i915_gem_gtt.c revision 1.8 1 /* $NetBSD: i915_gem_gtt.c,v 1.8 2018/08/27 06:33:34 riastradh Exp $ */
2
3 /*
4 * Copyright 2010 Daniel Vetter
5 * Copyright 2011-2014 Intel Corporation
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * IN THE SOFTWARE.
25 *
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: i915_gem_gtt.c,v 1.8 2018/08/27 06:33:34 riastradh Exp $");
30
31 #include <linux/err.h>
32 #include <linux/seq_file.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_vgpu.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 #ifdef __NetBSD__
41 #include <x86/machdep.h>
42 #include <x86/pte.h>
43 #define _PAGE_PRESENT PG_V /* 0x01 PTE is present / valid */
44 #define _PAGE_RW PG_RW /* 0x02 read/write */
45 #define _PAGE_PWT PG_WT /* 0x08 write-through */
46 #define _PAGE_PCD PG_N /* 0x10 page cache disabled / non-cacheable */
47 #define _PAGE_PAT PG_PAT /* 0x80 page attribute table on PTE */
48 #endif
49
50 /**
51 * DOC: Global GTT views
52 *
53 * Background and previous state
54 *
55 * Historically objects could exists (be bound) in global GTT space only as
56 * singular instances with a view representing all of the object's backing pages
57 * in a linear fashion. This view will be called a normal view.
58 *
59 * To support multiple views of the same object, where the number of mapped
60 * pages is not equal to the backing store, or where the layout of the pages
61 * is not linear, concept of a GGTT view was added.
62 *
63 * One example of an alternative view is a stereo display driven by a single
64 * image. In this case we would have a framebuffer looking like this
65 * (2x2 pages):
66 *
67 * 12
68 * 34
69 *
70 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
71 * rendering. In contrast, fed to the display engine would be an alternative
72 * view which could look something like this:
73 *
74 * 1212
75 * 3434
76 *
77 * In this example both the size and layout of pages in the alternative view is
78 * different from the normal view.
79 *
80 * Implementation and usage
81 *
82 * GGTT views are implemented using VMAs and are distinguished via enum
83 * i915_ggtt_view_type and struct i915_ggtt_view.
84 *
85 * A new flavour of core GEM functions which work with GGTT bound objects were
86 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
87 * renaming in large amounts of code. They take the struct i915_ggtt_view
88 * parameter encapsulating all metadata required to implement a view.
89 *
90 * As a helper for callers which are only interested in the normal view,
91 * globally const i915_ggtt_view_normal singleton instance exists. All old core
92 * GEM API functions, the ones not taking the view parameter, are operating on,
93 * or with the normal GGTT view.
94 *
95 * Code wanting to add or use a new GGTT view needs to:
96 *
97 * 1. Add a new enum with a suitable name.
98 * 2. Extend the metadata in the i915_ggtt_view structure if required.
99 * 3. Add support to i915_get_vma_pages().
100 *
101 * New views are required to build a scatter-gather table from within the
102 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
103 * exists for the lifetime of an VMA.
104 *
105 * Core API is designed to have copy semantics which means that passed in
106 * struct i915_ggtt_view does not need to be persistent (left around after
107 * calling the core API functions).
108 *
109 */
110
111 static int
112 i915_get_ggtt_vma_pages(struct i915_vma *vma);
113
114 const struct i915_ggtt_view i915_ggtt_view_normal;
115 const struct i915_ggtt_view i915_ggtt_view_rotated = {
116 .type = I915_GGTT_VIEW_ROTATED
117 };
118
119 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
120 {
121 bool has_aliasing_ppgtt;
122 bool has_full_ppgtt;
123
124 has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
125 has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
126
127 if (intel_vgpu_active(dev))
128 has_full_ppgtt = false; /* emulation is too hard */
129
130 /*
131 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
132 * execlists, the sole mechanism available to submit work.
133 */
134 if (INTEL_INFO(dev)->gen < 9 &&
135 (enable_ppgtt == 0 || !has_aliasing_ppgtt))
136 return 0;
137
138 if (enable_ppgtt == 1)
139 return 1;
140
141 if (enable_ppgtt == 2 && has_full_ppgtt)
142 return 2;
143
144 #ifdef CONFIG_INTEL_IOMMU
145 /* Disable ppgtt on SNB if VT-d is on. */
146 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
147 DRM_INFO("Disabling PPGTT because VT-d is on\n");
148 return 0;
149 }
150 #endif
151
152 /* Early VLV doesn't have this */
153 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
154 dev->pdev->revision < 0xb) {
155 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
156 return 0;
157 }
158
159 if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
160 return 2;
161 else
162 return has_aliasing_ppgtt ? 1 : 0;
163 }
164
165 static int ppgtt_bind_vma(struct i915_vma *vma,
166 enum i915_cache_level cache_level,
167 u32 unused)
168 {
169 u32 pte_flags = 0;
170
171 /* Currently applicable only to VLV */
172 if (vma->obj->gt_ro)
173 pte_flags |= PTE_READ_ONLY;
174
175 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
176 cache_level, pte_flags);
177
178 return 0;
179 }
180
181 static void ppgtt_unbind_vma(struct i915_vma *vma)
182 {
183 vma->vm->clear_range(vma->vm,
184 vma->node.start,
185 vma->obj->base.size,
186 true);
187 }
188
189 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
190 enum i915_cache_level level,
191 bool valid)
192 {
193 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
194 pte |= addr;
195
196 switch (level) {
197 case I915_CACHE_NONE:
198 pte |= PPAT_UNCACHED_INDEX;
199 break;
200 case I915_CACHE_WT:
201 pte |= PPAT_DISPLAY_ELLC_INDEX;
202 break;
203 default:
204 pte |= PPAT_CACHED_INDEX;
205 break;
206 }
207
208 return pte;
209 }
210
211 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
212 const enum i915_cache_level level)
213 {
214 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
215 pde |= addr;
216 if (level != I915_CACHE_NONE)
217 pde |= PPAT_CACHED_PDE_INDEX;
218 else
219 pde |= PPAT_UNCACHED_INDEX;
220 return pde;
221 }
222
223 #define gen8_pdpe_encode gen8_pde_encode
224 #define gen8_pml4e_encode gen8_pde_encode
225
226 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
227 enum i915_cache_level level,
228 bool valid, u32 unused)
229 {
230 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
231 pte |= GEN6_PTE_ADDR_ENCODE(addr);
232
233 switch (level) {
234 case I915_CACHE_L3_LLC:
235 case I915_CACHE_LLC:
236 pte |= GEN6_PTE_CACHE_LLC;
237 break;
238 case I915_CACHE_NONE:
239 pte |= GEN6_PTE_UNCACHED;
240 break;
241 default:
242 MISSING_CASE(level);
243 }
244
245 return pte;
246 }
247
248 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
249 enum i915_cache_level level,
250 bool valid, u32 unused)
251 {
252 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
253 pte |= GEN6_PTE_ADDR_ENCODE(addr);
254
255 switch (level) {
256 case I915_CACHE_L3_LLC:
257 pte |= GEN7_PTE_CACHE_L3_LLC;
258 break;
259 case I915_CACHE_LLC:
260 pte |= GEN6_PTE_CACHE_LLC;
261 break;
262 case I915_CACHE_NONE:
263 pte |= GEN6_PTE_UNCACHED;
264 break;
265 default:
266 MISSING_CASE(level);
267 }
268
269 return pte;
270 }
271
272 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
273 enum i915_cache_level level,
274 bool valid, u32 flags)
275 {
276 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
277 pte |= GEN6_PTE_ADDR_ENCODE(addr);
278
279 if (!(flags & PTE_READ_ONLY))
280 pte |= BYT_PTE_WRITEABLE;
281
282 if (level != I915_CACHE_NONE)
283 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
284
285 return pte;
286 }
287
288 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
289 enum i915_cache_level level,
290 bool valid, u32 unused)
291 {
292 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
293 pte |= HSW_PTE_ADDR_ENCODE(addr);
294
295 if (level != I915_CACHE_NONE)
296 pte |= HSW_WB_LLC_AGE3;
297
298 return pte;
299 }
300
301 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
302 enum i915_cache_level level,
303 bool valid, u32 unused)
304 {
305 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
306 pte |= HSW_PTE_ADDR_ENCODE(addr);
307
308 switch (level) {
309 case I915_CACHE_NONE:
310 break;
311 case I915_CACHE_WT:
312 pte |= HSW_WT_ELLC_LLC_AGE3;
313 break;
314 default:
315 pte |= HSW_WB_ELLC_LLC_AGE3;
316 break;
317 }
318
319 return pte;
320 }
321
322 static int __setup_page_dma(struct drm_device *dev,
323 struct i915_page_dma *p, gfp_t flags)
324 {
325 #ifdef __NetBSD__
326 int error;
327 int nseg = 1;
328
329 error = bus_dmamem_alloc(dev->dmat, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE,
330 &p->seg, nseg, &nseg, BUS_DMA_WAITOK);
331 if (error)
332 fail0: return -error; /* XXX errno NetBSD->Linux */
333 KASSERT(nseg == 1);
334 error = bus_dmamap_create(dev->dmat, PAGE_SIZE, 1, PAGE_SIZE,
335 PAGE_SIZE, BUS_DMA_WAITOK, &p->map);
336 if (error) {
337 fail1: bus_dmamem_free(dev->dmat, &p->seg, 1);
338 goto fail0;
339 }
340 error = bus_dmamap_load_raw(dev->dmat, p->map, &p->seg, 1, PAGE_SIZE,
341 BUS_DMA_WAITOK);
342 if (error) {
343 fail2: __unused
344 bus_dmamap_destroy(dev->dmat, p->map);
345 goto fail1;
346 }
347 #else
348 struct device *device = &dev->pdev->dev;
349
350 p->page = alloc_page(flags);
351 if (!p->page)
352 return -ENOMEM;
353
354 p->daddr = dma_map_page(device,
355 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
356
357 if (dma_mapping_error(device, p->daddr)) {
358 __free_page(p->page);
359 return -EINVAL;
360 }
361 #endif
362
363 return 0;
364 }
365
366 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
367 {
368 return __setup_page_dma(dev, p, GFP_KERNEL);
369 }
370
371 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
372 {
373 #ifdef __NetBSD__
374 if (WARN_ON(!p->map))
375 return;
376
377 bus_dmamap_unload(dev->dmat, p->map);
378 bus_dmamap_destroy(dev->dmat, p->dmap);
379 bus_dmamem_free(dev->dmat, &p->seg, 1);
380 #else
381 if (WARN_ON(!p->page))
382 return;
383
384 dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
385 __free_page(p->page);
386 memset(p, 0, sizeof(*p));
387 #endif
388 }
389
390 static void *kmap_page_dma(struct i915_page_dma *p)
391 {
392 #ifdef __NetBSD__
393 return kmap_atomic(PHYS_TO_VM_PAGE(p->seg.ds_addr));
394 #else
395 return kmap_atomic(p->page);
396 #endif
397 }
398
399 /* We use the flushing unmap only with ppgtt structures:
400 * page directories, page tables and scratch pages.
401 */
402 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
403 {
404 /* There are only few exceptions for gen >=6. chv and bxt.
405 * And we are not sure about the latter so play safe for now.
406 */
407 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
408 drm_clflush_virt_range(vaddr, PAGE_SIZE);
409
410 kunmap_atomic(vaddr);
411 }
412
413 #define kmap_px(px) kmap_page_dma(px_base(px))
414 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
415
416 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
417 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
418 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
419 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
420
421 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
422 const uint64_t val)
423 {
424 int i;
425 uint64_t * const vaddr = kmap_page_dma(p);
426
427 for (i = 0; i < 512; i++)
428 vaddr[i] = val;
429
430 kunmap_page_dma(dev, vaddr);
431 }
432
433 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
434 const uint32_t val32)
435 {
436 uint64_t v = val32;
437
438 v = v << 32 | val32;
439
440 fill_page_dma(dev, p, v);
441 }
442
443 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
444 {
445 struct i915_page_scratch *sp;
446 int ret;
447
448 sp = kzalloc(sizeof(*sp), GFP_KERNEL);
449 if (sp == NULL)
450 return ERR_PTR(-ENOMEM);
451
452 ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
453 if (ret) {
454 kfree(sp);
455 return ERR_PTR(ret);
456 }
457
458 set_pages_uc(px_page(sp), 1);
459
460 return sp;
461 }
462
463 static void free_scratch_page(struct drm_device *dev,
464 struct i915_page_scratch *sp)
465 {
466 set_pages_wb(px_page(sp), 1);
467
468 cleanup_px(dev, sp);
469 kfree(sp);
470 }
471
472 static struct i915_page_table *alloc_pt(struct drm_device *dev)
473 {
474 struct i915_page_table *pt;
475 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
476 GEN8_PTES : GEN6_PTES;
477 int ret = -ENOMEM;
478
479 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
480 if (!pt)
481 return ERR_PTR(-ENOMEM);
482
483 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
484 GFP_KERNEL);
485
486 if (!pt->used_ptes)
487 goto fail_bitmap;
488
489 ret = setup_px(dev, pt);
490 if (ret)
491 goto fail_page_m;
492
493 return pt;
494
495 fail_page_m:
496 kfree(pt->used_ptes);
497 fail_bitmap:
498 kfree(pt);
499
500 return ERR_PTR(ret);
501 }
502
503 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
504 {
505 cleanup_px(dev, pt);
506 kfree(pt->used_ptes);
507 kfree(pt);
508 }
509
510 static void gen8_initialize_pt(struct i915_address_space *vm,
511 struct i915_page_table *pt)
512 {
513 gen8_pte_t scratch_pte;
514
515 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
516 I915_CACHE_LLC, true);
517
518 fill_px(vm->dev, pt, scratch_pte);
519 }
520
521 static void gen6_initialize_pt(struct i915_address_space *vm,
522 struct i915_page_table *pt)
523 {
524 gen6_pte_t scratch_pte;
525
526 WARN_ON(px_dma(vm->scratch_page) == 0);
527
528 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
529 I915_CACHE_LLC, true, 0);
530
531 fill32_px(vm->dev, pt, scratch_pte);
532 }
533
534 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
535 {
536 struct i915_page_directory *pd;
537 int ret = -ENOMEM;
538
539 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
540 if (!pd)
541 return ERR_PTR(-ENOMEM);
542
543 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
544 sizeof(*pd->used_pdes), GFP_KERNEL);
545 if (!pd->used_pdes)
546 goto fail_bitmap;
547
548 ret = setup_px(dev, pd);
549 if (ret)
550 goto fail_page_m;
551
552 return pd;
553
554 fail_page_m:
555 kfree(pd->used_pdes);
556 fail_bitmap:
557 kfree(pd);
558
559 return ERR_PTR(ret);
560 }
561
562 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
563 {
564 if (px_page(pd)) {
565 cleanup_px(dev, pd);
566 kfree(pd->used_pdes);
567 kfree(pd);
568 }
569 }
570
571 static void gen8_initialize_pd(struct i915_address_space *vm,
572 struct i915_page_directory *pd)
573 {
574 gen8_pde_t scratch_pde;
575
576 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
577
578 fill_px(vm->dev, pd, scratch_pde);
579 }
580
581 static int __pdp_init(struct drm_device *dev,
582 struct i915_page_directory_pointer *pdp)
583 {
584 size_t pdpes = I915_PDPES_PER_PDP(dev);
585
586 pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
587 sizeof(unsigned long),
588 GFP_KERNEL);
589 if (!pdp->used_pdpes)
590 return -ENOMEM;
591
592 pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
593 GFP_KERNEL);
594 if (!pdp->page_directory) {
595 kfree(pdp->used_pdpes);
596 /* the PDP might be the statically allocated top level. Keep it
597 * as clean as possible */
598 pdp->used_pdpes = NULL;
599 return -ENOMEM;
600 }
601
602 return 0;
603 }
604
605 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
606 {
607 kfree(pdp->used_pdpes);
608 kfree(pdp->page_directory);
609 pdp->page_directory = NULL;
610 }
611
612 static struct
613 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
614 {
615 struct i915_page_directory_pointer *pdp;
616 int ret = -ENOMEM;
617
618 WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
619
620 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
621 if (!pdp)
622 return ERR_PTR(-ENOMEM);
623
624 ret = __pdp_init(dev, pdp);
625 if (ret)
626 goto fail_bitmap;
627
628 ret = setup_px(dev, pdp);
629 if (ret)
630 goto fail_page_m;
631
632 return pdp;
633
634 fail_page_m:
635 __pdp_fini(pdp);
636 fail_bitmap:
637 kfree(pdp);
638
639 return ERR_PTR(ret);
640 }
641
642 static void free_pdp(struct drm_device *dev,
643 struct i915_page_directory_pointer *pdp)
644 {
645 __pdp_fini(pdp);
646 if (USES_FULL_48BIT_PPGTT(dev)) {
647 cleanup_px(dev, pdp);
648 kfree(pdp);
649 }
650 }
651
652 static void gen8_initialize_pdp(struct i915_address_space *vm,
653 struct i915_page_directory_pointer *pdp)
654 {
655 gen8_ppgtt_pdpe_t scratch_pdpe;
656
657 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
658
659 fill_px(vm->dev, pdp, scratch_pdpe);
660 }
661
662 static void gen8_initialize_pml4(struct i915_address_space *vm,
663 struct i915_pml4 *pml4)
664 {
665 gen8_ppgtt_pml4e_t scratch_pml4e;
666
667 scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
668 I915_CACHE_LLC);
669
670 fill_px(vm->dev, pml4, scratch_pml4e);
671 }
672
673 static void
674 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
675 struct i915_page_directory_pointer *pdp,
676 struct i915_page_directory *pd,
677 int index)
678 {
679 gen8_ppgtt_pdpe_t *page_directorypo;
680
681 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
682 return;
683
684 page_directorypo = kmap_px(pdp);
685 page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
686 kunmap_px(ppgtt, page_directorypo);
687 }
688
689 static void
690 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
691 struct i915_pml4 *pml4,
692 struct i915_page_directory_pointer *pdp,
693 int index)
694 {
695 gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
696
697 WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
698 pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
699 kunmap_px(ppgtt, pagemap);
700 }
701
702 /* Broadwell Page Directory Pointer Descriptors */
703 static int gen8_write_pdp(struct drm_i915_gem_request *req,
704 unsigned entry,
705 dma_addr_t addr)
706 {
707 struct intel_engine_cs *ring = req->ring;
708 int ret;
709
710 BUG_ON(entry >= 4);
711
712 ret = intel_ring_begin(req, 6);
713 if (ret)
714 return ret;
715
716 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
717 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
718 intel_ring_emit(ring, upper_32_bits(addr));
719 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
720 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
721 intel_ring_emit(ring, lower_32_bits(addr));
722 intel_ring_advance(ring);
723
724 return 0;
725 }
726
727 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
728 struct drm_i915_gem_request *req)
729 {
730 int i, ret;
731
732 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
733 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
734
735 ret = gen8_write_pdp(req, i, pd_daddr);
736 if (ret)
737 return ret;
738 }
739
740 return 0;
741 }
742
743 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
744 struct drm_i915_gem_request *req)
745 {
746 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
747 }
748
749 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
750 struct i915_page_directory_pointer *pdp,
751 uint64_t start,
752 uint64_t length,
753 gen8_pte_t scratch_pte)
754 {
755 struct i915_hw_ppgtt *ppgtt =
756 container_of(vm, struct i915_hw_ppgtt, base);
757 gen8_pte_t *pt_vaddr;
758 unsigned pdpe = gen8_pdpe_index(start);
759 unsigned pde = gen8_pde_index(start);
760 unsigned pte = gen8_pte_index(start);
761 unsigned num_entries = length >> PAGE_SHIFT;
762 unsigned last_pte, i;
763
764 if (WARN_ON(!pdp))
765 return;
766
767 while (num_entries) {
768 struct i915_page_directory *pd;
769 struct i915_page_table *pt;
770
771 if (WARN_ON(!pdp->page_directory[pdpe]))
772 break;
773
774 pd = pdp->page_directory[pdpe];
775
776 if (WARN_ON(!pd->page_table[pde]))
777 break;
778
779 pt = pd->page_table[pde];
780
781 if (WARN_ON(!px_page(pt)))
782 break;
783
784 last_pte = pte + num_entries;
785 if (last_pte > GEN8_PTES)
786 last_pte = GEN8_PTES;
787
788 pt_vaddr = kmap_px(pt);
789
790 for (i = pte; i < last_pte; i++) {
791 pt_vaddr[i] = scratch_pte;
792 num_entries--;
793 }
794
795 kunmap_px(ppgtt, pt);
796
797 pte = 0;
798 if (++pde == I915_PDES) {
799 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
800 break;
801 pde = 0;
802 }
803 }
804 }
805
806 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
807 uint64_t start,
808 uint64_t length,
809 bool use_scratch)
810 {
811 struct i915_hw_ppgtt *ppgtt =
812 container_of(vm, struct i915_hw_ppgtt, base);
813 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
814 I915_CACHE_LLC, use_scratch);
815
816 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
817 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
818 scratch_pte);
819 } else {
820 uint64_t templ4, pml4e;
821 struct i915_page_directory_pointer *pdp;
822
823 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
824 gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
825 scratch_pte);
826 }
827 }
828 }
829
830 static void
831 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
832 struct i915_page_directory_pointer *pdp,
833 struct sg_page_iter *sg_iter,
834 uint64_t start,
835 enum i915_cache_level cache_level)
836 {
837 struct i915_hw_ppgtt *ppgtt =
838 container_of(vm, struct i915_hw_ppgtt, base);
839 gen8_pte_t *pt_vaddr;
840 unsigned pdpe = gen8_pdpe_index(start);
841 unsigned pde = gen8_pde_index(start);
842 unsigned pte = gen8_pte_index(start);
843
844 pt_vaddr = NULL;
845
846 while (__sg_page_iter_next(sg_iter)) {
847 if (pt_vaddr == NULL) {
848 struct i915_page_directory *pd = pdp->page_directory[pdpe];
849 struct i915_page_table *pt = pd->page_table[pde];
850 pt_vaddr = kmap_px(pt);
851 }
852
853 pt_vaddr[pte] =
854 gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
855 cache_level, true);
856 if (++pte == GEN8_PTES) {
857 kunmap_px(ppgtt, pt_vaddr);
858 pt_vaddr = NULL;
859 if (++pde == I915_PDES) {
860 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
861 break;
862 pde = 0;
863 }
864 pte = 0;
865 }
866 }
867
868 if (pt_vaddr)
869 kunmap_px(ppgtt, pt_vaddr);
870 }
871
872 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
873 struct sg_table *pages,
874 uint64_t start,
875 enum i915_cache_level cache_level,
876 u32 unused)
877 {
878 struct i915_hw_ppgtt *ppgtt =
879 container_of(vm, struct i915_hw_ppgtt, base);
880 struct sg_page_iter sg_iter;
881
882 __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
883
884 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
885 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
886 cache_level);
887 } else {
888 struct i915_page_directory_pointer *pdp;
889 uint64_t templ4, pml4e;
890 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
891
892 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
893 gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
894 start, cache_level);
895 }
896 }
897 }
898
899 static void gen8_free_page_tables(struct drm_device *dev,
900 struct i915_page_directory *pd)
901 {
902 int i;
903
904 if (!px_page(pd))
905 return;
906
907 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
908 if (WARN_ON(!pd->page_table[i]))
909 continue;
910
911 free_pt(dev, pd->page_table[i]);
912 pd->page_table[i] = NULL;
913 }
914 }
915
916 static int gen8_init_scratch(struct i915_address_space *vm)
917 {
918 struct drm_device *dev = vm->dev;
919
920 vm->scratch_page = alloc_scratch_page(dev);
921 if (IS_ERR(vm->scratch_page))
922 return PTR_ERR(vm->scratch_page);
923
924 vm->scratch_pt = alloc_pt(dev);
925 if (IS_ERR(vm->scratch_pt)) {
926 free_scratch_page(dev, vm->scratch_page);
927 return PTR_ERR(vm->scratch_pt);
928 }
929
930 vm->scratch_pd = alloc_pd(dev);
931 if (IS_ERR(vm->scratch_pd)) {
932 free_pt(dev, vm->scratch_pt);
933 free_scratch_page(dev, vm->scratch_page);
934 return PTR_ERR(vm->scratch_pd);
935 }
936
937 if (USES_FULL_48BIT_PPGTT(dev)) {
938 vm->scratch_pdp = alloc_pdp(dev);
939 if (IS_ERR(vm->scratch_pdp)) {
940 free_pd(dev, vm->scratch_pd);
941 free_pt(dev, vm->scratch_pt);
942 free_scratch_page(dev, vm->scratch_page);
943 return PTR_ERR(vm->scratch_pdp);
944 }
945 }
946
947 gen8_initialize_pt(vm, vm->scratch_pt);
948 gen8_initialize_pd(vm, vm->scratch_pd);
949 if (USES_FULL_48BIT_PPGTT(dev))
950 gen8_initialize_pdp(vm, vm->scratch_pdp);
951
952 return 0;
953 }
954
955 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
956 {
957 enum vgt_g2v_type msg;
958 struct drm_device *dev = ppgtt->base.dev;
959 struct drm_i915_private *dev_priv = dev->dev_private;
960 unsigned int offset = vgtif_reg(pdp0_lo);
961 int i;
962
963 if (USES_FULL_48BIT_PPGTT(dev)) {
964 u64 daddr = px_dma(&ppgtt->pml4);
965
966 I915_WRITE(offset, lower_32_bits(daddr));
967 I915_WRITE(offset + 4, upper_32_bits(daddr));
968
969 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
970 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
971 } else {
972 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
973 u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
974
975 I915_WRITE(offset, lower_32_bits(daddr));
976 I915_WRITE(offset + 4, upper_32_bits(daddr));
977
978 offset += 8;
979 }
980
981 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
982 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
983 }
984
985 I915_WRITE(vgtif_reg(g2v_notify), msg);
986
987 return 0;
988 }
989
990 static void gen8_free_scratch(struct i915_address_space *vm)
991 {
992 struct drm_device *dev = vm->dev;
993
994 if (USES_FULL_48BIT_PPGTT(dev))
995 free_pdp(dev, vm->scratch_pdp);
996 free_pd(dev, vm->scratch_pd);
997 free_pt(dev, vm->scratch_pt);
998 free_scratch_page(dev, vm->scratch_page);
999 }
1000
1001 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
1002 struct i915_page_directory_pointer *pdp)
1003 {
1004 int i;
1005
1006 for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
1007 if (WARN_ON(!pdp->page_directory[i]))
1008 continue;
1009
1010 gen8_free_page_tables(dev, pdp->page_directory[i]);
1011 free_pd(dev, pdp->page_directory[i]);
1012 }
1013
1014 free_pdp(dev, pdp);
1015 }
1016
1017 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1018 {
1019 int i;
1020
1021 for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
1022 if (WARN_ON(!ppgtt->pml4.pdps[i]))
1023 continue;
1024
1025 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
1026 }
1027
1028 cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
1029 }
1030
1031 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1032 {
1033 struct i915_hw_ppgtt *ppgtt =
1034 container_of(vm, struct i915_hw_ppgtt, base);
1035
1036 if (intel_vgpu_active(vm->dev))
1037 gen8_ppgtt_notify_vgt(ppgtt, false);
1038
1039 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
1040 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
1041 else
1042 gen8_ppgtt_cleanup_4lvl(ppgtt);
1043
1044 gen8_free_scratch(vm);
1045 }
1046
1047 /**
1048 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1049 * @vm: Master vm structure.
1050 * @pd: Page directory for this address range.
1051 * @start: Starting virtual address to begin allocations.
1052 * @length: Size of the allocations.
1053 * @new_pts: Bitmap set by function with new allocations. Likely used by the
1054 * caller to free on error.
1055 *
1056 * Allocate the required number of page tables. Extremely similar to
1057 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1058 * the page directory boundary (instead of the page directory pointer). That
1059 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1060 * possible, and likely that the caller will need to use multiple calls of this
1061 * function to achieve the appropriate allocation.
1062 *
1063 * Return: 0 if success; negative error code otherwise.
1064 */
1065 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1066 struct i915_page_directory *pd,
1067 uint64_t start,
1068 uint64_t length,
1069 unsigned long *new_pts)
1070 {
1071 struct drm_device *dev = vm->dev;
1072 struct i915_page_table *pt;
1073 uint64_t temp;
1074 uint32_t pde;
1075
1076 gen8_for_each_pde(pt, pd, start, length, temp, pde) {
1077 /* Don't reallocate page tables */
1078 if (test_bit(pde, pd->used_pdes)) {
1079 /* Scratch is never allocated this way */
1080 WARN_ON(pt == vm->scratch_pt);
1081 continue;
1082 }
1083
1084 pt = alloc_pt(dev);
1085 if (IS_ERR(pt))
1086 goto unwind_out;
1087
1088 gen8_initialize_pt(vm, pt);
1089 pd->page_table[pde] = pt;
1090 __set_bit(pde, new_pts);
1091 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1092 }
1093
1094 return 0;
1095
1096 unwind_out:
1097 for_each_set_bit(pde, new_pts, I915_PDES)
1098 free_pt(dev, pd->page_table[pde]);
1099
1100 return -ENOMEM;
1101 }
1102
1103 /**
1104 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1105 * @vm: Master vm structure.
1106 * @pdp: Page directory pointer for this address range.
1107 * @start: Starting virtual address to begin allocations.
1108 * @length: Size of the allocations.
1109 * @new_pds: Bitmap set by function with new allocations. Likely used by the
1110 * caller to free on error.
1111 *
1112 * Allocate the required number of page directories starting at the pde index of
1113 * @start, and ending at the pde index @start + @length. This function will skip
1114 * over already allocated page directories within the range, and only allocate
1115 * new ones, setting the appropriate pointer within the pdp as well as the
1116 * correct position in the bitmap @new_pds.
1117 *
1118 * The function will only allocate the pages within the range for a give page
1119 * directory pointer. In other words, if @start + @length straddles a virtually
1120 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1121 * required by the caller, This is not currently possible, and the BUG in the
1122 * code will prevent it.
1123 *
1124 * Return: 0 if success; negative error code otherwise.
1125 */
1126 static int
1127 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1128 struct i915_page_directory_pointer *pdp,
1129 uint64_t start,
1130 uint64_t length,
1131 unsigned long *new_pds)
1132 {
1133 struct drm_device *dev = vm->dev;
1134 struct i915_page_directory *pd;
1135 uint64_t temp;
1136 uint32_t pdpe;
1137 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1138
1139 WARN_ON(!bitmap_empty(new_pds, pdpes));
1140
1141 gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1142 if (test_bit(pdpe, pdp->used_pdpes))
1143 continue;
1144
1145 pd = alloc_pd(dev);
1146 if (IS_ERR(pd))
1147 goto unwind_out;
1148
1149 gen8_initialize_pd(vm, pd);
1150 pdp->page_directory[pdpe] = pd;
1151 __set_bit(pdpe, new_pds);
1152 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1153 }
1154
1155 return 0;
1156
1157 unwind_out:
1158 for_each_set_bit(pdpe, new_pds, pdpes)
1159 free_pd(dev, pdp->page_directory[pdpe]);
1160
1161 return -ENOMEM;
1162 }
1163
1164 /**
1165 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1166 * @vm: Master vm structure.
1167 * @pml4: Page map level 4 for this address range.
1168 * @start: Starting virtual address to begin allocations.
1169 * @length: Size of the allocations.
1170 * @new_pdps: Bitmap set by function with new allocations. Likely used by the
1171 * caller to free on error.
1172 *
1173 * Allocate the required number of page directory pointers. Extremely similar to
1174 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1175 * The main difference is here we are limited by the pml4 boundary (instead of
1176 * the page directory pointer).
1177 *
1178 * Return: 0 if success; negative error code otherwise.
1179 */
1180 static int
1181 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1182 struct i915_pml4 *pml4,
1183 uint64_t start,
1184 uint64_t length,
1185 unsigned long *new_pdps)
1186 {
1187 struct drm_device *dev = vm->dev;
1188 struct i915_page_directory_pointer *pdp;
1189 uint64_t temp;
1190 uint32_t pml4e;
1191
1192 WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1193
1194 gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1195 if (!test_bit(pml4e, pml4->used_pml4es)) {
1196 pdp = alloc_pdp(dev);
1197 if (IS_ERR(pdp))
1198 goto unwind_out;
1199
1200 gen8_initialize_pdp(vm, pdp);
1201 pml4->pdps[pml4e] = pdp;
1202 __set_bit(pml4e, new_pdps);
1203 trace_i915_page_directory_pointer_entry_alloc(vm,
1204 pml4e,
1205 start,
1206 GEN8_PML4E_SHIFT);
1207 }
1208 }
1209
1210 return 0;
1211
1212 unwind_out:
1213 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1214 free_pdp(dev, pml4->pdps[pml4e]);
1215
1216 return -ENOMEM;
1217 }
1218
1219 static void
1220 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1221 {
1222 kfree(new_pts);
1223 kfree(new_pds);
1224 }
1225
1226 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1227 * of these are based on the number of PDPEs in the system.
1228 */
1229 static
1230 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1231 unsigned long **new_pts,
1232 uint32_t pdpes)
1233 {
1234 unsigned long *pds;
1235 unsigned long *pts;
1236
1237 pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1238 if (!pds)
1239 return -ENOMEM;
1240
1241 pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1242 GFP_TEMPORARY);
1243 if (!pts)
1244 goto err_out;
1245
1246 *new_pds = pds;
1247 *new_pts = pts;
1248
1249 return 0;
1250
1251 err_out:
1252 free_gen8_temp_bitmaps(pds, pts);
1253 return -ENOMEM;
1254 }
1255
1256 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1257 * the page table structures, we mark them dirty so that
1258 * context switching/execlist queuing code takes extra steps
1259 * to ensure that tlbs are flushed.
1260 */
1261 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1262 {
1263 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1264 }
1265
1266 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1267 struct i915_page_directory_pointer *pdp,
1268 uint64_t start,
1269 uint64_t length)
1270 {
1271 struct i915_hw_ppgtt *ppgtt =
1272 container_of(vm, struct i915_hw_ppgtt, base);
1273 unsigned long *new_page_dirs, *new_page_tables;
1274 struct drm_device *dev = vm->dev;
1275 struct i915_page_directory *pd;
1276 const uint64_t orig_start = start;
1277 const uint64_t orig_length = length;
1278 uint64_t temp;
1279 uint32_t pdpe;
1280 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1281 int ret;
1282
1283 /* Wrap is never okay since we can only represent 48b, and we don't
1284 * actually use the other side of the canonical address space.
1285 */
1286 if (WARN_ON(start + length < start))
1287 return -ENODEV;
1288
1289 if (WARN_ON(start + length > vm->total))
1290 return -ENODEV;
1291
1292 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1293 if (ret)
1294 return ret;
1295
1296 /* Do the allocations first so we can easily bail out */
1297 ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1298 new_page_dirs);
1299 if (ret) {
1300 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1301 return ret;
1302 }
1303
1304 /* For every page directory referenced, allocate page tables */
1305 gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1306 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1307 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1308 if (ret)
1309 goto err_out;
1310 }
1311
1312 start = orig_start;
1313 length = orig_length;
1314
1315 /* Allocations have completed successfully, so set the bitmaps, and do
1316 * the mappings. */
1317 gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1318 gen8_pde_t *const page_directory = kmap_px(pd);
1319 struct i915_page_table *pt;
1320 uint64_t pd_len = length;
1321 uint64_t pd_start = start;
1322 uint32_t pde;
1323
1324 /* Every pd should be allocated, we just did that above. */
1325 WARN_ON(!pd);
1326
1327 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1328 /* Same reasoning as pd */
1329 WARN_ON(!pt);
1330 WARN_ON(!pd_len);
1331 WARN_ON(!gen8_pte_count(pd_start, pd_len));
1332
1333 /* Set our used ptes within the page table */
1334 bitmap_set(pt->used_ptes,
1335 gen8_pte_index(pd_start),
1336 gen8_pte_count(pd_start, pd_len));
1337
1338 /* Our pde is now pointing to the pagetable, pt */
1339 __set_bit(pde, pd->used_pdes);
1340
1341 /* Map the PDE to the page table */
1342 page_directory[pde] = gen8_pde_encode(px_dma(pt),
1343 I915_CACHE_LLC);
1344 trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1345 gen8_pte_index(start),
1346 gen8_pte_count(start, length),
1347 GEN8_PTES);
1348
1349 /* NB: We haven't yet mapped ptes to pages. At this
1350 * point we're still relying on insert_entries() */
1351 }
1352
1353 kunmap_px(ppgtt, page_directory);
1354 __set_bit(pdpe, pdp->used_pdpes);
1355 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1356 }
1357
1358 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1359 mark_tlbs_dirty(ppgtt);
1360 return 0;
1361
1362 err_out:
1363 while (pdpe--) {
1364 for_each_set_bit(temp, new_page_tables + pdpe *
1365 BITS_TO_LONGS(I915_PDES), I915_PDES)
1366 free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1367 }
1368
1369 for_each_set_bit(pdpe, new_page_dirs, pdpes)
1370 free_pd(dev, pdp->page_directory[pdpe]);
1371
1372 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1373 mark_tlbs_dirty(ppgtt);
1374 return ret;
1375 }
1376
1377 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1378 struct i915_pml4 *pml4,
1379 uint64_t start,
1380 uint64_t length)
1381 {
1382 DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1383 struct i915_hw_ppgtt *ppgtt =
1384 container_of(vm, struct i915_hw_ppgtt, base);
1385 struct i915_page_directory_pointer *pdp;
1386 uint64_t temp, pml4e;
1387 int ret = 0;
1388
1389 /* Do the pml4 allocations first, so we don't need to track the newly
1390 * allocated tables below the pdp */
1391 bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1392
1393 /* The pagedirectory and pagetable allocations are done in the shared 3
1394 * and 4 level code. Just allocate the pdps.
1395 */
1396 ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1397 new_pdps);
1398 if (ret)
1399 return ret;
1400
1401 WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1402 "The allocation has spanned more than 512GB. "
1403 "It is highly likely this is incorrect.");
1404
1405 gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1406 WARN_ON(!pdp);
1407
1408 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1409 if (ret)
1410 goto err_out;
1411
1412 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1413 }
1414
1415 bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1416 GEN8_PML4ES_PER_PML4);
1417
1418 return 0;
1419
1420 err_out:
1421 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1422 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1423
1424 return ret;
1425 }
1426
1427 static int gen8_alloc_va_range(struct i915_address_space *vm,
1428 uint64_t start, uint64_t length)
1429 {
1430 struct i915_hw_ppgtt *ppgtt =
1431 container_of(vm, struct i915_hw_ppgtt, base);
1432
1433 if (USES_FULL_48BIT_PPGTT(vm->dev))
1434 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1435 else
1436 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1437 }
1438
1439 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1440 uint64_t start, uint64_t length,
1441 gen8_pte_t scratch_pte,
1442 struct seq_file *m)
1443 {
1444 struct i915_page_directory *pd;
1445 uint64_t temp;
1446 uint32_t pdpe;
1447
1448 gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1449 struct i915_page_table *pt;
1450 uint64_t pd_len = length;
1451 uint64_t pd_start = start;
1452 uint32_t pde;
1453
1454 if (!test_bit(pdpe, pdp->used_pdpes))
1455 continue;
1456
1457 seq_printf(m, "\tPDPE #%d\n", pdpe);
1458 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1459 uint32_t pte;
1460 gen8_pte_t *pt_vaddr;
1461
1462 if (!test_bit(pde, pd->used_pdes))
1463 continue;
1464
1465 pt_vaddr = kmap_px(pt);
1466 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1467 uint64_t va =
1468 (pdpe << GEN8_PDPE_SHIFT) |
1469 (pde << GEN8_PDE_SHIFT) |
1470 (pte << GEN8_PTE_SHIFT);
1471 int i;
1472 bool found = false;
1473
1474 for (i = 0; i < 4; i++)
1475 if (pt_vaddr[pte + i] != scratch_pte)
1476 found = true;
1477 if (!found)
1478 continue;
1479
1480 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1481 for (i = 0; i < 4; i++) {
1482 if (pt_vaddr[pte + i] != scratch_pte)
1483 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1484 else
1485 seq_puts(m, " SCRATCH ");
1486 }
1487 seq_puts(m, "\n");
1488 }
1489 /* don't use kunmap_px, it could trigger
1490 * an unnecessary flush.
1491 */
1492 kunmap_atomic(pt_vaddr);
1493 }
1494 }
1495 }
1496
1497 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1498 {
1499 struct i915_address_space *vm = &ppgtt->base;
1500 uint64_t start = ppgtt->base.start;
1501 uint64_t length = ppgtt->base.total;
1502 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1503 I915_CACHE_LLC, true);
1504
1505 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1506 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1507 } else {
1508 uint64_t templ4, pml4e;
1509 struct i915_pml4 *pml4 = &ppgtt->pml4;
1510 struct i915_page_directory_pointer *pdp;
1511
1512 gen8_for_each_pml4e(pdp, pml4, start, length, templ4, pml4e) {
1513 if (!test_bit(pml4e, pml4->used_pml4es))
1514 continue;
1515
1516 seq_printf(m, " PML4E #%llu\n", pml4e);
1517 gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1518 }
1519 }
1520 }
1521
1522 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1523 {
1524 unsigned long *new_page_dirs, *new_page_tables;
1525 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1526 int ret;
1527
1528 /* We allocate temp bitmap for page tables for no gain
1529 * but as this is for init only, lets keep the things simple
1530 */
1531 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1532 if (ret)
1533 return ret;
1534
1535 /* Allocate for all pdps regardless of how the ppgtt
1536 * was defined.
1537 */
1538 ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1539 0, 1ULL << 32,
1540 new_page_dirs);
1541 if (!ret)
1542 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1543
1544 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1545
1546 return ret;
1547 }
1548
1549 /*
1550 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1551 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1552 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1553 * space.
1554 *
1555 */
1556 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1557 {
1558 int ret;
1559
1560 ret = gen8_init_scratch(&ppgtt->base);
1561 if (ret)
1562 return ret;
1563
1564 ppgtt->base.start = 0;
1565 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1566 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1567 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1568 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1569 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1570 ppgtt->base.bind_vma = ppgtt_bind_vma;
1571 ppgtt->debug_dump = gen8_dump_ppgtt;
1572
1573 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1574 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1575 if (ret)
1576 goto free_scratch;
1577
1578 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1579
1580 ppgtt->base.total = 1ULL << 48;
1581 ppgtt->switch_mm = gen8_48b_mm_switch;
1582 } else {
1583 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1584 if (ret)
1585 goto free_scratch;
1586
1587 ppgtt->base.total = 1ULL << 32;
1588 ppgtt->switch_mm = gen8_legacy_mm_switch;
1589 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1590 0, 0,
1591 GEN8_PML4E_SHIFT);
1592
1593 if (intel_vgpu_active(ppgtt->base.dev)) {
1594 ret = gen8_preallocate_top_level_pdps(ppgtt);
1595 if (ret)
1596 goto free_scratch;
1597 }
1598 }
1599
1600 if (intel_vgpu_active(ppgtt->base.dev))
1601 gen8_ppgtt_notify_vgt(ppgtt, true);
1602
1603 return 0;
1604
1605 free_scratch:
1606 gen8_free_scratch(&ppgtt->base);
1607 return ret;
1608 }
1609
1610 #ifndef __NetBSD__
1611 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1612 {
1613 struct i915_address_space *vm = &ppgtt->base;
1614 struct i915_page_table *unused;
1615 gen6_pte_t scratch_pte;
1616 uint32_t pd_entry;
1617 uint32_t pte, pde, temp;
1618 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1619
1620 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1621 I915_CACHE_LLC, true, 0);
1622
1623 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1624 u32 expected;
1625 gen6_pte_t *pt_vaddr;
1626 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1627 pd_entry = readl(ppgtt->pd_addr + pde);
1628 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1629
1630 if (pd_entry != expected)
1631 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1632 pde,
1633 pd_entry,
1634 expected);
1635 seq_printf(m, "\tPDE: %x\n", pd_entry);
1636
1637 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1638
1639 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1640 unsigned long va =
1641 (pde * PAGE_SIZE * GEN6_PTES) +
1642 (pte * PAGE_SIZE);
1643 int i;
1644 bool found = false;
1645 for (i = 0; i < 4; i++)
1646 if (pt_vaddr[pte + i] != scratch_pte)
1647 found = true;
1648 if (!found)
1649 continue;
1650
1651 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1652 for (i = 0; i < 4; i++) {
1653 if (pt_vaddr[pte + i] != scratch_pte)
1654 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1655 else
1656 seq_puts(m, " SCRATCH ");
1657 }
1658 seq_puts(m, "\n");
1659 }
1660 kunmap_px(ppgtt, pt_vaddr);
1661 }
1662 }
1663 #endif
1664
1665 /* Write pde (index) from the page directory @pd to the page table @pt */
1666 static void gen6_write_pde(struct i915_page_directory *pd,
1667 const int pde, struct i915_page_table *pt)
1668 {
1669 /* Caller needs to make sure the write completes if necessary */
1670 struct i915_hw_ppgtt *ppgtt =
1671 container_of(pd, struct i915_hw_ppgtt, pd);
1672 #ifdef __NetBSD__
1673 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
1674 const bus_space_tag_t bst = dev_priv->gtt.bst;
1675 const bus_space_handle_t bsh = dev_priv->gtt.bsh;
1676 const bus_addr_t pd_base = ppgtt->pd.base.ggtt_offset;
1677 #endif
1678 u32 pd_entry;
1679
1680 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1681 pd_entry |= GEN6_PDE_VALID;
1682
1683 #ifdef __NetBSD__
1684 bus_space_write_4(bst, bsh, pd_base + pde, pd_entry);
1685 #else
1686 writel(pd_entry, ppgtt->pd_addr + pde);
1687 #endif
1688 }
1689
1690 /* Write all the page tables found in the ppgtt structure to incrementing page
1691 * directories. */
1692 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1693 struct i915_page_directory *pd,
1694 uint32_t start, uint32_t length)
1695 {
1696 struct i915_page_table *pt;
1697 uint32_t pde, temp;
1698
1699 gen6_for_each_pde(pt, pd, start, length, temp, pde)
1700 gen6_write_pde(pd, pde, pt);
1701
1702 /* Make sure write is complete before other code can use this page
1703 * table. Also require for WC mapped PTEs */
1704 #ifdef __NetBSD__
1705 bus_space_read_4(dev_priv->gtt.bst, dev_priv->gtt.bsh, 0);
1706 #else
1707 readl(dev_priv->gtt.gsm);
1708 #endif
1709 }
1710
1711 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1712 {
1713 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1714
1715 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1716 }
1717
1718 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1719 struct drm_i915_gem_request *req)
1720 {
1721 struct intel_engine_cs *ring = req->ring;
1722 int ret;
1723
1724 /* NB: TLBs must be flushed and invalidated before a switch */
1725 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1726 if (ret)
1727 return ret;
1728
1729 ret = intel_ring_begin(req, 6);
1730 if (ret)
1731 return ret;
1732
1733 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1734 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1735 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1736 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1737 intel_ring_emit(ring, get_pd_offset(ppgtt));
1738 intel_ring_emit(ring, MI_NOOP);
1739 intel_ring_advance(ring);
1740
1741 return 0;
1742 }
1743
1744 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1745 struct drm_i915_gem_request *req)
1746 {
1747 struct intel_engine_cs *ring = req->ring;
1748 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1749
1750 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1751 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1752 return 0;
1753 }
1754
1755 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1756 struct drm_i915_gem_request *req)
1757 {
1758 struct intel_engine_cs *ring = req->ring;
1759 int ret;
1760
1761 /* NB: TLBs must be flushed and invalidated before a switch */
1762 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1763 if (ret)
1764 return ret;
1765
1766 ret = intel_ring_begin(req, 6);
1767 if (ret)
1768 return ret;
1769
1770 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1771 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1772 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1773 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1774 intel_ring_emit(ring, get_pd_offset(ppgtt));
1775 intel_ring_emit(ring, MI_NOOP);
1776 intel_ring_advance(ring);
1777
1778 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1779 if (ring->id != RCS) {
1780 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1781 if (ret)
1782 return ret;
1783 }
1784
1785 return 0;
1786 }
1787
1788 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1789 struct drm_i915_gem_request *req)
1790 {
1791 struct intel_engine_cs *ring = req->ring;
1792 struct drm_device *dev = ppgtt->base.dev;
1793 struct drm_i915_private *dev_priv = dev->dev_private;
1794
1795
1796 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1797 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1798
1799 POSTING_READ(RING_PP_DIR_DCLV(ring));
1800
1801 return 0;
1802 }
1803
1804 static void gen8_ppgtt_enable(struct drm_device *dev)
1805 {
1806 struct drm_i915_private *dev_priv = dev->dev_private;
1807 struct intel_engine_cs *ring;
1808 int j;
1809
1810 for_each_ring(ring, dev_priv, j) {
1811 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1812 I915_WRITE(RING_MODE_GEN7(ring),
1813 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1814 }
1815 }
1816
1817 static void gen7_ppgtt_enable(struct drm_device *dev)
1818 {
1819 struct drm_i915_private *dev_priv = dev->dev_private;
1820 struct intel_engine_cs *ring;
1821 uint32_t ecochk, ecobits;
1822 int i;
1823
1824 ecobits = I915_READ(GAC_ECO_BITS);
1825 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1826
1827 ecochk = I915_READ(GAM_ECOCHK);
1828 if (IS_HASWELL(dev)) {
1829 ecochk |= ECOCHK_PPGTT_WB_HSW;
1830 } else {
1831 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1832 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1833 }
1834 I915_WRITE(GAM_ECOCHK, ecochk);
1835
1836 for_each_ring(ring, dev_priv, i) {
1837 /* GFX_MODE is per-ring on gen7+ */
1838 I915_WRITE(RING_MODE_GEN7(ring),
1839 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1840 }
1841 }
1842
1843 static void gen6_ppgtt_enable(struct drm_device *dev)
1844 {
1845 struct drm_i915_private *dev_priv = dev->dev_private;
1846 uint32_t ecochk, gab_ctl, ecobits;
1847
1848 ecobits = I915_READ(GAC_ECO_BITS);
1849 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1850 ECOBITS_PPGTT_CACHE64B);
1851
1852 gab_ctl = I915_READ(GAB_CTL);
1853 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1854
1855 ecochk = I915_READ(GAM_ECOCHK);
1856 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1857
1858 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1859 }
1860
1861 /* PPGTT support for Sandybdrige/Gen6 and later */
1862 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1863 uint64_t start,
1864 uint64_t length,
1865 bool use_scratch)
1866 {
1867 struct i915_hw_ppgtt *ppgtt =
1868 container_of(vm, struct i915_hw_ppgtt, base);
1869 gen6_pte_t *pt_vaddr, scratch_pte;
1870 unsigned first_entry = start >> PAGE_SHIFT;
1871 unsigned num_entries = length >> PAGE_SHIFT;
1872 unsigned act_pt = first_entry / GEN6_PTES;
1873 unsigned first_pte = first_entry % GEN6_PTES;
1874 unsigned last_pte, i;
1875
1876 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1877 I915_CACHE_LLC, true, 0);
1878
1879 while (num_entries) {
1880 last_pte = first_pte + num_entries;
1881 if (last_pte > GEN6_PTES)
1882 last_pte = GEN6_PTES;
1883
1884 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1885
1886 for (i = first_pte; i < last_pte; i++)
1887 pt_vaddr[i] = scratch_pte;
1888
1889 kunmap_px(ppgtt, pt_vaddr);
1890
1891 num_entries -= last_pte - first_pte;
1892 first_pte = 0;
1893 act_pt++;
1894 }
1895 }
1896
1897 #ifdef __NetBSD__
1898 static void
1899 gen6_ppgtt_insert_entries(struct i915_address_space *vm, bus_dmamap_t dmamap,
1900 uint64_t start, enum i915_cache_level cache_level)
1901 {
1902 struct i915_hw_ppgtt *ppgtt =
1903 container_of(vm, struct i915_hw_ppgtt, base);
1904 gen6_gtt_pte_t *pt_vaddr;
1905 unsigned first_entry = start >> PAGE_SHIFT;
1906 unsigned act_pt = first_entry / GEN6_PTES;
1907 unsigned act_pte = first_entry % GEN6_PTES;
1908 unsigned seg;
1909 int ret;
1910
1911 pt_vaddr = NULL;
1912 KASSERT(0 < dmamap->dm_nsegs);
1913 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
1914 KASSERT(dmamap->dm_segs[seg].ds_len == PAGE_SIZE);
1915 if (pt_vaddr == NULL)
1916 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1917
1918 pt_vaddr[act_pte] =
1919 vm->pte_encode(dmamap->dm_segs[seg].ds_addr,
1920 cache_level, true, flags);
1921
1922 if (++act_pte == GEN6_PTES) {
1923 kunmap_px(ppgtt, pt_vaddr);
1924 pt_vaddr = NULL;
1925 act_pt++;
1926 act_pte = 0;
1927 }
1928 }
1929 if (pt_vaddr)
1930 kunmap_px(ppgtt, pt_vaddr);
1931 }
1932 #else
1933 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1934 struct sg_table *pages,
1935 uint64_t start,
1936 enum i915_cache_level cache_level, u32 flags)
1937 {
1938 struct i915_hw_ppgtt *ppgtt =
1939 container_of(vm, struct i915_hw_ppgtt, base);
1940 gen6_pte_t *pt_vaddr;
1941 unsigned first_entry = start >> PAGE_SHIFT;
1942 unsigned act_pt = first_entry / GEN6_PTES;
1943 unsigned act_pte = first_entry % GEN6_PTES;
1944 struct sg_page_iter sg_iter;
1945
1946 pt_vaddr = NULL;
1947 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1948 if (pt_vaddr == NULL)
1949 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1950
1951 pt_vaddr[act_pte] =
1952 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1953 cache_level, true, flags);
1954
1955 if (++act_pte == GEN6_PTES) {
1956 kunmap_px(ppgtt, pt_vaddr);
1957 pt_vaddr = NULL;
1958 act_pt++;
1959 act_pte = 0;
1960 }
1961 }
1962 if (pt_vaddr)
1963 kunmap_px(ppgtt, pt_vaddr);
1964 }
1965 #endif
1966
1967 static int gen6_alloc_va_range(struct i915_address_space *vm,
1968 uint64_t start_in, uint64_t length_in)
1969 {
1970 DECLARE_BITMAP(new_page_tables, I915_PDES);
1971 struct drm_device *dev = vm->dev;
1972 struct drm_i915_private *dev_priv = dev->dev_private;
1973 struct i915_hw_ppgtt *ppgtt =
1974 container_of(vm, struct i915_hw_ppgtt, base);
1975 struct i915_page_table *pt;
1976 uint32_t start, length, start_save, length_save;
1977 uint32_t pde, temp;
1978 int ret;
1979
1980 if (WARN_ON(start_in + length_in > ppgtt->base.total))
1981 return -ENODEV;
1982
1983 start = start_save = start_in;
1984 length = length_save = length_in;
1985
1986 bitmap_zero(new_page_tables, I915_PDES);
1987
1988 /* The allocation is done in two stages so that we can bail out with
1989 * minimal amount of pain. The first stage finds new page tables that
1990 * need allocation. The second stage marks use ptes within the page
1991 * tables.
1992 */
1993 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1994 if (pt != vm->scratch_pt) {
1995 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1996 continue;
1997 }
1998
1999 /* We've already allocated a page table */
2000 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
2001
2002 pt = alloc_pt(dev);
2003 if (IS_ERR(pt)) {
2004 ret = PTR_ERR(pt);
2005 goto unwind_out;
2006 }
2007
2008 gen6_initialize_pt(vm, pt);
2009
2010 ppgtt->pd.page_table[pde] = pt;
2011 __set_bit(pde, new_page_tables);
2012 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
2013 }
2014
2015 start = start_save;
2016 length = length_save;
2017
2018 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
2019 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
2020
2021 bitmap_zero(tmp_bitmap, GEN6_PTES);
2022 bitmap_set(tmp_bitmap, gen6_pte_index(start),
2023 gen6_pte_count(start, length));
2024
2025 if (__test_and_clear_bit(pde, new_page_tables))
2026 gen6_write_pde(&ppgtt->pd, pde, pt);
2027
2028 trace_i915_page_table_entry_map(vm, pde, pt,
2029 gen6_pte_index(start),
2030 gen6_pte_count(start, length),
2031 GEN6_PTES);
2032 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
2033 GEN6_PTES);
2034 }
2035
2036 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
2037
2038 /* Make sure write is complete before other code can use this page
2039 * table. Also require for WC mapped PTEs */
2040 #ifdef __NetBSD__
2041 bus_space_read_4(dev_priv->gtt.bst, dev_priv->gtt.bsh, 0);
2042 #else
2043 readl(dev_priv->gtt.gsm);
2044 #endif
2045
2046 mark_tlbs_dirty(ppgtt);
2047 return 0;
2048
2049 unwind_out:
2050 for_each_set_bit(pde, new_page_tables, I915_PDES) {
2051 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
2052
2053 ppgtt->pd.page_table[pde] = vm->scratch_pt;
2054 free_pt(vm->dev, pt);
2055 }
2056
2057 mark_tlbs_dirty(ppgtt);
2058 return ret;
2059 }
2060
2061 static int gen6_init_scratch(struct i915_address_space *vm)
2062 {
2063 struct drm_device *dev = vm->dev;
2064
2065 vm->scratch_page = alloc_scratch_page(dev);
2066 if (IS_ERR(vm->scratch_page))
2067 return PTR_ERR(vm->scratch_page);
2068
2069 vm->scratch_pt = alloc_pt(dev);
2070 if (IS_ERR(vm->scratch_pt)) {
2071 free_scratch_page(dev, vm->scratch_page);
2072 return PTR_ERR(vm->scratch_pt);
2073 }
2074
2075 gen6_initialize_pt(vm, vm->scratch_pt);
2076
2077 return 0;
2078 }
2079
2080 static void gen6_free_scratch(struct i915_address_space *vm)
2081 {
2082 struct drm_device *dev = vm->dev;
2083
2084 free_pt(dev, vm->scratch_pt);
2085 free_scratch_page(dev, vm->scratch_page);
2086 }
2087
2088 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
2089 {
2090 struct i915_hw_ppgtt *ppgtt =
2091 container_of(vm, struct i915_hw_ppgtt, base);
2092 struct i915_page_table *pt;
2093 uint32_t pde;
2094
2095 drm_mm_remove_node(&ppgtt->node);
2096
2097 gen6_for_all_pdes(pt, ppgtt, pde) {
2098 if (pt != vm->scratch_pt)
2099 free_pt(ppgtt->base.dev, pt);
2100 }
2101
2102 gen6_free_scratch(vm);
2103 }
2104
2105 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2106 {
2107 struct i915_address_space *vm = &ppgtt->base;
2108 struct drm_device *dev = ppgtt->base.dev;
2109 struct drm_i915_private *dev_priv = dev->dev_private;
2110 bool retried = false;
2111 int ret;
2112
2113 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2114 * allocator works in address space sizes, so it's multiplied by page
2115 * size. We allocate at the top of the GTT to avoid fragmentation.
2116 */
2117 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
2118
2119 ret = gen6_init_scratch(vm);
2120 if (ret)
2121 return ret;
2122
2123 alloc:
2124 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
2125 &ppgtt->node, GEN6_PD_SIZE,
2126 GEN6_PD_ALIGN, 0,
2127 0, dev_priv->gtt.base.total,
2128 DRM_MM_TOPDOWN);
2129 if (ret == -ENOSPC && !retried) {
2130 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
2131 GEN6_PD_SIZE, GEN6_PD_ALIGN,
2132 I915_CACHE_NONE,
2133 0, dev_priv->gtt.base.total,
2134 0);
2135 if (ret)
2136 goto err_out;
2137
2138 retried = true;
2139 goto alloc;
2140 }
2141
2142 if (ret)
2143 goto err_out;
2144
2145
2146 if (ppgtt->node.start < dev_priv->gtt.mappable_end)
2147 DRM_DEBUG("Forced to use aperture for PDEs\n");
2148
2149 return 0;
2150
2151 err_out:
2152 gen6_free_scratch(vm);
2153 return ret;
2154 }
2155
2156 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2157 {
2158 return gen6_ppgtt_allocate_page_directories(ppgtt);
2159 }
2160
2161 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2162 uint64_t start, uint64_t length)
2163 {
2164 struct i915_page_table *unused;
2165 uint32_t pde, temp;
2166
2167 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2168 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2169 }
2170
2171 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2172 {
2173 struct drm_device *dev = ppgtt->base.dev;
2174 struct drm_i915_private *dev_priv = dev->dev_private;
2175 int ret;
2176
2177 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
2178 if (IS_GEN6(dev)) {
2179 ppgtt->switch_mm = gen6_mm_switch;
2180 } else if (IS_HASWELL(dev)) {
2181 ppgtt->switch_mm = hsw_mm_switch;
2182 } else if (IS_GEN7(dev)) {
2183 ppgtt->switch_mm = gen7_mm_switch;
2184 } else
2185 BUG();
2186
2187 if (intel_vgpu_active(dev))
2188 ppgtt->switch_mm = vgpu_mm_switch;
2189
2190 ret = gen6_ppgtt_alloc(ppgtt);
2191 if (ret)
2192 return ret;
2193
2194 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2195 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2196 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2197 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2198 ppgtt->base.bind_vma = ppgtt_bind_vma;
2199 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2200 ppgtt->base.start = 0;
2201 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2202 #ifndef __NetBSD__
2203 ppgtt->debug_dump = gen6_dump_ppgtt;
2204 #endif
2205
2206 ppgtt->pd.base.ggtt_offset =
2207 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2208
2209 ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
2210 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2211
2212 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2213
2214 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2215
2216 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2217 ppgtt->node.size >> 20,
2218 ppgtt->node.start / PAGE_SIZE);
2219
2220 DRM_DEBUG("Adding PPGTT at offset %x\n",
2221 ppgtt->pd.base.ggtt_offset << 10);
2222
2223 return 0;
2224 }
2225
2226 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2227 {
2228 ppgtt->base.dev = dev;
2229
2230 if (INTEL_INFO(dev)->gen < 8)
2231 return gen6_ppgtt_init(ppgtt);
2232 else
2233 return gen8_ppgtt_init(ppgtt);
2234 }
2235
2236 static void i915_address_space_init(struct i915_address_space *vm,
2237 struct drm_i915_private *dev_priv)
2238 {
2239 drm_mm_init(&vm->mm, vm->start, vm->total);
2240 vm->dev = dev_priv->dev;
2241 INIT_LIST_HEAD(&vm->active_list);
2242 INIT_LIST_HEAD(&vm->inactive_list);
2243 list_add_tail(&vm->global_link, &dev_priv->vm_list);
2244 }
2245
2246 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2247 {
2248 struct drm_i915_private *dev_priv = dev->dev_private;
2249 int ret = 0;
2250
2251 ret = __hw_ppgtt_init(dev, ppgtt);
2252 if (ret == 0) {
2253 kref_init(&ppgtt->ref);
2254 i915_address_space_init(&ppgtt->base, dev_priv);
2255 }
2256
2257 return ret;
2258 }
2259
2260 int i915_ppgtt_init_hw(struct drm_device *dev)
2261 {
2262 /* In the case of execlists, PPGTT is enabled by the context descriptor
2263 * and the PDPs are contained within the context itself. We don't
2264 * need to do anything here. */
2265 if (i915.enable_execlists)
2266 return 0;
2267
2268 if (!USES_PPGTT(dev))
2269 return 0;
2270
2271 if (IS_GEN6(dev))
2272 gen6_ppgtt_enable(dev);
2273 else if (IS_GEN7(dev))
2274 gen7_ppgtt_enable(dev);
2275 else if (INTEL_INFO(dev)->gen >= 8)
2276 gen8_ppgtt_enable(dev);
2277 else
2278 MISSING_CASE(INTEL_INFO(dev)->gen);
2279
2280 return 0;
2281 }
2282
2283 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2284 {
2285 struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
2286 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2287
2288 if (i915.enable_execlists)
2289 return 0;
2290
2291 if (!ppgtt)
2292 return 0;
2293
2294 return ppgtt->switch_mm(ppgtt, req);
2295 }
2296
2297 struct i915_hw_ppgtt *
2298 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2299 {
2300 struct i915_hw_ppgtt *ppgtt;
2301 int ret;
2302
2303 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2304 if (!ppgtt)
2305 return ERR_PTR(-ENOMEM);
2306
2307 ret = i915_ppgtt_init(dev, ppgtt);
2308 if (ret) {
2309 kfree(ppgtt);
2310 return ERR_PTR(ret);
2311 }
2312
2313 ppgtt->file_priv = fpriv;
2314
2315 trace_i915_ppgtt_create(&ppgtt->base);
2316
2317 return ppgtt;
2318 }
2319
2320 void i915_ppgtt_release(struct kref *kref)
2321 {
2322 struct i915_hw_ppgtt *ppgtt =
2323 container_of(kref, struct i915_hw_ppgtt, ref);
2324
2325 trace_i915_ppgtt_release(&ppgtt->base);
2326
2327 /* vmas should already be unbound */
2328 WARN_ON(!list_empty(&ppgtt->base.active_list));
2329 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2330
2331 list_del(&ppgtt->base.global_link);
2332 drm_mm_takedown(&ppgtt->base.mm);
2333
2334 ppgtt->base.cleanup(&ppgtt->base);
2335 kfree(ppgtt);
2336 }
2337
2338 extern int intel_iommu_gfx_mapped;
2339 /* Certain Gen5 chipsets require require idling the GPU before
2340 * unmapping anything from the GTT when VT-d is enabled.
2341 */
2342 static bool needs_idle_maps(struct drm_device *dev)
2343 {
2344 #ifdef CONFIG_INTEL_IOMMU
2345 /* Query intel_iommu to see if we need the workaround. Presumably that
2346 * was loaded first.
2347 */
2348 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2349 return true;
2350 #endif
2351 return false;
2352 }
2353
2354 static bool do_idling(struct drm_i915_private *dev_priv)
2355 {
2356 bool ret = dev_priv->mm.interruptible;
2357
2358 if (unlikely(dev_priv->gtt.do_idle_maps)) {
2359 dev_priv->mm.interruptible = false;
2360 if (i915_gpu_idle(dev_priv->dev)) {
2361 DRM_ERROR("Couldn't idle GPU\n");
2362 /* Wait a bit, in hopes it avoids the hang */
2363 udelay(10);
2364 }
2365 }
2366
2367 return ret;
2368 }
2369
2370 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2371 {
2372 if (unlikely(dev_priv->gtt.do_idle_maps))
2373 dev_priv->mm.interruptible = interruptible;
2374 }
2375
2376 void i915_check_and_clear_faults(struct drm_device *dev)
2377 {
2378 struct drm_i915_private *dev_priv = dev->dev_private;
2379 struct intel_engine_cs *ring;
2380 int i;
2381
2382 if (INTEL_INFO(dev)->gen < 6)
2383 return;
2384
2385 for_each_ring(ring, dev_priv, i) {
2386 u32 fault_reg;
2387 fault_reg = I915_READ(RING_FAULT_REG(ring));
2388 if (fault_reg & RING_FAULT_VALID) {
2389 DRM_DEBUG_DRIVER("Unexpected fault\n"
2390 "\tAddr: 0x%08"PRIx32"\n"
2391 "\tAddress space: %s\n"
2392 "\tSource ID: %d\n"
2393 "\tType: %d\n",
2394 fault_reg & PAGE_MASK,
2395 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2396 RING_FAULT_SRCID(fault_reg),
2397 RING_FAULT_FAULT_TYPE(fault_reg));
2398 I915_WRITE(RING_FAULT_REG(ring),
2399 fault_reg & ~RING_FAULT_VALID);
2400 }
2401 }
2402 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
2403 }
2404
2405 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2406 {
2407 if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2408 intel_gtt_chipset_flush();
2409 } else {
2410 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2411 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2412 }
2413 }
2414
2415 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2416 {
2417 struct drm_i915_private *dev_priv = dev->dev_private;
2418
2419 /* Don't bother messing with faults pre GEN6 as we have little
2420 * documentation supporting that it's a good idea.
2421 */
2422 if (INTEL_INFO(dev)->gen < 6)
2423 return;
2424
2425 i915_check_and_clear_faults(dev);
2426
2427 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2428 dev_priv->gtt.base.start,
2429 dev_priv->gtt.base.total,
2430 true);
2431
2432 i915_ggtt_flush(dev_priv);
2433 }
2434
2435 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2436 {
2437 #ifdef __NetBSD__
2438 KASSERT(0 < obj->base.size);
2439 /* XXX errno NetBSD->Linux */
2440 return -bus_dmamap_load_raw(obj->base.dev->dmat, obj->igo_dmamap,
2441 obj->pages, obj->igo_nsegs, obj->base.size, BUS_DMA_NOWAIT);
2442 #else
2443 if (!dma_map_sg(&obj->base.dev->pdev->dev,
2444 obj->pages->sgl, obj->pages->nents,
2445 PCI_DMA_BIDIRECTIONAL))
2446 return -ENOSPC;
2447
2448 return 0;
2449 #endif
2450 }
2451
2452 #ifdef __NetBSD__
2453 static uint64_t
2454 gen8_get_pte(bus_space_tag_t bst, bus_space_handle_t bsh, unsigned i)
2455 {
2456 CTASSERT(_BYTE_ORDER == _LITTLE_ENDIAN); /* x86 */
2457 CTASSERT(sizeof(gen8_gtt_pte_t) == 8);
2458 #ifdef _LP64 /* XXX How to detect bus_space_read_8? */
2459 return bus_space_read_8(bst, bsh, 8*i);
2460 #else
2461 /*
2462 * XXX I'm not sure this case can actually happen in practice:
2463 * 32-bit gen8 chipsets?
2464 */
2465 return bus_space_read_4(bst, bsh, 8*i) |
2466 ((uint64_t)bus_space_read_4(bst, bsh, 8*i + 4) << 32);
2467 #endif
2468 }
2469
2470 static inline void
2471 gen8_set_pte(bus_space_tag_t bst, bus_space_handle_t bsh, unsigned i,
2472 gen8_gtt_pte_t pte)
2473 {
2474 CTASSERT(_BYTE_ORDER == _LITTLE_ENDIAN); /* x86 */
2475 CTASSERT(sizeof(gen8_gtt_pte_t) == 8);
2476 #ifdef _LP64 /* XXX How to detect bus_space_write_8? */
2477 bus_space_write_8(bst, bsh, 8*i, pte);
2478 #else
2479 bus_space_write_4(bst, bsh, 8*i, (uint32_t)pte);
2480 bus_space_write_4(bst, bsh, 8*i + 4, (uint32_t)(pte >> 32));
2481 #endif
2482 }
2483 #else
2484 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2485 {
2486 #ifdef writeq
2487 writeq(pte, addr);
2488 #else
2489 iowrite32((u32)pte, addr);
2490 iowrite32(pte >> 32, addr + 4);
2491 #endif
2492 }
2493 #endif
2494
2495 #ifdef __NetBSD__
2496 static void
2497 gen8_ggtt_insert_entries(struct i915_address_space *vm, bus_dmamap_t dmamap,
2498 uint64_t start, enum i915_cache_level level)
2499 {
2500 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2501 unsigned first_entry = start >> PAGE_SHIFT;
2502 const bus_space_tag_t bst = dev_priv->gtt.bst;
2503 const bus_space_handle_t bsh = dev_priv->gtt.bsh;
2504 unsigned i;
2505
2506 KASSERT(0 < dmamap->dm_nsegs);
2507 for (i = 0; i < dmamap->dm_nsegs; i++) {
2508 KASSERT(dmamap->dm_segs[i].ds_len == PAGE_SIZE);
2509 gen8_set_pte(bst, bsh, first_entry + i,
2510 gen8_pte_encode(dmamap->dm_segs[i].ds_addr, level, true));
2511 }
2512 if (0 < i) {
2513 /* Posting read. */
2514 WARN_ON(gen8_get_pte(bst, bsh, (first_entry + i - 1))
2515 != gen8_pte_encode(dmamap->dm_segs[i - 1].ds_addr, level,
2516 true));
2517 }
2518 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2519 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2520 }
2521 #else
2522 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2523 struct sg_table *st,
2524 uint64_t start,
2525 enum i915_cache_level level, u32 unused)
2526 {
2527 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2528 unsigned first_entry = start >> PAGE_SHIFT;
2529 gen8_pte_t __iomem *gtt_entries =
2530 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2531 int i = 0;
2532 struct sg_page_iter sg_iter;
2533 dma_addr_t addr = 0; /* shut up gcc */
2534
2535 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2536 addr = sg_dma_address(sg_iter.sg) +
2537 (sg_iter.sg_pgoffset << PAGE_SHIFT);
2538 gen8_set_pte(>t_entries[i],
2539 gen8_pte_encode(addr, level, true));
2540 i++;
2541 }
2542
2543 /*
2544 * XXX: This serves as a posting read to make sure that the PTE has
2545 * actually been updated. There is some concern that even though
2546 * registers and PTEs are within the same BAR that they are potentially
2547 * of NUMA access patterns. Therefore, even with the way we assume
2548 * hardware should work, we must keep this posting read for paranoia.
2549 */
2550 if (i != 0)
2551 WARN_ON(readq(>t_entries[i-1])
2552 != gen8_pte_encode(addr, level, true));
2553
2554 /* This next bit makes the above posting read even more important. We
2555 * want to flush the TLBs only after we're certain all the PTE updates
2556 * have finished.
2557 */
2558 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2559 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2560 }
2561 #endif
2562
2563 /*
2564 * Binds an object into the global gtt with the specified cache level. The object
2565 * will be accessible to the GPU via commands whose operands reference offsets
2566 * within the global GTT as well as accessible by the GPU through the GMADR
2567 * mapped BAR (dev_priv->mm.gtt->gtt).
2568 */
2569 #ifdef __NetBSD__
2570 static void
2571 gen6_ggtt_insert_entries(struct i915_address_space *vm, bus_dmamap_t dmamap,
2572 uint64_t start, enum i915_cache_level level)
2573 {
2574 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2575 unsigned first_entry = start >> PAGE_SHIFT;
2576 const bus_space_tag_t bst = dev_priv->gtt.bst;
2577 const bus_space_handle_t bsh = dev_priv->gtt.bsh;
2578 unsigned i;
2579
2580 KASSERT(0 < dmamap->dm_nsegs);
2581 for (i = 0; i < dmamap->dm_nsegs; i++) {
2582 KASSERT(dmamap->dm_segs[i].ds_len == PAGE_SIZE);
2583 CTASSERT(sizeof(gen6_gtt_pte_t) == 4);
2584 bus_space_write_4(bst, bsh, 4*(first_entry + i),
2585 vm->pte_encode(dmamap->dm_segs[i].ds_addr, level, true));
2586 }
2587 if (0 < i) {
2588 /* Posting read. */
2589 WARN_ON(bus_space_read_4(bst, bsh, 4*(first_entry + i - 1))
2590 != vm->pte_encode(dmamap->dm_segs[i - 1].ds_addr, level,
2591 true));
2592 }
2593 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2594 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2595 }
2596 #else
2597 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2598 struct sg_table *st,
2599 uint64_t start,
2600 enum i915_cache_level level, u32 flags)
2601 {
2602 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2603 unsigned first_entry = start >> PAGE_SHIFT;
2604 gen6_pte_t __iomem *gtt_entries =
2605 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2606 int i = 0;
2607 struct sg_page_iter sg_iter;
2608 dma_addr_t addr = 0;
2609
2610 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2611 addr = sg_page_iter_dma_address(&sg_iter);
2612 iowrite32(vm->pte_encode(addr, level, true, flags), >t_entries[i]);
2613 i++;
2614 }
2615
2616 /* XXX: This serves as a posting read to make sure that the PTE has
2617 * actually been updated. There is some concern that even though
2618 * registers and PTEs are within the same BAR that they are potentially
2619 * of NUMA access patterns. Therefore, even with the way we assume
2620 * hardware should work, we must keep this posting read for paranoia.
2621 */
2622 if (i != 0) {
2623 unsigned long gtt = readl(>t_entries[i-1]);
2624 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2625 }
2626
2627 /* This next bit makes the above posting read even more important. We
2628 * want to flush the TLBs only after we're certain all the PTE updates
2629 * have finished.
2630 */
2631 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2632 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2633 }
2634 #endif
2635
2636 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2637 uint64_t start,
2638 uint64_t length,
2639 bool use_scratch)
2640 {
2641 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2642 unsigned first_entry = start >> PAGE_SHIFT;
2643 unsigned num_entries = length >> PAGE_SHIFT;
2644 #ifdef __NetBSD__
2645 const bus_space_tag_t bst = dev_priv->gtt.bst;
2646 const bus_space_handle_t bsh = dev_priv->gtt.bsh;
2647 gen8_pte_t scratch_pte;
2648 #else
2649 gen8_pte_t scratch_pte, __iomem *gtt_base =
2650 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2651 #endif
2652 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2653 int i;
2654
2655 if (WARN(num_entries > max_entries,
2656 "First entry = %d; Num entries = %d (max=%d)\n",
2657 first_entry, num_entries, max_entries))
2658 num_entries = max_entries;
2659
2660 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2661 I915_CACHE_LLC,
2662 use_scratch);
2663 #ifdef __NetBSD__
2664 CTASSERT(sizeof(gen8_gtt_pte_t) == 8);
2665 for (i = 0; i < num_entries; i++)
2666 gen8_set_pte(bst, bsh, first_entry + i, scratch_pte);
2667 (void)gen8_get_pte(bst, bsh, first_entry);
2668 #else
2669 for (i = 0; i < num_entries; i++)
2670 gen8_set_pte(>t_base[i], scratch_pte);
2671 readl(gtt_base);
2672 #endif
2673 }
2674
2675 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2676 uint64_t start,
2677 uint64_t length,
2678 bool use_scratch)
2679 {
2680 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2681 unsigned first_entry = start >> PAGE_SHIFT;
2682 unsigned num_entries = length >> PAGE_SHIFT;
2683 #ifdef __NetBSD__
2684 const bus_space_tag_t bst = dev_priv->gtt.bst;
2685 const bus_space_handle_t bsh = dev_priv->gtt.bsh;
2686 gen8_pte_t scratch_pte;
2687 #else
2688 gen6_pte_t scratch_pte, __iomem *gtt_base =
2689 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2690 #endif
2691 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2692 int i;
2693
2694 if (WARN(num_entries > max_entries,
2695 "First entry = %d; Num entries = %d (max=%d)\n",
2696 first_entry, num_entries, max_entries))
2697 num_entries = max_entries;
2698
2699 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2700 I915_CACHE_LLC, use_scratch, 0);
2701
2702 #ifdef __NetBSD__
2703 CTASSERT(sizeof(gen6_gtt_pte_t) == 4);
2704 for (i = 0; i < num_entries; i++)
2705 bus_space_write_4(bst, bsh, 4*(first_entry + i), scratch_pte);
2706 (void)bus_space_read_4(bst, bsh, 4*first_entry);
2707 #else
2708 for (i = 0; i < num_entries; i++)
2709 iowrite32(scratch_pte, >t_base[i]);
2710 readl(gtt_base);
2711 #endif
2712 }
2713
2714 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2715 #ifdef __NetBSD__
2716 bus_dmamap_t pages,
2717 #else
2718 struct sg_table *pages,
2719 #endif
2720 uint64_t start,
2721 enum i915_cache_level cache_level, u32 unused)
2722 {
2723 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2724 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2725
2726 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2727 }
2728
2729 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2730 uint64_t start,
2731 uint64_t length,
2732 bool unused)
2733 {
2734 unsigned first_entry = start >> PAGE_SHIFT;
2735 unsigned num_entries = length >> PAGE_SHIFT;
2736 intel_gtt_clear_range(first_entry, num_entries);
2737 }
2738
2739 static int ggtt_bind_vma(struct i915_vma *vma,
2740 enum i915_cache_level cache_level,
2741 u32 flags)
2742 {
2743 struct drm_i915_gem_object *obj = vma->obj;
2744 u32 pte_flags = 0;
2745 int ret;
2746
2747 ret = i915_get_ggtt_vma_pages(vma);
2748 if (ret)
2749 return ret;
2750
2751 /* Currently applicable only to VLV */
2752 if (obj->gt_ro)
2753 pte_flags |= PTE_READ_ONLY;
2754
2755 vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2756 vma->node.start,
2757 cache_level, pte_flags);
2758
2759 /*
2760 * Without aliasing PPGTT there's no difference between
2761 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2762 * upgrade to both bound if we bind either to avoid double-binding.
2763 */
2764 vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2765
2766 return 0;
2767 }
2768
2769 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2770 enum i915_cache_level cache_level,
2771 u32 flags)
2772 {
2773 struct drm_device *dev = vma->vm->dev;
2774 struct drm_i915_private *dev_priv = dev->dev_private;
2775 struct drm_i915_gem_object *obj = vma->obj;
2776 #ifdef __NetBSD__
2777 bus_dmamap_t pages = obj->pages;
2778 #else
2779 struct sg_table *pages = obj->pages;
2780 #endif
2781 u32 pte_flags = 0;
2782 int ret;
2783
2784 ret = i915_get_ggtt_vma_pages(vma);
2785 if (ret)
2786 return ret;
2787 pages = vma->ggtt_view.pages;
2788
2789 /* Currently applicable only to VLV */
2790 if (obj->gt_ro)
2791 pte_flags |= PTE_READ_ONLY;
2792
2793
2794 if (flags & GLOBAL_BIND) {
2795 vma->vm->insert_entries(vma->vm, pages,
2796 vma->node.start,
2797 cache_level, pte_flags);
2798 }
2799
2800 if (flags & LOCAL_BIND) {
2801 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2802 appgtt->base.insert_entries(&appgtt->base, pages,
2803 vma->node.start,
2804 cache_level, pte_flags);
2805 }
2806
2807 return 0;
2808 }
2809
2810 static void ggtt_unbind_vma(struct i915_vma *vma)
2811 {
2812 struct drm_device *dev = vma->vm->dev;
2813 struct drm_i915_private *dev_priv = dev->dev_private;
2814 struct drm_i915_gem_object *obj = vma->obj;
2815 const uint64_t size = min_t(uint64_t,
2816 obj->base.size,
2817 vma->node.size);
2818
2819 if (vma->bound & GLOBAL_BIND) {
2820 vma->vm->clear_range(vma->vm,
2821 vma->node.start,
2822 size,
2823 true);
2824 }
2825
2826 if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2827 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2828
2829 appgtt->base.clear_range(&appgtt->base,
2830 vma->node.start,
2831 size,
2832 true);
2833 }
2834 }
2835
2836 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2837 {
2838 struct drm_device *dev = obj->base.dev;
2839 struct drm_i915_private *dev_priv = dev->dev_private;
2840 bool interruptible;
2841
2842 interruptible = do_idling(dev_priv);
2843
2844 #ifdef __NetBSD__
2845 bus_dmamap_unload(dev->dmat, obj->igo_dmamap);
2846 #else
2847 dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2848 PCI_DMA_BIDIRECTIONAL);
2849 #endif
2850
2851 undo_idling(dev_priv, interruptible);
2852 }
2853
2854 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2855 unsigned long color,
2856 u64 *start,
2857 u64 *end)
2858 {
2859 if (node->color != color)
2860 *start += 4096;
2861
2862 if (!list_empty(&node->node_list)) {
2863 node = list_entry(node->node_list.next,
2864 struct drm_mm_node,
2865 node_list);
2866 if (node->allocated && node->color != color)
2867 *end -= 4096;
2868 }
2869 }
2870
2871 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2872 u64 start,
2873 u64 mappable_end,
2874 u64 end)
2875 {
2876 /* Let GEM Manage all of the aperture.
2877 *
2878 * However, leave one page at the end still bound to the scratch page.
2879 * There are a number of places where the hardware apparently prefetches
2880 * past the end of the object, and we've seen multiple hangs with the
2881 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2882 * aperture. One page should be enough to keep any prefetching inside
2883 * of the aperture.
2884 */
2885 struct drm_i915_private *dev_priv = dev->dev_private;
2886 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2887 struct drm_mm_node *entry;
2888 struct drm_i915_gem_object *obj;
2889 unsigned long hole_start, hole_end;
2890 int ret;
2891
2892 BUG_ON(mappable_end > end);
2893
2894 ggtt_vm->start = start;
2895
2896 /* Subtract the guard page before address space initialization to
2897 * shrink the range used by drm_mm */
2898 ggtt_vm->total = end - start - PAGE_SIZE;
2899 i915_address_space_init(ggtt_vm, dev_priv);
2900 ggtt_vm->total += PAGE_SIZE;
2901
2902 if (intel_vgpu_active(dev)) {
2903 ret = intel_vgt_balloon(dev);
2904 if (ret)
2905 return ret;
2906 }
2907
2908 if (!HAS_LLC(dev))
2909 ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
2910
2911 /* Mark any preallocated objects as occupied */
2912 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2913 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2914
2915 DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2916 i915_gem_obj_ggtt_offset(obj), obj->base.size);
2917
2918 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2919 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2920 if (ret) {
2921 DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2922 return ret;
2923 }
2924 vma->bound |= GLOBAL_BIND;
2925 __i915_vma_set_map_and_fenceable(vma);
2926 list_add_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2927 }
2928
2929 /* Clear any non-preallocated blocks */
2930 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2931 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2932 hole_start, hole_end);
2933 ggtt_vm->clear_range(ggtt_vm, hole_start,
2934 hole_end - hole_start, true);
2935 }
2936
2937 /* And finally clear the reserved guard page */
2938 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2939
2940 if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2941 struct i915_hw_ppgtt *ppgtt;
2942
2943 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2944 if (!ppgtt)
2945 return -ENOMEM;
2946
2947 ret = __hw_ppgtt_init(dev, ppgtt);
2948 if (ret) {
2949 ppgtt->base.cleanup(&ppgtt->base);
2950 kfree(ppgtt);
2951 return ret;
2952 }
2953
2954 if (ppgtt->base.allocate_va_range)
2955 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2956 ppgtt->base.total);
2957 if (ret) {
2958 ppgtt->base.cleanup(&ppgtt->base);
2959 kfree(ppgtt);
2960 return ret;
2961 }
2962
2963 ppgtt->base.clear_range(&ppgtt->base,
2964 ppgtt->base.start,
2965 ppgtt->base.total,
2966 true);
2967
2968 dev_priv->mm.aliasing_ppgtt = ppgtt;
2969 WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
2970 dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
2971 }
2972
2973 return 0;
2974 }
2975
2976 void i915_gem_init_global_gtt(struct drm_device *dev)
2977 {
2978 struct drm_i915_private *dev_priv = dev->dev_private;
2979 u64 gtt_size, mappable_size;
2980
2981 gtt_size = dev_priv->gtt.base.total;
2982 mappable_size = dev_priv->gtt.mappable_end;
2983
2984 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2985 }
2986
2987 void i915_global_gtt_cleanup(struct drm_device *dev)
2988 {
2989 struct drm_i915_private *dev_priv = dev->dev_private;
2990 struct i915_address_space *vm = &dev_priv->gtt.base;
2991
2992 if (dev_priv->mm.aliasing_ppgtt) {
2993 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2994
2995 ppgtt->base.cleanup(&ppgtt->base);
2996 kfree(ppgtt);
2997 }
2998
2999 if (drm_mm_initialized(&vm->mm)) {
3000 if (intel_vgpu_active(dev))
3001 intel_vgt_deballoon();
3002
3003 drm_mm_takedown(&vm->mm);
3004 list_del(&vm->global_link);
3005 }
3006
3007 vm->cleanup(vm);
3008 }
3009
3010 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
3011 {
3012 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
3013 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
3014 return snb_gmch_ctl << 20;
3015 }
3016
3017 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
3018 {
3019 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
3020 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
3021 if (bdw_gmch_ctl)
3022 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
3023
3024 #ifdef CONFIG_X86_32
3025 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
3026 if (bdw_gmch_ctl > 4)
3027 bdw_gmch_ctl = 4;
3028 #endif
3029
3030 return bdw_gmch_ctl << 20;
3031 }
3032
3033 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
3034 {
3035 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
3036 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
3037
3038 if (gmch_ctrl)
3039 return 1 << (20 + gmch_ctrl);
3040
3041 return 0;
3042 }
3043
3044 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
3045 {
3046 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
3047 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
3048 return snb_gmch_ctl << 25; /* 32 MB units */
3049 }
3050
3051 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
3052 {
3053 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
3054 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
3055 return bdw_gmch_ctl << 25; /* 32 MB units */
3056 }
3057
3058 static size_t chv_get_stolen_size(u16 gmch_ctrl)
3059 {
3060 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
3061 gmch_ctrl &= SNB_GMCH_GMS_MASK;
3062
3063 /*
3064 * 0x0 to 0x10: 32MB increments starting at 0MB
3065 * 0x11 to 0x16: 4MB increments starting at 8MB
3066 * 0x17 to 0x1d: 4MB increments start at 36MB
3067 */
3068 if (gmch_ctrl < 0x11)
3069 return gmch_ctrl << 25;
3070 else if (gmch_ctrl < 0x17)
3071 return (gmch_ctrl - 0x11 + 2) << 22;
3072 else
3073 return (gmch_ctrl - 0x17 + 9) << 22;
3074 }
3075
3076 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
3077 {
3078 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
3079 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
3080
3081 if (gen9_gmch_ctl < 0xf0)
3082 return gen9_gmch_ctl << 25; /* 32 MB units */
3083 else
3084 /* 4MB increments starting at 0xf0 for 4MB */
3085 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
3086 }
3087
3088 static int ggtt_probe_common(struct drm_device *dev,
3089 size_t gtt_size)
3090 {
3091 struct drm_i915_private *dev_priv = dev->dev_private;
3092 struct i915_page_scratch *scratch_page;
3093 phys_addr_t gtt_phys_addr;
3094
3095 /* For Modern GENs the PTEs and register space are split in the BAR */
3096 gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
3097 (pci_resource_len(dev->pdev, 0) / 2);
3098
3099 #ifdef __NetBSD__
3100 dev_priv->gtt.bst = dev->pdev->pd_pa.pa_memt;
3101 /* XXX errno NetBSD->Linux */
3102 ret = -bus_space_map(dev_priv->gtt.bst, gtt_phys_addr, gtt_size,
3103 IS_PROXTON(dev) ? 0 : BUS_SPACE_MAP_PREFETCHABLE,
3104 &dev_priv->gtt.bsh);
3105 if (ret) {
3106 DRM_ERROR("Failed to map the graphics translation table: %d\n",
3107 ret);
3108 return ret;
3109 }
3110 dev_priv->gtt.size = gtt_size;
3111 #else
3112 /*
3113 * On BXT writes larger than 64 bit to the GTT pagetable range will be
3114 * dropped. For WC mappings in general we have 64 byte burst writes
3115 * when the WC buffer is flushed, so we can't use it, but have to
3116 * resort to an uncached mapping. The WC issue is easily caught by the
3117 * readback check when writing GTT PTE entries.
3118 */
3119 if (IS_BROXTON(dev))
3120 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
3121 else
3122 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
3123 if (!dev_priv->gtt.gsm) {
3124 DRM_ERROR("Failed to map the gtt page table\n");
3125 return -ENOMEM;
3126 }
3127 #endif
3128
3129 scratch_page = alloc_scratch_page(dev);
3130 if (IS_ERR(scratch_page)) {
3131 DRM_ERROR("Scratch setup failed\n");
3132 /* iounmap will also get called at remove, but meh */
3133 #ifdef __NetBSD__
3134 bus_space_unmap(dev_priv->gtt.bst, dev_priv->gtt.bsh,
3135 dev_priv->gtt.size);
3136 #else
3137 iounmap(dev_priv->gtt.gsm);
3138 #endif
3139 return PTR_ERR(scratch_page);
3140 }
3141
3142 dev_priv->gtt.base.scratch_page = scratch_page;
3143
3144 return 0;
3145 }
3146
3147 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3148 * bits. When using advanced contexts each context stores its own PAT, but
3149 * writing this data shouldn't be harmful even in those cases. */
3150 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
3151 {
3152 uint64_t pat;
3153
3154 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
3155 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
3156 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
3157 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
3158 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
3159 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
3160 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
3161 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3162
3163 if (!USES_PPGTT(dev_priv->dev))
3164 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3165 * so RTL will always use the value corresponding to
3166 * pat_sel = 000".
3167 * So let's disable cache for GGTT to avoid screen corruptions.
3168 * MOCS still can be used though.
3169 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3170 * before this patch, i.e. the same uncached + snooping access
3171 * like on gen6/7 seems to be in effect.
3172 * - So this just fixes blitter/render access. Again it looks
3173 * like it's not just uncached access, but uncached + snooping.
3174 * So we can still hold onto all our assumptions wrt cpu
3175 * clflushing on LLC machines.
3176 */
3177 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
3178
3179 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
3180 * write would work. */
3181 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3182 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3183 }
3184
3185 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3186 {
3187 uint64_t pat;
3188
3189 /*
3190 * Map WB on BDW to snooped on CHV.
3191 *
3192 * Only the snoop bit has meaning for CHV, the rest is
3193 * ignored.
3194 *
3195 * The hardware will never snoop for certain types of accesses:
3196 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3197 * - PPGTT page tables
3198 * - some other special cycles
3199 *
3200 * As with BDW, we also need to consider the following for GT accesses:
3201 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3202 * so RTL will always use the value corresponding to
3203 * pat_sel = 000".
3204 * Which means we must set the snoop bit in PAT entry 0
3205 * in order to keep the global status page working.
3206 */
3207 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3208 GEN8_PPAT(1, 0) |
3209 GEN8_PPAT(2, 0) |
3210 GEN8_PPAT(3, 0) |
3211 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3212 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3213 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3214 GEN8_PPAT(7, CHV_PPAT_SNOOP);
3215
3216 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3217 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3218 }
3219
3220 static int gen8_gmch_probe(struct drm_device *dev,
3221 u64 *gtt_total,
3222 size_t *stolen,
3223 phys_addr_t *mappable_base,
3224 u64 *mappable_end)
3225 {
3226 struct drm_i915_private *dev_priv = dev->dev_private;
3227 u64 gtt_size;
3228 u16 snb_gmch_ctl;
3229 int ret;
3230
3231 /* TODO: We're not aware of mappable constraints on gen8 yet */
3232 *mappable_base = pci_resource_start(dev->pdev, 2);
3233 *mappable_end = pci_resource_len(dev->pdev, 2);
3234
3235 #ifndef __NetBSD__
3236 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3237 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3238 #endif
3239
3240 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3241
3242 if (INTEL_INFO(dev)->gen >= 9) {
3243 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
3244 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3245 } else if (IS_CHERRYVIEW(dev)) {
3246 *stolen = chv_get_stolen_size(snb_gmch_ctl);
3247 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
3248 } else {
3249 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
3250 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3251 }
3252
3253 *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3254
3255 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3256 chv_setup_private_ppat(dev_priv);
3257 else
3258 bdw_setup_private_ppat(dev_priv);
3259
3260 ret = ggtt_probe_common(dev, gtt_size);
3261
3262 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
3263 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
3264 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3265 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3266
3267 /* XXX 39-bit addresses? Really? See pci_set_dma_mask above... */
3268 dev_priv->gtt.max_paddr = __BITS(38, 0);
3269
3270 return ret;
3271 }
3272
3273 static int gen6_gmch_probe(struct drm_device *dev,
3274 u64 *gtt_total,
3275 size_t *stolen,
3276 phys_addr_t *mappable_base,
3277 u64 *mappable_end)
3278 {
3279 struct drm_i915_private *dev_priv = dev->dev_private;
3280 unsigned int gtt_size;
3281 u16 snb_gmch_ctl;
3282 int ret;
3283
3284 *mappable_base = pci_resource_start(dev->pdev, 2);
3285 *mappable_end = pci_resource_len(dev->pdev, 2);
3286
3287 /* 64/512MB is the current min/max we actually know of, but this is just
3288 * a coarse sanity check.
3289 */
3290 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
3291 DRM_ERROR("Unknown GMADR size (%llx)\n",
3292 dev_priv->gtt.mappable_end);
3293 return -ENXIO;
3294 }
3295
3296 #ifndef __NetBSD__
3297 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3298 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3299 #endif
3300 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3301
3302 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
3303
3304 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
3305 *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3306
3307 ret = ggtt_probe_common(dev, gtt_size);
3308
3309 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
3310 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
3311 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3312 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3313
3314 dev_priv->gtt.max_paddr = __BITS(39, 0);
3315
3316 return ret;
3317 }
3318
3319 static void gen6_gmch_remove(struct i915_address_space *vm)
3320 {
3321 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
3322
3323 #ifdef __NetBSD__
3324 bus_space_unmap(gtt->bst, gtt->bsh, gtt->size);
3325 #else
3326 iounmap(gtt->gsm);
3327 #endif
3328 free_scratch_page(vm->dev, vm->scratch_page);
3329 }
3330
3331 static int i915_gmch_probe(struct drm_device *dev,
3332 u64 *gtt_total,
3333 size_t *stolen,
3334 phys_addr_t *mappable_base,
3335 u64 *mappable_end)
3336 {
3337 struct drm_i915_private *dev_priv = dev->dev_private;
3338 int ret;
3339
3340 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3341 if (!ret) {
3342 DRM_ERROR("failed to set up gmch\n");
3343 return -EIO;
3344 }
3345
3346 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
3347
3348 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
3349 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
3350 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
3351 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3352 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3353
3354 if (unlikely(dev_priv->gtt.do_idle_maps))
3355 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3356
3357 if (INTEL_INFO(dev)->gen <= 2)
3358 dev_priv->gtt.max_paddr = __BITS(29, 0);
3359 else if ((INTEL_INFO(dev)->gen <= 3) ||
3360 IS_BROADWATER(dev) || IS_CRESTLINE(dev))
3361 dev_priv->gtt.max_paddr = __BITS(31, 0);
3362 else if (INTEL_INFO(dev)->gen <= 5)
3363 dev_priv->gtt.max_paddr = __BITS(35, 0);
3364 else
3365 dev_priv->gtt.max_paddr = __BITS(39, 0);
3366
3367 return 0;
3368 }
3369
3370 static void i915_gmch_remove(struct i915_address_space *vm)
3371 {
3372 intel_gmch_remove();
3373 }
3374
3375 int i915_gem_gtt_init(struct drm_device *dev)
3376 {
3377 struct drm_i915_private *dev_priv = dev->dev_private;
3378 struct i915_gtt *gtt = &dev_priv->gtt;
3379 int ret;
3380
3381 if (INTEL_INFO(dev)->gen <= 5) {
3382 gtt->gtt_probe = i915_gmch_probe;
3383 gtt->base.cleanup = i915_gmch_remove;
3384 } else if (INTEL_INFO(dev)->gen < 8) {
3385 gtt->gtt_probe = gen6_gmch_probe;
3386 gtt->base.cleanup = gen6_gmch_remove;
3387 if (IS_HASWELL(dev) && dev_priv->ellc_size)
3388 gtt->base.pte_encode = iris_pte_encode;
3389 else if (IS_HASWELL(dev))
3390 gtt->base.pte_encode = hsw_pte_encode;
3391 else if (IS_VALLEYVIEW(dev))
3392 gtt->base.pte_encode = byt_pte_encode;
3393 else if (INTEL_INFO(dev)->gen >= 7)
3394 gtt->base.pte_encode = ivb_pte_encode;
3395 else
3396 gtt->base.pte_encode = snb_pte_encode;
3397 } else {
3398 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
3399 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
3400 }
3401
3402 gtt->base.dev = dev;
3403
3404 ret = gtt->gtt_probe(dev, >t->base.total, >t->stolen_size,
3405 >t->mappable_base, >t->mappable_end);
3406 if (ret)
3407 return ret;
3408
3409 #ifdef __NetBSD__
3410 dev_priv->gtt.pgfl = x86_select_freelist(dev_priv->gtt.max_paddr);
3411 ret = drm_limit_dma_space(dev, 0, dev_priv->gtt.max_paddr);
3412 if (ret) {
3413 DRM_ERROR("Unable to limit DMA paddr allocations: %d!\n", ret);
3414 gtt->base.cleanup(>t->base);
3415 return ret;
3416 }
3417 #endif
3418
3419 /* GMADR is the PCI mmio aperture into the global GTT. */
3420 DRM_INFO("Memory usable by graphics device = %lluM\n",
3421 gtt->base.total >> 20);
3422 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
3423 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
3424 #ifdef CONFIG_INTEL_IOMMU
3425 if (intel_iommu_gfx_mapped)
3426 DRM_INFO("VT-d active for gfx access\n");
3427 #endif
3428 /*
3429 * i915.enable_ppgtt is read-only, so do an early pass to validate the
3430 * user's requested state against the hardware/driver capabilities. We
3431 * do this now so that we can print out any log messages once rather
3432 * than every time we check intel_enable_ppgtt().
3433 */
3434 i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3435 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3436
3437 return 0;
3438 }
3439
3440 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3441 {
3442 struct drm_i915_private *dev_priv = dev->dev_private;
3443 struct drm_i915_gem_object *obj;
3444 struct i915_address_space *vm;
3445 struct i915_vma *vma;
3446 bool flush;
3447
3448 i915_check_and_clear_faults(dev);
3449
3450 /* First fill our portion of the GTT with scratch pages */
3451 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
3452 dev_priv->gtt.base.start,
3453 dev_priv->gtt.base.total,
3454 true);
3455
3456 /* Cache flush objects bound into GGTT and rebind them. */
3457 vm = &dev_priv->gtt.base;
3458 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3459 flush = false;
3460 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3461 if (vma->vm != vm)
3462 continue;
3463
3464 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3465 PIN_UPDATE));
3466
3467 flush = true;
3468 }
3469
3470 if (flush)
3471 i915_gem_clflush_object(obj, obj->pin_display);
3472 }
3473
3474 if (INTEL_INFO(dev)->gen >= 8) {
3475 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3476 chv_setup_private_ppat(dev_priv);
3477 else
3478 bdw_setup_private_ppat(dev_priv);
3479
3480 return;
3481 }
3482
3483 if (USES_PPGTT(dev)) {
3484 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3485 /* TODO: Perhaps it shouldn't be gen6 specific */
3486
3487 struct i915_hw_ppgtt *ppgtt =
3488 container_of(vm, struct i915_hw_ppgtt,
3489 base);
3490
3491 if (i915_is_ggtt(vm))
3492 ppgtt = dev_priv->mm.aliasing_ppgtt;
3493
3494 gen6_write_page_range(dev_priv, &ppgtt->pd,
3495 0, ppgtt->base.total);
3496 }
3497 }
3498
3499 i915_ggtt_flush(dev_priv);
3500 }
3501
3502 static struct i915_vma *
3503 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3504 struct i915_address_space *vm,
3505 const struct i915_ggtt_view *ggtt_view)
3506 {
3507 struct i915_vma *vma;
3508
3509 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3510 return ERR_PTR(-EINVAL);
3511
3512 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3513 if (vma == NULL)
3514 return ERR_PTR(-ENOMEM);
3515
3516 INIT_LIST_HEAD(&vma->vma_link);
3517 INIT_LIST_HEAD(&vma->mm_list);
3518 INIT_LIST_HEAD(&vma->exec_list);
3519 vma->vm = vm;
3520 vma->obj = obj;
3521
3522 if (i915_is_ggtt(vm))
3523 vma->ggtt_view = *ggtt_view;
3524
3525 list_add_tail(&vma->vma_link, &obj->vma_list);
3526 if (!i915_is_ggtt(vm))
3527 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3528
3529 return vma;
3530 }
3531
3532 struct i915_vma *
3533 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3534 struct i915_address_space *vm)
3535 {
3536 struct i915_vma *vma;
3537
3538 vma = i915_gem_obj_to_vma(obj, vm);
3539 if (!vma)
3540 vma = __i915_gem_vma_create(obj, vm,
3541 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3542
3543 return vma;
3544 }
3545
3546 struct i915_vma *
3547 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3548 const struct i915_ggtt_view *view)
3549 {
3550 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3551 struct i915_vma *vma;
3552
3553 if (WARN_ON(!view))
3554 return ERR_PTR(-EINVAL);
3555
3556 vma = i915_gem_obj_to_ggtt_view(obj, view);
3557
3558 if (IS_ERR(vma))
3559 return vma;
3560
3561 if (!vma)
3562 vma = __i915_gem_vma_create(obj, ggtt, view);
3563
3564 return vma;
3565
3566 }
3567
3568 static struct scatterlist *
3569 rotate_pages(dma_addr_t *in, unsigned int offset,
3570 unsigned int width, unsigned int height,
3571 struct sg_table *st, struct scatterlist *sg)
3572 {
3573 #ifdef __NetBSD__
3574 panic("XXX");
3575 #else
3576 unsigned int column, row;
3577 unsigned int src_idx;
3578
3579 if (!sg) {
3580 st->nents = 0;
3581 sg = st->sgl;
3582 }
3583
3584 for (column = 0; column < width; column++) {
3585 src_idx = width * (height - 1) + column;
3586 for (row = 0; row < height; row++) {
3587 st->nents++;
3588 /* We don't need the pages, but need to initialize
3589 * the entries so the sg list can be happily traversed.
3590 * The only thing we need are DMA addresses.
3591 */
3592 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3593 sg_dma_address(sg) = in[offset + src_idx];
3594 sg_dma_len(sg) = PAGE_SIZE;
3595 sg = sg_next(sg);
3596 src_idx -= width;
3597 }
3598 }
3599
3600 return sg;
3601 #endif
3602 }
3603
3604 static struct sg_table *
3605 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
3606 struct drm_i915_gem_object *obj)
3607 {
3608 #ifdef __NetBSD__
3609 panic("XXX");
3610 #else
3611 struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
3612 unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
3613 unsigned int size_pages_uv;
3614 struct sg_page_iter sg_iter;
3615 unsigned long i;
3616 dma_addr_t *page_addr_list;
3617 struct sg_table *st;
3618 unsigned int uv_start_page;
3619 struct scatterlist *sg;
3620 int ret = -ENOMEM;
3621
3622 /* Allocate a temporary list of source pages for random access. */
3623 page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3624 sizeof(dma_addr_t));
3625 if (!page_addr_list)
3626 return ERR_PTR(ret);
3627
3628 /* Account for UV plane with NV12. */
3629 if (rot_info->pixel_format == DRM_FORMAT_NV12)
3630 size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
3631 else
3632 size_pages_uv = 0;
3633
3634 /* Allocate target SG list. */
3635 st = kmalloc(sizeof(*st), GFP_KERNEL);
3636 if (!st)
3637 goto err_st_alloc;
3638
3639 ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3640 if (ret)
3641 goto err_sg_alloc;
3642
3643 /* Populate source page list from the object. */
3644 i = 0;
3645 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3646 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3647 i++;
3648 }
3649
3650 /* Rotate the pages. */
3651 sg = rotate_pages(page_addr_list, 0,
3652 rot_info->width_pages, rot_info->height_pages,
3653 st, NULL);
3654
3655 /* Append the UV plane if NV12. */
3656 if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3657 uv_start_page = size_pages;
3658
3659 /* Check for tile-row un-alignment. */
3660 if (offset_in_page(rot_info->uv_offset))
3661 uv_start_page--;
3662
3663 rot_info->uv_start_page = uv_start_page;
3664
3665 rotate_pages(page_addr_list, uv_start_page,
3666 rot_info->width_pages_uv,
3667 rot_info->height_pages_uv,
3668 st, sg);
3669 }
3670
3671 DRM_DEBUG_KMS(
3672 "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
3673 obj->base.size, rot_info->pitch, rot_info->height,
3674 rot_info->pixel_format, rot_info->width_pages,
3675 rot_info->height_pages, size_pages + size_pages_uv,
3676 size_pages);
3677
3678 drm_free_large(page_addr_list);
3679
3680 return st;
3681
3682 err_sg_alloc:
3683 kfree(st);
3684 err_st_alloc:
3685 drm_free_large(page_addr_list);
3686
3687 DRM_DEBUG_KMS(
3688 "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
3689 obj->base.size, ret, rot_info->pitch, rot_info->height,
3690 rot_info->pixel_format, rot_info->width_pages,
3691 rot_info->height_pages, size_pages + size_pages_uv,
3692 size_pages);
3693 return ERR_PTR(ret);
3694 #endif
3695 }
3696
3697 static struct sg_table *
3698 intel_partial_pages(const struct i915_ggtt_view *view,
3699 struct drm_i915_gem_object *obj)
3700 {
3701 #ifdef __NetBSD__
3702 panic("XXX");
3703 #else
3704 struct sg_table *st;
3705 struct scatterlist *sg;
3706 struct sg_page_iter obj_sg_iter;
3707 int ret = -ENOMEM;
3708
3709 st = kmalloc(sizeof(*st), GFP_KERNEL);
3710 if (!st)
3711 goto err_st_alloc;
3712
3713 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3714 if (ret)
3715 goto err_sg_alloc;
3716
3717 sg = st->sgl;
3718 st->nents = 0;
3719 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3720 view->params.partial.offset)
3721 {
3722 if (st->nents >= view->params.partial.size)
3723 break;
3724
3725 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3726 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3727 sg_dma_len(sg) = PAGE_SIZE;
3728
3729 sg = sg_next(sg);
3730 st->nents++;
3731 }
3732
3733 return st;
3734
3735 err_sg_alloc:
3736 kfree(st);
3737 err_st_alloc:
3738 return ERR_PTR(ret);
3739 #endif
3740 }
3741
3742 static int
3743 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3744 {
3745 int ret = 0;
3746
3747 if (vma->ggtt_view.pages)
3748 return 0;
3749
3750 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3751 vma->ggtt_view.pages = vma->obj->pages;
3752 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3753 vma->ggtt_view.pages =
3754 intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
3755 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3756 vma->ggtt_view.pages =
3757 intel_partial_pages(&vma->ggtt_view, vma->obj);
3758 else
3759 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3760 vma->ggtt_view.type);
3761
3762 if (!vma->ggtt_view.pages) {
3763 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3764 vma->ggtt_view.type);
3765 ret = -EINVAL;
3766 } else if (IS_ERR(vma->ggtt_view.pages)) {
3767 ret = PTR_ERR(vma->ggtt_view.pages);
3768 vma->ggtt_view.pages = NULL;
3769 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3770 vma->ggtt_view.type, ret);
3771 }
3772
3773 return ret;
3774 }
3775
3776 /**
3777 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3778 * @vma: VMA to map
3779 * @cache_level: mapping cache level
3780 * @flags: flags like global or local mapping
3781 *
3782 * DMA addresses are taken from the scatter-gather table of this object (or of
3783 * this VMA in case of non-default GGTT views) and PTE entries set up.
3784 * Note that DMA addresses are also the only part of the SG table we care about.
3785 */
3786 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3787 u32 flags)
3788 {
3789 int ret;
3790 u32 bind_flags;
3791
3792 if (WARN_ON(flags == 0))
3793 return -EINVAL;
3794
3795 bind_flags = 0;
3796 if (flags & PIN_GLOBAL)
3797 bind_flags |= GLOBAL_BIND;
3798 if (flags & PIN_USER)
3799 bind_flags |= LOCAL_BIND;
3800
3801 if (flags & PIN_UPDATE)
3802 bind_flags |= vma->bound;
3803 else
3804 bind_flags &= ~vma->bound;
3805
3806 if (bind_flags == 0)
3807 return 0;
3808
3809 if (vma->bound == 0 && vma->vm->allocate_va_range) {
3810 trace_i915_va_alloc(vma->vm,
3811 vma->node.start,
3812 vma->node.size,
3813 VM_TO_TRACE_NAME(vma->vm));
3814
3815 /* XXX: i915_vma_pin() will fix this +- hack */
3816 vma->pin_count++;
3817 ret = vma->vm->allocate_va_range(vma->vm,
3818 vma->node.start,
3819 vma->node.size);
3820 vma->pin_count--;
3821 if (ret)
3822 return ret;
3823 }
3824
3825 ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3826 if (ret)
3827 return ret;
3828
3829 vma->bound |= bind_flags;
3830
3831 return 0;
3832 }
3833
3834 /**
3835 * i915_ggtt_view_size - Get the size of a GGTT view.
3836 * @obj: Object the view is of.
3837 * @view: The view in question.
3838 *
3839 * @return The size of the GGTT view in bytes.
3840 */
3841 size_t
3842 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3843 const struct i915_ggtt_view *view)
3844 {
3845 if (view->type == I915_GGTT_VIEW_NORMAL) {
3846 return obj->base.size;
3847 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3848 return view->rotation_info.size;
3849 } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3850 return view->params.partial.size << PAGE_SHIFT;
3851 } else {
3852 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3853 return obj->base.size;
3854 }
3855 }
3856