Home | History | Annotate | Line # | Download | only in i915
i915_gem_gtt.c revision 1.18
      1 /*	$NetBSD: i915_gem_gtt.c,v 1.18 2020/04/25 05:17:17 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright  2010 Daniel Vetter
      5  * Copyright  2011-2014 Intel Corporation
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a
      8  * copy of this software and associated documentation files (the "Software"),
      9  * to deal in the Software without restriction, including without limitation
     10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     11  * and/or sell copies of the Software, and to permit persons to whom the
     12  * Software is furnished to do so, subject to the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the next
     15  * paragraph) shall be included in all copies or substantial portions of the
     16  * Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     23  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     24  * IN THE SOFTWARE.
     25  *
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __KERNEL_RCSID(0, "$NetBSD: i915_gem_gtt.c,v 1.18 2020/04/25 05:17:17 maxv Exp $");
     30 
     31 #include <linux/bitmap.h>
     32 #include <linux/seq_file.h>
     33 #include <drm/drmP.h>
     34 #include <drm/i915_drm.h>
     35 #include "i915_drv.h"
     36 #include "i915_vgpu.h"
     37 #include "i915_trace.h"
     38 #include "intel_drv.h"
     39 
     40 #ifdef __NetBSD__
     41 #include <drm/bus_dma_hacks.h>
     42 #include <x86/machdep.h>
     43 #include <x86/pte.h>
     44 #define	_PAGE_PRESENT	PTE_P	/* 0x01 PTE is present */
     45 #define	_PAGE_RW	PTE_W	/* 0x02 read/write */
     46 #define	_PAGE_PWT	PTE_PWT	/* 0x08 page write-through */
     47 #define	_PAGE_PCD	PTE_PCD	/* 0x10 page cache disabled */
     48 #define	_PAGE_PAT	PTE_PAT	/* 0x80 page attribute table on PTE */
     49 #endif
     50 
     51 /**
     52  * DOC: Global GTT views
     53  *
     54  * Background and previous state
     55  *
     56  * Historically objects could exists (be bound) in global GTT space only as
     57  * singular instances with a view representing all of the object's backing pages
     58  * in a linear fashion. This view will be called a normal view.
     59  *
     60  * To support multiple views of the same object, where the number of mapped
     61  * pages is not equal to the backing store, or where the layout of the pages
     62  * is not linear, concept of a GGTT view was added.
     63  *
     64  * One example of an alternative view is a stereo display driven by a single
     65  * image. In this case we would have a framebuffer looking like this
     66  * (2x2 pages):
     67  *
     68  *    12
     69  *    34
     70  *
     71  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
     72  * rendering. In contrast, fed to the display engine would be an alternative
     73  * view which could look something like this:
     74  *
     75  *   1212
     76  *   3434
     77  *
     78  * In this example both the size and layout of pages in the alternative view is
     79  * different from the normal view.
     80  *
     81  * Implementation and usage
     82  *
     83  * GGTT views are implemented using VMAs and are distinguished via enum
     84  * i915_ggtt_view_type and struct i915_ggtt_view.
     85  *
     86  * A new flavour of core GEM functions which work with GGTT bound objects were
     87  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
     88  * renaming  in large amounts of code. They take the struct i915_ggtt_view
     89  * parameter encapsulating all metadata required to implement a view.
     90  *
     91  * As a helper for callers which are only interested in the normal view,
     92  * globally const i915_ggtt_view_normal singleton instance exists. All old core
     93  * GEM API functions, the ones not taking the view parameter, are operating on,
     94  * or with the normal GGTT view.
     95  *
     96  * Code wanting to add or use a new GGTT view needs to:
     97  *
     98  * 1. Add a new enum with a suitable name.
     99  * 2. Extend the metadata in the i915_ggtt_view structure if required.
    100  * 3. Add support to i915_get_vma_pages().
    101  *
    102  * New views are required to build a scatter-gather table from within the
    103  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
    104  * exists for the lifetime of an VMA.
    105  *
    106  * Core API is designed to have copy semantics which means that passed in
    107  * struct i915_ggtt_view does not need to be persistent (left around after
    108  * calling the core API functions).
    109  *
    110  */
    111 
    112 static int
    113 i915_get_ggtt_vma_pages(struct i915_vma *vma);
    114 
    115 const struct i915_ggtt_view i915_ggtt_view_normal;
    116 const struct i915_ggtt_view i915_ggtt_view_rotated = {
    117         .type = I915_GGTT_VIEW_ROTATED
    118 };
    119 
    120 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
    121 {
    122 	bool has_aliasing_ppgtt;
    123 	bool has_full_ppgtt;
    124 
    125 	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
    126 	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
    127 
    128 	if (intel_vgpu_active(dev))
    129 		has_full_ppgtt = false; /* emulation is too hard */
    130 
    131 	/*
    132 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
    133 	 * execlists, the sole mechanism available to submit work.
    134 	 */
    135 	if (INTEL_INFO(dev)->gen < 9 &&
    136 	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
    137 		return 0;
    138 
    139 	/* Full PPGTT is required by the Gen9 cmdparser */
    140 	if (enable_ppgtt == 1 && INTEL_INFO(dev)->gen != 9)
    141 		return 1;
    142 
    143 	if (enable_ppgtt == 2 && has_full_ppgtt)
    144 		return 2;
    145 
    146 #ifdef CONFIG_INTEL_IOMMU
    147 	/* Disable ppgtt on SNB if VT-d is on. */
    148 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
    149 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
    150 		return 0;
    151 	}
    152 #endif
    153 
    154 	/* Early VLV doesn't have this */
    155 	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
    156 	    dev->pdev->revision < 0xb) {
    157 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
    158 		return 0;
    159 	}
    160 
    161 	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
    162 		return 2;
    163 	else
    164 		return has_aliasing_ppgtt ? 1 : 0;
    165 }
    166 
    167 static int ppgtt_bind_vma(struct i915_vma *vma,
    168 			  enum i915_cache_level cache_level,
    169 			  u32 unused)
    170 {
    171 	u32 pte_flags = 0;
    172 
    173 	/* Applicable to VLV, and gen8+ */
    174 	pte_flags = 0;
    175 	if (vma->obj->gt_ro)
    176 		pte_flags |= PTE_READ_ONLY;
    177 
    178 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
    179 				cache_level, pte_flags);
    180 
    181 	return 0;
    182 }
    183 
    184 static void ppgtt_unbind_vma(struct i915_vma *vma)
    185 {
    186 	vma->vm->clear_range(vma->vm,
    187 			     vma->node.start,
    188 			     vma->obj->base.size,
    189 			     true);
    190 }
    191 
    192 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
    193 				  enum i915_cache_level level,
    194 				  bool valid, u32 flags)
    195 {
    196 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
    197 	pte |= addr;
    198 
    199 	if (unlikely(flags & PTE_READ_ONLY))
    200 		pte &= ~_PAGE_RW;
    201 
    202 	switch (level) {
    203 	case I915_CACHE_NONE:
    204 		pte |= PPAT_UNCACHED_INDEX;
    205 		break;
    206 	case I915_CACHE_WT:
    207 		pte |= PPAT_DISPLAY_ELLC_INDEX;
    208 		break;
    209 	default:
    210 		pte |= PPAT_CACHED_INDEX;
    211 		break;
    212 	}
    213 
    214 	return pte;
    215 }
    216 
    217 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
    218 				  const enum i915_cache_level level)
    219 {
    220 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
    221 	pde |= addr;
    222 	if (level != I915_CACHE_NONE)
    223 		pde |= PPAT_CACHED_PDE_INDEX;
    224 	else
    225 		pde |= PPAT_UNCACHED_INDEX;
    226 	return pde;
    227 }
    228 
    229 #define gen8_pdpe_encode gen8_pde_encode
    230 #define gen8_pml4e_encode gen8_pde_encode
    231 
    232 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
    233 				 enum i915_cache_level level,
    234 				 bool valid, u32 unused)
    235 {
    236 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    237 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
    238 
    239 	switch (level) {
    240 	case I915_CACHE_L3_LLC:
    241 	case I915_CACHE_LLC:
    242 		pte |= GEN6_PTE_CACHE_LLC;
    243 		break;
    244 	case I915_CACHE_NONE:
    245 		pte |= GEN6_PTE_UNCACHED;
    246 		break;
    247 	default:
    248 		MISSING_CASE(level);
    249 	}
    250 
    251 	return pte;
    252 }
    253 
    254 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
    255 				 enum i915_cache_level level,
    256 				 bool valid, u32 unused)
    257 {
    258 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    259 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
    260 
    261 	switch (level) {
    262 	case I915_CACHE_L3_LLC:
    263 		pte |= GEN7_PTE_CACHE_L3_LLC;
    264 		break;
    265 	case I915_CACHE_LLC:
    266 		pte |= GEN6_PTE_CACHE_LLC;
    267 		break;
    268 	case I915_CACHE_NONE:
    269 		pte |= GEN6_PTE_UNCACHED;
    270 		break;
    271 	default:
    272 		MISSING_CASE(level);
    273 	}
    274 
    275 	return pte;
    276 }
    277 
    278 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
    279 				 enum i915_cache_level level,
    280 				 bool valid, u32 flags)
    281 {
    282 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    283 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
    284 
    285 	if (!(flags & PTE_READ_ONLY))
    286 		pte |= BYT_PTE_WRITEABLE;
    287 
    288 	if (level != I915_CACHE_NONE)
    289 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
    290 
    291 	return pte;
    292 }
    293 
    294 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
    295 				 enum i915_cache_level level,
    296 				 bool valid, u32 unused)
    297 {
    298 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    299 	pte |= HSW_PTE_ADDR_ENCODE(addr);
    300 
    301 	if (level != I915_CACHE_NONE)
    302 		pte |= HSW_WB_LLC_AGE3;
    303 
    304 	return pte;
    305 }
    306 
    307 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
    308 				  enum i915_cache_level level,
    309 				  bool valid, u32 unused)
    310 {
    311 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    312 	pte |= HSW_PTE_ADDR_ENCODE(addr);
    313 
    314 	switch (level) {
    315 	case I915_CACHE_NONE:
    316 		break;
    317 	case I915_CACHE_WT:
    318 		pte |= HSW_WT_ELLC_LLC_AGE3;
    319 		break;
    320 	default:
    321 		pte |= HSW_WB_ELLC_LLC_AGE3;
    322 		break;
    323 	}
    324 
    325 	return pte;
    326 }
    327 
    328 static void *kmap_page_dma(struct i915_page_dma *);
    329 static void kunmap_page_dma(struct drm_device *, void *);
    330 
    331 static int __setup_page_dma(struct drm_device *dev,
    332 			    struct i915_page_dma *p, gfp_t flags)
    333 {
    334 #ifdef __NetBSD__
    335 	int busdmaflags = 0;
    336 	int error;
    337 	int nseg = 1;
    338 
    339 	if (flags & __GFP_WAIT)
    340 		busdmaflags |= BUS_DMA_WAITOK;
    341 	else
    342 		busdmaflags |= BUS_DMA_NOWAIT;
    343 
    344 	error = bus_dmamem_alloc(dev->dmat, PAGE_SIZE, PAGE_SIZE, 0, &p->seg,
    345 	    nseg, &nseg, busdmaflags);
    346 	if (error) {
    347 fail0:		p->map = NULL;
    348 		return -error;	/* XXX errno NetBSD->Linux */
    349 	}
    350 	KASSERT(nseg == 1);
    351 	error = bus_dmamap_create(dev->dmat, PAGE_SIZE, 1, PAGE_SIZE, 0,
    352 	    busdmaflags, &p->map);
    353 	if (error) {
    354 fail1:		bus_dmamem_free(dev->dmat, &p->seg, 1);
    355 		goto fail0;
    356 	}
    357 	error = bus_dmamap_load_raw(dev->dmat, p->map, &p->seg, 1, PAGE_SIZE,
    358 	    busdmaflags);
    359 	if (error) {
    360 fail2: __unused
    361 		bus_dmamap_destroy(dev->dmat, p->map);
    362 		goto fail1;
    363 	}
    364 
    365 	if (flags & __GFP_ZERO) {
    366 		void *va = kmap_page_dma(p);
    367 		memset(va, 0, PAGE_SIZE);
    368 		kunmap_page_dma(dev, va);
    369 	}
    370 #else
    371 	struct device *device = &dev->pdev->dev;
    372 
    373 	p->page = alloc_page(flags);
    374 	if (!p->page)
    375 		return -ENOMEM;
    376 
    377 	p->daddr = dma_map_page(device,
    378 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
    379 
    380 	if (dma_mapping_error(device, p->daddr)) {
    381 		__free_page(p->page);
    382 		return -EINVAL;
    383 	}
    384 #endif
    385 
    386 	return 0;
    387 }
    388 
    389 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
    390 {
    391 	return __setup_page_dma(dev, p, GFP_KERNEL);
    392 }
    393 
    394 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
    395 {
    396 #ifdef __NetBSD__
    397 	if (WARN_ON(!p->map))
    398 		return;
    399 
    400 	bus_dmamap_unload(dev->dmat, p->map);
    401 	bus_dmamap_destroy(dev->dmat, p->map);
    402 	bus_dmamem_free(dev->dmat, &p->seg, 1);
    403 	p->map = NULL;
    404 #else
    405 	if (WARN_ON(!p->page))
    406 		return;
    407 
    408 	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
    409 	__free_page(p->page);
    410 	memset(p, 0, sizeof(*p));
    411 #endif
    412 }
    413 
    414 static void *kmap_page_dma(struct i915_page_dma *p)
    415 {
    416 #ifdef __NetBSD__
    417 	return kmap_atomic(container_of(PHYS_TO_VM_PAGE(p->seg.ds_addr),
    418 		struct page, p_vmp));
    419 #else
    420 	return kmap_atomic(p->page);
    421 #endif
    422 }
    423 
    424 /* We use the flushing unmap only with ppgtt structures:
    425  * page directories, page tables and scratch pages.
    426  */
    427 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
    428 {
    429 	/* There are only few exceptions for gen >=6. chv and bxt.
    430 	 * And we are not sure about the latter so play safe for now.
    431 	 */
    432 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
    433 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
    434 
    435 	kunmap_atomic(vaddr);
    436 }
    437 
    438 #define kmap_px(px) kmap_page_dma(px_base(px))
    439 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
    440 
    441 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
    442 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
    443 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
    444 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
    445 
    446 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
    447 			  const uint64_t val)
    448 {
    449 	int i;
    450 	uint64_t * const vaddr = kmap_page_dma(p);
    451 
    452 	for (i = 0; i < 512; i++)
    453 		vaddr[i] = val;
    454 
    455 	kunmap_page_dma(dev, vaddr);
    456 }
    457 
    458 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
    459 			     const uint32_t val32)
    460 {
    461 	uint64_t v = val32;
    462 
    463 	v = v << 32 | val32;
    464 
    465 	fill_page_dma(dev, p, v);
    466 }
    467 
    468 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
    469 {
    470 	struct i915_page_scratch *sp;
    471 	int ret;
    472 
    473 	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
    474 	if (sp == NULL)
    475 		return ERR_PTR(-ENOMEM);
    476 
    477 	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
    478 	if (ret) {
    479 		kfree(sp);
    480 		return ERR_PTR(ret);
    481 	}
    482 
    483 #ifndef __NetBSD__		/* XXX ??? */
    484 	set_pages_uc(px_page(sp), 1);
    485 #endif
    486 
    487 	return sp;
    488 }
    489 
    490 static void free_scratch_page(struct drm_device *dev,
    491 			      struct i915_page_scratch *sp)
    492 {
    493 #ifndef __NetBSD__		/* XXX ??? */
    494 	set_pages_wb(px_page(sp), 1);
    495 #endif
    496 
    497 	cleanup_px(dev, sp);
    498 	kfree(sp);
    499 }
    500 
    501 static struct i915_page_table *alloc_pt(struct drm_device *dev)
    502 {
    503 	struct i915_page_table *pt;
    504 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
    505 		GEN8_PTES : GEN6_PTES;
    506 	int ret = -ENOMEM;
    507 
    508 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
    509 	if (!pt)
    510 		return ERR_PTR(-ENOMEM);
    511 
    512 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
    513 				GFP_KERNEL);
    514 
    515 	if (!pt->used_ptes)
    516 		goto fail_bitmap;
    517 
    518 	ret = setup_px(dev, pt);
    519 	if (ret)
    520 		goto fail_page_m;
    521 
    522 	return pt;
    523 
    524 fail_page_m:
    525 	kfree(pt->used_ptes);
    526 fail_bitmap:
    527 	kfree(pt);
    528 
    529 	return ERR_PTR(ret);
    530 }
    531 
    532 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
    533 {
    534 	cleanup_px(dev, pt);
    535 	kfree(pt->used_ptes);
    536 	kfree(pt);
    537 }
    538 
    539 static void gen8_initialize_pt(struct i915_address_space *vm,
    540 			       struct i915_page_table *pt)
    541 {
    542 	gen8_pte_t scratch_pte;
    543 
    544 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
    545 				      I915_CACHE_LLC, true, 0);
    546 
    547 	fill_px(vm->dev, pt, scratch_pte);
    548 }
    549 
    550 static void gen6_initialize_pt(struct i915_address_space *vm,
    551 			       struct i915_page_table *pt)
    552 {
    553 	gen6_pte_t scratch_pte;
    554 
    555 	WARN_ON(px_dma(vm->scratch_page) == 0);
    556 
    557 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
    558 				     I915_CACHE_LLC, true, 0);
    559 
    560 	fill32_px(vm->dev, pt, scratch_pte);
    561 }
    562 
    563 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
    564 {
    565 	struct i915_page_directory *pd;
    566 	int ret = -ENOMEM;
    567 
    568 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
    569 	if (!pd)
    570 		return ERR_PTR(-ENOMEM);
    571 
    572 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
    573 				sizeof(*pd->used_pdes), GFP_KERNEL);
    574 	if (!pd->used_pdes)
    575 		goto fail_bitmap;
    576 
    577 	ret = setup_px(dev, pd);
    578 	if (ret)
    579 		goto fail_page_m;
    580 
    581 	return pd;
    582 
    583 fail_page_m:
    584 	kfree(pd->used_pdes);
    585 fail_bitmap:
    586 	kfree(pd);
    587 
    588 	return ERR_PTR(ret);
    589 }
    590 
    591 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
    592 {
    593 	if (px_page(pd)) {
    594 		cleanup_px(dev, pd);
    595 		kfree(pd->used_pdes);
    596 		kfree(pd);
    597 	}
    598 }
    599 
    600 static void gen8_initialize_pd(struct i915_address_space *vm,
    601 			       struct i915_page_directory *pd)
    602 {
    603 	gen8_pde_t scratch_pde;
    604 
    605 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
    606 
    607 	fill_px(vm->dev, pd, scratch_pde);
    608 }
    609 
    610 static int __pdp_init(struct drm_device *dev,
    611 		      struct i915_page_directory_pointer *pdp)
    612 {
    613 	size_t pdpes = I915_PDPES_PER_PDP(dev);
    614 
    615 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
    616 				  sizeof(unsigned long),
    617 				  GFP_KERNEL);
    618 	if (!pdp->used_pdpes)
    619 		return -ENOMEM;
    620 
    621 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
    622 				      GFP_KERNEL);
    623 	if (!pdp->page_directory) {
    624 		kfree(pdp->used_pdpes);
    625 		/* the PDP might be the statically allocated top level. Keep it
    626 		 * as clean as possible */
    627 		pdp->used_pdpes = NULL;
    628 		return -ENOMEM;
    629 	}
    630 
    631 	return 0;
    632 }
    633 
    634 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
    635 {
    636 	kfree(pdp->used_pdpes);
    637 	kfree(pdp->page_directory);
    638 	pdp->page_directory = NULL;
    639 }
    640 
    641 static struct
    642 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
    643 {
    644 	struct i915_page_directory_pointer *pdp;
    645 	int ret = -ENOMEM;
    646 
    647 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
    648 
    649 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
    650 	if (!pdp)
    651 		return ERR_PTR(-ENOMEM);
    652 
    653 	ret = __pdp_init(dev, pdp);
    654 	if (ret)
    655 		goto fail_bitmap;
    656 
    657 	ret = setup_px(dev, pdp);
    658 	if (ret)
    659 		goto fail_page_m;
    660 
    661 	return pdp;
    662 
    663 fail_page_m:
    664 	__pdp_fini(pdp);
    665 fail_bitmap:
    666 	kfree(pdp);
    667 
    668 	return ERR_PTR(ret);
    669 }
    670 
    671 static void free_pdp(struct drm_device *dev,
    672 		     struct i915_page_directory_pointer *pdp)
    673 {
    674 	__pdp_fini(pdp);
    675 	if (USES_FULL_48BIT_PPGTT(dev)) {
    676 		cleanup_px(dev, pdp);
    677 		kfree(pdp);
    678 	}
    679 }
    680 
    681 static void gen8_initialize_pdp(struct i915_address_space *vm,
    682 				struct i915_page_directory_pointer *pdp)
    683 {
    684 	gen8_ppgtt_pdpe_t scratch_pdpe;
    685 
    686 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
    687 
    688 	fill_px(vm->dev, pdp, scratch_pdpe);
    689 }
    690 
    691 static void gen8_initialize_pml4(struct i915_address_space *vm,
    692 				 struct i915_pml4 *pml4)
    693 {
    694 	gen8_ppgtt_pml4e_t scratch_pml4e;
    695 
    696 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
    697 					  I915_CACHE_LLC);
    698 
    699 	fill_px(vm->dev, pml4, scratch_pml4e);
    700 }
    701 
    702 static void
    703 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
    704 			  struct i915_page_directory_pointer *pdp,
    705 			  struct i915_page_directory *pd,
    706 			  int index)
    707 {
    708 	gen8_ppgtt_pdpe_t *page_directorypo;
    709 
    710 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
    711 		return;
    712 
    713 	page_directorypo = kmap_px(pdp);
    714 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
    715 	kunmap_px(ppgtt, page_directorypo);
    716 }
    717 
    718 static void
    719 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
    720 				  struct i915_pml4 *pml4,
    721 				  struct i915_page_directory_pointer *pdp,
    722 				  int index)
    723 {
    724 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
    725 
    726 	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
    727 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
    728 	kunmap_px(ppgtt, pagemap);
    729 }
    730 
    731 /* Broadwell Page Directory Pointer Descriptors */
    732 static int gen8_write_pdp(struct drm_i915_gem_request *req,
    733 			  unsigned entry,
    734 			  dma_addr_t addr)
    735 {
    736 	struct intel_engine_cs *ring = req->ring;
    737 	int ret;
    738 
    739 	BUG_ON(entry >= 4);
    740 
    741 	ret = intel_ring_begin(req, 6);
    742 	if (ret)
    743 		return ret;
    744 
    745 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
    746 	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
    747 	intel_ring_emit(ring, upper_32_bits(addr));
    748 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
    749 	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
    750 	intel_ring_emit(ring, lower_32_bits(addr));
    751 	intel_ring_advance(ring);
    752 
    753 	return 0;
    754 }
    755 
    756 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
    757 				 struct drm_i915_gem_request *req)
    758 {
    759 	int i, ret;
    760 
    761 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
    762 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
    763 
    764 		ret = gen8_write_pdp(req, i, pd_daddr);
    765 		if (ret)
    766 			return ret;
    767 	}
    768 
    769 	return 0;
    770 }
    771 
    772 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
    773 			      struct drm_i915_gem_request *req)
    774 {
    775 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
    776 }
    777 
    778 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
    779 				       struct i915_page_directory_pointer *pdp,
    780 				       uint64_t start,
    781 				       uint64_t length,
    782 				       gen8_pte_t scratch_pte)
    783 {
    784 	struct i915_hw_ppgtt *ppgtt =
    785 		container_of(vm, struct i915_hw_ppgtt, base);
    786 	gen8_pte_t *pt_vaddr;
    787 	unsigned pdpe = gen8_pdpe_index(start);
    788 	unsigned pde = gen8_pde_index(start);
    789 	unsigned pte = gen8_pte_index(start);
    790 	unsigned num_entries = length >> PAGE_SHIFT;
    791 	unsigned last_pte, i;
    792 
    793 	if (WARN_ON(!pdp))
    794 		return;
    795 
    796 	while (num_entries) {
    797 		struct i915_page_directory *pd;
    798 		struct i915_page_table *pt;
    799 
    800 		if (WARN_ON(!pdp->page_directory[pdpe]))
    801 			break;
    802 
    803 		pd = pdp->page_directory[pdpe];
    804 
    805 		if (WARN_ON(!pd->page_table[pde]))
    806 			break;
    807 
    808 		pt = pd->page_table[pde];
    809 
    810 		if (WARN_ON(!px_page(pt)))
    811 			break;
    812 
    813 		last_pte = pte + num_entries;
    814 		if (last_pte > GEN8_PTES)
    815 			last_pte = GEN8_PTES;
    816 
    817 		pt_vaddr = kmap_px(pt);
    818 
    819 		for (i = pte; i < last_pte; i++) {
    820 			pt_vaddr[i] = scratch_pte;
    821 			num_entries--;
    822 		}
    823 
    824 		kunmap_px(ppgtt, pt_vaddr);
    825 
    826 		pte = 0;
    827 		if (++pde == I915_PDES) {
    828 			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
    829 				break;
    830 			pde = 0;
    831 		}
    832 	}
    833 }
    834 
    835 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
    836 				   uint64_t start,
    837 				   uint64_t length,
    838 				   bool use_scratch)
    839 {
    840 	struct i915_hw_ppgtt *ppgtt =
    841 		container_of(vm, struct i915_hw_ppgtt, base);
    842 	gen8_pte_t scratch_pte =
    843 		gen8_pte_encode(px_dma(vm->scratch_page),
    844 				I915_CACHE_LLC, use_scratch, 0);
    845 
    846 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
    847 		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
    848 					   scratch_pte);
    849 	} else {
    850 		uint64_t templ4, pml4e;
    851 		struct i915_page_directory_pointer *pdp;
    852 
    853 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
    854 			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
    855 						   scratch_pte);
    856 		}
    857 	}
    858 }
    859 
    860 #ifdef __NetBSD__
    861 static void
    862 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
    863     struct i915_page_directory_pointer *pdp, bus_dmamap_t dmamap,
    864     unsigned *segp, uint64_t start, enum i915_cache_level cache_level,
    865     u32 flags)
    866 {
    867 	struct i915_hw_ppgtt *ppgtt =
    868 	    container_of(vm, struct i915_hw_ppgtt, base);
    869 	gen8_pte_t *pt_vaddr;
    870 	unsigned pdpe = gen8_pdpe_index(start);
    871 	unsigned pde = gen8_pde_index(start);
    872 	unsigned pte = gen8_pte_index(start);
    873 
    874 	pt_vaddr = NULL;
    875 	for (; *segp < dmamap->dm_nsegs; (*segp)++) {
    876 		KASSERT(dmamap->dm_segs[*segp].ds_len == PAGE_SIZE);
    877 		if (pt_vaddr == NULL) {
    878 			struct i915_page_directory *pd =
    879 			    pdp->page_directory[pdpe];
    880 			struct i915_page_table *pt = pd->page_table[pde];
    881 			pt_vaddr = kmap_px(pt);
    882 		}
    883 		pt_vaddr[pte] = gen8_pte_encode(dmamap->dm_segs[*segp].ds_addr,
    884 		    cache_level, true, flags);
    885 		if (++pte == GEN8_PTES) {
    886 			kunmap_px(ppgtt, pt_vaddr);
    887 			pt_vaddr = NULL;
    888 			if (++pde == I915_PDES) {
    889 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
    890 					break;
    891 				pde = 0;
    892 			}
    893 			pte = 0;
    894 		}
    895 	}
    896 	if (pt_vaddr)
    897 		kunmap_px(ppgtt, pt_vaddr);
    898 }
    899 #else
    900 static void
    901 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
    902 			      struct i915_page_directory_pointer *pdp,
    903 			      struct sg_page_iter *sg_iter,
    904 			      uint64_t start,
    905 			      enum i915_cache_level cache_level,
    906 			      u32 flags)
    907 {
    908 	struct i915_hw_ppgtt *ppgtt =
    909 		container_of(vm, struct i915_hw_ppgtt, base);
    910 	gen8_pte_t *pt_vaddr;
    911 	unsigned pdpe = gen8_pdpe_index(start);
    912 	unsigned pde = gen8_pde_index(start);
    913 	unsigned pte = gen8_pte_index(start);
    914 
    915 	pt_vaddr = NULL;
    916 
    917 	while (__sg_page_iter_next(sg_iter)) {
    918 		if (pt_vaddr == NULL) {
    919 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
    920 			struct i915_page_table *pt = pd->page_table[pde];
    921 			pt_vaddr = kmap_px(pt);
    922 		}
    923 
    924 		pt_vaddr[pte] =
    925 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
    926 					cache_level, true, flags);
    927 		if (++pte == GEN8_PTES) {
    928 			kunmap_px(ppgtt, pt_vaddr);
    929 			pt_vaddr = NULL;
    930 			if (++pde == I915_PDES) {
    931 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
    932 					break;
    933 				pde = 0;
    934 			}
    935 			pte = 0;
    936 		}
    937 	}
    938 
    939 	if (pt_vaddr)
    940 		kunmap_px(ppgtt, pt_vaddr);
    941 }
    942 #endif
    943 
    944 #ifdef __NetBSD__
    945 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
    946     bus_dmamap_t dmamap, uint64_t start, enum i915_cache_level cache_level,
    947     u32 flags)
    948 {
    949 	struct i915_hw_ppgtt *ppgtt =
    950 	    container_of(vm, struct i915_hw_ppgtt, base);
    951 	unsigned seg = 0;
    952 
    953 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
    954 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, dmamap, &seg,
    955 		    start, cache_level, flags);
    956 	} else {
    957 		struct i915_page_directory_pointer *pdp;
    958 		uint64_t templ4, pml4e;
    959 		uint64_t length = dmamap->dm_mapsize;
    960 
    961 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4,
    962 		    pml4e) {
    963 			gen8_ppgtt_insert_pte_entries(vm, pdp, dmamap, &seg,
    964 			    start, cache_level, flags);
    965 		}
    966 	}
    967 }
    968 #else
    969 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
    970 				      struct sg_table *pages,
    971 				      uint64_t start,
    972 				      enum i915_cache_level cache_level,
    973 				      u32 flags)
    974 {
    975 	struct i915_hw_ppgtt *ppgtt =
    976 		container_of(vm, struct i915_hw_ppgtt, base);
    977 	struct sg_page_iter sg_iter;
    978 
    979 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
    980 
    981 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
    982 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
    983 					      cache_level, flags);
    984 	} else {
    985 		struct i915_page_directory_pointer *pdp;
    986 		uint64_t templ4, pml4e;
    987 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
    988 
    989 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
    990 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
    991 						      start, cache_level, flags);
    992 		}
    993 	}
    994 }
    995 #endif
    996 
    997 static void gen8_free_page_tables(struct drm_device *dev,
    998 				  struct i915_page_directory *pd)
    999 {
   1000 	int i;
   1001 
   1002 	if (!px_page(pd))
   1003 		return;
   1004 
   1005 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
   1006 		if (WARN_ON(!pd->page_table[i]))
   1007 			continue;
   1008 
   1009 		free_pt(dev, pd->page_table[i]);
   1010 		pd->page_table[i] = NULL;
   1011 	}
   1012 }
   1013 
   1014 static int gen8_init_scratch(struct i915_address_space *vm)
   1015 {
   1016 	struct drm_device *dev = vm->dev;
   1017 
   1018 	vm->scratch_page = alloc_scratch_page(dev);
   1019 	if (IS_ERR(vm->scratch_page))
   1020 		return PTR_ERR(vm->scratch_page);
   1021 
   1022 	vm->scratch_pt = alloc_pt(dev);
   1023 	if (IS_ERR(vm->scratch_pt)) {
   1024 		free_scratch_page(dev, vm->scratch_page);
   1025 		return PTR_ERR(vm->scratch_pt);
   1026 	}
   1027 
   1028 	vm->scratch_pd = alloc_pd(dev);
   1029 	if (IS_ERR(vm->scratch_pd)) {
   1030 		free_pt(dev, vm->scratch_pt);
   1031 		free_scratch_page(dev, vm->scratch_page);
   1032 		return PTR_ERR(vm->scratch_pd);
   1033 	}
   1034 
   1035 	if (USES_FULL_48BIT_PPGTT(dev)) {
   1036 		vm->scratch_pdp = alloc_pdp(dev);
   1037 		if (IS_ERR(vm->scratch_pdp)) {
   1038 			free_pd(dev, vm->scratch_pd);
   1039 			free_pt(dev, vm->scratch_pt);
   1040 			free_scratch_page(dev, vm->scratch_page);
   1041 			return PTR_ERR(vm->scratch_pdp);
   1042 		}
   1043 	}
   1044 
   1045 	gen8_initialize_pt(vm, vm->scratch_pt);
   1046 	gen8_initialize_pd(vm, vm->scratch_pd);
   1047 	if (USES_FULL_48BIT_PPGTT(dev))
   1048 		gen8_initialize_pdp(vm, vm->scratch_pdp);
   1049 
   1050 	return 0;
   1051 }
   1052 
   1053 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
   1054 {
   1055 	enum vgt_g2v_type msg;
   1056 	struct drm_device *dev = ppgtt->base.dev;
   1057 	struct drm_i915_private *dev_priv = dev->dev_private;
   1058 	unsigned int offset = vgtif_reg(pdp0_lo);
   1059 	int i;
   1060 
   1061 	if (USES_FULL_48BIT_PPGTT(dev)) {
   1062 		u64 daddr = px_dma(&ppgtt->pml4);
   1063 
   1064 		I915_WRITE(offset, lower_32_bits(daddr));
   1065 		I915_WRITE(offset + 4, upper_32_bits(daddr));
   1066 
   1067 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
   1068 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
   1069 	} else {
   1070 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
   1071 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
   1072 
   1073 			I915_WRITE(offset, lower_32_bits(daddr));
   1074 			I915_WRITE(offset + 4, upper_32_bits(daddr));
   1075 
   1076 			offset += 8;
   1077 		}
   1078 
   1079 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
   1080 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
   1081 	}
   1082 
   1083 	I915_WRITE(vgtif_reg(g2v_notify), msg);
   1084 
   1085 	return 0;
   1086 }
   1087 
   1088 static void gen8_free_scratch(struct i915_address_space *vm)
   1089 {
   1090 	struct drm_device *dev = vm->dev;
   1091 
   1092 	if (USES_FULL_48BIT_PPGTT(dev))
   1093 		free_pdp(dev, vm->scratch_pdp);
   1094 	free_pd(dev, vm->scratch_pd);
   1095 	free_pt(dev, vm->scratch_pt);
   1096 	free_scratch_page(dev, vm->scratch_page);
   1097 }
   1098 
   1099 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
   1100 				    struct i915_page_directory_pointer *pdp)
   1101 {
   1102 	int i;
   1103 
   1104 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
   1105 		if (WARN_ON(!pdp->page_directory[i]))
   1106 			continue;
   1107 
   1108 		gen8_free_page_tables(dev, pdp->page_directory[i]);
   1109 		free_pd(dev, pdp->page_directory[i]);
   1110 	}
   1111 
   1112 	free_pdp(dev, pdp);
   1113 }
   1114 
   1115 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
   1116 {
   1117 	int i;
   1118 
   1119 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
   1120 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
   1121 			continue;
   1122 
   1123 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
   1124 	}
   1125 
   1126 	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
   1127 }
   1128 
   1129 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
   1130 {
   1131 	struct i915_hw_ppgtt *ppgtt =
   1132 		container_of(vm, struct i915_hw_ppgtt, base);
   1133 
   1134 	if (intel_vgpu_active(vm->dev))
   1135 		gen8_ppgtt_notify_vgt(ppgtt, false);
   1136 
   1137 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
   1138 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
   1139 	else
   1140 		gen8_ppgtt_cleanup_4lvl(ppgtt);
   1141 
   1142 	gen8_free_scratch(vm);
   1143 }
   1144 
   1145 /**
   1146  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
   1147  * @vm:	Master vm structure.
   1148  * @pd:	Page directory for this address range.
   1149  * @start:	Starting virtual address to begin allocations.
   1150  * @length:	Size of the allocations.
   1151  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
   1152  *		caller to free on error.
   1153  *
   1154  * Allocate the required number of page tables. Extremely similar to
   1155  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
   1156  * the page directory boundary (instead of the page directory pointer). That
   1157  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
   1158  * possible, and likely that the caller will need to use multiple calls of this
   1159  * function to achieve the appropriate allocation.
   1160  *
   1161  * Return: 0 if success; negative error code otherwise.
   1162  */
   1163 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
   1164 				     struct i915_page_directory *pd,
   1165 				     uint64_t start,
   1166 				     uint64_t length,
   1167 				     unsigned long *new_pts)
   1168 {
   1169 	struct drm_device *dev = vm->dev;
   1170 	struct i915_page_table *pt;
   1171 	uint64_t temp;
   1172 	uint32_t pde;
   1173 
   1174 	gen8_for_each_pde(pt, pd, start, length, temp, pde) {
   1175 		/* Don't reallocate page tables */
   1176 		if (test_bit(pde, pd->used_pdes)) {
   1177 			/* Scratch is never allocated this way */
   1178 			WARN_ON(pt == vm->scratch_pt);
   1179 			continue;
   1180 		}
   1181 
   1182 		pt = alloc_pt(dev);
   1183 		if (IS_ERR(pt))
   1184 			goto unwind_out;
   1185 
   1186 		gen8_initialize_pt(vm, pt);
   1187 		pd->page_table[pde] = pt;
   1188 		__set_bit(pde, new_pts);
   1189 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
   1190 	}
   1191 
   1192 	return 0;
   1193 
   1194 unwind_out:
   1195 	for_each_set_bit(pde, new_pts, I915_PDES)
   1196 		free_pt(dev, pd->page_table[pde]);
   1197 
   1198 	return -ENOMEM;
   1199 }
   1200 
   1201 /**
   1202  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
   1203  * @vm:	Master vm structure.
   1204  * @pdp:	Page directory pointer for this address range.
   1205  * @start:	Starting virtual address to begin allocations.
   1206  * @length:	Size of the allocations.
   1207  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
   1208  *		caller to free on error.
   1209  *
   1210  * Allocate the required number of page directories starting at the pde index of
   1211  * @start, and ending at the pde index @start + @length. This function will skip
   1212  * over already allocated page directories within the range, and only allocate
   1213  * new ones, setting the appropriate pointer within the pdp as well as the
   1214  * correct position in the bitmap @new_pds.
   1215  *
   1216  * The function will only allocate the pages within the range for a give page
   1217  * directory pointer. In other words, if @start + @length straddles a virtually
   1218  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
   1219  * required by the caller, This is not currently possible, and the BUG in the
   1220  * code will prevent it.
   1221  *
   1222  * Return: 0 if success; negative error code otherwise.
   1223  */
   1224 static int
   1225 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
   1226 				  struct i915_page_directory_pointer *pdp,
   1227 				  uint64_t start,
   1228 				  uint64_t length,
   1229 				  unsigned long *new_pds)
   1230 {
   1231 	struct drm_device *dev = vm->dev;
   1232 	struct i915_page_directory *pd;
   1233 	uint64_t temp;
   1234 	uint32_t pdpe;
   1235 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
   1236 
   1237 	WARN_ON(!bitmap_empty(new_pds, pdpes));
   1238 
   1239 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
   1240 		if (test_bit(pdpe, pdp->used_pdpes))
   1241 			continue;
   1242 
   1243 		pd = alloc_pd(dev);
   1244 		if (IS_ERR(pd))
   1245 			goto unwind_out;
   1246 
   1247 		gen8_initialize_pd(vm, pd);
   1248 		pdp->page_directory[pdpe] = pd;
   1249 		__set_bit(pdpe, new_pds);
   1250 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
   1251 	}
   1252 
   1253 	return 0;
   1254 
   1255 unwind_out:
   1256 	for_each_set_bit(pdpe, new_pds, pdpes)
   1257 		free_pd(dev, pdp->page_directory[pdpe]);
   1258 
   1259 	return -ENOMEM;
   1260 }
   1261 
   1262 /**
   1263  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
   1264  * @vm:	Master vm structure.
   1265  * @pml4:	Page map level 4 for this address range.
   1266  * @start:	Starting virtual address to begin allocations.
   1267  * @length:	Size of the allocations.
   1268  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
   1269  *		caller to free on error.
   1270  *
   1271  * Allocate the required number of page directory pointers. Extremely similar to
   1272  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
   1273  * The main difference is here we are limited by the pml4 boundary (instead of
   1274  * the page directory pointer).
   1275  *
   1276  * Return: 0 if success; negative error code otherwise.
   1277  */
   1278 static int
   1279 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
   1280 				  struct i915_pml4 *pml4,
   1281 				  uint64_t start,
   1282 				  uint64_t length,
   1283 				  unsigned long *new_pdps)
   1284 {
   1285 	struct drm_device *dev = vm->dev;
   1286 	struct i915_page_directory_pointer *pdp;
   1287 	uint64_t temp;
   1288 	uint32_t pml4e;
   1289 
   1290 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
   1291 
   1292 	gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
   1293 		if (!test_bit(pml4e, pml4->used_pml4es)) {
   1294 			pdp = alloc_pdp(dev);
   1295 			if (IS_ERR(pdp))
   1296 				goto unwind_out;
   1297 
   1298 			gen8_initialize_pdp(vm, pdp);
   1299 			pml4->pdps[pml4e] = pdp;
   1300 			__set_bit(pml4e, new_pdps);
   1301 			trace_i915_page_directory_pointer_entry_alloc(vm,
   1302 								      pml4e,
   1303 								      start,
   1304 								      GEN8_PML4E_SHIFT);
   1305 		}
   1306 	}
   1307 
   1308 	return 0;
   1309 
   1310 unwind_out:
   1311 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
   1312 		free_pdp(dev, pml4->pdps[pml4e]);
   1313 
   1314 	return -ENOMEM;
   1315 }
   1316 
   1317 static void
   1318 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
   1319 {
   1320 	kfree(new_pts);
   1321 	kfree(new_pds);
   1322 }
   1323 
   1324 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
   1325  * of these are based on the number of PDPEs in the system.
   1326  */
   1327 static
   1328 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
   1329 					 unsigned long **new_pts,
   1330 					 uint32_t pdpes)
   1331 {
   1332 	unsigned long *pds;
   1333 	unsigned long *pts;
   1334 
   1335 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
   1336 	if (!pds)
   1337 		return -ENOMEM;
   1338 
   1339 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
   1340 		      GFP_TEMPORARY);
   1341 	if (!pts)
   1342 		goto err_out;
   1343 
   1344 	*new_pds = pds;
   1345 	*new_pts = pts;
   1346 
   1347 	return 0;
   1348 
   1349 err_out:
   1350 	free_gen8_temp_bitmaps(pds, pts);
   1351 	return -ENOMEM;
   1352 }
   1353 
   1354 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
   1355  * the page table structures, we mark them dirty so that
   1356  * context switching/execlist queuing code takes extra steps
   1357  * to ensure that tlbs are flushed.
   1358  */
   1359 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
   1360 {
   1361 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
   1362 }
   1363 
   1364 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
   1365 				    struct i915_page_directory_pointer *pdp,
   1366 				    uint64_t start,
   1367 				    uint64_t length)
   1368 {
   1369 	struct i915_hw_ppgtt *ppgtt =
   1370 		container_of(vm, struct i915_hw_ppgtt, base);
   1371 	unsigned long *new_page_dirs, *new_page_tables;
   1372 	struct drm_device *dev = vm->dev;
   1373 	struct i915_page_directory *pd;
   1374 	const uint64_t orig_start = start;
   1375 	const uint64_t orig_length = length;
   1376 	uint64_t temp;
   1377 	uint32_t pdpe;
   1378 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
   1379 	int ret;
   1380 
   1381 	/* Wrap is never okay since we can only represent 48b, and we don't
   1382 	 * actually use the other side of the canonical address space.
   1383 	 */
   1384 	if (WARN_ON(start + length < start))
   1385 		return -ENODEV;
   1386 
   1387 	if (WARN_ON(start + length > vm->total))
   1388 		return -ENODEV;
   1389 
   1390 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
   1391 	if (ret)
   1392 		return ret;
   1393 
   1394 	/* Do the allocations first so we can easily bail out */
   1395 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
   1396 						new_page_dirs);
   1397 	if (ret) {
   1398 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
   1399 		return ret;
   1400 	}
   1401 
   1402 	/* For every page directory referenced, allocate page tables */
   1403 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
   1404 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
   1405 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
   1406 		if (ret)
   1407 			goto err_out;
   1408 	}
   1409 
   1410 	start = orig_start;
   1411 	length = orig_length;
   1412 
   1413 	/* Allocations have completed successfully, so set the bitmaps, and do
   1414 	 * the mappings. */
   1415 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
   1416 		gen8_pde_t *const page_directory = kmap_px(pd);
   1417 		struct i915_page_table *pt;
   1418 		uint64_t pd_len = length;
   1419 		uint64_t pd_start = start;
   1420 		uint32_t pde;
   1421 
   1422 		/* Every pd should be allocated, we just did that above. */
   1423 		WARN_ON(!pd);
   1424 
   1425 		gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
   1426 			/* Same reasoning as pd */
   1427 			WARN_ON(!pt);
   1428 			WARN_ON(!pd_len);
   1429 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
   1430 
   1431 			/* Set our used ptes within the page table */
   1432 			bitmap_set(pt->used_ptes,
   1433 				   gen8_pte_index(pd_start),
   1434 				   gen8_pte_count(pd_start, pd_len));
   1435 
   1436 			/* Our pde is now pointing to the pagetable, pt */
   1437 			__set_bit(pde, pd->used_pdes);
   1438 
   1439 			/* Map the PDE to the page table */
   1440 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
   1441 							      I915_CACHE_LLC);
   1442 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
   1443 							gen8_pte_index(start),
   1444 							gen8_pte_count(start, length),
   1445 							GEN8_PTES);
   1446 
   1447 			/* NB: We haven't yet mapped ptes to pages. At this
   1448 			 * point we're still relying on insert_entries() */
   1449 		}
   1450 
   1451 		kunmap_px(ppgtt, page_directory);
   1452 		__set_bit(pdpe, pdp->used_pdpes);
   1453 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
   1454 	}
   1455 
   1456 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
   1457 	mark_tlbs_dirty(ppgtt);
   1458 	return 0;
   1459 
   1460 err_out:
   1461 	while (pdpe--) {
   1462 		for_each_set_bit(temp, new_page_tables + pdpe *
   1463 				BITS_TO_LONGS(I915_PDES), I915_PDES)
   1464 			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
   1465 	}
   1466 
   1467 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
   1468 		free_pd(dev, pdp->page_directory[pdpe]);
   1469 
   1470 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
   1471 	mark_tlbs_dirty(ppgtt);
   1472 	return ret;
   1473 }
   1474 
   1475 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
   1476 				    struct i915_pml4 *pml4,
   1477 				    uint64_t start,
   1478 				    uint64_t length)
   1479 {
   1480 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
   1481 	struct i915_hw_ppgtt *ppgtt =
   1482 			container_of(vm, struct i915_hw_ppgtt, base);
   1483 	struct i915_page_directory_pointer *pdp;
   1484 	uint64_t temp, pml4e;
   1485 	int ret = 0;
   1486 
   1487 	/* Do the pml4 allocations first, so we don't need to track the newly
   1488 	 * allocated tables below the pdp */
   1489 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
   1490 
   1491 	/* The pagedirectory and pagetable allocations are done in the shared 3
   1492 	 * and 4 level code. Just allocate the pdps.
   1493 	 */
   1494 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
   1495 						new_pdps);
   1496 	if (ret)
   1497 		return ret;
   1498 
   1499 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
   1500 	     "The allocation has spanned more than 512GB. "
   1501 	     "It is highly likely this is incorrect.");
   1502 
   1503 	gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
   1504 		WARN_ON(!pdp);
   1505 
   1506 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
   1507 		if (ret)
   1508 			goto err_out;
   1509 
   1510 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
   1511 	}
   1512 
   1513 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
   1514 		  GEN8_PML4ES_PER_PML4);
   1515 
   1516 	return 0;
   1517 
   1518 err_out:
   1519 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
   1520 		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
   1521 
   1522 	return ret;
   1523 }
   1524 
   1525 static int gen8_alloc_va_range(struct i915_address_space *vm,
   1526 			       uint64_t start, uint64_t length)
   1527 {
   1528 	struct i915_hw_ppgtt *ppgtt =
   1529 		container_of(vm, struct i915_hw_ppgtt, base);
   1530 
   1531 	if (USES_FULL_48BIT_PPGTT(vm->dev))
   1532 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
   1533 	else
   1534 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
   1535 }
   1536 
   1537 #ifndef __NetBSD__		/* XXX debugfs */
   1538 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
   1539 			  uint64_t start, uint64_t length,
   1540 			  gen8_pte_t scratch_pte,
   1541 			  struct seq_file *m)
   1542 {
   1543 	struct i915_page_directory *pd;
   1544 	uint64_t temp;
   1545 	uint32_t pdpe;
   1546 
   1547 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
   1548 		struct i915_page_table *pt;
   1549 		uint64_t pd_len = length;
   1550 		uint64_t pd_start = start;
   1551 		uint32_t pde;
   1552 
   1553 		if (!test_bit(pdpe, pdp->used_pdpes))
   1554 			continue;
   1555 
   1556 		seq_printf(m, "\tPDPE #%d\n", pdpe);
   1557 		gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
   1558 			uint32_t  pte;
   1559 			gen8_pte_t *pt_vaddr;
   1560 
   1561 			if (!test_bit(pde, pd->used_pdes))
   1562 				continue;
   1563 
   1564 			pt_vaddr = kmap_px(pt);
   1565 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
   1566 				uint64_t va =
   1567 					(pdpe << GEN8_PDPE_SHIFT) |
   1568 					(pde << GEN8_PDE_SHIFT) |
   1569 					(pte << GEN8_PTE_SHIFT);
   1570 				int i;
   1571 				bool found = false;
   1572 
   1573 				for (i = 0; i < 4; i++)
   1574 					if (pt_vaddr[pte + i] != scratch_pte)
   1575 						found = true;
   1576 				if (!found)
   1577 					continue;
   1578 
   1579 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
   1580 				for (i = 0; i < 4; i++) {
   1581 					if (pt_vaddr[pte + i] != scratch_pte)
   1582 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
   1583 					else
   1584 						seq_puts(m, "  SCRATCH ");
   1585 				}
   1586 				seq_puts(m, "\n");
   1587 			}
   1588 			/* don't use kunmap_px, it could trigger
   1589 			 * an unnecessary flush.
   1590 			 */
   1591 			kunmap_atomic(pt_vaddr);
   1592 		}
   1593 	}
   1594 }
   1595 
   1596 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
   1597 {
   1598 	struct i915_address_space *vm = &ppgtt->base;
   1599 	uint64_t start = ppgtt->base.start;
   1600 	uint64_t length = ppgtt->base.total;
   1601 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
   1602 						 I915_CACHE_LLC, true, 0);
   1603 
   1604 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
   1605 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
   1606 	} else {
   1607 		uint64_t templ4, pml4e;
   1608 		struct i915_pml4 *pml4 = &ppgtt->pml4;
   1609 		struct i915_page_directory_pointer *pdp;
   1610 
   1611 		gen8_for_each_pml4e(pdp, pml4, start, length, templ4, pml4e) {
   1612 			if (!test_bit(pml4e, pml4->used_pml4es))
   1613 				continue;
   1614 
   1615 			seq_printf(m, "    PML4E #%llu\n", pml4e);
   1616 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
   1617 		}
   1618 	}
   1619 }
   1620 #endif
   1621 
   1622 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
   1623 {
   1624 	unsigned long *new_page_dirs, *new_page_tables;
   1625 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
   1626 	int ret;
   1627 
   1628 	/* We allocate temp bitmap for page tables for no gain
   1629 	 * but as this is for init only, lets keep the things simple
   1630 	 */
   1631 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
   1632 	if (ret)
   1633 		return ret;
   1634 
   1635 	/* Allocate for all pdps regardless of how the ppgtt
   1636 	 * was defined.
   1637 	 */
   1638 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
   1639 						0, 1ULL << 32,
   1640 						new_page_dirs);
   1641 	if (!ret)
   1642 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
   1643 
   1644 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
   1645 
   1646 	return ret;
   1647 }
   1648 
   1649 /*
   1650  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
   1651  * with a net effect resembling a 2-level page table in normal x86 terms. Each
   1652  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
   1653  * space.
   1654  *
   1655  */
   1656 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
   1657 {
   1658 	int ret;
   1659 
   1660 	ret = gen8_init_scratch(&ppgtt->base);
   1661 	if (ret)
   1662 		return ret;
   1663 
   1664 	ppgtt->base.start = 0;
   1665 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
   1666 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
   1667 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
   1668 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
   1669 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
   1670 	ppgtt->base.bind_vma = ppgtt_bind_vma;
   1671 
   1672 	/*
   1673 	 * From bdw, there is support for read-only pages in the PPGTT.
   1674 	 *
   1675 	 * XXX GVT is not honouring the lack of RW in the PTE bits.
   1676 	 */
   1677 	ppgtt->base.has_read_only = !intel_vgpu_active(ppgtt->base.dev);
   1678 
   1679 #ifndef __NetBSD__		/* XXX debugfs */
   1680 	ppgtt->debug_dump = gen8_dump_ppgtt;
   1681 #endif
   1682 
   1683 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
   1684 		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
   1685 		if (ret)
   1686 			goto free_scratch;
   1687 
   1688 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
   1689 
   1690 		ppgtt->base.total = 1ULL << 48;
   1691 		ppgtt->switch_mm = gen8_48b_mm_switch;
   1692 	} else {
   1693 		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
   1694 		if (ret)
   1695 			goto free_scratch;
   1696 
   1697 		ppgtt->base.total = 1ULL << 32;
   1698 		ppgtt->switch_mm = gen8_legacy_mm_switch;
   1699 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
   1700 							      0, 0,
   1701 							      GEN8_PML4E_SHIFT);
   1702 
   1703 		if (intel_vgpu_active(ppgtt->base.dev)) {
   1704 			ret = gen8_preallocate_top_level_pdps(ppgtt);
   1705 			if (ret)
   1706 				goto free_scratch;
   1707 		}
   1708 	}
   1709 
   1710 	if (intel_vgpu_active(ppgtt->base.dev))
   1711 		gen8_ppgtt_notify_vgt(ppgtt, true);
   1712 
   1713 	return 0;
   1714 
   1715 free_scratch:
   1716 	gen8_free_scratch(&ppgtt->base);
   1717 	return ret;
   1718 }
   1719 
   1720 #ifndef __NetBSD__		/* XXX debugfs */
   1721 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
   1722 {
   1723 	struct i915_address_space *vm = &ppgtt->base;
   1724 	struct i915_page_table *unused;
   1725 	gen6_pte_t scratch_pte;
   1726 	uint32_t pd_entry;
   1727 	uint32_t  pte, pde, temp;
   1728 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
   1729 
   1730 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
   1731 				     I915_CACHE_LLC, true, 0);
   1732 
   1733 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
   1734 		u32 expected;
   1735 		gen6_pte_t *pt_vaddr;
   1736 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
   1737 		pd_entry = readl(ppgtt->pd_addr + pde);
   1738 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
   1739 
   1740 		if (pd_entry != expected)
   1741 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
   1742 				   pde,
   1743 				   pd_entry,
   1744 				   expected);
   1745 		seq_printf(m, "\tPDE: %x\n", pd_entry);
   1746 
   1747 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
   1748 
   1749 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
   1750 			unsigned long va =
   1751 				(pde * PAGE_SIZE * GEN6_PTES) +
   1752 				(pte * PAGE_SIZE);
   1753 			int i;
   1754 			bool found = false;
   1755 			for (i = 0; i < 4; i++)
   1756 				if (pt_vaddr[pte + i] != scratch_pte)
   1757 					found = true;
   1758 			if (!found)
   1759 				continue;
   1760 
   1761 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
   1762 			for (i = 0; i < 4; i++) {
   1763 				if (pt_vaddr[pte + i] != scratch_pte)
   1764 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
   1765 				else
   1766 					seq_puts(m, "  SCRATCH ");
   1767 			}
   1768 			seq_puts(m, "\n");
   1769 		}
   1770 		kunmap_px(ppgtt, pt_vaddr);
   1771 	}
   1772 }
   1773 #endif
   1774 
   1775 /* Write pde (index) from the page directory @pd to the page table @pt */
   1776 static void gen6_write_pde(struct i915_page_directory *pd,
   1777 			    const int pde, struct i915_page_table *pt)
   1778 {
   1779 	/* Caller needs to make sure the write completes if necessary */
   1780 	struct i915_hw_ppgtt *ppgtt =
   1781 		container_of(pd, struct i915_hw_ppgtt, pd);
   1782 #ifdef __NetBSD__
   1783 	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
   1784 	const bus_space_tag_t bst = dev_priv->gtt.bst;
   1785 	const bus_space_handle_t bsh = dev_priv->gtt.bsh;
   1786 	const bus_addr_t pd_base = ppgtt->pd.base.ggtt_offset;
   1787 #endif
   1788 	u32 pd_entry;
   1789 
   1790 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
   1791 	pd_entry |= GEN6_PDE_VALID;
   1792 
   1793 #ifdef __NetBSD__
   1794 	CTASSERT(sizeof(gen6_pte_t) == 4);
   1795 	bus_space_write_4(bst, bsh, pd_base + 4*pde, pd_entry);
   1796 #else
   1797 	writel(pd_entry, ppgtt->pd_addr + pde);
   1798 #endif
   1799 }
   1800 
   1801 /* Write all the page tables found in the ppgtt structure to incrementing page
   1802  * directories. */
   1803 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
   1804 				  struct i915_page_directory *pd,
   1805 				  uint32_t start, uint32_t length)
   1806 {
   1807 	struct i915_page_table *pt;
   1808 	uint32_t pde, temp;
   1809 
   1810 	gen6_for_each_pde(pt, pd, start, length, temp, pde)
   1811 		gen6_write_pde(pd, pde, pt);
   1812 
   1813 	/* Make sure write is complete before other code can use this page
   1814 	 * table. Also require for WC mapped PTEs */
   1815 #ifdef __NetBSD__
   1816 	bus_space_read_4(dev_priv->gtt.bst, dev_priv->gtt.bsh, 0);
   1817 #else
   1818 	readl(dev_priv->gtt.gsm);
   1819 #endif
   1820 }
   1821 
   1822 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
   1823 {
   1824 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
   1825 
   1826 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
   1827 }
   1828 
   1829 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
   1830 			 struct drm_i915_gem_request *req)
   1831 {
   1832 	struct intel_engine_cs *ring = req->ring;
   1833 	int ret;
   1834 
   1835 	/* NB: TLBs must be flushed and invalidated before a switch */
   1836 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
   1837 	if (ret)
   1838 		return ret;
   1839 
   1840 	ret = intel_ring_begin(req, 6);
   1841 	if (ret)
   1842 		return ret;
   1843 
   1844 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
   1845 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
   1846 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
   1847 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
   1848 	intel_ring_emit(ring, get_pd_offset(ppgtt));
   1849 	intel_ring_emit(ring, MI_NOOP);
   1850 	intel_ring_advance(ring);
   1851 
   1852 	return 0;
   1853 }
   1854 
   1855 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
   1856 			  struct drm_i915_gem_request *req)
   1857 {
   1858 	struct intel_engine_cs *ring = req->ring;
   1859 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
   1860 
   1861 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
   1862 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
   1863 	return 0;
   1864 }
   1865 
   1866 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
   1867 			  struct drm_i915_gem_request *req)
   1868 {
   1869 	struct intel_engine_cs *ring = req->ring;
   1870 	int ret;
   1871 
   1872 	/* NB: TLBs must be flushed and invalidated before a switch */
   1873 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
   1874 	if (ret)
   1875 		return ret;
   1876 
   1877 	ret = intel_ring_begin(req, 6);
   1878 	if (ret)
   1879 		return ret;
   1880 
   1881 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
   1882 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
   1883 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
   1884 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
   1885 	intel_ring_emit(ring, get_pd_offset(ppgtt));
   1886 	intel_ring_emit(ring, MI_NOOP);
   1887 	intel_ring_advance(ring);
   1888 
   1889 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
   1890 	if (ring->id != RCS) {
   1891 		ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
   1892 		if (ret)
   1893 			return ret;
   1894 	}
   1895 
   1896 	return 0;
   1897 }
   1898 
   1899 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
   1900 			  struct drm_i915_gem_request *req)
   1901 {
   1902 	struct intel_engine_cs *ring = req->ring;
   1903 	struct drm_device *dev = ppgtt->base.dev;
   1904 	struct drm_i915_private *dev_priv = dev->dev_private;
   1905 
   1906 
   1907 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
   1908 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
   1909 
   1910 	POSTING_READ(RING_PP_DIR_DCLV(ring));
   1911 
   1912 	return 0;
   1913 }
   1914 
   1915 static void gen8_ppgtt_enable(struct drm_device *dev)
   1916 {
   1917 	struct drm_i915_private *dev_priv = dev->dev_private;
   1918 	struct intel_engine_cs *ring;
   1919 	int j;
   1920 
   1921 	for_each_ring(ring, dev_priv, j) {
   1922 		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
   1923 		I915_WRITE(RING_MODE_GEN7(ring),
   1924 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
   1925 	}
   1926 }
   1927 
   1928 static void gen7_ppgtt_enable(struct drm_device *dev)
   1929 {
   1930 	struct drm_i915_private *dev_priv = dev->dev_private;
   1931 	struct intel_engine_cs *ring;
   1932 	uint32_t ecochk, ecobits;
   1933 	int i;
   1934 
   1935 	ecobits = I915_READ(GAC_ECO_BITS);
   1936 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
   1937 
   1938 	ecochk = I915_READ(GAM_ECOCHK);
   1939 	if (IS_HASWELL(dev)) {
   1940 		ecochk |= ECOCHK_PPGTT_WB_HSW;
   1941 	} else {
   1942 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
   1943 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
   1944 	}
   1945 	I915_WRITE(GAM_ECOCHK, ecochk);
   1946 
   1947 	for_each_ring(ring, dev_priv, i) {
   1948 		/* GFX_MODE is per-ring on gen7+ */
   1949 		I915_WRITE(RING_MODE_GEN7(ring),
   1950 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
   1951 	}
   1952 }
   1953 
   1954 static void gen6_ppgtt_enable(struct drm_device *dev)
   1955 {
   1956 	struct drm_i915_private *dev_priv = dev->dev_private;
   1957 	uint32_t ecochk, gab_ctl, ecobits;
   1958 
   1959 	ecobits = I915_READ(GAC_ECO_BITS);
   1960 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
   1961 		   ECOBITS_PPGTT_CACHE64B);
   1962 
   1963 	gab_ctl = I915_READ(GAB_CTL);
   1964 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
   1965 
   1966 	ecochk = I915_READ(GAM_ECOCHK);
   1967 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
   1968 
   1969 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
   1970 }
   1971 
   1972 /* PPGTT support for Sandybdrige/Gen6 and later */
   1973 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
   1974 				   uint64_t start,
   1975 				   uint64_t length,
   1976 				   bool use_scratch)
   1977 {
   1978 	struct i915_hw_ppgtt *ppgtt =
   1979 		container_of(vm, struct i915_hw_ppgtt, base);
   1980 	gen6_pte_t *pt_vaddr, scratch_pte;
   1981 	unsigned first_entry = start >> PAGE_SHIFT;
   1982 	unsigned num_entries = length >> PAGE_SHIFT;
   1983 	unsigned act_pt = first_entry / GEN6_PTES;
   1984 	unsigned first_pte = first_entry % GEN6_PTES;
   1985 	unsigned last_pte, i;
   1986 
   1987 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
   1988 				     I915_CACHE_LLC, true, 0);
   1989 
   1990 	while (num_entries) {
   1991 		last_pte = first_pte + num_entries;
   1992 		if (last_pte > GEN6_PTES)
   1993 			last_pte = GEN6_PTES;
   1994 
   1995 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
   1996 
   1997 		for (i = first_pte; i < last_pte; i++)
   1998 			pt_vaddr[i] = scratch_pte;
   1999 
   2000 		kunmap_px(ppgtt, pt_vaddr);
   2001 
   2002 		num_entries -= last_pte - first_pte;
   2003 		first_pte = 0;
   2004 		act_pt++;
   2005 	}
   2006 }
   2007 
   2008 #ifdef __NetBSD__
   2009 static void
   2010 gen6_ppgtt_insert_entries(struct i915_address_space *vm, bus_dmamap_t dmamap,
   2011     uint64_t start, enum i915_cache_level cache_level, uint32_t flags)
   2012 {
   2013 	struct i915_hw_ppgtt *ppgtt =
   2014 		container_of(vm, struct i915_hw_ppgtt, base);
   2015 	gen6_pte_t *pt_vaddr;
   2016 	unsigned first_entry = start >> PAGE_SHIFT;
   2017 	unsigned act_pt = first_entry / GEN6_PTES;
   2018 	unsigned act_pte = first_entry % GEN6_PTES;
   2019 	unsigned seg;
   2020 
   2021 	pt_vaddr = NULL;
   2022 	KASSERT(0 < dmamap->dm_nsegs);
   2023 	for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
   2024 		KASSERT(dmamap->dm_segs[seg].ds_len == PAGE_SIZE);
   2025 		if (pt_vaddr == NULL)
   2026 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
   2027 		pt_vaddr[act_pte] =
   2028 		    vm->pte_encode(dmamap->dm_segs[seg].ds_addr, cache_level,
   2029 			true, flags);
   2030 		if (++act_pte == GEN6_PTES) {
   2031 			kunmap_px(ppgtt, pt_vaddr);
   2032 			pt_vaddr = NULL;
   2033 			act_pt++;
   2034 			act_pte = 0;
   2035 		}
   2036 	}
   2037 	if (pt_vaddr)
   2038 		kunmap_px(ppgtt, pt_vaddr);
   2039 }
   2040 #else
   2041 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
   2042 				      struct sg_table *pages,
   2043 				      uint64_t start,
   2044 				      enum i915_cache_level cache_level, u32 flags)
   2045 {
   2046 	struct i915_hw_ppgtt *ppgtt =
   2047 		container_of(vm, struct i915_hw_ppgtt, base);
   2048 	gen6_pte_t *pt_vaddr;
   2049 	unsigned first_entry = start >> PAGE_SHIFT;
   2050 	unsigned act_pt = first_entry / GEN6_PTES;
   2051 	unsigned act_pte = first_entry % GEN6_PTES;
   2052 	struct sg_page_iter sg_iter;
   2053 
   2054 	pt_vaddr = NULL;
   2055 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
   2056 		if (pt_vaddr == NULL)
   2057 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
   2058 
   2059 		pt_vaddr[act_pte] =
   2060 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
   2061 				       cache_level, true, flags);
   2062 
   2063 		if (++act_pte == GEN6_PTES) {
   2064 			kunmap_px(ppgtt, pt_vaddr);
   2065 			pt_vaddr = NULL;
   2066 			act_pt++;
   2067 			act_pte = 0;
   2068 		}
   2069 	}
   2070 	if (pt_vaddr)
   2071 		kunmap_px(ppgtt, pt_vaddr);
   2072 }
   2073 #endif
   2074 
   2075 static int gen6_alloc_va_range(struct i915_address_space *vm,
   2076 			       uint64_t start_in, uint64_t length_in)
   2077 {
   2078 	DECLARE_BITMAP(new_page_tables, I915_PDES);
   2079 	struct drm_device *dev = vm->dev;
   2080 	struct drm_i915_private *dev_priv = dev->dev_private;
   2081 	struct i915_hw_ppgtt *ppgtt =
   2082 				container_of(vm, struct i915_hw_ppgtt, base);
   2083 	struct i915_page_table *pt;
   2084 	uint32_t start, length, start_save, length_save;
   2085 	uint32_t pde, temp;
   2086 	int ret;
   2087 
   2088 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
   2089 		return -ENODEV;
   2090 
   2091 	start = start_save = start_in;
   2092 	length = length_save = length_in;
   2093 
   2094 	bitmap_zero(new_page_tables, I915_PDES);
   2095 
   2096 	/* The allocation is done in two stages so that we can bail out with
   2097 	 * minimal amount of pain. The first stage finds new page tables that
   2098 	 * need allocation. The second stage marks use ptes within the page
   2099 	 * tables.
   2100 	 */
   2101 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
   2102 		if (pt != vm->scratch_pt) {
   2103 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
   2104 			continue;
   2105 		}
   2106 
   2107 		/* We've already allocated a page table */
   2108 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
   2109 
   2110 		pt = alloc_pt(dev);
   2111 		if (IS_ERR(pt)) {
   2112 			ret = PTR_ERR(pt);
   2113 			goto unwind_out;
   2114 		}
   2115 
   2116 		gen6_initialize_pt(vm, pt);
   2117 
   2118 		ppgtt->pd.page_table[pde] = pt;
   2119 		__set_bit(pde, new_page_tables);
   2120 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
   2121 	}
   2122 
   2123 	start = start_save;
   2124 	length = length_save;
   2125 
   2126 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
   2127 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
   2128 
   2129 		bitmap_zero(tmp_bitmap, GEN6_PTES);
   2130 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
   2131 			   gen6_pte_count(start, length));
   2132 
   2133 		if (__test_and_clear_bit(pde, new_page_tables))
   2134 			gen6_write_pde(&ppgtt->pd, pde, pt);
   2135 
   2136 		trace_i915_page_table_entry_map(vm, pde, pt,
   2137 					 gen6_pte_index(start),
   2138 					 gen6_pte_count(start, length),
   2139 					 GEN6_PTES);
   2140 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
   2141 				GEN6_PTES);
   2142 	}
   2143 
   2144 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
   2145 
   2146 	/* Make sure write is complete before other code can use this page
   2147 	 * table. Also require for WC mapped PTEs */
   2148 #ifdef __NetBSD__
   2149 	bus_space_read_4(dev_priv->gtt.bst, dev_priv->gtt.bsh, 0);
   2150 #else
   2151 	readl(dev_priv->gtt.gsm);
   2152 #endif
   2153 
   2154 	mark_tlbs_dirty(ppgtt);
   2155 	return 0;
   2156 
   2157 unwind_out:
   2158 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
   2159 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
   2160 
   2161 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
   2162 		free_pt(vm->dev, pt);
   2163 	}
   2164 
   2165 	mark_tlbs_dirty(ppgtt);
   2166 	return ret;
   2167 }
   2168 
   2169 static int gen6_init_scratch(struct i915_address_space *vm)
   2170 {
   2171 	struct drm_device *dev = vm->dev;
   2172 
   2173 	vm->scratch_page = alloc_scratch_page(dev);
   2174 	if (IS_ERR(vm->scratch_page))
   2175 		return PTR_ERR(vm->scratch_page);
   2176 
   2177 	vm->scratch_pt = alloc_pt(dev);
   2178 	if (IS_ERR(vm->scratch_pt)) {
   2179 		free_scratch_page(dev, vm->scratch_page);
   2180 		return PTR_ERR(vm->scratch_pt);
   2181 	}
   2182 
   2183 	gen6_initialize_pt(vm, vm->scratch_pt);
   2184 
   2185 	return 0;
   2186 }
   2187 
   2188 static void gen6_free_scratch(struct i915_address_space *vm)
   2189 {
   2190 	struct drm_device *dev = vm->dev;
   2191 
   2192 	free_pt(dev, vm->scratch_pt);
   2193 	free_scratch_page(dev, vm->scratch_page);
   2194 }
   2195 
   2196 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
   2197 {
   2198 	struct i915_hw_ppgtt *ppgtt =
   2199 		container_of(vm, struct i915_hw_ppgtt, base);
   2200 	struct i915_page_table *pt;
   2201 	uint32_t pde;
   2202 
   2203 	drm_mm_remove_node(&ppgtt->node);
   2204 
   2205 	gen6_for_all_pdes(pt, ppgtt, pde) {
   2206 		if (pt != vm->scratch_pt)
   2207 			free_pt(ppgtt->base.dev, pt);
   2208 	}
   2209 
   2210 	gen6_free_scratch(vm);
   2211 }
   2212 
   2213 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
   2214 {
   2215 	struct i915_address_space *vm = &ppgtt->base;
   2216 	struct drm_device *dev = ppgtt->base.dev;
   2217 	struct drm_i915_private *dev_priv = dev->dev_private;
   2218 	bool retried = false;
   2219 	int ret;
   2220 
   2221 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
   2222 	 * allocator works in address space sizes, so it's multiplied by page
   2223 	 * size. We allocate at the top of the GTT to avoid fragmentation.
   2224 	 */
   2225 	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
   2226 
   2227 	ret = gen6_init_scratch(vm);
   2228 	if (ret)
   2229 		return ret;
   2230 
   2231 alloc:
   2232 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
   2233 						  &ppgtt->node, GEN6_PD_SIZE,
   2234 						  GEN6_PD_ALIGN, 0,
   2235 						  0, dev_priv->gtt.base.total,
   2236 						  DRM_MM_TOPDOWN);
   2237 	if (ret == -ENOSPC && !retried) {
   2238 		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
   2239 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
   2240 					       I915_CACHE_NONE,
   2241 					       0, dev_priv->gtt.base.total,
   2242 					       0);
   2243 		if (ret)
   2244 			goto err_out;
   2245 
   2246 		retried = true;
   2247 		goto alloc;
   2248 	}
   2249 
   2250 	if (ret)
   2251 		goto err_out;
   2252 
   2253 
   2254 	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
   2255 		DRM_DEBUG("Forced to use aperture for PDEs\n");
   2256 
   2257 	return 0;
   2258 
   2259 err_out:
   2260 	gen6_free_scratch(vm);
   2261 	return ret;
   2262 }
   2263 
   2264 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
   2265 {
   2266 	return gen6_ppgtt_allocate_page_directories(ppgtt);
   2267 }
   2268 
   2269 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
   2270 				  uint64_t start, uint64_t length)
   2271 {
   2272 	struct i915_page_table *unused __unused;
   2273 	uint32_t pde, temp;
   2274 
   2275 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
   2276 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
   2277 }
   2278 
   2279 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
   2280 {
   2281 	struct drm_device *dev = ppgtt->base.dev;
   2282 	struct drm_i915_private *dev_priv = dev->dev_private;
   2283 	int ret;
   2284 
   2285 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
   2286 	if (IS_GEN6(dev)) {
   2287 		ppgtt->switch_mm = gen6_mm_switch;
   2288 	} else if (IS_HASWELL(dev)) {
   2289 		ppgtt->switch_mm = hsw_mm_switch;
   2290 	} else if (IS_GEN7(dev)) {
   2291 		ppgtt->switch_mm = gen7_mm_switch;
   2292 	} else
   2293 		BUG();
   2294 
   2295 	if (intel_vgpu_active(dev))
   2296 		ppgtt->switch_mm = vgpu_mm_switch;
   2297 
   2298 	ret = gen6_ppgtt_alloc(ppgtt);
   2299 	if (ret)
   2300 		return ret;
   2301 
   2302 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
   2303 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
   2304 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
   2305 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
   2306 	ppgtt->base.bind_vma = ppgtt_bind_vma;
   2307 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
   2308 	ppgtt->base.start = 0;
   2309 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
   2310 #ifndef __NetBSD__
   2311 	ppgtt->debug_dump = gen6_dump_ppgtt;
   2312 #endif
   2313 
   2314 	ppgtt->pd.base.ggtt_offset =
   2315 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
   2316 
   2317 #ifndef __NetBSD__
   2318 	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
   2319 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
   2320 #endif
   2321 
   2322 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
   2323 
   2324 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
   2325 
   2326 	DRM_DEBUG_DRIVER("Allocated pde space (%"PRId64"M) at GTT entry: %"PRIx64"\n",
   2327 			 ppgtt->node.size >> 20,
   2328 			 ppgtt->node.start / PAGE_SIZE);
   2329 
   2330 	DRM_DEBUG("Adding PPGTT at offset %x\n",
   2331 		  ppgtt->pd.base.ggtt_offset << 10);
   2332 
   2333 	return 0;
   2334 }
   2335 
   2336 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
   2337 {
   2338 	ppgtt->base.dev = dev;
   2339 
   2340 	if (INTEL_INFO(dev)->gen < 8)
   2341 		return gen6_ppgtt_init(ppgtt);
   2342 	else
   2343 		return gen8_ppgtt_init(ppgtt);
   2344 }
   2345 
   2346 static void i915_address_space_init(struct i915_address_space *vm,
   2347 				    struct drm_i915_private *dev_priv)
   2348 {
   2349 	drm_mm_init(&vm->mm, vm->start, vm->total);
   2350 	vm->dev = dev_priv->dev;
   2351 	INIT_LIST_HEAD(&vm->active_list);
   2352 	INIT_LIST_HEAD(&vm->inactive_list);
   2353 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
   2354 }
   2355 
   2356 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
   2357 {
   2358 	struct drm_i915_private *dev_priv = dev->dev_private;
   2359 	int ret = 0;
   2360 
   2361 	ret = __hw_ppgtt_init(dev, ppgtt);
   2362 	if (ret == 0) {
   2363 		kref_init(&ppgtt->ref);
   2364 		i915_address_space_init(&ppgtt->base, dev_priv);
   2365 	}
   2366 
   2367 	return ret;
   2368 }
   2369 
   2370 int i915_ppgtt_init_hw(struct drm_device *dev)
   2371 {
   2372 	/* In the case of execlists, PPGTT is enabled by the context descriptor
   2373 	 * and the PDPs are contained within the context itself.  We don't
   2374 	 * need to do anything here. */
   2375 	if (i915.enable_execlists)
   2376 		return 0;
   2377 
   2378 	if (!USES_PPGTT(dev))
   2379 		return 0;
   2380 
   2381 	if (IS_GEN6(dev))
   2382 		gen6_ppgtt_enable(dev);
   2383 	else if (IS_GEN7(dev))
   2384 		gen7_ppgtt_enable(dev);
   2385 	else if (INTEL_INFO(dev)->gen >= 8)
   2386 		gen8_ppgtt_enable(dev);
   2387 	else
   2388 		MISSING_CASE(INTEL_INFO(dev)->gen);
   2389 
   2390 	return 0;
   2391 }
   2392 
   2393 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
   2394 {
   2395 	struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
   2396 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
   2397 
   2398 	if (i915.enable_execlists)
   2399 		return 0;
   2400 
   2401 	if (!ppgtt)
   2402 		return 0;
   2403 
   2404 	return ppgtt->switch_mm(ppgtt, req);
   2405 }
   2406 
   2407 struct i915_hw_ppgtt *
   2408 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
   2409 {
   2410 	struct i915_hw_ppgtt *ppgtt;
   2411 	int ret;
   2412 
   2413 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
   2414 	if (!ppgtt)
   2415 		return ERR_PTR(-ENOMEM);
   2416 
   2417 	ret = i915_ppgtt_init(dev, ppgtt);
   2418 	if (ret) {
   2419 		kfree(ppgtt);
   2420 		return ERR_PTR(ret);
   2421 	}
   2422 
   2423 	ppgtt->file_priv = fpriv;
   2424 
   2425 	trace_i915_ppgtt_create(&ppgtt->base);
   2426 
   2427 	return ppgtt;
   2428 }
   2429 
   2430 void  i915_ppgtt_release(struct kref *kref)
   2431 {
   2432 	struct i915_hw_ppgtt *ppgtt =
   2433 		container_of(kref, struct i915_hw_ppgtt, ref);
   2434 
   2435 	trace_i915_ppgtt_release(&ppgtt->base);
   2436 
   2437 	/* vmas should already be unbound */
   2438 	WARN_ON(!list_empty(&ppgtt->base.active_list));
   2439 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
   2440 
   2441 	list_del(&ppgtt->base.global_link);
   2442 	drm_mm_takedown(&ppgtt->base.mm);
   2443 
   2444 	ppgtt->base.cleanup(&ppgtt->base);
   2445 	kfree(ppgtt);
   2446 }
   2447 
   2448 extern int intel_iommu_gfx_mapped;
   2449 /* Certain Gen5 chipsets require require idling the GPU before
   2450  * unmapping anything from the GTT when VT-d is enabled.
   2451  */
   2452 static bool needs_idle_maps(struct drm_device *dev)
   2453 {
   2454 #ifdef CONFIG_INTEL_IOMMU
   2455 	/* Query intel_iommu to see if we need the workaround. Presumably that
   2456 	 * was loaded first.
   2457 	 */
   2458 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
   2459 		return true;
   2460 #endif
   2461 	return false;
   2462 }
   2463 
   2464 static bool do_idling(struct drm_i915_private *dev_priv)
   2465 {
   2466 	bool ret = dev_priv->mm.interruptible;
   2467 
   2468 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
   2469 		dev_priv->mm.interruptible = false;
   2470 		if (i915_gpu_idle(dev_priv->dev)) {
   2471 			DRM_ERROR("Couldn't idle GPU\n");
   2472 			/* Wait a bit, in hopes it avoids the hang */
   2473 			udelay(10);
   2474 		}
   2475 	}
   2476 
   2477 	return ret;
   2478 }
   2479 
   2480 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
   2481 {
   2482 	if (unlikely(dev_priv->gtt.do_idle_maps))
   2483 		dev_priv->mm.interruptible = interruptible;
   2484 }
   2485 
   2486 void i915_check_and_clear_faults(struct drm_device *dev)
   2487 {
   2488 	struct drm_i915_private *dev_priv = dev->dev_private;
   2489 	struct intel_engine_cs *ring;
   2490 	int i;
   2491 
   2492 	if (INTEL_INFO(dev)->gen < 6)
   2493 		return;
   2494 
   2495 	for_each_ring(ring, dev_priv, i) {
   2496 		u32 fault_reg;
   2497 		fault_reg = I915_READ(RING_FAULT_REG(ring));
   2498 		if (fault_reg & RING_FAULT_VALID) {
   2499 			DRM_DEBUG_DRIVER("Unexpected fault\n"
   2500 					 "\tAddr: 0x%08"PRIx32"\n"
   2501 					 "\tAddress space: %s\n"
   2502 					 "\tSource ID: %d\n"
   2503 					 "\tType: %d\n",
   2504 					 fault_reg & PAGE_MASK,
   2505 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
   2506 					 RING_FAULT_SRCID(fault_reg),
   2507 					 RING_FAULT_FAULT_TYPE(fault_reg));
   2508 			I915_WRITE(RING_FAULT_REG(ring),
   2509 				   fault_reg & ~RING_FAULT_VALID);
   2510 		}
   2511 	}
   2512 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
   2513 }
   2514 
   2515 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
   2516 {
   2517 	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
   2518 		intel_gtt_chipset_flush();
   2519 	} else {
   2520 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2521 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2522 	}
   2523 }
   2524 
   2525 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
   2526 {
   2527 	struct drm_i915_private *dev_priv = dev->dev_private;
   2528 
   2529 	/* Don't bother messing with faults pre GEN6 as we have little
   2530 	 * documentation supporting that it's a good idea.
   2531 	 */
   2532 	if (INTEL_INFO(dev)->gen < 6)
   2533 		return;
   2534 
   2535 	i915_check_and_clear_faults(dev);
   2536 
   2537 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
   2538 				       dev_priv->gtt.base.start,
   2539 				       dev_priv->gtt.base.total,
   2540 				       true);
   2541 
   2542 	i915_ggtt_flush(dev_priv);
   2543 }
   2544 
   2545 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
   2546 {
   2547 #ifdef __NetBSD__
   2548 	KASSERT(0 < obj->base.size);
   2549 	/* XXX errno NetBSD->Linux */
   2550 	return -bus_dmamap_load_pglist(obj->base.dev->dmat, obj->pages,
   2551 	    &obj->pageq, obj->base.size, BUS_DMA_NOWAIT);
   2552 #else
   2553 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
   2554 			obj->pages->sgl, obj->pages->nents,
   2555 			PCI_DMA_BIDIRECTIONAL))
   2556 		return -ENOSPC;
   2557 
   2558 	return 0;
   2559 #endif
   2560 }
   2561 
   2562 #ifdef __NetBSD__
   2563 static gen8_pte_t
   2564 gen8_get_pte(bus_space_tag_t bst, bus_space_handle_t bsh, unsigned i)
   2565 {
   2566 	CTASSERT(_BYTE_ORDER == _LITTLE_ENDIAN); /* x86 */
   2567 	CTASSERT(sizeof(gen8_pte_t) == 8);
   2568 #ifdef _LP64			/* XXX How to detect bus_space_read_8?  */
   2569 	return bus_space_read_8(bst, bsh, 8*i);
   2570 #else
   2571 	/*
   2572 	 * XXX I'm not sure this case can actually happen in practice:
   2573 	 * 32-bit gen8 chipsets?
   2574 	 */
   2575 	return bus_space_read_4(bst, bsh, 8*i) |
   2576 	    ((uint64_t)bus_space_read_4(bst, bsh, 8*i + 4) << 32);
   2577 #endif
   2578 }
   2579 
   2580 static inline void
   2581 gen8_set_pte(bus_space_tag_t bst, bus_space_handle_t bsh, unsigned i,
   2582     gen8_pte_t pte)
   2583 {
   2584 	CTASSERT(_BYTE_ORDER == _LITTLE_ENDIAN); /* x86 */
   2585 	CTASSERT(sizeof(gen8_pte_t) == 8);
   2586 #ifdef _LP64			/* XXX How to detect bus_space_write_8?  */
   2587 	bus_space_write_8(bst, bsh, 8*i, pte);
   2588 #else
   2589 	bus_space_write_4(bst, bsh, 8*i, (uint32_t)pte);
   2590 	bus_space_write_4(bst, bsh, 8*i + 4, (uint32_t)(pte >> 32));
   2591 #endif
   2592 }
   2593 #else
   2594 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
   2595 {
   2596 #ifdef writeq
   2597 	writeq(pte, addr);
   2598 #else
   2599 	iowrite32((u32)pte, addr);
   2600 	iowrite32(pte >> 32, addr + 4);
   2601 #endif
   2602 }
   2603 #endif
   2604 
   2605 #ifdef __NetBSD__
   2606 static void
   2607 gen8_ggtt_insert_entries(struct i915_address_space *vm, bus_dmamap_t dmamap,
   2608     uint64_t start, enum i915_cache_level level, uint32_t flags)
   2609 {
   2610 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2611 	unsigned first_entry = start >> PAGE_SHIFT;
   2612 	const bus_space_tag_t bst = dev_priv->gtt.bst;
   2613 	const bus_space_handle_t bsh = dev_priv->gtt.bsh;
   2614 	unsigned i;
   2615 
   2616 	KASSERT(0 < dmamap->dm_nsegs);
   2617 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2618 		KASSERT(dmamap->dm_segs[i].ds_len == PAGE_SIZE);
   2619 		gen8_set_pte(bst, bsh, first_entry + i,
   2620 		    gen8_pte_encode(dmamap->dm_segs[i].ds_addr, level, true, flags));
   2621 	}
   2622 	if (0 < i) {
   2623 		/* Posting read.  */
   2624 		WARN_ON(gen8_get_pte(bst, bsh, (first_entry + i - 1))
   2625 		    != gen8_pte_encode(dmamap->dm_segs[i - 1].ds_addr, level,
   2626 			true, flags));
   2627 	}
   2628 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2629 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2630 }
   2631 #else
   2632 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
   2633 				     struct sg_table *st,
   2634 				     uint64_t start,
   2635 				     enum i915_cache_level level, u32 flags)
   2636 {
   2637 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2638 	unsigned first_entry = start >> PAGE_SHIFT;
   2639 	gen8_pte_t __iomem *gtt_entries =
   2640 		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
   2641 	int i = 0;
   2642 	struct sg_page_iter sg_iter;
   2643 	dma_addr_t addr = 0; /* shut up gcc */
   2644 
   2645 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
   2646 		addr = sg_dma_address(sg_iter.sg) +
   2647 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
   2648 		gen8_set_pte(&gtt_entries[i],
   2649 			     gen8_pte_encode(addr, level, true, flags));
   2650 		i++;
   2651 	}
   2652 
   2653 	/*
   2654 	 * XXX: This serves as a posting read to make sure that the PTE has
   2655 	 * actually been updated. There is some concern that even though
   2656 	 * registers and PTEs are within the same BAR that they are potentially
   2657 	 * of NUMA access patterns. Therefore, even with the way we assume
   2658 	 * hardware should work, we must keep this posting read for paranoia.
   2659 	 */
   2660 	if (i != 0)
   2661 		WARN_ON(readq(&gtt_entries[i-1])
   2662 			!= gen8_pte_encode(addr, level, true, flags));
   2663 
   2664 	/* This next bit makes the above posting read even more important. We
   2665 	 * want to flush the TLBs only after we're certain all the PTE updates
   2666 	 * have finished.
   2667 	 */
   2668 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2669 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2670 }
   2671 #endif
   2672 
   2673 /*
   2674  * Binds an object into the global gtt with the specified cache level. The object
   2675  * will be accessible to the GPU via commands whose operands reference offsets
   2676  * within the global GTT as well as accessible by the GPU through the GMADR
   2677  * mapped BAR (dev_priv->mm.gtt->gtt).
   2678  */
   2679 #ifdef __NetBSD__
   2680 static void
   2681 gen6_ggtt_insert_entries(struct i915_address_space *vm, bus_dmamap_t dmamap,
   2682     uint64_t start, enum i915_cache_level level, uint32_t flags)
   2683 {
   2684 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2685 	unsigned first_entry = start >> PAGE_SHIFT;
   2686 	const bus_space_tag_t bst = dev_priv->gtt.bst;
   2687 	const bus_space_handle_t bsh = dev_priv->gtt.bsh;
   2688 	unsigned i;
   2689 
   2690 	KASSERT(0 < dmamap->dm_nsegs);
   2691 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2692 		KASSERT(dmamap->dm_segs[i].ds_len == PAGE_SIZE);
   2693 		CTASSERT(sizeof(gen6_pte_t) == 4);
   2694 		bus_space_write_4(bst, bsh, 4*(first_entry + i),
   2695 		    vm->pte_encode(dmamap->dm_segs[i].ds_addr, level, true,
   2696 			flags));
   2697 	}
   2698 	if (0 < i) {
   2699 		/* Posting read.  */
   2700 		WARN_ON(bus_space_read_4(bst, bsh, 4*(first_entry + i - 1))
   2701 		    != vm->pte_encode(dmamap->dm_segs[i - 1].ds_addr, level,
   2702 			true, flags));
   2703 	}
   2704 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2705 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2706 }
   2707 #else
   2708 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
   2709 				     struct sg_table *st,
   2710 				     uint64_t start,
   2711 				     enum i915_cache_level level, u32 flags)
   2712 {
   2713 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2714 	unsigned first_entry = start >> PAGE_SHIFT;
   2715 	gen6_pte_t __iomem *gtt_entries =
   2716 		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
   2717 	int i = 0;
   2718 	struct sg_page_iter sg_iter;
   2719 	dma_addr_t addr = 0;
   2720 
   2721 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
   2722 		addr = sg_page_iter_dma_address(&sg_iter);
   2723 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
   2724 		i++;
   2725 	}
   2726 
   2727 	/* XXX: This serves as a posting read to make sure that the PTE has
   2728 	 * actually been updated. There is some concern that even though
   2729 	 * registers and PTEs are within the same BAR that they are potentially
   2730 	 * of NUMA access patterns. Therefore, even with the way we assume
   2731 	 * hardware should work, we must keep this posting read for paranoia.
   2732 	 */
   2733 	if (i != 0) {
   2734 		unsigned long gtt = readl(&gtt_entries[i-1]);
   2735 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
   2736 	}
   2737 
   2738 	/* This next bit makes the above posting read even more important. We
   2739 	 * want to flush the TLBs only after we're certain all the PTE updates
   2740 	 * have finished.
   2741 	 */
   2742 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2743 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2744 }
   2745 #endif
   2746 
   2747 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
   2748 				  uint64_t start,
   2749 				  uint64_t length,
   2750 				  bool use_scratch)
   2751 {
   2752 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2753 	unsigned first_entry = start >> PAGE_SHIFT;
   2754 	unsigned num_entries = length >> PAGE_SHIFT;
   2755 #ifdef __NetBSD__
   2756 	const bus_space_tag_t bst = dev_priv->gtt.bst;
   2757 	const bus_space_handle_t bsh = dev_priv->gtt.bsh;
   2758 	gen8_pte_t scratch_pte;
   2759 #else
   2760 	gen8_pte_t scratch_pte, __iomem *gtt_base =
   2761 		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
   2762 #endif
   2763 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
   2764 	int i;
   2765 
   2766 	if (WARN(num_entries > max_entries,
   2767 		 "First entry = %d; Num entries = %d (max=%d)\n",
   2768 		 first_entry, num_entries, max_entries))
   2769 		num_entries = max_entries;
   2770 
   2771 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
   2772 				      I915_CACHE_LLC,
   2773 				      use_scratch, 0);
   2774 #ifdef __NetBSD__
   2775 	for (i = 0; i < num_entries; i++)
   2776 		gen8_set_pte(bst, bsh, first_entry + i, scratch_pte);
   2777 	(void)gen8_get_pte(bst, bsh, first_entry);
   2778 #else
   2779 	for (i = 0; i < num_entries; i++)
   2780 		gen8_set_pte(&gtt_base[i], scratch_pte);
   2781 	readl(gtt_base);
   2782 #endif
   2783 }
   2784 
   2785 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
   2786 				  uint64_t start,
   2787 				  uint64_t length,
   2788 				  bool use_scratch)
   2789 {
   2790 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2791 	unsigned first_entry = start >> PAGE_SHIFT;
   2792 	unsigned num_entries = length >> PAGE_SHIFT;
   2793 #ifdef __NetBSD__
   2794 	const bus_space_tag_t bst = dev_priv->gtt.bst;
   2795 	const bus_space_handle_t bsh = dev_priv->gtt.bsh;
   2796 	gen8_pte_t scratch_pte;
   2797 #else
   2798 	gen6_pte_t scratch_pte, __iomem *gtt_base =
   2799 		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
   2800 #endif
   2801 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
   2802 	int i;
   2803 
   2804 	if (WARN(num_entries > max_entries,
   2805 		 "First entry = %d; Num entries = %d (max=%d)\n",
   2806 		 first_entry, num_entries, max_entries))
   2807 		num_entries = max_entries;
   2808 
   2809 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
   2810 				     I915_CACHE_LLC, use_scratch, 0);
   2811 
   2812 #ifdef __NetBSD__
   2813 	CTASSERT(sizeof(gen6_pte_t) == 4);
   2814 	for (i = 0; i < num_entries; i++)
   2815 		bus_space_write_4(bst, bsh, 4*(first_entry + i), scratch_pte);
   2816 	(void)bus_space_read_4(bst, bsh, 4*first_entry);
   2817 #else
   2818 	for (i = 0; i < num_entries; i++)
   2819 		iowrite32(scratch_pte, &gtt_base[i]);
   2820 	readl(gtt_base);
   2821 #endif
   2822 }
   2823 
   2824 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
   2825 #ifdef __NetBSD__
   2826 				     bus_dmamap_t pages,
   2827 #else
   2828 				     struct sg_table *pages,
   2829 #endif
   2830 				     uint64_t start,
   2831 				     enum i915_cache_level cache_level, u32 unused)
   2832 {
   2833 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
   2834 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
   2835 
   2836 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
   2837 }
   2838 
   2839 static void i915_ggtt_clear_range(struct i915_address_space *vm,
   2840 				  uint64_t start,
   2841 				  uint64_t length,
   2842 				  bool unused)
   2843 {
   2844 	unsigned first_entry = start >> PAGE_SHIFT;
   2845 	unsigned num_entries = length >> PAGE_SHIFT;
   2846 	intel_gtt_clear_range(first_entry, num_entries);
   2847 }
   2848 
   2849 static int ggtt_bind_vma(struct i915_vma *vma,
   2850 			 enum i915_cache_level cache_level,
   2851 			 u32 flags)
   2852 {
   2853 	struct drm_i915_gem_object *obj = vma->obj;
   2854 	u32 pte_flags = 0;
   2855 	int ret;
   2856 
   2857 	ret = i915_get_ggtt_vma_pages(vma);
   2858 	if (ret)
   2859 		return ret;
   2860 
   2861 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
   2862 	pte_flags = 0;
   2863 	if (obj->gt_ro)
   2864 		pte_flags |= PTE_READ_ONLY;
   2865 
   2866 	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
   2867 				vma->node.start,
   2868 				cache_level, pte_flags);
   2869 
   2870 	/*
   2871 	 * Without aliasing PPGTT there's no difference between
   2872 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
   2873 	 * upgrade to both bound if we bind either to avoid double-binding.
   2874 	 */
   2875 	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
   2876 
   2877 	return 0;
   2878 }
   2879 
   2880 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
   2881 				 enum i915_cache_level cache_level,
   2882 				 u32 flags)
   2883 {
   2884 	struct drm_device *dev = vma->vm->dev;
   2885 	struct drm_i915_private *dev_priv = dev->dev_private;
   2886 	struct drm_i915_gem_object *obj = vma->obj;
   2887 #ifdef __NetBSD__
   2888 	bus_dmamap_t pages = obj->pages;
   2889 #else
   2890 	struct sg_table *pages = obj->pages;
   2891 #endif
   2892 	u32 pte_flags = 0;
   2893 	int ret;
   2894 
   2895 	ret = i915_get_ggtt_vma_pages(vma);
   2896 	if (ret)
   2897 		return ret;
   2898 	pages = vma->ggtt_view.pages;
   2899 
   2900 	/* Currently applicable only to VLV */
   2901 	if (obj->gt_ro)
   2902 		pte_flags |= PTE_READ_ONLY;
   2903 
   2904 
   2905 	if (flags & GLOBAL_BIND) {
   2906 		vma->vm->insert_entries(vma->vm, pages,
   2907 					vma->node.start,
   2908 					cache_level, pte_flags);
   2909 	}
   2910 
   2911 	if (flags & LOCAL_BIND) {
   2912 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
   2913 		appgtt->base.insert_entries(&appgtt->base, pages,
   2914 					    vma->node.start,
   2915 					    cache_level, pte_flags);
   2916 	}
   2917 
   2918 	return 0;
   2919 }
   2920 
   2921 static void ggtt_unbind_vma(struct i915_vma *vma)
   2922 {
   2923 	struct drm_device *dev = vma->vm->dev;
   2924 	struct drm_i915_private *dev_priv = dev->dev_private;
   2925 	struct drm_i915_gem_object *obj = vma->obj;
   2926 	const uint64_t size = min_t(uint64_t,
   2927 				    obj->base.size,
   2928 				    vma->node.size);
   2929 
   2930 	if (vma->bound & GLOBAL_BIND) {
   2931 		vma->vm->clear_range(vma->vm,
   2932 				     vma->node.start,
   2933 				     size,
   2934 				     true);
   2935 	}
   2936 
   2937 	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
   2938 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
   2939 
   2940 		appgtt->base.clear_range(&appgtt->base,
   2941 					 vma->node.start,
   2942 					 size,
   2943 					 true);
   2944 	}
   2945 }
   2946 
   2947 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
   2948 {
   2949 	struct drm_device *dev = obj->base.dev;
   2950 	struct drm_i915_private *dev_priv = dev->dev_private;
   2951 	bool interruptible;
   2952 
   2953 	interruptible = do_idling(dev_priv);
   2954 
   2955 #ifdef __NetBSD__
   2956 	bus_dmamap_unload(dev->dmat, obj->pages);
   2957 #else
   2958 	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
   2959 		     PCI_DMA_BIDIRECTIONAL);
   2960 #endif
   2961 
   2962 	undo_idling(dev_priv, interruptible);
   2963 }
   2964 
   2965 static void i915_gtt_color_adjust(struct drm_mm_node *node,
   2966 				  unsigned long color,
   2967 				  u64 *start,
   2968 				  u64 *end)
   2969 {
   2970 	if (node->color != color)
   2971 		*start += 4096;
   2972 
   2973 	if (!list_empty(&node->node_list)) {
   2974 		node = list_entry(node->node_list.next,
   2975 				  struct drm_mm_node,
   2976 				  node_list);
   2977 		if (node->allocated && node->color != color)
   2978 			*end -= 4096;
   2979 	}
   2980 }
   2981 
   2982 static int i915_gem_setup_global_gtt(struct drm_device *dev,
   2983 				     u64 start,
   2984 				     u64 mappable_end,
   2985 				     u64 end)
   2986 {
   2987 	/* Let GEM Manage all of the aperture.
   2988 	 *
   2989 	 * However, leave one page at the end still bound to the scratch page.
   2990 	 * There are a number of places where the hardware apparently prefetches
   2991 	 * past the end of the object, and we've seen multiple hangs with the
   2992 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
   2993 	 * aperture.  One page should be enough to keep any prefetching inside
   2994 	 * of the aperture.
   2995 	 */
   2996 	struct drm_i915_private *dev_priv = dev->dev_private;
   2997 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
   2998 	struct drm_mm_node *entry;
   2999 	struct drm_i915_gem_object *obj;
   3000 	unsigned long hole_start, hole_end;
   3001 	int ret;
   3002 
   3003 	BUG_ON(mappable_end > end);
   3004 
   3005 	ggtt_vm->start = start;
   3006 
   3007 	/* Subtract the guard page before address space initialization to
   3008 	 * shrink the range used by drm_mm */
   3009 	ggtt_vm->total = end - start - PAGE_SIZE;
   3010 	i915_address_space_init(ggtt_vm, dev_priv);
   3011 	ggtt_vm->total += PAGE_SIZE;
   3012 
   3013 	/* Only VLV supports read-only GGTT mappings */
   3014 	ggtt_vm->has_read_only = IS_VALLEYVIEW(dev_priv);
   3015 
   3016 	if (intel_vgpu_active(dev)) {
   3017 		ret = intel_vgt_balloon(dev);
   3018 		if (ret)
   3019 			return ret;
   3020 	}
   3021 
   3022 	if (!HAS_LLC(dev))
   3023 		ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
   3024 
   3025 	/* Mark any preallocated objects as occupied */
   3026 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
   3027 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
   3028 
   3029 		DRM_DEBUG_KMS("reserving preallocated space: %"PRIx64" + %zx\n",
   3030 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
   3031 
   3032 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
   3033 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
   3034 		if (ret) {
   3035 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
   3036 			return ret;
   3037 		}
   3038 		vma->bound |= GLOBAL_BIND;
   3039 		__i915_vma_set_map_and_fenceable(vma);
   3040 		list_add_tail(&vma->mm_list, &ggtt_vm->inactive_list);
   3041 	}
   3042 
   3043 	/* Clear any non-preallocated blocks */
   3044 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
   3045 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
   3046 			      hole_start, hole_end);
   3047 		ggtt_vm->clear_range(ggtt_vm, hole_start,
   3048 				     hole_end - hole_start, true);
   3049 	}
   3050 
   3051 	/* And finally clear the reserved guard page */
   3052 	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
   3053 
   3054 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
   3055 		struct i915_hw_ppgtt *ppgtt;
   3056 
   3057 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
   3058 		if (!ppgtt)
   3059 			return -ENOMEM;
   3060 
   3061 		ret = __hw_ppgtt_init(dev, ppgtt);
   3062 		if (ret) {
   3063 			ppgtt->base.cleanup(&ppgtt->base);
   3064 			kfree(ppgtt);
   3065 			return ret;
   3066 		}
   3067 
   3068 		if (ppgtt->base.allocate_va_range)
   3069 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
   3070 							    ppgtt->base.total);
   3071 		if (ret) {
   3072 			ppgtt->base.cleanup(&ppgtt->base);
   3073 			kfree(ppgtt);
   3074 			return ret;
   3075 		}
   3076 
   3077 		ppgtt->base.clear_range(&ppgtt->base,
   3078 					ppgtt->base.start,
   3079 					ppgtt->base.total,
   3080 					true);
   3081 
   3082 		dev_priv->mm.aliasing_ppgtt = ppgtt;
   3083 		WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
   3084 		dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
   3085 	}
   3086 
   3087 	return 0;
   3088 }
   3089 
   3090 void i915_gem_init_global_gtt(struct drm_device *dev)
   3091 {
   3092 	struct drm_i915_private *dev_priv = dev->dev_private;
   3093 	u64 gtt_size, mappable_size;
   3094 
   3095 	gtt_size = dev_priv->gtt.base.total;
   3096 	mappable_size = dev_priv->gtt.mappable_end;
   3097 
   3098 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
   3099 }
   3100 
   3101 void i915_global_gtt_cleanup(struct drm_device *dev)
   3102 {
   3103 	struct drm_i915_private *dev_priv = dev->dev_private;
   3104 	struct i915_address_space *vm = &dev_priv->gtt.base;
   3105 
   3106 	if (dev_priv->mm.aliasing_ppgtt) {
   3107 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
   3108 
   3109 		ppgtt->base.cleanup(&ppgtt->base);
   3110 		kfree(ppgtt);
   3111 	}
   3112 
   3113 	if (drm_mm_initialized(&vm->mm)) {
   3114 		if (intel_vgpu_active(dev))
   3115 			intel_vgt_deballoon();
   3116 
   3117 		drm_mm_takedown(&vm->mm);
   3118 		list_del(&vm->global_link);
   3119 	}
   3120 
   3121 	vm->cleanup(vm);
   3122 }
   3123 
   3124 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
   3125 {
   3126 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
   3127 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
   3128 	return snb_gmch_ctl << 20;
   3129 }
   3130 
   3131 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
   3132 {
   3133 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
   3134 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
   3135 	if (bdw_gmch_ctl)
   3136 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
   3137 
   3138 #ifdef CONFIG_X86_32
   3139 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
   3140 	if (bdw_gmch_ctl > 4)
   3141 		bdw_gmch_ctl = 4;
   3142 #endif
   3143 
   3144 	return bdw_gmch_ctl << 20;
   3145 }
   3146 
   3147 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
   3148 {
   3149 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
   3150 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
   3151 
   3152 	if (gmch_ctrl)
   3153 		return 1 << (20 + gmch_ctrl);
   3154 
   3155 	return 0;
   3156 }
   3157 
   3158 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
   3159 {
   3160 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
   3161 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
   3162 	return snb_gmch_ctl << 25; /* 32 MB units */
   3163 }
   3164 
   3165 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
   3166 {
   3167 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
   3168 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
   3169 	return bdw_gmch_ctl << 25; /* 32 MB units */
   3170 }
   3171 
   3172 static size_t chv_get_stolen_size(u16 gmch_ctrl)
   3173 {
   3174 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
   3175 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
   3176 
   3177 	/*
   3178 	 * 0x0  to 0x10: 32MB increments starting at 0MB
   3179 	 * 0x11 to 0x16: 4MB increments starting at 8MB
   3180 	 * 0x17 to 0x1d: 4MB increments start at 36MB
   3181 	 */
   3182 	if (gmch_ctrl < 0x11)
   3183 		return gmch_ctrl << 25;
   3184 	else if (gmch_ctrl < 0x17)
   3185 		return (gmch_ctrl - 0x11 + 2) << 22;
   3186 	else
   3187 		return (gmch_ctrl - 0x17 + 9) << 22;
   3188 }
   3189 
   3190 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
   3191 {
   3192 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
   3193 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
   3194 
   3195 	if (gen9_gmch_ctl < 0xf0)
   3196 		return gen9_gmch_ctl << 25; /* 32 MB units */
   3197 	else
   3198 		/* 4MB increments starting at 0xf0 for 4MB */
   3199 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
   3200 }
   3201 
   3202 static int ggtt_probe_common(struct drm_device *dev,
   3203 			     size_t gtt_size)
   3204 {
   3205 	struct drm_i915_private *dev_priv = dev->dev_private;
   3206 	struct i915_page_scratch *scratch_page;
   3207 	phys_addr_t gtt_phys_addr;
   3208 
   3209 	/* For Modern GENs the PTEs and register space are split in the BAR */
   3210 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
   3211 		(pci_resource_len(dev->pdev, 0) / 2);
   3212 
   3213 #ifdef __NetBSD__
   3214 	int ret;
   3215 	dev_priv->gtt.bst = dev->pdev->pd_pa.pa_memt;
   3216 	/* XXX errno NetBSD->Linux */
   3217 	ret = -bus_space_map(dev_priv->gtt.bst, gtt_phys_addr, gtt_size,
   3218 	    IS_BROXTON(dev) ? 0 : BUS_SPACE_MAP_PREFETCHABLE,
   3219 	    &dev_priv->gtt.bsh);
   3220 	if (ret) {
   3221 		DRM_ERROR("Failed to map the graphics translation table: %d\n",
   3222 		    ret);
   3223 		return ret;
   3224 	}
   3225 	dev_priv->gtt.size = gtt_size;
   3226 #else
   3227 	/*
   3228 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
   3229 	 * dropped. For WC mappings in general we have 64 byte burst writes
   3230 	 * when the WC buffer is flushed, so we can't use it, but have to
   3231 	 * resort to an uncached mapping. The WC issue is easily caught by the
   3232 	 * readback check when writing GTT PTE entries.
   3233 	 */
   3234 	if (IS_BROXTON(dev))
   3235 		dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
   3236 	else
   3237 		dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
   3238 	if (!dev_priv->gtt.gsm) {
   3239 		DRM_ERROR("Failed to map the gtt page table\n");
   3240 		return -ENOMEM;
   3241 	}
   3242 #endif
   3243 
   3244 	scratch_page = alloc_scratch_page(dev);
   3245 	if (IS_ERR(scratch_page)) {
   3246 		DRM_ERROR("Scratch setup failed\n");
   3247 		/* iounmap will also get called at remove, but meh */
   3248 #ifdef __NetBSD__
   3249 		bus_space_unmap(dev_priv->gtt.bst, dev_priv->gtt.bsh,
   3250 		    dev_priv->gtt.size);
   3251 #else
   3252 		iounmap(dev_priv->gtt.gsm);
   3253 #endif
   3254 		return PTR_ERR(scratch_page);
   3255 	}
   3256 
   3257 	dev_priv->gtt.base.scratch_page = scratch_page;
   3258 
   3259 	return 0;
   3260 }
   3261 
   3262 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
   3263  * bits. When using advanced contexts each context stores its own PAT, but
   3264  * writing this data shouldn't be harmful even in those cases. */
   3265 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
   3266 {
   3267 	uint64_t pat;
   3268 
   3269 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
   3270 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
   3271 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
   3272 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
   3273 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
   3274 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
   3275 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
   3276 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
   3277 
   3278 	if (!USES_PPGTT(dev_priv->dev))
   3279 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
   3280 		 * so RTL will always use the value corresponding to
   3281 		 * pat_sel = 000".
   3282 		 * So let's disable cache for GGTT to avoid screen corruptions.
   3283 		 * MOCS still can be used though.
   3284 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
   3285 		 * before this patch, i.e. the same uncached + snooping access
   3286 		 * like on gen6/7 seems to be in effect.
   3287 		 * - So this just fixes blitter/render access. Again it looks
   3288 		 * like it's not just uncached access, but uncached + snooping.
   3289 		 * So we can still hold onto all our assumptions wrt cpu
   3290 		 * clflushing on LLC machines.
   3291 		 */
   3292 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
   3293 
   3294 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
   3295 	 * write would work. */
   3296 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
   3297 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
   3298 }
   3299 
   3300 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
   3301 {
   3302 	uint64_t pat;
   3303 
   3304 	/*
   3305 	 * Map WB on BDW to snooped on CHV.
   3306 	 *
   3307 	 * Only the snoop bit has meaning for CHV, the rest is
   3308 	 * ignored.
   3309 	 *
   3310 	 * The hardware will never snoop for certain types of accesses:
   3311 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
   3312 	 * - PPGTT page tables
   3313 	 * - some other special cycles
   3314 	 *
   3315 	 * As with BDW, we also need to consider the following for GT accesses:
   3316 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
   3317 	 * so RTL will always use the value corresponding to
   3318 	 * pat_sel = 000".
   3319 	 * Which means we must set the snoop bit in PAT entry 0
   3320 	 * in order to keep the global status page working.
   3321 	 */
   3322 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
   3323 	      GEN8_PPAT(1, 0) |
   3324 	      GEN8_PPAT(2, 0) |
   3325 	      GEN8_PPAT(3, 0) |
   3326 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
   3327 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
   3328 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
   3329 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
   3330 
   3331 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
   3332 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
   3333 }
   3334 
   3335 static int gen8_gmch_probe(struct drm_device *dev,
   3336 			   u64 *gtt_total,
   3337 			   size_t *stolen,
   3338 			   phys_addr_t *mappable_base,
   3339 			   u64 *mappable_end)
   3340 {
   3341 	struct drm_i915_private *dev_priv = dev->dev_private;
   3342 	u64 gtt_size;
   3343 	u16 snb_gmch_ctl;
   3344 	int ret;
   3345 
   3346 	/* TODO: We're not aware of mappable constraints on gen8 yet */
   3347 	*mappable_base = pci_resource_start(dev->pdev, 2);
   3348 	*mappable_end = pci_resource_len(dev->pdev, 2);
   3349 
   3350 #ifndef __NetBSD__
   3351 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
   3352 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
   3353 #endif
   3354 
   3355 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
   3356 
   3357 	if (INTEL_INFO(dev)->gen >= 9) {
   3358 		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
   3359 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
   3360 	} else if (IS_CHERRYVIEW(dev)) {
   3361 		*stolen = chv_get_stolen_size(snb_gmch_ctl);
   3362 		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
   3363 	} else {
   3364 		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
   3365 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
   3366 	}
   3367 
   3368 	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
   3369 
   3370 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
   3371 		chv_setup_private_ppat(dev_priv);
   3372 	else
   3373 		bdw_setup_private_ppat(dev_priv);
   3374 
   3375 	ret = ggtt_probe_common(dev, gtt_size);
   3376 
   3377 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
   3378 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
   3379 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
   3380 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
   3381 
   3382 	/* XXX 39-bit addresses?  Really?  See pci_set_dma_mask above...  */
   3383 	dev_priv->gtt.max_paddr = __BITS(38, 0);
   3384 
   3385 	return ret;
   3386 }
   3387 
   3388 static int gen6_gmch_probe(struct drm_device *dev,
   3389 			   u64 *gtt_total,
   3390 			   size_t *stolen,
   3391 			   phys_addr_t *mappable_base,
   3392 			   u64 *mappable_end)
   3393 {
   3394 	struct drm_i915_private *dev_priv = dev->dev_private;
   3395 	unsigned int gtt_size;
   3396 	u16 snb_gmch_ctl;
   3397 	int ret;
   3398 
   3399 	*mappable_base = pci_resource_start(dev->pdev, 2);
   3400 	*mappable_end = pci_resource_len(dev->pdev, 2);
   3401 
   3402 	/* 64/512MB is the current min/max we actually know of, but this is just
   3403 	 * a coarse sanity check.
   3404 	 */
   3405 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
   3406 		DRM_ERROR("Unknown GMADR size (%"PRIx64")\n",
   3407 			  dev_priv->gtt.mappable_end);
   3408 		return -ENXIO;
   3409 	}
   3410 
   3411 #ifndef __NetBSD__
   3412 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
   3413 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
   3414 #endif
   3415 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
   3416 
   3417 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
   3418 
   3419 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
   3420 	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
   3421 
   3422 	ret = ggtt_probe_common(dev, gtt_size);
   3423 
   3424 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
   3425 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
   3426 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
   3427 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
   3428 
   3429 	dev_priv->gtt.max_paddr = __BITS(39, 0);
   3430 
   3431 	return ret;
   3432 }
   3433 
   3434 static void gen6_gmch_remove(struct i915_address_space *vm)
   3435 {
   3436 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
   3437 
   3438 #ifdef __NetBSD__
   3439 	bus_space_unmap(gtt->bst, gtt->bsh, gtt->size);
   3440 #else
   3441 	iounmap(gtt->gsm);
   3442 #endif
   3443 	free_scratch_page(vm->dev, vm->scratch_page);
   3444 }
   3445 
   3446 static int i915_gmch_probe(struct drm_device *dev,
   3447 			   u64 *gtt_total,
   3448 			   size_t *stolen,
   3449 			   phys_addr_t *mappable_base,
   3450 			   u64 *mappable_end)
   3451 {
   3452 	struct drm_i915_private *dev_priv = dev->dev_private;
   3453 	int ret;
   3454 
   3455 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
   3456 	if (!ret) {
   3457 		DRM_ERROR("failed to set up gmch\n");
   3458 		return -EIO;
   3459 	}
   3460 
   3461 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
   3462 
   3463 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
   3464 	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
   3465 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
   3466 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
   3467 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
   3468 
   3469 	if (unlikely(dev_priv->gtt.do_idle_maps))
   3470 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
   3471 
   3472 	if (INTEL_INFO(dev)->gen <= 2)
   3473 		dev_priv->gtt.max_paddr = __BITS(29, 0);
   3474 	else if ((INTEL_INFO(dev)->gen <= 3) ||
   3475 	    IS_BROADWATER(dev) || IS_CRESTLINE(dev))
   3476 		dev_priv->gtt.max_paddr = __BITS(31, 0);
   3477 	else if (INTEL_INFO(dev)->gen <= 5)
   3478 		dev_priv->gtt.max_paddr = __BITS(35, 0);
   3479 	else
   3480 		dev_priv->gtt.max_paddr = __BITS(39, 0);
   3481 
   3482 	return 0;
   3483 }
   3484 
   3485 static void i915_gmch_remove(struct i915_address_space *vm)
   3486 {
   3487 	intel_gmch_remove();
   3488 }
   3489 
   3490 int i915_gem_gtt_init(struct drm_device *dev)
   3491 {
   3492 	struct drm_i915_private *dev_priv = dev->dev_private;
   3493 	struct i915_gtt *gtt = &dev_priv->gtt;
   3494 	int ret;
   3495 
   3496 	if (INTEL_INFO(dev)->gen <= 5) {
   3497 		gtt->gtt_probe = i915_gmch_probe;
   3498 		gtt->base.cleanup = i915_gmch_remove;
   3499 	} else if (INTEL_INFO(dev)->gen < 8) {
   3500 		gtt->gtt_probe = gen6_gmch_probe;
   3501 		gtt->base.cleanup = gen6_gmch_remove;
   3502 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
   3503 			gtt->base.pte_encode = iris_pte_encode;
   3504 		else if (IS_HASWELL(dev))
   3505 			gtt->base.pte_encode = hsw_pte_encode;
   3506 		else if (IS_VALLEYVIEW(dev))
   3507 			gtt->base.pte_encode = byt_pte_encode;
   3508 		else if (INTEL_INFO(dev)->gen >= 7)
   3509 			gtt->base.pte_encode = ivb_pte_encode;
   3510 		else
   3511 			gtt->base.pte_encode = snb_pte_encode;
   3512 	} else {
   3513 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
   3514 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
   3515 	}
   3516 
   3517 	gtt->base.dev = dev;
   3518 
   3519 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
   3520 			     &gtt->mappable_base, &gtt->mappable_end);
   3521 	if (ret)
   3522 		return ret;
   3523 
   3524 #ifdef __NetBSD__
   3525 	dev_priv->gtt.pgfl = x86_select_freelist(dev_priv->gtt.max_paddr);
   3526 	ret = drm_limit_dma_space(dev, 0, dev_priv->gtt.max_paddr);
   3527 	if (ret) {
   3528 		DRM_ERROR("Unable to limit DMA paddr allocations: %d!\n", ret);
   3529 		gtt->base.cleanup(&gtt->base);
   3530 		return ret;
   3531 	}
   3532 #endif
   3533 
   3534 	/* GMADR is the PCI mmio aperture into the global GTT. */
   3535 	DRM_INFO("Memory usable by graphics device = %"PRIu64"M\n",
   3536 		 gtt->base.total >> 20);
   3537 	DRM_DEBUG_DRIVER("GMADR size = %"PRId64"M\n", gtt->mappable_end >> 20);
   3538 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
   3539 #ifdef CONFIG_INTEL_IOMMU
   3540 	if (intel_iommu_gfx_mapped)
   3541 		DRM_INFO("VT-d active for gfx access\n");
   3542 #endif
   3543 	/*
   3544 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
   3545 	 * user's requested state against the hardware/driver capabilities.  We
   3546 	 * do this now so that we can print out any log messages once rather
   3547 	 * than every time we check intel_enable_ppgtt().
   3548 	 */
   3549 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
   3550 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
   3551 
   3552 	return 0;
   3553 }
   3554 
   3555 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
   3556 {
   3557 	struct drm_i915_private *dev_priv = dev->dev_private;
   3558 	struct drm_i915_gem_object *obj;
   3559 	struct i915_address_space *vm;
   3560 	struct i915_vma *vma;
   3561 	bool flush;
   3562 
   3563 	i915_check_and_clear_faults(dev);
   3564 
   3565 	/* First fill our portion of the GTT with scratch pages */
   3566 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
   3567 				       dev_priv->gtt.base.start,
   3568 				       dev_priv->gtt.base.total,
   3569 				       true);
   3570 
   3571 	/* Cache flush objects bound into GGTT and rebind them. */
   3572 	vm = &dev_priv->gtt.base;
   3573 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
   3574 		flush = false;
   3575 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
   3576 			if (vma->vm != vm)
   3577 				continue;
   3578 
   3579 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
   3580 					      PIN_UPDATE));
   3581 
   3582 			flush = true;
   3583 		}
   3584 
   3585 		if (flush)
   3586 			i915_gem_clflush_object(obj, obj->pin_display);
   3587 	}
   3588 
   3589 	if (INTEL_INFO(dev)->gen >= 8) {
   3590 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
   3591 			chv_setup_private_ppat(dev_priv);
   3592 		else
   3593 			bdw_setup_private_ppat(dev_priv);
   3594 
   3595 		return;
   3596 	}
   3597 
   3598 	if (USES_PPGTT(dev)) {
   3599 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
   3600 			/* TODO: Perhaps it shouldn't be gen6 specific */
   3601 
   3602 			struct i915_hw_ppgtt *ppgtt =
   3603 					container_of(vm, struct i915_hw_ppgtt,
   3604 						     base);
   3605 
   3606 			if (i915_is_ggtt(vm))
   3607 				ppgtt = dev_priv->mm.aliasing_ppgtt;
   3608 
   3609 			gen6_write_page_range(dev_priv, &ppgtt->pd,
   3610 					      0, ppgtt->base.total);
   3611 		}
   3612 	}
   3613 
   3614 	i915_ggtt_flush(dev_priv);
   3615 }
   3616 
   3617 static struct i915_vma *
   3618 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
   3619 		      struct i915_address_space *vm,
   3620 		      const struct i915_ggtt_view *ggtt_view)
   3621 {
   3622 	struct i915_vma *vma;
   3623 
   3624 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
   3625 		return ERR_PTR(-EINVAL);
   3626 
   3627 	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
   3628 	if (vma == NULL)
   3629 		return ERR_PTR(-ENOMEM);
   3630 
   3631 	INIT_LIST_HEAD(&vma->vma_link);
   3632 	INIT_LIST_HEAD(&vma->mm_list);
   3633 	INIT_LIST_HEAD(&vma->exec_list);
   3634 	vma->vm = vm;
   3635 	vma->obj = obj;
   3636 
   3637 	if (i915_is_ggtt(vm))
   3638 		vma->ggtt_view = *ggtt_view;
   3639 
   3640 	list_add_tail(&vma->vma_link, &obj->vma_list);
   3641 	if (!i915_is_ggtt(vm))
   3642 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
   3643 
   3644 	return vma;
   3645 }
   3646 
   3647 struct i915_vma *
   3648 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
   3649 				  struct i915_address_space *vm)
   3650 {
   3651 	struct i915_vma *vma;
   3652 
   3653 	vma = i915_gem_obj_to_vma(obj, vm);
   3654 	if (!vma)
   3655 		vma = __i915_gem_vma_create(obj, vm,
   3656 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
   3657 
   3658 	return vma;
   3659 }
   3660 
   3661 struct i915_vma *
   3662 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
   3663 				       const struct i915_ggtt_view *view)
   3664 {
   3665 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
   3666 	struct i915_vma *vma;
   3667 
   3668 	if (WARN_ON(!view))
   3669 		return ERR_PTR(-EINVAL);
   3670 
   3671 	vma = i915_gem_obj_to_ggtt_view(obj, view);
   3672 
   3673 	if (IS_ERR(vma))
   3674 		return vma;
   3675 
   3676 	if (!vma)
   3677 		vma = __i915_gem_vma_create(obj, ggtt, view);
   3678 
   3679 	return vma;
   3680 
   3681 }
   3682 
   3683 #ifndef __NetBSD__
   3684 static struct scatterlist *
   3685 rotate_pages(dma_addr_t *in, unsigned int offset,
   3686 	     unsigned int width, unsigned int height,
   3687 	     struct sg_table *st, struct scatterlist *sg)
   3688 {
   3689 	unsigned int column, row;
   3690 	unsigned int src_idx;
   3691 
   3692 	if (!sg) {
   3693 		st->nents = 0;
   3694 		sg = st->sgl;
   3695 	}
   3696 
   3697 	for (column = 0; column < width; column++) {
   3698 		src_idx = width * (height - 1) + column;
   3699 		for (row = 0; row < height; row++) {
   3700 			st->nents++;
   3701 			/* We don't need the pages, but need to initialize
   3702 			 * the entries so the sg list can be happily traversed.
   3703 			 * The only thing we need are DMA addresses.
   3704 			 */
   3705 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
   3706 			sg_dma_address(sg) = in[offset + src_idx];
   3707 			sg_dma_len(sg) = PAGE_SIZE;
   3708 			sg = sg_next(sg);
   3709 			src_idx -= width;
   3710 		}
   3711 	}
   3712 
   3713 	return sg;
   3714 }
   3715 
   3716 static struct sg_table *
   3717 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
   3718 			  struct drm_i915_gem_object *obj)
   3719 {
   3720 	struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
   3721 	unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
   3722 	unsigned int size_pages_uv;
   3723 	struct sg_page_iter sg_iter;
   3724 	unsigned long i;
   3725 	dma_addr_t *page_addr_list;
   3726 	struct sg_table *st;
   3727 	unsigned int uv_start_page;
   3728 	struct scatterlist *sg;
   3729 	int ret = -ENOMEM;
   3730 
   3731 	/* Allocate a temporary list of source pages for random access. */
   3732 	page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
   3733 				       sizeof(dma_addr_t));
   3734 	if (!page_addr_list)
   3735 		return ERR_PTR(ret);
   3736 
   3737 	/* Account for UV plane with NV12. */
   3738 	if (rot_info->pixel_format == DRM_FORMAT_NV12)
   3739 		size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
   3740 	else
   3741 		size_pages_uv = 0;
   3742 
   3743 	/* Allocate target SG list. */
   3744 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   3745 	if (!st)
   3746 		goto err_st_alloc;
   3747 
   3748 	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
   3749 	if (ret)
   3750 		goto err_sg_alloc;
   3751 
   3752 	/* Populate source page list from the object. */
   3753 	i = 0;
   3754 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
   3755 		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
   3756 		i++;
   3757 	}
   3758 
   3759 	/* Rotate the pages. */
   3760 	sg = rotate_pages(page_addr_list, 0,
   3761 		     rot_info->width_pages, rot_info->height_pages,
   3762 		     st, NULL);
   3763 
   3764 	/* Append the UV plane if NV12. */
   3765 	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
   3766 		uv_start_page = size_pages;
   3767 
   3768 		/* Check for tile-row un-alignment. */
   3769 		if (offset_in_page(rot_info->uv_offset))
   3770 			uv_start_page--;
   3771 
   3772 		rot_info->uv_start_page = uv_start_page;
   3773 
   3774 		rotate_pages(page_addr_list, uv_start_page,
   3775 			     rot_info->width_pages_uv,
   3776 			     rot_info->height_pages_uv,
   3777 			     st, sg);
   3778 	}
   3779 
   3780 	DRM_DEBUG_KMS(
   3781 		      "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
   3782 		      obj->base.size, rot_info->pitch, rot_info->height,
   3783 		      rot_info->pixel_format, rot_info->width_pages,
   3784 		      rot_info->height_pages, size_pages + size_pages_uv,
   3785 		      size_pages);
   3786 
   3787 	drm_free_large(page_addr_list);
   3788 
   3789 	return st;
   3790 
   3791 err_sg_alloc:
   3792 	kfree(st);
   3793 err_st_alloc:
   3794 	drm_free_large(page_addr_list);
   3795 
   3796 	DRM_DEBUG_KMS(
   3797 		      "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
   3798 		      obj->base.size, ret, rot_info->pitch, rot_info->height,
   3799 		      rot_info->pixel_format, rot_info->width_pages,
   3800 		      rot_info->height_pages, size_pages + size_pages_uv,
   3801 		      size_pages);
   3802 	return ERR_PTR(ret);
   3803 }
   3804 
   3805 static struct sg_table *
   3806 intel_partial_pages(const struct i915_ggtt_view *view,
   3807 		    struct drm_i915_gem_object *obj)
   3808 {
   3809 	struct sg_table *st;
   3810 	struct scatterlist *sg;
   3811 	struct sg_page_iter obj_sg_iter;
   3812 	int ret = -ENOMEM;
   3813 
   3814 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   3815 	if (!st)
   3816 		goto err_st_alloc;
   3817 
   3818 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
   3819 	if (ret)
   3820 		goto err_sg_alloc;
   3821 
   3822 	sg = st->sgl;
   3823 	st->nents = 0;
   3824 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
   3825 		view->params.partial.offset)
   3826 	{
   3827 		if (st->nents >= view->params.partial.size)
   3828 			break;
   3829 
   3830 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
   3831 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
   3832 		sg_dma_len(sg) = PAGE_SIZE;
   3833 
   3834 		sg = sg_next(sg);
   3835 		st->nents++;
   3836 	}
   3837 
   3838 	return st;
   3839 
   3840 err_sg_alloc:
   3841 	kfree(st);
   3842 err_st_alloc:
   3843 	return ERR_PTR(ret);
   3844 }
   3845 #endif
   3846 
   3847 static int
   3848 i915_get_ggtt_vma_pages(struct i915_vma *vma)
   3849 {
   3850 	int ret = 0;
   3851 
   3852 	if (vma->ggtt_view.pages)
   3853 		return 0;
   3854 
   3855 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
   3856 		vma->ggtt_view.pages = vma->obj->pages;
   3857 #ifndef __NetBSD__
   3858 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
   3859 		vma->ggtt_view.pages =
   3860 			intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
   3861 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
   3862 		vma->ggtt_view.pages =
   3863 			intel_partial_pages(&vma->ggtt_view, vma->obj);
   3864 #endif
   3865 	else
   3866 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
   3867 			  vma->ggtt_view.type);
   3868 
   3869 	if (!vma->ggtt_view.pages) {
   3870 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
   3871 			  vma->ggtt_view.type);
   3872 		ret = -EINVAL;
   3873 	} else if (IS_ERR(vma->ggtt_view.pages)) {
   3874 		ret = PTR_ERR(vma->ggtt_view.pages);
   3875 		vma->ggtt_view.pages = NULL;
   3876 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
   3877 			  vma->ggtt_view.type, ret);
   3878 	}
   3879 
   3880 	return ret;
   3881 }
   3882 
   3883 /**
   3884  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
   3885  * @vma: VMA to map
   3886  * @cache_level: mapping cache level
   3887  * @flags: flags like global or local mapping
   3888  *
   3889  * DMA addresses are taken from the scatter-gather table of this object (or of
   3890  * this VMA in case of non-default GGTT views) and PTE entries set up.
   3891  * Note that DMA addresses are also the only part of the SG table we care about.
   3892  */
   3893 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
   3894 		  u32 flags)
   3895 {
   3896 	int ret;
   3897 	u32 bind_flags;
   3898 
   3899 	if (WARN_ON(flags == 0))
   3900 		return -EINVAL;
   3901 
   3902 	bind_flags = 0;
   3903 	if (flags & PIN_GLOBAL)
   3904 		bind_flags |= GLOBAL_BIND;
   3905 	if (flags & PIN_USER)
   3906 		bind_flags |= LOCAL_BIND;
   3907 
   3908 	if (flags & PIN_UPDATE)
   3909 		bind_flags |= vma->bound;
   3910 	else
   3911 		bind_flags &= ~vma->bound;
   3912 
   3913 	if (bind_flags == 0)
   3914 		return 0;
   3915 
   3916 	if (vma->bound == 0 && vma->vm->allocate_va_range) {
   3917 		trace_i915_va_alloc(vma->vm,
   3918 				    vma->node.start,
   3919 				    vma->node.size,
   3920 				    VM_TO_TRACE_NAME(vma->vm));
   3921 
   3922 		/* XXX: i915_vma_pin() will fix this +- hack */
   3923 		vma->pin_count++;
   3924 		ret = vma->vm->allocate_va_range(vma->vm,
   3925 						 vma->node.start,
   3926 						 vma->node.size);
   3927 		vma->pin_count--;
   3928 		if (ret)
   3929 			return ret;
   3930 	}
   3931 
   3932 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
   3933 	if (ret)
   3934 		return ret;
   3935 
   3936 	vma->bound |= bind_flags;
   3937 
   3938 	return 0;
   3939 }
   3940 
   3941 /**
   3942  * i915_ggtt_view_size - Get the size of a GGTT view.
   3943  * @obj: Object the view is of.
   3944  * @view: The view in question.
   3945  *
   3946  * @return The size of the GGTT view in bytes.
   3947  */
   3948 size_t
   3949 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
   3950 		    const struct i915_ggtt_view *view)
   3951 {
   3952 	if (view->type == I915_GGTT_VIEW_NORMAL) {
   3953 		return obj->base.size;
   3954 	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
   3955 		return view->rotation_info.size;
   3956 	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
   3957 		return view->params.partial.size << PAGE_SHIFT;
   3958 	} else {
   3959 		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
   3960 		return obj->base.size;
   3961 	}
   3962 }
   3963