i915_gem_gtt.c revision 1.19 1 /* $NetBSD: i915_gem_gtt.c,v 1.19 2021/12/18 23:45:28 riastradh Exp $ */
2
3 // SPDX-License-Identifier: MIT
4 /*
5 * Copyright 2010 Daniel Vetter
6 * Copyright 2020 Intel Corporation
7 */
8
9 #include <sys/cdefs.h>
10 __KERNEL_RCSID(0, "$NetBSD: i915_gem_gtt.c,v 1.19 2021/12/18 23:45:28 riastradh Exp $");
11
12 #include <linux/slab.h> /* fault-inject.h is not standalone! */
13
14 #include <linux/fault-inject.h>
15 #include <linux/log2.h>
16 #include <linux/random.h>
17 #include <linux/seq_file.h>
18 #include <linux/stop_machine.h>
19
20 #include <asm/set_memory.h>
21 #include <asm/smp.h>
22
23 #include <drm/i915_drm.h>
24
25 #include "display/intel_frontbuffer.h"
26 #include "gt/intel_gt.h"
27 #include "gt/intel_gt_requests.h"
28
29 #include "i915_drv.h"
30 #include "i915_scatterlist.h"
31 #include "i915_trace.h"
32 #include "i915_vgpu.h"
33
34 #ifdef __NetBSD__
35 #include <drm/bus_dma_hacks.h>
36 #include <x86/machdep.h>
37 #include <x86/pte.h>
38 #define _PAGE_PRESENT PTE_P /* 0x01 PTE is present */
39 #define _PAGE_RW PTE_W /* 0x02 read/write */
40 #define _PAGE_PWT PTE_PWT /* 0x08 page write-through */
41 #define _PAGE_PCD PTE_PCD /* 0x10 page cache disabled */
42 #define _PAGE_PAT PTE_PAT /* 0x80 page attribute table on PTE */
43 #endif
44
45 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
46 struct sg_table *pages)
47 {
48 do {
49 #ifdef __NetBSD__
50 KASSERT(0 < obj->base.size);
51 /* XXX errno NetBSD->Linux */
52 return -bus_dmamap_load_pglist(obj->base.dev->dmat, obj->pages,
53 &obj->pageq, obj->base.size, BUS_DMA_NOWAIT);
54 #else
55 if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
56 pages->sgl, pages->nents,
57 PCI_DMA_BIDIRECTIONAL,
58 DMA_ATTR_NO_WARN))
59 return 0;
60 #endif
61
62 /*
63 * If the DMA remap fails, one cause can be that we have
64 * too many objects pinned in a small remapping table,
65 * such as swiotlb. Incrementally purge all other objects and
66 * try again - if there are no more pages to remove from
67 * the DMA remapper, i915_gem_shrink will return 0.
68 */
69 GEM_BUG_ON(obj->mm.pages == pages);
70 } while (i915_gem_shrink(to_i915(obj->base.dev),
71 obj->base.size >> PAGE_SHIFT, NULL,
72 I915_SHRINK_BOUND |
73 I915_SHRINK_UNBOUND));
74
75 return -ENOSPC;
76 }
77
78 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
79 struct sg_table *pages)
80 {
81 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
82 struct device *kdev = &dev_priv->drm.pdev->dev;
83 struct i915_ggtt *ggtt = &dev_priv->ggtt;
84
85 if (unlikely(ggtt->do_idle_maps)) {
86 /* XXX This does not prevent more requests being submitted! */
87 if (intel_gt_retire_requests_timeout(ggtt->vm.gt,
88 -MAX_SCHEDULE_TIMEOUT)) {
89 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
90 /* Wait a bit, in hopes it avoids the hang */
91 udelay(10);
92 }
93 }
94
95 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
96 }
97
98 /**
99 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
100 * @vm: the &struct i915_address_space
101 * @node: the &struct drm_mm_node (typically i915_vma.mode)
102 * @size: how much space to allocate inside the GTT,
103 * must be #I915_GTT_PAGE_SIZE aligned
104 * @offset: where to insert inside the GTT,
105 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
106 * (@offset + @size) must fit within the address space
107 * @color: color to apply to node, if this node is not from a VMA,
108 * color must be #I915_COLOR_UNEVICTABLE
109 * @flags: control search and eviction behaviour
110 *
111 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
112 * the address space (using @size and @color). If the @node does not fit, it
113 * tries to evict any overlapping nodes from the GTT, including any
114 * neighbouring nodes if the colors do not match (to ensure guard pages between
115 * differing domains). See i915_gem_evict_for_node() for the gory details
116 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
117 * evicting active overlapping objects, and any overlapping node that is pinned
118 * or marked as unevictable will also result in failure.
119 *
120 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
121 * asked to wait for eviction and interrupted.
122 */
123 int i915_gem_gtt_reserve(struct i915_address_space *vm,
124 struct drm_mm_node *node,
125 u64 size, u64 offset, unsigned long color,
126 unsigned int flags)
127 {
128 int err;
129
130 GEM_BUG_ON(!size);
131 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
132 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
133 GEM_BUG_ON(range_overflows(offset, size, vm->total));
134 GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
135 GEM_BUG_ON(drm_mm_node_allocated(node));
136
137 node->size = size;
138 node->start = offset;
139 node->color = color;
140
141 err = drm_mm_reserve_node(&vm->mm, node);
142 if (err != -ENOSPC)
143 return err;
144
145 if (flags & PIN_NOEVICT)
146 return -ENOSPC;
147
148 err = i915_gem_evict_for_node(vm, node, flags);
149 if (err == 0)
150 err = drm_mm_reserve_node(&vm->mm, node);
151
152 return err;
153 }
154
155 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
156 {
157 u64 range, addr;
158
159 GEM_BUG_ON(range_overflows(start, len, end));
160 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
161
162 range = round_down(end - len, align) - round_up(start, align);
163 if (range) {
164 if (sizeof(unsigned long) == sizeof(u64)) {
165 addr = get_random_long();
166 } else {
167 addr = get_random_int();
168 if (range > U32_MAX) {
169 addr <<= 32;
170 addr |= get_random_int();
171 }
172 }
173 div64_u64_rem(addr, range, &addr);
174 start += addr;
175 }
176
177 return round_up(start, align);
178 }
179
180 /**
181 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
182 * @vm: the &struct i915_address_space
183 * @node: the &struct drm_mm_node (typically i915_vma.node)
184 * @size: how much space to allocate inside the GTT,
185 * must be #I915_GTT_PAGE_SIZE aligned
186 * @alignment: required alignment of starting offset, may be 0 but
187 * if specified, this must be a power-of-two and at least
188 * #I915_GTT_MIN_ALIGNMENT
189 * @color: color to apply to node
190 * @start: start of any range restriction inside GTT (0 for all),
191 * must be #I915_GTT_PAGE_SIZE aligned
192 * @end: end of any range restriction inside GTT (U64_MAX for all),
193 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
194 * @flags: control search and eviction behaviour
195 *
196 * i915_gem_gtt_insert() first searches for an available hole into which
197 * is can insert the node. The hole address is aligned to @alignment and
198 * its @size must then fit entirely within the [@start, @end] bounds. The
199 * nodes on either side of the hole must match @color, or else a guard page
200 * will be inserted between the two nodes (or the node evicted). If no
201 * suitable hole is found, first a victim is randomly selected and tested
202 * for eviction, otherwise then the LRU list of objects within the GTT
203 * is scanned to find the first set of replacement nodes to create the hole.
204 * Those old overlapping nodes are evicted from the GTT (and so must be
205 * rebound before any future use). Any node that is currently pinned cannot
206 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
207 * active and #PIN_NONBLOCK is specified, that node is also skipped when
208 * searching for an eviction candidate. See i915_gem_evict_something() for
209 * the gory details on the eviction algorithm.
210 *
211 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
212 * asked to wait for eviction and interrupted.
213 */
214 int i915_gem_gtt_insert(struct i915_address_space *vm,
215 struct drm_mm_node *node,
216 u64 size, u64 alignment, unsigned long color,
217 u64 start, u64 end, unsigned int flags)
218 {
219 enum drm_mm_insert_mode mode;
220 u64 offset;
221 int err;
222
223 lockdep_assert_held(&vm->mutex);
224
225 GEM_BUG_ON(!size);
226 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
227 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
228 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
229 GEM_BUG_ON(start >= end);
230 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
231 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
232 GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
233 GEM_BUG_ON(drm_mm_node_allocated(node));
234
235 if (unlikely(range_overflows(start, size, end)))
236 return -ENOSPC;
237
238 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
239 return -ENOSPC;
240
241 mode = DRM_MM_INSERT_BEST;
242 if (flags & PIN_HIGH)
243 mode = DRM_MM_INSERT_HIGHEST;
244 if (flags & PIN_MAPPABLE)
245 mode = DRM_MM_INSERT_LOW;
246
247 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
248 * so we know that we always have a minimum alignment of 4096.
249 * The drm_mm range manager is optimised to return results
250 * with zero alignment, so where possible use the optimal
251 * path.
252 */
253 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
254 if (alignment <= I915_GTT_MIN_ALIGNMENT)
255 alignment = 0;
256
257 err = drm_mm_insert_node_in_range(&vm->mm, node,
258 size, alignment, color,
259 start, end, mode);
260 if (err != -ENOSPC)
261 return err;
262
263 if (mode & DRM_MM_INSERT_ONCE) {
264 err = drm_mm_insert_node_in_range(&vm->mm, node,
265 size, alignment, color,
266 start, end,
267 DRM_MM_INSERT_BEST);
268 if (err != -ENOSPC)
269 return err;
270 }
271
272 if (flags & PIN_NOEVICT)
273 return -ENOSPC;
274
275 /*
276 * No free space, pick a slot at random.
277 *
278 * There is a pathological case here using a GTT shared between
279 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
280 *
281 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
282 * (64k objects) (448k objects)
283 *
284 * Now imagine that the eviction LRU is ordered top-down (just because
285 * pathology meets real life), and that we need to evict an object to
286 * make room inside the aperture. The eviction scan then has to walk
287 * the 448k list before it finds one within range. And now imagine that
288 * it has to search for a new hole between every byte inside the memcpy,
289 * for several simultaneous clients.
290 *
291 * On a full-ppgtt system, if we have run out of available space, there
292 * will be lots and lots of objects in the eviction list! Again,
293 * searching that LRU list may be slow if we are also applying any
294 * range restrictions (e.g. restriction to low 4GiB) and so, for
295 * simplicity and similarilty between different GTT, try the single
296 * random replacement first.
297 */
298 offset = random_offset(start, end,
299 size, alignment ?: I915_GTT_MIN_ALIGNMENT);
300 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
301 if (err != -ENOSPC)
302 return err;
303
304 if (flags & PIN_NOSEARCH)
305 return -ENOSPC;
306
307 /* Randomly selected placement is pinned, do a search */
308 err = i915_gem_evict_something(vm, size, alignment, color,
309 start, end, flags);
310 if (err)
311 return err;
312
313 return drm_mm_insert_node_in_range(&vm->mm, node,
314 size, alignment, color,
315 start, end, DRM_MM_INSERT_EVICT);
316 }
317
318 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
319 #include "selftests/i915_gem_gtt.c"
320 #endif
321