Home | History | Annotate | Line # | Download | only in i915
i915_gem_gtt.c revision 1.4.18.1
      1 /*	$NetBSD: i915_gem_gtt.c,v 1.4.18.1 2019/06/10 22:08:05 christos Exp $	*/
      2 
      3 /*
      4  * Copyright  2010 Daniel Vetter
      5  * Copyright  2011-2014 Intel Corporation
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a
      8  * copy of this software and associated documentation files (the "Software"),
      9  * to deal in the Software without restriction, including without limitation
     10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     11  * and/or sell copies of the Software, and to permit persons to whom the
     12  * Software is furnished to do so, subject to the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the next
     15  * paragraph) shall be included in all copies or substantial portions of the
     16  * Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     23  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     24  * IN THE SOFTWARE.
     25  *
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __KERNEL_RCSID(0, "$NetBSD: i915_gem_gtt.c,v 1.4.18.1 2019/06/10 22:08:05 christos Exp $");
     30 
     31 #include <linux/bitmap.h>
     32 #include <linux/err.h>
     33 #include <linux/seq_file.h>
     34 #include <drm/drmP.h>
     35 #include <drm/i915_drm.h>
     36 #include "i915_drv.h"
     37 #include "i915_vgpu.h"
     38 #include "i915_trace.h"
     39 #include "intel_drv.h"
     40 
     41 #ifdef __NetBSD__
     42 #include <drm/bus_dma_hacks.h>
     43 #include <x86/machdep.h>
     44 #include <x86/pte.h>
     45 #define	_PAGE_PRESENT	PG_V	/* 0x01 PTE is present / valid */
     46 #define	_PAGE_RW	PG_RW	/* 0x02 read/write */
     47 #define	_PAGE_PWT	PG_WT	/* 0x08 write-through */
     48 #define	_PAGE_PCD	PG_N	/* 0x10 page cache disabled / non-cacheable */
     49 #define	_PAGE_PAT	PG_PAT	/* 0x80 page attribute table on PTE */
     50 #endif
     51 
     52 /**
     53  * DOC: Global GTT views
     54  *
     55  * Background and previous state
     56  *
     57  * Historically objects could exists (be bound) in global GTT space only as
     58  * singular instances with a view representing all of the object's backing pages
     59  * in a linear fashion. This view will be called a normal view.
     60  *
     61  * To support multiple views of the same object, where the number of mapped
     62  * pages is not equal to the backing store, or where the layout of the pages
     63  * is not linear, concept of a GGTT view was added.
     64  *
     65  * One example of an alternative view is a stereo display driven by a single
     66  * image. In this case we would have a framebuffer looking like this
     67  * (2x2 pages):
     68  *
     69  *    12
     70  *    34
     71  *
     72  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
     73  * rendering. In contrast, fed to the display engine would be an alternative
     74  * view which could look something like this:
     75  *
     76  *   1212
     77  *   3434
     78  *
     79  * In this example both the size and layout of pages in the alternative view is
     80  * different from the normal view.
     81  *
     82  * Implementation and usage
     83  *
     84  * GGTT views are implemented using VMAs and are distinguished via enum
     85  * i915_ggtt_view_type and struct i915_ggtt_view.
     86  *
     87  * A new flavour of core GEM functions which work with GGTT bound objects were
     88  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
     89  * renaming  in large amounts of code. They take the struct i915_ggtt_view
     90  * parameter encapsulating all metadata required to implement a view.
     91  *
     92  * As a helper for callers which are only interested in the normal view,
     93  * globally const i915_ggtt_view_normal singleton instance exists. All old core
     94  * GEM API functions, the ones not taking the view parameter, are operating on,
     95  * or with the normal GGTT view.
     96  *
     97  * Code wanting to add or use a new GGTT view needs to:
     98  *
     99  * 1. Add a new enum with a suitable name.
    100  * 2. Extend the metadata in the i915_ggtt_view structure if required.
    101  * 3. Add support to i915_get_vma_pages().
    102  *
    103  * New views are required to build a scatter-gather table from within the
    104  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
    105  * exists for the lifetime of an VMA.
    106  *
    107  * Core API is designed to have copy semantics which means that passed in
    108  * struct i915_ggtt_view does not need to be persistent (left around after
    109  * calling the core API functions).
    110  *
    111  */
    112 
    113 static int
    114 i915_get_ggtt_vma_pages(struct i915_vma *vma);
    115 
    116 const struct i915_ggtt_view i915_ggtt_view_normal;
    117 const struct i915_ggtt_view i915_ggtt_view_rotated = {
    118         .type = I915_GGTT_VIEW_ROTATED
    119 };
    120 
    121 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
    122 {
    123 	bool has_aliasing_ppgtt;
    124 	bool has_full_ppgtt;
    125 
    126 	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
    127 	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
    128 
    129 	if (intel_vgpu_active(dev))
    130 		has_full_ppgtt = false; /* emulation is too hard */
    131 
    132 	/*
    133 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
    134 	 * execlists, the sole mechanism available to submit work.
    135 	 */
    136 	if (INTEL_INFO(dev)->gen < 9 &&
    137 	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
    138 		return 0;
    139 
    140 	if (enable_ppgtt == 1)
    141 		return 1;
    142 
    143 	if (enable_ppgtt == 2 && has_full_ppgtt)
    144 		return 2;
    145 
    146 #ifdef CONFIG_INTEL_IOMMU
    147 	/* Disable ppgtt on SNB if VT-d is on. */
    148 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
    149 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
    150 		return 0;
    151 	}
    152 #endif
    153 
    154 	/* Early VLV doesn't have this */
    155 	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
    156 	    dev->pdev->revision < 0xb) {
    157 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
    158 		return 0;
    159 	}
    160 
    161 	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
    162 		return 2;
    163 	else
    164 		return has_aliasing_ppgtt ? 1 : 0;
    165 }
    166 
    167 static int ppgtt_bind_vma(struct i915_vma *vma,
    168 			  enum i915_cache_level cache_level,
    169 			  u32 unused)
    170 {
    171 	u32 pte_flags = 0;
    172 
    173 	/* Currently applicable only to VLV */
    174 	if (vma->obj->gt_ro)
    175 		pte_flags |= PTE_READ_ONLY;
    176 
    177 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
    178 				cache_level, pte_flags);
    179 
    180 	return 0;
    181 }
    182 
    183 static void ppgtt_unbind_vma(struct i915_vma *vma)
    184 {
    185 	vma->vm->clear_range(vma->vm,
    186 			     vma->node.start,
    187 			     vma->obj->base.size,
    188 			     true);
    189 }
    190 
    191 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
    192 				  enum i915_cache_level level,
    193 				  bool valid)
    194 {
    195 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
    196 	pte |= addr;
    197 
    198 	switch (level) {
    199 	case I915_CACHE_NONE:
    200 		pte |= PPAT_UNCACHED_INDEX;
    201 		break;
    202 	case I915_CACHE_WT:
    203 		pte |= PPAT_DISPLAY_ELLC_INDEX;
    204 		break;
    205 	default:
    206 		pte |= PPAT_CACHED_INDEX;
    207 		break;
    208 	}
    209 
    210 	return pte;
    211 }
    212 
    213 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
    214 				  const enum i915_cache_level level)
    215 {
    216 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
    217 	pde |= addr;
    218 	if (level != I915_CACHE_NONE)
    219 		pde |= PPAT_CACHED_PDE_INDEX;
    220 	else
    221 		pde |= PPAT_UNCACHED_INDEX;
    222 	return pde;
    223 }
    224 
    225 #define gen8_pdpe_encode gen8_pde_encode
    226 #define gen8_pml4e_encode gen8_pde_encode
    227 
    228 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
    229 				 enum i915_cache_level level,
    230 				 bool valid, u32 unused)
    231 {
    232 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    233 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
    234 
    235 	switch (level) {
    236 	case I915_CACHE_L3_LLC:
    237 	case I915_CACHE_LLC:
    238 		pte |= GEN6_PTE_CACHE_LLC;
    239 		break;
    240 	case I915_CACHE_NONE:
    241 		pte |= GEN6_PTE_UNCACHED;
    242 		break;
    243 	default:
    244 		MISSING_CASE(level);
    245 	}
    246 
    247 	return pte;
    248 }
    249 
    250 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
    251 				 enum i915_cache_level level,
    252 				 bool valid, u32 unused)
    253 {
    254 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    255 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
    256 
    257 	switch (level) {
    258 	case I915_CACHE_L3_LLC:
    259 		pte |= GEN7_PTE_CACHE_L3_LLC;
    260 		break;
    261 	case I915_CACHE_LLC:
    262 		pte |= GEN6_PTE_CACHE_LLC;
    263 		break;
    264 	case I915_CACHE_NONE:
    265 		pte |= GEN6_PTE_UNCACHED;
    266 		break;
    267 	default:
    268 		MISSING_CASE(level);
    269 	}
    270 
    271 	return pte;
    272 }
    273 
    274 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
    275 				 enum i915_cache_level level,
    276 				 bool valid, u32 flags)
    277 {
    278 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    279 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
    280 
    281 	if (!(flags & PTE_READ_ONLY))
    282 		pte |= BYT_PTE_WRITEABLE;
    283 
    284 	if (level != I915_CACHE_NONE)
    285 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
    286 
    287 	return pte;
    288 }
    289 
    290 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
    291 				 enum i915_cache_level level,
    292 				 bool valid, u32 unused)
    293 {
    294 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    295 	pte |= HSW_PTE_ADDR_ENCODE(addr);
    296 
    297 	if (level != I915_CACHE_NONE)
    298 		pte |= HSW_WB_LLC_AGE3;
    299 
    300 	return pte;
    301 }
    302 
    303 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
    304 				  enum i915_cache_level level,
    305 				  bool valid, u32 unused)
    306 {
    307 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
    308 	pte |= HSW_PTE_ADDR_ENCODE(addr);
    309 
    310 	switch (level) {
    311 	case I915_CACHE_NONE:
    312 		break;
    313 	case I915_CACHE_WT:
    314 		pte |= HSW_WT_ELLC_LLC_AGE3;
    315 		break;
    316 	default:
    317 		pte |= HSW_WB_ELLC_LLC_AGE3;
    318 		break;
    319 	}
    320 
    321 	return pte;
    322 }
    323 
    324 static void *kmap_page_dma(struct i915_page_dma *);
    325 static void kunmap_page_dma(struct drm_device *, void *);
    326 
    327 static int __setup_page_dma(struct drm_device *dev,
    328 			    struct i915_page_dma *p, gfp_t flags)
    329 {
    330 #ifdef __NetBSD__
    331 	int busdmaflags = 0;
    332 	int error;
    333 	int nseg = 1;
    334 
    335 	if (flags & __GFP_WAIT)
    336 		busdmaflags |= BUS_DMA_WAITOK;
    337 	else
    338 		busdmaflags |= BUS_DMA_NOWAIT;
    339 
    340 	error = bus_dmamem_alloc(dev->dmat, PAGE_SIZE, PAGE_SIZE, 0, &p->seg,
    341 	    nseg, &nseg, busdmaflags);
    342 	if (error) {
    343 fail0:		p->map = NULL;
    344 		return -error;	/* XXX errno NetBSD->Linux */
    345 	}
    346 	KASSERT(nseg == 1);
    347 	error = bus_dmamap_create(dev->dmat, PAGE_SIZE, 1, PAGE_SIZE, 0,
    348 	    busdmaflags, &p->map);
    349 	if (error) {
    350 fail1:		bus_dmamem_free(dev->dmat, &p->seg, 1);
    351 		goto fail0;
    352 	}
    353 	error = bus_dmamap_load_raw(dev->dmat, p->map, &p->seg, 1, PAGE_SIZE,
    354 	    busdmaflags);
    355 	if (error) {
    356 fail2: __unused
    357 		bus_dmamap_destroy(dev->dmat, p->map);
    358 		goto fail1;
    359 	}
    360 
    361 	if (flags & __GFP_ZERO) {
    362 		void *va = kmap_page_dma(p);
    363 		memset(va, 0, PAGE_SIZE);
    364 		kunmap_page_dma(dev, va);
    365 	}
    366 #else
    367 	struct device *device = &dev->pdev->dev;
    368 
    369 	p->page = alloc_page(flags);
    370 	if (!p->page)
    371 		return -ENOMEM;
    372 
    373 	p->daddr = dma_map_page(device,
    374 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
    375 
    376 	if (dma_mapping_error(device, p->daddr)) {
    377 		__free_page(p->page);
    378 		return -EINVAL;
    379 	}
    380 #endif
    381 
    382 	return 0;
    383 }
    384 
    385 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
    386 {
    387 	return __setup_page_dma(dev, p, GFP_KERNEL);
    388 }
    389 
    390 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
    391 {
    392 #ifdef __NetBSD__
    393 	if (WARN_ON(!p->map))
    394 		return;
    395 
    396 	bus_dmamap_unload(dev->dmat, p->map);
    397 	bus_dmamap_destroy(dev->dmat, p->map);
    398 	bus_dmamem_free(dev->dmat, &p->seg, 1);
    399 	p->map = NULL;
    400 #else
    401 	if (WARN_ON(!p->page))
    402 		return;
    403 
    404 	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
    405 	__free_page(p->page);
    406 	memset(p, 0, sizeof(*p));
    407 #endif
    408 }
    409 
    410 static void *kmap_page_dma(struct i915_page_dma *p)
    411 {
    412 #ifdef __NetBSD__
    413 	return kmap_atomic(container_of(PHYS_TO_VM_PAGE(p->seg.ds_addr),
    414 		struct page, p_vmp));
    415 #else
    416 	return kmap_atomic(p->page);
    417 #endif
    418 }
    419 
    420 /* We use the flushing unmap only with ppgtt structures:
    421  * page directories, page tables and scratch pages.
    422  */
    423 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
    424 {
    425 	/* There are only few exceptions for gen >=6. chv and bxt.
    426 	 * And we are not sure about the latter so play safe for now.
    427 	 */
    428 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
    429 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
    430 
    431 	kunmap_atomic(vaddr);
    432 }
    433 
    434 #define kmap_px(px) kmap_page_dma(px_base(px))
    435 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
    436 
    437 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
    438 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
    439 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
    440 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
    441 
    442 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
    443 			  const uint64_t val)
    444 {
    445 	int i;
    446 	uint64_t * const vaddr = kmap_page_dma(p);
    447 
    448 	for (i = 0; i < 512; i++)
    449 		vaddr[i] = val;
    450 
    451 	kunmap_page_dma(dev, vaddr);
    452 }
    453 
    454 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
    455 			     const uint32_t val32)
    456 {
    457 	uint64_t v = val32;
    458 
    459 	v = v << 32 | val32;
    460 
    461 	fill_page_dma(dev, p, v);
    462 }
    463 
    464 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
    465 {
    466 	struct i915_page_scratch *sp;
    467 	int ret;
    468 
    469 	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
    470 	if (sp == NULL)
    471 		return ERR_PTR(-ENOMEM);
    472 
    473 	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
    474 	if (ret) {
    475 		kfree(sp);
    476 		return ERR_PTR(ret);
    477 	}
    478 
    479 #ifndef __NetBSD__		/* XXX ??? */
    480 	set_pages_uc(px_page(sp), 1);
    481 #endif
    482 
    483 	return sp;
    484 }
    485 
    486 static void free_scratch_page(struct drm_device *dev,
    487 			      struct i915_page_scratch *sp)
    488 {
    489 #ifndef __NetBSD__		/* XXX ??? */
    490 	set_pages_wb(px_page(sp), 1);
    491 #endif
    492 
    493 	cleanup_px(dev, sp);
    494 	kfree(sp);
    495 }
    496 
    497 static struct i915_page_table *alloc_pt(struct drm_device *dev)
    498 {
    499 	struct i915_page_table *pt;
    500 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
    501 		GEN8_PTES : GEN6_PTES;
    502 	int ret = -ENOMEM;
    503 
    504 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
    505 	if (!pt)
    506 		return ERR_PTR(-ENOMEM);
    507 
    508 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
    509 				GFP_KERNEL);
    510 
    511 	if (!pt->used_ptes)
    512 		goto fail_bitmap;
    513 
    514 	ret = setup_px(dev, pt);
    515 	if (ret)
    516 		goto fail_page_m;
    517 
    518 	return pt;
    519 
    520 fail_page_m:
    521 	kfree(pt->used_ptes);
    522 fail_bitmap:
    523 	kfree(pt);
    524 
    525 	return ERR_PTR(ret);
    526 }
    527 
    528 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
    529 {
    530 	cleanup_px(dev, pt);
    531 	kfree(pt->used_ptes);
    532 	kfree(pt);
    533 }
    534 
    535 static void gen8_initialize_pt(struct i915_address_space *vm,
    536 			       struct i915_page_table *pt)
    537 {
    538 	gen8_pte_t scratch_pte;
    539 
    540 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
    541 				      I915_CACHE_LLC, true);
    542 
    543 	fill_px(vm->dev, pt, scratch_pte);
    544 }
    545 
    546 static void gen6_initialize_pt(struct i915_address_space *vm,
    547 			       struct i915_page_table *pt)
    548 {
    549 	gen6_pte_t scratch_pte;
    550 
    551 	WARN_ON(px_dma(vm->scratch_page) == 0);
    552 
    553 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
    554 				     I915_CACHE_LLC, true, 0);
    555 
    556 	fill32_px(vm->dev, pt, scratch_pte);
    557 }
    558 
    559 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
    560 {
    561 	struct i915_page_directory *pd;
    562 	int ret = -ENOMEM;
    563 
    564 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
    565 	if (!pd)
    566 		return ERR_PTR(-ENOMEM);
    567 
    568 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
    569 				sizeof(*pd->used_pdes), GFP_KERNEL);
    570 	if (!pd->used_pdes)
    571 		goto fail_bitmap;
    572 
    573 	ret = setup_px(dev, pd);
    574 	if (ret)
    575 		goto fail_page_m;
    576 
    577 	return pd;
    578 
    579 fail_page_m:
    580 	kfree(pd->used_pdes);
    581 fail_bitmap:
    582 	kfree(pd);
    583 
    584 	return ERR_PTR(ret);
    585 }
    586 
    587 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
    588 {
    589 	if (px_page(pd)) {
    590 		cleanup_px(dev, pd);
    591 		kfree(pd->used_pdes);
    592 		kfree(pd);
    593 	}
    594 }
    595 
    596 static void gen8_initialize_pd(struct i915_address_space *vm,
    597 			       struct i915_page_directory *pd)
    598 {
    599 	gen8_pde_t scratch_pde;
    600 
    601 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
    602 
    603 	fill_px(vm->dev, pd, scratch_pde);
    604 }
    605 
    606 static int __pdp_init(struct drm_device *dev,
    607 		      struct i915_page_directory_pointer *pdp)
    608 {
    609 	size_t pdpes = I915_PDPES_PER_PDP(dev);
    610 
    611 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
    612 				  sizeof(unsigned long),
    613 				  GFP_KERNEL);
    614 	if (!pdp->used_pdpes)
    615 		return -ENOMEM;
    616 
    617 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
    618 				      GFP_KERNEL);
    619 	if (!pdp->page_directory) {
    620 		kfree(pdp->used_pdpes);
    621 		/* the PDP might be the statically allocated top level. Keep it
    622 		 * as clean as possible */
    623 		pdp->used_pdpes = NULL;
    624 		return -ENOMEM;
    625 	}
    626 
    627 	return 0;
    628 }
    629 
    630 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
    631 {
    632 	kfree(pdp->used_pdpes);
    633 	kfree(pdp->page_directory);
    634 	pdp->page_directory = NULL;
    635 }
    636 
    637 static struct
    638 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
    639 {
    640 	struct i915_page_directory_pointer *pdp;
    641 	int ret = -ENOMEM;
    642 
    643 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
    644 
    645 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
    646 	if (!pdp)
    647 		return ERR_PTR(-ENOMEM);
    648 
    649 	ret = __pdp_init(dev, pdp);
    650 	if (ret)
    651 		goto fail_bitmap;
    652 
    653 	ret = setup_px(dev, pdp);
    654 	if (ret)
    655 		goto fail_page_m;
    656 
    657 	return pdp;
    658 
    659 fail_page_m:
    660 	__pdp_fini(pdp);
    661 fail_bitmap:
    662 	kfree(pdp);
    663 
    664 	return ERR_PTR(ret);
    665 }
    666 
    667 static void free_pdp(struct drm_device *dev,
    668 		     struct i915_page_directory_pointer *pdp)
    669 {
    670 	__pdp_fini(pdp);
    671 	if (USES_FULL_48BIT_PPGTT(dev)) {
    672 		cleanup_px(dev, pdp);
    673 		kfree(pdp);
    674 	}
    675 }
    676 
    677 static void gen8_initialize_pdp(struct i915_address_space *vm,
    678 				struct i915_page_directory_pointer *pdp)
    679 {
    680 	gen8_ppgtt_pdpe_t scratch_pdpe;
    681 
    682 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
    683 
    684 	fill_px(vm->dev, pdp, scratch_pdpe);
    685 }
    686 
    687 static void gen8_initialize_pml4(struct i915_address_space *vm,
    688 				 struct i915_pml4 *pml4)
    689 {
    690 	gen8_ppgtt_pml4e_t scratch_pml4e;
    691 
    692 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
    693 					  I915_CACHE_LLC);
    694 
    695 	fill_px(vm->dev, pml4, scratch_pml4e);
    696 }
    697 
    698 static void
    699 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
    700 			  struct i915_page_directory_pointer *pdp,
    701 			  struct i915_page_directory *pd,
    702 			  int index)
    703 {
    704 	gen8_ppgtt_pdpe_t *page_directorypo;
    705 
    706 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
    707 		return;
    708 
    709 	page_directorypo = kmap_px(pdp);
    710 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
    711 	kunmap_px(ppgtt, page_directorypo);
    712 }
    713 
    714 static void
    715 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
    716 				  struct i915_pml4 *pml4,
    717 				  struct i915_page_directory_pointer *pdp,
    718 				  int index)
    719 {
    720 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
    721 
    722 	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
    723 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
    724 	kunmap_px(ppgtt, pagemap);
    725 }
    726 
    727 /* Broadwell Page Directory Pointer Descriptors */
    728 static int gen8_write_pdp(struct drm_i915_gem_request *req,
    729 			  unsigned entry,
    730 			  dma_addr_t addr)
    731 {
    732 	struct intel_engine_cs *ring = req->ring;
    733 	int ret;
    734 
    735 	BUG_ON(entry >= 4);
    736 
    737 	ret = intel_ring_begin(req, 6);
    738 	if (ret)
    739 		return ret;
    740 
    741 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
    742 	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
    743 	intel_ring_emit(ring, upper_32_bits(addr));
    744 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
    745 	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
    746 	intel_ring_emit(ring, lower_32_bits(addr));
    747 	intel_ring_advance(ring);
    748 
    749 	return 0;
    750 }
    751 
    752 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
    753 				 struct drm_i915_gem_request *req)
    754 {
    755 	int i, ret;
    756 
    757 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
    758 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
    759 
    760 		ret = gen8_write_pdp(req, i, pd_daddr);
    761 		if (ret)
    762 			return ret;
    763 	}
    764 
    765 	return 0;
    766 }
    767 
    768 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
    769 			      struct drm_i915_gem_request *req)
    770 {
    771 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
    772 }
    773 
    774 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
    775 				       struct i915_page_directory_pointer *pdp,
    776 				       uint64_t start,
    777 				       uint64_t length,
    778 				       gen8_pte_t scratch_pte)
    779 {
    780 	struct i915_hw_ppgtt *ppgtt =
    781 		container_of(vm, struct i915_hw_ppgtt, base);
    782 	gen8_pte_t *pt_vaddr;
    783 	unsigned pdpe = gen8_pdpe_index(start);
    784 	unsigned pde = gen8_pde_index(start);
    785 	unsigned pte = gen8_pte_index(start);
    786 	unsigned num_entries = length >> PAGE_SHIFT;
    787 	unsigned last_pte, i;
    788 
    789 	if (WARN_ON(!pdp))
    790 		return;
    791 
    792 	while (num_entries) {
    793 		struct i915_page_directory *pd;
    794 		struct i915_page_table *pt;
    795 
    796 		if (WARN_ON(!pdp->page_directory[pdpe]))
    797 			break;
    798 
    799 		pd = pdp->page_directory[pdpe];
    800 
    801 		if (WARN_ON(!pd->page_table[pde]))
    802 			break;
    803 
    804 		pt = pd->page_table[pde];
    805 
    806 		if (WARN_ON(!px_page(pt)))
    807 			break;
    808 
    809 		last_pte = pte + num_entries;
    810 		if (last_pte > GEN8_PTES)
    811 			last_pte = GEN8_PTES;
    812 
    813 		pt_vaddr = kmap_px(pt);
    814 
    815 		for (i = pte; i < last_pte; i++) {
    816 			pt_vaddr[i] = scratch_pte;
    817 			num_entries--;
    818 		}
    819 
    820 		kunmap_px(ppgtt, pt_vaddr);
    821 
    822 		pte = 0;
    823 		if (++pde == I915_PDES) {
    824 			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
    825 				break;
    826 			pde = 0;
    827 		}
    828 	}
    829 }
    830 
    831 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
    832 				   uint64_t start,
    833 				   uint64_t length,
    834 				   bool use_scratch)
    835 {
    836 	struct i915_hw_ppgtt *ppgtt =
    837 		container_of(vm, struct i915_hw_ppgtt, base);
    838 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
    839 						 I915_CACHE_LLC, use_scratch);
    840 
    841 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
    842 		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
    843 					   scratch_pte);
    844 	} else {
    845 		uint64_t templ4, pml4e;
    846 		struct i915_page_directory_pointer *pdp;
    847 
    848 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
    849 			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
    850 						   scratch_pte);
    851 		}
    852 	}
    853 }
    854 
    855 #ifdef __NetBSD__
    856 static void
    857 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
    858     struct i915_page_directory_pointer *pdp, bus_dmamap_t dmamap,
    859     unsigned *segp, uint64_t start, enum i915_cache_level cache_level)
    860 {
    861 	struct i915_hw_ppgtt *ppgtt =
    862 	    container_of(vm, struct i915_hw_ppgtt, base);
    863 	gen8_pte_t *pt_vaddr;
    864 	unsigned pdpe = gen8_pdpe_index(start);
    865 	unsigned pde = gen8_pde_index(start);
    866 	unsigned pte = gen8_pte_index(start);
    867 
    868 	pt_vaddr = NULL;
    869 	for (; *segp < dmamap->dm_nsegs; (*segp)++) {
    870 		KASSERT(dmamap->dm_segs[*segp].ds_len == PAGE_SIZE);
    871 		if (pt_vaddr == NULL) {
    872 			struct i915_page_directory *pd =
    873 			    pdp->page_directory[pdpe];
    874 			struct i915_page_table *pt = pd->page_table[pde];
    875 			pt_vaddr = kmap_px(pt);
    876 		}
    877 		pt_vaddr[pte] = gen8_pte_encode(dmamap->dm_segs[*segp].ds_addr,
    878 		    cache_level, true);
    879 		if (++pte == GEN8_PTES) {
    880 			kunmap_px(ppgtt, pt_vaddr);
    881 			pt_vaddr = NULL;
    882 			if (++pde == I915_PDES) {
    883 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
    884 					break;
    885 				pde = 0;
    886 			}
    887 			pte = 0;
    888 		}
    889 	}
    890 	if (pt_vaddr)
    891 		kunmap_px(ppgtt, pt_vaddr);
    892 }
    893 #else
    894 static void
    895 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
    896 			      struct i915_page_directory_pointer *pdp,
    897 			      struct sg_page_iter *sg_iter,
    898 			      uint64_t start,
    899 			      enum i915_cache_level cache_level)
    900 {
    901 	struct i915_hw_ppgtt *ppgtt =
    902 		container_of(vm, struct i915_hw_ppgtt, base);
    903 	gen8_pte_t *pt_vaddr;
    904 	unsigned pdpe = gen8_pdpe_index(start);
    905 	unsigned pde = gen8_pde_index(start);
    906 	unsigned pte = gen8_pte_index(start);
    907 
    908 	pt_vaddr = NULL;
    909 
    910 	while (__sg_page_iter_next(sg_iter)) {
    911 		if (pt_vaddr == NULL) {
    912 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
    913 			struct i915_page_table *pt = pd->page_table[pde];
    914 			pt_vaddr = kmap_px(pt);
    915 		}
    916 
    917 		pt_vaddr[pte] =
    918 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
    919 					cache_level, true);
    920 		if (++pte == GEN8_PTES) {
    921 			kunmap_px(ppgtt, pt_vaddr);
    922 			pt_vaddr = NULL;
    923 			if (++pde == I915_PDES) {
    924 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
    925 					break;
    926 				pde = 0;
    927 			}
    928 			pte = 0;
    929 		}
    930 	}
    931 
    932 	if (pt_vaddr)
    933 		kunmap_px(ppgtt, pt_vaddr);
    934 }
    935 #endif
    936 
    937 #ifdef __NetBSD__
    938 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
    939     bus_dmamap_t dmamap, uint64_t start, enum i915_cache_level cache_level,
    940     u32 unused)
    941 {
    942 	struct i915_hw_ppgtt *ppgtt =
    943 	    container_of(vm, struct i915_hw_ppgtt, base);
    944 	unsigned seg = 0;
    945 
    946 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
    947 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, dmamap, &seg,
    948 		    start, cache_level);
    949 	} else {
    950 		struct i915_page_directory_pointer *pdp;
    951 		uint64_t templ4, pml4e;
    952 		uint64_t length = dmamap->dm_mapsize;
    953 
    954 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4,
    955 		    pml4e) {
    956 			gen8_ppgtt_insert_pte_entries(vm, pdp, dmamap, &seg,
    957 			    start, cache_level);
    958 		}
    959 	}
    960 }
    961 #else
    962 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
    963 				      struct sg_table *pages,
    964 				      uint64_t start,
    965 				      enum i915_cache_level cache_level,
    966 				      u32 unused)
    967 {
    968 	struct i915_hw_ppgtt *ppgtt =
    969 		container_of(vm, struct i915_hw_ppgtt, base);
    970 	struct sg_page_iter sg_iter;
    971 
    972 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
    973 
    974 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
    975 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
    976 					      cache_level);
    977 	} else {
    978 		struct i915_page_directory_pointer *pdp;
    979 		uint64_t templ4, pml4e;
    980 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
    981 
    982 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
    983 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
    984 						      start, cache_level);
    985 		}
    986 	}
    987 }
    988 #endif
    989 
    990 static void gen8_free_page_tables(struct drm_device *dev,
    991 				  struct i915_page_directory *pd)
    992 {
    993 	int i;
    994 
    995 	if (!px_page(pd))
    996 		return;
    997 
    998 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
    999 		if (WARN_ON(!pd->page_table[i]))
   1000 			continue;
   1001 
   1002 		free_pt(dev, pd->page_table[i]);
   1003 		pd->page_table[i] = NULL;
   1004 	}
   1005 }
   1006 
   1007 static int gen8_init_scratch(struct i915_address_space *vm)
   1008 {
   1009 	struct drm_device *dev = vm->dev;
   1010 
   1011 	vm->scratch_page = alloc_scratch_page(dev);
   1012 	if (IS_ERR(vm->scratch_page))
   1013 		return PTR_ERR(vm->scratch_page);
   1014 
   1015 	vm->scratch_pt = alloc_pt(dev);
   1016 	if (IS_ERR(vm->scratch_pt)) {
   1017 		free_scratch_page(dev, vm->scratch_page);
   1018 		return PTR_ERR(vm->scratch_pt);
   1019 	}
   1020 
   1021 	vm->scratch_pd = alloc_pd(dev);
   1022 	if (IS_ERR(vm->scratch_pd)) {
   1023 		free_pt(dev, vm->scratch_pt);
   1024 		free_scratch_page(dev, vm->scratch_page);
   1025 		return PTR_ERR(vm->scratch_pd);
   1026 	}
   1027 
   1028 	if (USES_FULL_48BIT_PPGTT(dev)) {
   1029 		vm->scratch_pdp = alloc_pdp(dev);
   1030 		if (IS_ERR(vm->scratch_pdp)) {
   1031 			free_pd(dev, vm->scratch_pd);
   1032 			free_pt(dev, vm->scratch_pt);
   1033 			free_scratch_page(dev, vm->scratch_page);
   1034 			return PTR_ERR(vm->scratch_pdp);
   1035 		}
   1036 	}
   1037 
   1038 	gen8_initialize_pt(vm, vm->scratch_pt);
   1039 	gen8_initialize_pd(vm, vm->scratch_pd);
   1040 	if (USES_FULL_48BIT_PPGTT(dev))
   1041 		gen8_initialize_pdp(vm, vm->scratch_pdp);
   1042 
   1043 	return 0;
   1044 }
   1045 
   1046 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
   1047 {
   1048 	enum vgt_g2v_type msg;
   1049 	struct drm_device *dev = ppgtt->base.dev;
   1050 	struct drm_i915_private *dev_priv = dev->dev_private;
   1051 	unsigned int offset = vgtif_reg(pdp0_lo);
   1052 	int i;
   1053 
   1054 	if (USES_FULL_48BIT_PPGTT(dev)) {
   1055 		u64 daddr = px_dma(&ppgtt->pml4);
   1056 
   1057 		I915_WRITE(offset, lower_32_bits(daddr));
   1058 		I915_WRITE(offset + 4, upper_32_bits(daddr));
   1059 
   1060 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
   1061 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
   1062 	} else {
   1063 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
   1064 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
   1065 
   1066 			I915_WRITE(offset, lower_32_bits(daddr));
   1067 			I915_WRITE(offset + 4, upper_32_bits(daddr));
   1068 
   1069 			offset += 8;
   1070 		}
   1071 
   1072 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
   1073 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
   1074 	}
   1075 
   1076 	I915_WRITE(vgtif_reg(g2v_notify), msg);
   1077 
   1078 	return 0;
   1079 }
   1080 
   1081 static void gen8_free_scratch(struct i915_address_space *vm)
   1082 {
   1083 	struct drm_device *dev = vm->dev;
   1084 
   1085 	if (USES_FULL_48BIT_PPGTT(dev))
   1086 		free_pdp(dev, vm->scratch_pdp);
   1087 	free_pd(dev, vm->scratch_pd);
   1088 	free_pt(dev, vm->scratch_pt);
   1089 	free_scratch_page(dev, vm->scratch_page);
   1090 }
   1091 
   1092 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
   1093 				    struct i915_page_directory_pointer *pdp)
   1094 {
   1095 	int i;
   1096 
   1097 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
   1098 		if (WARN_ON(!pdp->page_directory[i]))
   1099 			continue;
   1100 
   1101 		gen8_free_page_tables(dev, pdp->page_directory[i]);
   1102 		free_pd(dev, pdp->page_directory[i]);
   1103 	}
   1104 
   1105 	free_pdp(dev, pdp);
   1106 }
   1107 
   1108 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
   1109 {
   1110 	int i;
   1111 
   1112 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
   1113 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
   1114 			continue;
   1115 
   1116 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
   1117 	}
   1118 
   1119 	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
   1120 }
   1121 
   1122 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
   1123 {
   1124 	struct i915_hw_ppgtt *ppgtt =
   1125 		container_of(vm, struct i915_hw_ppgtt, base);
   1126 
   1127 	if (intel_vgpu_active(vm->dev))
   1128 		gen8_ppgtt_notify_vgt(ppgtt, false);
   1129 
   1130 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
   1131 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
   1132 	else
   1133 		gen8_ppgtt_cleanup_4lvl(ppgtt);
   1134 
   1135 	gen8_free_scratch(vm);
   1136 }
   1137 
   1138 /**
   1139  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
   1140  * @vm:	Master vm structure.
   1141  * @pd:	Page directory for this address range.
   1142  * @start:	Starting virtual address to begin allocations.
   1143  * @length:	Size of the allocations.
   1144  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
   1145  *		caller to free on error.
   1146  *
   1147  * Allocate the required number of page tables. Extremely similar to
   1148  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
   1149  * the page directory boundary (instead of the page directory pointer). That
   1150  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
   1151  * possible, and likely that the caller will need to use multiple calls of this
   1152  * function to achieve the appropriate allocation.
   1153  *
   1154  * Return: 0 if success; negative error code otherwise.
   1155  */
   1156 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
   1157 				     struct i915_page_directory *pd,
   1158 				     uint64_t start,
   1159 				     uint64_t length,
   1160 				     unsigned long *new_pts)
   1161 {
   1162 	struct drm_device *dev = vm->dev;
   1163 	struct i915_page_table *pt;
   1164 	uint64_t temp;
   1165 	uint32_t pde;
   1166 
   1167 	gen8_for_each_pde(pt, pd, start, length, temp, pde) {
   1168 		/* Don't reallocate page tables */
   1169 		if (test_bit(pde, pd->used_pdes)) {
   1170 			/* Scratch is never allocated this way */
   1171 			WARN_ON(pt == vm->scratch_pt);
   1172 			continue;
   1173 		}
   1174 
   1175 		pt = alloc_pt(dev);
   1176 		if (IS_ERR(pt))
   1177 			goto unwind_out;
   1178 
   1179 		gen8_initialize_pt(vm, pt);
   1180 		pd->page_table[pde] = pt;
   1181 		__set_bit(pde, new_pts);
   1182 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
   1183 	}
   1184 
   1185 	return 0;
   1186 
   1187 unwind_out:
   1188 	for_each_set_bit(pde, new_pts, I915_PDES)
   1189 		free_pt(dev, pd->page_table[pde]);
   1190 
   1191 	return -ENOMEM;
   1192 }
   1193 
   1194 /**
   1195  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
   1196  * @vm:	Master vm structure.
   1197  * @pdp:	Page directory pointer for this address range.
   1198  * @start:	Starting virtual address to begin allocations.
   1199  * @length:	Size of the allocations.
   1200  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
   1201  *		caller to free on error.
   1202  *
   1203  * Allocate the required number of page directories starting at the pde index of
   1204  * @start, and ending at the pde index @start + @length. This function will skip
   1205  * over already allocated page directories within the range, and only allocate
   1206  * new ones, setting the appropriate pointer within the pdp as well as the
   1207  * correct position in the bitmap @new_pds.
   1208  *
   1209  * The function will only allocate the pages within the range for a give page
   1210  * directory pointer. In other words, if @start + @length straddles a virtually
   1211  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
   1212  * required by the caller, This is not currently possible, and the BUG in the
   1213  * code will prevent it.
   1214  *
   1215  * Return: 0 if success; negative error code otherwise.
   1216  */
   1217 static int
   1218 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
   1219 				  struct i915_page_directory_pointer *pdp,
   1220 				  uint64_t start,
   1221 				  uint64_t length,
   1222 				  unsigned long *new_pds)
   1223 {
   1224 	struct drm_device *dev = vm->dev;
   1225 	struct i915_page_directory *pd;
   1226 	uint64_t temp;
   1227 	uint32_t pdpe;
   1228 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
   1229 
   1230 	WARN_ON(!bitmap_empty(new_pds, pdpes));
   1231 
   1232 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
   1233 		if (test_bit(pdpe, pdp->used_pdpes))
   1234 			continue;
   1235 
   1236 		pd = alloc_pd(dev);
   1237 		if (IS_ERR(pd))
   1238 			goto unwind_out;
   1239 
   1240 		gen8_initialize_pd(vm, pd);
   1241 		pdp->page_directory[pdpe] = pd;
   1242 		__set_bit(pdpe, new_pds);
   1243 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
   1244 	}
   1245 
   1246 	return 0;
   1247 
   1248 unwind_out:
   1249 	for_each_set_bit(pdpe, new_pds, pdpes)
   1250 		free_pd(dev, pdp->page_directory[pdpe]);
   1251 
   1252 	return -ENOMEM;
   1253 }
   1254 
   1255 /**
   1256  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
   1257  * @vm:	Master vm structure.
   1258  * @pml4:	Page map level 4 for this address range.
   1259  * @start:	Starting virtual address to begin allocations.
   1260  * @length:	Size of the allocations.
   1261  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
   1262  *		caller to free on error.
   1263  *
   1264  * Allocate the required number of page directory pointers. Extremely similar to
   1265  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
   1266  * The main difference is here we are limited by the pml4 boundary (instead of
   1267  * the page directory pointer).
   1268  *
   1269  * Return: 0 if success; negative error code otherwise.
   1270  */
   1271 static int
   1272 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
   1273 				  struct i915_pml4 *pml4,
   1274 				  uint64_t start,
   1275 				  uint64_t length,
   1276 				  unsigned long *new_pdps)
   1277 {
   1278 	struct drm_device *dev = vm->dev;
   1279 	struct i915_page_directory_pointer *pdp;
   1280 	uint64_t temp;
   1281 	uint32_t pml4e;
   1282 
   1283 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
   1284 
   1285 	gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
   1286 		if (!test_bit(pml4e, pml4->used_pml4es)) {
   1287 			pdp = alloc_pdp(dev);
   1288 			if (IS_ERR(pdp))
   1289 				goto unwind_out;
   1290 
   1291 			gen8_initialize_pdp(vm, pdp);
   1292 			pml4->pdps[pml4e] = pdp;
   1293 			__set_bit(pml4e, new_pdps);
   1294 			trace_i915_page_directory_pointer_entry_alloc(vm,
   1295 								      pml4e,
   1296 								      start,
   1297 								      GEN8_PML4E_SHIFT);
   1298 		}
   1299 	}
   1300 
   1301 	return 0;
   1302 
   1303 unwind_out:
   1304 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
   1305 		free_pdp(dev, pml4->pdps[pml4e]);
   1306 
   1307 	return -ENOMEM;
   1308 }
   1309 
   1310 static void
   1311 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
   1312 {
   1313 	kfree(new_pts);
   1314 	kfree(new_pds);
   1315 }
   1316 
   1317 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
   1318  * of these are based on the number of PDPEs in the system.
   1319  */
   1320 static
   1321 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
   1322 					 unsigned long **new_pts,
   1323 					 uint32_t pdpes)
   1324 {
   1325 	unsigned long *pds;
   1326 	unsigned long *pts;
   1327 
   1328 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
   1329 	if (!pds)
   1330 		return -ENOMEM;
   1331 
   1332 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
   1333 		      GFP_TEMPORARY);
   1334 	if (!pts)
   1335 		goto err_out;
   1336 
   1337 	*new_pds = pds;
   1338 	*new_pts = pts;
   1339 
   1340 	return 0;
   1341 
   1342 err_out:
   1343 	free_gen8_temp_bitmaps(pds, pts);
   1344 	return -ENOMEM;
   1345 }
   1346 
   1347 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
   1348  * the page table structures, we mark them dirty so that
   1349  * context switching/execlist queuing code takes extra steps
   1350  * to ensure that tlbs are flushed.
   1351  */
   1352 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
   1353 {
   1354 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
   1355 }
   1356 
   1357 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
   1358 				    struct i915_page_directory_pointer *pdp,
   1359 				    uint64_t start,
   1360 				    uint64_t length)
   1361 {
   1362 	struct i915_hw_ppgtt *ppgtt =
   1363 		container_of(vm, struct i915_hw_ppgtt, base);
   1364 	unsigned long *new_page_dirs, *new_page_tables;
   1365 	struct drm_device *dev = vm->dev;
   1366 	struct i915_page_directory *pd;
   1367 	const uint64_t orig_start = start;
   1368 	const uint64_t orig_length = length;
   1369 	uint64_t temp;
   1370 	uint32_t pdpe;
   1371 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
   1372 	int ret;
   1373 
   1374 	/* Wrap is never okay since we can only represent 48b, and we don't
   1375 	 * actually use the other side of the canonical address space.
   1376 	 */
   1377 	if (WARN_ON(start + length < start))
   1378 		return -ENODEV;
   1379 
   1380 	if (WARN_ON(start + length > vm->total))
   1381 		return -ENODEV;
   1382 
   1383 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
   1384 	if (ret)
   1385 		return ret;
   1386 
   1387 	/* Do the allocations first so we can easily bail out */
   1388 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
   1389 						new_page_dirs);
   1390 	if (ret) {
   1391 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
   1392 		return ret;
   1393 	}
   1394 
   1395 	/* For every page directory referenced, allocate page tables */
   1396 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
   1397 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
   1398 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
   1399 		if (ret)
   1400 			goto err_out;
   1401 	}
   1402 
   1403 	start = orig_start;
   1404 	length = orig_length;
   1405 
   1406 	/* Allocations have completed successfully, so set the bitmaps, and do
   1407 	 * the mappings. */
   1408 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
   1409 		gen8_pde_t *const page_directory = kmap_px(pd);
   1410 		struct i915_page_table *pt;
   1411 		uint64_t pd_len = length;
   1412 		uint64_t pd_start = start;
   1413 		uint32_t pde;
   1414 
   1415 		/* Every pd should be allocated, we just did that above. */
   1416 		WARN_ON(!pd);
   1417 
   1418 		gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
   1419 			/* Same reasoning as pd */
   1420 			WARN_ON(!pt);
   1421 			WARN_ON(!pd_len);
   1422 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
   1423 
   1424 			/* Set our used ptes within the page table */
   1425 			bitmap_set(pt->used_ptes,
   1426 				   gen8_pte_index(pd_start),
   1427 				   gen8_pte_count(pd_start, pd_len));
   1428 
   1429 			/* Our pde is now pointing to the pagetable, pt */
   1430 			__set_bit(pde, pd->used_pdes);
   1431 
   1432 			/* Map the PDE to the page table */
   1433 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
   1434 							      I915_CACHE_LLC);
   1435 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
   1436 							gen8_pte_index(start),
   1437 							gen8_pte_count(start, length),
   1438 							GEN8_PTES);
   1439 
   1440 			/* NB: We haven't yet mapped ptes to pages. At this
   1441 			 * point we're still relying on insert_entries() */
   1442 		}
   1443 
   1444 		kunmap_px(ppgtt, page_directory);
   1445 		__set_bit(pdpe, pdp->used_pdpes);
   1446 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
   1447 	}
   1448 
   1449 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
   1450 	mark_tlbs_dirty(ppgtt);
   1451 	return 0;
   1452 
   1453 err_out:
   1454 	while (pdpe--) {
   1455 		for_each_set_bit(temp, new_page_tables + pdpe *
   1456 				BITS_TO_LONGS(I915_PDES), I915_PDES)
   1457 			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
   1458 	}
   1459 
   1460 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
   1461 		free_pd(dev, pdp->page_directory[pdpe]);
   1462 
   1463 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
   1464 	mark_tlbs_dirty(ppgtt);
   1465 	return ret;
   1466 }
   1467 
   1468 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
   1469 				    struct i915_pml4 *pml4,
   1470 				    uint64_t start,
   1471 				    uint64_t length)
   1472 {
   1473 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
   1474 	struct i915_hw_ppgtt *ppgtt =
   1475 			container_of(vm, struct i915_hw_ppgtt, base);
   1476 	struct i915_page_directory_pointer *pdp;
   1477 	uint64_t temp, pml4e;
   1478 	int ret = 0;
   1479 
   1480 	/* Do the pml4 allocations first, so we don't need to track the newly
   1481 	 * allocated tables below the pdp */
   1482 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
   1483 
   1484 	/* The pagedirectory and pagetable allocations are done in the shared 3
   1485 	 * and 4 level code. Just allocate the pdps.
   1486 	 */
   1487 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
   1488 						new_pdps);
   1489 	if (ret)
   1490 		return ret;
   1491 
   1492 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
   1493 	     "The allocation has spanned more than 512GB. "
   1494 	     "It is highly likely this is incorrect.");
   1495 
   1496 	gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
   1497 		WARN_ON(!pdp);
   1498 
   1499 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
   1500 		if (ret)
   1501 			goto err_out;
   1502 
   1503 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
   1504 	}
   1505 
   1506 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
   1507 		  GEN8_PML4ES_PER_PML4);
   1508 
   1509 	return 0;
   1510 
   1511 err_out:
   1512 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
   1513 		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
   1514 
   1515 	return ret;
   1516 }
   1517 
   1518 static int gen8_alloc_va_range(struct i915_address_space *vm,
   1519 			       uint64_t start, uint64_t length)
   1520 {
   1521 	struct i915_hw_ppgtt *ppgtt =
   1522 		container_of(vm, struct i915_hw_ppgtt, base);
   1523 
   1524 	if (USES_FULL_48BIT_PPGTT(vm->dev))
   1525 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
   1526 	else
   1527 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
   1528 }
   1529 
   1530 #ifndef __NetBSD__		/* XXX debugfs */
   1531 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
   1532 			  uint64_t start, uint64_t length,
   1533 			  gen8_pte_t scratch_pte,
   1534 			  struct seq_file *m)
   1535 {
   1536 	struct i915_page_directory *pd;
   1537 	uint64_t temp;
   1538 	uint32_t pdpe;
   1539 
   1540 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
   1541 		struct i915_page_table *pt;
   1542 		uint64_t pd_len = length;
   1543 		uint64_t pd_start = start;
   1544 		uint32_t pde;
   1545 
   1546 		if (!test_bit(pdpe, pdp->used_pdpes))
   1547 			continue;
   1548 
   1549 		seq_printf(m, "\tPDPE #%d\n", pdpe);
   1550 		gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
   1551 			uint32_t  pte;
   1552 			gen8_pte_t *pt_vaddr;
   1553 
   1554 			if (!test_bit(pde, pd->used_pdes))
   1555 				continue;
   1556 
   1557 			pt_vaddr = kmap_px(pt);
   1558 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
   1559 				uint64_t va =
   1560 					(pdpe << GEN8_PDPE_SHIFT) |
   1561 					(pde << GEN8_PDE_SHIFT) |
   1562 					(pte << GEN8_PTE_SHIFT);
   1563 				int i;
   1564 				bool found = false;
   1565 
   1566 				for (i = 0; i < 4; i++)
   1567 					if (pt_vaddr[pte + i] != scratch_pte)
   1568 						found = true;
   1569 				if (!found)
   1570 					continue;
   1571 
   1572 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
   1573 				for (i = 0; i < 4; i++) {
   1574 					if (pt_vaddr[pte + i] != scratch_pte)
   1575 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
   1576 					else
   1577 						seq_puts(m, "  SCRATCH ");
   1578 				}
   1579 				seq_puts(m, "\n");
   1580 			}
   1581 			/* don't use kunmap_px, it could trigger
   1582 			 * an unnecessary flush.
   1583 			 */
   1584 			kunmap_atomic(pt_vaddr);
   1585 		}
   1586 	}
   1587 }
   1588 
   1589 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
   1590 {
   1591 	struct i915_address_space *vm = &ppgtt->base;
   1592 	uint64_t start = ppgtt->base.start;
   1593 	uint64_t length = ppgtt->base.total;
   1594 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
   1595 						 I915_CACHE_LLC, true);
   1596 
   1597 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
   1598 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
   1599 	} else {
   1600 		uint64_t templ4, pml4e;
   1601 		struct i915_pml4 *pml4 = &ppgtt->pml4;
   1602 		struct i915_page_directory_pointer *pdp;
   1603 
   1604 		gen8_for_each_pml4e(pdp, pml4, start, length, templ4, pml4e) {
   1605 			if (!test_bit(pml4e, pml4->used_pml4es))
   1606 				continue;
   1607 
   1608 			seq_printf(m, "    PML4E #%llu\n", pml4e);
   1609 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
   1610 		}
   1611 	}
   1612 }
   1613 #endif
   1614 
   1615 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
   1616 {
   1617 	unsigned long *new_page_dirs, *new_page_tables;
   1618 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
   1619 	int ret;
   1620 
   1621 	/* We allocate temp bitmap for page tables for no gain
   1622 	 * but as this is for init only, lets keep the things simple
   1623 	 */
   1624 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
   1625 	if (ret)
   1626 		return ret;
   1627 
   1628 	/* Allocate for all pdps regardless of how the ppgtt
   1629 	 * was defined.
   1630 	 */
   1631 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
   1632 						0, 1ULL << 32,
   1633 						new_page_dirs);
   1634 	if (!ret)
   1635 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
   1636 
   1637 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
   1638 
   1639 	return ret;
   1640 }
   1641 
   1642 /*
   1643  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
   1644  * with a net effect resembling a 2-level page table in normal x86 terms. Each
   1645  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
   1646  * space.
   1647  *
   1648  */
   1649 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
   1650 {
   1651 	int ret;
   1652 
   1653 	ret = gen8_init_scratch(&ppgtt->base);
   1654 	if (ret)
   1655 		return ret;
   1656 
   1657 	ppgtt->base.start = 0;
   1658 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
   1659 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
   1660 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
   1661 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
   1662 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
   1663 	ppgtt->base.bind_vma = ppgtt_bind_vma;
   1664 #ifndef __NetBSD__		/* XXX debugfs */
   1665 	ppgtt->debug_dump = gen8_dump_ppgtt;
   1666 #endif
   1667 
   1668 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
   1669 		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
   1670 		if (ret)
   1671 			goto free_scratch;
   1672 
   1673 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
   1674 
   1675 		ppgtt->base.total = 1ULL << 48;
   1676 		ppgtt->switch_mm = gen8_48b_mm_switch;
   1677 	} else {
   1678 		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
   1679 		if (ret)
   1680 			goto free_scratch;
   1681 
   1682 		ppgtt->base.total = 1ULL << 32;
   1683 		ppgtt->switch_mm = gen8_legacy_mm_switch;
   1684 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
   1685 							      0, 0,
   1686 							      GEN8_PML4E_SHIFT);
   1687 
   1688 		if (intel_vgpu_active(ppgtt->base.dev)) {
   1689 			ret = gen8_preallocate_top_level_pdps(ppgtt);
   1690 			if (ret)
   1691 				goto free_scratch;
   1692 		}
   1693 	}
   1694 
   1695 	if (intel_vgpu_active(ppgtt->base.dev))
   1696 		gen8_ppgtt_notify_vgt(ppgtt, true);
   1697 
   1698 	return 0;
   1699 
   1700 free_scratch:
   1701 	gen8_free_scratch(&ppgtt->base);
   1702 	return ret;
   1703 }
   1704 
   1705 #ifndef __NetBSD__		/* XXX debugfs */
   1706 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
   1707 {
   1708 	struct i915_address_space *vm = &ppgtt->base;
   1709 	struct i915_page_table *unused;
   1710 	gen6_pte_t scratch_pte;
   1711 	uint32_t pd_entry;
   1712 	uint32_t  pte, pde, temp;
   1713 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
   1714 
   1715 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
   1716 				     I915_CACHE_LLC, true, 0);
   1717 
   1718 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
   1719 		u32 expected;
   1720 		gen6_pte_t *pt_vaddr;
   1721 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
   1722 		pd_entry = readl(ppgtt->pd_addr + pde);
   1723 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
   1724 
   1725 		if (pd_entry != expected)
   1726 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
   1727 				   pde,
   1728 				   pd_entry,
   1729 				   expected);
   1730 		seq_printf(m, "\tPDE: %x\n", pd_entry);
   1731 
   1732 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
   1733 
   1734 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
   1735 			unsigned long va =
   1736 				(pde * PAGE_SIZE * GEN6_PTES) +
   1737 				(pte * PAGE_SIZE);
   1738 			int i;
   1739 			bool found = false;
   1740 			for (i = 0; i < 4; i++)
   1741 				if (pt_vaddr[pte + i] != scratch_pte)
   1742 					found = true;
   1743 			if (!found)
   1744 				continue;
   1745 
   1746 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
   1747 			for (i = 0; i < 4; i++) {
   1748 				if (pt_vaddr[pte + i] != scratch_pte)
   1749 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
   1750 				else
   1751 					seq_puts(m, "  SCRATCH ");
   1752 			}
   1753 			seq_puts(m, "\n");
   1754 		}
   1755 		kunmap_px(ppgtt, pt_vaddr);
   1756 	}
   1757 }
   1758 #endif
   1759 
   1760 /* Write pde (index) from the page directory @pd to the page table @pt */
   1761 static void gen6_write_pde(struct i915_page_directory *pd,
   1762 			    const int pde, struct i915_page_table *pt)
   1763 {
   1764 	/* Caller needs to make sure the write completes if necessary */
   1765 	struct i915_hw_ppgtt *ppgtt =
   1766 		container_of(pd, struct i915_hw_ppgtt, pd);
   1767 #ifdef __NetBSD__
   1768 	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
   1769 	const bus_space_tag_t bst = dev_priv->gtt.bst;
   1770 	const bus_space_handle_t bsh = dev_priv->gtt.bsh;
   1771 	const bus_addr_t pd_base = ppgtt->pd.base.ggtt_offset;
   1772 #endif
   1773 	u32 pd_entry;
   1774 
   1775 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
   1776 	pd_entry |= GEN6_PDE_VALID;
   1777 
   1778 #ifdef __NetBSD__
   1779 	CTASSERT(sizeof(gen6_pte_t) == 4);
   1780 	bus_space_write_4(bst, bsh, pd_base + 4*pde, pd_entry);
   1781 #else
   1782 	writel(pd_entry, ppgtt->pd_addr + pde);
   1783 #endif
   1784 }
   1785 
   1786 /* Write all the page tables found in the ppgtt structure to incrementing page
   1787  * directories. */
   1788 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
   1789 				  struct i915_page_directory *pd,
   1790 				  uint32_t start, uint32_t length)
   1791 {
   1792 	struct i915_page_table *pt;
   1793 	uint32_t pde, temp;
   1794 
   1795 	gen6_for_each_pde(pt, pd, start, length, temp, pde)
   1796 		gen6_write_pde(pd, pde, pt);
   1797 
   1798 	/* Make sure write is complete before other code can use this page
   1799 	 * table. Also require for WC mapped PTEs */
   1800 #ifdef __NetBSD__
   1801 	bus_space_read_4(dev_priv->gtt.bst, dev_priv->gtt.bsh, 0);
   1802 #else
   1803 	readl(dev_priv->gtt.gsm);
   1804 #endif
   1805 }
   1806 
   1807 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
   1808 {
   1809 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
   1810 
   1811 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
   1812 }
   1813 
   1814 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
   1815 			 struct drm_i915_gem_request *req)
   1816 {
   1817 	struct intel_engine_cs *ring = req->ring;
   1818 	int ret;
   1819 
   1820 	/* NB: TLBs must be flushed and invalidated before a switch */
   1821 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
   1822 	if (ret)
   1823 		return ret;
   1824 
   1825 	ret = intel_ring_begin(req, 6);
   1826 	if (ret)
   1827 		return ret;
   1828 
   1829 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
   1830 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
   1831 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
   1832 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
   1833 	intel_ring_emit(ring, get_pd_offset(ppgtt));
   1834 	intel_ring_emit(ring, MI_NOOP);
   1835 	intel_ring_advance(ring);
   1836 
   1837 	return 0;
   1838 }
   1839 
   1840 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
   1841 			  struct drm_i915_gem_request *req)
   1842 {
   1843 	struct intel_engine_cs *ring = req->ring;
   1844 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
   1845 
   1846 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
   1847 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
   1848 	return 0;
   1849 }
   1850 
   1851 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
   1852 			  struct drm_i915_gem_request *req)
   1853 {
   1854 	struct intel_engine_cs *ring = req->ring;
   1855 	int ret;
   1856 
   1857 	/* NB: TLBs must be flushed and invalidated before a switch */
   1858 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
   1859 	if (ret)
   1860 		return ret;
   1861 
   1862 	ret = intel_ring_begin(req, 6);
   1863 	if (ret)
   1864 		return ret;
   1865 
   1866 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
   1867 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
   1868 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
   1869 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
   1870 	intel_ring_emit(ring, get_pd_offset(ppgtt));
   1871 	intel_ring_emit(ring, MI_NOOP);
   1872 	intel_ring_advance(ring);
   1873 
   1874 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
   1875 	if (ring->id != RCS) {
   1876 		ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
   1877 		if (ret)
   1878 			return ret;
   1879 	}
   1880 
   1881 	return 0;
   1882 }
   1883 
   1884 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
   1885 			  struct drm_i915_gem_request *req)
   1886 {
   1887 	struct intel_engine_cs *ring = req->ring;
   1888 	struct drm_device *dev = ppgtt->base.dev;
   1889 	struct drm_i915_private *dev_priv = dev->dev_private;
   1890 
   1891 
   1892 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
   1893 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
   1894 
   1895 	POSTING_READ(RING_PP_DIR_DCLV(ring));
   1896 
   1897 	return 0;
   1898 }
   1899 
   1900 static void gen8_ppgtt_enable(struct drm_device *dev)
   1901 {
   1902 	struct drm_i915_private *dev_priv = dev->dev_private;
   1903 	struct intel_engine_cs *ring;
   1904 	int j;
   1905 
   1906 	for_each_ring(ring, dev_priv, j) {
   1907 		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
   1908 		I915_WRITE(RING_MODE_GEN7(ring),
   1909 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
   1910 	}
   1911 }
   1912 
   1913 static void gen7_ppgtt_enable(struct drm_device *dev)
   1914 {
   1915 	struct drm_i915_private *dev_priv = dev->dev_private;
   1916 	struct intel_engine_cs *ring;
   1917 	uint32_t ecochk, ecobits;
   1918 	int i;
   1919 
   1920 	ecobits = I915_READ(GAC_ECO_BITS);
   1921 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
   1922 
   1923 	ecochk = I915_READ(GAM_ECOCHK);
   1924 	if (IS_HASWELL(dev)) {
   1925 		ecochk |= ECOCHK_PPGTT_WB_HSW;
   1926 	} else {
   1927 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
   1928 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
   1929 	}
   1930 	I915_WRITE(GAM_ECOCHK, ecochk);
   1931 
   1932 	for_each_ring(ring, dev_priv, i) {
   1933 		/* GFX_MODE is per-ring on gen7+ */
   1934 		I915_WRITE(RING_MODE_GEN7(ring),
   1935 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
   1936 	}
   1937 }
   1938 
   1939 static void gen6_ppgtt_enable(struct drm_device *dev)
   1940 {
   1941 	struct drm_i915_private *dev_priv = dev->dev_private;
   1942 	uint32_t ecochk, gab_ctl, ecobits;
   1943 
   1944 	ecobits = I915_READ(GAC_ECO_BITS);
   1945 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
   1946 		   ECOBITS_PPGTT_CACHE64B);
   1947 
   1948 	gab_ctl = I915_READ(GAB_CTL);
   1949 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
   1950 
   1951 	ecochk = I915_READ(GAM_ECOCHK);
   1952 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
   1953 
   1954 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
   1955 }
   1956 
   1957 /* PPGTT support for Sandybdrige/Gen6 and later */
   1958 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
   1959 				   uint64_t start,
   1960 				   uint64_t length,
   1961 				   bool use_scratch)
   1962 {
   1963 	struct i915_hw_ppgtt *ppgtt =
   1964 		container_of(vm, struct i915_hw_ppgtt, base);
   1965 	gen6_pte_t *pt_vaddr, scratch_pte;
   1966 	unsigned first_entry = start >> PAGE_SHIFT;
   1967 	unsigned num_entries = length >> PAGE_SHIFT;
   1968 	unsigned act_pt = first_entry / GEN6_PTES;
   1969 	unsigned first_pte = first_entry % GEN6_PTES;
   1970 	unsigned last_pte, i;
   1971 
   1972 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
   1973 				     I915_CACHE_LLC, true, 0);
   1974 
   1975 	while (num_entries) {
   1976 		last_pte = first_pte + num_entries;
   1977 		if (last_pte > GEN6_PTES)
   1978 			last_pte = GEN6_PTES;
   1979 
   1980 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
   1981 
   1982 		for (i = first_pte; i < last_pte; i++)
   1983 			pt_vaddr[i] = scratch_pte;
   1984 
   1985 		kunmap_px(ppgtt, pt_vaddr);
   1986 
   1987 		num_entries -= last_pte - first_pte;
   1988 		first_pte = 0;
   1989 		act_pt++;
   1990 	}
   1991 }
   1992 
   1993 #ifdef __NetBSD__
   1994 static void
   1995 gen6_ppgtt_insert_entries(struct i915_address_space *vm, bus_dmamap_t dmamap,
   1996     uint64_t start, enum i915_cache_level cache_level, uint32_t flags)
   1997 {
   1998 	struct i915_hw_ppgtt *ppgtt =
   1999 		container_of(vm, struct i915_hw_ppgtt, base);
   2000 	gen6_pte_t *pt_vaddr;
   2001 	unsigned first_entry = start >> PAGE_SHIFT;
   2002 	unsigned act_pt = first_entry / GEN6_PTES;
   2003 	unsigned act_pte = first_entry % GEN6_PTES;
   2004 	unsigned seg;
   2005 
   2006 	pt_vaddr = NULL;
   2007 	KASSERT(0 < dmamap->dm_nsegs);
   2008 	for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
   2009 		KASSERT(dmamap->dm_segs[seg].ds_len == PAGE_SIZE);
   2010 		if (pt_vaddr == NULL)
   2011 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
   2012 		pt_vaddr[act_pte] =
   2013 		    vm->pte_encode(dmamap->dm_segs[seg].ds_addr, cache_level,
   2014 			true, flags);
   2015 		if (++act_pte == GEN6_PTES) {
   2016 			kunmap_px(ppgtt, pt_vaddr);
   2017 			pt_vaddr = NULL;
   2018 			act_pt++;
   2019 			act_pte = 0;
   2020 		}
   2021 	}
   2022 	if (pt_vaddr)
   2023 		kunmap_px(ppgtt, pt_vaddr);
   2024 }
   2025 #else
   2026 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
   2027 				      struct sg_table *pages,
   2028 				      uint64_t start,
   2029 				      enum i915_cache_level cache_level, u32 flags)
   2030 {
   2031 	struct i915_hw_ppgtt *ppgtt =
   2032 		container_of(vm, struct i915_hw_ppgtt, base);
   2033 	gen6_pte_t *pt_vaddr;
   2034 	unsigned first_entry = start >> PAGE_SHIFT;
   2035 	unsigned act_pt = first_entry / GEN6_PTES;
   2036 	unsigned act_pte = first_entry % GEN6_PTES;
   2037 	struct sg_page_iter sg_iter;
   2038 
   2039 	pt_vaddr = NULL;
   2040 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
   2041 		if (pt_vaddr == NULL)
   2042 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
   2043 
   2044 		pt_vaddr[act_pte] =
   2045 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
   2046 				       cache_level, true, flags);
   2047 
   2048 		if (++act_pte == GEN6_PTES) {
   2049 			kunmap_px(ppgtt, pt_vaddr);
   2050 			pt_vaddr = NULL;
   2051 			act_pt++;
   2052 			act_pte = 0;
   2053 		}
   2054 	}
   2055 	if (pt_vaddr)
   2056 		kunmap_px(ppgtt, pt_vaddr);
   2057 }
   2058 #endif
   2059 
   2060 static int gen6_alloc_va_range(struct i915_address_space *vm,
   2061 			       uint64_t start_in, uint64_t length_in)
   2062 {
   2063 	DECLARE_BITMAP(new_page_tables, I915_PDES);
   2064 	struct drm_device *dev = vm->dev;
   2065 	struct drm_i915_private *dev_priv = dev->dev_private;
   2066 	struct i915_hw_ppgtt *ppgtt =
   2067 				container_of(vm, struct i915_hw_ppgtt, base);
   2068 	struct i915_page_table *pt;
   2069 	uint32_t start, length, start_save, length_save;
   2070 	uint32_t pde, temp;
   2071 	int ret;
   2072 
   2073 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
   2074 		return -ENODEV;
   2075 
   2076 	start = start_save = start_in;
   2077 	length = length_save = length_in;
   2078 
   2079 	bitmap_zero(new_page_tables, I915_PDES);
   2080 
   2081 	/* The allocation is done in two stages so that we can bail out with
   2082 	 * minimal amount of pain. The first stage finds new page tables that
   2083 	 * need allocation. The second stage marks use ptes within the page
   2084 	 * tables.
   2085 	 */
   2086 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
   2087 		if (pt != vm->scratch_pt) {
   2088 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
   2089 			continue;
   2090 		}
   2091 
   2092 		/* We've already allocated a page table */
   2093 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
   2094 
   2095 		pt = alloc_pt(dev);
   2096 		if (IS_ERR(pt)) {
   2097 			ret = PTR_ERR(pt);
   2098 			goto unwind_out;
   2099 		}
   2100 
   2101 		gen6_initialize_pt(vm, pt);
   2102 
   2103 		ppgtt->pd.page_table[pde] = pt;
   2104 		__set_bit(pde, new_page_tables);
   2105 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
   2106 	}
   2107 
   2108 	start = start_save;
   2109 	length = length_save;
   2110 
   2111 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
   2112 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
   2113 
   2114 		bitmap_zero(tmp_bitmap, GEN6_PTES);
   2115 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
   2116 			   gen6_pte_count(start, length));
   2117 
   2118 		if (__test_and_clear_bit(pde, new_page_tables))
   2119 			gen6_write_pde(&ppgtt->pd, pde, pt);
   2120 
   2121 		trace_i915_page_table_entry_map(vm, pde, pt,
   2122 					 gen6_pte_index(start),
   2123 					 gen6_pte_count(start, length),
   2124 					 GEN6_PTES);
   2125 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
   2126 				GEN6_PTES);
   2127 	}
   2128 
   2129 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
   2130 
   2131 	/* Make sure write is complete before other code can use this page
   2132 	 * table. Also require for WC mapped PTEs */
   2133 #ifdef __NetBSD__
   2134 	bus_space_read_4(dev_priv->gtt.bst, dev_priv->gtt.bsh, 0);
   2135 #else
   2136 	readl(dev_priv->gtt.gsm);
   2137 #endif
   2138 
   2139 	mark_tlbs_dirty(ppgtt);
   2140 	return 0;
   2141 
   2142 unwind_out:
   2143 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
   2144 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
   2145 
   2146 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
   2147 		free_pt(vm->dev, pt);
   2148 	}
   2149 
   2150 	mark_tlbs_dirty(ppgtt);
   2151 	return ret;
   2152 }
   2153 
   2154 static int gen6_init_scratch(struct i915_address_space *vm)
   2155 {
   2156 	struct drm_device *dev = vm->dev;
   2157 
   2158 	vm->scratch_page = alloc_scratch_page(dev);
   2159 	if (IS_ERR(vm->scratch_page))
   2160 		return PTR_ERR(vm->scratch_page);
   2161 
   2162 	vm->scratch_pt = alloc_pt(dev);
   2163 	if (IS_ERR(vm->scratch_pt)) {
   2164 		free_scratch_page(dev, vm->scratch_page);
   2165 		return PTR_ERR(vm->scratch_pt);
   2166 	}
   2167 
   2168 	gen6_initialize_pt(vm, vm->scratch_pt);
   2169 
   2170 	return 0;
   2171 }
   2172 
   2173 static void gen6_free_scratch(struct i915_address_space *vm)
   2174 {
   2175 	struct drm_device *dev = vm->dev;
   2176 
   2177 	free_pt(dev, vm->scratch_pt);
   2178 	free_scratch_page(dev, vm->scratch_page);
   2179 }
   2180 
   2181 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
   2182 {
   2183 	struct i915_hw_ppgtt *ppgtt =
   2184 		container_of(vm, struct i915_hw_ppgtt, base);
   2185 	struct i915_page_table *pt;
   2186 	uint32_t pde;
   2187 
   2188 	drm_mm_remove_node(&ppgtt->node);
   2189 
   2190 	gen6_for_all_pdes(pt, ppgtt, pde) {
   2191 		if (pt != vm->scratch_pt)
   2192 			free_pt(ppgtt->base.dev, pt);
   2193 	}
   2194 
   2195 	gen6_free_scratch(vm);
   2196 }
   2197 
   2198 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
   2199 {
   2200 	struct i915_address_space *vm = &ppgtt->base;
   2201 	struct drm_device *dev = ppgtt->base.dev;
   2202 	struct drm_i915_private *dev_priv = dev->dev_private;
   2203 	bool retried = false;
   2204 	int ret;
   2205 
   2206 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
   2207 	 * allocator works in address space sizes, so it's multiplied by page
   2208 	 * size. We allocate at the top of the GTT to avoid fragmentation.
   2209 	 */
   2210 	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
   2211 
   2212 	ret = gen6_init_scratch(vm);
   2213 	if (ret)
   2214 		return ret;
   2215 
   2216 alloc:
   2217 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
   2218 						  &ppgtt->node, GEN6_PD_SIZE,
   2219 						  GEN6_PD_ALIGN, 0,
   2220 						  0, dev_priv->gtt.base.total,
   2221 						  DRM_MM_TOPDOWN);
   2222 	if (ret == -ENOSPC && !retried) {
   2223 		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
   2224 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
   2225 					       I915_CACHE_NONE,
   2226 					       0, dev_priv->gtt.base.total,
   2227 					       0);
   2228 		if (ret)
   2229 			goto err_out;
   2230 
   2231 		retried = true;
   2232 		goto alloc;
   2233 	}
   2234 
   2235 	if (ret)
   2236 		goto err_out;
   2237 
   2238 
   2239 	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
   2240 		DRM_DEBUG("Forced to use aperture for PDEs\n");
   2241 
   2242 	return 0;
   2243 
   2244 err_out:
   2245 	gen6_free_scratch(vm);
   2246 	return ret;
   2247 }
   2248 
   2249 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
   2250 {
   2251 	return gen6_ppgtt_allocate_page_directories(ppgtt);
   2252 }
   2253 
   2254 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
   2255 				  uint64_t start, uint64_t length)
   2256 {
   2257 	struct i915_page_table *unused __unused;
   2258 	uint32_t pde, temp;
   2259 
   2260 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
   2261 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
   2262 }
   2263 
   2264 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
   2265 {
   2266 	struct drm_device *dev = ppgtt->base.dev;
   2267 	struct drm_i915_private *dev_priv = dev->dev_private;
   2268 	int ret;
   2269 
   2270 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
   2271 	if (IS_GEN6(dev)) {
   2272 		ppgtt->switch_mm = gen6_mm_switch;
   2273 	} else if (IS_HASWELL(dev)) {
   2274 		ppgtt->switch_mm = hsw_mm_switch;
   2275 	} else if (IS_GEN7(dev)) {
   2276 		ppgtt->switch_mm = gen7_mm_switch;
   2277 	} else
   2278 		BUG();
   2279 
   2280 	if (intel_vgpu_active(dev))
   2281 		ppgtt->switch_mm = vgpu_mm_switch;
   2282 
   2283 	ret = gen6_ppgtt_alloc(ppgtt);
   2284 	if (ret)
   2285 		return ret;
   2286 
   2287 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
   2288 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
   2289 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
   2290 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
   2291 	ppgtt->base.bind_vma = ppgtt_bind_vma;
   2292 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
   2293 	ppgtt->base.start = 0;
   2294 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
   2295 #ifndef __NetBSD__
   2296 	ppgtt->debug_dump = gen6_dump_ppgtt;
   2297 #endif
   2298 
   2299 	ppgtt->pd.base.ggtt_offset =
   2300 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
   2301 
   2302 #ifndef __NetBSD__
   2303 	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
   2304 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
   2305 #endif
   2306 
   2307 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
   2308 
   2309 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
   2310 
   2311 	DRM_DEBUG_DRIVER("Allocated pde space (%"PRId64"M) at GTT entry: %"PRIx64"\n",
   2312 			 ppgtt->node.size >> 20,
   2313 			 ppgtt->node.start / PAGE_SIZE);
   2314 
   2315 	DRM_DEBUG("Adding PPGTT at offset %x\n",
   2316 		  ppgtt->pd.base.ggtt_offset << 10);
   2317 
   2318 	return 0;
   2319 }
   2320 
   2321 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
   2322 {
   2323 	ppgtt->base.dev = dev;
   2324 
   2325 	if (INTEL_INFO(dev)->gen < 8)
   2326 		return gen6_ppgtt_init(ppgtt);
   2327 	else
   2328 		return gen8_ppgtt_init(ppgtt);
   2329 }
   2330 
   2331 static void i915_address_space_init(struct i915_address_space *vm,
   2332 				    struct drm_i915_private *dev_priv)
   2333 {
   2334 	drm_mm_init(&vm->mm, vm->start, vm->total);
   2335 	vm->dev = dev_priv->dev;
   2336 	INIT_LIST_HEAD(&vm->active_list);
   2337 	INIT_LIST_HEAD(&vm->inactive_list);
   2338 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
   2339 }
   2340 
   2341 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
   2342 {
   2343 	struct drm_i915_private *dev_priv = dev->dev_private;
   2344 	int ret = 0;
   2345 
   2346 	ret = __hw_ppgtt_init(dev, ppgtt);
   2347 	if (ret == 0) {
   2348 		kref_init(&ppgtt->ref);
   2349 		i915_address_space_init(&ppgtt->base, dev_priv);
   2350 	}
   2351 
   2352 	return ret;
   2353 }
   2354 
   2355 int i915_ppgtt_init_hw(struct drm_device *dev)
   2356 {
   2357 	/* In the case of execlists, PPGTT is enabled by the context descriptor
   2358 	 * and the PDPs are contained within the context itself.  We don't
   2359 	 * need to do anything here. */
   2360 	if (i915.enable_execlists)
   2361 		return 0;
   2362 
   2363 	if (!USES_PPGTT(dev))
   2364 		return 0;
   2365 
   2366 	if (IS_GEN6(dev))
   2367 		gen6_ppgtt_enable(dev);
   2368 	else if (IS_GEN7(dev))
   2369 		gen7_ppgtt_enable(dev);
   2370 	else if (INTEL_INFO(dev)->gen >= 8)
   2371 		gen8_ppgtt_enable(dev);
   2372 	else
   2373 		MISSING_CASE(INTEL_INFO(dev)->gen);
   2374 
   2375 	return 0;
   2376 }
   2377 
   2378 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
   2379 {
   2380 	struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
   2381 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
   2382 
   2383 	if (i915.enable_execlists)
   2384 		return 0;
   2385 
   2386 	if (!ppgtt)
   2387 		return 0;
   2388 
   2389 	return ppgtt->switch_mm(ppgtt, req);
   2390 }
   2391 
   2392 struct i915_hw_ppgtt *
   2393 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
   2394 {
   2395 	struct i915_hw_ppgtt *ppgtt;
   2396 	int ret;
   2397 
   2398 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
   2399 	if (!ppgtt)
   2400 		return ERR_PTR(-ENOMEM);
   2401 
   2402 	ret = i915_ppgtt_init(dev, ppgtt);
   2403 	if (ret) {
   2404 		kfree(ppgtt);
   2405 		return ERR_PTR(ret);
   2406 	}
   2407 
   2408 	ppgtt->file_priv = fpriv;
   2409 
   2410 	trace_i915_ppgtt_create(&ppgtt->base);
   2411 
   2412 	return ppgtt;
   2413 }
   2414 
   2415 void  i915_ppgtt_release(struct kref *kref)
   2416 {
   2417 	struct i915_hw_ppgtt *ppgtt =
   2418 		container_of(kref, struct i915_hw_ppgtt, ref);
   2419 
   2420 	trace_i915_ppgtt_release(&ppgtt->base);
   2421 
   2422 	/* vmas should already be unbound */
   2423 	WARN_ON(!list_empty(&ppgtt->base.active_list));
   2424 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
   2425 
   2426 	list_del(&ppgtt->base.global_link);
   2427 	drm_mm_takedown(&ppgtt->base.mm);
   2428 
   2429 	ppgtt->base.cleanup(&ppgtt->base);
   2430 	kfree(ppgtt);
   2431 }
   2432 
   2433 extern int intel_iommu_gfx_mapped;
   2434 /* Certain Gen5 chipsets require require idling the GPU before
   2435  * unmapping anything from the GTT when VT-d is enabled.
   2436  */
   2437 static bool needs_idle_maps(struct drm_device *dev)
   2438 {
   2439 #ifdef CONFIG_INTEL_IOMMU
   2440 	/* Query intel_iommu to see if we need the workaround. Presumably that
   2441 	 * was loaded first.
   2442 	 */
   2443 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
   2444 		return true;
   2445 #endif
   2446 	return false;
   2447 }
   2448 
   2449 static bool do_idling(struct drm_i915_private *dev_priv)
   2450 {
   2451 	bool ret = dev_priv->mm.interruptible;
   2452 
   2453 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
   2454 		dev_priv->mm.interruptible = false;
   2455 		if (i915_gpu_idle(dev_priv->dev)) {
   2456 			DRM_ERROR("Couldn't idle GPU\n");
   2457 			/* Wait a bit, in hopes it avoids the hang */
   2458 			udelay(10);
   2459 		}
   2460 	}
   2461 
   2462 	return ret;
   2463 }
   2464 
   2465 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
   2466 {
   2467 	if (unlikely(dev_priv->gtt.do_idle_maps))
   2468 		dev_priv->mm.interruptible = interruptible;
   2469 }
   2470 
   2471 void i915_check_and_clear_faults(struct drm_device *dev)
   2472 {
   2473 	struct drm_i915_private *dev_priv = dev->dev_private;
   2474 	struct intel_engine_cs *ring;
   2475 	int i;
   2476 
   2477 	if (INTEL_INFO(dev)->gen < 6)
   2478 		return;
   2479 
   2480 	for_each_ring(ring, dev_priv, i) {
   2481 		u32 fault_reg;
   2482 		fault_reg = I915_READ(RING_FAULT_REG(ring));
   2483 		if (fault_reg & RING_FAULT_VALID) {
   2484 			DRM_DEBUG_DRIVER("Unexpected fault\n"
   2485 					 "\tAddr: 0x%08"PRIx32"\n"
   2486 					 "\tAddress space: %s\n"
   2487 					 "\tSource ID: %d\n"
   2488 					 "\tType: %d\n",
   2489 					 fault_reg & PAGE_MASK,
   2490 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
   2491 					 RING_FAULT_SRCID(fault_reg),
   2492 					 RING_FAULT_FAULT_TYPE(fault_reg));
   2493 			I915_WRITE(RING_FAULT_REG(ring),
   2494 				   fault_reg & ~RING_FAULT_VALID);
   2495 		}
   2496 	}
   2497 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
   2498 }
   2499 
   2500 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
   2501 {
   2502 	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
   2503 		intel_gtt_chipset_flush();
   2504 	} else {
   2505 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2506 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2507 	}
   2508 }
   2509 
   2510 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
   2511 {
   2512 	struct drm_i915_private *dev_priv = dev->dev_private;
   2513 
   2514 	/* Don't bother messing with faults pre GEN6 as we have little
   2515 	 * documentation supporting that it's a good idea.
   2516 	 */
   2517 	if (INTEL_INFO(dev)->gen < 6)
   2518 		return;
   2519 
   2520 	i915_check_and_clear_faults(dev);
   2521 
   2522 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
   2523 				       dev_priv->gtt.base.start,
   2524 				       dev_priv->gtt.base.total,
   2525 				       true);
   2526 
   2527 	i915_ggtt_flush(dev_priv);
   2528 }
   2529 
   2530 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
   2531 {
   2532 #ifdef __NetBSD__
   2533 	KASSERT(0 < obj->base.size);
   2534 	/* XXX errno NetBSD->Linux */
   2535 	return -bus_dmamap_load_pglist(obj->base.dev->dmat, obj->pages,
   2536 	    &obj->pageq, obj->base.size, BUS_DMA_NOWAIT);
   2537 #else
   2538 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
   2539 			obj->pages->sgl, obj->pages->nents,
   2540 			PCI_DMA_BIDIRECTIONAL))
   2541 		return -ENOSPC;
   2542 
   2543 	return 0;
   2544 #endif
   2545 }
   2546 
   2547 #ifdef __NetBSD__
   2548 static gen8_pte_t
   2549 gen8_get_pte(bus_space_tag_t bst, bus_space_handle_t bsh, unsigned i)
   2550 {
   2551 	CTASSERT(_BYTE_ORDER == _LITTLE_ENDIAN); /* x86 */
   2552 	CTASSERT(sizeof(gen8_pte_t) == 8);
   2553 #ifdef _LP64			/* XXX How to detect bus_space_read_8?  */
   2554 	return bus_space_read_8(bst, bsh, 8*i);
   2555 #else
   2556 	/*
   2557 	 * XXX I'm not sure this case can actually happen in practice:
   2558 	 * 32-bit gen8 chipsets?
   2559 	 */
   2560 	return bus_space_read_4(bst, bsh, 8*i) |
   2561 	    ((uint64_t)bus_space_read_4(bst, bsh, 8*i + 4) << 32);
   2562 #endif
   2563 }
   2564 
   2565 static inline void
   2566 gen8_set_pte(bus_space_tag_t bst, bus_space_handle_t bsh, unsigned i,
   2567     gen8_pte_t pte)
   2568 {
   2569 	CTASSERT(_BYTE_ORDER == _LITTLE_ENDIAN); /* x86 */
   2570 	CTASSERT(sizeof(gen8_pte_t) == 8);
   2571 #ifdef _LP64			/* XXX How to detect bus_space_write_8?  */
   2572 	bus_space_write_8(bst, bsh, 8*i, pte);
   2573 #else
   2574 	bus_space_write_4(bst, bsh, 8*i, (uint32_t)pte);
   2575 	bus_space_write_4(bst, bsh, 8*i + 4, (uint32_t)(pte >> 32));
   2576 #endif
   2577 }
   2578 #else
   2579 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
   2580 {
   2581 #ifdef writeq
   2582 	writeq(pte, addr);
   2583 #else
   2584 	iowrite32((u32)pte, addr);
   2585 	iowrite32(pte >> 32, addr + 4);
   2586 #endif
   2587 }
   2588 #endif
   2589 
   2590 #ifdef __NetBSD__
   2591 static void
   2592 gen8_ggtt_insert_entries(struct i915_address_space *vm, bus_dmamap_t dmamap,
   2593     uint64_t start, enum i915_cache_level level, uint32_t unused_flags)
   2594 {
   2595 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2596 	unsigned first_entry = start >> PAGE_SHIFT;
   2597 	const bus_space_tag_t bst = dev_priv->gtt.bst;
   2598 	const bus_space_handle_t bsh = dev_priv->gtt.bsh;
   2599 	unsigned i;
   2600 
   2601 	KASSERT(0 < dmamap->dm_nsegs);
   2602 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2603 		KASSERT(dmamap->dm_segs[i].ds_len == PAGE_SIZE);
   2604 		gen8_set_pte(bst, bsh, first_entry + i,
   2605 		    gen8_pte_encode(dmamap->dm_segs[i].ds_addr, level, true));
   2606 	}
   2607 	if (0 < i) {
   2608 		/* Posting read.  */
   2609 		WARN_ON(gen8_get_pte(bst, bsh, (first_entry + i - 1))
   2610 		    != gen8_pte_encode(dmamap->dm_segs[i - 1].ds_addr, level,
   2611 			true));
   2612 	}
   2613 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2614 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2615 }
   2616 #else
   2617 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
   2618 				     struct sg_table *st,
   2619 				     uint64_t start,
   2620 				     enum i915_cache_level level, u32 unused)
   2621 {
   2622 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2623 	unsigned first_entry = start >> PAGE_SHIFT;
   2624 	gen8_pte_t __iomem *gtt_entries =
   2625 		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
   2626 	int i = 0;
   2627 	struct sg_page_iter sg_iter;
   2628 	dma_addr_t addr = 0; /* shut up gcc */
   2629 
   2630 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
   2631 		addr = sg_dma_address(sg_iter.sg) +
   2632 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
   2633 		gen8_set_pte(&gtt_entries[i],
   2634 			     gen8_pte_encode(addr, level, true));
   2635 		i++;
   2636 	}
   2637 
   2638 	/*
   2639 	 * XXX: This serves as a posting read to make sure that the PTE has
   2640 	 * actually been updated. There is some concern that even though
   2641 	 * registers and PTEs are within the same BAR that they are potentially
   2642 	 * of NUMA access patterns. Therefore, even with the way we assume
   2643 	 * hardware should work, we must keep this posting read for paranoia.
   2644 	 */
   2645 	if (i != 0)
   2646 		WARN_ON(readq(&gtt_entries[i-1])
   2647 			!= gen8_pte_encode(addr, level, true));
   2648 
   2649 	/* This next bit makes the above posting read even more important. We
   2650 	 * want to flush the TLBs only after we're certain all the PTE updates
   2651 	 * have finished.
   2652 	 */
   2653 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2654 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2655 }
   2656 #endif
   2657 
   2658 /*
   2659  * Binds an object into the global gtt with the specified cache level. The object
   2660  * will be accessible to the GPU via commands whose operands reference offsets
   2661  * within the global GTT as well as accessible by the GPU through the GMADR
   2662  * mapped BAR (dev_priv->mm.gtt->gtt).
   2663  */
   2664 #ifdef __NetBSD__
   2665 static void
   2666 gen6_ggtt_insert_entries(struct i915_address_space *vm, bus_dmamap_t dmamap,
   2667     uint64_t start, enum i915_cache_level level, uint32_t flags)
   2668 {
   2669 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2670 	unsigned first_entry = start >> PAGE_SHIFT;
   2671 	const bus_space_tag_t bst = dev_priv->gtt.bst;
   2672 	const bus_space_handle_t bsh = dev_priv->gtt.bsh;
   2673 	unsigned i;
   2674 
   2675 	KASSERT(0 < dmamap->dm_nsegs);
   2676 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2677 		KASSERT(dmamap->dm_segs[i].ds_len == PAGE_SIZE);
   2678 		CTASSERT(sizeof(gen6_pte_t) == 4);
   2679 		bus_space_write_4(bst, bsh, 4*(first_entry + i),
   2680 		    vm->pte_encode(dmamap->dm_segs[i].ds_addr, level, true,
   2681 			flags));
   2682 	}
   2683 	if (0 < i) {
   2684 		/* Posting read.  */
   2685 		WARN_ON(bus_space_read_4(bst, bsh, 4*(first_entry + i - 1))
   2686 		    != vm->pte_encode(dmamap->dm_segs[i - 1].ds_addr, level,
   2687 			true, flags));
   2688 	}
   2689 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2690 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2691 }
   2692 #else
   2693 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
   2694 				     struct sg_table *st,
   2695 				     uint64_t start,
   2696 				     enum i915_cache_level level, u32 flags)
   2697 {
   2698 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2699 	unsigned first_entry = start >> PAGE_SHIFT;
   2700 	gen6_pte_t __iomem *gtt_entries =
   2701 		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
   2702 	int i = 0;
   2703 	struct sg_page_iter sg_iter;
   2704 	dma_addr_t addr = 0;
   2705 
   2706 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
   2707 		addr = sg_page_iter_dma_address(&sg_iter);
   2708 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
   2709 		i++;
   2710 	}
   2711 
   2712 	/* XXX: This serves as a posting read to make sure that the PTE has
   2713 	 * actually been updated. There is some concern that even though
   2714 	 * registers and PTEs are within the same BAR that they are potentially
   2715 	 * of NUMA access patterns. Therefore, even with the way we assume
   2716 	 * hardware should work, we must keep this posting read for paranoia.
   2717 	 */
   2718 	if (i != 0) {
   2719 		unsigned long gtt = readl(&gtt_entries[i-1]);
   2720 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
   2721 	}
   2722 
   2723 	/* This next bit makes the above posting read even more important. We
   2724 	 * want to flush the TLBs only after we're certain all the PTE updates
   2725 	 * have finished.
   2726 	 */
   2727 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
   2728 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
   2729 }
   2730 #endif
   2731 
   2732 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
   2733 				  uint64_t start,
   2734 				  uint64_t length,
   2735 				  bool use_scratch)
   2736 {
   2737 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2738 	unsigned first_entry = start >> PAGE_SHIFT;
   2739 	unsigned num_entries = length >> PAGE_SHIFT;
   2740 #ifdef __NetBSD__
   2741 	const bus_space_tag_t bst = dev_priv->gtt.bst;
   2742 	const bus_space_handle_t bsh = dev_priv->gtt.bsh;
   2743 	gen8_pte_t scratch_pte;
   2744 #else
   2745 	gen8_pte_t scratch_pte, __iomem *gtt_base =
   2746 		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
   2747 #endif
   2748 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
   2749 	int i;
   2750 
   2751 	if (WARN(num_entries > max_entries,
   2752 		 "First entry = %d; Num entries = %d (max=%d)\n",
   2753 		 first_entry, num_entries, max_entries))
   2754 		num_entries = max_entries;
   2755 
   2756 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
   2757 				      I915_CACHE_LLC,
   2758 				      use_scratch);
   2759 #ifdef __NetBSD__
   2760 	for (i = 0; i < num_entries; i++)
   2761 		gen8_set_pte(bst, bsh, first_entry + i, scratch_pte);
   2762 	(void)gen8_get_pte(bst, bsh, first_entry);
   2763 #else
   2764 	for (i = 0; i < num_entries; i++)
   2765 		gen8_set_pte(&gtt_base[i], scratch_pte);
   2766 	readl(gtt_base);
   2767 #endif
   2768 }
   2769 
   2770 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
   2771 				  uint64_t start,
   2772 				  uint64_t length,
   2773 				  bool use_scratch)
   2774 {
   2775 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
   2776 	unsigned first_entry = start >> PAGE_SHIFT;
   2777 	unsigned num_entries = length >> PAGE_SHIFT;
   2778 #ifdef __NetBSD__
   2779 	const bus_space_tag_t bst = dev_priv->gtt.bst;
   2780 	const bus_space_handle_t bsh = dev_priv->gtt.bsh;
   2781 	gen8_pte_t scratch_pte;
   2782 #else
   2783 	gen6_pte_t scratch_pte, __iomem *gtt_base =
   2784 		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
   2785 #endif
   2786 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
   2787 	int i;
   2788 
   2789 	if (WARN(num_entries > max_entries,
   2790 		 "First entry = %d; Num entries = %d (max=%d)\n",
   2791 		 first_entry, num_entries, max_entries))
   2792 		num_entries = max_entries;
   2793 
   2794 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
   2795 				     I915_CACHE_LLC, use_scratch, 0);
   2796 
   2797 #ifdef __NetBSD__
   2798 	CTASSERT(sizeof(gen6_pte_t) == 4);
   2799 	for (i = 0; i < num_entries; i++)
   2800 		bus_space_write_4(bst, bsh, 4*(first_entry + i), scratch_pte);
   2801 	(void)bus_space_read_4(bst, bsh, 4*first_entry);
   2802 #else
   2803 	for (i = 0; i < num_entries; i++)
   2804 		iowrite32(scratch_pte, &gtt_base[i]);
   2805 	readl(gtt_base);
   2806 #endif
   2807 }
   2808 
   2809 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
   2810 #ifdef __NetBSD__
   2811 				     bus_dmamap_t pages,
   2812 #else
   2813 				     struct sg_table *pages,
   2814 #endif
   2815 				     uint64_t start,
   2816 				     enum i915_cache_level cache_level, u32 unused)
   2817 {
   2818 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
   2819 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
   2820 
   2821 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
   2822 }
   2823 
   2824 static void i915_ggtt_clear_range(struct i915_address_space *vm,
   2825 				  uint64_t start,
   2826 				  uint64_t length,
   2827 				  bool unused)
   2828 {
   2829 	unsigned first_entry = start >> PAGE_SHIFT;
   2830 	unsigned num_entries = length >> PAGE_SHIFT;
   2831 	intel_gtt_clear_range(first_entry, num_entries);
   2832 }
   2833 
   2834 static int ggtt_bind_vma(struct i915_vma *vma,
   2835 			 enum i915_cache_level cache_level,
   2836 			 u32 flags)
   2837 {
   2838 	struct drm_i915_gem_object *obj = vma->obj;
   2839 	u32 pte_flags = 0;
   2840 	int ret;
   2841 
   2842 	ret = i915_get_ggtt_vma_pages(vma);
   2843 	if (ret)
   2844 		return ret;
   2845 
   2846 	/* Currently applicable only to VLV */
   2847 	if (obj->gt_ro)
   2848 		pte_flags |= PTE_READ_ONLY;
   2849 
   2850 	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
   2851 				vma->node.start,
   2852 				cache_level, pte_flags);
   2853 
   2854 	/*
   2855 	 * Without aliasing PPGTT there's no difference between
   2856 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
   2857 	 * upgrade to both bound if we bind either to avoid double-binding.
   2858 	 */
   2859 	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
   2860 
   2861 	return 0;
   2862 }
   2863 
   2864 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
   2865 				 enum i915_cache_level cache_level,
   2866 				 u32 flags)
   2867 {
   2868 	struct drm_device *dev = vma->vm->dev;
   2869 	struct drm_i915_private *dev_priv = dev->dev_private;
   2870 	struct drm_i915_gem_object *obj = vma->obj;
   2871 #ifdef __NetBSD__
   2872 	bus_dmamap_t pages = obj->pages;
   2873 #else
   2874 	struct sg_table *pages = obj->pages;
   2875 #endif
   2876 	u32 pte_flags = 0;
   2877 	int ret;
   2878 
   2879 	ret = i915_get_ggtt_vma_pages(vma);
   2880 	if (ret)
   2881 		return ret;
   2882 	pages = vma->ggtt_view.pages;
   2883 
   2884 	/* Currently applicable only to VLV */
   2885 	if (obj->gt_ro)
   2886 		pte_flags |= PTE_READ_ONLY;
   2887 
   2888 
   2889 	if (flags & GLOBAL_BIND) {
   2890 		vma->vm->insert_entries(vma->vm, pages,
   2891 					vma->node.start,
   2892 					cache_level, pte_flags);
   2893 	}
   2894 
   2895 	if (flags & LOCAL_BIND) {
   2896 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
   2897 		appgtt->base.insert_entries(&appgtt->base, pages,
   2898 					    vma->node.start,
   2899 					    cache_level, pte_flags);
   2900 	}
   2901 
   2902 	return 0;
   2903 }
   2904 
   2905 static void ggtt_unbind_vma(struct i915_vma *vma)
   2906 {
   2907 	struct drm_device *dev = vma->vm->dev;
   2908 	struct drm_i915_private *dev_priv = dev->dev_private;
   2909 	struct drm_i915_gem_object *obj = vma->obj;
   2910 	const uint64_t size = min_t(uint64_t,
   2911 				    obj->base.size,
   2912 				    vma->node.size);
   2913 
   2914 	if (vma->bound & GLOBAL_BIND) {
   2915 		vma->vm->clear_range(vma->vm,
   2916 				     vma->node.start,
   2917 				     size,
   2918 				     true);
   2919 	}
   2920 
   2921 	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
   2922 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
   2923 
   2924 		appgtt->base.clear_range(&appgtt->base,
   2925 					 vma->node.start,
   2926 					 size,
   2927 					 true);
   2928 	}
   2929 }
   2930 
   2931 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
   2932 {
   2933 	struct drm_device *dev = obj->base.dev;
   2934 	struct drm_i915_private *dev_priv = dev->dev_private;
   2935 	bool interruptible;
   2936 
   2937 	interruptible = do_idling(dev_priv);
   2938 
   2939 #ifdef __NetBSD__
   2940 	bus_dmamap_unload(dev->dmat, obj->pages);
   2941 #else
   2942 	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
   2943 		     PCI_DMA_BIDIRECTIONAL);
   2944 #endif
   2945 
   2946 	undo_idling(dev_priv, interruptible);
   2947 }
   2948 
   2949 static void i915_gtt_color_adjust(struct drm_mm_node *node,
   2950 				  unsigned long color,
   2951 				  u64 *start,
   2952 				  u64 *end)
   2953 {
   2954 	if (node->color != color)
   2955 		*start += 4096;
   2956 
   2957 	if (!list_empty(&node->node_list)) {
   2958 		node = list_entry(node->node_list.next,
   2959 				  struct drm_mm_node,
   2960 				  node_list);
   2961 		if (node->allocated && node->color != color)
   2962 			*end -= 4096;
   2963 	}
   2964 }
   2965 
   2966 static int i915_gem_setup_global_gtt(struct drm_device *dev,
   2967 				     u64 start,
   2968 				     u64 mappable_end,
   2969 				     u64 end)
   2970 {
   2971 	/* Let GEM Manage all of the aperture.
   2972 	 *
   2973 	 * However, leave one page at the end still bound to the scratch page.
   2974 	 * There are a number of places where the hardware apparently prefetches
   2975 	 * past the end of the object, and we've seen multiple hangs with the
   2976 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
   2977 	 * aperture.  One page should be enough to keep any prefetching inside
   2978 	 * of the aperture.
   2979 	 */
   2980 	struct drm_i915_private *dev_priv = dev->dev_private;
   2981 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
   2982 	struct drm_mm_node *entry;
   2983 	struct drm_i915_gem_object *obj;
   2984 	unsigned long hole_start, hole_end;
   2985 	int ret;
   2986 
   2987 	BUG_ON(mappable_end > end);
   2988 
   2989 	ggtt_vm->start = start;
   2990 
   2991 	/* Subtract the guard page before address space initialization to
   2992 	 * shrink the range used by drm_mm */
   2993 	ggtt_vm->total = end - start - PAGE_SIZE;
   2994 	i915_address_space_init(ggtt_vm, dev_priv);
   2995 	ggtt_vm->total += PAGE_SIZE;
   2996 
   2997 	if (intel_vgpu_active(dev)) {
   2998 		ret = intel_vgt_balloon(dev);
   2999 		if (ret)
   3000 			return ret;
   3001 	}
   3002 
   3003 	if (!HAS_LLC(dev))
   3004 		ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
   3005 
   3006 	/* Mark any preallocated objects as occupied */
   3007 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
   3008 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
   3009 
   3010 		DRM_DEBUG_KMS("reserving preallocated space: %"PRIx64" + %zx\n",
   3011 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
   3012 
   3013 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
   3014 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
   3015 		if (ret) {
   3016 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
   3017 			return ret;
   3018 		}
   3019 		vma->bound |= GLOBAL_BIND;
   3020 		__i915_vma_set_map_and_fenceable(vma);
   3021 		list_add_tail(&vma->mm_list, &ggtt_vm->inactive_list);
   3022 	}
   3023 
   3024 	/* Clear any non-preallocated blocks */
   3025 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
   3026 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
   3027 			      hole_start, hole_end);
   3028 		ggtt_vm->clear_range(ggtt_vm, hole_start,
   3029 				     hole_end - hole_start, true);
   3030 	}
   3031 
   3032 	/* And finally clear the reserved guard page */
   3033 	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
   3034 
   3035 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
   3036 		struct i915_hw_ppgtt *ppgtt;
   3037 
   3038 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
   3039 		if (!ppgtt)
   3040 			return -ENOMEM;
   3041 
   3042 		ret = __hw_ppgtt_init(dev, ppgtt);
   3043 		if (ret) {
   3044 			ppgtt->base.cleanup(&ppgtt->base);
   3045 			kfree(ppgtt);
   3046 			return ret;
   3047 		}
   3048 
   3049 		if (ppgtt->base.allocate_va_range)
   3050 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
   3051 							    ppgtt->base.total);
   3052 		if (ret) {
   3053 			ppgtt->base.cleanup(&ppgtt->base);
   3054 			kfree(ppgtt);
   3055 			return ret;
   3056 		}
   3057 
   3058 		ppgtt->base.clear_range(&ppgtt->base,
   3059 					ppgtt->base.start,
   3060 					ppgtt->base.total,
   3061 					true);
   3062 
   3063 		dev_priv->mm.aliasing_ppgtt = ppgtt;
   3064 		WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
   3065 		dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
   3066 	}
   3067 
   3068 	return 0;
   3069 }
   3070 
   3071 void i915_gem_init_global_gtt(struct drm_device *dev)
   3072 {
   3073 	struct drm_i915_private *dev_priv = dev->dev_private;
   3074 	u64 gtt_size, mappable_size;
   3075 
   3076 	gtt_size = dev_priv->gtt.base.total;
   3077 	mappable_size = dev_priv->gtt.mappable_end;
   3078 
   3079 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
   3080 }
   3081 
   3082 void i915_global_gtt_cleanup(struct drm_device *dev)
   3083 {
   3084 	struct drm_i915_private *dev_priv = dev->dev_private;
   3085 	struct i915_address_space *vm = &dev_priv->gtt.base;
   3086 
   3087 	if (dev_priv->mm.aliasing_ppgtt) {
   3088 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
   3089 
   3090 		ppgtt->base.cleanup(&ppgtt->base);
   3091 		kfree(ppgtt);
   3092 	}
   3093 
   3094 	if (drm_mm_initialized(&vm->mm)) {
   3095 		if (intel_vgpu_active(dev))
   3096 			intel_vgt_deballoon();
   3097 
   3098 		drm_mm_takedown(&vm->mm);
   3099 		list_del(&vm->global_link);
   3100 	}
   3101 
   3102 	vm->cleanup(vm);
   3103 }
   3104 
   3105 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
   3106 {
   3107 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
   3108 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
   3109 	return snb_gmch_ctl << 20;
   3110 }
   3111 
   3112 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
   3113 {
   3114 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
   3115 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
   3116 	if (bdw_gmch_ctl)
   3117 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
   3118 
   3119 #ifdef CONFIG_X86_32
   3120 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
   3121 	if (bdw_gmch_ctl > 4)
   3122 		bdw_gmch_ctl = 4;
   3123 #endif
   3124 
   3125 	return bdw_gmch_ctl << 20;
   3126 }
   3127 
   3128 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
   3129 {
   3130 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
   3131 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
   3132 
   3133 	if (gmch_ctrl)
   3134 		return 1 << (20 + gmch_ctrl);
   3135 
   3136 	return 0;
   3137 }
   3138 
   3139 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
   3140 {
   3141 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
   3142 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
   3143 	return snb_gmch_ctl << 25; /* 32 MB units */
   3144 }
   3145 
   3146 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
   3147 {
   3148 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
   3149 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
   3150 	return bdw_gmch_ctl << 25; /* 32 MB units */
   3151 }
   3152 
   3153 static size_t chv_get_stolen_size(u16 gmch_ctrl)
   3154 {
   3155 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
   3156 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
   3157 
   3158 	/*
   3159 	 * 0x0  to 0x10: 32MB increments starting at 0MB
   3160 	 * 0x11 to 0x16: 4MB increments starting at 8MB
   3161 	 * 0x17 to 0x1d: 4MB increments start at 36MB
   3162 	 */
   3163 	if (gmch_ctrl < 0x11)
   3164 		return gmch_ctrl << 25;
   3165 	else if (gmch_ctrl < 0x17)
   3166 		return (gmch_ctrl - 0x11 + 2) << 22;
   3167 	else
   3168 		return (gmch_ctrl - 0x17 + 9) << 22;
   3169 }
   3170 
   3171 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
   3172 {
   3173 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
   3174 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
   3175 
   3176 	if (gen9_gmch_ctl < 0xf0)
   3177 		return gen9_gmch_ctl << 25; /* 32 MB units */
   3178 	else
   3179 		/* 4MB increments starting at 0xf0 for 4MB */
   3180 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
   3181 }
   3182 
   3183 static int ggtt_probe_common(struct drm_device *dev,
   3184 			     size_t gtt_size)
   3185 {
   3186 	struct drm_i915_private *dev_priv = dev->dev_private;
   3187 	struct i915_page_scratch *scratch_page;
   3188 	phys_addr_t gtt_phys_addr;
   3189 
   3190 	/* For Modern GENs the PTEs and register space are split in the BAR */
   3191 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
   3192 		(pci_resource_len(dev->pdev, 0) / 2);
   3193 
   3194 #ifdef __NetBSD__
   3195 	int ret;
   3196 	dev_priv->gtt.bst = dev->pdev->pd_pa.pa_memt;
   3197 	/* XXX errno NetBSD->Linux */
   3198 	ret = -bus_space_map(dev_priv->gtt.bst, gtt_phys_addr, gtt_size,
   3199 	    IS_BROXTON(dev) ? 0 : BUS_SPACE_MAP_PREFETCHABLE,
   3200 	    &dev_priv->gtt.bsh);
   3201 	if (ret) {
   3202 		DRM_ERROR("Failed to map the graphics translation table: %d\n",
   3203 		    ret);
   3204 		return ret;
   3205 	}
   3206 	dev_priv->gtt.size = gtt_size;
   3207 #else
   3208 	/*
   3209 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
   3210 	 * dropped. For WC mappings in general we have 64 byte burst writes
   3211 	 * when the WC buffer is flushed, so we can't use it, but have to
   3212 	 * resort to an uncached mapping. The WC issue is easily caught by the
   3213 	 * readback check when writing GTT PTE entries.
   3214 	 */
   3215 	if (IS_BROXTON(dev))
   3216 		dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
   3217 	else
   3218 		dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
   3219 	if (!dev_priv->gtt.gsm) {
   3220 		DRM_ERROR("Failed to map the gtt page table\n");
   3221 		return -ENOMEM;
   3222 	}
   3223 #endif
   3224 
   3225 	scratch_page = alloc_scratch_page(dev);
   3226 	if (IS_ERR(scratch_page)) {
   3227 		DRM_ERROR("Scratch setup failed\n");
   3228 		/* iounmap will also get called at remove, but meh */
   3229 #ifdef __NetBSD__
   3230 		bus_space_unmap(dev_priv->gtt.bst, dev_priv->gtt.bsh,
   3231 		    dev_priv->gtt.size);
   3232 #else
   3233 		iounmap(dev_priv->gtt.gsm);
   3234 #endif
   3235 		return PTR_ERR(scratch_page);
   3236 	}
   3237 
   3238 	dev_priv->gtt.base.scratch_page = scratch_page;
   3239 
   3240 	return 0;
   3241 }
   3242 
   3243 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
   3244  * bits. When using advanced contexts each context stores its own PAT, but
   3245  * writing this data shouldn't be harmful even in those cases. */
   3246 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
   3247 {
   3248 	uint64_t pat;
   3249 
   3250 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
   3251 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
   3252 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
   3253 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
   3254 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
   3255 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
   3256 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
   3257 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
   3258 
   3259 	if (!USES_PPGTT(dev_priv->dev))
   3260 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
   3261 		 * so RTL will always use the value corresponding to
   3262 		 * pat_sel = 000".
   3263 		 * So let's disable cache for GGTT to avoid screen corruptions.
   3264 		 * MOCS still can be used though.
   3265 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
   3266 		 * before this patch, i.e. the same uncached + snooping access
   3267 		 * like on gen6/7 seems to be in effect.
   3268 		 * - So this just fixes blitter/render access. Again it looks
   3269 		 * like it's not just uncached access, but uncached + snooping.
   3270 		 * So we can still hold onto all our assumptions wrt cpu
   3271 		 * clflushing on LLC machines.
   3272 		 */
   3273 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
   3274 
   3275 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
   3276 	 * write would work. */
   3277 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
   3278 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
   3279 }
   3280 
   3281 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
   3282 {
   3283 	uint64_t pat;
   3284 
   3285 	/*
   3286 	 * Map WB on BDW to snooped on CHV.
   3287 	 *
   3288 	 * Only the snoop bit has meaning for CHV, the rest is
   3289 	 * ignored.
   3290 	 *
   3291 	 * The hardware will never snoop for certain types of accesses:
   3292 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
   3293 	 * - PPGTT page tables
   3294 	 * - some other special cycles
   3295 	 *
   3296 	 * As with BDW, we also need to consider the following for GT accesses:
   3297 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
   3298 	 * so RTL will always use the value corresponding to
   3299 	 * pat_sel = 000".
   3300 	 * Which means we must set the snoop bit in PAT entry 0
   3301 	 * in order to keep the global status page working.
   3302 	 */
   3303 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
   3304 	      GEN8_PPAT(1, 0) |
   3305 	      GEN8_PPAT(2, 0) |
   3306 	      GEN8_PPAT(3, 0) |
   3307 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
   3308 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
   3309 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
   3310 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
   3311 
   3312 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
   3313 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
   3314 }
   3315 
   3316 static int gen8_gmch_probe(struct drm_device *dev,
   3317 			   u64 *gtt_total,
   3318 			   size_t *stolen,
   3319 			   phys_addr_t *mappable_base,
   3320 			   u64 *mappable_end)
   3321 {
   3322 	struct drm_i915_private *dev_priv = dev->dev_private;
   3323 	u64 gtt_size;
   3324 	u16 snb_gmch_ctl;
   3325 	int ret;
   3326 
   3327 	/* TODO: We're not aware of mappable constraints on gen8 yet */
   3328 	*mappable_base = pci_resource_start(dev->pdev, 2);
   3329 	*mappable_end = pci_resource_len(dev->pdev, 2);
   3330 
   3331 #ifndef __NetBSD__
   3332 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
   3333 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
   3334 #endif
   3335 
   3336 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
   3337 
   3338 	if (INTEL_INFO(dev)->gen >= 9) {
   3339 		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
   3340 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
   3341 	} else if (IS_CHERRYVIEW(dev)) {
   3342 		*stolen = chv_get_stolen_size(snb_gmch_ctl);
   3343 		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
   3344 	} else {
   3345 		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
   3346 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
   3347 	}
   3348 
   3349 	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
   3350 
   3351 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
   3352 		chv_setup_private_ppat(dev_priv);
   3353 	else
   3354 		bdw_setup_private_ppat(dev_priv);
   3355 
   3356 	ret = ggtt_probe_common(dev, gtt_size);
   3357 
   3358 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
   3359 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
   3360 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
   3361 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
   3362 
   3363 	/* XXX 39-bit addresses?  Really?  See pci_set_dma_mask above...  */
   3364 	dev_priv->gtt.max_paddr = __BITS(38, 0);
   3365 
   3366 	return ret;
   3367 }
   3368 
   3369 static int gen6_gmch_probe(struct drm_device *dev,
   3370 			   u64 *gtt_total,
   3371 			   size_t *stolen,
   3372 			   phys_addr_t *mappable_base,
   3373 			   u64 *mappable_end)
   3374 {
   3375 	struct drm_i915_private *dev_priv = dev->dev_private;
   3376 	unsigned int gtt_size;
   3377 	u16 snb_gmch_ctl;
   3378 	int ret;
   3379 
   3380 	*mappable_base = pci_resource_start(dev->pdev, 2);
   3381 	*mappable_end = pci_resource_len(dev->pdev, 2);
   3382 
   3383 	/* 64/512MB is the current min/max we actually know of, but this is just
   3384 	 * a coarse sanity check.
   3385 	 */
   3386 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
   3387 		DRM_ERROR("Unknown GMADR size (%"PRIx64")\n",
   3388 			  dev_priv->gtt.mappable_end);
   3389 		return -ENXIO;
   3390 	}
   3391 
   3392 #ifndef __NetBSD__
   3393 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
   3394 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
   3395 #endif
   3396 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
   3397 
   3398 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
   3399 
   3400 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
   3401 	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
   3402 
   3403 	ret = ggtt_probe_common(dev, gtt_size);
   3404 
   3405 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
   3406 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
   3407 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
   3408 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
   3409 
   3410 	dev_priv->gtt.max_paddr = __BITS(39, 0);
   3411 
   3412 	return ret;
   3413 }
   3414 
   3415 static void gen6_gmch_remove(struct i915_address_space *vm)
   3416 {
   3417 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
   3418 
   3419 #ifdef __NetBSD__
   3420 	bus_space_unmap(gtt->bst, gtt->bsh, gtt->size);
   3421 #else
   3422 	iounmap(gtt->gsm);
   3423 #endif
   3424 	free_scratch_page(vm->dev, vm->scratch_page);
   3425 }
   3426 
   3427 static int i915_gmch_probe(struct drm_device *dev,
   3428 			   u64 *gtt_total,
   3429 			   size_t *stolen,
   3430 			   phys_addr_t *mappable_base,
   3431 			   u64 *mappable_end)
   3432 {
   3433 	struct drm_i915_private *dev_priv = dev->dev_private;
   3434 	int ret;
   3435 
   3436 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
   3437 	if (!ret) {
   3438 		DRM_ERROR("failed to set up gmch\n");
   3439 		return -EIO;
   3440 	}
   3441 
   3442 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
   3443 
   3444 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
   3445 	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
   3446 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
   3447 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
   3448 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
   3449 
   3450 	if (unlikely(dev_priv->gtt.do_idle_maps))
   3451 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
   3452 
   3453 	if (INTEL_INFO(dev)->gen <= 2)
   3454 		dev_priv->gtt.max_paddr = __BITS(29, 0);
   3455 	else if ((INTEL_INFO(dev)->gen <= 3) ||
   3456 	    IS_BROADWATER(dev) || IS_CRESTLINE(dev))
   3457 		dev_priv->gtt.max_paddr = __BITS(31, 0);
   3458 	else if (INTEL_INFO(dev)->gen <= 5)
   3459 		dev_priv->gtt.max_paddr = __BITS(35, 0);
   3460 	else
   3461 		dev_priv->gtt.max_paddr = __BITS(39, 0);
   3462 
   3463 	return 0;
   3464 }
   3465 
   3466 static void i915_gmch_remove(struct i915_address_space *vm)
   3467 {
   3468 	intel_gmch_remove();
   3469 }
   3470 
   3471 int i915_gem_gtt_init(struct drm_device *dev)
   3472 {
   3473 	struct drm_i915_private *dev_priv = dev->dev_private;
   3474 	struct i915_gtt *gtt = &dev_priv->gtt;
   3475 	int ret;
   3476 
   3477 	if (INTEL_INFO(dev)->gen <= 5) {
   3478 		gtt->gtt_probe = i915_gmch_probe;
   3479 		gtt->base.cleanup = i915_gmch_remove;
   3480 	} else if (INTEL_INFO(dev)->gen < 8) {
   3481 		gtt->gtt_probe = gen6_gmch_probe;
   3482 		gtt->base.cleanup = gen6_gmch_remove;
   3483 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
   3484 			gtt->base.pte_encode = iris_pte_encode;
   3485 		else if (IS_HASWELL(dev))
   3486 			gtt->base.pte_encode = hsw_pte_encode;
   3487 		else if (IS_VALLEYVIEW(dev))
   3488 			gtt->base.pte_encode = byt_pte_encode;
   3489 		else if (INTEL_INFO(dev)->gen >= 7)
   3490 			gtt->base.pte_encode = ivb_pte_encode;
   3491 		else
   3492 			gtt->base.pte_encode = snb_pte_encode;
   3493 	} else {
   3494 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
   3495 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
   3496 	}
   3497 
   3498 	gtt->base.dev = dev;
   3499 
   3500 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
   3501 			     &gtt->mappable_base, &gtt->mappable_end);
   3502 	if (ret)
   3503 		return ret;
   3504 
   3505 #ifdef __NetBSD__
   3506 	dev_priv->gtt.pgfl = x86_select_freelist(dev_priv->gtt.max_paddr);
   3507 	ret = drm_limit_dma_space(dev, 0, dev_priv->gtt.max_paddr);
   3508 	if (ret) {
   3509 		DRM_ERROR("Unable to limit DMA paddr allocations: %d!\n", ret);
   3510 		gtt->base.cleanup(&gtt->base);
   3511 		return ret;
   3512 	}
   3513 #endif
   3514 
   3515 	/* GMADR is the PCI mmio aperture into the global GTT. */
   3516 	DRM_INFO("Memory usable by graphics device = %"PRIu64"M\n",
   3517 		 gtt->base.total >> 20);
   3518 	DRM_DEBUG_DRIVER("GMADR size = %"PRId64"M\n", gtt->mappable_end >> 20);
   3519 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
   3520 #ifdef CONFIG_INTEL_IOMMU
   3521 	if (intel_iommu_gfx_mapped)
   3522 		DRM_INFO("VT-d active for gfx access\n");
   3523 #endif
   3524 	/*
   3525 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
   3526 	 * user's requested state against the hardware/driver capabilities.  We
   3527 	 * do this now so that we can print out any log messages once rather
   3528 	 * than every time we check intel_enable_ppgtt().
   3529 	 */
   3530 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
   3531 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
   3532 
   3533 	return 0;
   3534 }
   3535 
   3536 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
   3537 {
   3538 	struct drm_i915_private *dev_priv = dev->dev_private;
   3539 	struct drm_i915_gem_object *obj;
   3540 	struct i915_address_space *vm;
   3541 	struct i915_vma *vma;
   3542 	bool flush;
   3543 
   3544 	i915_check_and_clear_faults(dev);
   3545 
   3546 	/* First fill our portion of the GTT with scratch pages */
   3547 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
   3548 				       dev_priv->gtt.base.start,
   3549 				       dev_priv->gtt.base.total,
   3550 				       true);
   3551 
   3552 	/* Cache flush objects bound into GGTT and rebind them. */
   3553 	vm = &dev_priv->gtt.base;
   3554 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
   3555 		flush = false;
   3556 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
   3557 			if (vma->vm != vm)
   3558 				continue;
   3559 
   3560 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
   3561 					      PIN_UPDATE));
   3562 
   3563 			flush = true;
   3564 		}
   3565 
   3566 		if (flush)
   3567 			i915_gem_clflush_object(obj, obj->pin_display);
   3568 	}
   3569 
   3570 	if (INTEL_INFO(dev)->gen >= 8) {
   3571 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
   3572 			chv_setup_private_ppat(dev_priv);
   3573 		else
   3574 			bdw_setup_private_ppat(dev_priv);
   3575 
   3576 		return;
   3577 	}
   3578 
   3579 	if (USES_PPGTT(dev)) {
   3580 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
   3581 			/* TODO: Perhaps it shouldn't be gen6 specific */
   3582 
   3583 			struct i915_hw_ppgtt *ppgtt =
   3584 					container_of(vm, struct i915_hw_ppgtt,
   3585 						     base);
   3586 
   3587 			if (i915_is_ggtt(vm))
   3588 				ppgtt = dev_priv->mm.aliasing_ppgtt;
   3589 
   3590 			gen6_write_page_range(dev_priv, &ppgtt->pd,
   3591 					      0, ppgtt->base.total);
   3592 		}
   3593 	}
   3594 
   3595 	i915_ggtt_flush(dev_priv);
   3596 }
   3597 
   3598 static struct i915_vma *
   3599 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
   3600 		      struct i915_address_space *vm,
   3601 		      const struct i915_ggtt_view *ggtt_view)
   3602 {
   3603 	struct i915_vma *vma;
   3604 
   3605 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
   3606 		return ERR_PTR(-EINVAL);
   3607 
   3608 	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
   3609 	if (vma == NULL)
   3610 		return ERR_PTR(-ENOMEM);
   3611 
   3612 	INIT_LIST_HEAD(&vma->vma_link);
   3613 	INIT_LIST_HEAD(&vma->mm_list);
   3614 	INIT_LIST_HEAD(&vma->exec_list);
   3615 	vma->vm = vm;
   3616 	vma->obj = obj;
   3617 
   3618 	if (i915_is_ggtt(vm))
   3619 		vma->ggtt_view = *ggtt_view;
   3620 
   3621 	list_add_tail(&vma->vma_link, &obj->vma_list);
   3622 	if (!i915_is_ggtt(vm))
   3623 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
   3624 
   3625 	return vma;
   3626 }
   3627 
   3628 struct i915_vma *
   3629 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
   3630 				  struct i915_address_space *vm)
   3631 {
   3632 	struct i915_vma *vma;
   3633 
   3634 	vma = i915_gem_obj_to_vma(obj, vm);
   3635 	if (!vma)
   3636 		vma = __i915_gem_vma_create(obj, vm,
   3637 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
   3638 
   3639 	return vma;
   3640 }
   3641 
   3642 struct i915_vma *
   3643 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
   3644 				       const struct i915_ggtt_view *view)
   3645 {
   3646 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
   3647 	struct i915_vma *vma;
   3648 
   3649 	if (WARN_ON(!view))
   3650 		return ERR_PTR(-EINVAL);
   3651 
   3652 	vma = i915_gem_obj_to_ggtt_view(obj, view);
   3653 
   3654 	if (IS_ERR(vma))
   3655 		return vma;
   3656 
   3657 	if (!vma)
   3658 		vma = __i915_gem_vma_create(obj, ggtt, view);
   3659 
   3660 	return vma;
   3661 
   3662 }
   3663 
   3664 #ifndef __NetBSD__
   3665 static struct scatterlist *
   3666 rotate_pages(dma_addr_t *in, unsigned int offset,
   3667 	     unsigned int width, unsigned int height,
   3668 	     struct sg_table *st, struct scatterlist *sg)
   3669 {
   3670 	unsigned int column, row;
   3671 	unsigned int src_idx;
   3672 
   3673 	if (!sg) {
   3674 		st->nents = 0;
   3675 		sg = st->sgl;
   3676 	}
   3677 
   3678 	for (column = 0; column < width; column++) {
   3679 		src_idx = width * (height - 1) + column;
   3680 		for (row = 0; row < height; row++) {
   3681 			st->nents++;
   3682 			/* We don't need the pages, but need to initialize
   3683 			 * the entries so the sg list can be happily traversed.
   3684 			 * The only thing we need are DMA addresses.
   3685 			 */
   3686 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
   3687 			sg_dma_address(sg) = in[offset + src_idx];
   3688 			sg_dma_len(sg) = PAGE_SIZE;
   3689 			sg = sg_next(sg);
   3690 			src_idx -= width;
   3691 		}
   3692 	}
   3693 
   3694 	return sg;
   3695 }
   3696 
   3697 static struct sg_table *
   3698 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
   3699 			  struct drm_i915_gem_object *obj)
   3700 {
   3701 	struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
   3702 	unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
   3703 	unsigned int size_pages_uv;
   3704 	struct sg_page_iter sg_iter;
   3705 	unsigned long i;
   3706 	dma_addr_t *page_addr_list;
   3707 	struct sg_table *st;
   3708 	unsigned int uv_start_page;
   3709 	struct scatterlist *sg;
   3710 	int ret = -ENOMEM;
   3711 
   3712 	/* Allocate a temporary list of source pages for random access. */
   3713 	page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
   3714 				       sizeof(dma_addr_t));
   3715 	if (!page_addr_list)
   3716 		return ERR_PTR(ret);
   3717 
   3718 	/* Account for UV plane with NV12. */
   3719 	if (rot_info->pixel_format == DRM_FORMAT_NV12)
   3720 		size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
   3721 	else
   3722 		size_pages_uv = 0;
   3723 
   3724 	/* Allocate target SG list. */
   3725 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   3726 	if (!st)
   3727 		goto err_st_alloc;
   3728 
   3729 	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
   3730 	if (ret)
   3731 		goto err_sg_alloc;
   3732 
   3733 	/* Populate source page list from the object. */
   3734 	i = 0;
   3735 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
   3736 		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
   3737 		i++;
   3738 	}
   3739 
   3740 	/* Rotate the pages. */
   3741 	sg = rotate_pages(page_addr_list, 0,
   3742 		     rot_info->width_pages, rot_info->height_pages,
   3743 		     st, NULL);
   3744 
   3745 	/* Append the UV plane if NV12. */
   3746 	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
   3747 		uv_start_page = size_pages;
   3748 
   3749 		/* Check for tile-row un-alignment. */
   3750 		if (offset_in_page(rot_info->uv_offset))
   3751 			uv_start_page--;
   3752 
   3753 		rot_info->uv_start_page = uv_start_page;
   3754 
   3755 		rotate_pages(page_addr_list, uv_start_page,
   3756 			     rot_info->width_pages_uv,
   3757 			     rot_info->height_pages_uv,
   3758 			     st, sg);
   3759 	}
   3760 
   3761 	DRM_DEBUG_KMS(
   3762 		      "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
   3763 		      obj->base.size, rot_info->pitch, rot_info->height,
   3764 		      rot_info->pixel_format, rot_info->width_pages,
   3765 		      rot_info->height_pages, size_pages + size_pages_uv,
   3766 		      size_pages);
   3767 
   3768 	drm_free_large(page_addr_list);
   3769 
   3770 	return st;
   3771 
   3772 err_sg_alloc:
   3773 	kfree(st);
   3774 err_st_alloc:
   3775 	drm_free_large(page_addr_list);
   3776 
   3777 	DRM_DEBUG_KMS(
   3778 		      "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
   3779 		      obj->base.size, ret, rot_info->pitch, rot_info->height,
   3780 		      rot_info->pixel_format, rot_info->width_pages,
   3781 		      rot_info->height_pages, size_pages + size_pages_uv,
   3782 		      size_pages);
   3783 	return ERR_PTR(ret);
   3784 }
   3785 
   3786 static struct sg_table *
   3787 intel_partial_pages(const struct i915_ggtt_view *view,
   3788 		    struct drm_i915_gem_object *obj)
   3789 {
   3790 	struct sg_table *st;
   3791 	struct scatterlist *sg;
   3792 	struct sg_page_iter obj_sg_iter;
   3793 	int ret = -ENOMEM;
   3794 
   3795 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   3796 	if (!st)
   3797 		goto err_st_alloc;
   3798 
   3799 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
   3800 	if (ret)
   3801 		goto err_sg_alloc;
   3802 
   3803 	sg = st->sgl;
   3804 	st->nents = 0;
   3805 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
   3806 		view->params.partial.offset)
   3807 	{
   3808 		if (st->nents >= view->params.partial.size)
   3809 			break;
   3810 
   3811 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
   3812 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
   3813 		sg_dma_len(sg) = PAGE_SIZE;
   3814 
   3815 		sg = sg_next(sg);
   3816 		st->nents++;
   3817 	}
   3818 
   3819 	return st;
   3820 
   3821 err_sg_alloc:
   3822 	kfree(st);
   3823 err_st_alloc:
   3824 	return ERR_PTR(ret);
   3825 }
   3826 #endif
   3827 
   3828 static int
   3829 i915_get_ggtt_vma_pages(struct i915_vma *vma)
   3830 {
   3831 	int ret = 0;
   3832 
   3833 	if (vma->ggtt_view.pages)
   3834 		return 0;
   3835 
   3836 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
   3837 		vma->ggtt_view.pages = vma->obj->pages;
   3838 #ifndef __NetBSD__
   3839 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
   3840 		vma->ggtt_view.pages =
   3841 			intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
   3842 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
   3843 		vma->ggtt_view.pages =
   3844 			intel_partial_pages(&vma->ggtt_view, vma->obj);
   3845 #endif
   3846 	else
   3847 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
   3848 			  vma->ggtt_view.type);
   3849 
   3850 	if (!vma->ggtt_view.pages) {
   3851 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
   3852 			  vma->ggtt_view.type);
   3853 		ret = -EINVAL;
   3854 	} else if (IS_ERR(vma->ggtt_view.pages)) {
   3855 		ret = PTR_ERR(vma->ggtt_view.pages);
   3856 		vma->ggtt_view.pages = NULL;
   3857 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
   3858 			  vma->ggtt_view.type, ret);
   3859 	}
   3860 
   3861 	return ret;
   3862 }
   3863 
   3864 /**
   3865  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
   3866  * @vma: VMA to map
   3867  * @cache_level: mapping cache level
   3868  * @flags: flags like global or local mapping
   3869  *
   3870  * DMA addresses are taken from the scatter-gather table of this object (or of
   3871  * this VMA in case of non-default GGTT views) and PTE entries set up.
   3872  * Note that DMA addresses are also the only part of the SG table we care about.
   3873  */
   3874 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
   3875 		  u32 flags)
   3876 {
   3877 	int ret;
   3878 	u32 bind_flags;
   3879 
   3880 	if (WARN_ON(flags == 0))
   3881 		return -EINVAL;
   3882 
   3883 	bind_flags = 0;
   3884 	if (flags & PIN_GLOBAL)
   3885 		bind_flags |= GLOBAL_BIND;
   3886 	if (flags & PIN_USER)
   3887 		bind_flags |= LOCAL_BIND;
   3888 
   3889 	if (flags & PIN_UPDATE)
   3890 		bind_flags |= vma->bound;
   3891 	else
   3892 		bind_flags &= ~vma->bound;
   3893 
   3894 	if (bind_flags == 0)
   3895 		return 0;
   3896 
   3897 	if (vma->bound == 0 && vma->vm->allocate_va_range) {
   3898 		trace_i915_va_alloc(vma->vm,
   3899 				    vma->node.start,
   3900 				    vma->node.size,
   3901 				    VM_TO_TRACE_NAME(vma->vm));
   3902 
   3903 		/* XXX: i915_vma_pin() will fix this +- hack */
   3904 		vma->pin_count++;
   3905 		ret = vma->vm->allocate_va_range(vma->vm,
   3906 						 vma->node.start,
   3907 						 vma->node.size);
   3908 		vma->pin_count--;
   3909 		if (ret)
   3910 			return ret;
   3911 	}
   3912 
   3913 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
   3914 	if (ret)
   3915 		return ret;
   3916 
   3917 	vma->bound |= bind_flags;
   3918 
   3919 	return 0;
   3920 }
   3921 
   3922 /**
   3923  * i915_ggtt_view_size - Get the size of a GGTT view.
   3924  * @obj: Object the view is of.
   3925  * @view: The view in question.
   3926  *
   3927  * @return The size of the GGTT view in bytes.
   3928  */
   3929 size_t
   3930 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
   3931 		    const struct i915_ggtt_view *view)
   3932 {
   3933 	if (view->type == I915_GGTT_VIEW_NORMAL) {
   3934 		return obj->base.size;
   3935 	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
   3936 		return view->rotation_info.size;
   3937 	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
   3938 		return view->params.partial.size << PAGE_SHIFT;
   3939 	} else {
   3940 		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
   3941 		return obj->base.size;
   3942 	}
   3943 }
   3944