible);
1326
1327 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1328 if (seqno == 0)
1329 return 0;
1330
1331 ret = i915_gem_check_wedge(dev_priv, true);
1332 if (ret)
1333 return ret;
1334
1335 ret = i915_gem_check_olr(ring, seqno);
1336 if (ret)
1337 return ret;
1338
1339 mutex_unlock(&dev->struct_mutex);
1340 ret = __wait_seqno(ring, seqno, true, NULL);
1341 mutex_lock(&dev->struct_mutex);
1342
1343 i915_gem_retire_requests_ring(ring);
1344
1345 /* Manually manage the write flush as we may have not yet
1346 * retired the buffer.
1347 */
1348 if (obj->last_write_seqno &&
1349 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1350 obj->last_write_seqno = 0;
1351 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1352 }
1353
1354 return ret;
1355 }
1356
1357 /**
1358 * Called when user space prepares to use an object with the CPU, either
1359 * through the mmap ioctl's mapping or a GTT mapping.
1360 */
1361 int
1362 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1363 struct drm_file *file)
1364 {
1365 struct drm_i915_gem_set_domain *args = data;
1366 struct drm_i915_gem_object *obj;
1367 uint32_t read_domains = args->read_domains;
1368 uint32_t write_domain = args->write_domain;
1369 int ret;
1370
1371 /* Only handle setting domains to types used by the CPU. */
1372 if (write_domain & I915_GEM_GPU_DOMAINS)
1373 return -EINVAL;
1374
1375 if (read_domains & I915_GEM_GPU_DOMAINS)
1376 return -EINVAL;
1377
1378 /* Having something in the write domain implies it's in the read
1379 * domain, and only that read domain. Enforce that in the request.
1380 */
1381 if (write_domain != 0 && read_domains != write_domain)
1382 return -EINVAL;
1383
1384 ret = i915_mutex_lock_interruptible(dev);
1385 if (ret)
1386 return ret;
1387
1388 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1389 if (&obj->base == NULL) {
1390 ret = -ENOENT;
1391 goto unlock;
1392 }
1393
1394 /* Try to flush the object off the GPU without holding the lock.
1395 * We will repeat the flush holding the lock in the normal manner
1396 * to catch cases where we are gazumped.
1397 */
1398 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1399 if (ret)
1400 goto unref;
1401
1402 if (read_domains & I915_GEM_DOMAIN_GTT) {
1403 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1404
1405 /* Silently promote "you're not bound, there was nothing to do"
1406 * to success, since the client was just asking us to
1407 * make sure everything was done.
1408 */
1409 if (ret == -EINVAL)
1410 ret = 0;
1411 } else {
1412 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1413 }
1414
1415 unref:
1416 drm_gem_object_unreference(&obj->base);
1417 unlock:
1418 mutex_unlock(&dev->struct_mutex);
1419 return ret;
1420 }
1421
1422 /**
1423 * Called when user space has done writes to this buffer
1424 */
1425 int
1426 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1427 struct drm_file *file)
1428 {
1429 struct drm_i915_gem_sw_finish *args = data;
1430 struct drm_i915_gem_object *obj;
1431 int ret = 0;
1432
1433 ret = i915_mutex_lock_interruptible(dev);
1434 if (ret)
1435 return ret;
1436
1437 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1438 if (&obj->base == NULL) {
1439 ret = -ENOENT;
1440 goto unlock;
1441 }
1442
1443 /* Pinned buffers may be scanout, so flush the cache */
1444 if (obj->pin_count)
1445 i915_gem_object_flush_cpu_write_domain(obj);
1446
1447 drm_gem_object_unreference(&obj->base);
1448 unlock:
1449 mutex_unlock(&dev->struct_mutex);
1450 return ret;
1451 }
1452
1453 /**
1454 * Maps the contents of an object, returning the address it is mapped
1455 * into.
1456 *
1457 * While the mapping holds a reference on the contents of the object, it doesn't
1458 * imply a ref on the object itself.
1459 */
1460 int
1461 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1462 struct drm_file *file)
1463 {
1464 struct drm_i915_gem_mmap *args = data;
1465 struct drm_gem_object *obj;
1466 unsigned long addr;
1467 #ifdef __NetBSD__
1468 int ret;
1469 #endif
1470
1471 obj = drm_gem_object_lookup(dev, file, args->handle);
1472 if (obj == NULL)
1473 return -ENOENT;
1474
1475 #ifndef __NetBSD__ /* XXX drm prime */
1476 /* prime objects have no backing filp to GEM mmap
1477 * pages from.
1478 */
1479 if (!obj->filp) {
1480 drm_gem_object_unreference_unlocked(obj);
1481 return -EINVAL;
1482 }
1483 #endif
1484
1485 #ifdef __NetBSD__
1486 addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
1487 (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
1488 /* XXX errno NetBSD->Linux */
1489 ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
1490 obj->gemo_shm_uao, args->offset, 0,
1491 UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
1492 (VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
1493 0));
1494 if (ret) {
1495 drm_gem_object_unreference_unlocked(obj);
1496 return ret;
1497 }
1498 uao_reference(obj->gemo_shm_uao);
1499 drm_gem_object_unreference_unlocked(obj);
1500 #else
1501 addr = vm_mmap(obj->filp, 0, args->size,
1502 PROT_READ | PROT_WRITE, MAP_SHARED,
1503 args->offset);
1504 drm_gem_object_unreference_unlocked(obj);
1505 if (IS_ERR((void *)addr))
1506 return addr;
1507 #endif
1508
1509 args->addr_ptr = (uint64_t) addr;
1510
1511 return 0;
1512 }
1513
1514 #ifdef __NetBSD__ /* XXX gem gtt fault */
1515 static int i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
1516 struct vm_page **, int, int, vm_prot_t, int, paddr_t);
1517
1518 int
1519 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1520 int npages, int centeridx, vm_prot_t access_type, int flags)
1521 {
1522 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1523 struct drm_gem_object *gem_obj =
1524 container_of(uobj, struct drm_gem_object, gemo_uvmobj);
1525 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
1526 struct drm_device *dev = obj->base.dev;
1527 struct drm_i915_private *dev_priv = dev->dev_private;
1528 voff_t byte_offset;
1529 pgoff_t page_offset;
1530 int ret = 0;
1531 bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
1532
1533 byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
1534 KASSERT(byte_offset <= obj->base.size);
1535 page_offset = (byte_offset >> PAGE_SHIFT);
1536
1537 ret = i915_mutex_lock_interruptible(dev);
1538 if (ret)
1539 goto out;
1540
1541 trace_i915_gem_object_fault(obj, page_offset, true, write);
1542
1543 /* Now bind it into the GTT if needed */
1544 ret = i915_gem_object_pin(obj, 0, true, false);
1545 if (ret)
1546 goto unlock;
1547
1548 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1549 if (ret)
1550 goto unpin;
1551
1552 ret = i915_gem_object_get_fence(obj);
1553 if (ret)
1554 goto unpin;
1555
1556 obj->fault_mappable = true;
1557
1558 /* Finally, remap it using the new GTT offset */
1559 /* XXX errno NetBSD->Linux */
1560 ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
1561 flags, (dev_priv->mm.gtt_base_addr + obj->gtt_offset));
1562 unpin:
1563 i915_gem_object_unpin(obj);
1564 unlock:
1565 mutex_unlock(&dev->struct_mutex);
1566 out:
1567 return ret;
1568 }
1569
1570 /*
1571 * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
1572 *
1573 * XXX pmap_enter_default instead of pmap_enter because of a problem
1574 * with using weak aliases in kernel modules or something.
1575 */
1576 int pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
1577
1578 static int
1579 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1580 int npages, int centeridx, vm_prot_t access_type, int flags,
1581 paddr_t gtt_paddr)
1582 {
1583 struct vm_map_entry *entry = ufi->entry;
1584 struct uvm_object *uobj = entry->object.uvm_obj;
1585 vaddr_t curr_va;
1586 off_t curr_offset;
1587 paddr_t paddr;
1588 u_int mmapflags;
1589 int lcv, retval;
1590 vm_prot_t mapprot;
1591 UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
1592 UVMHIST_LOG(maphist," flags=%d", flags,0,0,0);
1593
1594 /*
1595 * we do not allow device mappings to be mapped copy-on-write
1596 * so we kill any attempt to do so here.
1597 */
1598
1599 if (UVM_ET_ISCOPYONWRITE(entry)) {
1600 UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
1601 entry->etype, 0,0,0);
1602 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
1603 return(EIO);
1604 }
1605
1606 /*
1607 * now we must determine the offset in udv to use and the VA to
1608 * use for pmap_enter. note that we always use orig_map's pmap
1609 * for pmap_enter (even if we have a submap). since virtual
1610 * addresses in a submap must match the main map, this is ok.
1611 */
1612
1613 /* udv offset = (offset from start of entry) + entry's offset */
1614 curr_offset = entry->offset + (vaddr - entry->start);
1615 /* pmap va = vaddr (virtual address of pps[0]) */
1616 curr_va = vaddr;
1617
1618 /*
1619 * loop over the page range entering in as needed
1620 */
1621
1622 retval = 0;
1623 for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
1624 curr_va += PAGE_SIZE) {
1625 if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
1626 continue;
1627
1628 if (pps[lcv] == PGO_DONTCARE)
1629 continue;
1630
1631 paddr = (gtt_paddr + curr_offset);
1632 mmapflags = 0;
1633 mapprot = ufi->entry->protection;
1634 UVMHIST_LOG(maphist,
1635 " MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
1636 ufi->orig_map->pmap, curr_va, paddr, mapprot);
1637 if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
1638 PMAP_CANFAIL | mapprot | mmapflags) != 0) {
1639 /*
1640 * pmap_enter() didn't have the resource to
1641 * enter this mapping. Unlock everything,
1642 * wait for the pagedaemon to free up some
1643 * pages, and then tell uvm_fault() to start
1644 * the fault again.
1645 *
1646 * XXX Needs some rethinking for the PGO_ALLPAGES
1647 * XXX case.
1648 */
1649 pmap_update(ufi->orig_map->pmap); /* sync what we have so far */
1650 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap,
1651 uobj);
1652 uvm_wait("i915flt");
1653 return (ERESTART);
1654 }
1655 }
1656
1657 pmap_update(ufi->orig_map->pmap);
1658 uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
1659 return (retval);
1660 }
1661 #else
1662 /**
1663 * i915_gem_fault - fault a page into the GTT
1664 * vma: VMA in question
1665 * vmf: fault info
1666 *
1667 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1668 * from userspace. The fault handler takes care of binding the object to
1669 * the GTT (if needed), allocating and programming a fence register (again,
1670 * only if needed based on whether the old reg is still valid or the object
1671 * is tiled) and inserting a new PTE into the faulting process.
1672 *
1673 * Note that the faulting process may involve evicting existing objects
1674 * from the GTT and/or fence registers to make room. So performance may
1675 * suffer if the GTT working set is large or there are few fence registers
1676 * left.
1677 */
1678 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1679 {
1680 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1681 struct drm_device *dev = obj->base.dev;
1682 drm_i915_private_t *dev_priv = dev->dev_private;
1683 pgoff_t page_offset;
1684 unsigned long pfn;
1685 int ret = 0;
1686 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1687
1688 /* We don't use vmf->pgoff since that has the fake offset */
1689 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1690 PAGE_SHIFT;
1691
1692 ret = i915_mutex_lock_interruptible(dev);
1693 if (ret)
1694 goto out;
1695
1696 trace_i915_gem_object_fault(obj, page_offset, true, write);
1697
1698 /* Now bind it into the GTT if needed */
1699 ret = i915_gem_object_pin(obj, 0, true, false);
1700 if (ret)
1701 goto unlock;
1702
1703 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1704 if (ret)
1705 goto unpin;
1706
1707 ret = i915_gem_object_get_fence(obj);
1708 if (ret)
1709 goto unpin;
1710
1711 obj->fault_mappable = true;
1712
1713 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1714 page_offset;
1715
1716 /* Finally, remap it using the new GTT offset */
1717 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1718 unpin:
1719 i915_gem_object_unpin(obj);
1720 unlock:
1721 mutex_unlock(&dev->struct_mutex);
1722 out:
1723 switch (ret) {
1724 case -EIO:
1725 /* If this -EIO is due to a gpu hang, give the reset code a
1726 * chance to clean up the mess. Otherwise return the proper
1727 * SIGBUS. */
1728 if (!atomic_read(&dev_priv->mm.wedged))
1729 return VM_FAULT_SIGBUS;
1730 case -EAGAIN:
1731 /* Give the error handler a chance to run and move the
1732 * objects off the GPU active list. Next time we service the
1733 * fault, we should be able to transition the page into the
1734 * GTT without touching the GPU (and so avoid further
1735 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1736 * with coherency, just lost writes.
1737 */
1738 set_need_resched();
1739 case 0:
1740 case -ERESTARTSYS:
1741 case -EINTR:
1742 case -EBUSY:
1743 /*
1744 * EBUSY is ok: this just means that another thread
1745 * already did the job.
1746 */
1747 return VM_FAULT_NOPAGE;
1748 case -ENOMEM:
1749 return VM_FAULT_OOM;
1750 case -ENOSPC:
1751 return VM_FAULT_SIGBUS;
1752 default:
1753 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1754 return VM_FAULT_SIGBUS;
1755 }
1756 }
1757 #endif
1758
1759 /**
1760 * i915_gem_release_mmap - remove physical page mappings
1761 * @obj: obj in question
1762 *
1763 * Preserve the reservation of the mmapping with the DRM core code, but
1764 * relinquish ownership of the pages back to the system.
1765 *
1766 * It is vital that we remove the page mapping if we have mapped a tiled
1767 * object through the GTT and then lose the fence register due to
1768 * resource pressure. Similarly if the object has been moved out of the
1769 * aperture, than pages mapped into userspace must be revoked. Removing the
1770 * mapping will then trigger a page fault on the next user access, allowing
1771 * fixup by i915_gem_fault().
1772 */
1773 void
1774 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1775 {
1776 if (!obj->fault_mappable)
1777 return;
1778
1779 #ifdef __NetBSD__ /* XXX gem gtt fault */
1780 {
1781 struct vm_page *page;
1782
1783 mutex_enter(obj->base.gemo_shm_uao->vmobjlock);
1784 KASSERT(obj->pages != NULL);
1785 /* Force a fresh fault for each page. */
1786 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
1787 pmap_page_protect(page, VM_PROT_NONE);
1788 mutex_exit(obj->base.gemo_shm_uao->vmobjlock);
1789 }
1790 #else
1791 if (obj->base.dev->dev_mapping)
1792 unmap_mapping_range(obj->base.dev->dev_mapping,
1793 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1794 obj->base.size, 1);
1795 #endif
1796
1797 obj->fault_mappable = false;
1798 }
1799
1800 static uint32_t
1801 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1802 {
1803 uint32_t gtt_size;
1804
1805 if (INTEL_INFO(dev)->gen >= 4 ||
1806 tiling_mode == I915_TILING_NONE)
1807 return size;
1808
1809 /* Previous chips need a power-of-two fence region when tiling */
1810 if (INTEL_INFO(dev)->gen == 3)
1811 gtt_size = 1024*1024;
1812 else
1813 gtt_size = 512*1024;
1814
1815 while (gtt_size < size)
1816 gtt_size <<= 1;
1817
1818 return gtt_size;
1819 }
1820
1821 /**
1822 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1823 * @obj: object to check
1824 *
1825 * Return the required GTT alignment for an object, taking into account
1826 * potential fence register mapping.
1827 */
1828 static uint32_t
1829 i915_gem_get_gtt_alignment(struct drm_device *dev,
1830 uint32_t size,
1831 int tiling_mode)
1832 {
1833 /*
1834 * Minimum alignment is 4k (GTT page size), but might be greater
1835 * if a fence register is needed for the object.
1836 */
1837 if (INTEL_INFO(dev)->gen >= 4 ||
1838 tiling_mode == I915_TILING_NONE)
1839 return 4096;
1840
1841 /*
1842 * Previous chips need to be aligned to the size of the smallest
1843 * fence register that can contain the object.
1844 */
1845 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1846 }
1847
1848 /**
1849 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1850 * unfenced object
1851 * @dev: the device
1852 * @size: size of the object
1853 * @tiling_mode: tiling mode of the object
1854 *
1855 * Return the required GTT alignment for an object, only taking into account
1856 * unfenced tiled surface requirements.
1857 */
1858 uint32_t
1859 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1860 uint32_t size,
1861 int tiling_mode)
1862 {
1863 /*
1864 * Minimum alignment is 4k (GTT page size) for sane hw.
1865 */
1866 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1867 tiling_mode == I915_TILING_NONE)
1868 return 4096;
1869
1870 /* Previous hardware however needs to be aligned to a power-of-two
1871 * tile height. The simplest method for determining this is to reuse
1872 * the power-of-tile object size.
1873 */
1874 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1875 }
1876
1877 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1878 {
1879 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1880 int ret;
1881
1882 if (obj->base.map_list.map)
1883 return 0;
1884
1885 dev_priv->mm.shrinker_no_lock_stealing = true;
1886
1887 ret = drm_gem_create_mmap_offset(&obj->base);
1888 if (ret != -ENOSPC)
1889 goto out;
1890
1891 /* Badly fragmented mmap space? The only way we can recover
1892 * space is by destroying unwanted objects. We can't randomly release
1893 * mmap_offsets as userspace expects them to be persistent for the
1894 * lifetime of the objects. The closest we can is to release the
1895 * offsets on purgeable objects by truncating it and marking it purged,
1896 * which prevents userspace from ever using that object again.
1897 */
1898 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1899 ret = drm_gem_create_mmap_offset(&obj->base);
1900 if (ret != -ENOSPC)
1901 goto out;
1902
1903 i915_gem_shrink_all(dev_priv);
1904 ret = drm_gem_create_mmap_offset(&obj->base);
1905 out:
1906 dev_priv->mm.shrinker_no_lock_stealing = false;
1907
1908 return ret;
1909 }
1910
1911 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1912 {
1913 if (!obj->base.map_list.map)
1914 return;
1915
1916 drm_gem_free_mmap_offset(&obj->base);
1917 }
1918
1919 int
1920 i915_gem_mmap_gtt(struct drm_file *file,
1921 struct drm_device *dev,
1922 uint32_t handle,
1923 uint64_t *offset)
1924 {
1925 struct drm_i915_private *dev_priv = dev->dev_private;
1926 struct drm_i915_gem_object *obj;
1927 int ret;
1928
1929 ret = i915_mutex_lock_interruptible(dev);
1930 if (ret)
1931 return ret;
1932
1933 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1934 if (&obj->base == NULL) {
1935 ret = -ENOENT;
1936 goto unlock;
1937 }
1938
1939 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1940 ret = -E2BIG;
1941 goto out;
1942 }
1943
1944 if (obj->madv != I915_MADV_WILLNEED) {
1945 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1946 ret = -EINVAL;
1947 goto out;
1948 }
1949
1950 ret = i915_gem_object_create_mmap_offset(obj);
1951 if (ret)
1952 goto out;
1953
1954 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1955
1956 out:
1957 drm_gem_object_unreference(&obj->base);
1958 unlock:
1959 mutex_unlock(&dev->struct_mutex);
1960 return ret;
1961 }
1962
1963 /**
1964 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1965 * @dev: DRM device
1966 * @data: GTT mapping ioctl data
1967 * @file: GEM object info
1968 *
1969 * Simply returns the fake offset to userspace so it can mmap it.
1970 * The mmap call will end up in drm_gem_mmap(), which will set things
1971 * up so we can get faults in the handler above.
1972 *
1973 * The fault handler will take care of binding the object into the GTT
1974 * (since it may have been evicted to make room for something), allocating
1975 * a fence register, and mapping the appropriate aperture address into
1976 * userspace.
1977 */
1978 int
1979 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1980 struct drm_file *file)
1981 {
1982 struct drm_i915_gem_mmap_gtt *args = data;
1983
1984 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1985 }
1986
1987 /* Immediately discard the backing storage */
1988 static void
1989 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1990 {
1991 #ifndef __NetBSD__
1992 struct inode *inode;
1993 #endif
1994
1995 i915_gem_object_free_mmap_offset(obj);
1996
1997 #ifdef __NetBSD__
1998 {
1999 struct uvm_object *const uobj = obj->base.gemo_shm_uao;
2000
2001 if (uobj != NULL) {
2002 /* XXX Calling pgo_put like this is bogus. */
2003 mutex_enter(uobj->vmobjlock);
2004 (*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
2005 (PGO_ALLPAGES | PGO_FREE));
2006 }
2007 }
2008 #else
2009 if (obj->base.filp == NULL)
2010 return;
2011
2012 /* Our goal here is to return as much of the memory as
2013 * is possible back to the system as we are called from OOM.
2014 * To do this we must instruct the shmfs to drop all of its
2015 * backing pages, *now*.
2016 */
2017 inode = obj->base.filp->f_path.dentry->d_inode;
2018 shmem_truncate_range(inode, 0, (loff_t)-1);
2019 #endif
2020
2021 obj->madv = __I915_MADV_PURGED;
2022 }
2023
2024 static inline int
2025 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
2026 {
2027 return obj->madv == I915_MADV_DONTNEED;
2028 }
2029
2030 #ifdef __NetBSD__
2031 static void
2032 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2033 {
2034 struct drm_device *const dev = obj->base.dev;
2035 int ret;
2036
2037 /* XXX Cargo-culted from the Linux code. */
2038 BUG_ON(obj->madv == __I915_MADV_PURGED);
2039
2040 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2041 if (ret) {
2042 WARN_ON(ret != -EIO);
2043 i915_gem_clflush_object(obj);
2044 obj->base.read_domains = obj->base.write_domain =
2045 I915_GEM_DOMAIN_CPU;
2046 }
2047
2048 if (i915_gem_object_needs_bit17_swizzle(obj))
2049 i915_gem_object_save_bit_17_swizzle(obj);
2050
2051 /* XXX Maintain dirty flag? */
2052
2053 bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
2054 bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2055 obj->base.size, obj->pages, obj->igo_nsegs);
2056
2057 kfree(obj->pages);
2058 }
2059 #else
2060 static void
2061 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2062 {
2063 int page_count = obj->base.size / PAGE_SIZE;
2064 struct scatterlist *sg;
2065 int ret, i;
2066
2067 BUG_ON(obj->madv == __I915_MADV_PURGED);
2068
2069 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2070 if (ret) {
2071 /* In the event of a disaster, abandon all caches and
2072 * hope for the best.
2073 */
2074 WARN_ON(ret != -EIO);
2075 i915_gem_clflush_object(obj);
2076 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2077 }
2078
2079 if (i915_gem_object_needs_bit17_swizzle(obj))
2080 i915_gem_object_save_bit_17_swizzle(obj);
2081
2082 if (obj->madv == I915_MADV_DONTNEED)
2083 obj->dirty = 0;
2084
2085 for_each_sg(obj->pages->sgl, sg, page_count, i) {
2086 struct page *page = sg_page(sg);
2087
2088 if (obj->dirty)
2089 set_page_dirty(page);
2090
2091 if (obj->madv == I915_MADV_WILLNEED)
2092 mark_page_accessed(page);
2093
2094 page_cache_release(page);
2095 }
2096 obj->dirty = 0;
2097
2098 sg_free_table(obj->pages);
2099 kfree(obj->pages);
2100 }
2101 #endif
2102
2103 static int
2104 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2105 {
2106 const struct drm_i915_gem_object_ops *ops = obj->ops;
2107
2108 if (obj->pages == NULL)
2109 return 0;
2110
2111 BUG_ON(obj->gtt_space);
2112
2113 if (obj->pages_pin_count)
2114 return -EBUSY;
2115
2116 /* ->put_pages might need to allocate memory for the bit17 swizzle
2117 * array, hence protect them from being reaped by removing them from gtt
2118 * lists early. */
2119 list_del(&obj->gtt_list);
2120
2121 ops->put_pages(obj);
2122 obj->pages = NULL;
2123
2124 if (i915_gem_object_is_purgeable(obj))
2125 i915_gem_object_truncate(obj);
2126
2127 return 0;
2128 }
2129
2130 static long
2131 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
2132 bool purgeable_only)
2133 {
2134 struct drm_i915_gem_object *obj, *next;
2135 long count = 0;
2136
2137 list_for_each_entry_safe(obj, next,
2138 &dev_priv->mm.unbound_list,
2139 gtt_list) {
2140 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2141 i915_gem_object_put_pages(obj) == 0) {
2142 count += obj->base.size >> PAGE_SHIFT;
2143 if (count >= target)
2144 return count;
2145 }
2146 }
2147
2148 list_for_each_entry_safe(obj, next,
2149 &dev_priv->mm.inactive_list,
2150 mm_list) {
2151 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2152 i915_gem_object_unbind(obj) == 0 &&
2153 i915_gem_object_put_pages(obj) == 0) {
2154 count += obj->base.size >> PAGE_SHIFT;
2155 if (count >= target)
2156 return count;
2157 }
2158 }
2159
2160 return count;
2161 }
2162
2163 static long
2164 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2165 {
2166 return __i915_gem_shrink(dev_priv, target, true);
2167 }
2168
2169 static void
2170 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2171 {
2172 struct drm_i915_gem_object *obj, *next;
2173
2174 i915_gem_evict_everything(dev_priv->dev);
2175
2176 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
2177 i915_gem_object_put_pages(obj);
2178 }
2179
2180 #ifdef __NetBSD__
2181 static int
2182 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2183 {
2184 struct drm_device *const dev = obj->base.dev;
2185 struct vm_page *page;
2186 int error;
2187
2188 /* XXX Cargo-culted from the Linux code. */
2189 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2190 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2191
2192 KASSERT(obj->pages == NULL);
2193 TAILQ_INIT(&obj->igo_pageq);
2194 obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
2195 sizeof(obj->pages[0]), GFP_KERNEL);
2196 if (obj->pages == NULL) {
2197 error = -ENOMEM;
2198 goto fail0;
2199 }
2200
2201 /* XXX errno NetBSD->Linux */
2202 error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
2203 0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
2204 (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
2205 if (error)
2206 /* XXX Try i915_gem_purge, i915_gem_shrink_all. */
2207 goto fail1;
2208 KASSERT(0 < obj->igo_nsegs);
2209 KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
2210
2211 /*
2212 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
2213 *
2214 * XXX This is wrong; we ought to pass this constraint to
2215 * bus_dmamem_wire_uvm_object instead.
2216 */
2217 TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
2218 const uint64_t mask =
2219 (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
2220 0xffffffffULL : 0xffffffffffULL);
2221 if (VM_PAGE_TO_PHYS(page) & ~mask) {
2222 DRM_ERROR("GEM physical address exceeds %u bits"
2223 ": %"PRIxMAX"\n",
2224 popcount64(mask),
2225 (uintmax_t)VM_PAGE_TO_PHYS(page));
2226 error = -EIO;
2227 goto fail2;
2228 }
2229 }
2230
2231 /* XXX errno NetBSD->Linux */
2232 error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
2233 PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
2234 if (error)
2235 goto fail2;
2236
2237 /* XXX Cargo-culted from the Linux code. */
2238 if (i915_gem_object_needs_bit17_swizzle(obj))
2239 i915_gem_object_do_bit_17_swizzle(obj);
2240
2241 /* Success! */
2242 return 0;
2243
2244 fail2: bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2245 obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
2246 fail1: kfree(obj->pages);
2247 obj->pages = NULL;
2248 fail0: KASSERT(error);
2249 return error;
2250 }
2251 #else
2252 static int
2253 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2254 {
2255 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2256 int page_count, i;
2257 struct address_space *mapping;
2258 struct sg_table *st;
2259 struct scatterlist *sg;
2260 struct page *page;
2261 gfp_t gfp;
2262
2263 /* Assert that the object is not currently in any GPU domain. As it
2264 * wasn't in the GTT, there shouldn't be any way it could have been in
2265 * a GPU cache
2266 */
2267 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2268 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2269
2270 st = kmalloc(sizeof(*st), GFP_KERNEL);
2271 if (st == NULL)
2272 return -ENOMEM;
2273
2274 page_count = obj->base.size / PAGE_SIZE;
2275 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2276 sg_free_table(st);
2277 kfree(st);
2278 return -ENOMEM;
2279 }
2280
2281 /* Get the list of pages out of our struct file. They'll be pinned
2282 * at this point until we release them.
2283 *
2284 * Fail silently without starting the shrinker
2285 */
2286 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
2287 gfp = mapping_gfp_mask(mapping);
2288 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2289 gfp &= ~(__GFP_IO | __GFP_WAIT);
2290 for_each_sg(st->sgl, sg, page_count, i) {
2291 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2292 if (IS_ERR(page)) {
2293 i915_gem_purge(dev_priv, page_count);
2294 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2295 }
2296 if (IS_ERR(page)) {
2297 /* We've tried hard to allocate the memory by reaping
2298 * our own buffer, now let the real VM do its job and
2299 * go down in flames if truly OOM.
2300 */
2301 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2302 gfp |= __GFP_IO | __GFP_WAIT;
2303
2304 i915_gem_shrink_all(dev_priv);
2305 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2306 if (IS_ERR(page))
2307 goto err_pages;
2308
2309 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2310 gfp &= ~(__GFP_IO | __GFP_WAIT);
2311 }
2312
2313 sg_set_page(sg, page, PAGE_SIZE, 0);
2314 }
2315
2316 obj->pages = st;
2317
2318 if (i915_gem_object_needs_bit17_swizzle(obj))
2319 i915_gem_object_do_bit_17_swizzle(obj);
2320
2321 return 0;
2322
2323 err_pages:
2324 for_each_sg(st->sgl, sg, i, page_count)
2325 page_cache_release(sg_page(sg));
2326 sg_free_table(st);
2327 kfree(st);
2328 return PTR_ERR(page);
2329 }
2330 #endif
2331
2332 /* Ensure that the associated pages are gathered from the backing storage
2333 * and pinned into our object. i915_gem_object_get_pages() may be called
2334 * multiple times before they are released by a single call to
2335 * i915_gem_object_put_pages() - once the pages are no longer referenced
2336 * either as a result of memory pressure (reaping pages under the shrinker)
2337 * or as the object is itself released.
2338 */
2339 int
2340 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2341 {
2342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2343 const struct drm_i915_gem_object_ops *ops = obj->ops;
2344 int ret;
2345
2346 if (obj->pages)
2347 return 0;
2348
2349 BUG_ON(obj->pages_pin_count);
2350
2351 ret = ops->get_pages(obj);
2352 if (ret)
2353 return ret;
2354
2355 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2356 return 0;
2357 }
2358
2359 void
2360 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2361 struct intel_ring_buffer *ring)
2362 {
2363 struct drm_device *dev = obj->base.dev;
2364 struct drm_i915_private *dev_priv = dev->dev_private;
2365 u32 seqno = intel_ring_get_seqno(ring);
2366
2367 BUG_ON(ring == NULL);
2368 obj->ring = ring;
2369
2370 /* Add a reference if we're newly entering the active list. */
2371 if (!obj->active) {
2372 drm_gem_object_reference(&obj->base);
2373 obj->active = 1;
2374 }
2375
2376 /* Move from whatever list we were on to the tail of execution. */
2377 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
2378 list_move_tail(&obj->ring_list, &ring->active_list);
2379
2380 obj->last_read_seqno = seqno;
2381
2382 if (obj->fenced_gpu_access) {
2383 obj->last_fenced_seqno = seqno;
2384
2385 /* Bump MRU to take account of the delayed flush */
2386 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2387 struct drm_i915_fence_reg *reg;
2388
2389 reg = &dev_priv->fence_regs[obj->fence_reg];
2390 list_move_tail(®->lru_list,
2391 &dev_priv->mm.fence_list);
2392 }
2393 }
2394 }
2395
2396 static void
2397 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2398 {
2399 struct drm_device *dev = obj->base.dev;
2400 struct drm_i915_private *dev_priv = dev->dev_private;
2401
2402 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2403 BUG_ON(!obj->active);
2404
2405 if (obj->pin_count) /* are we a framebuffer? */
2406 intel_mark_fb_idle(obj);
2407
2408 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2409
2410 list_del_init(&obj->ring_list);
2411 obj->ring = NULL;
2412
2413 obj->last_read_seqno = 0;
2414 obj->last_write_seqno = 0;
2415 obj->base.write_domain = 0;
2416
2417 obj->last_fenced_seqno = 0;
2418 obj->fenced_gpu_access = false;
2419
2420 obj->active = 0;
2421 drm_gem_object_unreference(&obj->base);
2422
2423 WARN_ON(i915_verify_lists(dev));
2424 }
2425
2426 static int
2427 i915_gem_handle_seqno_wrap(struct drm_device *dev)
2428 {
2429 struct drm_i915_private *dev_priv = dev->dev_private;
2430 struct intel_ring_buffer *ring;
2431 int ret, i, j;
2432
2433 /* The hardware uses various monotonic 32-bit counters, if we
2434 * detect that they will wraparound we need to idle the GPU
2435 * and reset those counters.
2436 */
2437 ret = 0;
2438 for_each_ring(ring, dev_priv, i) {
2439 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2440 ret |= ring->sync_seqno[j] != 0;
2441 }
2442 if (ret == 0)
2443 return ret;
2444
2445 ret = i915_gpu_idle(dev);
2446 if (ret)
2447 return ret;
2448
2449 i915_gem_retire_requests(dev);
2450 for_each_ring(ring, dev_priv, i) {
2451 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2452 ring->sync_seqno[j] = 0;
2453 }
2454
2455 return 0;
2456 }
2457
2458 int
2459 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2460 {
2461 struct drm_i915_private *dev_priv = dev->dev_private;
2462
2463 /* reserve 0 for non-seqno */
2464 if (dev_priv->next_seqno == 0) {
2465 int ret = i915_gem_handle_seqno_wrap(dev);
2466 if (ret)
2467 return ret;
2468
2469 dev_priv->next_seqno = 1;
2470 }
2471
2472 *seqno = dev_priv->next_seqno++;
2473 return 0;
2474 }
2475
2476 int
2477 i915_add_request(struct intel_ring_buffer *ring,
2478 struct drm_file *file,
2479 u32 *out_seqno)
2480 {
2481 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2482 struct drm_i915_gem_request *request;
2483 u32 request_ring_position;
2484 int was_empty;
2485 int ret;
2486
2487 /*
2488 * Emit any outstanding flushes - execbuf can fail to emit the flush
2489 * after having emitted the batchbuffer command. Hence we need to fix
2490 * things up similar to emitting the lazy request. The difference here
2491 * is that the flush _must_ happen before the next request, no matter
2492 * what.
2493 */
2494 ret = intel_ring_flush_all_caches(ring);
2495 if (ret)
2496 return ret;
2497
2498 request = kmalloc(sizeof(*request), GFP_KERNEL);
2499 if (request == NULL)
2500 return -ENOMEM;
2501
2502
2503 /* Record the position of the start of the request so that
2504 * should we detect the updated seqno part-way through the
2505 * GPU processing the request, we never over-estimate the
2506 * position of the head.
2507 */
2508 request_ring_position = intel_ring_get_tail(ring);
2509
2510 ret = ring->add_request(ring);
2511 if (ret) {
2512 kfree(request);
2513 return ret;
2514 }
2515
2516 request->seqno = intel_ring_get_seqno(ring);
2517 request->ring = ring;
2518 request->tail = request_ring_position;
2519 request->emitted_jiffies = jiffies;
2520 was_empty = list_empty(&ring->request_list);
2521 list_add_tail(&request->list, &ring->request_list);
2522 request->file_priv = NULL;
2523
2524 if (file) {
2525 struct drm_i915_file_private *file_priv = file->driver_priv;
2526
2527 spin_lock(&file_priv->mm.lock);
2528 request->file_priv = file_priv;
2529 list_add_tail(&request->client_list,
2530 &file_priv->mm.request_list);
2531 spin_unlock(&file_priv->mm.lock);
2532 }
2533
2534 trace_i915_gem_request_add(ring, request->seqno);
2535 ring->outstanding_lazy_request = 0;
2536
2537 if (!dev_priv->mm.suspended) {
2538 if (i915_enable_hangcheck) {
2539 mod_timer(&dev_priv->hangcheck_timer,
2540 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2541 }
2542 if (was_empty) {
2543 queue_delayed_work(dev_priv->wq,
2544 &dev_priv->mm.retire_work,
2545 round_jiffies_up_relative(HZ));
2546 intel_mark_busy(dev_priv->dev);
2547 }
2548 }
2549
2550 if (out_seqno)
2551 *out_seqno = request->seqno;
2552 return 0;
2553 }
2554
2555 static inline void
2556 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2557 {
2558 struct drm_i915_file_private *file_priv = request->file_priv;
2559
2560 if (!file_priv)
2561 return;
2562
2563 spin_lock(&file_priv->mm.lock);
2564 if (request->file_priv) {
2565 list_del(&request->client_list);
2566 request->file_priv = NULL;
2567 }
2568 spin_unlock(&file_priv->mm.lock);
2569 }
2570
2571 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2572 struct intel_ring_buffer *ring)
2573 {
2574 while (!list_empty(&ring->request_list)) {
2575 struct drm_i915_gem_request *request;
2576
2577 request = list_first_entry(&ring->request_list,
2578 struct drm_i915_gem_request,
2579 list);
2580
2581 list_del(&request->list);
2582 i915_gem_request_remove_from_client(request);
2583 kfree(request);
2584 }
2585
2586 while (!list_empty(&ring->active_list)) {
2587 struct drm_i915_gem_object *obj;
2588
2589 obj = list_first_entry(&ring->active_list,
2590 struct drm_i915_gem_object,
2591 ring_list);
2592
2593 i915_gem_object_move_to_inactive(obj);
2594 }
2595 }
2596
2597 static void i915_gem_reset_fences(struct drm_device *dev)
2598 {
2599 struct drm_i915_private *dev_priv = dev->dev_private;
2600 int i;
2601
2602 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2603 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2604
2605 i915_gem_write_fence(dev, i, NULL);
2606
2607 if (reg->obj)
2608 i915_gem_object_fence_lost(reg->obj);
2609
2610 reg->pin_count = 0;
2611 reg->obj = NULL;
2612 INIT_LIST_HEAD(®->lru_list);
2613 }
2614
2615 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2616 }
2617
2618 void i915_gem_reset(struct drm_device *dev)
2619 {
2620 struct drm_i915_private *dev_priv = dev->dev_private;
2621 struct drm_i915_gem_object *obj;
2622 struct intel_ring_buffer *ring;
2623 int i;
2624
2625 for_each_ring(ring, dev_priv, i)
2626 i915_gem_reset_ring_lists(dev_priv, ring);
2627
2628 /* Move everything out of the GPU domains to ensure we do any
2629 * necessary invalidation upon reuse.
2630 */
2631 list_for_each_entry(obj,
2632 &dev_priv->mm.inactive_list,
2633 mm_list)
2634 {
2635 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2636 }
2637
2638 /* The fence registers are invalidated so clear them out */
2639 i915_gem_reset_fences(dev);
2640 }
2641
2642 /**
2643 * This function clears the request list as sequence numbers are passed.
2644 */
2645 void
2646 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2647 {
2648 uint32_t seqno;
2649
2650 if (list_empty(&ring->request_list))
2651 return;
2652
2653 WARN_ON(i915_verify_lists(ring->dev));
2654
2655 seqno = ring->get_seqno(ring, true);
2656
2657 while (!list_empty(&ring->request_list)) {
2658 struct drm_i915_gem_request *request;
2659
2660 request = list_first_entry(&ring->request_list,
2661 struct drm_i915_gem_request,
2662 list);
2663
2664 if (!i915_seqno_passed(seqno, request->seqno))
2665 break;
2666
2667 trace_i915_gem_request_retire(ring, request->seqno);
2668 /* We know the GPU must have read the request to have
2669 * sent us the seqno + interrupt, so use the position
2670 * of tail of the request to update the last known position
2671 * of the GPU head.
2672 */
2673 ring->last_retired_head = request->tail;
2674
2675 list_del(&request->list);
2676 i915_gem_request_remove_from_client(request);
2677 kfree(request);
2678 }
2679
2680 /* Move any buffers on the active list that are no longer referenced
2681 * by the ringbuffer to the flushing/inactive lists as appropriate.
2682 */
2683 while (!list_empty(&ring->active_list)) {
2684 struct drm_i915_gem_object *obj;
2685
2686 obj = list_first_entry(&ring->active_list,
2687 struct drm_i915_gem_object,
2688 ring_list);
2689
2690 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2691 break;
2692
2693 i915_gem_object_move_to_inactive(obj);
2694 }
2695
2696 if (unlikely(ring->trace_irq_seqno &&
2697 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2698 ring->irq_put(ring);
2699 ring->trace_irq_seqno = 0;
2700 }
2701
2702 WARN_ON(i915_verify_lists(ring->dev));
2703 }
2704
2705 void
2706 i915_gem_retire_requests(struct drm_device *dev)
2707 {
2708 drm_i915_private_t *dev_priv = dev->dev_private;
2709 struct intel_ring_buffer *ring;
2710 int i;
2711
2712 for_each_ring(ring, dev_priv, i)
2713 i915_gem_retire_requests_ring(ring);
2714 }
2715
2716 static void
2717 i915_gem_retire_work_handler(struct work_struct *work)
2718 {
2719 drm_i915_private_t *dev_priv;
2720 struct drm_device *dev;
2721 struct intel_ring_buffer *ring;
2722 bool idle;
2723 int i;
2724
2725 dev_priv = container_of(work, drm_i915_private_t,
2726 mm.retire_work.work);
2727 dev = dev_priv->dev;
2728
2729 /* Come back later if the device is busy... */
2730 if (!mutex_trylock(&dev->struct_mutex)) {
2731 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2732 round_jiffies_up_relative(HZ));
2733 return;
2734 }
2735
2736 i915_gem_retire_requests(dev);
2737
2738 /* Send a periodic flush down the ring so we don't hold onto GEM
2739 * objects indefinitely.
2740 */
2741 idle = true;
2742 for_each_ring(ring, dev_priv, i) {
2743 if (ring->gpu_caches_dirty)
2744 i915_add_request(ring, NULL, NULL);
2745
2746 idle &= list_empty(&ring->request_list);
2747 }
2748
2749 if (!dev_priv->mm.suspended && !idle)
2750 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2751 round_jiffies_up_relative(HZ));
2752 if (idle)
2753 intel_mark_idle(dev);
2754
2755 mutex_unlock(&dev->struct_mutex);
2756 }
2757
2758 /**
2759 * Ensures that an object will eventually get non-busy by flushing any required
2760 * write domains, emitting any outstanding lazy request and retiring and
2761 * completed requests.
2762 */
2763 static int
2764 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2765 {
2766 int ret;
2767
2768 if (obj->active) {
2769 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2770 if (ret)
2771 return ret;
2772
2773 i915_gem_retire_requests_ring(obj->ring);
2774 }
2775
2776 return 0;
2777 }
2778
2779 /**
2780 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2781 * @DRM_IOCTL_ARGS: standard ioctl arguments
2782 *
2783 * Returns 0 if successful, else an error is returned with the remaining time in
2784 * the timeout parameter.
2785 * -ETIME: object is still busy after timeout
2786 * -ERESTARTSYS: signal interrupted the wait
2787 * -ENONENT: object doesn't exist
2788 * Also possible, but rare:
2789 * -EAGAIN: GPU wedged
2790 * -ENOMEM: damn
2791 * -ENODEV: Internal IRQ fail
2792 * -E?: The add request failed
2793 *
2794 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2795 * non-zero timeout parameter the wait ioctl will wait for the given number of
2796 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2797 * without holding struct_mutex the object may become re-busied before this
2798 * function completes. A similar but shorter * race condition exists in the busy
2799 * ioctl
2800 */
2801 int
2802 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2803 {
2804 struct drm_i915_gem_wait *args = data;
2805 struct drm_i915_gem_object *obj;
2806 struct intel_ring_buffer *ring = NULL;
2807 struct timespec timeout_stack, *timeout = NULL;
2808 u32 seqno = 0;
2809 int ret = 0;
2810
2811 if (args->timeout_ns >= 0) {
2812 timeout_stack = ns_to_timespec(args->timeout_ns);
2813 timeout = &timeout_stack;
2814 }
2815
2816 ret = i915_mutex_lock_interruptible(dev);
2817 if (ret)
2818 return ret;
2819
2820 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2821 if (&obj->base == NULL) {
2822 mutex_unlock(&dev->struct_mutex);
2823 return -ENOENT;
2824 }
2825
2826 /* Need to make sure the object gets inactive eventually. */
2827 ret = i915_gem_object_flush_active(obj);
2828 if (ret)
2829 goto out;
2830
2831 if (obj->active) {
2832 seqno = obj->last_read_seqno;
2833 ring = obj->ring;
2834 }
2835
2836 if (seqno == 0)
2837 goto out;
2838
2839 /* Do this after OLR check to make sure we make forward progress polling
2840 * on this IOCTL with a 0 timeout (like busy ioctl)
2841 */
2842 if (!args->timeout_ns) {
2843 ret = -ETIME;
2844 goto out;
2845 }
2846
2847 drm_gem_object_unreference(&obj->base);
2848 mutex_unlock(&dev->struct_mutex);
2849
2850 ret = __wait_seqno(ring, seqno, true, timeout);
2851 if (timeout) {
2852 WARN_ON(!timespec_valid(timeout));
2853 args->timeout_ns = timespec_to_ns(timeout);
2854 }
2855 return ret;
2856
2857 out:
2858 drm_gem_object_unreference(&obj->base);
2859 mutex_unlock(&dev->struct_mutex);
2860 return ret;
2861 }
2862
2863 /**
2864 * i915_gem_object_sync - sync an object to a ring.
2865 *
2866 * @obj: object which may be in use on another ring.
2867 * @to: ring we wish to use the object on. May be NULL.
2868 *
2869 * This code is meant to abstract object synchronization with the GPU.
2870 * Calling with NULL implies synchronizing the object with the CPU
2871 * rather than a particular GPU ring.
2872 *
2873 * Returns 0 if successful, else propagates up the lower layer error.
2874 */
2875 int
2876 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2877 struct intel_ring_buffer *to)
2878 {
2879 struct intel_ring_buffer *from = obj->ring;
2880 u32 seqno;
2881 int ret, idx;
2882
2883 if (from == NULL || to == from)
2884 return 0;
2885
2886 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2887 return i915_gem_object_wait_rendering(obj, false);
2888
2889 idx = intel_ring_sync_index(from, to);
2890
2891 seqno = obj->last_read_seqno;
2892 if (seqno <= from->sync_seqno[idx])
2893 return 0;
2894
2895 ret = i915_gem_check_olr(obj->ring, seqno);
2896 if (ret)
2897 return ret;
2898
2899 ret = to->sync_to(to, from, seqno);
2900 if (!ret)
2901 /* We use last_read_seqno because sync_to()
2902 * might have just caused seqno wrap under
2903 * the radar.
2904 */
2905 from->sync_seqno[idx] = obj->last_read_seqno;
2906
2907 return ret;
2908 }
2909
2910 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2911 {
2912 u32 old_write_domain, old_read_domains;
2913
2914 /* Act a barrier for all accesses through the GTT */
2915 mb();
2916
2917 /* Force a pagefault for domain tracking on next user access */
2918 i915_gem_release_mmap(obj);
2919
2920 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2921 return;
2922
2923 old_read_domains = obj->base.read_domains;
2924 old_write_domain = obj->base.write_domain;
2925
2926 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2927 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2928
2929 trace_i915_gem_object_change_domain(obj,
2930 old_read_domains,
2931 old_write_domain);
2932 }
2933
2934 /**
2935 * Unbinds an object from the GTT aperture.
2936 */
2937 int
2938 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2939 {
2940 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2941 int ret = 0;
2942
2943 if (obj->gtt_space == NULL)
2944 return 0;
2945
2946 if (obj->pin_count)
2947 return -EBUSY;
2948
2949 BUG_ON(obj->pages == NULL);
2950
2951 ret = i915_gem_object_finish_gpu(obj);
2952 if (ret)
2953 return ret;
2954 /* Continue on if we fail due to EIO, the GPU is hung so we
2955 * should be safe and we need to cleanup or else we might
2956 * cause memory corruption through use-after-free.
2957 */
2958
2959 i915_gem_object_finish_gtt(obj);
2960
2961 /* release the fence reg _after_ flushing */
2962 ret = i915_gem_object_put_fence(obj);
2963 if (ret)
2964 return ret;
2965
2966 trace_i915_gem_object_unbind(obj);
2967
2968 if (obj->has_global_gtt_mapping)
2969 i915_gem_gtt_unbind_object(obj);
2970 if (obj->has_aliasing_ppgtt_mapping) {
2971 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2972 obj->has_aliasing_ppgtt_mapping = 0;
2973 }
2974 i915_gem_gtt_finish_object(obj);
2975
2976 list_del(&obj->mm_list);
2977 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2978 /* Avoid an unnecessary call to unbind on rebind. */
2979 obj->map_and_fenceable = true;
2980
2981 drm_mm_put_block(obj->gtt_space);
2982 obj->gtt_space = NULL;
2983 obj->gtt_offset = 0;
2984
2985 return 0;
2986 }
2987
2988 int i915_gpu_idle(struct drm_device *dev)
2989 {
2990 drm_i915_private_t *dev_priv = dev->dev_private;
2991 struct intel_ring_buffer *ring;
2992 int ret, i;
2993
2994 /* Flush everything onto the inactive list. */
2995 for_each_ring(ring, dev_priv, i) {
2996 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2997 if (ret)
2998 return ret;
2999
3000 ret = intel_ring_idle(ring);
3001 if (ret)
3002 return ret;
3003 }
3004
3005 return 0;
3006 }
3007
3008 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
3009 struct drm_i915_gem_object *obj)
3010 {
3011 drm_i915_private_t *dev_priv = dev->dev_private;
3012 uint64_t val;
3013
3014 if (obj) {
3015 u32 size = obj->gtt_space->size;
3016
3017 val = (uint64_t)((obj->gtt_offset + size - 4096) &
3018 0xfffff000) << 32;
3019 val |= obj->gtt_offset & 0xfffff000;
3020 val |= (uint64_t)((obj->stride / 128) - 1) <<
3021 SANDYBRIDGE_FENCE_PITCH_SHIFT;
3022
3023 if (obj->tiling_mode == I915_TILING_Y)
3024 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3025 val |= I965_FENCE_REG_VALID;
3026 } else
3027 val = 0;
3028
3029 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
3030 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
3031 }
3032
3033 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3034 struct drm_i915_gem_object *obj)
3035 {
3036 drm_i915_private_t *dev_priv = dev->dev_private;
3037 uint64_t val;
3038
3039 if (obj) {
3040 u32 size = obj->gtt_space->size;
3041
3042 val = (uint64_t)((obj->gtt_offset + size - 4096) &
3043 0xfffff000) << 32;
3044 val |= obj->gtt_offset & 0xfffff000;
3045 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
3046 if (obj->tiling_mode == I915_TILING_Y)
3047 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3048 val |= I965_FENCE_REG_VALID;
3049 } else
3050 val = 0;
3051
3052 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
3053 POSTING_READ(FENCE_REG_965_0 + reg * 8);
3054 }
3055
3056 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3057 struct drm_i915_gem_object *obj)
3058 {
3059 drm_i915_private_t *dev_priv = dev->dev_private;
3060 u32 val;
3061
3062 if (obj) {
3063 u32 size = obj->gtt_space->size;
3064 int pitch_val;
3065 int tile_width;
3066
3067 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
3068 (size & -size) != size ||
3069 (obj->gtt_offset & (size - 1)),
3070 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3071 obj->gtt_offset, obj->map_and_fenceable, size);
3072
3073 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3074 tile_width = 128;
3075 else
3076 tile_width = 512;
3077
3078 /* Note: pitch better be a power of two tile widths */
3079 pitch_val = obj->stride / tile_width;
3080 pitch_val = ffs(pitch_val) - 1;
3081
3082 val = obj->gtt_offset;
3083 if (obj->tiling_mode == I915_TILING_Y)
3084 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3085 val |= I915_FENCE_SIZE_BITS(size);
3086 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3087 val |= I830_FENCE_REG_VALID;
3088 } else
3089 val = 0;
3090
3091 if (reg < 8)
3092 reg = FENCE_REG_830_0 + reg * 4;
3093 else
3094 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3095
3096 I915_WRITE(reg, val);
3097 POSTING_READ(reg);
3098 }
3099
3100 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3101 struct drm_i915_gem_object *obj)
3102 {
3103 drm_i915_private_t *dev_priv = dev->dev_private;
3104 uint32_t val;
3105
3106 if (obj) {
3107 u32 size = obj->gtt_space->size;
3108 uint32_t pitch_val;
3109
3110 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
3111 (size & -size) != size ||
3112 (obj->gtt_offset & (size - 1)),
3113 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
3114 obj->gtt_offset, size);
3115
3116 pitch_val = obj->stride / 128;
3117 pitch_val = ffs(pitch_val) - 1;
3118
3119 val = obj->gtt_offset;
3120 if (obj->tiling_mode == I915_TILING_Y)
3121 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3122 val |= I830_FENCE_SIZE_BITS(size);
3123 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3124 val |= I830_FENCE_REG_VALID;
3125 } else
3126 val = 0;
3127
3128 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3129 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3130 }
3131
3132 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3133 struct drm_i915_gem_object *obj)
3134 {
3135 switch (INTEL_INFO(dev)->gen) {
3136 case 7:
3137 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
3138 case 5:
3139 case 4: i965_write_fence_reg(dev, reg, obj); break;
3140 case 3: i915_write_fence_reg(dev, reg, obj); break;
3141 case 2: i830_write_fence_reg(dev, reg, obj); break;
3142 default: break;
3143 }
3144 }
3145
3146 static inline int fence_number(struct drm_i915_private *dev_priv,
3147 struct drm_i915_fence_reg *fence)
3148 {
3149 return fence - dev_priv->fence_regs;
3150 }
3151
3152 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3153 struct drm_i915_fence_reg *fence,
3154 bool enable)
3155 {
3156 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3157 int reg = fence_number(dev_priv, fence);
3158
3159 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3160
3161 if (enable) {
3162 obj->fence_reg = reg;
3163 fence->obj = obj;
3164 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3165 } else {
3166 obj->fence_reg = I915_FENCE_REG_NONE;
3167 fence->obj = NULL;
3168 list_del_init(&fence->lru_list);
3169 }
3170 }
3171
3172 static int
3173 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
3174 {
3175 if (obj->last_fenced_seqno) {
3176 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3177 if (ret)
3178 return ret;
3179
3180 obj->last_fenced_seqno = 0;
3181 }
3182
3183 /* Ensure that all CPU reads are completed before installing a fence
3184 * and all writes before removing the fence.
3185 */
3186 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
3187 mb();
3188
3189 obj->fenced_gpu_access = false;
3190 return 0;
3191 }
3192
3193 int
3194 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3195 {
3196 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3197 int ret;
3198
3199 ret = i915_gem_object_flush_fence(obj);
3200 if (ret)
3201 return ret;
3202
3203 if (obj->fence_reg == I915_FENCE_REG_NONE)
3204 return 0;
3205
3206 i915_gem_object_update_fence(obj,
3207 &dev_priv->fence_regs[obj->fence_reg],
3208 false);
3209 i915_gem_object_fence_lost(obj);
3210
3211 return 0;
3212 }
3213
3214 static struct drm_i915_fence_reg *
3215 i915_find_fence_reg(struct drm_device *dev)
3216 {
3217 struct drm_i915_private *dev_priv = dev->dev_private;
3218 struct drm_i915_fence_reg *reg, *avail;
3219 int i;
3220
3221 /* First try to find a free reg */
3222 avail = NULL;
3223 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3224 reg = &dev_priv->fence_regs[i];
3225 if (!reg->obj)
3226 return reg;
3227
3228 if (!reg->pin_count)
3229 avail = reg;
3230 }
3231
3232 if (avail == NULL)
3233 return NULL;
3234
3235 /* None available, try to steal one or wait for a user to finish */
3236 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3237 if (reg->pin_count)
3238 continue;
3239
3240 return reg;
3241 }
3242
3243 return NULL;
3244 }
3245
3246 /**
3247 * i915_gem_object_get_fence - set up fencing for an object
3248 * @obj: object to map through a fence reg
3249 *
3250 * When mapping objects through the GTT, userspace wants to be able to write
3251 * to them without having to worry about swizzling if the object is tiled.
3252 * This function walks the fence regs looking for a free one for @obj,
3253 * stealing one if it can't find any.
3254 *
3255 * It then sets up the reg based on the object's properties: address, pitch
3256 * and tiling format.
3257 *
3258 * For an untiled surface, this removes any existing fence.
3259 */
3260 int
3261 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3262 {
3263 struct drm_device *dev = obj->base.dev;
3264 struct drm_i915_private *dev_priv = dev->dev_private;
3265 bool enable = obj->tiling_mode != I915_TILING_NONE;
3266 struct drm_i915_fence_reg *reg;
3267 int ret;
3268
3269 /* Have we updated the tiling parameters upon the object and so
3270 * will need to serialise the write to the associated fence register?
3271 */
3272 if (obj->fence_dirty) {
3273 ret = i915_gem_object_flush_fence(obj);
3274 if (ret)
3275 return ret;
3276 }
3277
3278 /* Just update our place in the LRU if our fence is getting reused. */
3279 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3280 reg = &dev_priv->fence_regs[obj->fence_reg];
3281 if (!obj->fence_dirty) {
3282 list_move_tail(®->lru_list,
3283 &dev_priv->mm.fence_list);
3284 return 0;
3285 }
3286 } else if (enable) {
3287 reg = i915_find_fence_reg(dev);
3288 if (reg == NULL)
3289 return -EDEADLK;
3290
3291 if (reg->obj) {
3292 struct drm_i915_gem_object *old = reg->obj;
3293
3294 ret = i915_gem_object_flush_fence(old);
3295 if (ret)
3296 return ret;
3297
3298 i915_gem_object_fence_lost(old);
3299 }
3300 } else
3301 return 0;
3302
3303 i915_gem_object_update_fence(obj, reg, enable);
3304 obj->fence_dirty = false;
3305
3306 return 0;
3307 }
3308
3309 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3310 struct drm_mm_node *gtt_space,
3311 unsigned long cache_level)
3312 {
3313 struct drm_mm_node *other;
3314
3315 /* On non-LLC machines we have to be careful when putting differing
3316 * types of snoopable memory together to avoid the prefetcher
3317 * crossing memory domains and dieing.
3318 */
3319 if (HAS_LLC(dev))
3320 return true;
3321
3322 if (gtt_space == NULL)
3323 return true;
3324
3325 if (list_empty(>t_space->node_list))
3326 return true;
3327
3328 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3329 if (other->allocated && !other->hole_follows && other->color != cache_level)
3330 return false;
3331
3332 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3333 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3334 return false;
3335
3336 return true;
3337 }
3338
3339 static void i915_gem_verify_gtt(struct drm_device *dev)
3340 {
3341 #if WATCH_GTT
3342 struct drm_i915_private *dev_priv = dev->dev_private;
3343 struct drm_i915_gem_object *obj;
3344 int err = 0;
3345
3346 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
3347 if (obj->gtt_space == NULL) {
3348 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3349 err++;
3350 continue;
3351 }
3352
3353 if (obj->cache_level != obj->gtt_space->color) {
3354 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3355 obj->gtt_space->start,
3356 obj->gtt_space->start + obj->gtt_space->size,
3357 obj->cache_level,
3358 obj->gtt_space->color);
3359 err++;
3360 continue;
3361 }
3362
3363 if (!i915_gem_valid_gtt_space(dev,
3364 obj->gtt_space,
3365 obj->cache_level)) {
3366 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3367 obj->gtt_space->start,
3368 obj->gtt_space->start + obj->gtt_space->size,
3369 obj->cache_level);
3370 err++;
3371 continue;
3372 }
3373 }
3374
3375 WARN_ON(err);
3376 #endif
3377 }
3378
3379 /**
3380 * Finds free space in the GTT aperture and binds the object there.
3381 */
3382 static int
3383 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3384 unsigned alignment,
3385 bool map_and_fenceable,
3386 bool nonblocking)
3387 {
3388 struct drm_device *dev = obj->base.dev;
3389 drm_i915_private_t *dev_priv = dev->dev_private;
3390 struct drm_mm_node *node;
3391 u32 size, fence_size, fence_alignment, unfenced_alignment;
3392 bool mappable, fenceable;
3393 int ret;
3394
3395 if (obj->madv != I915_MADV_WILLNEED) {
3396 DRM_ERROR("Attempting to bind a purgeable object\n");
3397 return -EINVAL;
3398 }
3399
3400 fence_size = i915_gem_get_gtt_size(dev,
3401 obj->base.size,
3402 obj->tiling_mode);
3403 fence_alignment = i915_gem_get_gtt_alignment(dev,
3404 obj->base.size,
3405 obj->tiling_mode);
3406 unfenced_alignment =
3407 i915_gem_get_unfenced_gtt_alignment(dev,
3408 obj->base.size,
3409 obj->tiling_mode);
3410
3411 if (alignment == 0)
3412 alignment = map_and_fenceable ? fence_alignment :
3413 unfenced_alignment;
3414 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3415 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3416 return -EINVAL;
3417 }
3418
3419 size = map_and_fenceable ? fence_size : obj->base.size;
3420
3421 /* If the object is bigger than the entire aperture, reject it early
3422 * before evicting everything in a vain attempt to find space.
3423 */
3424 if (obj->base.size >
3425 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
3426 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
3427 return -E2BIG;
3428 }
3429
3430 ret = i915_gem_object_get_pages(obj);
3431 if (ret)
3432 return ret;
3433
3434 i915_gem_object_pin_pages(obj);
3435
3436 node = kzalloc(sizeof(*node), GFP_KERNEL);
3437 if (node == NULL) {
3438 i915_gem_object_unpin_pages(obj);
3439 return -ENOMEM;
3440 }
3441
3442 search_free:
3443 if (map_and_fenceable)
3444 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3445 size, alignment, obj->cache_level,
3446 0, dev_priv->mm.gtt_mappable_end);
3447 else
3448 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
3449 size, alignment, obj->cache_level);
3450 if (ret) {
3451 ret = i915_gem_evict_something(dev, size, alignment,
3452 obj->cache_level,
3453 map_and_fenceable,
3454 nonblocking);
3455 if (ret == 0)
3456 goto search_free;
3457
3458 i915_gem_object_unpin_pages(obj);
3459 kfree(node);
3460 return ret;
3461 }
3462 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3463 i915_gem_object_unpin_pages(obj);
3464 drm_mm_put_block(node);
3465 return -EINVAL;
3466 }
3467
3468 ret = i915_gem_gtt_prepare_object(obj);
3469 if (ret) {
3470 i915_gem_object_unpin_pages(obj);
3471 drm_mm_put_block(node);
3472 return ret;
3473 }
3474
3475 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3476 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3477
3478 obj->gtt_space = node;
3479 obj->gtt_offset = node->start;
3480
3481 fenceable =
3482 node->size == fence_size &&
3483 (node->start & (fence_alignment - 1)) == 0;
3484
3485 mappable =
3486 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3487
3488 obj->map_and_fenceable = mappable && fenceable;
3489
3490 i915_gem_object_unpin_pages(obj);
3491 trace_i915_gem_object_bind(obj, map_and_fenceable);
3492 i915_gem_verify_gtt(dev);
3493 return 0;
3494 }
3495
3496 void
3497 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3498 {
3499 /* If we don't have a page list set up, then we're not pinned
3500 * to GPU, and we can ignore the cache flush because it'll happen
3501 * again at bind time.
3502 */
3503 if (obj->pages == NULL)
3504 return;
3505
3506 /* If the GPU is snooping the contents of the CPU cache,
3507 * we do not need to manually clear the CPU cache lines. However,
3508 * the caches are only snooped when the render cache is
3509 * flushed/invalidated. As we always have to emit invalidations
3510 * and flushes when moving into and out of the RENDER domain, correct
3511 * snooping behaviour occurs naturally as the result of our domain
3512 * tracking.
3513 */
3514 if (obj->cache_level != I915_CACHE_NONE)
3515 return;
3516
3517 trace_i915_gem_object_clflush(obj);
3518
3519 #ifdef __NetBSD__
3520 drm_clflush_pglist(&obj->igo_pageq);
3521 #else
3522 drm_clflush_sg(obj->pages);
3523 #endif
3524 }
3525
3526 /** Flushes the GTT write domain for the object if it's dirty. */
3527 static void
3528 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3529 {
3530 uint32_t old_write_domain;
3531
3532 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3533 return;
3534
3535 /* No actual flushing is required for the GTT write domain. Writes
3536 * to it immediately go to main memory as far as we know, so there's
3537 * no chipset flush. It also doesn't land in render cache.
3538 *
3539 * However, we do have to enforce the order so that all writes through
3540 * the GTT land before any writes to the device, such as updates to
3541 * the GATT itself.
3542 */
3543 wmb();
3544
3545 old_write_domain = obj->base.write_domain;
3546 obj->base.write_domain = 0;
3547
3548 trace_i915_gem_object_change_domain(obj,
3549 obj->base.read_domains,
3550 old_write_domain);
3551 }
3552
3553 /** Flushes the CPU write domain for the object if it's dirty. */
3554 static void
3555 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3556 {
3557 uint32_t old_write_domain;
3558
3559 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3560 return;
3561
3562 i915_gem_clflush_object(obj);
3563 i915_gem_chipset_flush(obj->base.dev);
3564 old_write_domain = obj->base.write_domain;
3565 obj->base.write_domain = 0;
3566
3567 trace_i915_gem_object_change_domain(obj,
3568 obj->base.read_domains,
3569 old_write_domain);
3570 }
3571
3572 /**
3573 * Moves a single object to the GTT read, and possibly write domain.
3574 *
3575 * This function returns when the move is complete, including waiting on
3576 * flushes to occur.
3577 */
3578 int
3579 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3580 {
3581 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3582 uint32_t old_write_domain, old_read_domains;
3583 int ret;
3584
3585 /* Not valid to be called on unbound objects. */
3586 if (obj->gtt_space == NULL)
3587 return -EINVAL;
3588
3589 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3590 return 0;
3591
3592 ret = i915_gem_object_wait_rendering(obj, !write);
3593 if (ret)
3594 return ret;
3595
3596 i915_gem_object_flush_cpu_write_domain(obj);
3597
3598 old_write_domain = obj->base.write_domain;
3599 old_read_domains = obj->base.read_domains;
3600
3601 /* It should now be out of any other write domains, and we can update
3602 * the domain values for our changes.
3603 */
3604 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3605 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3606 if (write) {
3607 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3608 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3609 obj->dirty = 1;
3610 }
3611
3612 trace_i915_gem_object_change_domain(obj,
3613 old_read_domains,
3614 old_write_domain);
3615
3616 /* And bump the LRU for this access */
3617 if (i915_gem_object_is_inactive(obj))
3618 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3619
3620 return 0;
3621 }
3622
3623 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3624 enum i915_cache_level cache_level)
3625 {
3626 struct drm_device *dev = obj->base.dev;
3627 drm_i915_private_t *dev_priv = dev->dev_private;
3628 int ret;
3629
3630 if (obj->cache_level == cache_level)
3631 return 0;
3632
3633 if (obj->pin_count) {
3634 DRM_DEBUG("can not change the cache level of pinned objects\n");
3635 return -EBUSY;
3636 }
3637
3638 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3639 ret = i915_gem_object_unbind(obj);
3640 if (ret)
3641 return ret;
3642 }
3643
3644 if (obj->gtt_space) {
3645 ret = i915_gem_object_finish_gpu(obj);
3646 if (ret)
3647 return ret;
3648
3649 i915_gem_object_finish_gtt(obj);
3650
3651 /* Before SandyBridge, you could not use tiling or fence
3652 * registers with snooped memory, so relinquish any fences
3653 * currently pointing to our region in the aperture.
3654 */
3655 if (INTEL_INFO(dev)->gen < 6) {
3656 ret = i915_gem_object_put_fence(obj);
3657 if (ret)
3658 return ret;
3659 }
3660
3661 if (obj->has_global_gtt_mapping)
3662 i915_gem_gtt_bind_object(obj, cache_level);
3663 if (obj->has_aliasing_ppgtt_mapping)
3664 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3665 obj, cache_level);
3666
3667 obj->gtt_space->color = cache_level;
3668 }
3669
3670 if (cache_level == I915_CACHE_NONE) {
3671 u32 old_read_domains, old_write_domain;
3672
3673 /* If we're coming from LLC cached, then we haven't
3674 * actually been tracking whether the data is in the
3675 * CPU cache or not, since we only allow one bit set
3676 * in obj->write_domain and have been skipping the clflushes.
3677 * Just set it to the CPU cache for now.
3678 */
3679 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3680 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3681
3682 old_read_domains = obj->base.read_domains;
3683 old_write_domain = obj->base.write_domain;
3684
3685 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3686 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3687
3688 trace_i915_gem_object_change_domain(obj,
3689 old_read_domains,
3690 old_write_domain);
3691 }
3692
3693 obj->cache_level = cache_level;
3694 i915_gem_verify_gtt(dev);
3695 return 0;
3696 }
3697
3698 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3699 struct drm_file *file)
3700 {
3701 struct drm_i915_gem_caching *args = data;
3702 struct drm_i915_gem_object *obj;
3703 int ret;
3704
3705 ret = i915_mutex_lock_interruptible(dev);
3706 if (ret)
3707 return ret;
3708
3709 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3710 if (&obj->base == NULL) {
3711 ret = -ENOENT;
3712 goto unlock;
3713 }
3714
3715 args->caching = obj->cache_level != I915_CACHE_NONE;
3716
3717 drm_gem_object_unreference(&obj->base);
3718 unlock:
3719 mutex_unlock(&dev->struct_mutex);
3720 return ret;
3721 }
3722
3723 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3724 struct drm_file *file)
3725 {
3726 struct drm_i915_gem_caching *args = data;
3727 struct drm_i915_gem_object *obj;
3728 enum i915_cache_level level;
3729 int ret;
3730
3731 switch (args->caching) {
3732 case I915_CACHING_NONE:
3733 level = I915_CACHE_NONE;
3734 break;
3735 case I915_CACHING_CACHED:
3736 level = I915_CACHE_LLC;
3737 break;
3738 default:
3739 return -EINVAL;
3740 }
3741
3742 ret = i915_mutex_lock_interruptible(dev);
3743 if (ret)
3744 return ret;
3745
3746 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3747 if (&obj->base == NULL) {
3748 ret = -ENOENT;
3749 goto unlock;
3750 }
3751
3752 ret = i915_gem_object_set_cache_level(obj, level);
3753
3754 drm_gem_object_unreference(&obj->base);
3755 unlock:
3756 mutex_unlock(&dev->struct_mutex);
3757 return ret;
3758 }
3759
3760 /*
3761 * Prepare buffer for display plane (scanout, cursors, etc).
3762 * Can be called from an uninterruptible phase (modesetting) and allows
3763 * any flushes to be pipelined (for pageflips).
3764 */
3765 int
3766 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3767 u32 alignment,
3768 struct intel_ring_buffer *pipelined)
3769 {
3770 u32 old_read_domains, old_write_domain;
3771 int ret;
3772
3773 if (pipelined != obj->ring) {
3774 ret = i915_gem_object_sync(obj, pipelined);
3775 if (ret)
3776 return ret;
3777 }
3778
3779 /* The display engine is not coherent with the LLC cache on gen6. As
3780 * a result, we make sure that the pinning that is about to occur is
3781 * done with uncached PTEs. This is lowest common denominator for all
3782 * chipsets.
3783 *
3784 * However for gen6+, we could do better by using the GFDT bit instead
3785 * of uncaching, which would allow us to flush all the LLC-cached data
3786 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3787 */
3788 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3789 if (ret)
3790 return ret;
3791
3792 /* As the user may map the buffer once pinned in the display plane
3793 * (e.g. libkms for the bootup splash), we have to ensure that we
3794 * always use map_and_fenceable for all scanout buffers.
3795 */
3796 ret = i915_gem_object_pin(obj, alignment, true, false);
3797 if (ret)
3798 return ret;
3799
3800 i915_gem_object_flush_cpu_write_domain(obj);
3801
3802 old_write_domain = obj->base.write_domain;
3803 old_read_domains = obj->base.read_domains;
3804
3805 /* It should now be out of any other write domains, and we can update
3806 * the domain values for our changes.
3807 */
3808 obj->base.write_domain = 0;
3809 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3810
3811 trace_i915_gem_object_change_domain(obj,
3812 old_read_domains,
3813 old_write_domain);
3814
3815 return 0;
3816 }
3817
3818 int
3819 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3820 {
3821 int ret;
3822
3823 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3824 return 0;
3825
3826 ret = i915_gem_object_wait_rendering(obj, false);
3827 if (ret)
3828 return ret;
3829
3830 /* Ensure that we invalidate the GPU's caches and TLBs. */
3831 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3832 return 0;
3833 }
3834
3835 /**
3836 * Moves a single object to the CPU read, and possibly write domain.
3837 *
3838 * This function returns when the move is complete, including waiting on
3839 * flushes to occur.
3840 */
3841 int
3842 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3843 {
3844 uint32_t old_write_domain, old_read_domains;
3845 int ret;
3846
3847 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3848 return 0;
3849
3850 ret = i915_gem_object_wait_rendering(obj, !write);
3851 if (ret)
3852 return ret;
3853
3854 i915_gem_object_flush_gtt_write_domain(obj);
3855
3856 old_write_domain = obj->base.write_domain;
3857 old_read_domains = obj->base.read_domains;
3858
3859 /* Flush the CPU cache if it's still invalid. */
3860 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3861 i915_gem_clflush_object(obj);
3862
3863 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3864 }
3865
3866 /* It should now be out of any other write domains, and we can update
3867 * the domain values for our changes.
3868 */
3869 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3870
3871 /* If we're writing through the CPU, then the GPU read domains will
3872 * need to be invalidated at next use.
3873 */
3874 if (write) {
3875 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3876 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3877 }
3878
3879 trace_i915_gem_object_change_domain(obj,
3880 old_read_domains,
3881 old_write_domain);
3882
3883 return 0;
3884 }
3885
3886 /* Throttle our rendering by waiting until the ring has completed our requests
3887 * emitted over 20 msec ago.
3888 *
3889 * Note that if we were to use the current jiffies each time around the loop,
3890 * we wouldn't escape the function with any frames outstanding if the time to
3891 * render a frame was over 20ms.
3892 *
3893 * This should get us reasonable parallelism between CPU and GPU but also
3894 * relatively low latency when blocking on a particular request to finish.
3895 */
3896 static int
3897 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3898 {
3899 struct drm_i915_private *dev_priv = dev->dev_private;
3900 struct drm_i915_file_private *file_priv = file->driver_priv;
3901 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3902 struct drm_i915_gem_request *request;
3903 struct intel_ring_buffer *ring = NULL;
3904 u32 seqno = 0;
3905 int ret;
3906
3907 if (atomic_read(&dev_priv->mm.wedged))
3908 return -EIO;
3909
3910 spin_lock(&file_priv->mm.lock);
3911 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3912 if (time_after_eq(request->emitted_jiffies, recent_enough))
3913 break;
3914
3915 ring = request->ring;
3916 seqno = request->seqno;
3917 }
3918 spin_unlock(&file_priv->mm.lock);
3919
3920 if (seqno == 0)
3921 return 0;
3922
3923 ret = __wait_seqno(ring, seqno, true, NULL);
3924 if (ret == 0)
3925 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3926
3927 return ret;
3928 }
3929
3930 int
3931 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3932 uint32_t alignment,
3933 bool map_and_fenceable,
3934 bool nonblocking)
3935 {
3936 int ret;
3937
3938 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3939 return -EBUSY;
3940
3941 if (obj->gtt_space != NULL) {
3942 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3943 (map_and_fenceable && !obj->map_and_fenceable)) {
3944 WARN(obj->pin_count,
3945 "bo is already pinned with incorrect alignment:"
3946 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3947 " obj->map_and_fenceable=%d\n",
3948 obj->gtt_offset, alignment,
3949 map_and_fenceable,
3950 obj->map_and_fenceable);
3951 ret = i915_gem_object_unbind(obj);
3952 if (ret)
3953 return ret;
3954 }
3955 }
3956
3957 if (obj->gtt_space == NULL) {
3958 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3959
3960 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3961 map_and_fenceable,
3962 nonblocking);
3963 if (ret)
3964 return ret;
3965
3966 if (!dev_priv->mm.aliasing_ppgtt)
3967 i915_gem_gtt_bind_object(obj, obj->cache_level);
3968 }
3969
3970 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3971 i915_gem_gtt_bind_object(obj, obj->cache_level);
3972
3973 obj->pin_count++;
3974 obj->pin_mappable |= map_and_fenceable;
3975
3976 return 0;
3977 }
3978
3979 void
3980 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3981 {
3982 BUG_ON(obj->pin_count == 0);
3983 BUG_ON(obj->gtt_space == NULL);
3984
3985 if (--obj->pin_count == 0)
3986 obj->pin_mappable = false;
3987 }
3988
3989 int
3990 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3991 struct drm_file *file)
3992 {
3993 struct drm_i915_gem_pin *args = data;
3994 struct drm_i915_gem_object *obj;
3995 int ret;
3996
3997 ret = i915_mutex_lock_interruptible(dev);
3998 if (ret)
3999 return ret;
4000
4001 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4002 if (&obj->base == NULL) {
4003 ret = -ENOENT;
4004 goto unlock;
4005 }
4006
4007 if (obj->madv != I915_MADV_WILLNEED) {
4008 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4009 ret = -EINVAL;
4010 goto out;
4011 }
4012
4013 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4014 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4015 args->handle);
4016 ret = -EINVAL;
4017 goto out;
4018 }
4019
4020 if (obj->user_pin_count == 0) {
4021 ret = i915_gem_object_pin(obj, args->alignment, true, false);
4022 if (ret)
4023 goto out;
4024 }
4025
4026 obj->user_pin_count++;
4027 obj->pin_filp = file;
4028
4029 /* XXX - flush the CPU caches for pinned objects
4030 * as the X server doesn't manage domains yet
4031 */
4032 i915_gem_object_flush_cpu_write_domain(obj);
4033 args->offset = obj->gtt_offset;
4034 out:
4035 drm_gem_object_unreference(&obj->base);
4036 unlock:
4037 mutex_unlock(&dev->struct_mutex);
4038 return ret;
4039 }
4040
4041 int
4042 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4043 struct drm_file *file)
4044 {
4045 struct drm_i915_gem_pin *args = data;
4046 struct drm_i915_gem_object *obj;
4047 int ret;
4048
4049 ret = i915_mutex_lock_interruptible(dev);
4050 if (ret)
4051 return ret;
4052
4053 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4054 if (&obj->base == NULL) {
4055 ret = -ENOENT;
4056 goto unlock;
4057 }
4058
4059 if (obj->pin_filp != file) {
4060 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4061 args->handle);
4062 ret = -EINVAL;
4063 goto out;
4064 }
4065 obj->user_pin_count--;
4066 if (obj->user_pin_count == 0) {
4067 obj->pin_filp = NULL;
4068 i915_gem_object_unpin(obj);
4069 }
4070
4071 out:
4072 drm_gem_object_unreference(&obj->base);
4073 unlock:
4074 mutex_unlock(&dev->struct_mutex);
4075 return ret;
4076 }
4077
4078 int
4079 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4080 struct drm_file *file)
4081 {
4082 struct drm_i915_gem_busy *args = data;
4083 struct drm_i915_gem_object *obj;
4084 int ret;
4085
4086 ret = i915_mutex_lock_interruptible(dev);
4087 if (ret)
4088 return ret;
4089
4090 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4091 if (&obj->base == NULL) {
4092 ret = -ENOENT;
4093 goto unlock;
4094 }
4095
4096 /* Count all active objects as busy, even if they are currently not used
4097 * by the gpu. Users of this interface expect objects to eventually
4098 * become non-busy without any further actions, therefore emit any
4099 * necessary flushes here.
4100 */
4101 ret = i915_gem_object_flush_active(obj);
4102
4103 args->busy = obj->active;
4104 if (obj->ring) {
4105 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4106 args->busy |= intel_ring_flag(obj->ring) << 16;
4107 }
4108
4109 drm_gem_object_unreference(&obj->base);
4110 unlock:
4111 mutex_unlock(&dev->struct_mutex);
4112 return ret;
4113 }
4114
4115 int
4116 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4117 struct drm_file *file_priv)
4118 {
4119 return i915_gem_ring_throttle(dev, file_priv);
4120 }
4121
4122 int
4123 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4124 struct drm_file *file_priv)
4125 {
4126 struct drm_i915_gem_madvise *args = data;
4127 struct drm_i915_gem_object *obj;
4128 int ret;
4129
4130 switch (args->madv) {
4131 case I915_MADV_DONTNEED:
4132 case I915_MADV_WILLNEED:
4133 break;
4134 default:
4135 return -EINVAL;
4136 }
4137
4138 ret = i915_mutex_lock_interruptible(dev);
4139 if (ret)
4140 return ret;
4141
4142 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4143 if (&obj->base == NULL) {
4144 ret = -ENOENT;
4145 goto unlock;
4146 }
4147
4148 if (obj->pin_count) {
4149 ret = -EINVAL;
4150 goto out;
4151 }
4152
4153 if (obj->madv != __I915_MADV_PURGED)
4154 obj->madv = args->madv;
4155
4156 /* if the object is no longer attached, discard its backing storage */
4157 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4158 i915_gem_object_truncate(obj);
4159
4160 args->retained = obj->madv != __I915_MADV_PURGED;
4161
4162 out:
4163 drm_gem_object_unreference(&obj->base);
4164 unlock:
4165 mutex_unlock(&dev->struct_mutex);
4166 return ret;
4167 }
4168
4169 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4170 const struct drm_i915_gem_object_ops *ops)
4171 {
4172 INIT_LIST_HEAD(&obj->mm_list);
4173 INIT_LIST_HEAD(&obj->gtt_list);
4174 INIT_LIST_HEAD(&obj->ring_list);
4175 INIT_LIST_HEAD(&obj->exec_list);
4176
4177 obj->ops = ops;
4178
4179 obj->fence_reg = I915_FENCE_REG_NONE;
4180 obj->madv = I915_MADV_WILLNEED;
4181 /* Avoid an unnecessary call to unbind on the first bind. */
4182 obj->map_and_fenceable = true;
4183
4184 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4185 }
4186
4187 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4188 .get_pages = i915_gem_object_get_pages_gtt,
4189 .put_pages = i915_gem_object_put_pages_gtt,
4190 };
4191
4192 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4193 size_t size)
4194 {
4195 struct drm_i915_gem_object *obj;
4196 #ifndef __NetBSD__ /* XXX >32bit dma? */
4197 struct address_space *mapping;
4198 u32 mask;
4199 #endif
4200
4201 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4202 if (obj == NULL)
4203 return NULL;
4204
4205 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4206 kfree(obj);
4207 return NULL;
4208 }
4209
4210 #ifndef __NetBSD__ /* XXX >32bit dma? */
4211 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4212 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4213 /* 965gm cannot relocate objects above 4GiB. */
4214 mask &= ~__GFP_HIGHMEM;
4215 mask |= __GFP_DMA32;
4216 }
4217
4218 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4219 mapping_set_gfp_mask(mapping, mask);
4220 #endif
4221
4222 i915_gem_object_init(obj, &i915_gem_object_ops);
4223
4224 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4225 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4226
4227 if (HAS_LLC(dev)) {
4228 /* On some devices, we can have the GPU use the LLC (the CPU
4229 * cache) for about a 10% performance improvement
4230 * compared to uncached. Graphics requests other than
4231 * display scanout are coherent with the CPU in
4232 * accessing this cache. This means in this mode we
4233 * don't need to clflush on the CPU side, and on the
4234 * GPU side we only need to flush internal caches to
4235 * get data visible to the CPU.
4236 *
4237 * However, we maintain the display planes as UC, and so
4238 * need to rebind when first used as such.
4239 */
4240 obj->cache_level = I915_CACHE_LLC;
4241 } else
4242 obj->cache_level = I915_CACHE_NONE;
4243
4244 return obj;
4245 }
4246
4247 int i915_gem_init_object(struct drm_gem_object *obj)
4248 {
4249 BUG();
4250
4251 return 0;
4252 }
4253
4254 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4255 {
4256 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4257 struct drm_device *dev = obj->base.dev;
4258 drm_i915_private_t *dev_priv = dev->dev_private;
4259
4260 trace_i915_gem_object_destroy(obj);
4261
4262 if (obj->phys_obj)
4263 i915_gem_detach_phys_object(dev, obj);
4264
4265 obj->pin_count = 0;
4266 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
4267 bool was_interruptible;
4268
4269 was_interruptible = dev_priv->mm.interruptible;
4270 dev_priv->mm.interruptible = false;
4271
4272 WARN_ON(i915_gem_object_unbind(obj));
4273
4274 dev_priv->mm.interruptible = was_interruptible;
4275 }
4276
4277 obj->pages_pin_count = 0;
4278 i915_gem_object_put_pages(obj);
4279 i915_gem_object_free_mmap_offset(obj);
4280
4281 BUG_ON(obj->pages);
4282
4283 #ifndef __NetBSD__ /* XXX drm prime */
4284 if (obj->base.import_attach)
4285 drm_prime_gem_destroy(&obj->base, NULL);
4286 #endif
4287
4288 drm_gem_object_release(&obj->base);
4289 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4290
4291 kfree(obj->bit_17);
4292 kfree(obj);
4293 }
4294
4295 int
4296 i915_gem_idle(struct drm_device *dev)
4297 {
4298 drm_i915_private_t *dev_priv = dev->dev_private;
4299 int ret;
4300
4301 mutex_lock(&dev->struct_mutex);
4302
4303 if (dev_priv->mm.suspended) {
4304 mutex_unlock(&dev->struct_mutex);
4305 return 0;
4306 }
4307
4308 ret = i915_gpu_idle(dev);
4309 if (ret) {
4310 mutex_unlock(&dev->struct_mutex);
4311 return ret;
4312 }
4313 i915_gem_retire_requests(dev);
4314
4315 /* Under UMS, be paranoid and evict. */
4316 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4317 i915_gem_evict_everything(dev);
4318
4319 i915_gem_reset_fences(dev);
4320
4321 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4322 * We need to replace this with a semaphore, or something.
4323 * And not confound mm.suspended!
4324 */
4325 dev_priv->mm.suspended = 1;
4326 del_timer_sync(&dev_priv->hangcheck_timer);
4327
4328 i915_kernel_lost_context(dev);
4329 i915_gem_cleanup_ringbuffer(dev);
4330
4331 mutex_unlock(&dev->struct_mutex);
4332
4333 /* Cancel the retire work handler, which should be idle now. */
4334 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4335
4336 return 0;
4337 }
4338
4339 void i915_gem_l3_remap(struct drm_device *dev)
4340 {
4341 drm_i915_private_t *dev_priv = dev->dev_private;
4342 u32 misccpctl;
4343 int i;
4344
4345 if (!IS_IVYBRIDGE(dev))
4346 return;
4347
4348 if (!dev_priv->l3_parity.remap_info)
4349 return;
4350
4351 misccpctl = I915_READ(GEN7_MISCCPCTL);
4352 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4353 POSTING_READ(GEN7_MISCCPCTL);
4354
4355 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4356 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4357 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4358 DRM_DEBUG("0x%x was already programmed to %x\n",
4359 GEN7_L3LOG_BASE + i, remap);
4360 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4361 DRM_DEBUG_DRIVER("Clearing remapped register\n");
4362 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4363 }
4364
4365 /* Make sure all the writes land before disabling dop clock gating */
4366 POSTING_READ(GEN7_L3LOG_BASE);
4367
4368 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4369 }
4370
4371 void i915_gem_init_swizzling(struct drm_device *dev)
4372 {
4373 drm_i915_private_t *dev_priv = dev->dev_private;
4374
4375 if (INTEL_INFO(dev)->gen < 5 ||
4376 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4377 return;
4378
4379 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4380 DISP_TILE_SURFACE_SWIZZLING);
4381
4382 if (IS_GEN5(dev))
4383 return;
4384
4385 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4386 if (IS_GEN6(dev))
4387 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4388 else
4389 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4390 }
4391
4392 static bool
4393 intel_enable_blt(struct drm_device *dev)
4394 {
4395 if (!HAS_BLT(dev))
4396 return false;
4397
4398 /* The blitter was dysfunctional on early prototypes */
4399 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4400 DRM_INFO("BLT not supported on this pre-production hardware;"
4401 " graphics performance will be degraded.\n");
4402 return false;
4403 }
4404
4405 return true;
4406 }
4407
4408 int
4409 i915_gem_init_hw(struct drm_device *dev)
4410 {
4411 drm_i915_private_t *dev_priv = dev->dev_private;
4412 int ret;
4413
4414 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4415 return -EIO;
4416
4417 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4418 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4419
4420 i915_gem_l3_remap(dev);
4421
4422 i915_gem_init_swizzling(dev);
4423
4424 ret = intel_init_render_ring_buffer(dev);
4425 if (ret)
4426 return ret;
4427
4428 if (HAS_BSD(dev)) {
4429 ret = intel_init_bsd_ring_buffer(dev);
4430 if (ret)
4431 goto cleanup_render_ring;
4432 }
4433
4434 if (intel_enable_blt(dev)) {
4435 ret = intel_init_blt_ring_buffer(dev);
4436 if (ret)
4437 goto cleanup_bsd_ring;
4438 }
4439
4440 dev_priv->next_seqno = 1;
4441
4442 /*
4443 * XXX: There was some w/a described somewhere suggesting loading
4444 * contexts before PPGTT.
4445 */
4446 i915_gem_context_init(dev);
4447 i915_gem_init_ppgtt(dev);
4448
4449 return 0;
4450
4451 cleanup_bsd_ring:
4452 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4453 cleanup_render_ring:
4454 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4455 return ret;
4456 }
4457
4458 static bool
4459 intel_enable_ppgtt(struct drm_device *dev)
4460 {
4461 #ifdef __NetBSD__ /* XXX ppgtt */
4462 return false;
4463 #else
4464 if (i915_enable_ppgtt >= 0)
4465 return i915_enable_ppgtt;
4466
4467 #ifdef CONFIG_INTEL_IOMMU
4468 /* Disable ppgtt on SNB if VT-d is on. */
4469 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4470 return false;
4471 #endif
4472
4473 return true;
4474 #endif
4475 }
4476
4477 int i915_gem_init(struct drm_device *dev)
4478 {
4479 struct drm_i915_private *dev_priv = dev->dev_private;
4480 unsigned long gtt_size, mappable_size;
4481 int ret;
4482
4483 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4484 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4485
4486 mutex_lock(&dev->struct_mutex);
4487 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4488 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4489 * aperture accordingly when using aliasing ppgtt. */
4490 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4491
4492 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4493
4494 ret = i915_gem_init_aliasing_ppgtt(dev);
4495 if (ret) {
4496 i915_gem_fini_global_gtt(dev);
4497 mutex_unlock(&dev->struct_mutex);
4498 return ret;
4499 }
4500 } else {
4501 /* Let GEM Manage all of the aperture.
4502 *
4503 * However, leave one page at the end still bound to the scratch
4504 * page. There are a number of places where the hardware
4505 * apparently prefetches past the end of the object, and we've
4506 * seen multiple hangs with the GPU head pointer stuck in a
4507 * batchbuffer bound at the last page of the aperture. One page
4508 * should be enough to keep any prefetching inside of the
4509 * aperture.
4510 */
4511 i915_gem_init_global_gtt(dev, 0, mappable_size,
4512 gtt_size);
4513 }
4514
4515 ret = i915_gem_init_hw(dev);
4516 #ifdef __NetBSD__ /* XXX fini global gtt */
4517 if (ret)
4518 i915_gem_fini_global_gtt(dev);
4519 #endif
4520 mutex_unlock(&dev->struct_mutex);
4521 if (ret) {
4522 i915_gem_cleanup_aliasing_ppgtt(dev);
4523 return ret;
4524 }
4525
4526 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4527 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4528 dev_priv->dri1.allow_batchbuffer = 1;
4529 return 0;
4530 }
4531
4532 void
4533 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4534 {
4535 drm_i915_private_t *dev_priv = dev->dev_private;
4536 struct intel_ring_buffer *ring;
4537 int i;
4538
4539 for_each_ring(ring, dev_priv, i)
4540 intel_cleanup_ring_buffer(ring);
4541 }
4542
4543 int
4544 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4545 struct drm_file *file_priv)
4546 {
4547 drm_i915_private_t *dev_priv = dev->dev_private;
4548 int ret;
4549
4550 if (drm_core_check_feature(dev, DRIVER_MODESET))
4551 return 0;
4552
4553 if (atomic_read(&dev_priv->mm.wedged)) {
4554 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4555 atomic_set(&dev_priv->mm.wedged, 0);
4556 }
4557
4558 mutex_lock(&dev->struct_mutex);
4559 dev_priv->mm.suspended = 0;
4560
4561 ret = i915_gem_init_hw(dev);
4562 if (ret != 0) {
4563 mutex_unlock(&dev->struct_mutex);
4564 return ret;
4565 }
4566
4567 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4568 mutex_unlock(&dev->struct_mutex);
4569
4570 ret = drm_irq_install(dev);
4571 if (ret)
4572 goto cleanup_ringbuffer;
4573
4574 return 0;
4575
4576 cleanup_ringbuffer:
4577 mutex_lock(&dev->struct_mutex);
4578 i915_gem_cleanup_ringbuffer(dev);
4579 dev_priv->mm.suspended = 1;
4580 mutex_unlock(&dev->struct_mutex);
4581
4582 return ret;
4583 }
4584
4585 int
4586 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4587 struct drm_file *file_priv)
4588 {
4589 if (drm_core_check_feature(dev, DRIVER_MODESET))
4590 return 0;
4591
4592 drm_irq_uninstall(dev);
4593 return i915_gem_idle(dev);
4594 }
4595
4596 void
4597 i915_gem_lastclose(struct drm_device *dev)
4598 {
4599 int ret;
4600
4601 if (drm_core_check_feature(dev, DRIVER_MODESET))
4602 return;
4603
4604 ret = i915_gem_idle(dev);
4605 if (ret)
4606 DRM_ERROR("failed to idle hardware: %d\n", ret);
4607 }
4608
4609 static void
4610 init_ring_lists(struct intel_ring_buffer *ring)
4611 {
4612 INIT_LIST_HEAD(&ring->active_list);
4613 INIT_LIST_HEAD(&ring->request_list);
4614 }
4615
4616 void
4617 i915_gem_load(struct drm_device *dev)
4618 {
4619 int i;
4620 drm_i915_private_t *dev_priv = dev->dev_private;
4621
4622 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4623 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4624 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4625 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4626 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4627 for (i = 0; i < I915_NUM_RINGS; i++)
4628 init_ring_lists(&dev_priv->ring[i]);
4629 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4630 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4631 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4632 i915_gem_retire_work_handler);
4633 init_completion(&dev_priv->error_completion);
4634
4635 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4636 if (IS_GEN3(dev)) {
4637 I915_WRITE(MI_ARB_STATE,
4638 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4639 }
4640
4641 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4642
4643 /* Old X drivers will take 0-2 for front, back, depth buffers */
4644 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4645 dev_priv->fence_reg_start = 3;
4646
4647 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4648 dev_priv->num_fence_regs = 16;
4649 else
4650 dev_priv->num_fence_regs = 8;
4651
4652 /* Initialize fence registers to zero */
4653 i915_gem_reset_fences(dev);
4654
4655 i915_gem_detect_bit_6_swizzle(dev);
4656 #ifdef __NetBSD__
4657 DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
4658 spin_lock_init(&dev_priv->pending_flip_lock);
4659 #else
4660 init_waitqueue_head(&dev_priv->pending_flip_queue);
4661 #endif
4662
4663 dev_priv->mm.interruptible = true;
4664
4665 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4666 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4667 register_shrinker(&dev_priv->mm.inactive_shrinker);
4668 }
4669
4670 /*
4671 * Create a physically contiguous memory object for this object
4672 * e.g. for cursor + overlay regs
4673 */
4674 static int i915_gem_init_phys_object(struct drm_device *dev,
4675 int id, int size, int align)
4676 {
4677 drm_i915_private_t *dev_priv = dev->dev_private;
4678 struct drm_i915_gem_phys_object *phys_obj;
4679 int ret;
4680
4681 if (dev_priv->mm.phys_objs[id - 1] || !size)
4682 return 0;
4683
4684 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4685 if (!phys_obj)
4686 return -ENOMEM;
4687
4688 phys_obj->id = id;
4689
4690 phys_obj->handle = drm_pci_alloc(dev, size, align);
4691 if (!phys_obj->handle) {
4692 ret = -ENOMEM;
4693 goto kfree_obj;
4694 }
4695 #ifndef __NetBSD__ /* XXX x86 wc? */
4696 #ifdef CONFIG_X86
4697 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4698 #endif
4699 #endif
4700
4701 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4702
4703 return 0;
4704 kfree_obj:
4705 kfree(phys_obj);
4706 return ret;
4707 }
4708
4709 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4710 {
4711 drm_i915_private_t *dev_priv = dev->dev_private;
4712 struct drm_i915_gem_phys_object *phys_obj;
4713
4714 if (!dev_priv->mm.phys_objs[id - 1])
4715 return;
4716
4717 phys_obj = dev_priv->mm.phys_objs[id - 1];
4718 if (phys_obj->cur_obj) {
4719 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4720 }
4721
4722 #ifndef __NetBSD__ /* XXX x86 wb? */
4723 #ifdef CONFIG_X86
4724 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4725 #endif
4726 #endif
4727 drm_pci_free(dev, phys_obj->handle);
4728 kfree(phys_obj);
4729 dev_priv->mm.phys_objs[id - 1] = NULL;
4730 }
4731
4732 void i915_gem_free_all_phys_object(struct drm_device *dev)
4733 {
4734 int i;
4735
4736 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4737 i915_gem_free_phys_object(dev, i);
4738 }
4739
4740 void i915_gem_detach_phys_object(struct drm_device *dev,
4741 struct drm_i915_gem_object *obj)
4742 {
4743 #ifndef __NetBSD__
4744 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4745 #endif
4746 char *vaddr;
4747 int i;
4748 int page_count;
4749
4750 if (!obj->phys_obj)
4751 return;
4752 vaddr = obj->phys_obj->handle->vaddr;
4753
4754 page_count = obj->base.size / PAGE_SIZE;
4755 for (i = 0; i < page_count; i++) {
4756 #ifdef __NetBSD__
4757 /* XXX Just use ubc_uiomove? */
4758 struct pglist pages;
4759 int error;
4760
4761 TAILQ_INIT(&pages);
4762 error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4763 (i+1)*PAGE_SIZE, &pages);
4764 if (error) {
4765 printf("unable to map page %d of i915 gem obj: %d\n",
4766 i, error);
4767 continue;
4768 }
4769
4770 KASSERT(!TAILQ_EMPTY(&pages));
4771 struct vm_page *const page = TAILQ_FIRST(&pages);
4772 TAILQ_REMOVE(&pages, page, pageq.queue);
4773 KASSERT(TAILQ_EMPTY(&pages));
4774
4775 char *const dst = kmap_atomic(container_of(page, struct page,
4776 p_vmp));
4777 (void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
4778 kunmap_atomic(dst);
4779
4780 drm_clflush_page(container_of(page, struct page, p_vmp));
4781 page->flags &= ~PG_CLEAN;
4782 /* XXX mark page accessed */
4783 uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4784 (i+1)*PAGE_SIZE);
4785 #else
4786 struct page *page = shmem_read_mapping_page(mapping, i);
4787 if (!IS_ERR(page)) {
4788 char *dst = kmap_atomic(page);
4789 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4790 kunmap_atomic(dst);
4791
4792 drm_clflush_pages(&page, 1);
4793
4794 set_page_dirty(page);
4795 mark_page_accessed(page);
4796 page_cache_release(page);
4797 }
4798 #endif
4799 }
4800 i915_gem_chipset_flush(dev);
4801
4802 obj->phys_obj->cur_obj = NULL;
4803 obj->phys_obj = NULL;
4804 }
4805
4806 int
4807 i915_gem_attach_phys_object(struct drm_device *dev,
4808 struct drm_i915_gem_object *obj,
4809 int id,
4810 int align)
4811 {
4812 #ifndef __NetBSD__
4813 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4814 #endif
4815 drm_i915_private_t *dev_priv = dev->dev_private;
4816 int ret = 0;
4817 int page_count;
4818 int i;
4819
4820 if (id > I915_MAX_PHYS_OBJECT)
4821 return -EINVAL;
4822
4823 if (obj->phys_obj) {
4824 if (obj->phys_obj->id == id)
4825 return 0;
4826 i915_gem_detach_phys_object(dev, obj);
4827 }
4828
4829 /* create a new object */
4830 if (!dev_priv->mm.phys_objs[id - 1]) {
4831 ret = i915_gem_init_phys_object(dev, id,
4832 obj->base.size, align);
4833 if (ret) {
4834 DRM_ERROR("failed to init phys object %d size: %zu\n",
4835 id, obj->base.size);
4836 return ret;
4837 }
4838 }
4839
4840 /* bind to the object */
4841 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4842 obj->phys_obj->cur_obj = obj;
4843
4844 page_count = obj->base.size / PAGE_SIZE;
4845
4846 for (i = 0; i < page_count; i++) {
4847 #ifdef __NetBSD__
4848 char *const vaddr = obj->phys_obj->handle->vaddr;
4849 struct pglist pages;
4850 int error;
4851
4852 TAILQ_INIT(&pages);
4853 error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4854 (i+1)*PAGE_SIZE, &pages);
4855 if (error)
4856 /* XXX errno NetBSD->Linux */
4857 return -error;
4858
4859 KASSERT(!TAILQ_EMPTY(&pages));
4860 struct vm_page *const page = TAILQ_FIRST(&pages);
4861 TAILQ_REMOVE(&pages, page, pageq.queue);
4862 KASSERT(TAILQ_EMPTY(&pages));
4863
4864 char *const src = kmap_atomic(container_of(page, struct page,
4865 p_vmp));
4866 (void)memcpy(vaddr + (i*PAGE_SIZE), src, PAGE_SIZE);
4867 kunmap_atomic(src);
4868
4869 /* XXX mark page accessed */
4870 uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4871 (i+1)*PAGE_SIZE);
4872 #else
4873 struct page *page;
4874 char *dst, *src;
4875
4876 page = shmem_read_mapping_page(mapping, i);
4877 if (IS_ERR(page))
4878 return PTR_ERR(page);
4879
4880 src = kmap_atomic(page);
4881 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4882 memcpy(dst, src, PAGE_SIZE);
4883 kunmap_atomic(src);
4884
4885 mark_page_accessed(page);
4886 page_cache_release(page);
4887 #endif
4888 }
4889
4890 return 0;
4891 }
4892
4893 static int
4894 i915_gem_phys_pwrite(struct drm_device *dev,
4895 struct drm_i915_gem_object *obj,
4896 struct drm_i915_gem_pwrite *args,
4897 struct drm_file *file_priv)
4898 {
4899 void *vaddr = (char *)obj->phys_obj->handle->vaddr + args->offset;
4900 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4901
4902 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4903 unsigned long unwritten;
4904
4905 /* The physical object once assigned is fixed for the lifetime
4906 * of the obj, so we can safely drop the lock and continue
4907 * to access vaddr.
4908 */
4909 mutex_unlock(&dev->struct_mutex);
4910 unwritten = copy_from_user(vaddr, user_data, args->size);
4911 mutex_lock(&dev->struct_mutex);
4912 if (unwritten)
4913 return -EFAULT;
4914 }
4915
4916 i915_gem_chipset_flush(dev);
4917 return 0;
4918 }
4919
4920 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4921 {
4922 struct drm_i915_file_private *file_priv = file->driver_priv;
4923
4924 /* Clean up our request list when the client is going away, so that
4925 * later retire_requests won't dereference our soon-to-be-gone
4926 * file_priv.
4927 */
4928 spin_lock(&file_priv->mm.lock);
4929 while (!list_empty(&file_priv->mm.request_list)) {
4930 struct drm_i915_gem_request *request;
4931
4932 request = list_first_entry(&file_priv->mm.request_list,
4933 struct drm_i915_gem_request,
4934 client_list);
4935 list_del(&request->client_list);
4936 request->file_priv = NULL;
4937 }
4938 spin_unlock(&file_priv->mm.lock);
4939 }
4940
4941 #ifndef __NetBSD__ /* XXX */
4942 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4943 {
4944 if (!mutex_is_locked(mutex))
4945 return false;
4946
4947 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4948 return mutex->owner == task;
4949 #else
4950 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4951 return false;
4952 #endif
4953 }
4954 #endif
4955
4956 static int
4957 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4958 {
4959 #ifdef __NetBSD__ /* XXX shrinkers */
4960 return 0;
4961 #else
4962 struct drm_i915_private *dev_priv =
4963 container_of(shrinker,
4964 struct drm_i915_private,
4965 mm.inactive_shrinker);
4966 struct drm_device *dev = dev_priv->dev;
4967 struct drm_i915_gem_object *obj;
4968 int nr_to_scan = sc->nr_to_scan;
4969 bool unlock = true;
4970 int cnt;
4971
4972 if (!mutex_trylock(&dev->struct_mutex)) {
4973 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4974 return 0;
4975
4976 if (dev_priv->mm.shrinker_no_lock_stealing)
4977 return 0;
4978
4979 unlock = false;
4980 }
4981
4982 if (nr_to_scan) {
4983 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4984 if (nr_to_scan > 0)
4985 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4986 false);
4987 if (nr_to_scan > 0)
4988 i915_gem_shrink_all(dev_priv);
4989 }
4990
4991 cnt = 0;
4992 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4993 if (obj->pages_pin_count == 0)
4994 cnt += obj->base.size >> PAGE_SHIFT;
4995 list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4996 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4997 cnt += obj->base.size >> PAGE_SHIFT;
4998
4999 if (unlock)
5000 mutex_unlock(&dev->struct_mutex);
5001 return cnt;
5002 #endif
5003 }
5004