Home | History | Annotate | Line # | Download | only in i915
i915_gem_gtt.c revision 1.1.1.3
      1 /*	$NetBSD: i915_gem_gtt.c,v 1.1.1.3 2018/08/27 01:34:54 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright  2010 Daniel Vetter
      5  * Copyright  2011-2014 Intel Corporation
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a
      8  * copy of this software and associated documentation files (the "Software"),
      9  * to deal in the Software without restriction, including without limitation
     10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     11  * and/or sell copies of the Software, and to permit persons to whom the
     12  * Software is furnished to do so, subject to the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the next
     15  * paragraph) shall be included in all copies or substantial portions of the
     16  * Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     23  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     24  * IN THE SOFTWARE.
     25  *
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __KERNEL_RCSID(0, "$NetBSD: i915_gem_gtt.c,v 1.1.1.3 2018/08/27 01:34:54 riastradh Exp $");
     30 
     31 #include <linux/seq_file.h>
     32 #include <drm/drmP.h>
     33 #include <drm/i915_drm.h>
     34 #include "i915_drv.h"
     35 #include "i915_vgpu.h"
     36 #include "i915_trace.h"
     37 #include "intel_drv.h"
     38 
     39 /**
     40  * DOC: Global GTT views
     41  *
     42  * Background and previous state
     43  *
     44  * Historically objects could exists (be bound) in global GTT space only as
     45  * singular instances with a view representing all of the object's backing pages
     46  * in a linear fashion. This view will be called a normal view.
     47  *
     48  * To support multiple views of the same object, where the number of mapped
     49  * pages is not equal to the backing store, or where the layout of the pages
     50  * is not linear, concept of a GGTT view was added.
     51  *
     52  * One example of an alternative view is a stereo display driven by a single
     53  * image. In this case we would have a framebuffer looking like this
     54  * (2x2 pages):
     55  *
     56  *    12
     57  *    34
     58  *
     59  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
     60  * rendering. In contrast, fed to the display engine would be an alternative
     61  * view which could look something like this:
     62  *
     63  *   1212
     64  *   3434
     65  *
     66  * In this example both the size and layout of pages in the alternative view is
     67  * different from the normal view.
     68  *
     69  * Implementation and usage
     70  *
     71  * GGTT views are implemented using VMAs and are distinguished via enum
     72  * i915_ggtt_view_type and struct i915_ggtt_view.
     73  *
     74  * A new flavour of core GEM functions which work with GGTT bound objects were
     75  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
     76  * renaming  in large amounts of code. They take the struct i915_ggtt_view
     77  * parameter encapsulating all metadata required to implement a view.
     78  *
     79  * As a helper for callers which are only interested in the normal view,
     80  * globally const i915_ggtt_view_normal singleton instance exists. All old core
     81  * GEM API functions, the ones not taking the view parameter, are operating on,
     82  * or with the normal GGTT view.
     83  *
     84  * Code wanting to add or use a new GGTT view needs to:
     85  *
     86  * 1. Add a new enum with a suitable name.
     87  * 2. Extend the metadata in the i915_ggtt_view structure if required.
     88  * 3. Add support to i915_get_vma_pages().
     89  *
     90  * New views are required to build a scatter-gather table from within the
     91  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
     92  * exists for the lifetime of an VMA.
     93  *
     94  * Core API is designed to have copy semantics which means that passed in
     95  * struct i915_ggtt_view does not need to be persistent (left around after
     96  * calling the core API functions).
     97  *
     98  */
     99 
    100 static int
    101 i915_get_ggtt_vma_pages(struct i915_vma *vma);
    102 
    103 const struct i915_ggtt_view i915_ggtt_view_normal;
    104 const struct i915_ggtt_view i915_ggtt_view_rotated = {
    105         .type = I915_GGTT_VIEW_ROTATED
    106 };
    107 
    108 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
    109 {
    110 	bool has_aliasing_ppgtt;
    111 	bool has_full_ppgtt;
    112 
    113 	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
    114 	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
    115 
    116 	if (intel_vgpu_active(dev))
    117 		has_full_ppgtt = false; /* emulation is too hard */
    118 
    119 	/*
    120 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
    121 	 * execlists, the sole mechanism available to submit work.
    122 	 */
    123 	if (INTEL_INFO(dev)->gen < 9 &&
    124 	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
    125 		return 0;
    126 
    127 	if (enable_ppgtt == 1)
    128 		return 1;
    129 
    130 	if (enable_ppgtt == 2 && has_full_ppgtt)
    131 		return 2;
    132 
    133 #ifdef CONFIG_INTEL_IOMMU
    134 	/* Disable ppgtt on SNB if VT-d is on. */
    135 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
    136 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
    137 		return 0;
    138 	}
    139 #endif
    140 
    141 	/* Early VLV doesn't have this */
    142 	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
    143 	    dev->pdev->revision < 0xb) {
    144 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
    145 		return 0;
    146 	}
    147 
    148 	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
    149 		return 2;
    150 	else
    151 		return has_aliasing_ppgtt ? 1 : 0;
    152 }
    153 
    154 static int ppgtt_bind_vma(struct i915_vma *vma,
    155 			  enum i915_cache_level cache_level,
    156 			  u32 unused)
    157 {
    158 	u32 pte_flags = 0;
    159 
    160 	/* Currently applicable only to VLV */
    161 	if (vma->obj->gt_ro)
    162 		pte_flags |= PTE_READ_ONLY;
    163 
    164 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
    165 				cache_level, pte_flags);
    166 
    167 	return 0;
    168 }
    169 
    170 static void ppgtt_unbind_vma(struct i915_vma *vma)
    171 {
    172 	vma->vm->clear_range(vma->vm,
    173 			     vma->node.start,
    174 			     vma->obj->base.size,
    175 			     true);
    176 }
    177 
    178 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
    179 				  enum i915_cache_level level,
    180 				  bool valid)
    181 {
    182 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
    183 	pte |= addr;
    184 
    185 	switch (level) {
    186 	case I915_CACHE_NONE:
    187 		pte |= PPAT_UNCACHED_INDEX;
    188 		break;
    189 	case I915_CACHE_WT:
    190 		pte |= PPAT_DISPLAY_ELLC_INDEX;
    191 		break;
    192 	default:
    193 		pte |= PPAT_CACHED_INDEX;
    194 		break;
    195 	}
    196 
    197 	return pte;
    198 }
    199 
    200 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
    201 				  const enum i915_cache_level level)
    202 {
    203 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
    204 	pde |= addr;
    205 	if (level != I915_CACHE_NONE)
    206 		pde |= PPAT_CACHED_PDE_INDEX;
    207 	else
    208 		pde |= PPAT_UNCACHED_INDEX;
    209 	return pde;
    210 }
    211 
    212 #define gen8_pdpe_encode gen8_pde_encode
    213 #define gen8_pml4e_encode gen8_pde_encode
    214 
    215 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
    216 				 enum i915_cache_level level,
    217 				 bool valid, u32 unused)
    218 {
    219 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    220 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
    221 
    222 	switch (level) {
    223 	case I915_CACHE_L3_LLC:
    224 	case I915_CACHE_LLC:
    225 		pte |= GEN6_PTE_CACHE_LLC;
    226 		break;
    227 	case I915_CACHE_NONE:
    228 		pte |= GEN6_PTE_UNCACHED;
    229 		break;
    230 	default:
    231 		MISSING_CASE(level);
    232 	}
    233 
    234 	return pte;
    235 }
    236 
    237 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
    238 				 enum i915_cache_level level,
    239 				 bool valid, u32 unused)
    240 {
    241 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    242 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
    243 
    244 	switch (level) {
    245 	case I915_CACHE_L3_LLC:
    246 		pte |= GEN7_PTE_CACHE_L3_LLC;
    247 		break;
    248 	case I915_CACHE_LLC:
    249 		pte |= GEN6_PTE_CACHE_LLC;
    250 		break;
    251 	case I915_CACHE_NONE:
    252 		pte |= GEN6_PTE_UNCACHED;
    253 		break;
    254 	default:
    255 		MISSING_CASE(level);
    256 	}
    257 
    258 	return pte;
    259 }
    260 
    261 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
    262 				 enum i915_cache_level level,
    263 				 bool valid, u32 flags)
    264 {
    265 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    266 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
    267 
    268 	if (!(flags & PTE_READ_ONLY))
    269 		pte |= BYT_PTE_WRITEABLE;
    270 
    271 	if (level != I915_CACHE_NONE)
    272 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
    273 
    274 	return pte;
    275 }
    276 
    277 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
    278 				 enum i915_cache_level level,
    279 				 bool valid, u32 unused)
    280 {
    281 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    282 	pte |= HSW_PTE_ADDR_ENCODE(addr);
    283 
    284 	if (level != I915_CACHE_NONE)
    285 		pte |= HSW_WB_LLC_AGE3;
    286 
    287 	return pte;
    288 }
    289 
    290 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
    291 				  enum i915_cache_level level,
    292 				  bool valid, u32 unused)
    293 {
    294 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    295 	pte |= HSW_PTE_ADDR_ENCODE(addr);
    296 
    297 	switch (level) {
    298 	case I915_CACHE_NONE:
    299 		break;
    300 	case I915_CACHE_WT:
    301 		pte |= HSW_WT_ELLC_LLC_AGE3;
    302 		break;
    303 	default:
    304 		pte |= HSW_WB_ELLC_LLC_AGE3;
    305 		break;
    306 	}
    307 
    308 	return pte;
    309 }
    310 
    311 static int __setup_page_dma(struct drm_device *dev,
    312 			    struct i915_page_dma *p, gfp_t flags)
    313 {
    314 	struct device *device = &dev->pdev->dev;
    315 
    316 	p->page = alloc_page(flags);
    317 	if (!p->page)
    318 		return -ENOMEM;
    319 
    320 	p->daddr = dma_map_page(device,
    321 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
    322 
    323 	if (dma_mapping_error(device, p->daddr)) {
    324 		__free_page(p->page);
    325 		return -EINVAL;
    326 	}
    327 
    328 	return 0;
    329 }
    330 
    331 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
    332 {
    333 	return __setup_page_dma(dev, p, GFP_KERNEL);
    334 }
    335 
    336 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
    337 {
    338 	if (WARN_ON(!p->page))
    339 		return;
    340 
    341 	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
    342 	__free_page(p->page);
    343 	memset(p, 0, sizeof(*p));
    344 }
    345 
    346 static void *kmap_page_dma(struct i915_page_dma *p)
    347 {
    348 	return kmap_atomic(p->page);
    349 }
    350 
    351 /* We use the flushing unmap only with ppgtt structures:
    352  * page directories, page tables and scratch pages.
    353  */
    354 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
    355 {
    356 	/* There are only few exceptions for gen >=6. chv and bxt.
    357 	 * And we are not sure about the latter so play safe for now.
    358 	 */
    359 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
    360 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
    361 
    362 	kunmap_atomic(vaddr);
    363 }
    364 
    365 #define kmap_px(px) kmap_page_dma(px_base(px))
    366 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
    367 
    368 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
    369 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
    370 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
    371 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
    372 
    373 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
    374 			  const uint64_t val)
    375 {
    376 	int i;
    377 	uint64_t * const vaddr = kmap_page_dma(p);
    378 
    379 	for (i = 0; i < 512; i++)
    380 		vaddr[i] = val;
    381 
    382 	kunmap_page_dma(dev, vaddr);
    383 }
    384 
    385 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
    386 			     const uint32_t val32)
    387 {
    388 	uint64_t v = val32;
    389 
    390 	v = v << 32 | val32;
    391 
    392 	fill_page_dma(dev, p, v);
    393 }
    394 
    395 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
    396 {
    397 	struct i915_page_scratch *sp;
    398 	int ret;
    399 
    400 	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
    401 	if (sp == NULL)
    402 		return ERR_PTR(-ENOMEM);
    403 
    404 	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
    405 	if (ret) {
    406 		kfree(sp);
    407 		return ERR_PTR(ret);
    408 	}
    409 
    410 	set_pages_uc(px_page(sp), 1);
    411 
    412 	return sp;
    413 }
    414 
    415 static void free_scratch_page(struct drm_device *dev,
    416 			      struct i915_page_scratch *sp)
    417 {
    418 	set_pages_wb(px_page(sp), 1);
    419 
    420 	cleanup_px(dev, sp);
    421 	kfree(sp);
    422 }
    423 
    424 static struct i915_page_table *alloc_pt(struct drm_device *dev)
    425 {
    426 	struct i915_page_table *pt;
    427 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
    428 		GEN8_PTES : GEN6_PTES;
    429 	int ret = -ENOMEM;
    430 
    431 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
    432 	if (!pt)
    433 		return ERR_PTR(-ENOMEM);
    434 
    435 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
    436 				GFP_KERNEL);
    437 
    438 	if (!pt->used_ptes)
    439 		goto fail_bitmap;
    440 
    441 	ret = setup_px(dev, pt);
    442 	if (ret)
    443 		goto fail_page_m;
    444 
    445 	return pt;
    446 
    447 fail_page_m:
    448 	kfree(pt->used_ptes);
    449 fail_bitmap:
    450 	kfree(pt);
    451 
    452 	return ERR_PTR(ret);
    453 }
    454 
    455 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
    456 {
    457 	cleanup_px(dev, pt);
    458 	kfree(pt->used_ptes);
    459 	kfree(pt);
    460 }
    461 
    462 static void gen8_initialize_pt(struct i915_address_space *vm,
    463 			       struct i915_page_table *pt)
    464 {
    465 	gen8_pte_t scratch_pte;
    466 
    467 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
    468 				      I915_CACHE_LLC, true);
    469 
    470 	fill_px(vm->dev, pt, scratch_pte);
    471 }
    472 
    473 static void gen6_initialize_pt(struct i915_address_space *vm,
    474 			       struct i915_page_table *pt)
    475 {
    476 	gen6_pte_t scratch_pte;
    477 
    478 	WARN_ON(px_dma(vm->scratch_page) == 0);
    479 
    480 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
    481 				     I915_CACHE_LLC, true, 0);
    482 
    483 	fill32_px(vm->dev, pt, scratch_pte);
    484 }
    485 
    486 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
    487 {
    488 	struct i915_page_directory *pd;
    489 	int ret = -ENOMEM;
    490 
    491 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
    492 	if (!pd)
    493 		return ERR_PTR(-ENOMEM);
    494 
    495 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
    496 				sizeof(*pd->used_pdes), GFP_KERNEL);
    497 	if (!pd->used_pdes)
    498 		goto fail_bitmap;
    499 
    500 	ret = setup_px(dev, pd);
    501 	if (ret)
    502 		goto fail_page_m;
    503 
    504 	return pd;
    505 
    506 fail_page_m:
    507 	kfree(pd->used_pdes);
    508 fail_bitmap:
    509 	kfree(pd);
    510 
    511 	return ERR_PTR(ret);
    512 }
    513 
    514 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
    515 {
    516 	if (px_page(pd)) {
    517 		cleanup_px(dev, pd);
    518 		kfree(pd->used_pdes);
    519 		kfree(pd);
    520 	}
    521 }
    522 
    523 static void gen8_initialize_pd(struct i915_address_space *vm,
    524 			       struct i915_page_directory *pd)
    525 {
    526 	gen8_pde_t scratch_pde;
    527 
    528 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
    529 
    530 	fill_px(vm->dev, pd, scratch_pde);
    531 }
    532 
    533 static int __pdp_init(struct drm_device *dev,
    534 		      struct i915_page_directory_pointer *pdp)
    535 {
    536 	size_t pdpes = I915_PDPES_PER_PDP(dev);
    537 
    538 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
    539 				  sizeof(unsigned long),
    540 				  GFP_KERNEL);
    541 	if (!pdp->used_pdpes)
    542 		return -ENOMEM;
    543 
    544 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
    545 				      GFP_KERNEL);
    546 	if (!pdp->page_directory) {
    547 		kfree(pdp->used_pdpes);
    548 		/* the PDP might be the statically allocated top level. Keep it
    549 		 * as clean as possible */
    550 		pdp->used_pdpes = NULL;
    551 		return -ENOMEM;
    552 	}
    553 
    554 	return 0;
    555 }
    556 
    557 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
    558 {
    559 	kfree(pdp->used_pdpes);
    560 	kfree(pdp->page_directory);
    561 	pdp->page_directory = NULL;
    562 }
    563 
    564 static struct
    565 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
    566 {
    567 	struct i915_page_directory_pointer *pdp;
    568 	int ret = -ENOMEM;
    569 
    570 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
    571 
    572 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
    573 	if (!pdp)
    574 		return ERR_PTR(-ENOMEM);
    575 
    576 	ret = __pdp_init(dev, pdp);
    577 	if (ret)
    578 		goto fail_bitmap;
    579 
    580 	ret = setup_px(dev, pdp);
    581 	if (ret)
    582 		goto fail_page_m;
    583 
    584 	return pdp;
    585 
    586 fail_page_m:
    587 	__pdp_fini(pdp);
    588 fail_bitmap:
    589 	kfree(pdp);
    590 
    591 	return ERR_PTR(ret);
    592 }
    593 
    594 static void free_pdp(struct drm_device *dev,
    595 		     struct i915_page_directory_pointer *pdp)
    596 {
    597 	__pdp_fini(pdp);
    598 	if (USES_FULL_48BIT_PPGTT(dev)) {
    599 		cleanup_px(dev, pdp);
    600 		kfree(pdp);
    601 	}
    602 }
    603 
    604 static void gen8_initialize_pdp(struct i915_address_space *vm,
    605 				struct i915_page_directory_pointer *pdp)
    606 {
    607 	gen8_ppgtt_pdpe_t scratch_pdpe;
    608 
    609 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
    610 
    611 	fill_px(vm->dev, pdp, scratch_pdpe);
    612 }
    613 
    614 static void gen8_initialize_pml4(struct i915_address_space *vm,
    615 				 struct i915_pml4 *pml4)
    616 {
    617 	gen8_ppgtt_pml4e_t scratch_pml4e;
    618 
    619 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
    620 					  I915_CACHE_LLC);
    621 
    622 	fill_px(vm->dev, pml4, scratch_pml4e);
    623 }
    624 
    625 static void
    626 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
    627 			  struct i915_page_directory_pointer *pdp,
    628 			  struct i915_page_directory *pd,
    629 			  int index)
    630 {
    631 	gen8_ppgtt_pdpe_t *page_directorypo;
    632 
    633 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
    634 		return;
    635 
    636 	page_directorypo = kmap_px(pdp);
    637 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
    638 	kunmap_px(ppgtt, page_directorypo);
    639 }
    640 
    641 static void
    642 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
    643 				  struct i915_pml4 *pml4,
    644 				  struct i915_page_directory_pointer *pdp,
    645 				  int index)
    646 {
    647 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
    648 
    649 	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
    650 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
    651 	kunmap_px(ppgtt, pagemap);
    652 }
    653 
    654 /* Broadwell Page Directory Pointer Descriptors */
    655 static int gen8_write_pdp(struct drm_i915_gem_request *req,
    656 			  unsigned entry,
    657 			  dma_addr_t addr)
    658 {
    659 	struct intel_engine_cs *ring = req->ring;
    660 	int ret;
    661 
    662 	BUG_ON(entry >= 4);
    663 
    664 	ret = intel_ring_begin(req, 6);
    665 	if (ret)
    666 		return ret;
    667 
    668 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
    669 	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
    670 	intel_ring_emit(ring, upper_32_bits(addr));
    671 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
    672 	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
    673 	intel_ring_emit(ring, lower_32_bits(addr));
    674 	intel_ring_advance(ring);
    675 
    676 	return 0;
    677 }
    678 
    679 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
    680 				 struct drm_i915_gem_request *req)
    681 {
    682 	int i, ret;
    683 
    684 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
    685 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
    686 
    687 		ret = gen8_write_pdp(req, i, pd_daddr);
    688 		if (ret)
    689 			return ret;
    690 	}
    691 
    692 	return 0;
    693 }
    694 
    695 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
    696 			      struct drm_i915_gem_request *req)
    697 {
    698 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
    699 }
    700 
    701 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
    702 				       struct i915_page_directory_pointer *pdp,
    703 				       uint64_t start,
    704 				       uint64_t length,
    705 				       gen8_pte_t scratch_pte)
    706 {
    707 	struct i915_hw_ppgtt *ppgtt =
    708 		container_of(vm, struct i915_hw_ppgtt, base);
    709 	gen8_pte_t *pt_vaddr;
    710 	unsigned pdpe = gen8_pdpe_index(start);
    711 	unsigned pde = gen8_pde_index(start);
    712 	unsigned pte = gen8_pte_index(start);
    713 	unsigned num_entries = length >> PAGE_SHIFT;
    714 	unsigned last_pte, i;
    715 
    716 	if (WARN_ON(!pdp))
    717 		return;
    718 
    719 	while (num_entries) {
    720 		struct i915_page_directory *pd;
    721 		struct i915_page_table *pt;
    722 
    723 		if (WARN_ON(!pdp->page_directory[pdpe]))
    724 			break;
    725 
    726 		pd = pdp->page_directory[pdpe];
    727 
    728 		if (WARN_ON(!pd->page_table[pde]))
    729 			break;
    730 
    731 		pt = pd->page_table[pde];
    732 
    733 		if (WARN_ON(!px_page(pt)))
    734 			break;
    735 
    736 		last_pte = pte + num_entries;
    737 		if (last_pte > GEN8_PTES)
    738 			last_pte = GEN8_PTES;
    739 
    740 		pt_vaddr = kmap_px(pt);
    741 
    742 		for (i = pte; i < last_pte; i++) {
    743 			pt_vaddr[i] = scratch_pte;
    744 			num_entries--;
    745 		}
    746 
    747 		kunmap_px(ppgtt, pt);
    748 
    749 		pte = 0;
    750 		if (++pde == I915_PDES) {
    751 			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
    752 				break;
    753 			pde = 0;
    754 		}
    755 	}
    756 }
    757 
    758 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
    759 				   uint64_t start,
    760 				   uint64_t length,
    761 				   bool use_scratch)
    762 {
    763 	struct i915_hw_ppgtt *ppgtt =
    764 		container_of(vm, struct i915_hw_ppgtt, base);
    765 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
    766 						 I915_CACHE_LLC, use_scratch);
    767 
    768 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
    769 		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
    770 					   scratch_pte);
    771 	} else {
    772 		uint64_t templ4, pml4e;
    773 		struct i915_page_directory_pointer *pdp;
    774 
    775 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
    776 			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
    777 						   scratch_pte);
    778 		}
    779 	}
    780 }
    781 
    782 static void
    783 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
    784 			      struct i915_page_directory_pointer *pdp,
    785 			      struct sg_page_iter *sg_iter,
    786 			      uint64_t start,
    787 			      enum i915_cache_level cache_level)
    788 {
    789 	struct i915_hw_ppgtt *ppgtt =
    790 		container_of(vm, struct i915_hw_ppgtt, base);
    791 	gen8_pte_t *pt_vaddr;
    792 	unsigned pdpe = gen8_pdpe_index(start);
    793 	unsigned pde = gen8_pde_index(start);
    794 	unsigned pte = gen8_pte_index(start);
    795 
    796 	pt_vaddr = NULL;
    797 
    798 	while (__sg_page_iter_next(sg_iter)) {
    799 		if (pt_vaddr == NULL) {
    800 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
    801 			struct i915_page_table *pt = pd->page_table[pde];
    802 			pt_vaddr = kmap_px(pt);
    803 		}
    804 
    805 		pt_vaddr[pte] =
    806 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
    807 					cache_level, true);
    808 		if (++pte == GEN8_PTES) {
    809 			kunmap_px(ppgtt, pt_vaddr);
    810 			pt_vaddr = NULL;
    811 			if (++pde == I915_PDES) {
    812 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
    813 					break;
    814 				pde = 0;
    815 			}
    816 			pte = 0;
    817 		}
    818 	}
    819 
    820 	if (pt_vaddr)
    821 		kunmap_px(ppgtt, pt_vaddr);
    822 }
    823 
    824 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
    825 				      struct sg_table *pages,
    826 				      uint64_t start,
    827 				      enum i915_cache_level cache_level,
    828 				      u32 unused)
    829 {
    830 	struct i915_hw_ppgtt *ppgtt =
    831 		container_of(vm, struct i915_hw_ppgtt, base);
    832 	struct sg_page_iter sg_iter;
    833 
    834 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
    835 
    836 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
    837 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
    838 					      cache_level);
    839 	} else {
    840 		struct i915_page_directory_pointer *pdp;
    841 		uint64_t templ4, pml4e;
    842 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
    843 
    844 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
    845 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
    846 						      start, cache_level);
    847 		}
    848 	}
    849 }
    850 
    851 static void gen8_free_page_tables(struct drm_device *dev,
    852 				  struct i915_page_directory *pd)
    853 {
    854 	int i;
    855 
    856 	if (!px_page(pd))
    857 		return;
    858 
    859 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
    860 		if (WARN_ON(!pd->page_table[i]))
    861 			continue;
    862 
    863 		free_pt(dev, pd->page_table[i]);
    864 		pd->page_table[i] = NULL;
    865 	}
    866 }
    867 
    868 static int gen8_init_scratch(struct i915_address_space *vm)
    869 {
    870 	struct drm_device *dev = vm->dev;
    871 
    872 	vm->scratch_page = alloc_scratch_page(dev);
    873 	if (IS_ERR(vm->scratch_page))
    874 		return PTR_ERR(vm->scratch_page);
    875 
    876 	vm->scratch_pt = alloc_pt(dev);
    877 	if (IS_ERR(vm->scratch_pt)) {
    878 		free_scratch_page(dev, vm->scratch_page);
    879 		return PTR_ERR(vm->scratch_pt);
    880 	}
    881 
    882 	vm->scratch_pd = alloc_pd(dev);
    883 	if (IS_ERR(vm->scratch_pd)) {
    884 		free_pt(dev, vm->scratch_pt);
    885 		free_scratch_page(dev, vm->scratch_page);
    886 		return PTR_ERR(vm->scratch_pd);
    887 	}
    888 
    889 	if (USES_FULL_48BIT_PPGTT(dev)) {
    890 		vm->scratch_pdp = alloc_pdp(dev);
    891 		if (IS_ERR(vm->scratch_pdp)) {
    892 			free_pd(dev, vm->scratch_pd);
    893 			free_pt(dev, vm->scratch_pt);
    894 			free_scratch_page(dev, vm->scratch_page);
    895 			return PTR_ERR(vm->scratch_pdp);
    896 		}
    897 	}
    898 
    899 	gen8_initialize_pt(vm, vm->scratch_pt);
    900 	gen8_initialize_pd(vm, vm->scratch_pd);
    901 	if (USES_FULL_48BIT_PPGTT(dev))
    902 		gen8_initialize_pdp(vm, vm->scratch_pdp);
    903 
    904 	return 0;
    905 }
    906 
    907 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
    908 {
    909 	enum vgt_g2v_type msg;
    910 	struct drm_device *dev = ppgtt->base.dev;
    911 	struct drm_i915_private *dev_priv = dev->dev_private;
    912 	unsigned int offset = vgtif_reg(pdp0_lo);
    913 	int i;
    914 
    915 	if (USES_FULL_48BIT_PPGTT(dev)) {
    916 		u64 daddr = px_dma(&ppgtt->pml4);
    917 
    918 		I915_WRITE(offset, lower_32_bits(daddr));
    919 		I915_WRITE(offset + 4, upper_32_bits(daddr));
    920 
    921 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
    922 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
    923 	} else {
    924 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
    925 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
    926 
    927 			I915_WRITE(offset, lower_32_bits(daddr));
    928 			I915_WRITE(offset + 4, upper_32_bits(daddr));
    929 
    930 			offset += 8;
    931 		}
    932 
    933 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
    934 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
    935 	}
    936 
    937 	I915_WRITE(vgtif_reg(g2v_notify), msg);
    938 
    939 	return 0;
    940 }
    941 
    942 static void gen8_free_scratch(struct i915_address_space *vm)
    943 {
    944 	struct drm_device *dev = vm->dev;
    945 
    946 	if (USES_FULL_48BIT_PPGTT(dev))
    947 		free_pdp(dev, vm->scratch_pdp);
    948 	free_pd(dev, vm->scratch_pd);
    949 	free_pt(dev, vm->scratch_pt);
    950 	free_scratch_page(dev, vm->scratch_page);
    951 }
    952 
    953 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
    954 				    struct i915_page_directory_pointer *pdp)
    955 {
    956 	int i;
    957 
    958 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
    959 		if (WARN_ON(!pdp->page_directory[i]))
    960 			continue;
    961 
    962 		gen8_free_page_tables(dev, pdp->page_directory[i]);
    963 		free_pd(dev, pdp->page_directory[i]);
    964 	}
    965 
    966 	free_pdp(dev, pdp);
    967 }
    968 
    969 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
    970 {
    971 	int i;
    972 
    973 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
    974 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
    975 			continue;
    976 
    977 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
    978 	}
    979 
    980 	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
    981 }
    982 
    983 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
    984 {
    985 	struct i915_hw_ppgtt *ppgtt =
    986 		container_of(vm, struct i915_hw_ppgtt, base);
    987 
    988 	if (intel_vgpu_active(vm->dev))
    989 		gen8_ppgtt_notify_vgt(ppgtt, false);
    990 
    991 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
    992 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
    993 	else
    994 		gen8_ppgtt_cleanup_4lvl(ppgtt);
    995 
    996 	gen8_free_scratch(vm);
    997 }
    998 
    999 /**
   1000  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
   1001  * @vm:	Master vm structure.
   1002  * @pd:	Page directory for this address range.
   1003  * @start:	Starting virtual address to begin allocations.
   1004  * @length:	Size of the allocations.
   1005  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
   1006  *		caller to free on error.
   1007  *
   1008  * Allocate the required number of page tables. Extremely similar to
   1009  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
   1010  * the page directory boundary (instead of the page directory pointer). That
   1011  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
   1012  * possible, and likely that the caller will need to use multiple calls of this
   1013  * function to achieve the appropriate allocation.
   1014  *
   1015  * Return: 0 if success; negative error code otherwise.
   1016  */
   1017 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
   1018 				     struct i915_page_directory *pd,
   1019 				     uint64_t start,
   1020 				     uint64_t length,
   1021 				     unsigned long *new_pts)
   1022 {
   1023 	struct drm_device *dev = vm->dev;
   1024 	struct i915_page_table *pt;
   1025 	uint64_t temp;
   1026 	uint32_t pde;
   1027 
   1028 	gen8_for_each_pde(pt, pd, start, length, temp, pde) {
   1029 		/* Don't reallocate page tables */
   1030 		if (test_bit(pde, pd->used_pdes)) {
   1031 			/* Scratch is never allocated this way */
   1032 			WARN_ON(pt == vm->scratch_pt);
   1033 			continue;
   1034 		}
   1035 
   1036 		pt = alloc_pt(dev);
   1037 		if (IS_ERR(pt))
   1038 			goto unwind_out;
   1039 
   1040 		gen8_initialize_pt(vm, pt);
   1041 		pd->page_table[pde] = pt;
   1042 		__set_bit(pde, new_pts);
   1043 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
   1044 	}
   1045 
   1046 	return 0;
   1047 
   1048 unwind_out:
   1049 	for_each_set_bit(pde, new_pts, I915_PDES)
   1050 		free_pt(dev, pd->page_table[pde]);
   1051 
   1052 	return -ENOMEM;
   1053 }
   1054 
   1055 /**
   1056  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
   1057  * @vm:	Master vm structure.
   1058  * @pdp:	Page directory pointer for this address range.
   1059  * @start:	Starting virtual address to begin allocations.
   1060  * @length:	Size of the allocations.
   1061  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
   1062  *		caller to free on error.
   1063  *
   1064  * Allocate the required number of page directories starting at the pde index of
   1065  * @start, and ending at the pde index @start + @length. This function will skip
   1066  * over already allocated page directories within the range, and only allocate
   1067  * new ones, setting the appropriate pointer within the pdp as well as the
   1068  * correct position in the bitmap @new_pds.
   1069  *
   1070  * The function will only allocate the pages within the range for a give page
   1071  * directory pointer. In other words, if @start + @length straddles a virtually
   1072  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
   1073  * required by the caller, This is not currently possible, and the BUG in the
   1074  * code will prevent it.
   1075  *
   1076  * Return: 0 if success; negative error code otherwise.
   1077  */
   1078 static int
   1079 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
   1080 				  struct i915_page_directory_pointer *pdp,
   1081 				  uint64_t start,
   1082 				  uint64_t length,
   1083 				  unsigned long *new_pds)
   1084 {
   1085 	struct drm_device *dev = vm->dev;
   1086 	struct i915_page_directory *pd;
   1087 	uint64_t temp;
   1088 	uint32_t pdpe;
   1089 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
   1090 
   1091 	WARN_ON(!bitmap_empty(new_pds, pdpes));
   1092 
   1093 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
   1094 		if (test_bit(pdpe, pdp->used_pdpes))
   1095 			continue;
   1096 
   1097 		pd = alloc_pd(dev);
   1098 		if (IS_ERR(pd))
   1099 			goto unwind_out;
   1100 
   1101 		gen8_initialize_pd(vm, pd);
   1102 		pdp->page_directory[pdpe] = pd;
   1103 		__set_bit(pdpe, new_pds);
   1104 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
   1105 	}
   1106 
   1107 	return 0;
   1108 
   1109 unwind_out:
   1110 	for_each_set_bit(pdpe, new_pds, pdpes)
   1111 		free_pd(dev, pdp->page_directory[pdpe]);
   1112 
   1113 	return -ENOMEM;
   1114 }
   1115 
   1116 /**
   1117  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
   1118  * @vm:	Master vm structure.
   1119  * @pml4:	Page map level 4 for this address range.
   1120  * @start:	Starting virtual address to begin allocations.
   1121  * @length:	Size of the allocations.
   1122  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
   1123  *		caller to free on error.
   1124  *
   1125  * Allocate the required number of page directory pointers. Extremely similar to
   1126  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
   1127  * The main difference is here we are limited by the pml4 boundary (instead of
   1128  * the page directory pointer).
   1129  *
   1130  * Return: 0 if success; negative error code otherwise.
   1131  */
   1132 static int
   1133 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
   1134 				  struct i915_pml4 *pml4,
   1135 				  uint64_t start,
   1136 				  uint64_t length,
   1137 				  unsigned long *new_pdps)
   1138 {
   1139 	struct drm_device *dev = vm->dev;
   1140 	struct i915_page_directory_pointer *pdp;
   1141 	uint64_t temp;
   1142 	uint32_t pml4e;
   1143 
   1144 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
   1145 
   1146 	gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
   1147 		if (!test_bit(pml4e, pml4->used_pml4es)) {
   1148 			pdp = alloc_pdp(dev);
   1149 			if (IS_ERR(pdp))
   1150 				goto unwind_out;
   1151 
   1152 			gen8_initialize_pdp(vm, pdp);
   1153 			pml4->pdps[pml4e] = pdp;
   1154 			__set_bit(pml4e, new_pdps);
   1155 			trace_i915_page_directory_pointer_entry_alloc(vm,
   1156 								      pml4e,
   1157 								      start,
   1158 								      GEN8_PML4E_SHIFT);
   1159 		}
   1160 	}
   1161 
   1162 	return 0;
   1163 
   1164 unwind_out:
   1165 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
   1166 		free_pdp(dev, pml4->pdps[pml4e]);
   1167 
   1168 	return -ENOMEM;
   1169 }
   1170 
   1171 static void
   1172 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
   1173 {
   1174 	kfree(new_pts);
   1175 	kfree(new_pds);
   1176 }
   1177 
   1178 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
   1179  * of these are based on the number of PDPEs in the system.
   1180  */
   1181 static
   1182 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
   1183 					 unsigned long **new_pts,
   1184 					 uint32_t pdpes)
   1185 {
   1186 	unsigned long *pds;
   1187 	unsigned long *pts;
   1188 
   1189 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
   1190 	if (!pds)
   1191 		return -ENOMEM;
   1192 
   1193 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
   1194 		      GFP_TEMPORARY);
   1195 	if (!pts)
   1196 		goto err_out;
   1197 
   1198 	*new_pds = pds;
   1199 	*new_pts = pts;
   1200 
   1201 	return 0;
   1202 
   1203 err_out:
   1204 	free_gen8_temp_bitmaps(pds, pts);
   1205 	return -ENOMEM;
   1206 }
   1207 
   1208 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
   1209  * the page table structures, we mark them dirty so that
   1210  * context switching/execlist queuing code takes extra steps
   1211  * to ensure that tlbs are flushed.
   1212  */
   1213 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
   1214 {
   1215 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
   1216 }
   1217 
   1218 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
   1219 				    struct i915_page_directory_pointer *pdp,
   1220 				    uint64_t start,
   1221 				    uint64_t length)
   1222 {
   1223 	struct i915_hw_ppgtt *ppgtt =
   1224 		container_of(vm, struct i915_hw_ppgtt, base);
   1225 	unsigned long *new_page_dirs, *new_page_tables;
   1226 	struct drm_device *dev = vm->dev;
   1227 	struct i915_page_directory *pd;
   1228 	const uint64_t orig_start = start;
   1229 	const uint64_t orig_length = length;
   1230 	uint64_t temp;
   1231 	uint32_t pdpe;
   1232 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
   1233 	int ret;
   1234 
   1235 	/* Wrap is never okay since we can only represent 48b, and we don't
   1236 	 * actually use the other side of the canonical address space.
   1237 	 */
   1238 	if (WARN_ON(start + length < start))
   1239 		return -ENODEV;
   1240 
   1241 	if (WARN_ON(start + length > vm->total))
   1242 		return -ENODEV;
   1243 
   1244 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
   1245 	if (ret)
   1246 		return ret;
   1247 
   1248 	/* Do the allocations first so we can easily bail out */
   1249 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
   1250 						new_page_dirs);
   1251 	if (ret) {
   1252 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
   1253 		return ret;
   1254 	}
   1255 
   1256 	/* For every page directory referenced, allocate page tables */
   1257 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
   1258 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
   1259 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
   1260 		if (ret)
   1261 			goto err_out;
   1262 	}
   1263 
   1264 	start = orig_start;
   1265 	length = orig_length;
   1266 
   1267 	/* Allocations have completed successfully, so set the bitmaps, and do
   1268 	 * the mappings. */
   1269 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
   1270 		gen8_pde_t *const page_directory = kmap_px(pd);
   1271 		struct i915_page_table *pt;
   1272 		uint64_t pd_len = length;
   1273 		uint64_t pd_start = start;
   1274 		uint32_t pde;
   1275 
   1276 		/* Every pd should be allocated, we just did that above. */
   1277 		WARN_ON(!pd);
   1278 
   1279 		gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
   1280 			/* Same reasoning as pd */
   1281 			WARN_ON(!pt);
   1282 			WARN_ON(!pd_len);
   1283 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
   1284 
   1285 			/* Set our used ptes within the page table */
   1286 			bitmap_set(pt->used_ptes,
   1287 				   gen8_pte_index(pd_start),
   1288 				   gen8_pte_count(pd_start, pd_len));
   1289 
   1290 			/* Our pde is now pointing to the pagetable, pt */
   1291 			__set_bit(pde, pd->used_pdes);
   1292 
   1293 			/* Map the PDE to the page table */
   1294 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
   1295 							      I915_CACHE_LLC);
   1296 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
   1297 							gen8_pte_index(start),
   1298 							gen8_pte_count(start, length),
   1299 							GEN8_PTES);
   1300 
   1301 			/* NB: We haven't yet mapped ptes to pages. At this
   1302 			 * point we're still relying on insert_entries() */
   1303 		}
   1304 
   1305 		kunmap_px(ppgtt, page_directory);
   1306 		__set_bit(pdpe, pdp->used_pdpes);
   1307 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
   1308 	}
   1309 
   1310 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
   1311 	mark_tlbs_dirty(ppgtt);
   1312 	return 0;
   1313 
   1314 err_out:
   1315 	while (pdpe--) {
   1316 		for_each_set_bit(temp, new_page_tables + pdpe *
   1317 				BITS_TO_LONGS(I915_PDES), I915_PDES)
   1318 			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
   1319 	}
   1320 
   1321 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
   1322 		free_pd(dev, pdp->page_directory[pdpe]);
   1323 
   1324 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
   1325 	mark_tlbs_dirty(ppgtt);
   1326 	return ret;
   1327 }
   1328 
   1329 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
   1330 				    struct i915_pml4 *pml4,
   1331 				    uint64_t start,
   1332 				    uint64_t length)
   1333 {
   1334 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
   1335 	struct i915_hw_ppgtt *ppgtt =
   1336 			container_of(vm, struct i915_hw_ppgtt, base);
   1337 	struct i915_page_directory_pointer *pdp;
   1338 	uint64_t temp, pml4e;
   1339 	int ret = 0;
   1340 
   1341 	/* Do the pml4 allocations first, so we don't need to track the newly
   1342 	 * allocated tables below the pdp */
   1343 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
   1344 
   1345 	/* The pagedirectory and pagetable allocations are done in the shared 3
   1346 	 * and 4 level code. Just allocate the pdps.
   1347 	 */
   1348 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
   1349 						new_pdps);
   1350 	if (ret)
   1351 		return ret;
   1352 
   1353 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
   1354 	     "The allocation has spanned more than 512GB. "
   1355 	     "It is highly likely this is incorrect.");
   1356 
   1357 	gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
   1358 		WARN_ON(!pdp);
   1359 
   1360 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
   1361 		if (ret)
   1362 			goto err_out;
   1363 
   1364 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
   1365 	}
   1366 
   1367 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
   1368 		  GEN8_PML4ES_PER_PML4);
   1369 
   1370 	return 0;
   1371 
   1372 err_out:
   1373 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
   1374 		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
   1375 
   1376 	return ret;
   1377 }
   1378 
   1379 static int gen8_alloc_va_range(struct i915_address_space *vm,
   1380 			       uint64_t start, uint64_t length)
   1381 {
   1382 	struct i915_hw_ppgtt *ppgtt =
   1383 		container_of(vm, struct i915_hw_ppgtt, base);
   1384 
   1385 	if (USES_FULL_48BIT_PPGTT(vm->dev))
   1386 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
   1387 	else
   1388 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
   1389 }
   1390 
   1391 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
   1392 			  uint64_t start, uint64_t length,
   1393 			  gen8_pte_t scratch_pte,
   1394 			  struct seq_file *m)
   1395 {
   1396 	struct i915_page_directory *pd;
   1397 	uint64_t temp;
   1398 	uint32_t pdpe;
   1399 
   1400 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
   1401 		struct i915_page_table *pt;
   1402 		uint64_t pd_len = length;
   1403 		uint64_t pd_start = start;
   1404 		uint32_t pde;
   1405 
   1406 		if (!test_bit(pdpe, pdp->used_pdpes))
   1407 			continue;
   1408 
   1409 		seq_printf(m, "\tPDPE #%d\n", pdpe);
   1410 		gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
   1411 			uint32_t  pte;
   1412 			gen8_pte_t *pt_vaddr;
   1413 
   1414 			if (!test_bit(pde, pd->used_pdes))
   1415 				continue;
   1416 
   1417 			pt_vaddr = kmap_px(pt);
   1418 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
   1419 				uint64_t va =
   1420 					(pdpe << GEN8_PDPE_SHIFT) |
   1421 					(pde << GEN8_PDE_SHIFT) |
   1422 					(pte << GEN8_PTE_SHIFT);
   1423 				int i;
   1424 				bool found = false;
   1425 
   1426 				for (i = 0; i < 4; i++)
   1427 					if (pt_vaddr[pte + i] != scratch_pte)
   1428 						found = true;
   1429 				if (!found)
   1430 					continue;
   1431 
   1432 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
   1433 				for (i = 0; i < 4; i++) {
   1434 					if (pt_vaddr[pte + i] != scratch_pte)
   1435 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
   1436 					else
   1437 						seq_puts(m, "  SCRATCH ");
   1438 				}
   1439 				seq_puts(m, "\n");
   1440 			}
   1441 			/* don't use kunmap_px, it could trigger
   1442 			 * an unnecessary flush.
   1443 			 */
   1444 			kunmap_atomic(pt_vaddr);
   1445 		}
   1446 	}
   1447 }
   1448 
   1449 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
   1450 {
   1451 	struct i915_address_space *vm = &ppgtt->base;
   1452 	uint64_t start = ppgtt->base.start;
   1453 	uint64_t length = ppgtt->base.total;
   1454 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
   1455 						 I915_CACHE_LLC, true);
   1456 
   1457 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
   1458 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
   1459 	} else {
   1460 		uint64_t templ4, pml4e;
   1461 		struct i915_pml4 *pml4 = &ppgtt->pml4;
   1462 		struct i915_page_directory_pointer *pdp;
   1463 
   1464 		gen8_for_each_pml4e(pdp, pml4, start, length, templ4, pml4e) {
   1465 			if (!test_bit(pml4e, pml4->used_pml4es))
   1466 				continue;
   1467 
   1468 			seq_printf(m, "    PML4E #%llu\n", pml4e);
   1469 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
   1470 		}
   1471 	}
   1472 }
   1473 
   1474 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
   1475 {
   1476 	unsigned long *new_page_dirs, *new_page_tables;
   1477 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
   1478 	int ret;
   1479 
   1480 	/* We allocate temp bitmap for page tables for no gain
   1481 	 * but as this is for init only, lets keep the things simple
   1482 	 */
   1483 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
   1484 	if (ret)
   1485 		return ret;
   1486 
   1487 	/* Allocate for all pdps regardless of how the ppgtt
   1488 	 * was defined.
   1489 	 */
   1490 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
   1491 						0, 1ULL << 32,
   1492 						new_page_dirs);
   1493 	if (!ret)
   1494 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
   1495 
   1496 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
   1497 
   1498 	return ret;
   1499 }
   1500 
   1501 /*
   1502  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
   1503  * with a net effect resembling a 2-level page table in normal x86 terms. Each
   1504  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
   1505  * space.
   1506  *
   1507  */
   1508 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
   1509 {
   1510 	int ret;
   1511 
   1512 	ret = gen8_init_scratch(&ppgtt->base);
   1513 	if (ret)
   1514 		return ret;
   1515 
   1516 	ppgtt->base.start = 0;
   1517 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
   1518 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
   1519 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
   1520 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
   1521 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
   1522 	ppgtt->base.bind_vma = ppgtt_bind_vma;
   1523 	ppgtt->debug_dump = gen8_dump_ppgtt;
   1524 
   1525 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
   1526 		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
   1527 		if (ret)
   1528 			goto free_scratch;
   1529 
   1530 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
   1531 
   1532 		ppgtt->base.total = 1ULL << 48;
   1533 		ppgtt->switch_mm = gen8_48b_mm_switch;
   1534 	} else {
   1535 		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
   1536 		if (ret)
   1537 			goto free_scratch;
   1538 
   1539 		ppgtt->base.total = 1ULL << 32;
   1540 		ppgtt->switch_mm = gen8_legacy_mm_switch;
   1541 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
   1542 							      0, 0,
   1543 							      GEN8_PML4E_SHIFT);
   1544 
   1545 		if (intel_vgpu_active(ppgtt->base.dev)) {
   1546 			ret = gen8_preallocate_top_level_pdps(ppgtt);
   1547 			if (ret)
   1548 				goto free_scratch;
   1549 		}
   1550 	}
   1551 
   1552 	if (intel_vgpu_active(ppgtt->base.dev))
   1553 		gen8_ppgtt_notify_vgt(ppgtt, true);
   1554 
   1555 	return 0;
   1556 
   1557 free_scratch:
   1558 	gen8_free_scratch(&ppgtt->base);
   1559 	return ret;
   1560 }
   1561 
   1562 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
   1563 {
   1564 	struct i915_address_space *vm = &ppgtt->base;
   1565 	struct i915_page_table *unused;
   1566 	gen6_pte_t scratch_pte;
   1567 	uint32_t pd_entry;
   1568 	uint32_t  pte, pde, temp;
   1569 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
   1570 
   1571 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
   1572 				     I915_CACHE_LLC, true, 0);
   1573 
   1574 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
   1575 		u32 expected;
   1576 		gen6_pte_t *pt_vaddr;
   1577 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
   1578 		pd_entry = readl(ppgtt->pd_addr + pde);
   1579 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
   1580 
   1581 		if (pd_entry != expected)
   1582 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
   1583 				   pde,
   1584 				   pd_entry,
   1585 				   expected);
   1586 		seq_printf(m, "\tPDE: %x\n", pd_entry);
   1587 
   1588 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
   1589 
   1590 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
   1591 			unsigned long va =
   1592 				(pde * PAGE_SIZE * GEN6_PTES) +
   1593 				(pte * PAGE_SIZE);
   1594 			int i;
   1595 			bool found = false;
   1596 			for (i = 0; i < 4; i++)
   1597 				if (pt_vaddr[pte + i] != scratch_pte)
   1598 					found = true;
   1599 			if (!found)
   1600 				continue;
   1601 
   1602 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
   1603 			for (i = 0; i < 4; i++) {
   1604 				if (pt_vaddr[pte + i] != scratch_pte)
   1605 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
   1606 				else
   1607 					seq_puts(m, "  SCRATCH ");
   1608 			}
   1609 			seq_puts(m, "\n");
   1610 		}
   1611 		kunmap_px(ppgtt, pt_vaddr);
   1612 	}
   1613 }
   1614 
   1615 /* Write pde (index) from the page directory @pd to the page table @pt */
   1616 static void gen6_write_pde(struct i915_page_directory *pd,
   1617 			    const int pde, struct i915_page_table *pt)
   1618 {
   1619 	/* Caller needs to make sure the write completes if necessary */
   1620 	struct i915_hw_ppgtt *ppgtt =
   1621 		container_of(pd, struct i915_hw_ppgtt, pd);
   1622 	u32 pd_entry;
   1623 
   1624 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
   1625 	pd_entry |= GEN6_PDE_VALID;
   1626 
   1627 	writel(pd_entry, ppgtt->pd_addr + pde);
   1628 }
   1629 
   1630 /* Write all the page tables found in the ppgtt structure to incrementing page
   1631  * directories. */
   1632 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
   1633 				  struct i915_page_directory *pd,
   1634 				  uint32_t start, uint32_t length)
   1635 {
   1636 	struct i915_page_table *pt;
   1637 	uint32_t pde, temp;
   1638 
   1639 	gen6_for_each_pde(pt, pd, start, length, temp, pde)
   1640 		gen6_write_pde(pd, pde, pt);
   1641 
   1642 	/* Make sure write is complete before other code can use this page
   1643 	 * table. Also require for WC mapped PTEs */
   1644 	readl(dev_priv->gtt.gsm);
   1645 }
   1646 
   1647 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
   1648 {
   1649 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
   1650 
   1651 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
   1652 }
   1653 
   1654 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
   1655 			 struct drm_i915_gem_request *req)
   1656 {
   1657 	struct intel_engine_cs *ring = req->ring;
   1658 	int ret;
   1659 
   1660 	/* NB: TLBs must be flushed and invalidated before a switch */
   1661 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
   1662 	if (ret)
   1663 		return ret;
   1664 
   1665 	ret = intel_ring_begin(req, 6);
   1666 	if (ret)
   1667 		return ret;
   1668 
   1669 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
   1670 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
   1671 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
   1672 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
   1673 	intel_ring_emit(ring, get_pd_offset(ppgtt));
   1674 	intel_ring_emit(ring, MI_NOOP);
   1675 	intel_ring_advance(ring);
   1676 
   1677 	return 0;
   1678 }
   1679 
   1680 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
   1681 			  struct drm_i915_gem_request *req)
   1682 {
   1683 	struct intel_engine_cs *ring = req->ring;
   1684 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
   1685 
   1686 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
   1687 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
   1688 	return 0;
   1689 }
   1690 
   1691 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
   1692 			  struct drm_i915_gem_request *req)
   1693 {
   1694 	struct intel_engine_cs *ring = req->ring;
   1695 	int ret;
   1696 
   1697 	/* NB: TLBs must be flushed and invalidated before a switch */
   1698 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
   1699 	if (ret)
   1700 		return ret;
   1701 
   1702 	ret = intel_ring_begin(req, 6);
   1703 	if (ret)
   1704 		return ret;
   1705 
   1706 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
   1707 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
   1708 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
   1709 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
   1710 	intel_ring_emit(ring, get_pd_offset(ppgtt));
   1711 	intel_ring_emit(ring, MI_NOOP);
   1712 	intel_ring_advance(ring);
   1713 
   1714 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
   1715 	if (ring->id != RCS) {
   1716 		ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
   1717 		if (ret)
   1718 			return ret;
   1719 	}
   1720 
   1721 	return 0;
   1722 }
   1723 
   1724 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
   1725 			  struct drm_i915_gem_request *req)
   1726 {
   1727 	struct intel_engine_cs *ring = req->ring;
   1728 	struct drm_device *dev = ppgtt->base.dev;
   1729 	struct drm_i915_private *dev_priv = dev->dev_private;
   1730 
   1731 
   1732 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
   1733 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
   1734 
   1735 	POSTING_READ(RING_PP_DIR_DCLV(ring));
   1736 
   1737 	return 0;
   1738 }
   1739 
   1740 static void gen8_ppgtt_enable(struct drm_device *dev)
   1741 {
   1742 	struct drm_i915_private *dev_priv = dev->dev_private;
   1743 	struct intel_engine_cs *ring;
   1744 	int j;
   1745 
   1746 	for_each_ring(ring, dev_priv, j) {
   1747 		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
   1748 		I915_WRITE(RING_MODE_GEN7(ring),
   1749 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
   1750 	}
   1751 }
   1752 
   1753 static void gen7_ppgtt_enable(struct drm_device *dev)
   1754 {
   1755 	struct drm_i915_private *dev_priv = dev->dev_private;
   1756 	struct intel_engine_cs *ring;
   1757 	uint32_t ecochk, ecobits;
   1758 	int i;
   1759 
   1760 	ecobits = I915_READ(GAC_ECO_BITS);
   1761 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
   1762 
   1763 	ecochk = I915_READ(GAM_ECOCHK);
   1764 	if (IS_HASWELL(dev)) {
   1765 		ecochk |= ECOCHK_PPGTT_WB_HSW;
   1766 	} else {
   1767 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
   1768 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
   1769 	}
   1770 	I915_WRITE(GAM_ECOCHK, ecochk);
   1771 
   1772 	for_each_ring(ring, dev_priv, i) {
   1773 		/* GFX_MODE is per-ring on gen7+ */
   1774 		I915_WRITE(RING_MODE_GEN7(ring),
   1775 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
   1776 	}
   1777 }
   1778 
   1779 static void gen6_ppgtt_enable(struct drm_device *dev)
   1780 {
   1781 	struct drm_i915_private *dev_priv = dev->dev_private;
   1782 	uint32_t ecochk, gab_ctl, ecobits;
   1783 
   1784 	ecobits = I915_READ(GAC_ECO_BITS);
   1785 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
   1786 		   ECOBITS_PPGTT_CACHE64B);
   1787 
   1788 	gab_ctl = I915_READ(GAB_CTL);
   1789 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
   1790 
   1791 	ecochk = I915_READ(GAM_ECOCHK);
   1792 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
   1793 
   1794 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
   1795 }
   1796 
   1797 /* PPGTT support for Sandybdrige/Gen6 and later */
   1798 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
   1799 				   uint64_t start,
   1800 				   uint64_t length,
   1801 				   bool use_scratch)
   1802 {
   1803 	struct i915_hw_ppgtt *ppgtt =
   1804 		container_of(vm, struct i915_hw_ppgtt, base);
   1805 	gen6_pte_t *pt_vaddr, scratch_pte;
   1806 	unsigned first_entry = start >> PAGE_SHIFT;
   1807 	unsigned num_entries = length >> PAGE_SHIFT;
   1808 	unsigned act_pt = first_entry / GEN6_PTES;
   1809 	unsigned first_pte = first_entry % GEN6_PTES;
   1810 	unsigned last_pte, i;
   1811 
   1812 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
   1813 				     I915_CACHE_LLC, true, 0);
   1814 
   1815 	while (num_entries) {
   1816 		last_pte = first_pte + num_entries;
   1817 		if (last_pte > GEN6_PTES)
   1818 			last_pte = GEN6_PTES;
   1819 
   1820 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
   1821 
   1822 		for (i = first_pte; i < last_pte; i++)
   1823 			pt_vaddr[i] = scratch_pte;
   1824 
   1825 		kunmap_px(ppgtt, pt_vaddr);
   1826 
   1827 		num_entries -= last_pte - first_pte;
   1828 		first_pte = 0;
   1829 		act_pt++;
   1830 	}
   1831 }
   1832 
   1833 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
   1834 				      struct sg_table *pages,
   1835 				      uint64_t start,
   1836 				      enum i915_cache_level cache_level, u32 flags)
   1837 {
   1838 	struct i915_hw_ppgtt *ppgtt =
   1839 		container_of(vm, struct i915_hw_ppgtt, base);
   1840 	gen6_pte_t *pt_vaddr;
   1841 	unsigned first_entry = start >> PAGE_SHIFT;
   1842 	unsigned act_pt = first_entry / GEN6_PTES;
   1843 	unsigned act_pte = first_entry % GEN6_PTES;
   1844 	struct sg_page_iter sg_iter;
   1845 
   1846 	pt_vaddr = NULL;
   1847 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
   1848 		if (pt_vaddr == NULL)
   1849 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
   1850 
   1851 		pt_vaddr[act_pte] =
   1852 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
   1853 				       cache_level, true, flags);
   1854 
   1855 		if (++act_pte == GEN6_PTES) {
   1856 			kunmap_px(ppgtt, pt_vaddr);
   1857 			pt_vaddr = NULL;
   1858 			act_pt++;
   1859 			act_pte = 0;
   1860 		}
   1861 	}
   1862 	if (pt_vaddr)
   1863 		kunmap_px(ppgtt, pt_vaddr);
   1864 }
   1865 
   1866 static int gen6_alloc_va_range(struct i915_address_space *vm,
   1867 			       uint64_t start_in, uint64_t length_in)
   1868 {
   1869 	DECLARE_BITMAP(new_page_tables, I915_PDES);
   1870 	struct drm_device *dev = vm->dev;
   1871 	struct drm_i915_private *dev_priv = dev->dev_private;
   1872 	struct i915_hw_ppgtt *ppgtt =
   1873 				container_of(vm, struct i915_hw_ppgtt, base);
   1874 	struct i915_page_table *pt;
   1875 	uint32_t start, length, start_save, length_save;
   1876 	uint32_t pde, temp;
   1877 	int ret;
   1878 
   1879 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
   1880 		return -ENODEV;
   1881 
   1882 	start = start_save = start_in;
   1883 	length = length_save = length_in;
   1884 
   1885 	bitmap_zero(new_page_tables, I915_PDES);
   1886 
   1887 	/* The allocation is done in two stages so that we can bail out with
   1888 	 * minimal amount of pain. The first stage finds new page tables that
   1889 	 * need allocation. The second stage marks use ptes within the page
   1890 	 * tables.
   1891 	 */
   1892 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
   1893 		if (pt != vm->scratch_pt) {
   1894 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
   1895 			continue;
   1896 		}
   1897 
   1898 		/* We've already allocated a page table */
   1899 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
   1900 
   1901 		pt = alloc_pt(dev);
   1902 		if (IS_ERR(pt)) {
   1903 			ret = PTR_ERR(pt);
   1904 			goto unwind_out;
   1905 		}
   1906 
   1907 		gen6_initialize_pt(vm, pt);
   1908 
   1909 		ppgtt->pd.page_table[pde] = pt;
   1910 		__set_bit(pde, new_page_tables);
   1911 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
   1912 	}
   1913 
   1914 	start = start_save;
   1915 	length = length_save;
   1916 
   1917 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
   1918 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
   1919 
   1920 		bitmap_zero(tmp_bitmap, GEN6_PTES);
   1921 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
   1922 			   gen6_pte_count(start, length));
   1923 
   1924 		if (__test_and_clear_bit(pde, new_page_tables))
   1925 			gen6_write_pde(&ppgtt->pd, pde, pt);
   1926 
   1927 		trace_i915_page_table_entry_map(vm, pde, pt,
   1928 					 gen6_pte_index(start),
   1929 					 gen6_pte_count(start, length),
   1930 					 GEN6_PTES);
   1931 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
   1932 				GEN6_PTES);
   1933 	}
   1934 
   1935 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
   1936 
   1937 	/* Make sure write is complete before other code can use this page
   1938 	 * table. Also require for WC mapped PTEs */
   1939 	readl(dev_priv->gtt.gsm);
   1940 
   1941 	mark_tlbs_dirty(ppgtt);
   1942 	return 0;
   1943 
   1944 unwind_out:
   1945 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
   1946 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
   1947 
   1948 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
   1949 		free_pt(vm->dev, pt);
   1950 	}
   1951 
   1952 	mark_tlbs_dirty(ppgtt);
   1953 	return ret;
   1954 }
   1955 
   1956 static int gen6_init_scratch(struct i915_address_space *vm)
   1957 {
   1958 	struct drm_device *dev = vm->dev;
   1959 
   1960 	vm->scratch_page = alloc_scratch_page(dev);
   1961 	if (IS_ERR(vm->scratch_page))
   1962 		return PTR_ERR(vm->scratch_page);
   1963 
   1964 	vm->scratch_pt = alloc_pt(dev);
   1965 	if (IS_ERR(vm->scratch_pt)) {
   1966 		free_scratch_page(dev, vm->scratch_page);
   1967 		return PTR_ERR(vm->scratch_pt);
   1968 	}
   1969 
   1970 	gen6_initialize_pt(vm, vm->scratch_pt);
   1971 
   1972 	return 0;
   1973 }
   1974 
   1975 static void gen6_free_scratch(struct i915_address_space *vm)
   1976 {
   1977 	struct drm_device *dev = vm->dev;
   1978 
   1979 	free_pt(dev, vm->scratch_pt);
   1980 	free_scratch_page(dev, vm->scratch_page);
   1981 }
   1982 
   1983 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
   1984 {
   1985 	struct i915_hw_ppgtt *ppgtt =
   1986 		container_of(vm, struct i915_hw_ppgtt, base);
   1987 	struct i915_page_table *pt;
   1988 	uint32_t pde;
   1989 
   1990 	drm_mm_remove_node(&ppgtt->node);
   1991 
   1992 	gen6_for_all_pdes(pt, ppgtt, pde) {
   1993 		if (pt != vm->scratch_pt)
   1994 			free_pt(ppgtt->base.dev, pt);
   1995 	}
   1996 
   1997 	gen6_free_scratch(vm);
   1998 }
   1999 
   2000 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
   2001 {
   2002 	struct i915_address_space *vm = &ppgtt->base;
   2003 	struct drm_device *dev = ppgtt->base.dev;
   2004 	struct drm_i915_private *dev_priv = dev->dev_private;
   2005 	bool retried = false;
   2006 	int ret;
   2007 
   2008 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
   2009 	 * allocator works in address space sizes, so it's multiplied by page
   2010 	 * size. We allocate at the top of the GTT to avoid fragmentation.
   2011 	 */
   2012 	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
   2013 
   2014 	ret = gen6_init_scratch(vm);
   2015 	if (ret)
   2016 		return ret;
   2017 
   2018 alloc:
   2019 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
   2020 						  &ppgtt->node, GEN6_PD_SIZE,
   2021 						  GEN6_PD_ALIGN, 0,
   2022 						  0, dev_priv->gtt.base.total,
   2023 						  DRM_MM_TOPDOWN);
   2024 	if (ret == -ENOSPC && !retried) {
   2025 		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
   2026 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
   2027 					       I915_CACHE_NONE,
   2028 					       0, dev_priv->gtt.base.total,
   2029 					       0);
   2030 		if (ret)
   2031 			goto err_out;
   2032 
   2033 		retried = true;
   2034 		goto alloc;
   2035 	}
   2036 
   2037 	if (ret)
   2038 		goto err_out;
   2039 
   2040 
   2041 	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
   2042 		DRM_DEBUG("Forced to use aperture for PDEs\n");
   2043 
   2044 	return 0;
   2045 
   2046 err_out:
   2047 	gen6_free_scratch(vm);
   2048 	return ret;
   2049 }
   2050 
   2051 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
   2052 {
   2053 	return gen6_ppgtt_allocate_page_directories(ppgtt);
   2054 }
   2055 
   2056 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
   2057 				  uint64_t start, uint64_t length)
   2058 {
   2059 	struct i915_page_table *unused;
   2060 	uint32_t pde, temp;
   2061 
   2062 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
   2063 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
   2064 }
   2065 
   2066 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
   2067 {
   2068 	struct drm_device *dev = ppgtt->base.dev;
   2069 	struct drm_i915_private *dev_priv = dev->dev_private;
   2070 	int ret;
   2071 
   2072 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
   2073 	if (IS_GEN6(dev)) {
   2074 		ppgtt->switch_mm = gen6_mm_switch;
   2075 	} else if (IS_HASWELL(dev)) {
   2076 		ppgtt->switch_mm = hsw_mm_switch;
   2077 	} else if (IS_GEN7(dev)) {
   2078 		ppgtt->switch_mm = gen7_mm_switch;
   2079 	} else
   2080 		BUG();
   2081 
   2082 	if (intel_vgpu_active(dev))
   2083 		ppgtt->switch_mm = vgpu_mm_switch;
   2084 
   2085 	ret = gen6_ppgtt_alloc(ppgtt);
   2086 	if (ret)
   2087 		return ret;
   2088 
   2089 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
   2090 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
   2091 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
   2092 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
   2093 	ppgtt->base.bind_vma = ppgtt_bind_vma;
   2094 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
   2095 	ppgtt->base.start = 0;
   2096 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
   2097 	ppgtt->debug_dump = gen6_dump_ppgtt;
   2098 
   2099 	ppgtt->pd.base.ggtt_offset =
   2100 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
   2101 
   2102 	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
   2103 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
   2104 
   2105 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
   2106 
   2107 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
   2108 
   2109 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
   2110 			 ppgtt->node.size >> 20,
   2111 			 ppgtt->node.start / PAGE_SIZE);
   2112 
   2113 	DRM_DEBUG("Adding PPGTT at offset %x\n",
   2114 		  ppgtt->pd.base.ggtt_offset << 10);
   2115 
   2116 	return 0;
   2117 }
   2118 
   2119 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
   2120 {
   2121 	ppgtt->base.dev = dev;
   2122 
   2123 	if (INTEL_INFO(dev)->gen < 8)
   2124 		return gen6_ppgtt_init(ppgtt);
   2125 	else
   2126 		return gen8_ppgtt_init(ppgtt);
   2127 }
   2128 
   2129 static void i915_address_space_init(struct i915_address_space *vm,
   2130 				    struct drm_i915_private *dev_priv)
   2131 {
   2132 	drm_mm_init(&vm->mm, vm->start, vm->total);
   2133 	vm->dev = dev_priv->dev;
   2134 	INIT_LIST_HEAD(&vm->active_list);
   2135 	INIT_LIST_HEAD(&vm->inactive_list);
   2136 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
   2137 }
   2138 
   2139 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
   2140 {
   2141 	struct drm_i915_private *dev_priv = dev->dev_private;
   2142 	int ret = 0;
   2143 
   2144 	ret = __hw_ppgtt_init(dev, ppgtt);
   2145 	if (ret == 0) {
   2146 		kref_init(&ppgtt->ref);
   2147 		i915_address_space_init(&ppgtt->base, dev_priv);
   2148 	}
   2149 
   2150 	return ret;
   2151 }
   2152 
   2153 int i915_ppgtt_init_hw(struct drm_device *dev)
   2154 {
   2155 	/* In the case of execlists, PPGTT is enabled by the context descriptor
   2156 	 * and the PDPs are contained within the context itself.  We don't
   2157 	 * need to do anything here. */
   2158 	if (i915.enable_execlists)
   2159 		return 0;
   2160 
   2161 	if (!USES_PPGTT(dev))
   2162 		return 0;
   2163 
   2164 	if (IS_GEN6(dev))
   2165 		gen6_ppgtt_enable(dev);
   2166 	else if (IS_GEN7(dev))
   2167 		gen7_ppgtt_enable(dev);
   2168 	else if (INTEL_INFO(dev)->gen >= 8)
   2169 		gen8_ppgtt_enable(dev);
   2170 	else
   2171 		MISSING_CASE(INTEL_INFO(dev)->gen);
   2172 
   2173 	return 0;
   2174 }
   2175 
   2176 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
   2177 {
   2178 	struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
   2179 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
   2180 
   2181 	if (i915.enable_execlists)
   2182 		return 0;
   2183 
   2184 	if (!ppgtt)
   2185 		return 0;
   2186 
   2187 	return ppgtt->switch_mm(ppgtt, req);
   2188 }
   2189 
   2190 struct i915_hw_ppgtt *
   2191 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
   2192 {
   2193 	struct i915_hw_ppgtt *ppgtt;
   2194 	int ret;
   2195 
   2196 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
   2197 	if (!ppgtt)
   2198 		return ERR_PTR(-ENOMEM);
   2199 
   2200 	ret = i915_ppgtt_init(dev, ppgtt);
   2201 	if (ret) {
   2202 		kfree(ppgtt);
   2203 		return ERR_PTR(ret);
   2204 	}
   2205 
   2206 	ppgtt->file_priv = fpriv;
   2207 
   2208 	trace_i915_ppgtt_create(&ppgtt->base);
   2209 
   2210 	return ppgtt;
   2211 }
   2212 
   2213 void  i915_ppgtt_release(struct kref *kref)
   2214 {
   2215 	struct i915_hw_ppgtt *ppgtt =
   2216 		container_of(kref, struct i915_hw_ppgtt, ref);
   2217 
   2218 	trace_i915_ppgtt_release(&ppgtt->base);
   2219 
   2220 	/* vmas should already be unbound */
   2221 	WARN_ON(!list_empty(&ppgtt->base.active_list));
   2222 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
   2223 
   2224 	list_del(&ppgtt->base.global_link);
   2225 	drm_mm_takedown(&ppgtt->base.mm);
   2226 
   2227 	ppgtt->base.cleanup(&ppgtt->base);
   2228 	kfree(ppgtt);
   2229 }
   2230 
   2231 extern int intel_iommu_gfx_mapped;
   2232 /* Certain Gen5 chipsets require require idling the GPU before
   2233  * unmapping anything from the GTT when VT-d is enabled.
   2234  */
   2235 static bool needs_idle_maps(struct drm_device *dev)
   2236 {
   2237 #ifdef CONFIG_INTEL_IOMMU
   2238 	/* Query intel_iommu to see if we need the workaround. Presumably that
   2239 	 * was loaded first.
   2240 	 */
   2241 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
   2242 		return true;
   2243 #endif
   2244 	return false;
   2245 }
   2246 
   2247 static bool do_idling(struct drm_i915_private *dev_priv)
   2248 {
   2249 	bool ret = dev_priv->mm.interruptible;
   2250 
   2251 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
   2252 		dev_priv->mm.interruptible = false;
   2253 		if (i915_gpu_idle(dev_priv->dev)) {
   2254 			DRM_ERROR("Couldn't idle GPU\n");
   2255 			/* Wait a bit, in hopes it avoids the hang */
   2256 			udelay(10);
   2257 		}
   2258 	}
   2259 
   2260 	return ret;
   2261 }
   2262 
   2263 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
   2264 {
   2265 	if (unlikely(dev_priv->gtt.do_idle_maps))
   2266 		dev_priv->mm.interruptible = interruptible;
   2267 }
   2268 
   2269 void i915_check_and_clear_faults(struct drm_device *dev)
   2270 {
   2271 	struct drm_i915_private *dev_priv = dev->dev_private;
   2272 	struct intel_engine_cs *ring;
   2273 	int i;
   2274 
   2275 	if (INTEL_INFO(dev)->gen < 6)
   2276 		return;
   2277 
   2278 	for_each_ring(ring, dev_priv, i) {
   2279 		u32 fault_reg;
   2280 		fault_reg = I915_READ(RING_FAULT_REG(ring));
   2281 		if (fault_reg & RING_FAULT_VALID) {
   2282 			DRM_DEBUG_DRIVER("Unexpected fault\n"
   2283 					 "\tAddr: 0x%08lx\n"
   2284 					 "\tAddress space: %s\n"
   2285 					 "\tSource ID: %d\n"
   2286 					 "\tType: %d\n",
   2287 					 fault_reg & PAGE_MASK,
   2288 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
   2289 					 RING_FAULT_SRCID(fault_reg),
   2290 					 RING_FAULT_FAULT_TYPE(fault_reg));
   2291 			I915_WRITE(RING_FAULT_REG(ring),
   2292 				   fault_reg & ~RING_FAULT_VALID);
   2293 		}
   2294 	}
   2295 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
   2296 }
   2297 
   2298 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
   2299 {
   2300 	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
   2301 		intel_gtt_chipset_flush();
   2302 	} else {
   2303 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2304 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2305 	}
   2306 }
   2307 
   2308 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
   2309 {
   2310 	struct drm_i915_private *dev_priv = dev->dev_private;
   2311 
   2312 	/* Don't bother messing with faults pre GEN6 as we have little
   2313 	 * documentation supporting that it's a good idea.
   2314 	 */
   2315 	if (INTEL_INFO(dev)->gen < 6)
   2316 		return;
   2317 
   2318 	i915_check_and_clear_faults(dev);
   2319 
   2320 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
   2321 				       dev_priv->gtt.base.start,
   2322 				       dev_priv->gtt.base.total,
   2323 				       true);
   2324 
   2325 	i915_ggtt_flush(dev_priv);
   2326 }
   2327 
   2328 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
   2329 {
   2330 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
   2331 			obj->pages->sgl, obj->pages->nents,
   2332 			PCI_DMA_BIDIRECTIONAL))
   2333 		return -ENOSPC;
   2334 
   2335 	return 0;
   2336 }
   2337 
   2338 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
   2339 {
   2340 #ifdef writeq
   2341 	writeq(pte, addr);
   2342 #else
   2343 	iowrite32((u32)pte, addr);
   2344 	iowrite32(pte >> 32, addr + 4);
   2345 #endif
   2346 }
   2347 
   2348 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
   2349 				     struct sg_table *st,
   2350 				     uint64_t start,
   2351 				     enum i915_cache_level level, u32 unused)
   2352 {
   2353 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2354 	unsigned first_entry = start >> PAGE_SHIFT;
   2355 	gen8_pte_t __iomem *gtt_entries =
   2356 		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
   2357 	int i = 0;
   2358 	struct sg_page_iter sg_iter;
   2359 	dma_addr_t addr = 0; /* shut up gcc */
   2360 
   2361 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
   2362 		addr = sg_dma_address(sg_iter.sg) +
   2363 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
   2364 		gen8_set_pte(&gtt_entries[i],
   2365 			     gen8_pte_encode(addr, level, true));
   2366 		i++;
   2367 	}
   2368 
   2369 	/*
   2370 	 * XXX: This serves as a posting read to make sure that the PTE has
   2371 	 * actually been updated. There is some concern that even though
   2372 	 * registers and PTEs are within the same BAR that they are potentially
   2373 	 * of NUMA access patterns. Therefore, even with the way we assume
   2374 	 * hardware should work, we must keep this posting read for paranoia.
   2375 	 */
   2376 	if (i != 0)
   2377 		WARN_ON(readq(&gtt_entries[i-1])
   2378 			!= gen8_pte_encode(addr, level, true));
   2379 
   2380 	/* This next bit makes the above posting read even more important. We
   2381 	 * want to flush the TLBs only after we're certain all the PTE updates
   2382 	 * have finished.
   2383 	 */
   2384 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2385 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2386 }
   2387 
   2388 /*
   2389  * Binds an object into the global gtt with the specified cache level. The object
   2390  * will be accessible to the GPU via commands whose operands reference offsets
   2391  * within the global GTT as well as accessible by the GPU through the GMADR
   2392  * mapped BAR (dev_priv->mm.gtt->gtt).
   2393  */
   2394 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
   2395 				     struct sg_table *st,
   2396 				     uint64_t start,
   2397 				     enum i915_cache_level level, u32 flags)
   2398 {
   2399 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2400 	unsigned first_entry = start >> PAGE_SHIFT;
   2401 	gen6_pte_t __iomem *gtt_entries =
   2402 		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
   2403 	int i = 0;
   2404 	struct sg_page_iter sg_iter;
   2405 	dma_addr_t addr = 0;
   2406 
   2407 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
   2408 		addr = sg_page_iter_dma_address(&sg_iter);
   2409 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
   2410 		i++;
   2411 	}
   2412 
   2413 	/* XXX: This serves as a posting read to make sure that the PTE has
   2414 	 * actually been updated. There is some concern that even though
   2415 	 * registers and PTEs are within the same BAR that they are potentially
   2416 	 * of NUMA access patterns. Therefore, even with the way we assume
   2417 	 * hardware should work, we must keep this posting read for paranoia.
   2418 	 */
   2419 	if (i != 0) {
   2420 		unsigned long gtt = readl(&gtt_entries[i-1]);
   2421 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
   2422 	}
   2423 
   2424 	/* This next bit makes the above posting read even more important. We
   2425 	 * want to flush the TLBs only after we're certain all the PTE updates
   2426 	 * have finished.
   2427 	 */
   2428 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2429 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2430 }
   2431 
   2432 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
   2433 				  uint64_t start,
   2434 				  uint64_t length,
   2435 				  bool use_scratch)
   2436 {
   2437 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2438 	unsigned first_entry = start >> PAGE_SHIFT;
   2439 	unsigned num_entries = length >> PAGE_SHIFT;
   2440 	gen8_pte_t scratch_pte, __iomem *gtt_base =
   2441 		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
   2442 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
   2443 	int i;
   2444 
   2445 	if (WARN(num_entries > max_entries,
   2446 		 "First entry = %d; Num entries = %d (max=%d)\n",
   2447 		 first_entry, num_entries, max_entries))
   2448 		num_entries = max_entries;
   2449 
   2450 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
   2451 				      I915_CACHE_LLC,
   2452 				      use_scratch);
   2453 	for (i = 0; i < num_entries; i++)
   2454 		gen8_set_pte(&gtt_base[i], scratch_pte);
   2455 	readl(gtt_base);
   2456 }
   2457 
   2458 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
   2459 				  uint64_t start,
   2460 				  uint64_t length,
   2461 				  bool use_scratch)
   2462 {
   2463 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2464 	unsigned first_entry = start >> PAGE_SHIFT;
   2465 	unsigned num_entries = length >> PAGE_SHIFT;
   2466 	gen6_pte_t scratch_pte, __iomem *gtt_base =
   2467 		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
   2468 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
   2469 	int i;
   2470 
   2471 	if (WARN(num_entries > max_entries,
   2472 		 "First entry = %d; Num entries = %d (max=%d)\n",
   2473 		 first_entry, num_entries, max_entries))
   2474 		num_entries = max_entries;
   2475 
   2476 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
   2477 				     I915_CACHE_LLC, use_scratch, 0);
   2478 
   2479 	for (i = 0; i < num_entries; i++)
   2480 		iowrite32(scratch_pte, &gtt_base[i]);
   2481 	readl(gtt_base);
   2482 }
   2483 
   2484 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
   2485 				     struct sg_table *pages,
   2486 				     uint64_t start,
   2487 				     enum i915_cache_level cache_level, u32 unused)
   2488 {
   2489 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
   2490 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
   2491 
   2492 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
   2493 
   2494 }
   2495 
   2496 static void i915_ggtt_clear_range(struct i915_address_space *vm,
   2497 				  uint64_t start,
   2498 				  uint64_t length,
   2499 				  bool unused)
   2500 {
   2501 	unsigned first_entry = start >> PAGE_SHIFT;
   2502 	unsigned num_entries = length >> PAGE_SHIFT;
   2503 	intel_gtt_clear_range(first_entry, num_entries);
   2504 }
   2505 
   2506 static int ggtt_bind_vma(struct i915_vma *vma,
   2507 			 enum i915_cache_level cache_level,
   2508 			 u32 flags)
   2509 {
   2510 	struct drm_i915_gem_object *obj = vma->obj;
   2511 	u32 pte_flags = 0;
   2512 	int ret;
   2513 
   2514 	ret = i915_get_ggtt_vma_pages(vma);
   2515 	if (ret)
   2516 		return ret;
   2517 
   2518 	/* Currently applicable only to VLV */
   2519 	if (obj->gt_ro)
   2520 		pte_flags |= PTE_READ_ONLY;
   2521 
   2522 	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
   2523 				vma->node.start,
   2524 				cache_level, pte_flags);
   2525 
   2526 	/*
   2527 	 * Without aliasing PPGTT there's no difference between
   2528 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
   2529 	 * upgrade to both bound if we bind either to avoid double-binding.
   2530 	 */
   2531 	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
   2532 
   2533 	return 0;
   2534 }
   2535 
   2536 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
   2537 				 enum i915_cache_level cache_level,
   2538 				 u32 flags)
   2539 {
   2540 	struct drm_device *dev = vma->vm->dev;
   2541 	struct drm_i915_private *dev_priv = dev->dev_private;
   2542 	struct drm_i915_gem_object *obj = vma->obj;
   2543 	struct sg_table *pages = obj->pages;
   2544 	u32 pte_flags = 0;
   2545 	int ret;
   2546 
   2547 	ret = i915_get_ggtt_vma_pages(vma);
   2548 	if (ret)
   2549 		return ret;
   2550 	pages = vma->ggtt_view.pages;
   2551 
   2552 	/* Currently applicable only to VLV */
   2553 	if (obj->gt_ro)
   2554 		pte_flags |= PTE_READ_ONLY;
   2555 
   2556 
   2557 	if (flags & GLOBAL_BIND) {
   2558 		vma->vm->insert_entries(vma->vm, pages,
   2559 					vma->node.start,
   2560 					cache_level, pte_flags);
   2561 	}
   2562 
   2563 	if (flags & LOCAL_BIND) {
   2564 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
   2565 		appgtt->base.insert_entries(&appgtt->base, pages,
   2566 					    vma->node.start,
   2567 					    cache_level, pte_flags);
   2568 	}
   2569 
   2570 	return 0;
   2571 }
   2572 
   2573 static void ggtt_unbind_vma(struct i915_vma *vma)
   2574 {
   2575 	struct drm_device *dev = vma->vm->dev;
   2576 	struct drm_i915_private *dev_priv = dev->dev_private;
   2577 	struct drm_i915_gem_object *obj = vma->obj;
   2578 	const uint64_t size = min_t(uint64_t,
   2579 				    obj->base.size,
   2580 				    vma->node.size);
   2581 
   2582 	if (vma->bound & GLOBAL_BIND) {
   2583 		vma->vm->clear_range(vma->vm,
   2584 				     vma->node.start,
   2585 				     size,
   2586 				     true);
   2587 	}
   2588 
   2589 	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
   2590 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
   2591 
   2592 		appgtt->base.clear_range(&appgtt->base,
   2593 					 vma->node.start,
   2594 					 size,
   2595 					 true);
   2596 	}
   2597 }
   2598 
   2599 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
   2600 {
   2601 	struct drm_device *dev = obj->base.dev;
   2602 	struct drm_i915_private *dev_priv = dev->dev_private;
   2603 	bool interruptible;
   2604 
   2605 	interruptible = do_idling(dev_priv);
   2606 
   2607 	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
   2608 		     PCI_DMA_BIDIRECTIONAL);
   2609 
   2610 	undo_idling(dev_priv, interruptible);
   2611 }
   2612 
   2613 static void i915_gtt_color_adjust(struct drm_mm_node *node,
   2614 				  unsigned long color,
   2615 				  u64 *start,
   2616 				  u64 *end)
   2617 {
   2618 	if (node->color != color)
   2619 		*start += 4096;
   2620 
   2621 	if (!list_empty(&node->node_list)) {
   2622 		node = list_entry(node->node_list.next,
   2623 				  struct drm_mm_node,
   2624 				  node_list);
   2625 		if (node->allocated && node->color != color)
   2626 			*end -= 4096;
   2627 	}
   2628 }
   2629 
   2630 static int i915_gem_setup_global_gtt(struct drm_device *dev,
   2631 				     u64 start,
   2632 				     u64 mappable_end,
   2633 				     u64 end)
   2634 {
   2635 	/* Let GEM Manage all of the aperture.
   2636 	 *
   2637 	 * However, leave one page at the end still bound to the scratch page.
   2638 	 * There are a number of places where the hardware apparently prefetches
   2639 	 * past the end of the object, and we've seen multiple hangs with the
   2640 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
   2641 	 * aperture.  One page should be enough to keep any prefetching inside
   2642 	 * of the aperture.
   2643 	 */
   2644 	struct drm_i915_private *dev_priv = dev->dev_private;
   2645 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
   2646 	struct drm_mm_node *entry;
   2647 	struct drm_i915_gem_object *obj;
   2648 	unsigned long hole_start, hole_end;
   2649 	int ret;
   2650 
   2651 	BUG_ON(mappable_end > end);
   2652 
   2653 	ggtt_vm->start = start;
   2654 
   2655 	/* Subtract the guard page before address space initialization to
   2656 	 * shrink the range used by drm_mm */
   2657 	ggtt_vm->total = end - start - PAGE_SIZE;
   2658 	i915_address_space_init(ggtt_vm, dev_priv);
   2659 	ggtt_vm->total += PAGE_SIZE;
   2660 
   2661 	if (intel_vgpu_active(dev)) {
   2662 		ret = intel_vgt_balloon(dev);
   2663 		if (ret)
   2664 			return ret;
   2665 	}
   2666 
   2667 	if (!HAS_LLC(dev))
   2668 		ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
   2669 
   2670 	/* Mark any preallocated objects as occupied */
   2671 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
   2672 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
   2673 
   2674 		DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
   2675 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
   2676 
   2677 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
   2678 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
   2679 		if (ret) {
   2680 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
   2681 			return ret;
   2682 		}
   2683 		vma->bound |= GLOBAL_BIND;
   2684 		__i915_vma_set_map_and_fenceable(vma);
   2685 		list_add_tail(&vma->mm_list, &ggtt_vm->inactive_list);
   2686 	}
   2687 
   2688 	/* Clear any non-preallocated blocks */
   2689 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
   2690 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
   2691 			      hole_start, hole_end);
   2692 		ggtt_vm->clear_range(ggtt_vm, hole_start,
   2693 				     hole_end - hole_start, true);
   2694 	}
   2695 
   2696 	/* And finally clear the reserved guard page */
   2697 	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
   2698 
   2699 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
   2700 		struct i915_hw_ppgtt *ppgtt;
   2701 
   2702 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
   2703 		if (!ppgtt)
   2704 			return -ENOMEM;
   2705 
   2706 		ret = __hw_ppgtt_init(dev, ppgtt);
   2707 		if (ret) {
   2708 			ppgtt->base.cleanup(&ppgtt->base);
   2709 			kfree(ppgtt);
   2710 			return ret;
   2711 		}
   2712 
   2713 		if (ppgtt->base.allocate_va_range)
   2714 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
   2715 							    ppgtt->base.total);
   2716 		if (ret) {
   2717 			ppgtt->base.cleanup(&ppgtt->base);
   2718 			kfree(ppgtt);
   2719 			return ret;
   2720 		}
   2721 
   2722 		ppgtt->base.clear_range(&ppgtt->base,
   2723 					ppgtt->base.start,
   2724 					ppgtt->base.total,
   2725 					true);
   2726 
   2727 		dev_priv->mm.aliasing_ppgtt = ppgtt;
   2728 		WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
   2729 		dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
   2730 	}
   2731 
   2732 	return 0;
   2733 }
   2734 
   2735 void i915_gem_init_global_gtt(struct drm_device *dev)
   2736 {
   2737 	struct drm_i915_private *dev_priv = dev->dev_private;
   2738 	u64 gtt_size, mappable_size;
   2739 
   2740 	gtt_size = dev_priv->gtt.base.total;
   2741 	mappable_size = dev_priv->gtt.mappable_end;
   2742 
   2743 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
   2744 }
   2745 
   2746 void i915_global_gtt_cleanup(struct drm_device *dev)
   2747 {
   2748 	struct drm_i915_private *dev_priv = dev->dev_private;
   2749 	struct i915_address_space *vm = &dev_priv->gtt.base;
   2750 
   2751 	if (dev_priv->mm.aliasing_ppgtt) {
   2752 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
   2753 
   2754 		ppgtt->base.cleanup(&ppgtt->base);
   2755 		kfree(ppgtt);
   2756 	}
   2757 
   2758 	if (drm_mm_initialized(&vm->mm)) {
   2759 		if (intel_vgpu_active(dev))
   2760 			intel_vgt_deballoon();
   2761 
   2762 		drm_mm_takedown(&vm->mm);
   2763 		list_del(&vm->global_link);
   2764 	}
   2765 
   2766 	vm->cleanup(vm);
   2767 }
   2768 
   2769 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
   2770 {
   2771 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
   2772 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
   2773 	return snb_gmch_ctl << 20;
   2774 }
   2775 
   2776 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
   2777 {
   2778 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
   2779 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
   2780 	if (bdw_gmch_ctl)
   2781 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
   2782 
   2783 #ifdef CONFIG_X86_32
   2784 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
   2785 	if (bdw_gmch_ctl > 4)
   2786 		bdw_gmch_ctl = 4;
   2787 #endif
   2788 
   2789 	return bdw_gmch_ctl << 20;
   2790 }
   2791 
   2792 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
   2793 {
   2794 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
   2795 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
   2796 
   2797 	if (gmch_ctrl)
   2798 		return 1 << (20 + gmch_ctrl);
   2799 
   2800 	return 0;
   2801 }
   2802 
   2803 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
   2804 {
   2805 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
   2806 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
   2807 	return snb_gmch_ctl << 25; /* 32 MB units */
   2808 }
   2809 
   2810 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
   2811 {
   2812 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
   2813 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
   2814 	return bdw_gmch_ctl << 25; /* 32 MB units */
   2815 }
   2816 
   2817 static size_t chv_get_stolen_size(u16 gmch_ctrl)
   2818 {
   2819 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
   2820 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
   2821 
   2822 	/*
   2823 	 * 0x0  to 0x10: 32MB increments starting at 0MB
   2824 	 * 0x11 to 0x16: 4MB increments starting at 8MB
   2825 	 * 0x17 to 0x1d: 4MB increments start at 36MB
   2826 	 */
   2827 	if (gmch_ctrl < 0x11)
   2828 		return gmch_ctrl << 25;
   2829 	else if (gmch_ctrl < 0x17)
   2830 		return (gmch_ctrl - 0x11 + 2) << 22;
   2831 	else
   2832 		return (gmch_ctrl - 0x17 + 9) << 22;
   2833 }
   2834 
   2835 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
   2836 {
   2837 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
   2838 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
   2839 
   2840 	if (gen9_gmch_ctl < 0xf0)
   2841 		return gen9_gmch_ctl << 25; /* 32 MB units */
   2842 	else
   2843 		/* 4MB increments starting at 0xf0 for 4MB */
   2844 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
   2845 }
   2846 
   2847 static int ggtt_probe_common(struct drm_device *dev,
   2848 			     size_t gtt_size)
   2849 {
   2850 	struct drm_i915_private *dev_priv = dev->dev_private;
   2851 	struct i915_page_scratch *scratch_page;
   2852 	phys_addr_t gtt_phys_addr;
   2853 
   2854 	/* For Modern GENs the PTEs and register space are split in the BAR */
   2855 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
   2856 		(pci_resource_len(dev->pdev, 0) / 2);
   2857 
   2858 	/*
   2859 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
   2860 	 * dropped. For WC mappings in general we have 64 byte burst writes
   2861 	 * when the WC buffer is flushed, so we can't use it, but have to
   2862 	 * resort to an uncached mapping. The WC issue is easily caught by the
   2863 	 * readback check when writing GTT PTE entries.
   2864 	 */
   2865 	if (IS_BROXTON(dev))
   2866 		dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
   2867 	else
   2868 		dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
   2869 	if (!dev_priv->gtt.gsm) {
   2870 		DRM_ERROR("Failed to map the gtt page table\n");
   2871 		return -ENOMEM;
   2872 	}
   2873 
   2874 	scratch_page = alloc_scratch_page(dev);
   2875 	if (IS_ERR(scratch_page)) {
   2876 		DRM_ERROR("Scratch setup failed\n");
   2877 		/* iounmap will also get called at remove, but meh */
   2878 		iounmap(dev_priv->gtt.gsm);
   2879 		return PTR_ERR(scratch_page);
   2880 	}
   2881 
   2882 	dev_priv->gtt.base.scratch_page = scratch_page;
   2883 
   2884 	return 0;
   2885 }
   2886 
   2887 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
   2888  * bits. When using advanced contexts each context stores its own PAT, but
   2889  * writing this data shouldn't be harmful even in those cases. */
   2890 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
   2891 {
   2892 	uint64_t pat;
   2893 
   2894 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
   2895 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
   2896 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
   2897 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
   2898 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
   2899 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
   2900 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
   2901 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
   2902 
   2903 	if (!USES_PPGTT(dev_priv->dev))
   2904 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
   2905 		 * so RTL will always use the value corresponding to
   2906 		 * pat_sel = 000".
   2907 		 * So let's disable cache for GGTT to avoid screen corruptions.
   2908 		 * MOCS still can be used though.
   2909 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
   2910 		 * before this patch, i.e. the same uncached + snooping access
   2911 		 * like on gen6/7 seems to be in effect.
   2912 		 * - So this just fixes blitter/render access. Again it looks
   2913 		 * like it's not just uncached access, but uncached + snooping.
   2914 		 * So we can still hold onto all our assumptions wrt cpu
   2915 		 * clflushing on LLC machines.
   2916 		 */
   2917 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
   2918 
   2919 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
   2920 	 * write would work. */
   2921 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
   2922 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
   2923 }
   2924 
   2925 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
   2926 {
   2927 	uint64_t pat;
   2928 
   2929 	/*
   2930 	 * Map WB on BDW to snooped on CHV.
   2931 	 *
   2932 	 * Only the snoop bit has meaning for CHV, the rest is
   2933 	 * ignored.
   2934 	 *
   2935 	 * The hardware will never snoop for certain types of accesses:
   2936 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
   2937 	 * - PPGTT page tables
   2938 	 * - some other special cycles
   2939 	 *
   2940 	 * As with BDW, we also need to consider the following for GT accesses:
   2941 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
   2942 	 * so RTL will always use the value corresponding to
   2943 	 * pat_sel = 000".
   2944 	 * Which means we must set the snoop bit in PAT entry 0
   2945 	 * in order to keep the global status page working.
   2946 	 */
   2947 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
   2948 	      GEN8_PPAT(1, 0) |
   2949 	      GEN8_PPAT(2, 0) |
   2950 	      GEN8_PPAT(3, 0) |
   2951 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
   2952 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
   2953 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
   2954 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
   2955 
   2956 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
   2957 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
   2958 }
   2959 
   2960 static int gen8_gmch_probe(struct drm_device *dev,
   2961 			   u64 *gtt_total,
   2962 			   size_t *stolen,
   2963 			   phys_addr_t *mappable_base,
   2964 			   u64 *mappable_end)
   2965 {
   2966 	struct drm_i915_private *dev_priv = dev->dev_private;
   2967 	u64 gtt_size;
   2968 	u16 snb_gmch_ctl;
   2969 	int ret;
   2970 
   2971 	/* TODO: We're not aware of mappable constraints on gen8 yet */
   2972 	*mappable_base = pci_resource_start(dev->pdev, 2);
   2973 	*mappable_end = pci_resource_len(dev->pdev, 2);
   2974 
   2975 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
   2976 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
   2977 
   2978 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
   2979 
   2980 	if (INTEL_INFO(dev)->gen >= 9) {
   2981 		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
   2982 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
   2983 	} else if (IS_CHERRYVIEW(dev)) {
   2984 		*stolen = chv_get_stolen_size(snb_gmch_ctl);
   2985 		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
   2986 	} else {
   2987 		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
   2988 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
   2989 	}
   2990 
   2991 	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
   2992 
   2993 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
   2994 		chv_setup_private_ppat(dev_priv);
   2995 	else
   2996 		bdw_setup_private_ppat(dev_priv);
   2997 
   2998 	ret = ggtt_probe_common(dev, gtt_size);
   2999 
   3000 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
   3001 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
   3002 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
   3003 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
   3004 
   3005 	return ret;
   3006 }
   3007 
   3008 static int gen6_gmch_probe(struct drm_device *dev,
   3009 			   u64 *gtt_total,
   3010 			   size_t *stolen,
   3011 			   phys_addr_t *mappable_base,
   3012 			   u64 *mappable_end)
   3013 {
   3014 	struct drm_i915_private *dev_priv = dev->dev_private;
   3015 	unsigned int gtt_size;
   3016 	u16 snb_gmch_ctl;
   3017 	int ret;
   3018 
   3019 	*mappable_base = pci_resource_start(dev->pdev, 2);
   3020 	*mappable_end = pci_resource_len(dev->pdev, 2);
   3021 
   3022 	/* 64/512MB is the current min/max we actually know of, but this is just
   3023 	 * a coarse sanity check.
   3024 	 */
   3025 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
   3026 		DRM_ERROR("Unknown GMADR size (%llx)\n",
   3027 			  dev_priv->gtt.mappable_end);
   3028 		return -ENXIO;
   3029 	}
   3030 
   3031 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
   3032 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
   3033 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
   3034 
   3035 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
   3036 
   3037 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
   3038 	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
   3039 
   3040 	ret = ggtt_probe_common(dev, gtt_size);
   3041 
   3042 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
   3043 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
   3044 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
   3045 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
   3046 
   3047 	return ret;
   3048 }
   3049 
   3050 static void gen6_gmch_remove(struct i915_address_space *vm)
   3051 {
   3052 
   3053 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
   3054 
   3055 	iounmap(gtt->gsm);
   3056 	free_scratch_page(vm->dev, vm->scratch_page);
   3057 }
   3058 
   3059 static int i915_gmch_probe(struct drm_device *dev,
   3060 			   u64 *gtt_total,
   3061 			   size_t *stolen,
   3062 			   phys_addr_t *mappable_base,
   3063 			   u64 *mappable_end)
   3064 {
   3065 	struct drm_i915_private *dev_priv = dev->dev_private;
   3066 	int ret;
   3067 
   3068 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
   3069 	if (!ret) {
   3070 		DRM_ERROR("failed to set up gmch\n");
   3071 		return -EIO;
   3072 	}
   3073 
   3074 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
   3075 
   3076 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
   3077 	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
   3078 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
   3079 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
   3080 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
   3081 
   3082 	if (unlikely(dev_priv->gtt.do_idle_maps))
   3083 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
   3084 
   3085 	return 0;
   3086 }
   3087 
   3088 static void i915_gmch_remove(struct i915_address_space *vm)
   3089 {
   3090 	intel_gmch_remove();
   3091 }
   3092 
   3093 int i915_gem_gtt_init(struct drm_device *dev)
   3094 {
   3095 	struct drm_i915_private *dev_priv = dev->dev_private;
   3096 	struct i915_gtt *gtt = &dev_priv->gtt;
   3097 	int ret;
   3098 
   3099 	if (INTEL_INFO(dev)->gen <= 5) {
   3100 		gtt->gtt_probe = i915_gmch_probe;
   3101 		gtt->base.cleanup = i915_gmch_remove;
   3102 	} else if (INTEL_INFO(dev)->gen < 8) {
   3103 		gtt->gtt_probe = gen6_gmch_probe;
   3104 		gtt->base.cleanup = gen6_gmch_remove;
   3105 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
   3106 			gtt->base.pte_encode = iris_pte_encode;
   3107 		else if (IS_HASWELL(dev))
   3108 			gtt->base.pte_encode = hsw_pte_encode;
   3109 		else if (IS_VALLEYVIEW(dev))
   3110 			gtt->base.pte_encode = byt_pte_encode;
   3111 		else if (INTEL_INFO(dev)->gen >= 7)
   3112 			gtt->base.pte_encode = ivb_pte_encode;
   3113 		else
   3114 			gtt->base.pte_encode = snb_pte_encode;
   3115 	} else {
   3116 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
   3117 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
   3118 	}
   3119 
   3120 	gtt->base.dev = dev;
   3121 
   3122 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
   3123 			     &gtt->mappable_base, &gtt->mappable_end);
   3124 	if (ret)
   3125 		return ret;
   3126 
   3127 	/* GMADR is the PCI mmio aperture into the global GTT. */
   3128 	DRM_INFO("Memory usable by graphics device = %lluM\n",
   3129 		 gtt->base.total >> 20);
   3130 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
   3131 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
   3132 #ifdef CONFIG_INTEL_IOMMU
   3133 	if (intel_iommu_gfx_mapped)
   3134 		DRM_INFO("VT-d active for gfx access\n");
   3135 #endif
   3136 	/*
   3137 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
   3138 	 * user's requested state against the hardware/driver capabilities.  We
   3139 	 * do this now so that we can print out any log messages once rather
   3140 	 * than every time we check intel_enable_ppgtt().
   3141 	 */
   3142 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
   3143 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
   3144 
   3145 	return 0;
   3146 }
   3147 
   3148 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
   3149 {
   3150 	struct drm_i915_private *dev_priv = dev->dev_private;
   3151 	struct drm_i915_gem_object *obj;
   3152 	struct i915_address_space *vm;
   3153 	struct i915_vma *vma;
   3154 	bool flush;
   3155 
   3156 	i915_check_and_clear_faults(dev);
   3157 
   3158 	/* First fill our portion of the GTT with scratch pages */
   3159 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
   3160 				       dev_priv->gtt.base.start,
   3161 				       dev_priv->gtt.base.total,
   3162 				       true);
   3163 
   3164 	/* Cache flush objects bound into GGTT and rebind them. */
   3165 	vm = &dev_priv->gtt.base;
   3166 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
   3167 		flush = false;
   3168 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
   3169 			if (vma->vm != vm)
   3170 				continue;
   3171 
   3172 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
   3173 					      PIN_UPDATE));
   3174 
   3175 			flush = true;
   3176 		}
   3177 
   3178 		if (flush)
   3179 			i915_gem_clflush_object(obj, obj->pin_display);
   3180 	}
   3181 
   3182 	if (INTEL_INFO(dev)->gen >= 8) {
   3183 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
   3184 			chv_setup_private_ppat(dev_priv);
   3185 		else
   3186 			bdw_setup_private_ppat(dev_priv);
   3187 
   3188 		return;
   3189 	}
   3190 
   3191 	if (USES_PPGTT(dev)) {
   3192 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
   3193 			/* TODO: Perhaps it shouldn't be gen6 specific */
   3194 
   3195 			struct i915_hw_ppgtt *ppgtt =
   3196 					container_of(vm, struct i915_hw_ppgtt,
   3197 						     base);
   3198 
   3199 			if (i915_is_ggtt(vm))
   3200 				ppgtt = dev_priv->mm.aliasing_ppgtt;
   3201 
   3202 			gen6_write_page_range(dev_priv, &ppgtt->pd,
   3203 					      0, ppgtt->base.total);
   3204 		}
   3205 	}
   3206 
   3207 	i915_ggtt_flush(dev_priv);
   3208 }
   3209 
   3210 static struct i915_vma *
   3211 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
   3212 		      struct i915_address_space *vm,
   3213 		      const struct i915_ggtt_view *ggtt_view)
   3214 {
   3215 	struct i915_vma *vma;
   3216 
   3217 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
   3218 		return ERR_PTR(-EINVAL);
   3219 
   3220 	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
   3221 	if (vma == NULL)
   3222 		return ERR_PTR(-ENOMEM);
   3223 
   3224 	INIT_LIST_HEAD(&vma->vma_link);
   3225 	INIT_LIST_HEAD(&vma->mm_list);
   3226 	INIT_LIST_HEAD(&vma->exec_list);
   3227 	vma->vm = vm;
   3228 	vma->obj = obj;
   3229 
   3230 	if (i915_is_ggtt(vm))
   3231 		vma->ggtt_view = *ggtt_view;
   3232 
   3233 	list_add_tail(&vma->vma_link, &obj->vma_list);
   3234 	if (!i915_is_ggtt(vm))
   3235 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
   3236 
   3237 	return vma;
   3238 }
   3239 
   3240 struct i915_vma *
   3241 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
   3242 				  struct i915_address_space *vm)
   3243 {
   3244 	struct i915_vma *vma;
   3245 
   3246 	vma = i915_gem_obj_to_vma(obj, vm);
   3247 	if (!vma)
   3248 		vma = __i915_gem_vma_create(obj, vm,
   3249 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
   3250 
   3251 	return vma;
   3252 }
   3253 
   3254 struct i915_vma *
   3255 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
   3256 				       const struct i915_ggtt_view *view)
   3257 {
   3258 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
   3259 	struct i915_vma *vma;
   3260 
   3261 	if (WARN_ON(!view))
   3262 		return ERR_PTR(-EINVAL);
   3263 
   3264 	vma = i915_gem_obj_to_ggtt_view(obj, view);
   3265 
   3266 	if (IS_ERR(vma))
   3267 		return vma;
   3268 
   3269 	if (!vma)
   3270 		vma = __i915_gem_vma_create(obj, ggtt, view);
   3271 
   3272 	return vma;
   3273 
   3274 }
   3275 
   3276 static struct scatterlist *
   3277 rotate_pages(dma_addr_t *in, unsigned int offset,
   3278 	     unsigned int width, unsigned int height,
   3279 	     struct sg_table *st, struct scatterlist *sg)
   3280 {
   3281 	unsigned int column, row;
   3282 	unsigned int src_idx;
   3283 
   3284 	if (!sg) {
   3285 		st->nents = 0;
   3286 		sg = st->sgl;
   3287 	}
   3288 
   3289 	for (column = 0; column < width; column++) {
   3290 		src_idx = width * (height - 1) + column;
   3291 		for (row = 0; row < height; row++) {
   3292 			st->nents++;
   3293 			/* We don't need the pages, but need to initialize
   3294 			 * the entries so the sg list can be happily traversed.
   3295 			 * The only thing we need are DMA addresses.
   3296 			 */
   3297 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
   3298 			sg_dma_address(sg) = in[offset + src_idx];
   3299 			sg_dma_len(sg) = PAGE_SIZE;
   3300 			sg = sg_next(sg);
   3301 			src_idx -= width;
   3302 		}
   3303 	}
   3304 
   3305 	return sg;
   3306 }
   3307 
   3308 static struct sg_table *
   3309 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
   3310 			  struct drm_i915_gem_object *obj)
   3311 {
   3312 	struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
   3313 	unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
   3314 	unsigned int size_pages_uv;
   3315 	struct sg_page_iter sg_iter;
   3316 	unsigned long i;
   3317 	dma_addr_t *page_addr_list;
   3318 	struct sg_table *st;
   3319 	unsigned int uv_start_page;
   3320 	struct scatterlist *sg;
   3321 	int ret = -ENOMEM;
   3322 
   3323 	/* Allocate a temporary list of source pages for random access. */
   3324 	page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
   3325 				       sizeof(dma_addr_t));
   3326 	if (!page_addr_list)
   3327 		return ERR_PTR(ret);
   3328 
   3329 	/* Account for UV plane with NV12. */
   3330 	if (rot_info->pixel_format == DRM_FORMAT_NV12)
   3331 		size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
   3332 	else
   3333 		size_pages_uv = 0;
   3334 
   3335 	/* Allocate target SG list. */
   3336 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   3337 	if (!st)
   3338 		goto err_st_alloc;
   3339 
   3340 	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
   3341 	if (ret)
   3342 		goto err_sg_alloc;
   3343 
   3344 	/* Populate source page list from the object. */
   3345 	i = 0;
   3346 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
   3347 		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
   3348 		i++;
   3349 	}
   3350 
   3351 	/* Rotate the pages. */
   3352 	sg = rotate_pages(page_addr_list, 0,
   3353 		     rot_info->width_pages, rot_info->height_pages,
   3354 		     st, NULL);
   3355 
   3356 	/* Append the UV plane if NV12. */
   3357 	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
   3358 		uv_start_page = size_pages;
   3359 
   3360 		/* Check for tile-row un-alignment. */
   3361 		if (offset_in_page(rot_info->uv_offset))
   3362 			uv_start_page--;
   3363 
   3364 		rot_info->uv_start_page = uv_start_page;
   3365 
   3366 		rotate_pages(page_addr_list, uv_start_page,
   3367 			     rot_info->width_pages_uv,
   3368 			     rot_info->height_pages_uv,
   3369 			     st, sg);
   3370 	}
   3371 
   3372 	DRM_DEBUG_KMS(
   3373 		      "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
   3374 		      obj->base.size, rot_info->pitch, rot_info->height,
   3375 		      rot_info->pixel_format, rot_info->width_pages,
   3376 		      rot_info->height_pages, size_pages + size_pages_uv,
   3377 		      size_pages);
   3378 
   3379 	drm_free_large(page_addr_list);
   3380 
   3381 	return st;
   3382 
   3383 err_sg_alloc:
   3384 	kfree(st);
   3385 err_st_alloc:
   3386 	drm_free_large(page_addr_list);
   3387 
   3388 	DRM_DEBUG_KMS(
   3389 		      "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
   3390 		      obj->base.size, ret, rot_info->pitch, rot_info->height,
   3391 		      rot_info->pixel_format, rot_info->width_pages,
   3392 		      rot_info->height_pages, size_pages + size_pages_uv,
   3393 		      size_pages);
   3394 	return ERR_PTR(ret);
   3395 }
   3396 
   3397 static struct sg_table *
   3398 intel_partial_pages(const struct i915_ggtt_view *view,
   3399 		    struct drm_i915_gem_object *obj)
   3400 {
   3401 	struct sg_table *st;
   3402 	struct scatterlist *sg;
   3403 	struct sg_page_iter obj_sg_iter;
   3404 	int ret = -ENOMEM;
   3405 
   3406 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   3407 	if (!st)
   3408 		goto err_st_alloc;
   3409 
   3410 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
   3411 	if (ret)
   3412 		goto err_sg_alloc;
   3413 
   3414 	sg = st->sgl;
   3415 	st->nents = 0;
   3416 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
   3417 		view->params.partial.offset)
   3418 	{
   3419 		if (st->nents >= view->params.partial.size)
   3420 			break;
   3421 
   3422 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
   3423 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
   3424 		sg_dma_len(sg) = PAGE_SIZE;
   3425 
   3426 		sg = sg_next(sg);
   3427 		st->nents++;
   3428 	}
   3429 
   3430 	return st;
   3431 
   3432 err_sg_alloc:
   3433 	kfree(st);
   3434 err_st_alloc:
   3435 	return ERR_PTR(ret);
   3436 }
   3437 
   3438 static int
   3439 i915_get_ggtt_vma_pages(struct i915_vma *vma)
   3440 {
   3441 	int ret = 0;
   3442 
   3443 	if (vma->ggtt_view.pages)
   3444 		return 0;
   3445 
   3446 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
   3447 		vma->ggtt_view.pages = vma->obj->pages;
   3448 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
   3449 		vma->ggtt_view.pages =
   3450 			intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
   3451 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
   3452 		vma->ggtt_view.pages =
   3453 			intel_partial_pages(&vma->ggtt_view, vma->obj);
   3454 	else
   3455 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
   3456 			  vma->ggtt_view.type);
   3457 
   3458 	if (!vma->ggtt_view.pages) {
   3459 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
   3460 			  vma->ggtt_view.type);
   3461 		ret = -EINVAL;
   3462 	} else if (IS_ERR(vma->ggtt_view.pages)) {
   3463 		ret = PTR_ERR(vma->ggtt_view.pages);
   3464 		vma->ggtt_view.pages = NULL;
   3465 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
   3466 			  vma->ggtt_view.type, ret);
   3467 	}
   3468 
   3469 	return ret;
   3470 }
   3471 
   3472 /**
   3473  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
   3474  * @vma: VMA to map
   3475  * @cache_level: mapping cache level
   3476  * @flags: flags like global or local mapping
   3477  *
   3478  * DMA addresses are taken from the scatter-gather table of this object (or of
   3479  * this VMA in case of non-default GGTT views) and PTE entries set up.
   3480  * Note that DMA addresses are also the only part of the SG table we care about.
   3481  */
   3482 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
   3483 		  u32 flags)
   3484 {
   3485 	int ret;
   3486 	u32 bind_flags;
   3487 
   3488 	if (WARN_ON(flags == 0))
   3489 		return -EINVAL;
   3490 
   3491 	bind_flags = 0;
   3492 	if (flags & PIN_GLOBAL)
   3493 		bind_flags |= GLOBAL_BIND;
   3494 	if (flags & PIN_USER)
   3495 		bind_flags |= LOCAL_BIND;
   3496 
   3497 	if (flags & PIN_UPDATE)
   3498 		bind_flags |= vma->bound;
   3499 	else
   3500 		bind_flags &= ~vma->bound;
   3501 
   3502 	if (bind_flags == 0)
   3503 		return 0;
   3504 
   3505 	if (vma->bound == 0 && vma->vm->allocate_va_range) {
   3506 		trace_i915_va_alloc(vma->vm,
   3507 				    vma->node.start,
   3508 				    vma->node.size,
   3509 				    VM_TO_TRACE_NAME(vma->vm));
   3510 
   3511 		/* XXX: i915_vma_pin() will fix this +- hack */
   3512 		vma->pin_count++;
   3513 		ret = vma->vm->allocate_va_range(vma->vm,
   3514 						 vma->node.start,
   3515 						 vma->node.size);
   3516 		vma->pin_count--;
   3517 		if (ret)
   3518 			return ret;
   3519 	}
   3520 
   3521 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
   3522 	if (ret)
   3523 		return ret;
   3524 
   3525 	vma->bound |= bind_flags;
   3526 
   3527 	return 0;
   3528 }
   3529 
   3530 /**
   3531  * i915_ggtt_view_size - Get the size of a GGTT view.
   3532  * @obj: Object the view is of.
   3533  * @view: The view in question.
   3534  *
   3535  * @return The size of the GGTT view in bytes.
   3536  */
   3537 size_t
   3538 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
   3539 		    const struct i915_ggtt_view *view)
   3540 {
   3541 	if (view->type == I915_GGTT_VIEW_NORMAL) {
   3542 		return obj->base.size;
   3543 	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
   3544 		return view->rotation_info.size;
   3545 	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
   3546 		return view->params.partial.size << PAGE_SHIFT;
   3547 	} else {
   3548 		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
   3549 		return obj->base.size;
   3550 	}
   3551 }
   3552