Home | History | Annotate | Line # | Download | only in i915
i915_gem_gtt.c revision 1.15.4.1
      1 /*	$NetBSD: i915_gem_gtt.c,v 1.15.4.1 2019/12/12 21:00:32 martin Exp $	*/
      2 
      3 /*
      4  * Copyright  2010 Daniel Vetter
      5  * Copyright  2011-2014 Intel Corporation
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a
      8  * copy of this software and associated documentation files (the "Software"),
      9  * to deal in the Software without restriction, including without limitation
     10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     11  * and/or sell copies of the Software, and to permit persons to whom the
     12  * Software is furnished to do so, subject to the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the next
     15  * paragraph) shall be included in all copies or substantial portions of the
     16  * Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     23  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     24  * IN THE SOFTWARE.
     25  *
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __KERNEL_RCSID(0, "$NetBSD: i915_gem_gtt.c,v 1.15.4.1 2019/12/12 21:00:32 martin Exp $");
     30 
     31 #include <linux/bitmap.h>
     32 #include <linux/err.h>
     33 #include <linux/seq_file.h>
     34 #include <drm/drmP.h>
     35 #include <drm/i915_drm.h>
     36 #include "i915_drv.h"
     37 #include "i915_vgpu.h"
     38 #include "i915_trace.h"
     39 #include "intel_drv.h"
     40 
     41 #ifdef __NetBSD__
     42 #include <drm/bus_dma_hacks.h>
     43 #include <x86/machdep.h>
     44 #include <x86/pte.h>
     45 #define	_PAGE_PRESENT	PG_V	/* 0x01 PTE is present / valid */
     46 #define	_PAGE_RW	PG_RW	/* 0x02 read/write */
     47 #define	_PAGE_PWT	PG_WT	/* 0x08 write-through */
     48 #define	_PAGE_PCD	PG_N	/* 0x10 page cache disabled / non-cacheable */
     49 #define	_PAGE_PAT	PG_PAT	/* 0x80 page attribute table on PTE */
     50 #endif
     51 
     52 /**
     53  * DOC: Global GTT views
     54  *
     55  * Background and previous state
     56  *
     57  * Historically objects could exists (be bound) in global GTT space only as
     58  * singular instances with a view representing all of the object's backing pages
     59  * in a linear fashion. This view will be called a normal view.
     60  *
     61  * To support multiple views of the same object, where the number of mapped
     62  * pages is not equal to the backing store, or where the layout of the pages
     63  * is not linear, concept of a GGTT view was added.
     64  *
     65  * One example of an alternative view is a stereo display driven by a single
     66  * image. In this case we would have a framebuffer looking like this
     67  * (2x2 pages):
     68  *
     69  *    12
     70  *    34
     71  *
     72  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
     73  * rendering. In contrast, fed to the display engine would be an alternative
     74  * view which could look something like this:
     75  *
     76  *   1212
     77  *   3434
     78  *
     79  * In this example both the size and layout of pages in the alternative view is
     80  * different from the normal view.
     81  *
     82  * Implementation and usage
     83  *
     84  * GGTT views are implemented using VMAs and are distinguished via enum
     85  * i915_ggtt_view_type and struct i915_ggtt_view.
     86  *
     87  * A new flavour of core GEM functions which work with GGTT bound objects were
     88  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
     89  * renaming  in large amounts of code. They take the struct i915_ggtt_view
     90  * parameter encapsulating all metadata required to implement a view.
     91  *
     92  * As a helper for callers which are only interested in the normal view,
     93  * globally const i915_ggtt_view_normal singleton instance exists. All old core
     94  * GEM API functions, the ones not taking the view parameter, are operating on,
     95  * or with the normal GGTT view.
     96  *
     97  * Code wanting to add or use a new GGTT view needs to:
     98  *
     99  * 1. Add a new enum with a suitable name.
    100  * 2. Extend the metadata in the i915_ggtt_view structure if required.
    101  * 3. Add support to i915_get_vma_pages().
    102  *
    103  * New views are required to build a scatter-gather table from within the
    104  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
    105  * exists for the lifetime of an VMA.
    106  *
    107  * Core API is designed to have copy semantics which means that passed in
    108  * struct i915_ggtt_view does not need to be persistent (left around after
    109  * calling the core API functions).
    110  *
    111  */
    112 
    113 static int
    114 i915_get_ggtt_vma_pages(struct i915_vma *vma);
    115 
    116 const struct i915_ggtt_view i915_ggtt_view_normal;
    117 const struct i915_ggtt_view i915_ggtt_view_rotated = {
    118         .type = I915_GGTT_VIEW_ROTATED
    119 };
    120 
    121 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
    122 {
    123 	bool has_aliasing_ppgtt;
    124 	bool has_full_ppgtt;
    125 
    126 	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
    127 	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
    128 
    129 	if (intel_vgpu_active(dev))
    130 		has_full_ppgtt = false; /* emulation is too hard */
    131 
    132 	/*
    133 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
    134 	 * execlists, the sole mechanism available to submit work.
    135 	 */
    136 	if (INTEL_INFO(dev)->gen < 9 &&
    137 	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
    138 		return 0;
    139 
    140 	/* Full PPGTT is required by the Gen9 cmdparser */
    141 	if (enable_ppgtt == 1 && INTEL_INFO(dev)->gen != 9)
    142 		return 1;
    143 
    144 	if (enable_ppgtt == 2 && has_full_ppgtt)
    145 		return 2;
    146 
    147 #ifdef CONFIG_INTEL_IOMMU
    148 	/* Disable ppgtt on SNB if VT-d is on. */
    149 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
    150 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
    151 		return 0;
    152 	}
    153 #endif
    154 
    155 	/* Early VLV doesn't have this */
    156 	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
    157 	    dev->pdev->revision < 0xb) {
    158 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
    159 		return 0;
    160 	}
    161 
    162 	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
    163 		return 2;
    164 	else
    165 		return has_aliasing_ppgtt ? 1 : 0;
    166 }
    167 
    168 static int ppgtt_bind_vma(struct i915_vma *vma,
    169 			  enum i915_cache_level cache_level,
    170 			  u32 unused)
    171 {
    172 	u32 pte_flags = 0;
    173 
    174 	/* Applicable to VLV, and gen8+ */
    175 	pte_flags = 0;
    176 	if (vma->obj->gt_ro)
    177 		pte_flags |= PTE_READ_ONLY;
    178 
    179 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
    180 				cache_level, pte_flags);
    181 
    182 	return 0;
    183 }
    184 
    185 static void ppgtt_unbind_vma(struct i915_vma *vma)
    186 {
    187 	vma->vm->clear_range(vma->vm,
    188 			     vma->node.start,
    189 			     vma->obj->base.size,
    190 			     true);
    191 }
    192 
    193 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
    194 				  enum i915_cache_level level,
    195 				  bool valid, u32 flags)
    196 {
    197 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
    198 	pte |= addr;
    199 
    200 	if (unlikely(flags & PTE_READ_ONLY))
    201 		pte &= ~_PAGE_RW;
    202 
    203 	switch (level) {
    204 	case I915_CACHE_NONE:
    205 		pte |= PPAT_UNCACHED_INDEX;
    206 		break;
    207 	case I915_CACHE_WT:
    208 		pte |= PPAT_DISPLAY_ELLC_INDEX;
    209 		break;
    210 	default:
    211 		pte |= PPAT_CACHED_INDEX;
    212 		break;
    213 	}
    214 
    215 	return pte;
    216 }
    217 
    218 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
    219 				  const enum i915_cache_level level)
    220 {
    221 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
    222 	pde |= addr;
    223 	if (level != I915_CACHE_NONE)
    224 		pde |= PPAT_CACHED_PDE_INDEX;
    225 	else
    226 		pde |= PPAT_UNCACHED_INDEX;
    227 	return pde;
    228 }
    229 
    230 #define gen8_pdpe_encode gen8_pde_encode
    231 #define gen8_pml4e_encode gen8_pde_encode
    232 
    233 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
    234 				 enum i915_cache_level level,
    235 				 bool valid, u32 unused)
    236 {
    237 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    238 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
    239 
    240 	switch (level) {
    241 	case I915_CACHE_L3_LLC:
    242 	case I915_CACHE_LLC:
    243 		pte |= GEN6_PTE_CACHE_LLC;
    244 		break;
    245 	case I915_CACHE_NONE:
    246 		pte |= GEN6_PTE_UNCACHED;
    247 		break;
    248 	default:
    249 		MISSING_CASE(level);
    250 	}
    251 
    252 	return pte;
    253 }
    254 
    255 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
    256 				 enum i915_cache_level level,
    257 				 bool valid, u32 unused)
    258 {
    259 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    260 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
    261 
    262 	switch (level) {
    263 	case I915_CACHE_L3_LLC:
    264 		pte |= GEN7_PTE_CACHE_L3_LLC;
    265 		break;
    266 	case I915_CACHE_LLC:
    267 		pte |= GEN6_PTE_CACHE_LLC;
    268 		break;
    269 	case I915_CACHE_NONE:
    270 		pte |= GEN6_PTE_UNCACHED;
    271 		break;
    272 	default:
    273 		MISSING_CASE(level);
    274 	}
    275 
    276 	return pte;
    277 }
    278 
    279 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
    280 				 enum i915_cache_level level,
    281 				 bool valid, u32 flags)
    282 {
    283 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    284 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
    285 
    286 	if (!(flags & PTE_READ_ONLY))
    287 		pte |= BYT_PTE_WRITEABLE;
    288 
    289 	if (level != I915_CACHE_NONE)
    290 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
    291 
    292 	return pte;
    293 }
    294 
    295 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
    296 				 enum i915_cache_level level,
    297 				 bool valid, u32 unused)
    298 {
    299 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    300 	pte |= HSW_PTE_ADDR_ENCODE(addr);
    301 
    302 	if (level != I915_CACHE_NONE)
    303 		pte |= HSW_WB_LLC_AGE3;
    304 
    305 	return pte;
    306 }
    307 
    308 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
    309 				  enum i915_cache_level level,
    310 				  bool valid, u32 unused)
    311 {
    312 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    313 	pte |= HSW_PTE_ADDR_ENCODE(addr);
    314 
    315 	switch (level) {
    316 	case I915_CACHE_NONE:
    317 		break;
    318 	case I915_CACHE_WT:
    319 		pte |= HSW_WT_ELLC_LLC_AGE3;
    320 		break;
    321 	default:
    322 		pte |= HSW_WB_ELLC_LLC_AGE3;
    323 		break;
    324 	}
    325 
    326 	return pte;
    327 }
    328 
    329 static void *kmap_page_dma(struct i915_page_dma *);
    330 static void kunmap_page_dma(struct drm_device *, void *);
    331 
    332 static int __setup_page_dma(struct drm_device *dev,
    333 			    struct i915_page_dma *p, gfp_t flags)
    334 {
    335 #ifdef __NetBSD__
    336 	int busdmaflags = 0;
    337 	int error;
    338 	int nseg = 1;
    339 
    340 	if (flags & __GFP_WAIT)
    341 		busdmaflags |= BUS_DMA_WAITOK;
    342 	else
    343 		busdmaflags |= BUS_DMA_NOWAIT;
    344 
    345 	error = bus_dmamem_alloc(dev->dmat, PAGE_SIZE, PAGE_SIZE, 0, &p->seg,
    346 	    nseg, &nseg, busdmaflags);
    347 	if (error) {
    348 fail0:		p->map = NULL;
    349 		return -error;	/* XXX errno NetBSD->Linux */
    350 	}
    351 	KASSERT(nseg == 1);
    352 	error = bus_dmamap_create(dev->dmat, PAGE_SIZE, 1, PAGE_SIZE, 0,
    353 	    busdmaflags, &p->map);
    354 	if (error) {
    355 fail1:		bus_dmamem_free(dev->dmat, &p->seg, 1);
    356 		goto fail0;
    357 	}
    358 	error = bus_dmamap_load_raw(dev->dmat, p->map, &p->seg, 1, PAGE_SIZE,
    359 	    busdmaflags);
    360 	if (error) {
    361 fail2: __unused
    362 		bus_dmamap_destroy(dev->dmat, p->map);
    363 		goto fail1;
    364 	}
    365 
    366 	if (flags & __GFP_ZERO) {
    367 		void *va = kmap_page_dma(p);
    368 		memset(va, 0, PAGE_SIZE);
    369 		kunmap_page_dma(dev, va);
    370 	}
    371 #else
    372 	struct device *device = &dev->pdev->dev;
    373 
    374 	p->page = alloc_page(flags);
    375 	if (!p->page)
    376 		return -ENOMEM;
    377 
    378 	p->daddr = dma_map_page(device,
    379 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
    380 
    381 	if (dma_mapping_error(device, p->daddr)) {
    382 		__free_page(p->page);
    383 		return -EINVAL;
    384 	}
    385 #endif
    386 
    387 	return 0;
    388 }
    389 
    390 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
    391 {
    392 	return __setup_page_dma(dev, p, GFP_KERNEL);
    393 }
    394 
    395 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
    396 {
    397 #ifdef __NetBSD__
    398 	if (WARN_ON(!p->map))
    399 		return;
    400 
    401 	bus_dmamap_unload(dev->dmat, p->map);
    402 	bus_dmamap_destroy(dev->dmat, p->map);
    403 	bus_dmamem_free(dev->dmat, &p->seg, 1);
    404 	p->map = NULL;
    405 #else
    406 	if (WARN_ON(!p->page))
    407 		return;
    408 
    409 	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
    410 	__free_page(p->page);
    411 	memset(p, 0, sizeof(*p));
    412 #endif
    413 }
    414 
    415 static void *kmap_page_dma(struct i915_page_dma *p)
    416 {
    417 #ifdef __NetBSD__
    418 	return kmap_atomic(container_of(PHYS_TO_VM_PAGE(p->seg.ds_addr),
    419 		struct page, p_vmp));
    420 #else
    421 	return kmap_atomic(p->page);
    422 #endif
    423 }
    424 
    425 /* We use the flushing unmap only with ppgtt structures:
    426  * page directories, page tables and scratch pages.
    427  */
    428 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
    429 {
    430 	/* There are only few exceptions for gen >=6. chv and bxt.
    431 	 * And we are not sure about the latter so play safe for now.
    432 	 */
    433 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
    434 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
    435 
    436 	kunmap_atomic(vaddr);
    437 }
    438 
    439 #define kmap_px(px) kmap_page_dma(px_base(px))
    440 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
    441 
    442 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
    443 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
    444 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
    445 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
    446 
    447 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
    448 			  const uint64_t val)
    449 {
    450 	int i;
    451 	uint64_t * const vaddr = kmap_page_dma(p);
    452 
    453 	for (i = 0; i < 512; i++)
    454 		vaddr[i] = val;
    455 
    456 	kunmap_page_dma(dev, vaddr);
    457 }
    458 
    459 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
    460 			     const uint32_t val32)
    461 {
    462 	uint64_t v = val32;
    463 
    464 	v = v << 32 | val32;
    465 
    466 	fill_page_dma(dev, p, v);
    467 }
    468 
    469 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
    470 {
    471 	struct i915_page_scratch *sp;
    472 	int ret;
    473 
    474 	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
    475 	if (sp == NULL)
    476 		return ERR_PTR(-ENOMEM);
    477 
    478 	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
    479 	if (ret) {
    480 		kfree(sp);
    481 		return ERR_PTR(ret);
    482 	}
    483 
    484 #ifndef __NetBSD__		/* XXX ??? */
    485 	set_pages_uc(px_page(sp), 1);
    486 #endif
    487 
    488 	return sp;
    489 }
    490 
    491 static void free_scratch_page(struct drm_device *dev,
    492 			      struct i915_page_scratch *sp)
    493 {
    494 #ifndef __NetBSD__		/* XXX ??? */
    495 	set_pages_wb(px_page(sp), 1);
    496 #endif
    497 
    498 	cleanup_px(dev, sp);
    499 	kfree(sp);
    500 }
    501 
    502 static struct i915_page_table *alloc_pt(struct drm_device *dev)
    503 {
    504 	struct i915_page_table *pt;
    505 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
    506 		GEN8_PTES : GEN6_PTES;
    507 	int ret = -ENOMEM;
    508 
    509 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
    510 	if (!pt)
    511 		return ERR_PTR(-ENOMEM);
    512 
    513 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
    514 				GFP_KERNEL);
    515 
    516 	if (!pt->used_ptes)
    517 		goto fail_bitmap;
    518 
    519 	ret = setup_px(dev, pt);
    520 	if (ret)
    521 		goto fail_page_m;
    522 
    523 	return pt;
    524 
    525 fail_page_m:
    526 	kfree(pt->used_ptes);
    527 fail_bitmap:
    528 	kfree(pt);
    529 
    530 	return ERR_PTR(ret);
    531 }
    532 
    533 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
    534 {
    535 	cleanup_px(dev, pt);
    536 	kfree(pt->used_ptes);
    537 	kfree(pt);
    538 }
    539 
    540 static void gen8_initialize_pt(struct i915_address_space *vm,
    541 			       struct i915_page_table *pt)
    542 {
    543 	gen8_pte_t scratch_pte;
    544 
    545 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
    546 				      I915_CACHE_LLC, true, 0);
    547 
    548 	fill_px(vm->dev, pt, scratch_pte);
    549 }
    550 
    551 static void gen6_initialize_pt(struct i915_address_space *vm,
    552 			       struct i915_page_table *pt)
    553 {
    554 	gen6_pte_t scratch_pte;
    555 
    556 	WARN_ON(px_dma(vm->scratch_page) == 0);
    557 
    558 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
    559 				     I915_CACHE_LLC, true, 0);
    560 
    561 	fill32_px(vm->dev, pt, scratch_pte);
    562 }
    563 
    564 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
    565 {
    566 	struct i915_page_directory *pd;
    567 	int ret = -ENOMEM;
    568 
    569 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
    570 	if (!pd)
    571 		return ERR_PTR(-ENOMEM);
    572 
    573 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
    574 				sizeof(*pd->used_pdes), GFP_KERNEL);
    575 	if (!pd->used_pdes)
    576 		goto fail_bitmap;
    577 
    578 	ret = setup_px(dev, pd);
    579 	if (ret)
    580 		goto fail_page_m;
    581 
    582 	return pd;
    583 
    584 fail_page_m:
    585 	kfree(pd->used_pdes);
    586 fail_bitmap:
    587 	kfree(pd);
    588 
    589 	return ERR_PTR(ret);
    590 }
    591 
    592 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
    593 {
    594 	if (px_page(pd)) {
    595 		cleanup_px(dev, pd);
    596 		kfree(pd->used_pdes);
    597 		kfree(pd);
    598 	}
    599 }
    600 
    601 static void gen8_initialize_pd(struct i915_address_space *vm,
    602 			       struct i915_page_directory *pd)
    603 {
    604 	gen8_pde_t scratch_pde;
    605 
    606 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
    607 
    608 	fill_px(vm->dev, pd, scratch_pde);
    609 }
    610 
    611 static int __pdp_init(struct drm_device *dev,
    612 		      struct i915_page_directory_pointer *pdp)
    613 {
    614 	size_t pdpes = I915_PDPES_PER_PDP(dev);
    615 
    616 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
    617 				  sizeof(unsigned long),
    618 				  GFP_KERNEL);
    619 	if (!pdp->used_pdpes)
    620 		return -ENOMEM;
    621 
    622 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
    623 				      GFP_KERNEL);
    624 	if (!pdp->page_directory) {
    625 		kfree(pdp->used_pdpes);
    626 		/* the PDP might be the statically allocated top level. Keep it
    627 		 * as clean as possible */
    628 		pdp->used_pdpes = NULL;
    629 		return -ENOMEM;
    630 	}
    631 
    632 	return 0;
    633 }
    634 
    635 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
    636 {
    637 	kfree(pdp->used_pdpes);
    638 	kfree(pdp->page_directory);
    639 	pdp->page_directory = NULL;
    640 }
    641 
    642 static struct
    643 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
    644 {
    645 	struct i915_page_directory_pointer *pdp;
    646 	int ret = -ENOMEM;
    647 
    648 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
    649 
    650 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
    651 	if (!pdp)
    652 		return ERR_PTR(-ENOMEM);
    653 
    654 	ret = __pdp_init(dev, pdp);
    655 	if (ret)
    656 		goto fail_bitmap;
    657 
    658 	ret = setup_px(dev, pdp);
    659 	if (ret)
    660 		goto fail_page_m;
    661 
    662 	return pdp;
    663 
    664 fail_page_m:
    665 	__pdp_fini(pdp);
    666 fail_bitmap:
    667 	kfree(pdp);
    668 
    669 	return ERR_PTR(ret);
    670 }
    671 
    672 static void free_pdp(struct drm_device *dev,
    673 		     struct i915_page_directory_pointer *pdp)
    674 {
    675 	__pdp_fini(pdp);
    676 	if (USES_FULL_48BIT_PPGTT(dev)) {
    677 		cleanup_px(dev, pdp);
    678 		kfree(pdp);
    679 	}
    680 }
    681 
    682 static void gen8_initialize_pdp(struct i915_address_space *vm,
    683 				struct i915_page_directory_pointer *pdp)
    684 {
    685 	gen8_ppgtt_pdpe_t scratch_pdpe;
    686 
    687 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
    688 
    689 	fill_px(vm->dev, pdp, scratch_pdpe);
    690 }
    691 
    692 static void gen8_initialize_pml4(struct i915_address_space *vm,
    693 				 struct i915_pml4 *pml4)
    694 {
    695 	gen8_ppgtt_pml4e_t scratch_pml4e;
    696 
    697 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
    698 					  I915_CACHE_LLC);
    699 
    700 	fill_px(vm->dev, pml4, scratch_pml4e);
    701 }
    702 
    703 static void
    704 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
    705 			  struct i915_page_directory_pointer *pdp,
    706 			  struct i915_page_directory *pd,
    707 			  int index)
    708 {
    709 	gen8_ppgtt_pdpe_t *page_directorypo;
    710 
    711 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
    712 		return;
    713 
    714 	page_directorypo = kmap_px(pdp);
    715 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
    716 	kunmap_px(ppgtt, page_directorypo);
    717 }
    718 
    719 static void
    720 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
    721 				  struct i915_pml4 *pml4,
    722 				  struct i915_page_directory_pointer *pdp,
    723 				  int index)
    724 {
    725 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
    726 
    727 	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
    728 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
    729 	kunmap_px(ppgtt, pagemap);
    730 }
    731 
    732 /* Broadwell Page Directory Pointer Descriptors */
    733 static int gen8_write_pdp(struct drm_i915_gem_request *req,
    734 			  unsigned entry,
    735 			  dma_addr_t addr)
    736 {
    737 	struct intel_engine_cs *ring = req->ring;
    738 	int ret;
    739 
    740 	BUG_ON(entry >= 4);
    741 
    742 	ret = intel_ring_begin(req, 6);
    743 	if (ret)
    744 		return ret;
    745 
    746 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
    747 	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
    748 	intel_ring_emit(ring, upper_32_bits(addr));
    749 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
    750 	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
    751 	intel_ring_emit(ring, lower_32_bits(addr));
    752 	intel_ring_advance(ring);
    753 
    754 	return 0;
    755 }
    756 
    757 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
    758 				 struct drm_i915_gem_request *req)
    759 {
    760 	int i, ret;
    761 
    762 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
    763 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
    764 
    765 		ret = gen8_write_pdp(req, i, pd_daddr);
    766 		if (ret)
    767 			return ret;
    768 	}
    769 
    770 	return 0;
    771 }
    772 
    773 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
    774 			      struct drm_i915_gem_request *req)
    775 {
    776 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
    777 }
    778 
    779 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
    780 				       struct i915_page_directory_pointer *pdp,
    781 				       uint64_t start,
    782 				       uint64_t length,
    783 				       gen8_pte_t scratch_pte)
    784 {
    785 	struct i915_hw_ppgtt *ppgtt =
    786 		container_of(vm, struct i915_hw_ppgtt, base);
    787 	gen8_pte_t *pt_vaddr;
    788 	unsigned pdpe = gen8_pdpe_index(start);
    789 	unsigned pde = gen8_pde_index(start);
    790 	unsigned pte = gen8_pte_index(start);
    791 	unsigned num_entries = length >> PAGE_SHIFT;
    792 	unsigned last_pte, i;
    793 
    794 	if (WARN_ON(!pdp))
    795 		return;
    796 
    797 	while (num_entries) {
    798 		struct i915_page_directory *pd;
    799 		struct i915_page_table *pt;
    800 
    801 		if (WARN_ON(!pdp->page_directory[pdpe]))
    802 			break;
    803 
    804 		pd = pdp->page_directory[pdpe];
    805 
    806 		if (WARN_ON(!pd->page_table[pde]))
    807 			break;
    808 
    809 		pt = pd->page_table[pde];
    810 
    811 		if (WARN_ON(!px_page(pt)))
    812 			break;
    813 
    814 		last_pte = pte + num_entries;
    815 		if (last_pte > GEN8_PTES)
    816 			last_pte = GEN8_PTES;
    817 
    818 		pt_vaddr = kmap_px(pt);
    819 
    820 		for (i = pte; i < last_pte; i++) {
    821 			pt_vaddr[i] = scratch_pte;
    822 			num_entries--;
    823 		}
    824 
    825 		kunmap_px(ppgtt, pt_vaddr);
    826 
    827 		pte = 0;
    828 		if (++pde == I915_PDES) {
    829 			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
    830 				break;
    831 			pde = 0;
    832 		}
    833 	}
    834 }
    835 
    836 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
    837 				   uint64_t start,
    838 				   uint64_t length,
    839 				   bool use_scratch)
    840 {
    841 	struct i915_hw_ppgtt *ppgtt =
    842 		container_of(vm, struct i915_hw_ppgtt, base);
    843 	gen8_pte_t scratch_pte =
    844 		gen8_pte_encode(px_dma(vm->scratch_page),
    845 				I915_CACHE_LLC, use_scratch, 0);
    846 
    847 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
    848 		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
    849 					   scratch_pte);
    850 	} else {
    851 		uint64_t templ4, pml4e;
    852 		struct i915_page_directory_pointer *pdp;
    853 
    854 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
    855 			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
    856 						   scratch_pte);
    857 		}
    858 	}
    859 }
    860 
    861 #ifdef __NetBSD__
    862 static void
    863 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
    864     struct i915_page_directory_pointer *pdp, bus_dmamap_t dmamap,
    865     unsigned *segp, uint64_t start, enum i915_cache_level cache_level,
    866     u32 flags)
    867 {
    868 	struct i915_hw_ppgtt *ppgtt =
    869 	    container_of(vm, struct i915_hw_ppgtt, base);
    870 	gen8_pte_t *pt_vaddr;
    871 	unsigned pdpe = gen8_pdpe_index(start);
    872 	unsigned pde = gen8_pde_index(start);
    873 	unsigned pte = gen8_pte_index(start);
    874 
    875 	pt_vaddr = NULL;
    876 	for (; *segp < dmamap->dm_nsegs; (*segp)++) {
    877 		KASSERT(dmamap->dm_segs[*segp].ds_len == PAGE_SIZE);
    878 		if (pt_vaddr == NULL) {
    879 			struct i915_page_directory *pd =
    880 			    pdp->page_directory[pdpe];
    881 			struct i915_page_table *pt = pd->page_table[pde];
    882 			pt_vaddr = kmap_px(pt);
    883 		}
    884 		pt_vaddr[pte] = gen8_pte_encode(dmamap->dm_segs[*segp].ds_addr,
    885 		    cache_level, true, flags);
    886 		if (++pte == GEN8_PTES) {
    887 			kunmap_px(ppgtt, pt_vaddr);
    888 			pt_vaddr = NULL;
    889 			if (++pde == I915_PDES) {
    890 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
    891 					break;
    892 				pde = 0;
    893 			}
    894 			pte = 0;
    895 		}
    896 	}
    897 	if (pt_vaddr)
    898 		kunmap_px(ppgtt, pt_vaddr);
    899 }
    900 #else
    901 static void
    902 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
    903 			      struct i915_page_directory_pointer *pdp,
    904 			      struct sg_page_iter *sg_iter,
    905 			      uint64_t start,
    906 			      enum i915_cache_level cache_level,
    907 			      u32 flags)
    908 {
    909 	struct i915_hw_ppgtt *ppgtt =
    910 		container_of(vm, struct i915_hw_ppgtt, base);
    911 	gen8_pte_t *pt_vaddr;
    912 	unsigned pdpe = gen8_pdpe_index(start);
    913 	unsigned pde = gen8_pde_index(start);
    914 	unsigned pte = gen8_pte_index(start);
    915 
    916 	pt_vaddr = NULL;
    917 
    918 	while (__sg_page_iter_next(sg_iter)) {
    919 		if (pt_vaddr == NULL) {
    920 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
    921 			struct i915_page_table *pt = pd->page_table[pde];
    922 			pt_vaddr = kmap_px(pt);
    923 		}
    924 
    925 		pt_vaddr[pte] =
    926 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
    927 					cache_level, true, flags);
    928 		if (++pte == GEN8_PTES) {
    929 			kunmap_px(ppgtt, pt_vaddr);
    930 			pt_vaddr = NULL;
    931 			if (++pde == I915_PDES) {
    932 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
    933 					break;
    934 				pde = 0;
    935 			}
    936 			pte = 0;
    937 		}
    938 	}
    939 
    940 	if (pt_vaddr)
    941 		kunmap_px(ppgtt, pt_vaddr);
    942 }
    943 #endif
    944 
    945 #ifdef __NetBSD__
    946 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
    947     bus_dmamap_t dmamap, uint64_t start, enum i915_cache_level cache_level,
    948     u32 flags)
    949 {
    950 	struct i915_hw_ppgtt *ppgtt =
    951 	    container_of(vm, struct i915_hw_ppgtt, base);
    952 	unsigned seg = 0;
    953 
    954 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
    955 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, dmamap, &seg,
    956 		    start, cache_level, flags);
    957 	} else {
    958 		struct i915_page_directory_pointer *pdp;
    959 		uint64_t templ4, pml4e;
    960 		uint64_t length = dmamap->dm_mapsize;
    961 
    962 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4,
    963 		    pml4e) {
    964 			gen8_ppgtt_insert_pte_entries(vm, pdp, dmamap, &seg,
    965 			    start, cache_level, flags);
    966 		}
    967 	}
    968 }
    969 #else
    970 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
    971 				      struct sg_table *pages,
    972 				      uint64_t start,
    973 				      enum i915_cache_level cache_level,
    974 				      u32 flags)
    975 {
    976 	struct i915_hw_ppgtt *ppgtt =
    977 		container_of(vm, struct i915_hw_ppgtt, base);
    978 	struct sg_page_iter sg_iter;
    979 
    980 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
    981 
    982 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
    983 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
    984 					      cache_level, flags);
    985 	} else {
    986 		struct i915_page_directory_pointer *pdp;
    987 		uint64_t templ4, pml4e;
    988 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
    989 
    990 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
    991 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
    992 						      start, cache_level, flags);
    993 		}
    994 	}
    995 }
    996 #endif
    997 
    998 static void gen8_free_page_tables(struct drm_device *dev,
    999 				  struct i915_page_directory *pd)
   1000 {
   1001 	int i;
   1002 
   1003 	if (!px_page(pd))
   1004 		return;
   1005 
   1006 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
   1007 		if (WARN_ON(!pd->page_table[i]))
   1008 			continue;
   1009 
   1010 		free_pt(dev, pd->page_table[i]);
   1011 		pd->page_table[i] = NULL;
   1012 	}
   1013 }
   1014 
   1015 static int gen8_init_scratch(struct i915_address_space *vm)
   1016 {
   1017 	struct drm_device *dev = vm->dev;
   1018 
   1019 	vm->scratch_page = alloc_scratch_page(dev);
   1020 	if (IS_ERR(vm->scratch_page))
   1021 		return PTR_ERR(vm->scratch_page);
   1022 
   1023 	vm->scratch_pt = alloc_pt(dev);
   1024 	if (IS_ERR(vm->scratch_pt)) {
   1025 		free_scratch_page(dev, vm->scratch_page);
   1026 		return PTR_ERR(vm->scratch_pt);
   1027 	}
   1028 
   1029 	vm->scratch_pd = alloc_pd(dev);
   1030 	if (IS_ERR(vm->scratch_pd)) {
   1031 		free_pt(dev, vm->scratch_pt);
   1032 		free_scratch_page(dev, vm->scratch_page);
   1033 		return PTR_ERR(vm->scratch_pd);
   1034 	}
   1035 
   1036 	if (USES_FULL_48BIT_PPGTT(dev)) {
   1037 		vm->scratch_pdp = alloc_pdp(dev);
   1038 		if (IS_ERR(vm->scratch_pdp)) {
   1039 			free_pd(dev, vm->scratch_pd);
   1040 			free_pt(dev, vm->scratch_pt);
   1041 			free_scratch_page(dev, vm->scratch_page);
   1042 			return PTR_ERR(vm->scratch_pdp);
   1043 		}
   1044 	}
   1045 
   1046 	gen8_initialize_pt(vm, vm->scratch_pt);
   1047 	gen8_initialize_pd(vm, vm->scratch_pd);
   1048 	if (USES_FULL_48BIT_PPGTT(dev))
   1049 		gen8_initialize_pdp(vm, vm->scratch_pdp);
   1050 
   1051 	return 0;
   1052 }
   1053 
   1054 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
   1055 {
   1056 	enum vgt_g2v_type msg;
   1057 	struct drm_device *dev = ppgtt->base.dev;
   1058 	struct drm_i915_private *dev_priv = dev->dev_private;
   1059 	unsigned int offset = vgtif_reg(pdp0_lo);
   1060 	int i;
   1061 
   1062 	if (USES_FULL_48BIT_PPGTT(dev)) {
   1063 		u64 daddr = px_dma(&ppgtt->pml4);
   1064 
   1065 		I915_WRITE(offset, lower_32_bits(daddr));
   1066 		I915_WRITE(offset + 4, upper_32_bits(daddr));
   1067 
   1068 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
   1069 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
   1070 	} else {
   1071 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
   1072 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
   1073 
   1074 			I915_WRITE(offset, lower_32_bits(daddr));
   1075 			I915_WRITE(offset + 4, upper_32_bits(daddr));
   1076 
   1077 			offset += 8;
   1078 		}
   1079 
   1080 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
   1081 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
   1082 	}
   1083 
   1084 	I915_WRITE(vgtif_reg(g2v_notify), msg);
   1085 
   1086 	return 0;
   1087 }
   1088 
   1089 static void gen8_free_scratch(struct i915_address_space *vm)
   1090 {
   1091 	struct drm_device *dev = vm->dev;
   1092 
   1093 	if (USES_FULL_48BIT_PPGTT(dev))
   1094 		free_pdp(dev, vm->scratch_pdp);
   1095 	free_pd(dev, vm->scratch_pd);
   1096 	free_pt(dev, vm->scratch_pt);
   1097 	free_scratch_page(dev, vm->scratch_page);
   1098 }
   1099 
   1100 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
   1101 				    struct i915_page_directory_pointer *pdp)
   1102 {
   1103 	int i;
   1104 
   1105 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
   1106 		if (WARN_ON(!pdp->page_directory[i]))
   1107 			continue;
   1108 
   1109 		gen8_free_page_tables(dev, pdp->page_directory[i]);
   1110 		free_pd(dev, pdp->page_directory[i]);
   1111 	}
   1112 
   1113 	free_pdp(dev, pdp);
   1114 }
   1115 
   1116 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
   1117 {
   1118 	int i;
   1119 
   1120 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
   1121 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
   1122 			continue;
   1123 
   1124 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
   1125 	}
   1126 
   1127 	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
   1128 }
   1129 
   1130 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
   1131 {
   1132 	struct i915_hw_ppgtt *ppgtt =
   1133 		container_of(vm, struct i915_hw_ppgtt, base);
   1134 
   1135 	if (intel_vgpu_active(vm->dev))
   1136 		gen8_ppgtt_notify_vgt(ppgtt, false);
   1137 
   1138 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
   1139 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
   1140 	else
   1141 		gen8_ppgtt_cleanup_4lvl(ppgtt);
   1142 
   1143 	gen8_free_scratch(vm);
   1144 }
   1145 
   1146 /**
   1147  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
   1148  * @vm:	Master vm structure.
   1149  * @pd:	Page directory for this address range.
   1150  * @start:	Starting virtual address to begin allocations.
   1151  * @length:	Size of the allocations.
   1152  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
   1153  *		caller to free on error.
   1154  *
   1155  * Allocate the required number of page tables. Extremely similar to
   1156  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
   1157  * the page directory boundary (instead of the page directory pointer). That
   1158  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
   1159  * possible, and likely that the caller will need to use multiple calls of this
   1160  * function to achieve the appropriate allocation.
   1161  *
   1162  * Return: 0 if success; negative error code otherwise.
   1163  */
   1164 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
   1165 				     struct i915_page_directory *pd,
   1166 				     uint64_t start,
   1167 				     uint64_t length,
   1168 				     unsigned long *new_pts)
   1169 {
   1170 	struct drm_device *dev = vm->dev;
   1171 	struct i915_page_table *pt;
   1172 	uint64_t temp;
   1173 	uint32_t pde;
   1174 
   1175 	gen8_for_each_pde(pt, pd, start, length, temp, pde) {
   1176 		/* Don't reallocate page tables */
   1177 		if (test_bit(pde, pd->used_pdes)) {
   1178 			/* Scratch is never allocated this way */
   1179 			WARN_ON(pt == vm->scratch_pt);
   1180 			continue;
   1181 		}
   1182 
   1183 		pt = alloc_pt(dev);
   1184 		if (IS_ERR(pt))
   1185 			goto unwind_out;
   1186 
   1187 		gen8_initialize_pt(vm, pt);
   1188 		pd->page_table[pde] = pt;
   1189 		__set_bit(pde, new_pts);
   1190 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
   1191 	}
   1192 
   1193 	return 0;
   1194 
   1195 unwind_out:
   1196 	for_each_set_bit(pde, new_pts, I915_PDES)
   1197 		free_pt(dev, pd->page_table[pde]);
   1198 
   1199 	return -ENOMEM;
   1200 }
   1201 
   1202 /**
   1203  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
   1204  * @vm:	Master vm structure.
   1205  * @pdp:	Page directory pointer for this address range.
   1206  * @start:	Starting virtual address to begin allocations.
   1207  * @length:	Size of the allocations.
   1208  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
   1209  *		caller to free on error.
   1210  *
   1211  * Allocate the required number of page directories starting at the pde index of
   1212  * @start, and ending at the pde index @start + @length. This function will skip
   1213  * over already allocated page directories within the range, and only allocate
   1214  * new ones, setting the appropriate pointer within the pdp as well as the
   1215  * correct position in the bitmap @new_pds.
   1216  *
   1217  * The function will only allocate the pages within the range for a give page
   1218  * directory pointer. In other words, if @start + @length straddles a virtually
   1219  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
   1220  * required by the caller, This is not currently possible, and the BUG in the
   1221  * code will prevent it.
   1222  *
   1223  * Return: 0 if success; negative error code otherwise.
   1224  */
   1225 static int
   1226 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
   1227 				  struct i915_page_directory_pointer *pdp,
   1228 				  uint64_t start,
   1229 				  uint64_t length,
   1230 				  unsigned long *new_pds)
   1231 {
   1232 	struct drm_device *dev = vm->dev;
   1233 	struct i915_page_directory *pd;
   1234 	uint64_t temp;
   1235 	uint32_t pdpe;
   1236 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
   1237 
   1238 	WARN_ON(!bitmap_empty(new_pds, pdpes));
   1239 
   1240 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
   1241 		if (test_bit(pdpe, pdp->used_pdpes))
   1242 			continue;
   1243 
   1244 		pd = alloc_pd(dev);
   1245 		if (IS_ERR(pd))
   1246 			goto unwind_out;
   1247 
   1248 		gen8_initialize_pd(vm, pd);
   1249 		pdp->page_directory[pdpe] = pd;
   1250 		__set_bit(pdpe, new_pds);
   1251 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
   1252 	}
   1253 
   1254 	return 0;
   1255 
   1256 unwind_out:
   1257 	for_each_set_bit(pdpe, new_pds, pdpes)
   1258 		free_pd(dev, pdp->page_directory[pdpe]);
   1259 
   1260 	return -ENOMEM;
   1261 }
   1262 
   1263 /**
   1264  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
   1265  * @vm:	Master vm structure.
   1266  * @pml4:	Page map level 4 for this address range.
   1267  * @start:	Starting virtual address to begin allocations.
   1268  * @length:	Size of the allocations.
   1269  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
   1270  *		caller to free on error.
   1271  *
   1272  * Allocate the required number of page directory pointers. Extremely similar to
   1273  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
   1274  * The main difference is here we are limited by the pml4 boundary (instead of
   1275  * the page directory pointer).
   1276  *
   1277  * Return: 0 if success; negative error code otherwise.
   1278  */
   1279 static int
   1280 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
   1281 				  struct i915_pml4 *pml4,
   1282 				  uint64_t start,
   1283 				  uint64_t length,
   1284 				  unsigned long *new_pdps)
   1285 {
   1286 	struct drm_device *dev = vm->dev;
   1287 	struct i915_page_directory_pointer *pdp;
   1288 	uint64_t temp;
   1289 	uint32_t pml4e;
   1290 
   1291 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
   1292 
   1293 	gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
   1294 		if (!test_bit(pml4e, pml4->used_pml4es)) {
   1295 			pdp = alloc_pdp(dev);
   1296 			if (IS_ERR(pdp))
   1297 				goto unwind_out;
   1298 
   1299 			gen8_initialize_pdp(vm, pdp);
   1300 			pml4->pdps[pml4e] = pdp;
   1301 			__set_bit(pml4e, new_pdps);
   1302 			trace_i915_page_directory_pointer_entry_alloc(vm,
   1303 								      pml4e,
   1304 								      start,
   1305 								      GEN8_PML4E_SHIFT);
   1306 		}
   1307 	}
   1308 
   1309 	return 0;
   1310 
   1311 unwind_out:
   1312 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
   1313 		free_pdp(dev, pml4->pdps[pml4e]);
   1314 
   1315 	return -ENOMEM;
   1316 }
   1317 
   1318 static void
   1319 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
   1320 {
   1321 	kfree(new_pts);
   1322 	kfree(new_pds);
   1323 }
   1324 
   1325 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
   1326  * of these are based on the number of PDPEs in the system.
   1327  */
   1328 static
   1329 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
   1330 					 unsigned long **new_pts,
   1331 					 uint32_t pdpes)
   1332 {
   1333 	unsigned long *pds;
   1334 	unsigned long *pts;
   1335 
   1336 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
   1337 	if (!pds)
   1338 		return -ENOMEM;
   1339 
   1340 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
   1341 		      GFP_TEMPORARY);
   1342 	if (!pts)
   1343 		goto err_out;
   1344 
   1345 	*new_pds = pds;
   1346 	*new_pts = pts;
   1347 
   1348 	return 0;
   1349 
   1350 err_out:
   1351 	free_gen8_temp_bitmaps(pds, pts);
   1352 	return -ENOMEM;
   1353 }
   1354 
   1355 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
   1356  * the page table structures, we mark them dirty so that
   1357  * context switching/execlist queuing code takes extra steps
   1358  * to ensure that tlbs are flushed.
   1359  */
   1360 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
   1361 {
   1362 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
   1363 }
   1364 
   1365 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
   1366 				    struct i915_page_directory_pointer *pdp,
   1367 				    uint64_t start,
   1368 				    uint64_t length)
   1369 {
   1370 	struct i915_hw_ppgtt *ppgtt =
   1371 		container_of(vm, struct i915_hw_ppgtt, base);
   1372 	unsigned long *new_page_dirs, *new_page_tables;
   1373 	struct drm_device *dev = vm->dev;
   1374 	struct i915_page_directory *pd;
   1375 	const uint64_t orig_start = start;
   1376 	const uint64_t orig_length = length;
   1377 	uint64_t temp;
   1378 	uint32_t pdpe;
   1379 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
   1380 	int ret;
   1381 
   1382 	/* Wrap is never okay since we can only represent 48b, and we don't
   1383 	 * actually use the other side of the canonical address space.
   1384 	 */
   1385 	if (WARN_ON(start + length < start))
   1386 		return -ENODEV;
   1387 
   1388 	if (WARN_ON(start + length > vm->total))
   1389 		return -ENODEV;
   1390 
   1391 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
   1392 	if (ret)
   1393 		return ret;
   1394 
   1395 	/* Do the allocations first so we can easily bail out */
   1396 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
   1397 						new_page_dirs);
   1398 	if (ret) {
   1399 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
   1400 		return ret;
   1401 	}
   1402 
   1403 	/* For every page directory referenced, allocate page tables */
   1404 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
   1405 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
   1406 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
   1407 		if (ret)
   1408 			goto err_out;
   1409 	}
   1410 
   1411 	start = orig_start;
   1412 	length = orig_length;
   1413 
   1414 	/* Allocations have completed successfully, so set the bitmaps, and do
   1415 	 * the mappings. */
   1416 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
   1417 		gen8_pde_t *const page_directory = kmap_px(pd);
   1418 		struct i915_page_table *pt;
   1419 		uint64_t pd_len = length;
   1420 		uint64_t pd_start = start;
   1421 		uint32_t pde;
   1422 
   1423 		/* Every pd should be allocated, we just did that above. */
   1424 		WARN_ON(!pd);
   1425 
   1426 		gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
   1427 			/* Same reasoning as pd */
   1428 			WARN_ON(!pt);
   1429 			WARN_ON(!pd_len);
   1430 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
   1431 
   1432 			/* Set our used ptes within the page table */
   1433 			bitmap_set(pt->used_ptes,
   1434 				   gen8_pte_index(pd_start),
   1435 				   gen8_pte_count(pd_start, pd_len));
   1436 
   1437 			/* Our pde is now pointing to the pagetable, pt */
   1438 			__set_bit(pde, pd->used_pdes);
   1439 
   1440 			/* Map the PDE to the page table */
   1441 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
   1442 							      I915_CACHE_LLC);
   1443 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
   1444 							gen8_pte_index(start),
   1445 							gen8_pte_count(start, length),
   1446 							GEN8_PTES);
   1447 
   1448 			/* NB: We haven't yet mapped ptes to pages. At this
   1449 			 * point we're still relying on insert_entries() */
   1450 		}
   1451 
   1452 		kunmap_px(ppgtt, page_directory);
   1453 		__set_bit(pdpe, pdp->used_pdpes);
   1454 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
   1455 	}
   1456 
   1457 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
   1458 	mark_tlbs_dirty(ppgtt);
   1459 	return 0;
   1460 
   1461 err_out:
   1462 	while (pdpe--) {
   1463 		for_each_set_bit(temp, new_page_tables + pdpe *
   1464 				BITS_TO_LONGS(I915_PDES), I915_PDES)
   1465 			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
   1466 	}
   1467 
   1468 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
   1469 		free_pd(dev, pdp->page_directory[pdpe]);
   1470 
   1471 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
   1472 	mark_tlbs_dirty(ppgtt);
   1473 	return ret;
   1474 }
   1475 
   1476 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
   1477 				    struct i915_pml4 *pml4,
   1478 				    uint64_t start,
   1479 				    uint64_t length)
   1480 {
   1481 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
   1482 	struct i915_hw_ppgtt *ppgtt =
   1483 			container_of(vm, struct i915_hw_ppgtt, base);
   1484 	struct i915_page_directory_pointer *pdp;
   1485 	uint64_t temp, pml4e;
   1486 	int ret = 0;
   1487 
   1488 	/* Do the pml4 allocations first, so we don't need to track the newly
   1489 	 * allocated tables below the pdp */
   1490 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
   1491 
   1492 	/* The pagedirectory and pagetable allocations are done in the shared 3
   1493 	 * and 4 level code. Just allocate the pdps.
   1494 	 */
   1495 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
   1496 						new_pdps);
   1497 	if (ret)
   1498 		return ret;
   1499 
   1500 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
   1501 	     "The allocation has spanned more than 512GB. "
   1502 	     "It is highly likely this is incorrect.");
   1503 
   1504 	gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
   1505 		WARN_ON(!pdp);
   1506 
   1507 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
   1508 		if (ret)
   1509 			goto err_out;
   1510 
   1511 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
   1512 	}
   1513 
   1514 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
   1515 		  GEN8_PML4ES_PER_PML4);
   1516 
   1517 	return 0;
   1518 
   1519 err_out:
   1520 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
   1521 		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
   1522 
   1523 	return ret;
   1524 }
   1525 
   1526 static int gen8_alloc_va_range(struct i915_address_space *vm,
   1527 			       uint64_t start, uint64_t length)
   1528 {
   1529 	struct i915_hw_ppgtt *ppgtt =
   1530 		container_of(vm, struct i915_hw_ppgtt, base);
   1531 
   1532 	if (USES_FULL_48BIT_PPGTT(vm->dev))
   1533 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
   1534 	else
   1535 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
   1536 }
   1537 
   1538 #ifndef __NetBSD__		/* XXX debugfs */
   1539 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
   1540 			  uint64_t start, uint64_t length,
   1541 			  gen8_pte_t scratch_pte,
   1542 			  struct seq_file *m)
   1543 {
   1544 	struct i915_page_directory *pd;
   1545 	uint64_t temp;
   1546 	uint32_t pdpe;
   1547 
   1548 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
   1549 		struct i915_page_table *pt;
   1550 		uint64_t pd_len = length;
   1551 		uint64_t pd_start = start;
   1552 		uint32_t pde;
   1553 
   1554 		if (!test_bit(pdpe, pdp->used_pdpes))
   1555 			continue;
   1556 
   1557 		seq_printf(m, "\tPDPE #%d\n", pdpe);
   1558 		gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
   1559 			uint32_t  pte;
   1560 			gen8_pte_t *pt_vaddr;
   1561 
   1562 			if (!test_bit(pde, pd->used_pdes))
   1563 				continue;
   1564 
   1565 			pt_vaddr = kmap_px(pt);
   1566 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
   1567 				uint64_t va =
   1568 					(pdpe << GEN8_PDPE_SHIFT) |
   1569 					(pde << GEN8_PDE_SHIFT) |
   1570 					(pte << GEN8_PTE_SHIFT);
   1571 				int i;
   1572 				bool found = false;
   1573 
   1574 				for (i = 0; i < 4; i++)
   1575 					if (pt_vaddr[pte + i] != scratch_pte)
   1576 						found = true;
   1577 				if (!found)
   1578 					continue;
   1579 
   1580 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
   1581 				for (i = 0; i < 4; i++) {
   1582 					if (pt_vaddr[pte + i] != scratch_pte)
   1583 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
   1584 					else
   1585 						seq_puts(m, "  SCRATCH ");
   1586 				}
   1587 				seq_puts(m, "\n");
   1588 			}
   1589 			/* don't use kunmap_px, it could trigger
   1590 			 * an unnecessary flush.
   1591 			 */
   1592 			kunmap_atomic(pt_vaddr);
   1593 		}
   1594 	}
   1595 }
   1596 
   1597 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
   1598 {
   1599 	struct i915_address_space *vm = &ppgtt->base;
   1600 	uint64_t start = ppgtt->base.start;
   1601 	uint64_t length = ppgtt->base.total;
   1602 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
   1603 						 I915_CACHE_LLC, true, 0);
   1604 
   1605 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
   1606 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
   1607 	} else {
   1608 		uint64_t templ4, pml4e;
   1609 		struct i915_pml4 *pml4 = &ppgtt->pml4;
   1610 		struct i915_page_directory_pointer *pdp;
   1611 
   1612 		gen8_for_each_pml4e(pdp, pml4, start, length, templ4, pml4e) {
   1613 			if (!test_bit(pml4e, pml4->used_pml4es))
   1614 				continue;
   1615 
   1616 			seq_printf(m, "    PML4E #%llu\n", pml4e);
   1617 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
   1618 		}
   1619 	}
   1620 }
   1621 #endif
   1622 
   1623 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
   1624 {
   1625 	unsigned long *new_page_dirs, *new_page_tables;
   1626 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
   1627 	int ret;
   1628 
   1629 	/* We allocate temp bitmap for page tables for no gain
   1630 	 * but as this is for init only, lets keep the things simple
   1631 	 */
   1632 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
   1633 	if (ret)
   1634 		return ret;
   1635 
   1636 	/* Allocate for all pdps regardless of how the ppgtt
   1637 	 * was defined.
   1638 	 */
   1639 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
   1640 						0, 1ULL << 32,
   1641 						new_page_dirs);
   1642 	if (!ret)
   1643 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
   1644 
   1645 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
   1646 
   1647 	return ret;
   1648 }
   1649 
   1650 /*
   1651  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
   1652  * with a net effect resembling a 2-level page table in normal x86 terms. Each
   1653  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
   1654  * space.
   1655  *
   1656  */
   1657 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
   1658 {
   1659 	int ret;
   1660 
   1661 	ret = gen8_init_scratch(&ppgtt->base);
   1662 	if (ret)
   1663 		return ret;
   1664 
   1665 	ppgtt->base.start = 0;
   1666 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
   1667 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
   1668 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
   1669 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
   1670 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
   1671 	ppgtt->base.bind_vma = ppgtt_bind_vma;
   1672 
   1673 	/*
   1674 	 * From bdw, there is support for read-only pages in the PPGTT.
   1675 	 *
   1676 	 * XXX GVT is not honouring the lack of RW in the PTE bits.
   1677 	 */
   1678 	ppgtt->base.has_read_only = !intel_vgpu_active(ppgtt->base.dev);
   1679 
   1680 #ifndef __NetBSD__		/* XXX debugfs */
   1681 	ppgtt->debug_dump = gen8_dump_ppgtt;
   1682 #endif
   1683 
   1684 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
   1685 		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
   1686 		if (ret)
   1687 			goto free_scratch;
   1688 
   1689 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
   1690 
   1691 		ppgtt->base.total = 1ULL << 48;
   1692 		ppgtt->switch_mm = gen8_48b_mm_switch;
   1693 	} else {
   1694 		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
   1695 		if (ret)
   1696 			goto free_scratch;
   1697 
   1698 		ppgtt->base.total = 1ULL << 32;
   1699 		ppgtt->switch_mm = gen8_legacy_mm_switch;
   1700 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
   1701 							      0, 0,
   1702 							      GEN8_PML4E_SHIFT);
   1703 
   1704 		if (intel_vgpu_active(ppgtt->base.dev)) {
   1705 			ret = gen8_preallocate_top_level_pdps(ppgtt);
   1706 			if (ret)
   1707 				goto free_scratch;
   1708 		}
   1709 	}
   1710 
   1711 	if (intel_vgpu_active(ppgtt->base.dev))
   1712 		gen8_ppgtt_notify_vgt(ppgtt, true);
   1713 
   1714 	return 0;
   1715 
   1716 free_scratch:
   1717 	gen8_free_scratch(&ppgtt->base);
   1718 	return ret;
   1719 }
   1720 
   1721 #ifndef __NetBSD__		/* XXX debugfs */
   1722 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
   1723 {
   1724 	struct i915_address_space *vm = &ppgtt->base;
   1725 	struct i915_page_table *unused;
   1726 	gen6_pte_t scratch_pte;
   1727 	uint32_t pd_entry;
   1728 	uint32_t  pte, pde, temp;
   1729 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
   1730 
   1731 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
   1732 				     I915_CACHE_LLC, true, 0);
   1733 
   1734 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
   1735 		u32 expected;
   1736 		gen6_pte_t *pt_vaddr;
   1737 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
   1738 		pd_entry = readl(ppgtt->pd_addr + pde);
   1739 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
   1740 
   1741 		if (pd_entry != expected)
   1742 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
   1743 				   pde,
   1744 				   pd_entry,
   1745 				   expected);
   1746 		seq_printf(m, "\tPDE: %x\n", pd_entry);
   1747 
   1748 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
   1749 
   1750 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
   1751 			unsigned long va =
   1752 				(pde * PAGE_SIZE * GEN6_PTES) +
   1753 				(pte * PAGE_SIZE);
   1754 			int i;
   1755 			bool found = false;
   1756 			for (i = 0; i < 4; i++)
   1757 				if (pt_vaddr[pte + i] != scratch_pte)
   1758 					found = true;
   1759 			if (!found)
   1760 				continue;
   1761 
   1762 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
   1763 			for (i = 0; i < 4; i++) {
   1764 				if (pt_vaddr[pte + i] != scratch_pte)
   1765 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
   1766 				else
   1767 					seq_puts(m, "  SCRATCH ");
   1768 			}
   1769 			seq_puts(m, "\n");
   1770 		}
   1771 		kunmap_px(ppgtt, pt_vaddr);
   1772 	}
   1773 }
   1774 #endif
   1775 
   1776 /* Write pde (index) from the page directory @pd to the page table @pt */
   1777 static void gen6_write_pde(struct i915_page_directory *pd,
   1778 			    const int pde, struct i915_page_table *pt)
   1779 {
   1780 	/* Caller needs to make sure the write completes if necessary */
   1781 	struct i915_hw_ppgtt *ppgtt =
   1782 		container_of(pd, struct i915_hw_ppgtt, pd);
   1783 #ifdef __NetBSD__
   1784 	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
   1785 	const bus_space_tag_t bst = dev_priv->gtt.bst;
   1786 	const bus_space_handle_t bsh = dev_priv->gtt.bsh;
   1787 	const bus_addr_t pd_base = ppgtt->pd.base.ggtt_offset;
   1788 #endif
   1789 	u32 pd_entry;
   1790 
   1791 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
   1792 	pd_entry |= GEN6_PDE_VALID;
   1793 
   1794 #ifdef __NetBSD__
   1795 	CTASSERT(sizeof(gen6_pte_t) == 4);
   1796 	bus_space_write_4(bst, bsh, pd_base + 4*pde, pd_entry);
   1797 #else
   1798 	writel(pd_entry, ppgtt->pd_addr + pde);
   1799 #endif
   1800 }
   1801 
   1802 /* Write all the page tables found in the ppgtt structure to incrementing page
   1803  * directories. */
   1804 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
   1805 				  struct i915_page_directory *pd,
   1806 				  uint32_t start, uint32_t length)
   1807 {
   1808 	struct i915_page_table *pt;
   1809 	uint32_t pde, temp;
   1810 
   1811 	gen6_for_each_pde(pt, pd, start, length, temp, pde)
   1812 		gen6_write_pde(pd, pde, pt);
   1813 
   1814 	/* Make sure write is complete before other code can use this page
   1815 	 * table. Also require for WC mapped PTEs */
   1816 #ifdef __NetBSD__
   1817 	bus_space_read_4(dev_priv->gtt.bst, dev_priv->gtt.bsh, 0);
   1818 #else
   1819 	readl(dev_priv->gtt.gsm);
   1820 #endif
   1821 }
   1822 
   1823 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
   1824 {
   1825 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
   1826 
   1827 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
   1828 }
   1829 
   1830 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
   1831 			 struct drm_i915_gem_request *req)
   1832 {
   1833 	struct intel_engine_cs *ring = req->ring;
   1834 	int ret;
   1835 
   1836 	/* NB: TLBs must be flushed and invalidated before a switch */
   1837 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
   1838 	if (ret)
   1839 		return ret;
   1840 
   1841 	ret = intel_ring_begin(req, 6);
   1842 	if (ret)
   1843 		return ret;
   1844 
   1845 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
   1846 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
   1847 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
   1848 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
   1849 	intel_ring_emit(ring, get_pd_offset(ppgtt));
   1850 	intel_ring_emit(ring, MI_NOOP);
   1851 	intel_ring_advance(ring);
   1852 
   1853 	return 0;
   1854 }
   1855 
   1856 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
   1857 			  struct drm_i915_gem_request *req)
   1858 {
   1859 	struct intel_engine_cs *ring = req->ring;
   1860 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
   1861 
   1862 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
   1863 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
   1864 	return 0;
   1865 }
   1866 
   1867 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
   1868 			  struct drm_i915_gem_request *req)
   1869 {
   1870 	struct intel_engine_cs *ring = req->ring;
   1871 	int ret;
   1872 
   1873 	/* NB: TLBs must be flushed and invalidated before a switch */
   1874 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
   1875 	if (ret)
   1876 		return ret;
   1877 
   1878 	ret = intel_ring_begin(req, 6);
   1879 	if (ret)
   1880 		return ret;
   1881 
   1882 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
   1883 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
   1884 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
   1885 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
   1886 	intel_ring_emit(ring, get_pd_offset(ppgtt));
   1887 	intel_ring_emit(ring, MI_NOOP);
   1888 	intel_ring_advance(ring);
   1889 
   1890 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
   1891 	if (ring->id != RCS) {
   1892 		ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
   1893 		if (ret)
   1894 			return ret;
   1895 	}
   1896 
   1897 	return 0;
   1898 }
   1899 
   1900 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
   1901 			  struct drm_i915_gem_request *req)
   1902 {
   1903 	struct intel_engine_cs *ring = req->ring;
   1904 	struct drm_device *dev = ppgtt->base.dev;
   1905 	struct drm_i915_private *dev_priv = dev->dev_private;
   1906 
   1907 
   1908 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
   1909 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
   1910 
   1911 	POSTING_READ(RING_PP_DIR_DCLV(ring));
   1912 
   1913 	return 0;
   1914 }
   1915 
   1916 static void gen8_ppgtt_enable(struct drm_device *dev)
   1917 {
   1918 	struct drm_i915_private *dev_priv = dev->dev_private;
   1919 	struct intel_engine_cs *ring;
   1920 	int j;
   1921 
   1922 	for_each_ring(ring, dev_priv, j) {
   1923 		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
   1924 		I915_WRITE(RING_MODE_GEN7(ring),
   1925 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
   1926 	}
   1927 }
   1928 
   1929 static void gen7_ppgtt_enable(struct drm_device *dev)
   1930 {
   1931 	struct drm_i915_private *dev_priv = dev->dev_private;
   1932 	struct intel_engine_cs *ring;
   1933 	uint32_t ecochk, ecobits;
   1934 	int i;
   1935 
   1936 	ecobits = I915_READ(GAC_ECO_BITS);
   1937 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
   1938 
   1939 	ecochk = I915_READ(GAM_ECOCHK);
   1940 	if (IS_HASWELL(dev)) {
   1941 		ecochk |= ECOCHK_PPGTT_WB_HSW;
   1942 	} else {
   1943 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
   1944 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
   1945 	}
   1946 	I915_WRITE(GAM_ECOCHK, ecochk);
   1947 
   1948 	for_each_ring(ring, dev_priv, i) {
   1949 		/* GFX_MODE is per-ring on gen7+ */
   1950 		I915_WRITE(RING_MODE_GEN7(ring),
   1951 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
   1952 	}
   1953 }
   1954 
   1955 static void gen6_ppgtt_enable(struct drm_device *dev)
   1956 {
   1957 	struct drm_i915_private *dev_priv = dev->dev_private;
   1958 	uint32_t ecochk, gab_ctl, ecobits;
   1959 
   1960 	ecobits = I915_READ(GAC_ECO_BITS);
   1961 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
   1962 		   ECOBITS_PPGTT_CACHE64B);
   1963 
   1964 	gab_ctl = I915_READ(GAB_CTL);
   1965 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
   1966 
   1967 	ecochk = I915_READ(GAM_ECOCHK);
   1968 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
   1969 
   1970 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
   1971 }
   1972 
   1973 /* PPGTT support for Sandybdrige/Gen6 and later */
   1974 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
   1975 				   uint64_t start,
   1976 				   uint64_t length,
   1977 				   bool use_scratch)
   1978 {
   1979 	struct i915_hw_ppgtt *ppgtt =
   1980 		container_of(vm, struct i915_hw_ppgtt, base);
   1981 	gen6_pte_t *pt_vaddr, scratch_pte;
   1982 	unsigned first_entry = start >> PAGE_SHIFT;
   1983 	unsigned num_entries = length >> PAGE_SHIFT;
   1984 	unsigned act_pt = first_entry / GEN6_PTES;
   1985 	unsigned first_pte = first_entry % GEN6_PTES;
   1986 	unsigned last_pte, i;
   1987 
   1988 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
   1989 				     I915_CACHE_LLC, true, 0);
   1990 
   1991 	while (num_entries) {
   1992 		last_pte = first_pte + num_entries;
   1993 		if (last_pte > GEN6_PTES)
   1994 			last_pte = GEN6_PTES;
   1995 
   1996 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
   1997 
   1998 		for (i = first_pte; i < last_pte; i++)
   1999 			pt_vaddr[i] = scratch_pte;
   2000 
   2001 		kunmap_px(ppgtt, pt_vaddr);
   2002 
   2003 		num_entries -= last_pte - first_pte;
   2004 		first_pte = 0;
   2005 		act_pt++;
   2006 	}
   2007 }
   2008 
   2009 #ifdef __NetBSD__
   2010 static void
   2011 gen6_ppgtt_insert_entries(struct i915_address_space *vm, bus_dmamap_t dmamap,
   2012     uint64_t start, enum i915_cache_level cache_level, uint32_t flags)
   2013 {
   2014 	struct i915_hw_ppgtt *ppgtt =
   2015 		container_of(vm, struct i915_hw_ppgtt, base);
   2016 	gen6_pte_t *pt_vaddr;
   2017 	unsigned first_entry = start >> PAGE_SHIFT;
   2018 	unsigned act_pt = first_entry / GEN6_PTES;
   2019 	unsigned act_pte = first_entry % GEN6_PTES;
   2020 	unsigned seg;
   2021 
   2022 	pt_vaddr = NULL;
   2023 	KASSERT(0 < dmamap->dm_nsegs);
   2024 	for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
   2025 		KASSERT(dmamap->dm_segs[seg].ds_len == PAGE_SIZE);
   2026 		if (pt_vaddr == NULL)
   2027 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
   2028 		pt_vaddr[act_pte] =
   2029 		    vm->pte_encode(dmamap->dm_segs[seg].ds_addr, cache_level,
   2030 			true, flags);
   2031 		if (++act_pte == GEN6_PTES) {
   2032 			kunmap_px(ppgtt, pt_vaddr);
   2033 			pt_vaddr = NULL;
   2034 			act_pt++;
   2035 			act_pte = 0;
   2036 		}
   2037 	}
   2038 	if (pt_vaddr)
   2039 		kunmap_px(ppgtt, pt_vaddr);
   2040 }
   2041 #else
   2042 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
   2043 				      struct sg_table *pages,
   2044 				      uint64_t start,
   2045 				      enum i915_cache_level cache_level, u32 flags)
   2046 {
   2047 	struct i915_hw_ppgtt *ppgtt =
   2048 		container_of(vm, struct i915_hw_ppgtt, base);
   2049 	gen6_pte_t *pt_vaddr;
   2050 	unsigned first_entry = start >> PAGE_SHIFT;
   2051 	unsigned act_pt = first_entry / GEN6_PTES;
   2052 	unsigned act_pte = first_entry % GEN6_PTES;
   2053 	struct sg_page_iter sg_iter;
   2054 
   2055 	pt_vaddr = NULL;
   2056 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
   2057 		if (pt_vaddr == NULL)
   2058 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
   2059 
   2060 		pt_vaddr[act_pte] =
   2061 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
   2062 				       cache_level, true, flags);
   2063 
   2064 		if (++act_pte == GEN6_PTES) {
   2065 			kunmap_px(ppgtt, pt_vaddr);
   2066 			pt_vaddr = NULL;
   2067 			act_pt++;
   2068 			act_pte = 0;
   2069 		}
   2070 	}
   2071 	if (pt_vaddr)
   2072 		kunmap_px(ppgtt, pt_vaddr);
   2073 }
   2074 #endif
   2075 
   2076 static int gen6_alloc_va_range(struct i915_address_space *vm,
   2077 			       uint64_t start_in, uint64_t length_in)
   2078 {
   2079 	DECLARE_BITMAP(new_page_tables, I915_PDES);
   2080 	struct drm_device *dev = vm->dev;
   2081 	struct drm_i915_private *dev_priv = dev->dev_private;
   2082 	struct i915_hw_ppgtt *ppgtt =
   2083 				container_of(vm, struct i915_hw_ppgtt, base);
   2084 	struct i915_page_table *pt;
   2085 	uint32_t start, length, start_save, length_save;
   2086 	uint32_t pde, temp;
   2087 	int ret;
   2088 
   2089 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
   2090 		return -ENODEV;
   2091 
   2092 	start = start_save = start_in;
   2093 	length = length_save = length_in;
   2094 
   2095 	bitmap_zero(new_page_tables, I915_PDES);
   2096 
   2097 	/* The allocation is done in two stages so that we can bail out with
   2098 	 * minimal amount of pain. The first stage finds new page tables that
   2099 	 * need allocation. The second stage marks use ptes within the page
   2100 	 * tables.
   2101 	 */
   2102 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
   2103 		if (pt != vm->scratch_pt) {
   2104 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
   2105 			continue;
   2106 		}
   2107 
   2108 		/* We've already allocated a page table */
   2109 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
   2110 
   2111 		pt = alloc_pt(dev);
   2112 		if (IS_ERR(pt)) {
   2113 			ret = PTR_ERR(pt);
   2114 			goto unwind_out;
   2115 		}
   2116 
   2117 		gen6_initialize_pt(vm, pt);
   2118 
   2119 		ppgtt->pd.page_table[pde] = pt;
   2120 		__set_bit(pde, new_page_tables);
   2121 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
   2122 	}
   2123 
   2124 	start = start_save;
   2125 	length = length_save;
   2126 
   2127 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
   2128 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
   2129 
   2130 		bitmap_zero(tmp_bitmap, GEN6_PTES);
   2131 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
   2132 			   gen6_pte_count(start, length));
   2133 
   2134 		if (__test_and_clear_bit(pde, new_page_tables))
   2135 			gen6_write_pde(&ppgtt->pd, pde, pt);
   2136 
   2137 		trace_i915_page_table_entry_map(vm, pde, pt,
   2138 					 gen6_pte_index(start),
   2139 					 gen6_pte_count(start, length),
   2140 					 GEN6_PTES);
   2141 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
   2142 				GEN6_PTES);
   2143 	}
   2144 
   2145 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
   2146 
   2147 	/* Make sure write is complete before other code can use this page
   2148 	 * table. Also require for WC mapped PTEs */
   2149 #ifdef __NetBSD__
   2150 	bus_space_read_4(dev_priv->gtt.bst, dev_priv->gtt.bsh, 0);
   2151 #else
   2152 	readl(dev_priv->gtt.gsm);
   2153 #endif
   2154 
   2155 	mark_tlbs_dirty(ppgtt);
   2156 	return 0;
   2157 
   2158 unwind_out:
   2159 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
   2160 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
   2161 
   2162 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
   2163 		free_pt(vm->dev, pt);
   2164 	}
   2165 
   2166 	mark_tlbs_dirty(ppgtt);
   2167 	return ret;
   2168 }
   2169 
   2170 static int gen6_init_scratch(struct i915_address_space *vm)
   2171 {
   2172 	struct drm_device *dev = vm->dev;
   2173 
   2174 	vm->scratch_page = alloc_scratch_page(dev);
   2175 	if (IS_ERR(vm->scratch_page))
   2176 		return PTR_ERR(vm->scratch_page);
   2177 
   2178 	vm->scratch_pt = alloc_pt(dev);
   2179 	if (IS_ERR(vm->scratch_pt)) {
   2180 		free_scratch_page(dev, vm->scratch_page);
   2181 		return PTR_ERR(vm->scratch_pt);
   2182 	}
   2183 
   2184 	gen6_initialize_pt(vm, vm->scratch_pt);
   2185 
   2186 	return 0;
   2187 }
   2188 
   2189 static void gen6_free_scratch(struct i915_address_space *vm)
   2190 {
   2191 	struct drm_device *dev = vm->dev;
   2192 
   2193 	free_pt(dev, vm->scratch_pt);
   2194 	free_scratch_page(dev, vm->scratch_page);
   2195 }
   2196 
   2197 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
   2198 {
   2199 	struct i915_hw_ppgtt *ppgtt =
   2200 		container_of(vm, struct i915_hw_ppgtt, base);
   2201 	struct i915_page_table *pt;
   2202 	uint32_t pde;
   2203 
   2204 	drm_mm_remove_node(&ppgtt->node);
   2205 
   2206 	gen6_for_all_pdes(pt, ppgtt, pde) {
   2207 		if (pt != vm->scratch_pt)
   2208 			free_pt(ppgtt->base.dev, pt);
   2209 	}
   2210 
   2211 	gen6_free_scratch(vm);
   2212 }
   2213 
   2214 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
   2215 {
   2216 	struct i915_address_space *vm = &ppgtt->base;
   2217 	struct drm_device *dev = ppgtt->base.dev;
   2218 	struct drm_i915_private *dev_priv = dev->dev_private;
   2219 	bool retried = false;
   2220 	int ret;
   2221 
   2222 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
   2223 	 * allocator works in address space sizes, so it's multiplied by page
   2224 	 * size. We allocate at the top of the GTT to avoid fragmentation.
   2225 	 */
   2226 	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
   2227 
   2228 	ret = gen6_init_scratch(vm);
   2229 	if (ret)
   2230 		return ret;
   2231 
   2232 alloc:
   2233 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
   2234 						  &ppgtt->node, GEN6_PD_SIZE,
   2235 						  GEN6_PD_ALIGN, 0,
   2236 						  0, dev_priv->gtt.base.total,
   2237 						  DRM_MM_TOPDOWN);
   2238 	if (ret == -ENOSPC && !retried) {
   2239 		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
   2240 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
   2241 					       I915_CACHE_NONE,
   2242 					       0, dev_priv->gtt.base.total,
   2243 					       0);
   2244 		if (ret)
   2245 			goto err_out;
   2246 
   2247 		retried = true;
   2248 		goto alloc;
   2249 	}
   2250 
   2251 	if (ret)
   2252 		goto err_out;
   2253 
   2254 
   2255 	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
   2256 		DRM_DEBUG("Forced to use aperture for PDEs\n");
   2257 
   2258 	return 0;
   2259 
   2260 err_out:
   2261 	gen6_free_scratch(vm);
   2262 	return ret;
   2263 }
   2264 
   2265 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
   2266 {
   2267 	return gen6_ppgtt_allocate_page_directories(ppgtt);
   2268 }
   2269 
   2270 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
   2271 				  uint64_t start, uint64_t length)
   2272 {
   2273 	struct i915_page_table *unused __unused;
   2274 	uint32_t pde, temp;
   2275 
   2276 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
   2277 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
   2278 }
   2279 
   2280 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
   2281 {
   2282 	struct drm_device *dev = ppgtt->base.dev;
   2283 	struct drm_i915_private *dev_priv = dev->dev_private;
   2284 	int ret;
   2285 
   2286 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
   2287 	if (IS_GEN6(dev)) {
   2288 		ppgtt->switch_mm = gen6_mm_switch;
   2289 	} else if (IS_HASWELL(dev)) {
   2290 		ppgtt->switch_mm = hsw_mm_switch;
   2291 	} else if (IS_GEN7(dev)) {
   2292 		ppgtt->switch_mm = gen7_mm_switch;
   2293 	} else
   2294 		BUG();
   2295 
   2296 	if (intel_vgpu_active(dev))
   2297 		ppgtt->switch_mm = vgpu_mm_switch;
   2298 
   2299 	ret = gen6_ppgtt_alloc(ppgtt);
   2300 	if (ret)
   2301 		return ret;
   2302 
   2303 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
   2304 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
   2305 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
   2306 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
   2307 	ppgtt->base.bind_vma = ppgtt_bind_vma;
   2308 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
   2309 	ppgtt->base.start = 0;
   2310 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
   2311 #ifndef __NetBSD__
   2312 	ppgtt->debug_dump = gen6_dump_ppgtt;
   2313 #endif
   2314 
   2315 	ppgtt->pd.base.ggtt_offset =
   2316 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
   2317 
   2318 #ifndef __NetBSD__
   2319 	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
   2320 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
   2321 #endif
   2322 
   2323 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
   2324 
   2325 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
   2326 
   2327 	DRM_DEBUG_DRIVER("Allocated pde space (%"PRId64"M) at GTT entry: %"PRIx64"\n",
   2328 			 ppgtt->node.size >> 20,
   2329 			 ppgtt->node.start / PAGE_SIZE);
   2330 
   2331 	DRM_DEBUG("Adding PPGTT at offset %x\n",
   2332 		  ppgtt->pd.base.ggtt_offset << 10);
   2333 
   2334 	return 0;
   2335 }
   2336 
   2337 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
   2338 {
   2339 	ppgtt->base.dev = dev;
   2340 
   2341 	if (INTEL_INFO(dev)->gen < 8)
   2342 		return gen6_ppgtt_init(ppgtt);
   2343 	else
   2344 		return gen8_ppgtt_init(ppgtt);
   2345 }
   2346 
   2347 static void i915_address_space_init(struct i915_address_space *vm,
   2348 				    struct drm_i915_private *dev_priv)
   2349 {
   2350 	drm_mm_init(&vm->mm, vm->start, vm->total);
   2351 	vm->dev = dev_priv->dev;
   2352 	INIT_LIST_HEAD(&vm->active_list);
   2353 	INIT_LIST_HEAD(&vm->inactive_list);
   2354 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
   2355 }
   2356 
   2357 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
   2358 {
   2359 	struct drm_i915_private *dev_priv = dev->dev_private;
   2360 	int ret = 0;
   2361 
   2362 	ret = __hw_ppgtt_init(dev, ppgtt);
   2363 	if (ret == 0) {
   2364 		kref_init(&ppgtt->ref);
   2365 		i915_address_space_init(&ppgtt->base, dev_priv);
   2366 	}
   2367 
   2368 	return ret;
   2369 }
   2370 
   2371 int i915_ppgtt_init_hw(struct drm_device *dev)
   2372 {
   2373 	/* In the case of execlists, PPGTT is enabled by the context descriptor
   2374 	 * and the PDPs are contained within the context itself.  We don't
   2375 	 * need to do anything here. */
   2376 	if (i915.enable_execlists)
   2377 		return 0;
   2378 
   2379 	if (!USES_PPGTT(dev))
   2380 		return 0;
   2381 
   2382 	if (IS_GEN6(dev))
   2383 		gen6_ppgtt_enable(dev);
   2384 	else if (IS_GEN7(dev))
   2385 		gen7_ppgtt_enable(dev);
   2386 	else if (INTEL_INFO(dev)->gen >= 8)
   2387 		gen8_ppgtt_enable(dev);
   2388 	else
   2389 		MISSING_CASE(INTEL_INFO(dev)->gen);
   2390 
   2391 	return 0;
   2392 }
   2393 
   2394 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
   2395 {
   2396 	struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
   2397 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
   2398 
   2399 	if (i915.enable_execlists)
   2400 		return 0;
   2401 
   2402 	if (!ppgtt)
   2403 		return 0;
   2404 
   2405 	return ppgtt->switch_mm(ppgtt, req);
   2406 }
   2407 
   2408 struct i915_hw_ppgtt *
   2409 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
   2410 {
   2411 	struct i915_hw_ppgtt *ppgtt;
   2412 	int ret;
   2413 
   2414 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
   2415 	if (!ppgtt)
   2416 		return ERR_PTR(-ENOMEM);
   2417 
   2418 	ret = i915_ppgtt_init(dev, ppgtt);
   2419 	if (ret) {
   2420 		kfree(ppgtt);
   2421 		return ERR_PTR(ret);
   2422 	}
   2423 
   2424 	ppgtt->file_priv = fpriv;
   2425 
   2426 	trace_i915_ppgtt_create(&ppgtt->base);
   2427 
   2428 	return ppgtt;
   2429 }
   2430 
   2431 void  i915_ppgtt_release(struct kref *kref)
   2432 {
   2433 	struct i915_hw_ppgtt *ppgtt =
   2434 		container_of(kref, struct i915_hw_ppgtt, ref);
   2435 
   2436 	trace_i915_ppgtt_release(&ppgtt->base);
   2437 
   2438 	/* vmas should already be unbound */
   2439 	WARN_ON(!list_empty(&ppgtt->base.active_list));
   2440 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
   2441 
   2442 	list_del(&ppgtt->base.global_link);
   2443 	drm_mm_takedown(&ppgtt->base.mm);
   2444 
   2445 	ppgtt->base.cleanup(&ppgtt->base);
   2446 	kfree(ppgtt);
   2447 }
   2448 
   2449 extern int intel_iommu_gfx_mapped;
   2450 /* Certain Gen5 chipsets require require idling the GPU before
   2451  * unmapping anything from the GTT when VT-d is enabled.
   2452  */
   2453 static bool needs_idle_maps(struct drm_device *dev)
   2454 {
   2455 #ifdef CONFIG_INTEL_IOMMU
   2456 	/* Query intel_iommu to see if we need the workaround. Presumably that
   2457 	 * was loaded first.
   2458 	 */
   2459 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
   2460 		return true;
   2461 #endif
   2462 	return false;
   2463 }
   2464 
   2465 static bool do_idling(struct drm_i915_private *dev_priv)
   2466 {
   2467 	bool ret = dev_priv->mm.interruptible;
   2468 
   2469 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
   2470 		dev_priv->mm.interruptible = false;
   2471 		if (i915_gpu_idle(dev_priv->dev)) {
   2472 			DRM_ERROR("Couldn't idle GPU\n");
   2473 			/* Wait a bit, in hopes it avoids the hang */
   2474 			udelay(10);
   2475 		}
   2476 	}
   2477 
   2478 	return ret;
   2479 }
   2480 
   2481 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
   2482 {
   2483 	if (unlikely(dev_priv->gtt.do_idle_maps))
   2484 		dev_priv->mm.interruptible = interruptible;
   2485 }
   2486 
   2487 void i915_check_and_clear_faults(struct drm_device *dev)
   2488 {
   2489 	struct drm_i915_private *dev_priv = dev->dev_private;
   2490 	struct intel_engine_cs *ring;
   2491 	int i;
   2492 
   2493 	if (INTEL_INFO(dev)->gen < 6)
   2494 		return;
   2495 
   2496 	for_each_ring(ring, dev_priv, i) {
   2497 		u32 fault_reg;
   2498 		fault_reg = I915_READ(RING_FAULT_REG(ring));
   2499 		if (fault_reg & RING_FAULT_VALID) {
   2500 			DRM_DEBUG_DRIVER("Unexpected fault\n"
   2501 					 "\tAddr: 0x%08"PRIx32"\n"
   2502 					 "\tAddress space: %s\n"
   2503 					 "\tSource ID: %d\n"
   2504 					 "\tType: %d\n",
   2505 					 fault_reg & PAGE_MASK,
   2506 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
   2507 					 RING_FAULT_SRCID(fault_reg),
   2508 					 RING_FAULT_FAULT_TYPE(fault_reg));
   2509 			I915_WRITE(RING_FAULT_REG(ring),
   2510 				   fault_reg & ~RING_FAULT_VALID);
   2511 		}
   2512 	}
   2513 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
   2514 }
   2515 
   2516 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
   2517 {
   2518 	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
   2519 		intel_gtt_chipset_flush();
   2520 	} else {
   2521 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2522 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2523 	}
   2524 }
   2525 
   2526 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
   2527 {
   2528 	struct drm_i915_private *dev_priv = dev->dev_private;
   2529 
   2530 	/* Don't bother messing with faults pre GEN6 as we have little
   2531 	 * documentation supporting that it's a good idea.
   2532 	 */
   2533 	if (INTEL_INFO(dev)->gen < 6)
   2534 		return;
   2535 
   2536 	i915_check_and_clear_faults(dev);
   2537 
   2538 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
   2539 				       dev_priv->gtt.base.start,
   2540 				       dev_priv->gtt.base.total,
   2541 				       true);
   2542 
   2543 	i915_ggtt_flush(dev_priv);
   2544 }
   2545 
   2546 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
   2547 {
   2548 #ifdef __NetBSD__
   2549 	KASSERT(0 < obj->base.size);
   2550 	/* XXX errno NetBSD->Linux */
   2551 	return -bus_dmamap_load_pglist(obj->base.dev->dmat, obj->pages,
   2552 	    &obj->pageq, obj->base.size, BUS_DMA_NOWAIT);
   2553 #else
   2554 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
   2555 			obj->pages->sgl, obj->pages->nents,
   2556 			PCI_DMA_BIDIRECTIONAL))
   2557 		return -ENOSPC;
   2558 
   2559 	return 0;
   2560 #endif
   2561 }
   2562 
   2563 #ifdef __NetBSD__
   2564 static gen8_pte_t
   2565 gen8_get_pte(bus_space_tag_t bst, bus_space_handle_t bsh, unsigned i)
   2566 {
   2567 	CTASSERT(_BYTE_ORDER == _LITTLE_ENDIAN); /* x86 */
   2568 	CTASSERT(sizeof(gen8_pte_t) == 8);
   2569 #ifdef _LP64			/* XXX How to detect bus_space_read_8?  */
   2570 	return bus_space_read_8(bst, bsh, 8*i);
   2571 #else
   2572 	/*
   2573 	 * XXX I'm not sure this case can actually happen in practice:
   2574 	 * 32-bit gen8 chipsets?
   2575 	 */
   2576 	return bus_space_read_4(bst, bsh, 8*i) |
   2577 	    ((uint64_t)bus_space_read_4(bst, bsh, 8*i + 4) << 32);
   2578 #endif
   2579 }
   2580 
   2581 static inline void
   2582 gen8_set_pte(bus_space_tag_t bst, bus_space_handle_t bsh, unsigned i,
   2583     gen8_pte_t pte)
   2584 {
   2585 	CTASSERT(_BYTE_ORDER == _LITTLE_ENDIAN); /* x86 */
   2586 	CTASSERT(sizeof(gen8_pte_t) == 8);
   2587 #ifdef _LP64			/* XXX How to detect bus_space_write_8?  */
   2588 	bus_space_write_8(bst, bsh, 8*i, pte);
   2589 #else
   2590 	bus_space_write_4(bst, bsh, 8*i, (uint32_t)pte);
   2591 	bus_space_write_4(bst, bsh, 8*i + 4, (uint32_t)(pte >> 32));
   2592 #endif
   2593 }
   2594 #else
   2595 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
   2596 {
   2597 #ifdef writeq
   2598 	writeq(pte, addr);
   2599 #else
   2600 	iowrite32((u32)pte, addr);
   2601 	iowrite32(pte >> 32, addr + 4);
   2602 #endif
   2603 }
   2604 #endif
   2605 
   2606 #ifdef __NetBSD__
   2607 static void
   2608 gen8_ggtt_insert_entries(struct i915_address_space *vm, bus_dmamap_t dmamap,
   2609     uint64_t start, enum i915_cache_level level, uint32_t flags)
   2610 {
   2611 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2612 	unsigned first_entry = start >> PAGE_SHIFT;
   2613 	const bus_space_tag_t bst = dev_priv->gtt.bst;
   2614 	const bus_space_handle_t bsh = dev_priv->gtt.bsh;
   2615 	unsigned i;
   2616 
   2617 	KASSERT(0 < dmamap->dm_nsegs);
   2618 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2619 		KASSERT(dmamap->dm_segs[i].ds_len == PAGE_SIZE);
   2620 		gen8_set_pte(bst, bsh, first_entry + i,
   2621 		    gen8_pte_encode(dmamap->dm_segs[i].ds_addr, level, true, flags));
   2622 	}
   2623 	if (0 < i) {
   2624 		/* Posting read.  */
   2625 		WARN_ON(gen8_get_pte(bst, bsh, (first_entry + i - 1))
   2626 		    != gen8_pte_encode(dmamap->dm_segs[i - 1].ds_addr, level,
   2627 			true, flags));
   2628 	}
   2629 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2630 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2631 }
   2632 #else
   2633 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
   2634 				     struct sg_table *st,
   2635 				     uint64_t start,
   2636 				     enum i915_cache_level level, u32 flags)
   2637 {
   2638 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2639 	unsigned first_entry = start >> PAGE_SHIFT;
   2640 	gen8_pte_t __iomem *gtt_entries =
   2641 		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
   2642 	int i = 0;
   2643 	struct sg_page_iter sg_iter;
   2644 	dma_addr_t addr = 0; /* shut up gcc */
   2645 
   2646 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
   2647 		addr = sg_dma_address(sg_iter.sg) +
   2648 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
   2649 		gen8_set_pte(&gtt_entries[i],
   2650 			     gen8_pte_encode(addr, level, true, flags));
   2651 		i++;
   2652 	}
   2653 
   2654 	/*
   2655 	 * XXX: This serves as a posting read to make sure that the PTE has
   2656 	 * actually been updated. There is some concern that even though
   2657 	 * registers and PTEs are within the same BAR that they are potentially
   2658 	 * of NUMA access patterns. Therefore, even with the way we assume
   2659 	 * hardware should work, we must keep this posting read for paranoia.
   2660 	 */
   2661 	if (i != 0)
   2662 		WARN_ON(readq(&gtt_entries[i-1])
   2663 			!= gen8_pte_encode(addr, level, true, flags));
   2664 
   2665 	/* This next bit makes the above posting read even more important. We
   2666 	 * want to flush the TLBs only after we're certain all the PTE updates
   2667 	 * have finished.
   2668 	 */
   2669 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2670 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2671 }
   2672 #endif
   2673 
   2674 /*
   2675  * Binds an object into the global gtt with the specified cache level. The object
   2676  * will be accessible to the GPU via commands whose operands reference offsets
   2677  * within the global GTT as well as accessible by the GPU through the GMADR
   2678  * mapped BAR (dev_priv->mm.gtt->gtt).
   2679  */
   2680 #ifdef __NetBSD__
   2681 static void
   2682 gen6_ggtt_insert_entries(struct i915_address_space *vm, bus_dmamap_t dmamap,
   2683     uint64_t start, enum i915_cache_level level, uint32_t flags)
   2684 {
   2685 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2686 	unsigned first_entry = start >> PAGE_SHIFT;
   2687 	const bus_space_tag_t bst = dev_priv->gtt.bst;
   2688 	const bus_space_handle_t bsh = dev_priv->gtt.bsh;
   2689 	unsigned i;
   2690 
   2691 	KASSERT(0 < dmamap->dm_nsegs);
   2692 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2693 		KASSERT(dmamap->dm_segs[i].ds_len == PAGE_SIZE);
   2694 		CTASSERT(sizeof(gen6_pte_t) == 4);
   2695 		bus_space_write_4(bst, bsh, 4*(first_entry + i),
   2696 		    vm->pte_encode(dmamap->dm_segs[i].ds_addr, level, true,
   2697 			flags));
   2698 	}
   2699 	if (0 < i) {
   2700 		/* Posting read.  */
   2701 		WARN_ON(bus_space_read_4(bst, bsh, 4*(first_entry + i - 1))
   2702 		    != vm->pte_encode(dmamap->dm_segs[i - 1].ds_addr, level,
   2703 			true, flags));
   2704 	}
   2705 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2706 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2707 }
   2708 #else
   2709 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
   2710 				     struct sg_table *st,
   2711 				     uint64_t start,
   2712 				     enum i915_cache_level level, u32 flags)
   2713 {
   2714 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2715 	unsigned first_entry = start >> PAGE_SHIFT;
   2716 	gen6_pte_t __iomem *gtt_entries =
   2717 		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
   2718 	int i = 0;
   2719 	struct sg_page_iter sg_iter;
   2720 	dma_addr_t addr = 0;
   2721 
   2722 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
   2723 		addr = sg_page_iter_dma_address(&sg_iter);
   2724 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
   2725 		i++;
   2726 	}
   2727 
   2728 	/* XXX: This serves as a posting read to make sure that the PTE has
   2729 	 * actually been updated. There is some concern that even though
   2730 	 * registers and PTEs are within the same BAR that they are potentially
   2731 	 * of NUMA access patterns. Therefore, even with the way we assume
   2732 	 * hardware should work, we must keep this posting read for paranoia.
   2733 	 */
   2734 	if (i != 0) {
   2735 		unsigned long gtt = readl(&gtt_entries[i-1]);
   2736 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
   2737 	}
   2738 
   2739 	/* This next bit makes the above posting read even more important. We
   2740 	 * want to flush the TLBs only after we're certain all the PTE updates
   2741 	 * have finished.
   2742 	 */
   2743 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2744 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2745 }
   2746 #endif
   2747 
   2748 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
   2749 				  uint64_t start,
   2750 				  uint64_t length,
   2751 				  bool use_scratch)
   2752 {
   2753 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2754 	unsigned first_entry = start >> PAGE_SHIFT;
   2755 	unsigned num_entries = length >> PAGE_SHIFT;
   2756 #ifdef __NetBSD__
   2757 	const bus_space_tag_t bst = dev_priv->gtt.bst;
   2758 	const bus_space_handle_t bsh = dev_priv->gtt.bsh;
   2759 	gen8_pte_t scratch_pte;
   2760 #else
   2761 	gen8_pte_t scratch_pte, __iomem *gtt_base =
   2762 		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
   2763 #endif
   2764 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
   2765 	int i;
   2766 
   2767 	if (WARN(num_entries > max_entries,
   2768 		 "First entry = %d; Num entries = %d (max=%d)\n",
   2769 		 first_entry, num_entries, max_entries))
   2770 		num_entries = max_entries;
   2771 
   2772 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
   2773 				      I915_CACHE_LLC,
   2774 				      use_scratch, 0);
   2775 #ifdef __NetBSD__
   2776 	for (i = 0; i < num_entries; i++)
   2777 		gen8_set_pte(bst, bsh, first_entry + i, scratch_pte);
   2778 	(void)gen8_get_pte(bst, bsh, first_entry);
   2779 #else
   2780 	for (i = 0; i < num_entries; i++)
   2781 		gen8_set_pte(&gtt_base[i], scratch_pte);
   2782 	readl(gtt_base);
   2783 #endif
   2784 }
   2785 
   2786 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
   2787 				  uint64_t start,
   2788 				  uint64_t length,
   2789 				  bool use_scratch)
   2790 {
   2791 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2792 	unsigned first_entry = start >> PAGE_SHIFT;
   2793 	unsigned num_entries = length >> PAGE_SHIFT;
   2794 #ifdef __NetBSD__
   2795 	const bus_space_tag_t bst = dev_priv->gtt.bst;
   2796 	const bus_space_handle_t bsh = dev_priv->gtt.bsh;
   2797 	gen8_pte_t scratch_pte;
   2798 #else
   2799 	gen6_pte_t scratch_pte, __iomem *gtt_base =
   2800 		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
   2801 #endif
   2802 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
   2803 	int i;
   2804 
   2805 	if (WARN(num_entries > max_entries,
   2806 		 "First entry = %d; Num entries = %d (max=%d)\n",
   2807 		 first_entry, num_entries, max_entries))
   2808 		num_entries = max_entries;
   2809 
   2810 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
   2811 				     I915_CACHE_LLC, use_scratch, 0);
   2812 
   2813 #ifdef __NetBSD__
   2814 	CTASSERT(sizeof(gen6_pte_t) == 4);
   2815 	for (i = 0; i < num_entries; i++)
   2816 		bus_space_write_4(bst, bsh, 4*(first_entry + i), scratch_pte);
   2817 	(void)bus_space_read_4(bst, bsh, 4*first_entry);
   2818 #else
   2819 	for (i = 0; i < num_entries; i++)
   2820 		iowrite32(scratch_pte, &gtt_base[i]);
   2821 	readl(gtt_base);
   2822 #endif
   2823 }
   2824 
   2825 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
   2826 #ifdef __NetBSD__
   2827 				     bus_dmamap_t pages,
   2828 #else
   2829 				     struct sg_table *pages,
   2830 #endif
   2831 				     uint64_t start,
   2832 				     enum i915_cache_level cache_level, u32 unused)
   2833 {
   2834 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
   2835 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
   2836 
   2837 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
   2838 }
   2839 
   2840 static void i915_ggtt_clear_range(struct i915_address_space *vm,
   2841 				  uint64_t start,
   2842 				  uint64_t length,
   2843 				  bool unused)
   2844 {
   2845 	unsigned first_entry = start >> PAGE_SHIFT;
   2846 	unsigned num_entries = length >> PAGE_SHIFT;
   2847 	intel_gtt_clear_range(first_entry, num_entries);
   2848 }
   2849 
   2850 static int ggtt_bind_vma(struct i915_vma *vma,
   2851 			 enum i915_cache_level cache_level,
   2852 			 u32 flags)
   2853 {
   2854 	struct drm_i915_gem_object *obj = vma->obj;
   2855 	u32 pte_flags = 0;
   2856 	int ret;
   2857 
   2858 	ret = i915_get_ggtt_vma_pages(vma);
   2859 	if (ret)
   2860 		return ret;
   2861 
   2862 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
   2863 	pte_flags = 0;
   2864 	if (obj->gt_ro)
   2865 		pte_flags |= PTE_READ_ONLY;
   2866 
   2867 	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
   2868 				vma->node.start,
   2869 				cache_level, pte_flags);
   2870 
   2871 	/*
   2872 	 * Without aliasing PPGTT there's no difference between
   2873 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
   2874 	 * upgrade to both bound if we bind either to avoid double-binding.
   2875 	 */
   2876 	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
   2877 
   2878 	return 0;
   2879 }
   2880 
   2881 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
   2882 				 enum i915_cache_level cache_level,
   2883 				 u32 flags)
   2884 {
   2885 	struct drm_device *dev = vma->vm->dev;
   2886 	struct drm_i915_private *dev_priv = dev->dev_private;
   2887 	struct drm_i915_gem_object *obj = vma->obj;
   2888 #ifdef __NetBSD__
   2889 	bus_dmamap_t pages = obj->pages;
   2890 #else
   2891 	struct sg_table *pages = obj->pages;
   2892 #endif
   2893 	u32 pte_flags = 0;
   2894 	int ret;
   2895 
   2896 	ret = i915_get_ggtt_vma_pages(vma);
   2897 	if (ret)
   2898 		return ret;
   2899 	pages = vma->ggtt_view.pages;
   2900 
   2901 	/* Currently applicable only to VLV */
   2902 	if (obj->gt_ro)
   2903 		pte_flags |= PTE_READ_ONLY;
   2904 
   2905 
   2906 	if (flags & GLOBAL_BIND) {
   2907 		vma->vm->insert_entries(vma->vm, pages,
   2908 					vma->node.start,
   2909 					cache_level, pte_flags);
   2910 	}
   2911 
   2912 	if (flags & LOCAL_BIND) {
   2913 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
   2914 		appgtt->base.insert_entries(&appgtt->base, pages,
   2915 					    vma->node.start,
   2916 					    cache_level, pte_flags);
   2917 	}
   2918 
   2919 	return 0;
   2920 }
   2921 
   2922 static void ggtt_unbind_vma(struct i915_vma *vma)
   2923 {
   2924 	struct drm_device *dev = vma->vm->dev;
   2925 	struct drm_i915_private *dev_priv = dev->dev_private;
   2926 	struct drm_i915_gem_object *obj = vma->obj;
   2927 	const uint64_t size = min_t(uint64_t,
   2928 				    obj->base.size,
   2929 				    vma->node.size);
   2930 
   2931 	if (vma->bound & GLOBAL_BIND) {
   2932 		vma->vm->clear_range(vma->vm,
   2933 				     vma->node.start,
   2934 				     size,
   2935 				     true);
   2936 	}
   2937 
   2938 	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
   2939 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
   2940 
   2941 		appgtt->base.clear_range(&appgtt->base,
   2942 					 vma->node.start,
   2943 					 size,
   2944 					 true);
   2945 	}
   2946 }
   2947 
   2948 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
   2949 {
   2950 	struct drm_device *dev = obj->base.dev;
   2951 	struct drm_i915_private *dev_priv = dev->dev_private;
   2952 	bool interruptible;
   2953 
   2954 	interruptible = do_idling(dev_priv);
   2955 
   2956 #ifdef __NetBSD__
   2957 	bus_dmamap_unload(dev->dmat, obj->pages);
   2958 #else
   2959 	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
   2960 		     PCI_DMA_BIDIRECTIONAL);
   2961 #endif
   2962 
   2963 	undo_idling(dev_priv, interruptible);
   2964 }
   2965 
   2966 static void i915_gtt_color_adjust(struct drm_mm_node *node,
   2967 				  unsigned long color,
   2968 				  u64 *start,
   2969 				  u64 *end)
   2970 {
   2971 	if (node->color != color)
   2972 		*start += 4096;
   2973 
   2974 	if (!list_empty(&node->node_list)) {
   2975 		node = list_entry(node->node_list.next,
   2976 				  struct drm_mm_node,
   2977 				  node_list);
   2978 		if (node->allocated && node->color != color)
   2979 			*end -= 4096;
   2980 	}
   2981 }
   2982 
   2983 static int i915_gem_setup_global_gtt(struct drm_device *dev,
   2984 				     u64 start,
   2985 				     u64 mappable_end,
   2986 				     u64 end)
   2987 {
   2988 	/* Let GEM Manage all of the aperture.
   2989 	 *
   2990 	 * However, leave one page at the end still bound to the scratch page.
   2991 	 * There are a number of places where the hardware apparently prefetches
   2992 	 * past the end of the object, and we've seen multiple hangs with the
   2993 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
   2994 	 * aperture.  One page should be enough to keep any prefetching inside
   2995 	 * of the aperture.
   2996 	 */
   2997 	struct drm_i915_private *dev_priv = dev->dev_private;
   2998 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
   2999 	struct drm_mm_node *entry;
   3000 	struct drm_i915_gem_object *obj;
   3001 	unsigned long hole_start, hole_end;
   3002 	int ret;
   3003 
   3004 	BUG_ON(mappable_end > end);
   3005 
   3006 	ggtt_vm->start = start;
   3007 
   3008 	/* Subtract the guard page before address space initialization to
   3009 	 * shrink the range used by drm_mm */
   3010 	ggtt_vm->total = end - start - PAGE_SIZE;
   3011 	i915_address_space_init(ggtt_vm, dev_priv);
   3012 	ggtt_vm->total += PAGE_SIZE;
   3013 
   3014 	/* Only VLV supports read-only GGTT mappings */
   3015 	ggtt_vm->has_read_only = IS_VALLEYVIEW(dev_priv);
   3016 
   3017 	if (intel_vgpu_active(dev)) {
   3018 		ret = intel_vgt_balloon(dev);
   3019 		if (ret)
   3020 			return ret;
   3021 	}
   3022 
   3023 	if (!HAS_LLC(dev))
   3024 		ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
   3025 
   3026 	/* Mark any preallocated objects as occupied */
   3027 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
   3028 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
   3029 
   3030 		DRM_DEBUG_KMS("reserving preallocated space: %"PRIx64" + %zx\n",
   3031 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
   3032 
   3033 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
   3034 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
   3035 		if (ret) {
   3036 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
   3037 			return ret;
   3038 		}
   3039 		vma->bound |= GLOBAL_BIND;
   3040 		__i915_vma_set_map_and_fenceable(vma);
   3041 		list_add_tail(&vma->mm_list, &ggtt_vm->inactive_list);
   3042 	}
   3043 
   3044 	/* Clear any non-preallocated blocks */
   3045 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
   3046 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
   3047 			      hole_start, hole_end);
   3048 		ggtt_vm->clear_range(ggtt_vm, hole_start,
   3049 				     hole_end - hole_start, true);
   3050 	}
   3051 
   3052 	/* And finally clear the reserved guard page */
   3053 	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
   3054 
   3055 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
   3056 		struct i915_hw_ppgtt *ppgtt;
   3057 
   3058 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
   3059 		if (!ppgtt)
   3060 			return -ENOMEM;
   3061 
   3062 		ret = __hw_ppgtt_init(dev, ppgtt);
   3063 		if (ret) {
   3064 			ppgtt->base.cleanup(&ppgtt->base);
   3065 			kfree(ppgtt);
   3066 			return ret;
   3067 		}
   3068 
   3069 		if (ppgtt->base.allocate_va_range)
   3070 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
   3071 							    ppgtt->base.total);
   3072 		if (ret) {
   3073 			ppgtt->base.cleanup(&ppgtt->base);
   3074 			kfree(ppgtt);
   3075 			return ret;
   3076 		}
   3077 
   3078 		ppgtt->base.clear_range(&ppgtt->base,
   3079 					ppgtt->base.start,
   3080 					ppgtt->base.total,
   3081 					true);
   3082 
   3083 		dev_priv->mm.aliasing_ppgtt = ppgtt;
   3084 		WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
   3085 		dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
   3086 	}
   3087 
   3088 	return 0;
   3089 }
   3090 
   3091 void i915_gem_init_global_gtt(struct drm_device *dev)
   3092 {
   3093 	struct drm_i915_private *dev_priv = dev->dev_private;
   3094 	u64 gtt_size, mappable_size;
   3095 
   3096 	gtt_size = dev_priv->gtt.base.total;
   3097 	mappable_size = dev_priv->gtt.mappable_end;
   3098 
   3099 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
   3100 }
   3101 
   3102 void i915_global_gtt_cleanup(struct drm_device *dev)
   3103 {
   3104 	struct drm_i915_private *dev_priv = dev->dev_private;
   3105 	struct i915_address_space *vm = &dev_priv->gtt.base;
   3106 
   3107 	if (dev_priv->mm.aliasing_ppgtt) {
   3108 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
   3109 
   3110 		ppgtt->base.cleanup(&ppgtt->base);
   3111 		kfree(ppgtt);
   3112 	}
   3113 
   3114 	if (drm_mm_initialized(&vm->mm)) {
   3115 		if (intel_vgpu_active(dev))
   3116 			intel_vgt_deballoon();
   3117 
   3118 		drm_mm_takedown(&vm->mm);
   3119 		list_del(&vm->global_link);
   3120 	}
   3121 
   3122 	vm->cleanup(vm);
   3123 }
   3124 
   3125 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
   3126 {
   3127 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
   3128 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
   3129 	return snb_gmch_ctl << 20;
   3130 }
   3131 
   3132 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
   3133 {
   3134 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
   3135 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
   3136 	if (bdw_gmch_ctl)
   3137 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
   3138 
   3139 #ifdef CONFIG_X86_32
   3140 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
   3141 	if (bdw_gmch_ctl > 4)
   3142 		bdw_gmch_ctl = 4;
   3143 #endif
   3144 
   3145 	return bdw_gmch_ctl << 20;
   3146 }
   3147 
   3148 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
   3149 {
   3150 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
   3151 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
   3152 
   3153 	if (gmch_ctrl)
   3154 		return 1 << (20 + gmch_ctrl);
   3155 
   3156 	return 0;
   3157 }
   3158 
   3159 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
   3160 {
   3161 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
   3162 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
   3163 	return snb_gmch_ctl << 25; /* 32 MB units */
   3164 }
   3165 
   3166 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
   3167 {
   3168 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
   3169 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
   3170 	return bdw_gmch_ctl << 25; /* 32 MB units */
   3171 }
   3172 
   3173 static size_t chv_get_stolen_size(u16 gmch_ctrl)
   3174 {
   3175 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
   3176 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
   3177 
   3178 	/*
   3179 	 * 0x0  to 0x10: 32MB increments starting at 0MB
   3180 	 * 0x11 to 0x16: 4MB increments starting at 8MB
   3181 	 * 0x17 to 0x1d: 4MB increments start at 36MB
   3182 	 */
   3183 	if (gmch_ctrl < 0x11)
   3184 		return gmch_ctrl << 25;
   3185 	else if (gmch_ctrl < 0x17)
   3186 		return (gmch_ctrl - 0x11 + 2) << 22;
   3187 	else
   3188 		return (gmch_ctrl - 0x17 + 9) << 22;
   3189 }
   3190 
   3191 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
   3192 {
   3193 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
   3194 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
   3195 
   3196 	if (gen9_gmch_ctl < 0xf0)
   3197 		return gen9_gmch_ctl << 25; /* 32 MB units */
   3198 	else
   3199 		/* 4MB increments starting at 0xf0 for 4MB */
   3200 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
   3201 }
   3202 
   3203 static int ggtt_probe_common(struct drm_device *dev,
   3204 			     size_t gtt_size)
   3205 {
   3206 	struct drm_i915_private *dev_priv = dev->dev_private;
   3207 	struct i915_page_scratch *scratch_page;
   3208 	phys_addr_t gtt_phys_addr;
   3209 
   3210 	/* For Modern GENs the PTEs and register space are split in the BAR */
   3211 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
   3212 		(pci_resource_len(dev->pdev, 0) / 2);
   3213 
   3214 #ifdef __NetBSD__
   3215 	int ret;
   3216 	dev_priv->gtt.bst = dev->pdev->pd_pa.pa_memt;
   3217 	/* XXX errno NetBSD->Linux */
   3218 	ret = -bus_space_map(dev_priv->gtt.bst, gtt_phys_addr, gtt_size,
   3219 	    IS_BROXTON(dev) ? 0 : BUS_SPACE_MAP_PREFETCHABLE,
   3220 	    &dev_priv->gtt.bsh);
   3221 	if (ret) {
   3222 		DRM_ERROR("Failed to map the graphics translation table: %d\n",
   3223 		    ret);
   3224 		return ret;
   3225 	}
   3226 	dev_priv->gtt.size = gtt_size;
   3227 #else
   3228 	/*
   3229 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
   3230 	 * dropped. For WC mappings in general we have 64 byte burst writes
   3231 	 * when the WC buffer is flushed, so we can't use it, but have to
   3232 	 * resort to an uncached mapping. The WC issue is easily caught by the
   3233 	 * readback check when writing GTT PTE entries.
   3234 	 */
   3235 	if (IS_BROXTON(dev))
   3236 		dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
   3237 	else
   3238 		dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
   3239 	if (!dev_priv->gtt.gsm) {
   3240 		DRM_ERROR("Failed to map the gtt page table\n");
   3241 		return -ENOMEM;
   3242 	}
   3243 #endif
   3244 
   3245 	scratch_page = alloc_scratch_page(dev);
   3246 	if (IS_ERR(scratch_page)) {
   3247 		DRM_ERROR("Scratch setup failed\n");
   3248 		/* iounmap will also get called at remove, but meh */
   3249 #ifdef __NetBSD__
   3250 		bus_space_unmap(dev_priv->gtt.bst, dev_priv->gtt.bsh,
   3251 		    dev_priv->gtt.size);
   3252 #else
   3253 		iounmap(dev_priv->gtt.gsm);
   3254 #endif
   3255 		return PTR_ERR(scratch_page);
   3256 	}
   3257 
   3258 	dev_priv->gtt.base.scratch_page = scratch_page;
   3259 
   3260 	return 0;
   3261 }
   3262 
   3263 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
   3264  * bits. When using advanced contexts each context stores its own PAT, but
   3265  * writing this data shouldn't be harmful even in those cases. */
   3266 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
   3267 {
   3268 	uint64_t pat;
   3269 
   3270 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
   3271 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
   3272 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
   3273 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
   3274 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
   3275 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
   3276 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
   3277 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
   3278 
   3279 	if (!USES_PPGTT(dev_priv->dev))
   3280 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
   3281 		 * so RTL will always use the value corresponding to
   3282 		 * pat_sel = 000".
   3283 		 * So let's disable cache for GGTT to avoid screen corruptions.
   3284 		 * MOCS still can be used though.
   3285 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
   3286 		 * before this patch, i.e. the same uncached + snooping access
   3287 		 * like on gen6/7 seems to be in effect.
   3288 		 * - So this just fixes blitter/render access. Again it looks
   3289 		 * like it's not just uncached access, but uncached + snooping.
   3290 		 * So we can still hold onto all our assumptions wrt cpu
   3291 		 * clflushing on LLC machines.
   3292 		 */
   3293 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
   3294 
   3295 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
   3296 	 * write would work. */
   3297 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
   3298 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
   3299 }
   3300 
   3301 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
   3302 {
   3303 	uint64_t pat;
   3304 
   3305 	/*
   3306 	 * Map WB on BDW to snooped on CHV.
   3307 	 *
   3308 	 * Only the snoop bit has meaning for CHV, the rest is
   3309 	 * ignored.
   3310 	 *
   3311 	 * The hardware will never snoop for certain types of accesses:
   3312 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
   3313 	 * - PPGTT page tables
   3314 	 * - some other special cycles
   3315 	 *
   3316 	 * As with BDW, we also need to consider the following for GT accesses:
   3317 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
   3318 	 * so RTL will always use the value corresponding to
   3319 	 * pat_sel = 000".
   3320 	 * Which means we must set the snoop bit in PAT entry 0
   3321 	 * in order to keep the global status page working.
   3322 	 */
   3323 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
   3324 	      GEN8_PPAT(1, 0) |
   3325 	      GEN8_PPAT(2, 0) |
   3326 	      GEN8_PPAT(3, 0) |
   3327 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
   3328 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
   3329 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
   3330 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
   3331 
   3332 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
   3333 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
   3334 }
   3335 
   3336 static int gen8_gmch_probe(struct drm_device *dev,
   3337 			   u64 *gtt_total,
   3338 			   size_t *stolen,
   3339 			   phys_addr_t *mappable_base,
   3340 			   u64 *mappable_end)
   3341 {
   3342 	struct drm_i915_private *dev_priv = dev->dev_private;
   3343 	u64 gtt_size;
   3344 	u16 snb_gmch_ctl;
   3345 	int ret;
   3346 
   3347 	/* TODO: We're not aware of mappable constraints on gen8 yet */
   3348 	*mappable_base = pci_resource_start(dev->pdev, 2);
   3349 	*mappable_end = pci_resource_len(dev->pdev, 2);
   3350 
   3351 #ifndef __NetBSD__
   3352 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
   3353 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
   3354 #endif
   3355 
   3356 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
   3357 
   3358 	if (INTEL_INFO(dev)->gen >= 9) {
   3359 		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
   3360 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
   3361 	} else if (IS_CHERRYVIEW(dev)) {
   3362 		*stolen = chv_get_stolen_size(snb_gmch_ctl);
   3363 		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
   3364 	} else {
   3365 		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
   3366 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
   3367 	}
   3368 
   3369 	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
   3370 
   3371 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
   3372 		chv_setup_private_ppat(dev_priv);
   3373 	else
   3374 		bdw_setup_private_ppat(dev_priv);
   3375 
   3376 	ret = ggtt_probe_common(dev, gtt_size);
   3377 
   3378 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
   3379 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
   3380 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
   3381 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
   3382 
   3383 	/* XXX 39-bit addresses?  Really?  See pci_set_dma_mask above...  */
   3384 	dev_priv->gtt.max_paddr = __BITS(38, 0);
   3385 
   3386 	return ret;
   3387 }
   3388 
   3389 static int gen6_gmch_probe(struct drm_device *dev,
   3390 			   u64 *gtt_total,
   3391 			   size_t *stolen,
   3392 			   phys_addr_t *mappable_base,
   3393 			   u64 *mappable_end)
   3394 {
   3395 	struct drm_i915_private *dev_priv = dev->dev_private;
   3396 	unsigned int gtt_size;
   3397 	u16 snb_gmch_ctl;
   3398 	int ret;
   3399 
   3400 	*mappable_base = pci_resource_start(dev->pdev, 2);
   3401 	*mappable_end = pci_resource_len(dev->pdev, 2);
   3402 
   3403 	/* 64/512MB is the current min/max we actually know of, but this is just
   3404 	 * a coarse sanity check.
   3405 	 */
   3406 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
   3407 		DRM_ERROR("Unknown GMADR size (%"PRIx64")\n",
   3408 			  dev_priv->gtt.mappable_end);
   3409 		return -ENXIO;
   3410 	}
   3411 
   3412 #ifndef __NetBSD__
   3413 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
   3414 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
   3415 #endif
   3416 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
   3417 
   3418 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
   3419 
   3420 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
   3421 	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
   3422 
   3423 	ret = ggtt_probe_common(dev, gtt_size);
   3424 
   3425 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
   3426 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
   3427 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
   3428 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
   3429 
   3430 	dev_priv->gtt.max_paddr = __BITS(39, 0);
   3431 
   3432 	return ret;
   3433 }
   3434 
   3435 static void gen6_gmch_remove(struct i915_address_space *vm)
   3436 {
   3437 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
   3438 
   3439 #ifdef __NetBSD__
   3440 	bus_space_unmap(gtt->bst, gtt->bsh, gtt->size);
   3441 #else
   3442 	iounmap(gtt->gsm);
   3443 #endif
   3444 	free_scratch_page(vm->dev, vm->scratch_page);
   3445 }
   3446 
   3447 static int i915_gmch_probe(struct drm_device *dev,
   3448 			   u64 *gtt_total,
   3449 			   size_t *stolen,
   3450 			   phys_addr_t *mappable_base,
   3451 			   u64 *mappable_end)
   3452 {
   3453 	struct drm_i915_private *dev_priv = dev->dev_private;
   3454 	int ret;
   3455 
   3456 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
   3457 	if (!ret) {
   3458 		DRM_ERROR("failed to set up gmch\n");
   3459 		return -EIO;
   3460 	}
   3461 
   3462 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
   3463 
   3464 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
   3465 	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
   3466 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
   3467 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
   3468 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
   3469 
   3470 	if (unlikely(dev_priv->gtt.do_idle_maps))
   3471 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
   3472 
   3473 	if (INTEL_INFO(dev)->gen <= 2)
   3474 		dev_priv->gtt.max_paddr = __BITS(29, 0);
   3475 	else if ((INTEL_INFO(dev)->gen <= 3) ||
   3476 	    IS_BROADWATER(dev) || IS_CRESTLINE(dev))
   3477 		dev_priv->gtt.max_paddr = __BITS(31, 0);
   3478 	else if (INTEL_INFO(dev)->gen <= 5)
   3479 		dev_priv->gtt.max_paddr = __BITS(35, 0);
   3480 	else
   3481 		dev_priv->gtt.max_paddr = __BITS(39, 0);
   3482 
   3483 	return 0;
   3484 }
   3485 
   3486 static void i915_gmch_remove(struct i915_address_space *vm)
   3487 {
   3488 	intel_gmch_remove();
   3489 }
   3490 
   3491 int i915_gem_gtt_init(struct drm_device *dev)
   3492 {
   3493 	struct drm_i915_private *dev_priv = dev->dev_private;
   3494 	struct i915_gtt *gtt = &dev_priv->gtt;
   3495 	int ret;
   3496 
   3497 	if (INTEL_INFO(dev)->gen <= 5) {
   3498 		gtt->gtt_probe = i915_gmch_probe;
   3499 		gtt->base.cleanup = i915_gmch_remove;
   3500 	} else if (INTEL_INFO(dev)->gen < 8) {
   3501 		gtt->gtt_probe = gen6_gmch_probe;
   3502 		gtt->base.cleanup = gen6_gmch_remove;
   3503 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
   3504 			gtt->base.pte_encode = iris_pte_encode;
   3505 		else if (IS_HASWELL(dev))
   3506 			gtt->base.pte_encode = hsw_pte_encode;
   3507 		else if (IS_VALLEYVIEW(dev))
   3508 			gtt->base.pte_encode = byt_pte_encode;
   3509 		else if (INTEL_INFO(dev)->gen >= 7)
   3510 			gtt->base.pte_encode = ivb_pte_encode;
   3511 		else
   3512 			gtt->base.pte_encode = snb_pte_encode;
   3513 	} else {
   3514 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
   3515 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
   3516 	}
   3517 
   3518 	gtt->base.dev = dev;
   3519 
   3520 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
   3521 			     &gtt->mappable_base, &gtt->mappable_end);
   3522 	if (ret)
   3523 		return ret;
   3524 
   3525 #ifdef __NetBSD__
   3526 	dev_priv->gtt.pgfl = x86_select_freelist(dev_priv->gtt.max_paddr);
   3527 	ret = drm_limit_dma_space(dev, 0, dev_priv->gtt.max_paddr);
   3528 	if (ret) {
   3529 		DRM_ERROR("Unable to limit DMA paddr allocations: %d!\n", ret);
   3530 		gtt->base.cleanup(&gtt->base);
   3531 		return ret;
   3532 	}
   3533 #endif
   3534 
   3535 	/* GMADR is the PCI mmio aperture into the global GTT. */
   3536 	DRM_INFO("Memory usable by graphics device = %"PRIu64"M\n",
   3537 		 gtt->base.total >> 20);
   3538 	DRM_DEBUG_DRIVER("GMADR size = %"PRId64"M\n", gtt->mappable_end >> 20);
   3539 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
   3540 #ifdef CONFIG_INTEL_IOMMU
   3541 	if (intel_iommu_gfx_mapped)
   3542 		DRM_INFO("VT-d active for gfx access\n");
   3543 #endif
   3544 	/*
   3545 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
   3546 	 * user's requested state against the hardware/driver capabilities.  We
   3547 	 * do this now so that we can print out any log messages once rather
   3548 	 * than every time we check intel_enable_ppgtt().
   3549 	 */
   3550 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
   3551 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
   3552 
   3553 	return 0;
   3554 }
   3555 
   3556 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
   3557 {
   3558 	struct drm_i915_private *dev_priv = dev->dev_private;
   3559 	struct drm_i915_gem_object *obj;
   3560 	struct i915_address_space *vm;
   3561 	struct i915_vma *vma;
   3562 	bool flush;
   3563 
   3564 	i915_check_and_clear_faults(dev);
   3565 
   3566 	/* First fill our portion of the GTT with scratch pages */
   3567 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
   3568 				       dev_priv->gtt.base.start,
   3569 				       dev_priv->gtt.base.total,
   3570 				       true);
   3571 
   3572 	/* Cache flush objects bound into GGTT and rebind them. */
   3573 	vm = &dev_priv->gtt.base;
   3574 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
   3575 		flush = false;
   3576 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
   3577 			if (vma->vm != vm)
   3578 				continue;
   3579 
   3580 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
   3581 					      PIN_UPDATE));
   3582 
   3583 			flush = true;
   3584 		}
   3585 
   3586 		if (flush)
   3587 			i915_gem_clflush_object(obj, obj->pin_display);
   3588 	}
   3589 
   3590 	if (INTEL_INFO(dev)->gen >= 8) {
   3591 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
   3592 			chv_setup_private_ppat(dev_priv);
   3593 		else
   3594 			bdw_setup_private_ppat(dev_priv);
   3595 
   3596 		return;
   3597 	}
   3598 
   3599 	if (USES_PPGTT(dev)) {
   3600 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
   3601 			/* TODO: Perhaps it shouldn't be gen6 specific */
   3602 
   3603 			struct i915_hw_ppgtt *ppgtt =
   3604 					container_of(vm, struct i915_hw_ppgtt,
   3605 						     base);
   3606 
   3607 			if (i915_is_ggtt(vm))
   3608 				ppgtt = dev_priv->mm.aliasing_ppgtt;
   3609 
   3610 			gen6_write_page_range(dev_priv, &ppgtt->pd,
   3611 					      0, ppgtt->base.total);
   3612 		}
   3613 	}
   3614 
   3615 	i915_ggtt_flush(dev_priv);
   3616 }
   3617 
   3618 static struct i915_vma *
   3619 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
   3620 		      struct i915_address_space *vm,
   3621 		      const struct i915_ggtt_view *ggtt_view)
   3622 {
   3623 	struct i915_vma *vma;
   3624 
   3625 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
   3626 		return ERR_PTR(-EINVAL);
   3627 
   3628 	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
   3629 	if (vma == NULL)
   3630 		return ERR_PTR(-ENOMEM);
   3631 
   3632 	INIT_LIST_HEAD(&vma->vma_link);
   3633 	INIT_LIST_HEAD(&vma->mm_list);
   3634 	INIT_LIST_HEAD(&vma->exec_list);
   3635 	vma->vm = vm;
   3636 	vma->obj = obj;
   3637 
   3638 	if (i915_is_ggtt(vm))
   3639 		vma->ggtt_view = *ggtt_view;
   3640 
   3641 	list_add_tail(&vma->vma_link, &obj->vma_list);
   3642 	if (!i915_is_ggtt(vm))
   3643 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
   3644 
   3645 	return vma;
   3646 }
   3647 
   3648 struct i915_vma *
   3649 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
   3650 				  struct i915_address_space *vm)
   3651 {
   3652 	struct i915_vma *vma;
   3653 
   3654 	vma = i915_gem_obj_to_vma(obj, vm);
   3655 	if (!vma)
   3656 		vma = __i915_gem_vma_create(obj, vm,
   3657 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
   3658 
   3659 	return vma;
   3660 }
   3661 
   3662 struct i915_vma *
   3663 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
   3664 				       const struct i915_ggtt_view *view)
   3665 {
   3666 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
   3667 	struct i915_vma *vma;
   3668 
   3669 	if (WARN_ON(!view))
   3670 		return ERR_PTR(-EINVAL);
   3671 
   3672 	vma = i915_gem_obj_to_ggtt_view(obj, view);
   3673 
   3674 	if (IS_ERR(vma))
   3675 		return vma;
   3676 
   3677 	if (!vma)
   3678 		vma = __i915_gem_vma_create(obj, ggtt, view);
   3679 
   3680 	return vma;
   3681 
   3682 }
   3683 
   3684 #ifndef __NetBSD__
   3685 static struct scatterlist *
   3686 rotate_pages(dma_addr_t *in, unsigned int offset,
   3687 	     unsigned int width, unsigned int height,
   3688 	     struct sg_table *st, struct scatterlist *sg)
   3689 {
   3690 	unsigned int column, row;
   3691 	unsigned int src_idx;
   3692 
   3693 	if (!sg) {
   3694 		st->nents = 0;
   3695 		sg = st->sgl;
   3696 	}
   3697 
   3698 	for (column = 0; column < width; column++) {
   3699 		src_idx = width * (height - 1) + column;
   3700 		for (row = 0; row < height; row++) {
   3701 			st->nents++;
   3702 			/* We don't need the pages, but need to initialize
   3703 			 * the entries so the sg list can be happily traversed.
   3704 			 * The only thing we need are DMA addresses.
   3705 			 */
   3706 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
   3707 			sg_dma_address(sg) = in[offset + src_idx];
   3708 			sg_dma_len(sg) = PAGE_SIZE;
   3709 			sg = sg_next(sg);
   3710 			src_idx -= width;
   3711 		}
   3712 	}
   3713 
   3714 	return sg;
   3715 }
   3716 
   3717 static struct sg_table *
   3718 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
   3719 			  struct drm_i915_gem_object *obj)
   3720 {
   3721 	struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
   3722 	unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
   3723 	unsigned int size_pages_uv;
   3724 	struct sg_page_iter sg_iter;
   3725 	unsigned long i;
   3726 	dma_addr_t *page_addr_list;
   3727 	struct sg_table *st;
   3728 	unsigned int uv_start_page;
   3729 	struct scatterlist *sg;
   3730 	int ret = -ENOMEM;
   3731 
   3732 	/* Allocate a temporary list of source pages for random access. */
   3733 	page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
   3734 				       sizeof(dma_addr_t));
   3735 	if (!page_addr_list)
   3736 		return ERR_PTR(ret);
   3737 
   3738 	/* Account for UV plane with NV12. */
   3739 	if (rot_info->pixel_format == DRM_FORMAT_NV12)
   3740 		size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
   3741 	else
   3742 		size_pages_uv = 0;
   3743 
   3744 	/* Allocate target SG list. */
   3745 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   3746 	if (!st)
   3747 		goto err_st_alloc;
   3748 
   3749 	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
   3750 	if (ret)
   3751 		goto err_sg_alloc;
   3752 
   3753 	/* Populate source page list from the object. */
   3754 	i = 0;
   3755 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
   3756 		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
   3757 		i++;
   3758 	}
   3759 
   3760 	/* Rotate the pages. */
   3761 	sg = rotate_pages(page_addr_list, 0,
   3762 		     rot_info->width_pages, rot_info->height_pages,
   3763 		     st, NULL);
   3764 
   3765 	/* Append the UV plane if NV12. */
   3766 	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
   3767 		uv_start_page = size_pages;
   3768 
   3769 		/* Check for tile-row un-alignment. */
   3770 		if (offset_in_page(rot_info->uv_offset))
   3771 			uv_start_page--;
   3772 
   3773 		rot_info->uv_start_page = uv_start_page;
   3774 
   3775 		rotate_pages(page_addr_list, uv_start_page,
   3776 			     rot_info->width_pages_uv,
   3777 			     rot_info->height_pages_uv,
   3778 			     st, sg);
   3779 	}
   3780 
   3781 	DRM_DEBUG_KMS(
   3782 		      "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
   3783 		      obj->base.size, rot_info->pitch, rot_info->height,
   3784 		      rot_info->pixel_format, rot_info->width_pages,
   3785 		      rot_info->height_pages, size_pages + size_pages_uv,
   3786 		      size_pages);
   3787 
   3788 	drm_free_large(page_addr_list);
   3789 
   3790 	return st;
   3791 
   3792 err_sg_alloc:
   3793 	kfree(st);
   3794 err_st_alloc:
   3795 	drm_free_large(page_addr_list);
   3796 
   3797 	DRM_DEBUG_KMS(
   3798 		      "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
   3799 		      obj->base.size, ret, rot_info->pitch, rot_info->height,
   3800 		      rot_info->pixel_format, rot_info->width_pages,
   3801 		      rot_info->height_pages, size_pages + size_pages_uv,
   3802 		      size_pages);
   3803 	return ERR_PTR(ret);
   3804 }
   3805 
   3806 static struct sg_table *
   3807 intel_partial_pages(const struct i915_ggtt_view *view,
   3808 		    struct drm_i915_gem_object *obj)
   3809 {
   3810 	struct sg_table *st;
   3811 	struct scatterlist *sg;
   3812 	struct sg_page_iter obj_sg_iter;
   3813 	int ret = -ENOMEM;
   3814 
   3815 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   3816 	if (!st)
   3817 		goto err_st_alloc;
   3818 
   3819 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
   3820 	if (ret)
   3821 		goto err_sg_alloc;
   3822 
   3823 	sg = st->sgl;
   3824 	st->nents = 0;
   3825 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
   3826 		view->params.partial.offset)
   3827 	{
   3828 		if (st->nents >= view->params.partial.size)
   3829 			break;
   3830 
   3831 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
   3832 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
   3833 		sg_dma_len(sg) = PAGE_SIZE;
   3834 
   3835 		sg = sg_next(sg);
   3836 		st->nents++;
   3837 	}
   3838 
   3839 	return st;
   3840 
   3841 err_sg_alloc:
   3842 	kfree(st);
   3843 err_st_alloc:
   3844 	return ERR_PTR(ret);
   3845 }
   3846 #endif
   3847 
   3848 static int
   3849 i915_get_ggtt_vma_pages(struct i915_vma *vma)
   3850 {
   3851 	int ret = 0;
   3852 
   3853 	if (vma->ggtt_view.pages)
   3854 		return 0;
   3855 
   3856 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
   3857 		vma->ggtt_view.pages = vma->obj->pages;
   3858 #ifndef __NetBSD__
   3859 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
   3860 		vma->ggtt_view.pages =
   3861 			intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
   3862 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
   3863 		vma->ggtt_view.pages =
   3864 			intel_partial_pages(&vma->ggtt_view, vma->obj);
   3865 #endif
   3866 	else
   3867 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
   3868 			  vma->ggtt_view.type);
   3869 
   3870 	if (!vma->ggtt_view.pages) {
   3871 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
   3872 			  vma->ggtt_view.type);
   3873 		ret = -EINVAL;
   3874 	} else if (IS_ERR(vma->ggtt_view.pages)) {
   3875 		ret = PTR_ERR(vma->ggtt_view.pages);
   3876 		vma->ggtt_view.pages = NULL;
   3877 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
   3878 			  vma->ggtt_view.type, ret);
   3879 	}
   3880 
   3881 	return ret;
   3882 }
   3883 
   3884 /**
   3885  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
   3886  * @vma: VMA to map
   3887  * @cache_level: mapping cache level
   3888  * @flags: flags like global or local mapping
   3889  *
   3890  * DMA addresses are taken from the scatter-gather table of this object (or of
   3891  * this VMA in case of non-default GGTT views) and PTE entries set up.
   3892  * Note that DMA addresses are also the only part of the SG table we care about.
   3893  */
   3894 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
   3895 		  u32 flags)
   3896 {
   3897 	int ret;
   3898 	u32 bind_flags;
   3899 
   3900 	if (WARN_ON(flags == 0))
   3901 		return -EINVAL;
   3902 
   3903 	bind_flags = 0;
   3904 	if (flags & PIN_GLOBAL)
   3905 		bind_flags |= GLOBAL_BIND;
   3906 	if (flags & PIN_USER)
   3907 		bind_flags |= LOCAL_BIND;
   3908 
   3909 	if (flags & PIN_UPDATE)
   3910 		bind_flags |= vma->bound;
   3911 	else
   3912 		bind_flags &= ~vma->bound;
   3913 
   3914 	if (bind_flags == 0)
   3915 		return 0;
   3916 
   3917 	if (vma->bound == 0 && vma->vm->allocate_va_range) {
   3918 		trace_i915_va_alloc(vma->vm,
   3919 				    vma->node.start,
   3920 				    vma->node.size,
   3921 				    VM_TO_TRACE_NAME(vma->vm));
   3922 
   3923 		/* XXX: i915_vma_pin() will fix this +- hack */
   3924 		vma->pin_count++;
   3925 		ret = vma->vm->allocate_va_range(vma->vm,
   3926 						 vma->node.start,
   3927 						 vma->node.size);
   3928 		vma->pin_count--;
   3929 		if (ret)
   3930 			return ret;
   3931 	}
   3932 
   3933 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
   3934 	if (ret)
   3935 		return ret;
   3936 
   3937 	vma->bound |= bind_flags;
   3938 
   3939 	return 0;
   3940 }
   3941 
   3942 /**
   3943  * i915_ggtt_view_size - Get the size of a GGTT view.
   3944  * @obj: Object the view is of.
   3945  * @view: The view in question.
   3946  *
   3947  * @return The size of the GGTT view in bytes.
   3948  */
   3949 size_t
   3950 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
   3951 		    const struct i915_ggtt_view *view)
   3952 {
   3953 	if (view->type == I915_GGTT_VIEW_NORMAL) {
   3954 		return obj->base.size;
   3955 	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
   3956 		return view->rotation_info.size;
   3957 	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
   3958 		return view->params.partial.size << PAGE_SHIFT;
   3959 	} else {
   3960 		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
   3961 		return obj->base.size;
   3962 	}
   3963 }
   3964