Home | History | Annotate | Line # | Download | only in i915
      1  1.17  riastrad /*	$NetBSD: i915_request.c,v 1.17 2022/07/11 18:56:00 riastradh Exp $	*/
      2   1.1  riastrad 
      3   1.1  riastrad /*
      4   1.1  riastrad  * Copyright  2008-2015 Intel Corporation
      5   1.1  riastrad  *
      6   1.1  riastrad  * Permission is hereby granted, free of charge, to any person obtaining a
      7   1.1  riastrad  * copy of this software and associated documentation files (the "Software"),
      8   1.1  riastrad  * to deal in the Software without restriction, including without limitation
      9   1.1  riastrad  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10   1.1  riastrad  * and/or sell copies of the Software, and to permit persons to whom the
     11   1.1  riastrad  * Software is furnished to do so, subject to the following conditions:
     12   1.1  riastrad  *
     13   1.1  riastrad  * The above copyright notice and this permission notice (including the next
     14   1.1  riastrad  * paragraph) shall be included in all copies or substantial portions of the
     15   1.1  riastrad  * Software.
     16   1.1  riastrad  *
     17   1.1  riastrad  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18   1.1  riastrad  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19   1.1  riastrad  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20   1.1  riastrad  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21   1.1  riastrad  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22   1.1  riastrad  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23   1.1  riastrad  * IN THE SOFTWARE.
     24   1.1  riastrad  *
     25   1.1  riastrad  */
     26   1.1  riastrad 
     27   1.1  riastrad #include <sys/cdefs.h>
     28  1.17  riastrad __KERNEL_RCSID(0, "$NetBSD: i915_request.c,v 1.17 2022/07/11 18:56:00 riastradh Exp $");
     29   1.1  riastrad 
     30   1.1  riastrad #include <linux/dma-fence-array.h>
     31   1.1  riastrad #include <linux/irq_work.h>
     32   1.1  riastrad #include <linux/prefetch.h>
     33   1.1  riastrad #include <linux/sched.h>
     34   1.1  riastrad #include <linux/sched/clock.h>
     35   1.1  riastrad #include <linux/sched/signal.h>
     36   1.1  riastrad 
     37   1.1  riastrad #include "gem/i915_gem_context.h"
     38   1.1  riastrad #include "gt/intel_context.h"
     39   1.1  riastrad #include "gt/intel_ring.h"
     40   1.1  riastrad #include "gt/intel_rps.h"
     41   1.1  riastrad 
     42   1.1  riastrad #include "i915_active.h"
     43   1.1  riastrad #include "i915_drv.h"
     44   1.1  riastrad #include "i915_globals.h"
     45   1.1  riastrad #include "i915_trace.h"
     46   1.1  riastrad #include "intel_pm.h"
     47   1.1  riastrad 
     48   1.1  riastrad struct execute_cb {
     49   1.1  riastrad 	struct list_head link;
     50   1.1  riastrad 	struct irq_work work;
     51   1.1  riastrad 	struct i915_sw_fence *fence;
     52   1.1  riastrad 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
     53   1.1  riastrad 	struct i915_request *signal;
     54   1.1  riastrad };
     55   1.1  riastrad 
     56   1.1  riastrad static struct i915_global_request {
     57   1.1  riastrad 	struct i915_global base;
     58   1.1  riastrad 	struct kmem_cache *slab_requests;
     59   1.1  riastrad 	struct kmem_cache *slab_dependencies;
     60   1.1  riastrad 	struct kmem_cache *slab_execute_cbs;
     61   1.1  riastrad } global;
     62   1.1  riastrad 
     63   1.1  riastrad static const char *i915_fence_get_driver_name(struct dma_fence *fence)
     64   1.1  riastrad {
     65   1.1  riastrad 	return dev_name(to_request(fence)->i915->drm.dev);
     66   1.1  riastrad }
     67   1.1  riastrad 
     68   1.1  riastrad static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
     69   1.1  riastrad {
     70   1.1  riastrad 	const struct i915_gem_context *ctx;
     71   1.1  riastrad 
     72   1.1  riastrad 	/*
     73   1.1  riastrad 	 * The timeline struct (as part of the ppgtt underneath a context)
     74   1.1  riastrad 	 * may be freed when the request is no longer in use by the GPU.
     75   1.1  riastrad 	 * We could extend the life of a context to beyond that of all
     76   1.1  riastrad 	 * fences, possibly keeping the hw resource around indefinitely,
     77   1.1  riastrad 	 * or we just give them a false name. Since
     78   1.1  riastrad 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
     79   1.1  riastrad 	 * lie seems justifiable.
     80   1.1  riastrad 	 */
     81   1.1  riastrad 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
     82   1.1  riastrad 		return "signaled";
     83   1.1  riastrad 
     84   1.1  riastrad 	ctx = i915_request_gem_context(to_request(fence));
     85   1.1  riastrad 	if (!ctx)
     86   1.1  riastrad 		return "[" DRIVER_NAME "]";
     87   1.1  riastrad 
     88   1.1  riastrad 	return ctx->name;
     89   1.1  riastrad }
     90   1.1  riastrad 
     91   1.1  riastrad static bool i915_fence_signaled(struct dma_fence *fence)
     92   1.1  riastrad {
     93   1.1  riastrad 	return i915_request_completed(to_request(fence));
     94   1.1  riastrad }
     95   1.1  riastrad 
     96   1.1  riastrad static bool i915_fence_enable_signaling(struct dma_fence *fence)
     97   1.1  riastrad {
     98   1.1  riastrad 	return i915_request_enable_breadcrumb(to_request(fence));
     99   1.1  riastrad }
    100   1.1  riastrad 
    101   1.1  riastrad static signed long i915_fence_wait(struct dma_fence *fence,
    102   1.1  riastrad 				   bool interruptible,
    103   1.1  riastrad 				   signed long timeout)
    104   1.1  riastrad {
    105   1.1  riastrad 	return i915_request_wait(to_request(fence),
    106   1.1  riastrad 				 interruptible | I915_WAIT_PRIORITY,
    107   1.1  riastrad 				 timeout);
    108   1.1  riastrad }
    109   1.1  riastrad 
    110   1.1  riastrad static void i915_fence_release(struct dma_fence *fence)
    111   1.1  riastrad {
    112   1.1  riastrad 	struct i915_request *rq = to_request(fence);
    113   1.1  riastrad 
    114   1.1  riastrad 	/*
    115   1.1  riastrad 	 * The request is put onto a RCU freelist (i.e. the address
    116   1.1  riastrad 	 * is immediately reused), mark the fences as being freed now.
    117   1.1  riastrad 	 * Otherwise the debugobjects for the fences are only marked as
    118   1.1  riastrad 	 * freed when the slab cache itself is freed, and so we would get
    119   1.1  riastrad 	 * caught trying to reuse dead objects.
    120   1.1  riastrad 	 */
    121  1.10  riastrad #ifndef __NetBSD__
    122   1.1  riastrad 	i915_sw_fence_fini(&rq->submit);
    123   1.1  riastrad 	i915_sw_fence_fini(&rq->semaphore);
    124  1.10  riastrad #endif
    125   1.1  riastrad 
    126   1.1  riastrad 	kmem_cache_free(global.slab_requests, rq);
    127   1.1  riastrad }
    128   1.1  riastrad 
    129   1.1  riastrad const struct dma_fence_ops i915_fence_ops = {
    130   1.1  riastrad 	.get_driver_name = i915_fence_get_driver_name,
    131   1.1  riastrad 	.get_timeline_name = i915_fence_get_timeline_name,
    132   1.1  riastrad 	.enable_signaling = i915_fence_enable_signaling,
    133   1.1  riastrad 	.signaled = i915_fence_signaled,
    134   1.1  riastrad 	.wait = i915_fence_wait,
    135   1.1  riastrad 	.release = i915_fence_release,
    136   1.1  riastrad };
    137   1.1  riastrad 
    138   1.1  riastrad static void irq_execute_cb(struct irq_work *wrk)
    139   1.1  riastrad {
    140   1.1  riastrad 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
    141   1.1  riastrad 
    142   1.1  riastrad 	i915_sw_fence_complete(cb->fence);
    143   1.1  riastrad 	kmem_cache_free(global.slab_execute_cbs, cb);
    144   1.1  riastrad }
    145   1.1  riastrad 
    146   1.1  riastrad static void irq_execute_cb_hook(struct irq_work *wrk)
    147   1.1  riastrad {
    148   1.1  riastrad 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
    149   1.1  riastrad 
    150   1.1  riastrad 	cb->hook(container_of(cb->fence, struct i915_request, submit),
    151   1.1  riastrad 		 &cb->signal->fence);
    152   1.1  riastrad 	i915_request_put(cb->signal);
    153   1.1  riastrad 
    154   1.1  riastrad 	irq_execute_cb(wrk);
    155   1.1  riastrad }
    156   1.1  riastrad 
    157   1.1  riastrad static void __notify_execute_cb(struct i915_request *rq)
    158   1.1  riastrad {
    159   1.1  riastrad 	struct execute_cb *cb;
    160   1.1  riastrad 
    161   1.1  riastrad 	lockdep_assert_held(&rq->lock);
    162   1.1  riastrad 
    163   1.1  riastrad 	if (list_empty(&rq->execute_cb))
    164   1.1  riastrad 		return;
    165   1.1  riastrad 
    166   1.1  riastrad 	list_for_each_entry(cb, &rq->execute_cb, link)
    167   1.1  riastrad 		irq_work_queue(&cb->work);
    168   1.1  riastrad 
    169   1.1  riastrad 	/*
    170   1.1  riastrad 	 * XXX Rollback on __i915_request_unsubmit()
    171   1.1  riastrad 	 *
    172   1.1  riastrad 	 * In the future, perhaps when we have an active time-slicing scheduler,
    173   1.1  riastrad 	 * it will be interesting to unsubmit parallel execution and remove
    174   1.1  riastrad 	 * busywaits from the GPU until their master is restarted. This is
    175   1.1  riastrad 	 * quite hairy, we have to carefully rollback the fence and do a
    176   1.1  riastrad 	 * preempt-to-idle cycle on the target engine, all the while the
    177   1.1  riastrad 	 * master execute_cb may refire.
    178   1.1  riastrad 	 */
    179   1.1  riastrad 	INIT_LIST_HEAD(&rq->execute_cb);
    180   1.1  riastrad }
    181   1.1  riastrad 
    182   1.1  riastrad static inline void
    183   1.1  riastrad remove_from_client(struct i915_request *request)
    184   1.1  riastrad {
    185   1.1  riastrad 	struct drm_i915_file_private *file_priv;
    186   1.1  riastrad 
    187   1.1  riastrad 	if (!READ_ONCE(request->file_priv))
    188   1.1  riastrad 		return;
    189   1.1  riastrad 
    190   1.1  riastrad 	rcu_read_lock();
    191   1.1  riastrad 	file_priv = xchg(&request->file_priv, NULL);
    192   1.1  riastrad 	if (file_priv) {
    193   1.1  riastrad 		spin_lock(&file_priv->mm.lock);
    194   1.1  riastrad 		list_del(&request->client_link);
    195   1.1  riastrad 		spin_unlock(&file_priv->mm.lock);
    196   1.1  riastrad 	}
    197   1.1  riastrad 	rcu_read_unlock();
    198   1.1  riastrad }
    199   1.1  riastrad 
    200   1.1  riastrad static void free_capture_list(struct i915_request *request)
    201   1.1  riastrad {
    202   1.1  riastrad 	struct i915_capture_list *capture;
    203   1.1  riastrad 
    204   1.1  riastrad 	capture = fetch_and_zero(&request->capture_list);
    205   1.1  riastrad 	while (capture) {
    206   1.1  riastrad 		struct i915_capture_list *next = capture->next;
    207   1.1  riastrad 
    208   1.1  riastrad 		kfree(capture);
    209   1.1  riastrad 		capture = next;
    210   1.1  riastrad 	}
    211   1.1  riastrad }
    212   1.1  riastrad 
    213   1.1  riastrad static void remove_from_engine(struct i915_request *rq)
    214   1.1  riastrad {
    215   1.1  riastrad 	struct intel_engine_cs *engine, *locked;
    216   1.1  riastrad 
    217   1.1  riastrad 	/*
    218   1.1  riastrad 	 * Virtual engines complicate acquiring the engine timeline lock,
    219   1.1  riastrad 	 * as their rq->engine pointer is not stable until under that
    220   1.1  riastrad 	 * engine lock. The simple ploy we use is to take the lock then
    221   1.1  riastrad 	 * check that the rq still belongs to the newly locked engine.
    222   1.1  riastrad 	 */
    223   1.1  riastrad 	locked = READ_ONCE(rq->engine);
    224   1.1  riastrad 	spin_lock_irq(&locked->active.lock);
    225   1.1  riastrad 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
    226   1.1  riastrad 		spin_unlock(&locked->active.lock);
    227   1.1  riastrad 		spin_lock(&engine->active.lock);
    228   1.1  riastrad 		locked = engine;
    229   1.1  riastrad 	}
    230   1.1  riastrad 	list_del_init(&rq->sched.link);
    231   1.1  riastrad 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
    232   1.1  riastrad 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
    233   1.1  riastrad 	spin_unlock_irq(&locked->active.lock);
    234   1.1  riastrad }
    235   1.1  riastrad 
    236   1.1  riastrad bool i915_request_retire(struct i915_request *rq)
    237   1.1  riastrad {
    238   1.1  riastrad 	if (!i915_request_completed(rq))
    239   1.1  riastrad 		return false;
    240   1.1  riastrad 
    241   1.1  riastrad 	RQ_TRACE(rq, "\n");
    242   1.1  riastrad 
    243   1.1  riastrad 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
    244   1.1  riastrad 	trace_i915_request_retire(rq);
    245   1.1  riastrad 
    246   1.1  riastrad 	/*
    247   1.1  riastrad 	 * We know the GPU must have read the request to have
    248   1.1  riastrad 	 * sent us the seqno + interrupt, so use the position
    249   1.1  riastrad 	 * of tail of the request to update the last known position
    250   1.1  riastrad 	 * of the GPU head.
    251   1.1  riastrad 	 *
    252   1.1  riastrad 	 * Note this requires that we are always called in request
    253   1.1  riastrad 	 * completion order.
    254   1.1  riastrad 	 */
    255   1.1  riastrad 	GEM_BUG_ON(!list_is_first(&rq->link,
    256   1.1  riastrad 				  &i915_request_timeline(rq)->requests));
    257   1.1  riastrad 	rq->ring->head = rq->postfix;
    258   1.1  riastrad 
    259   1.1  riastrad 	/*
    260   1.1  riastrad 	 * We only loosely track inflight requests across preemption,
    261   1.1  riastrad 	 * and so we may find ourselves attempting to retire a _completed_
    262   1.1  riastrad 	 * request that we have removed from the HW and put back on a run
    263   1.1  riastrad 	 * queue.
    264   1.1  riastrad 	 */
    265   1.1  riastrad 	remove_from_engine(rq);
    266   1.1  riastrad 
    267   1.1  riastrad 	spin_lock_irq(&rq->lock);
    268   1.1  riastrad 	i915_request_mark_complete(rq);
    269   1.1  riastrad 	if (!i915_request_signaled(rq))
    270   1.1  riastrad 		dma_fence_signal_locked(&rq->fence);
    271   1.1  riastrad 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
    272   1.1  riastrad 		i915_request_cancel_breadcrumb(rq);
    273   1.1  riastrad 	if (i915_request_has_waitboost(rq)) {
    274   1.1  riastrad 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
    275   1.1  riastrad 		atomic_dec(&rq->engine->gt->rps.num_waiters);
    276   1.1  riastrad 	}
    277   1.1  riastrad 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
    278   1.1  riastrad 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
    279   1.1  riastrad 		__notify_execute_cb(rq);
    280   1.1  riastrad 	}
    281   1.1  riastrad 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
    282   1.1  riastrad 	spin_unlock_irq(&rq->lock);
    283   1.1  riastrad 
    284   1.1  riastrad 	remove_from_client(rq);
    285   1.1  riastrad 	list_del(&rq->link);
    286   1.1  riastrad 
    287   1.1  riastrad 	intel_context_exit(rq->context);
    288   1.1  riastrad 	intel_context_unpin(rq->context);
    289   1.1  riastrad 
    290   1.1  riastrad 	free_capture_list(rq);
    291   1.1  riastrad 	i915_sched_node_fini(&rq->sched);
    292   1.1  riastrad 	i915_request_put(rq);
    293   1.1  riastrad 
    294   1.1  riastrad 	return true;
    295   1.1  riastrad }
    296   1.1  riastrad 
    297   1.1  riastrad void i915_request_retire_upto(struct i915_request *rq)
    298   1.1  riastrad {
    299   1.1  riastrad 	struct intel_timeline * const tl = i915_request_timeline(rq);
    300   1.1  riastrad 	struct i915_request *tmp;
    301   1.1  riastrad 
    302   1.1  riastrad 	RQ_TRACE(rq, "\n");
    303   1.1  riastrad 
    304   1.1  riastrad 	GEM_BUG_ON(!i915_request_completed(rq));
    305   1.1  riastrad 
    306   1.1  riastrad 	do {
    307   1.1  riastrad 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
    308   1.1  riastrad 	} while (i915_request_retire(tmp) && tmp != rq);
    309   1.1  riastrad }
    310   1.1  riastrad 
    311   1.1  riastrad static int
    312   1.1  riastrad __await_execution(struct i915_request *rq,
    313   1.1  riastrad 		  struct i915_request *signal,
    314   1.1  riastrad 		  void (*hook)(struct i915_request *rq,
    315   1.1  riastrad 			       struct dma_fence *signal),
    316   1.1  riastrad 		  gfp_t gfp)
    317   1.1  riastrad {
    318   1.1  riastrad 	struct execute_cb *cb;
    319   1.1  riastrad 
    320   1.1  riastrad 	if (i915_request_is_active(signal)) {
    321   1.1  riastrad 		if (hook)
    322   1.1  riastrad 			hook(rq, &signal->fence);
    323   1.1  riastrad 		return 0;
    324   1.1  riastrad 	}
    325   1.1  riastrad 
    326   1.1  riastrad 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
    327   1.1  riastrad 	if (!cb)
    328   1.1  riastrad 		return -ENOMEM;
    329   1.1  riastrad 
    330   1.1  riastrad 	cb->fence = &rq->submit;
    331   1.1  riastrad 	i915_sw_fence_await(cb->fence);
    332   1.1  riastrad 	init_irq_work(&cb->work, irq_execute_cb);
    333   1.1  riastrad 
    334   1.1  riastrad 	if (hook) {
    335   1.1  riastrad 		cb->hook = hook;
    336   1.1  riastrad 		cb->signal = i915_request_get(signal);
    337   1.1  riastrad 		cb->work.func = irq_execute_cb_hook;
    338   1.1  riastrad 	}
    339   1.1  riastrad 
    340   1.1  riastrad 	spin_lock_irq(&signal->lock);
    341   1.1  riastrad 	if (i915_request_is_active(signal)) {
    342   1.1  riastrad 		if (hook) {
    343   1.1  riastrad 			hook(rq, &signal->fence);
    344   1.1  riastrad 			i915_request_put(signal);
    345   1.1  riastrad 		}
    346   1.1  riastrad 		i915_sw_fence_complete(cb->fence);
    347   1.1  riastrad 		kmem_cache_free(global.slab_execute_cbs, cb);
    348   1.1  riastrad 	} else {
    349   1.1  riastrad 		list_add_tail(&cb->link, &signal->execute_cb);
    350   1.1  riastrad 	}
    351   1.1  riastrad 	spin_unlock_irq(&signal->lock);
    352   1.1  riastrad 
    353   1.1  riastrad 	/* Copy across semaphore status as we need the same behaviour */
    354   1.1  riastrad 	rq->sched.flags |= signal->sched.flags;
    355   1.1  riastrad 	return 0;
    356   1.1  riastrad }
    357   1.1  riastrad 
    358   1.1  riastrad bool __i915_request_submit(struct i915_request *request)
    359   1.1  riastrad {
    360   1.1  riastrad 	struct intel_engine_cs *engine = request->engine;
    361   1.1  riastrad 	bool result = false;
    362   1.1  riastrad 
    363   1.1  riastrad 	RQ_TRACE(request, "\n");
    364   1.1  riastrad 
    365   1.1  riastrad 	GEM_BUG_ON(!irqs_disabled());
    366   1.1  riastrad 	lockdep_assert_held(&engine->active.lock);
    367   1.1  riastrad 
    368   1.1  riastrad 	/*
    369   1.1  riastrad 	 * With the advent of preempt-to-busy, we frequently encounter
    370   1.1  riastrad 	 * requests that we have unsubmitted from HW, but left running
    371   1.1  riastrad 	 * until the next ack and so have completed in the meantime. On
    372   1.1  riastrad 	 * resubmission of that completed request, we can skip
    373   1.1  riastrad 	 * updating the payload, and execlists can even skip submitting
    374   1.1  riastrad 	 * the request.
    375   1.1  riastrad 	 *
    376   1.1  riastrad 	 * We must remove the request from the caller's priority queue,
    377   1.1  riastrad 	 * and the caller must only call us when the request is in their
    378   1.1  riastrad 	 * priority queue, under the active.lock. This ensures that the
    379   1.1  riastrad 	 * request has *not* yet been retired and we can safely move
    380   1.1  riastrad 	 * the request into the engine->active.list where it will be
    381   1.1  riastrad 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
    382   1.1  riastrad 	 * request, this would be a horrible use-after-free.)
    383   1.1  riastrad 	 */
    384   1.1  riastrad 	if (i915_request_completed(request))
    385   1.1  riastrad 		goto xfer;
    386   1.1  riastrad 
    387   1.1  riastrad 	if (intel_context_is_banned(request->context))
    388   1.1  riastrad 		i915_request_skip(request, -EIO);
    389   1.1  riastrad 
    390   1.1  riastrad 	/*
    391   1.1  riastrad 	 * Are we using semaphores when the gpu is already saturated?
    392   1.1  riastrad 	 *
    393   1.1  riastrad 	 * Using semaphores incurs a cost in having the GPU poll a
    394   1.1  riastrad 	 * memory location, busywaiting for it to change. The continual
    395   1.1  riastrad 	 * memory reads can have a noticeable impact on the rest of the
    396   1.1  riastrad 	 * system with the extra bus traffic, stalling the cpu as it too
    397   1.1  riastrad 	 * tries to access memory across the bus (perf stat -e bus-cycles).
    398   1.1  riastrad 	 *
    399   1.1  riastrad 	 * If we installed a semaphore on this request and we only submit
    400   1.1  riastrad 	 * the request after the signaler completed, that indicates the
    401   1.1  riastrad 	 * system is overloaded and using semaphores at this time only
    402   1.1  riastrad 	 * increases the amount of work we are doing. If so, we disable
    403   1.1  riastrad 	 * further use of semaphores until we are idle again, whence we
    404   1.1  riastrad 	 * optimistically try again.
    405   1.1  riastrad 	 */
    406   1.1  riastrad 	if (request->sched.semaphores &&
    407   1.1  riastrad 	    i915_sw_fence_signaled(&request->semaphore))
    408   1.1  riastrad 		engine->saturated |= request->sched.semaphores;
    409   1.1  riastrad 
    410   1.1  riastrad 	engine->emit_fini_breadcrumb(request,
    411   1.1  riastrad 				     request->ring->vaddr + request->postfix);
    412   1.1  riastrad 
    413   1.1  riastrad 	trace_i915_request_execute(request);
    414   1.1  riastrad 	engine->serial++;
    415   1.1  riastrad 	result = true;
    416   1.1  riastrad 
    417   1.1  riastrad xfer:	/* We may be recursing from the signal callback of another i915 fence */
    418   1.1  riastrad 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
    419   1.1  riastrad 
    420   1.1  riastrad 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
    421   1.1  riastrad 		list_move_tail(&request->sched.link, &engine->active.requests);
    422   1.1  riastrad 		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
    423   1.1  riastrad 	}
    424   1.1  riastrad 
    425   1.1  riastrad 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
    426   1.1  riastrad 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
    427   1.1  riastrad 	    !i915_request_enable_breadcrumb(request))
    428   1.1  riastrad 		intel_engine_signal_breadcrumbs(engine);
    429   1.1  riastrad 
    430   1.1  riastrad 	__notify_execute_cb(request);
    431   1.1  riastrad 
    432   1.1  riastrad 	spin_unlock(&request->lock);
    433   1.1  riastrad 
    434   1.1  riastrad 	return result;
    435   1.1  riastrad }
    436   1.1  riastrad 
    437   1.1  riastrad void i915_request_submit(struct i915_request *request)
    438   1.1  riastrad {
    439   1.1  riastrad 	struct intel_engine_cs *engine = request->engine;
    440   1.1  riastrad 	unsigned long flags;
    441   1.1  riastrad 
    442   1.1  riastrad 	/* Will be called from irq-context when using foreign fences. */
    443   1.1  riastrad 	spin_lock_irqsave(&engine->active.lock, flags);
    444   1.1  riastrad 
    445   1.1  riastrad 	__i915_request_submit(request);
    446   1.1  riastrad 
    447   1.1  riastrad 	spin_unlock_irqrestore(&engine->active.lock, flags);
    448   1.1  riastrad }
    449   1.1  riastrad 
    450   1.1  riastrad void __i915_request_unsubmit(struct i915_request *request)
    451   1.1  riastrad {
    452   1.5  riastrad 	struct intel_engine_cs *engine __lockdep_used = request->engine;
    453   1.1  riastrad 
    454   1.1  riastrad 	RQ_TRACE(request, "\n");
    455   1.1  riastrad 
    456   1.1  riastrad 	GEM_BUG_ON(!irqs_disabled());
    457   1.1  riastrad 	lockdep_assert_held(&engine->active.lock);
    458   1.1  riastrad 
    459   1.1  riastrad 	/*
    460   1.1  riastrad 	 * Only unwind in reverse order, required so that the per-context list
    461   1.1  riastrad 	 * is kept in seqno/ring order.
    462   1.1  riastrad 	 */
    463   1.1  riastrad 
    464   1.1  riastrad 	/* We may be recursing from the signal callback of another i915 fence */
    465   1.1  riastrad 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
    466   1.1  riastrad 
    467   1.1  riastrad 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
    468   1.1  riastrad 		i915_request_cancel_breadcrumb(request);
    469   1.1  riastrad 
    470   1.1  riastrad 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
    471   1.1  riastrad 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
    472   1.1  riastrad 
    473   1.1  riastrad 	spin_unlock(&request->lock);
    474   1.1  riastrad 
    475   1.1  riastrad 	/* We've already spun, don't charge on resubmitting. */
    476   1.1  riastrad 	if (request->sched.semaphores && i915_request_started(request)) {
    477   1.1  riastrad 		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
    478   1.1  riastrad 		request->sched.semaphores = 0;
    479   1.1  riastrad 	}
    480   1.1  riastrad 
    481   1.1  riastrad 	/*
    482   1.1  riastrad 	 * We don't need to wake_up any waiters on request->execute, they
    483   1.1  riastrad 	 * will get woken by any other event or us re-adding this request
    484   1.1  riastrad 	 * to the engine timeline (__i915_request_submit()). The waiters
    485   1.1  riastrad 	 * should be quite adapt at finding that the request now has a new
    486   1.1  riastrad 	 * global_seqno to the one they went to sleep on.
    487   1.1  riastrad 	 */
    488   1.1  riastrad }
    489   1.1  riastrad 
    490   1.1  riastrad void i915_request_unsubmit(struct i915_request *request)
    491   1.1  riastrad {
    492   1.1  riastrad 	struct intel_engine_cs *engine = request->engine;
    493   1.1  riastrad 	unsigned long flags;
    494   1.1  riastrad 
    495   1.1  riastrad 	/* Will be called from irq-context when using foreign fences. */
    496   1.1  riastrad 	spin_lock_irqsave(&engine->active.lock, flags);
    497   1.1  riastrad 
    498   1.1  riastrad 	__i915_request_unsubmit(request);
    499   1.1  riastrad 
    500   1.1  riastrad 	spin_unlock_irqrestore(&engine->active.lock, flags);
    501   1.1  riastrad }
    502   1.1  riastrad 
    503   1.1  riastrad static int __i915_sw_fence_call
    504   1.1  riastrad submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
    505   1.1  riastrad {
    506   1.1  riastrad 	struct i915_request *request =
    507   1.1  riastrad 		container_of(fence, typeof(*request), submit);
    508   1.1  riastrad 
    509   1.1  riastrad 	switch (state) {
    510   1.1  riastrad 	case FENCE_COMPLETE:
    511   1.1  riastrad 		trace_i915_request_submit(request);
    512   1.1  riastrad 
    513   1.1  riastrad 		if (unlikely(fence->error))
    514   1.1  riastrad 			i915_request_skip(request, fence->error);
    515   1.1  riastrad 
    516   1.1  riastrad 		/*
    517   1.1  riastrad 		 * We need to serialize use of the submit_request() callback
    518   1.1  riastrad 		 * with its hotplugging performed during an emergency
    519   1.1  riastrad 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
    520   1.1  riastrad 		 * critical section in order to force i915_gem_set_wedged() to
    521   1.1  riastrad 		 * wait until the submit_request() is completed before
    522   1.1  riastrad 		 * proceeding.
    523   1.1  riastrad 		 */
    524   1.1  riastrad 		rcu_read_lock();
    525   1.1  riastrad 		request->engine->submit_request(request);
    526   1.1  riastrad 		rcu_read_unlock();
    527   1.1  riastrad 		break;
    528   1.1  riastrad 
    529   1.1  riastrad 	case FENCE_FREE:
    530   1.1  riastrad 		i915_request_put(request);
    531   1.1  riastrad 		break;
    532   1.1  riastrad 	}
    533   1.1  riastrad 
    534   1.1  riastrad 	return NOTIFY_DONE;
    535   1.1  riastrad }
    536   1.1  riastrad 
    537   1.1  riastrad static int __i915_sw_fence_call
    538   1.1  riastrad semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
    539   1.1  riastrad {
    540   1.1  riastrad 	struct i915_request *request =
    541   1.1  riastrad 		container_of(fence, typeof(*request), semaphore);
    542   1.1  riastrad 
    543   1.1  riastrad 	switch (state) {
    544   1.1  riastrad 	case FENCE_COMPLETE:
    545   1.1  riastrad 		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
    546   1.1  riastrad 		break;
    547   1.1  riastrad 
    548   1.1  riastrad 	case FENCE_FREE:
    549   1.1  riastrad 		i915_request_put(request);
    550   1.1  riastrad 		break;
    551   1.1  riastrad 	}
    552   1.1  riastrad 
    553   1.1  riastrad 	return NOTIFY_DONE;
    554   1.1  riastrad }
    555   1.1  riastrad 
    556   1.1  riastrad static void retire_requests(struct intel_timeline *tl)
    557   1.1  riastrad {
    558   1.1  riastrad 	struct i915_request *rq, *rn;
    559   1.1  riastrad 
    560   1.1  riastrad 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
    561   1.1  riastrad 		if (!i915_request_retire(rq))
    562   1.1  riastrad 			break;
    563   1.1  riastrad }
    564   1.1  riastrad 
    565   1.1  riastrad static noinline struct i915_request *
    566   1.1  riastrad request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
    567   1.1  riastrad {
    568   1.1  riastrad 	struct i915_request *rq;
    569   1.1  riastrad 
    570   1.1  riastrad 	if (list_empty(&tl->requests))
    571   1.1  riastrad 		goto out;
    572   1.1  riastrad 
    573   1.1  riastrad 	if (!gfpflags_allow_blocking(gfp))
    574   1.1  riastrad 		goto out;
    575   1.1  riastrad 
    576   1.1  riastrad 	/* Move our oldest request to the slab-cache (if not in use!) */
    577   1.1  riastrad 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
    578   1.1  riastrad 	i915_request_retire(rq);
    579   1.1  riastrad 
    580   1.1  riastrad 	rq = kmem_cache_alloc(global.slab_requests,
    581   1.1  riastrad 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
    582   1.1  riastrad 	if (rq)
    583   1.1  riastrad 		return rq;
    584   1.1  riastrad 
    585   1.1  riastrad 	/* Ratelimit ourselves to prevent oom from malicious clients */
    586   1.1  riastrad 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
    587   1.1  riastrad 	cond_synchronize_rcu(rq->rcustate);
    588   1.1  riastrad 
    589   1.1  riastrad 	/* Retire our old requests in the hope that we free some */
    590   1.1  riastrad 	retire_requests(tl);
    591   1.1  riastrad 
    592   1.1  riastrad out:
    593   1.1  riastrad 	return kmem_cache_alloc(global.slab_requests, gfp);
    594   1.1  riastrad }
    595   1.1  riastrad 
    596   1.1  riastrad static void __i915_request_ctor(void *arg)
    597   1.1  riastrad {
    598   1.1  riastrad 	struct i915_request *rq = arg;
    599   1.1  riastrad 
    600   1.1  riastrad 	spin_lock_init(&rq->lock);
    601   1.1  riastrad 	i915_sched_node_init(&rq->sched);
    602   1.1  riastrad 	i915_sw_fence_init(&rq->submit, submit_notify);
    603   1.1  riastrad 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
    604   1.1  riastrad 
    605   1.1  riastrad 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
    606   1.1  riastrad 
    607   1.1  riastrad 	rq->file_priv = NULL;
    608   1.1  riastrad 	rq->capture_list = NULL;
    609   1.1  riastrad 
    610   1.1  riastrad 	INIT_LIST_HEAD(&rq->execute_cb);
    611   1.1  riastrad }
    612   1.1  riastrad 
    613   1.9  riastrad static void __i915_request_dtor(void *arg)
    614   1.9  riastrad {
    615   1.9  riastrad 	struct i915_request *rq = arg;
    616   1.9  riastrad 
    617   1.9  riastrad 	dma_fence_destroy(&rq->fence);
    618  1.10  riastrad #ifdef __NetBSD__
    619  1.10  riastrad 	i915_sw_fence_fini(&rq->submit);
    620  1.10  riastrad 	i915_sw_fence_fini(&rq->semaphore);
    621  1.10  riastrad #endif
    622   1.9  riastrad 	spin_lock_destroy(&rq->lock);
    623   1.9  riastrad }
    624   1.9  riastrad 
    625   1.1  riastrad struct i915_request *
    626   1.1  riastrad __i915_request_create(struct intel_context *ce, gfp_t gfp)
    627   1.1  riastrad {
    628   1.1  riastrad 	struct intel_timeline *tl = ce->timeline;
    629   1.1  riastrad 	struct i915_request *rq;
    630   1.1  riastrad 	u32 seqno;
    631   1.1  riastrad 	int ret;
    632   1.1  riastrad 
    633   1.1  riastrad 	might_sleep_if(gfpflags_allow_blocking(gfp));
    634   1.1  riastrad 
    635   1.1  riastrad 	/* Check that the caller provided an already pinned context */
    636   1.1  riastrad 	__intel_context_pin(ce);
    637   1.1  riastrad 
    638   1.1  riastrad 	/*
    639   1.1  riastrad 	 * Beware: Dragons be flying overhead.
    640   1.1  riastrad 	 *
    641   1.1  riastrad 	 * We use RCU to look up requests in flight. The lookups may
    642   1.1  riastrad 	 * race with the request being allocated from the slab freelist.
    643   1.1  riastrad 	 * That is the request we are writing to here, may be in the process
    644   1.1  riastrad 	 * of being read by __i915_active_request_get_rcu(). As such,
    645   1.1  riastrad 	 * we have to be very careful when overwriting the contents. During
    646   1.1  riastrad 	 * the RCU lookup, we change chase the request->engine pointer,
    647   1.1  riastrad 	 * read the request->global_seqno and increment the reference count.
    648   1.1  riastrad 	 *
    649   1.1  riastrad 	 * The reference count is incremented atomically. If it is zero,
    650   1.1  riastrad 	 * the lookup knows the request is unallocated and complete. Otherwise,
    651   1.1  riastrad 	 * it is either still in use, or has been reallocated and reset
    652   1.1  riastrad 	 * with dma_fence_init(). This increment is safe for release as we
    653   1.1  riastrad 	 * check that the request we have a reference to and matches the active
    654   1.1  riastrad 	 * request.
    655   1.1  riastrad 	 *
    656   1.1  riastrad 	 * Before we increment the refcount, we chase the request->engine
    657   1.1  riastrad 	 * pointer. We must not call kmem_cache_zalloc() or else we set
    658   1.1  riastrad 	 * that pointer to NULL and cause a crash during the lookup. If
    659   1.1  riastrad 	 * we see the request is completed (based on the value of the
    660   1.1  riastrad 	 * old engine and seqno), the lookup is complete and reports NULL.
    661   1.1  riastrad 	 * If we decide the request is not completed (new engine or seqno),
    662   1.1  riastrad 	 * then we grab a reference and double check that it is still the
    663   1.1  riastrad 	 * active request - which it won't be and restart the lookup.
    664   1.1  riastrad 	 *
    665   1.1  riastrad 	 * Do not use kmem_cache_zalloc() here!
    666   1.1  riastrad 	 */
    667   1.1  riastrad 	rq = kmem_cache_alloc(global.slab_requests,
    668   1.1  riastrad 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
    669   1.1  riastrad 	if (unlikely(!rq)) {
    670   1.1  riastrad 		rq = request_alloc_slow(tl, gfp);
    671   1.1  riastrad 		if (!rq) {
    672   1.1  riastrad 			ret = -ENOMEM;
    673   1.1  riastrad 			goto err_unreserve;
    674   1.1  riastrad 		}
    675   1.1  riastrad 	}
    676   1.1  riastrad 
    677   1.1  riastrad 	rq->i915 = ce->engine->i915;
    678   1.1  riastrad 	rq->context = ce;
    679   1.1  riastrad 	rq->engine = ce->engine;
    680   1.1  riastrad 	rq->ring = ce->ring;
    681   1.1  riastrad 	rq->execution_mask = ce->engine->mask;
    682   1.1  riastrad 
    683   1.5  riastrad #ifdef __NetBSD__
    684   1.9  riastrad 	dma_fence_reset(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
    685   1.5  riastrad #else
    686   1.1  riastrad 	kref_init(&rq->fence.refcount);
    687   1.1  riastrad 	rq->fence.flags = 0;
    688   1.1  riastrad 	rq->fence.error = 0;
    689   1.1  riastrad 	INIT_LIST_HEAD(&rq->fence.cb_list);
    690   1.5  riastrad #endif
    691   1.1  riastrad 
    692   1.1  riastrad 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
    693   1.1  riastrad 	if (ret)
    694   1.1  riastrad 		goto err_free;
    695   1.1  riastrad 
    696   1.1  riastrad 	rq->fence.context = tl->fence_context;
    697   1.1  riastrad 	rq->fence.seqno = seqno;
    698   1.1  riastrad 
    699   1.1  riastrad 	RCU_INIT_POINTER(rq->timeline, tl);
    700   1.1  riastrad 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
    701   1.1  riastrad 	rq->hwsp_seqno = tl->hwsp_seqno;
    702   1.1  riastrad 
    703   1.1  riastrad 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
    704   1.1  riastrad 
    705   1.1  riastrad 	/* We bump the ref for the fence chain */
    706   1.1  riastrad 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
    707   1.1  riastrad 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
    708   1.1  riastrad 
    709   1.1  riastrad 	i915_sched_node_reinit(&rq->sched);
    710   1.1  riastrad 
    711   1.1  riastrad 	/* No zalloc, everything must be cleared after use */
    712   1.1  riastrad 	rq->batch = NULL;
    713   1.1  riastrad 	GEM_BUG_ON(rq->file_priv);
    714   1.1  riastrad 	GEM_BUG_ON(rq->capture_list);
    715   1.1  riastrad 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
    716   1.1  riastrad 
    717   1.1  riastrad 	/*
    718   1.1  riastrad 	 * Reserve space in the ring buffer for all the commands required to
    719   1.1  riastrad 	 * eventually emit this request. This is to guarantee that the
    720   1.1  riastrad 	 * i915_request_add() call can't fail. Note that the reserve may need
    721   1.1  riastrad 	 * to be redone if the request is not actually submitted straight
    722   1.1  riastrad 	 * away, e.g. because a GPU scheduler has deferred it.
    723   1.1  riastrad 	 *
    724   1.1  riastrad 	 * Note that due to how we add reserved_space to intel_ring_begin()
    725   1.1  riastrad 	 * we need to double our request to ensure that if we need to wrap
    726   1.1  riastrad 	 * around inside i915_request_add() there is sufficient space at
    727   1.1  riastrad 	 * the beginning of the ring as well.
    728   1.1  riastrad 	 */
    729   1.1  riastrad 	rq->reserved_space =
    730   1.1  riastrad 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
    731   1.1  riastrad 
    732   1.1  riastrad 	/*
    733   1.1  riastrad 	 * Record the position of the start of the request so that
    734   1.1  riastrad 	 * should we detect the updated seqno part-way through the
    735   1.1  riastrad 	 * GPU processing the request, we never over-estimate the
    736   1.1  riastrad 	 * position of the head.
    737   1.1  riastrad 	 */
    738   1.1  riastrad 	rq->head = rq->ring->emit;
    739   1.1  riastrad 
    740   1.1  riastrad 	ret = rq->engine->request_alloc(rq);
    741   1.1  riastrad 	if (ret)
    742   1.1  riastrad 		goto err_unwind;
    743   1.1  riastrad 
    744   1.1  riastrad 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
    745   1.1  riastrad 
    746   1.1  riastrad 	intel_context_mark_active(ce);
    747   1.1  riastrad 	return rq;
    748   1.1  riastrad 
    749   1.1  riastrad err_unwind:
    750   1.1  riastrad 	ce->ring->emit = rq->head;
    751   1.1  riastrad 
    752   1.1  riastrad 	/* Make sure we didn't add ourselves to external state before freeing */
    753   1.1  riastrad 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
    754   1.1  riastrad 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
    755   1.1  riastrad 
    756   1.1  riastrad err_free:
    757   1.1  riastrad 	kmem_cache_free(global.slab_requests, rq);
    758   1.1  riastrad err_unreserve:
    759   1.1  riastrad 	intel_context_unpin(ce);
    760   1.1  riastrad 	return ERR_PTR(ret);
    761   1.1  riastrad }
    762   1.1  riastrad 
    763   1.1  riastrad struct i915_request *
    764   1.1  riastrad i915_request_create(struct intel_context *ce)
    765   1.1  riastrad {
    766   1.1  riastrad 	struct i915_request *rq;
    767   1.1  riastrad 	struct intel_timeline *tl;
    768   1.1  riastrad 
    769   1.1  riastrad 	tl = intel_context_timeline_lock(ce);
    770   1.1  riastrad 	if (IS_ERR(tl))
    771   1.1  riastrad 		return ERR_CAST(tl);
    772   1.1  riastrad 
    773   1.1  riastrad 	/* Move our oldest request to the slab-cache (if not in use!) */
    774   1.1  riastrad 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
    775   1.1  riastrad 	if (!list_is_last(&rq->link, &tl->requests))
    776   1.1  riastrad 		i915_request_retire(rq);
    777   1.1  riastrad 
    778   1.1  riastrad 	intel_context_enter(ce);
    779   1.1  riastrad 	rq = __i915_request_create(ce, GFP_KERNEL);
    780   1.1  riastrad 	intel_context_exit(ce); /* active reference transferred to request */
    781   1.1  riastrad 	if (IS_ERR(rq))
    782   1.1  riastrad 		goto err_unlock;
    783   1.1  riastrad 
    784   1.1  riastrad 	/* Check that we do not interrupt ourselves with a new request */
    785   1.1  riastrad 	rq->cookie = lockdep_pin_lock(&tl->mutex);
    786   1.1  riastrad 
    787   1.1  riastrad 	return rq;
    788   1.1  riastrad 
    789   1.1  riastrad err_unlock:
    790   1.1  riastrad 	intel_context_timeline_unlock(tl);
    791   1.1  riastrad 	return rq;
    792   1.1  riastrad }
    793   1.1  riastrad 
    794   1.1  riastrad static int
    795   1.1  riastrad i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
    796   1.1  riastrad {
    797   1.1  riastrad 	struct dma_fence *fence;
    798   1.1  riastrad 	int err;
    799   1.1  riastrad 
    800   1.1  riastrad 	GEM_BUG_ON(i915_request_timeline(rq) ==
    801   1.1  riastrad 		   rcu_access_pointer(signal->timeline));
    802   1.1  riastrad 
    803   1.1  riastrad 	fence = NULL;
    804   1.1  riastrad 	rcu_read_lock();
    805   1.1  riastrad 	spin_lock_irq(&signal->lock);
    806   1.1  riastrad 	if (!i915_request_started(signal) &&
    807   1.1  riastrad 	    !list_is_first(&signal->link,
    808   1.1  riastrad 			   &rcu_dereference(signal->timeline)->requests)) {
    809   1.1  riastrad 		struct i915_request *prev = list_prev_entry(signal, link);
    810   1.1  riastrad 
    811   1.1  riastrad 		/*
    812   1.1  riastrad 		 * Peek at the request before us in the timeline. That
    813   1.1  riastrad 		 * request will only be valid before it is retired, so
    814   1.1  riastrad 		 * after acquiring a reference to it, confirm that it is
    815   1.1  riastrad 		 * still part of the signaler's timeline.
    816   1.1  riastrad 		 */
    817   1.1  riastrad 		if (i915_request_get_rcu(prev)) {
    818   1.1  riastrad 			if (list_next_entry(prev, link) == signal)
    819   1.1  riastrad 				fence = &prev->fence;
    820   1.1  riastrad 			else
    821   1.1  riastrad 				i915_request_put(prev);
    822   1.1  riastrad 		}
    823   1.1  riastrad 	}
    824   1.1  riastrad 	spin_unlock_irq(&signal->lock);
    825   1.1  riastrad 	rcu_read_unlock();
    826   1.1  riastrad 	if (!fence)
    827   1.1  riastrad 		return 0;
    828   1.1  riastrad 
    829   1.1  riastrad 	err = 0;
    830   1.1  riastrad 	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
    831   1.1  riastrad 		err = i915_sw_fence_await_dma_fence(&rq->submit,
    832   1.1  riastrad 						    fence, 0,
    833   1.1  riastrad 						    I915_FENCE_GFP);
    834   1.1  riastrad 	dma_fence_put(fence);
    835   1.1  riastrad 
    836   1.1  riastrad 	return err;
    837   1.1  riastrad }
    838   1.1  riastrad 
    839   1.1  riastrad static intel_engine_mask_t
    840   1.1  riastrad already_busywaiting(struct i915_request *rq)
    841   1.1  riastrad {
    842   1.1  riastrad 	/*
    843   1.1  riastrad 	 * Polling a semaphore causes bus traffic, delaying other users of
    844   1.1  riastrad 	 * both the GPU and CPU. We want to limit the impact on others,
    845   1.1  riastrad 	 * while taking advantage of early submission to reduce GPU
    846   1.1  riastrad 	 * latency. Therefore we restrict ourselves to not using more
    847   1.1  riastrad 	 * than one semaphore from each source, and not using a semaphore
    848   1.1  riastrad 	 * if we have detected the engine is saturated (i.e. would not be
    849   1.1  riastrad 	 * submitted early and cause bus traffic reading an already passed
    850   1.1  riastrad 	 * semaphore).
    851   1.1  riastrad 	 *
    852   1.1  riastrad 	 * See the are-we-too-late? check in __i915_request_submit().
    853   1.1  riastrad 	 */
    854   1.1  riastrad 	return rq->sched.semaphores | rq->engine->saturated;
    855   1.1  riastrad }
    856   1.1  riastrad 
    857   1.1  riastrad static int
    858   1.1  riastrad __emit_semaphore_wait(struct i915_request *to,
    859   1.1  riastrad 		      struct i915_request *from,
    860   1.1  riastrad 		      u32 seqno)
    861   1.1  riastrad {
    862   1.1  riastrad 	const int has_token = INTEL_GEN(to->i915) >= 12;
    863   1.1  riastrad 	u32 hwsp_offset;
    864   1.1  riastrad 	int len, err;
    865   1.1  riastrad 	u32 *cs;
    866   1.1  riastrad 
    867   1.1  riastrad 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
    868   1.1  riastrad 
    869   1.1  riastrad 	/* We need to pin the signaler's HWSP until we are finished reading. */
    870   1.1  riastrad 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
    871   1.1  riastrad 	if (err)
    872   1.1  riastrad 		return err;
    873   1.1  riastrad 
    874   1.1  riastrad 	len = 4;
    875   1.1  riastrad 	if (has_token)
    876   1.1  riastrad 		len += 2;
    877   1.1  riastrad 
    878   1.1  riastrad 	cs = intel_ring_begin(to, len);
    879   1.1  riastrad 	if (IS_ERR(cs))
    880   1.1  riastrad 		return PTR_ERR(cs);
    881   1.1  riastrad 
    882   1.1  riastrad 	/*
    883   1.1  riastrad 	 * Using greater-than-or-equal here means we have to worry
    884   1.1  riastrad 	 * about seqno wraparound. To side step that issue, we swap
    885   1.1  riastrad 	 * the timeline HWSP upon wrapping, so that everyone listening
    886   1.1  riastrad 	 * for the old (pre-wrap) values do not see the much smaller
    887   1.1  riastrad 	 * (post-wrap) values than they were expecting (and so wait
    888   1.1  riastrad 	 * forever).
    889   1.1  riastrad 	 */
    890   1.1  riastrad 	*cs++ = (MI_SEMAPHORE_WAIT |
    891   1.1  riastrad 		 MI_SEMAPHORE_GLOBAL_GTT |
    892   1.1  riastrad 		 MI_SEMAPHORE_POLL |
    893   1.1  riastrad 		 MI_SEMAPHORE_SAD_GTE_SDD) +
    894   1.1  riastrad 		has_token;
    895   1.1  riastrad 	*cs++ = seqno;
    896   1.1  riastrad 	*cs++ = hwsp_offset;
    897   1.1  riastrad 	*cs++ = 0;
    898   1.1  riastrad 	if (has_token) {
    899   1.1  riastrad 		*cs++ = 0;
    900   1.1  riastrad 		*cs++ = MI_NOOP;
    901   1.1  riastrad 	}
    902   1.1  riastrad 
    903   1.1  riastrad 	intel_ring_advance(to, cs);
    904   1.1  riastrad 	return 0;
    905   1.1  riastrad }
    906   1.1  riastrad 
    907   1.1  riastrad static int
    908   1.1  riastrad emit_semaphore_wait(struct i915_request *to,
    909   1.1  riastrad 		    struct i915_request *from,
    910   1.1  riastrad 		    gfp_t gfp)
    911   1.1  riastrad {
    912   1.1  riastrad 	/* Just emit the first semaphore we see as request space is limited. */
    913   1.1  riastrad 	if (already_busywaiting(to) & from->engine->mask)
    914   1.1  riastrad 		goto await_fence;
    915   1.1  riastrad 
    916   1.1  riastrad 	if (i915_request_await_start(to, from) < 0)
    917   1.1  riastrad 		goto await_fence;
    918   1.1  riastrad 
    919   1.1  riastrad 	/* Only submit our spinner after the signaler is running! */
    920   1.1  riastrad 	if (__await_execution(to, from, NULL, gfp))
    921   1.1  riastrad 		goto await_fence;
    922   1.1  riastrad 
    923   1.1  riastrad 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
    924   1.1  riastrad 		goto await_fence;
    925   1.1  riastrad 
    926   1.1  riastrad 	to->sched.semaphores |= from->engine->mask;
    927   1.1  riastrad 	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
    928   1.1  riastrad 	return 0;
    929   1.1  riastrad 
    930   1.1  riastrad await_fence:
    931   1.1  riastrad 	return i915_sw_fence_await_dma_fence(&to->submit,
    932   1.1  riastrad 					     &from->fence, 0,
    933   1.1  riastrad 					     I915_FENCE_GFP);
    934   1.1  riastrad }
    935   1.1  riastrad 
    936   1.1  riastrad static int
    937   1.1  riastrad i915_request_await_request(struct i915_request *to, struct i915_request *from)
    938   1.1  riastrad {
    939   1.1  riastrad 	int ret;
    940   1.1  riastrad 
    941   1.1  riastrad 	GEM_BUG_ON(to == from);
    942   1.1  riastrad 	GEM_BUG_ON(to->timeline == from->timeline);
    943   1.1  riastrad 
    944   1.1  riastrad 	if (i915_request_completed(from))
    945   1.1  riastrad 		return 0;
    946   1.1  riastrad 
    947   1.1  riastrad 	if (to->engine->schedule) {
    948   1.1  riastrad 		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
    949   1.1  riastrad 		if (ret < 0)
    950   1.1  riastrad 			return ret;
    951   1.1  riastrad 	}
    952   1.1  riastrad 
    953   1.1  riastrad 	if (to->engine == from->engine)
    954   1.1  riastrad 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
    955   1.1  riastrad 						       &from->submit,
    956   1.1  riastrad 						       I915_FENCE_GFP);
    957   1.1  riastrad 	else if (intel_context_use_semaphores(to->context))
    958   1.1  riastrad 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
    959   1.1  riastrad 	else
    960   1.1  riastrad 		ret = i915_sw_fence_await_dma_fence(&to->submit,
    961   1.1  riastrad 						    &from->fence, 0,
    962   1.1  riastrad 						    I915_FENCE_GFP);
    963   1.1  riastrad 	if (ret < 0)
    964   1.1  riastrad 		return ret;
    965   1.1  riastrad 
    966   1.1  riastrad 	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
    967   1.1  riastrad 		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
    968   1.1  riastrad 						    &from->fence, 0,
    969   1.1  riastrad 						    I915_FENCE_GFP);
    970   1.1  riastrad 		if (ret < 0)
    971   1.1  riastrad 			return ret;
    972   1.1  riastrad 	}
    973   1.1  riastrad 
    974   1.1  riastrad 	return 0;
    975   1.1  riastrad }
    976   1.1  riastrad 
    977   1.1  riastrad int
    978   1.1  riastrad i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
    979   1.1  riastrad {
    980   1.1  riastrad 	struct dma_fence **child = &fence;
    981   1.1  riastrad 	unsigned int nchild = 1;
    982   1.1  riastrad 	int ret;
    983   1.1  riastrad 
    984   1.1  riastrad 	/*
    985   1.1  riastrad 	 * Note that if the fence-array was created in signal-on-any mode,
    986   1.1  riastrad 	 * we should *not* decompose it into its individual fences. However,
    987   1.1  riastrad 	 * we don't currently store which mode the fence-array is operating
    988   1.1  riastrad 	 * in. Fortunately, the only user of signal-on-any is private to
    989   1.1  riastrad 	 * amdgpu and we should not see any incoming fence-array from
    990   1.1  riastrad 	 * sync-file being in signal-on-any mode.
    991   1.1  riastrad 	 */
    992   1.1  riastrad 	if (dma_fence_is_array(fence)) {
    993   1.1  riastrad 		struct dma_fence_array *array = to_dma_fence_array(fence);
    994   1.1  riastrad 
    995   1.1  riastrad 		child = array->fences;
    996   1.1  riastrad 		nchild = array->num_fences;
    997   1.1  riastrad 		GEM_BUG_ON(!nchild);
    998   1.1  riastrad 	}
    999   1.1  riastrad 
   1000   1.1  riastrad 	do {
   1001   1.1  riastrad 		fence = *child++;
   1002   1.1  riastrad 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
   1003   1.1  riastrad 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
   1004   1.1  riastrad 			continue;
   1005   1.1  riastrad 		}
   1006   1.1  riastrad 
   1007   1.1  riastrad 		/*
   1008   1.1  riastrad 		 * Requests on the same timeline are explicitly ordered, along
   1009   1.1  riastrad 		 * with their dependencies, by i915_request_add() which ensures
   1010   1.1  riastrad 		 * that requests are submitted in-order through each ring.
   1011   1.1  riastrad 		 */
   1012   1.1  riastrad 		if (fence->context == rq->fence.context)
   1013   1.1  riastrad 			continue;
   1014   1.1  riastrad 
   1015   1.1  riastrad 		/* Squash repeated waits to the same timelines */
   1016   1.1  riastrad 		if (fence->context &&
   1017   1.1  riastrad 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
   1018   1.1  riastrad 						 fence))
   1019   1.1  riastrad 			continue;
   1020   1.1  riastrad 
   1021   1.1  riastrad 		if (dma_fence_is_i915(fence))
   1022   1.1  riastrad 			ret = i915_request_await_request(rq, to_request(fence));
   1023   1.1  riastrad 		else
   1024   1.1  riastrad 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
   1025   1.1  riastrad 							    fence->context ? I915_FENCE_TIMEOUT : 0,
   1026   1.1  riastrad 							    I915_FENCE_GFP);
   1027   1.1  riastrad 		if (ret < 0)
   1028   1.1  riastrad 			return ret;
   1029   1.1  riastrad 
   1030   1.1  riastrad 		/* Record the latest fence used against each timeline */
   1031   1.1  riastrad 		if (fence->context)
   1032   1.1  riastrad 			intel_timeline_sync_set(i915_request_timeline(rq),
   1033   1.1  riastrad 						fence);
   1034   1.1  riastrad 	} while (--nchild);
   1035   1.1  riastrad 
   1036   1.1  riastrad 	return 0;
   1037   1.1  riastrad }
   1038   1.1  riastrad 
   1039   1.1  riastrad static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
   1040   1.1  riastrad 					  struct dma_fence *fence)
   1041   1.1  riastrad {
   1042   1.1  riastrad 	return __intel_timeline_sync_is_later(tl,
   1043   1.1  riastrad 					      fence->context,
   1044   1.1  riastrad 					      fence->seqno - 1);
   1045   1.1  riastrad }
   1046   1.1  riastrad 
   1047   1.1  riastrad static int intel_timeline_sync_set_start(struct intel_timeline *tl,
   1048   1.1  riastrad 					 const struct dma_fence *fence)
   1049   1.1  riastrad {
   1050   1.1  riastrad 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
   1051   1.1  riastrad }
   1052   1.1  riastrad 
   1053   1.1  riastrad static int
   1054   1.1  riastrad __i915_request_await_execution(struct i915_request *to,
   1055   1.1  riastrad 			       struct i915_request *from,
   1056   1.1  riastrad 			       void (*hook)(struct i915_request *rq,
   1057   1.1  riastrad 					    struct dma_fence *signal))
   1058   1.1  riastrad {
   1059   1.1  riastrad 	int err;
   1060   1.1  riastrad 
   1061   1.1  riastrad 	/* Submit both requests at the same time */
   1062   1.1  riastrad 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
   1063   1.1  riastrad 	if (err)
   1064   1.1  riastrad 		return err;
   1065   1.1  riastrad 
   1066   1.1  riastrad 	/* Squash repeated depenendices to the same timelines */
   1067   1.1  riastrad 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
   1068   1.1  riastrad 					  &from->fence))
   1069   1.1  riastrad 		return 0;
   1070   1.1  riastrad 
   1071   1.1  riastrad 	/* Ensure both start together [after all semaphores in signal] */
   1072   1.1  riastrad 	if (intel_engine_has_semaphores(to->engine))
   1073   1.1  riastrad 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
   1074   1.1  riastrad 	else
   1075   1.1  riastrad 		err = i915_request_await_start(to, from);
   1076   1.1  riastrad 	if (err < 0)
   1077   1.1  riastrad 		return err;
   1078   1.1  riastrad 
   1079   1.1  riastrad 	/* Couple the dependency tree for PI on this exposed to->fence */
   1080   1.1  riastrad 	if (to->engine->schedule) {
   1081   1.1  riastrad 		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
   1082   1.1  riastrad 		if (err < 0)
   1083   1.1  riastrad 			return err;
   1084   1.1  riastrad 	}
   1085   1.1  riastrad 
   1086   1.1  riastrad 	return intel_timeline_sync_set_start(i915_request_timeline(to),
   1087   1.1  riastrad 					     &from->fence);
   1088   1.1  riastrad }
   1089   1.1  riastrad 
   1090   1.1  riastrad int
   1091   1.1  riastrad i915_request_await_execution(struct i915_request *rq,
   1092   1.1  riastrad 			     struct dma_fence *fence,
   1093   1.1  riastrad 			     void (*hook)(struct i915_request *rq,
   1094   1.1  riastrad 					  struct dma_fence *signal))
   1095   1.1  riastrad {
   1096   1.1  riastrad 	struct dma_fence **child = &fence;
   1097   1.1  riastrad 	unsigned int nchild = 1;
   1098   1.1  riastrad 	int ret;
   1099   1.1  riastrad 
   1100   1.1  riastrad 	if (dma_fence_is_array(fence)) {
   1101   1.1  riastrad 		struct dma_fence_array *array = to_dma_fence_array(fence);
   1102   1.1  riastrad 
   1103   1.1  riastrad 		/* XXX Error for signal-on-any fence arrays */
   1104   1.1  riastrad 
   1105   1.1  riastrad 		child = array->fences;
   1106   1.1  riastrad 		nchild = array->num_fences;
   1107   1.1  riastrad 		GEM_BUG_ON(!nchild);
   1108   1.1  riastrad 	}
   1109   1.1  riastrad 
   1110   1.1  riastrad 	do {
   1111   1.1  riastrad 		fence = *child++;
   1112   1.1  riastrad 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
   1113   1.1  riastrad 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
   1114   1.1  riastrad 			continue;
   1115   1.1  riastrad 		}
   1116   1.1  riastrad 
   1117   1.1  riastrad 		/*
   1118   1.1  riastrad 		 * We don't squash repeated fence dependencies here as we
   1119   1.1  riastrad 		 * want to run our callback in all cases.
   1120   1.1  riastrad 		 */
   1121   1.1  riastrad 
   1122   1.1  riastrad 		if (dma_fence_is_i915(fence))
   1123   1.1  riastrad 			ret = __i915_request_await_execution(rq,
   1124   1.1  riastrad 							     to_request(fence),
   1125   1.1  riastrad 							     hook);
   1126   1.1  riastrad 		else
   1127   1.1  riastrad 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
   1128   1.1  riastrad 							    I915_FENCE_TIMEOUT,
   1129   1.1  riastrad 							    GFP_KERNEL);
   1130   1.1  riastrad 		if (ret < 0)
   1131   1.1  riastrad 			return ret;
   1132   1.1  riastrad 	} while (--nchild);
   1133   1.1  riastrad 
   1134   1.1  riastrad 	return 0;
   1135   1.1  riastrad }
   1136   1.1  riastrad 
   1137   1.1  riastrad /**
   1138   1.1  riastrad  * i915_request_await_object - set this request to (async) wait upon a bo
   1139   1.1  riastrad  * @to: request we are wishing to use
   1140   1.1  riastrad  * @obj: object which may be in use on another ring.
   1141   1.1  riastrad  * @write: whether the wait is on behalf of a writer
   1142   1.1  riastrad  *
   1143   1.1  riastrad  * This code is meant to abstract object synchronization with the GPU.
   1144   1.1  riastrad  * Conceptually we serialise writes between engines inside the GPU.
   1145   1.1  riastrad  * We only allow one engine to write into a buffer at any time, but
   1146   1.1  riastrad  * multiple readers. To ensure each has a coherent view of memory, we must:
   1147   1.1  riastrad  *
   1148   1.1  riastrad  * - If there is an outstanding write request to the object, the new
   1149   1.1  riastrad  *   request must wait for it to complete (either CPU or in hw, requests
   1150   1.1  riastrad  *   on the same ring will be naturally ordered).
   1151   1.1  riastrad  *
   1152   1.1  riastrad  * - If we are a write request (pending_write_domain is set), the new
   1153   1.1  riastrad  *   request must wait for outstanding read requests to complete.
   1154   1.1  riastrad  *
   1155   1.1  riastrad  * Returns 0 if successful, else propagates up the lower layer error.
   1156   1.1  riastrad  */
   1157   1.1  riastrad int
   1158   1.1  riastrad i915_request_await_object(struct i915_request *to,
   1159   1.1  riastrad 			  struct drm_i915_gem_object *obj,
   1160   1.1  riastrad 			  bool write)
   1161   1.1  riastrad {
   1162   1.1  riastrad 	struct dma_fence *excl;
   1163   1.1  riastrad 	int ret = 0;
   1164   1.1  riastrad 
   1165   1.1  riastrad 	if (write) {
   1166   1.1  riastrad 		struct dma_fence **shared;
   1167   1.1  riastrad 		unsigned int count, i;
   1168   1.1  riastrad 
   1169   1.1  riastrad 		ret = dma_resv_get_fences_rcu(obj->base.resv,
   1170   1.1  riastrad 							&excl, &count, &shared);
   1171   1.1  riastrad 		if (ret)
   1172   1.1  riastrad 			return ret;
   1173   1.1  riastrad 
   1174   1.1  riastrad 		for (i = 0; i < count; i++) {
   1175   1.1  riastrad 			ret = i915_request_await_dma_fence(to, shared[i]);
   1176   1.1  riastrad 			if (ret)
   1177   1.1  riastrad 				break;
   1178   1.1  riastrad 
   1179   1.1  riastrad 			dma_fence_put(shared[i]);
   1180   1.1  riastrad 		}
   1181   1.1  riastrad 
   1182   1.1  riastrad 		for (; i < count; i++)
   1183   1.1  riastrad 			dma_fence_put(shared[i]);
   1184   1.1  riastrad 		kfree(shared);
   1185   1.1  riastrad 	} else {
   1186   1.1  riastrad 		excl = dma_resv_get_excl_rcu(obj->base.resv);
   1187   1.1  riastrad 	}
   1188   1.1  riastrad 
   1189   1.1  riastrad 	if (excl) {
   1190   1.1  riastrad 		if (ret == 0)
   1191   1.1  riastrad 			ret = i915_request_await_dma_fence(to, excl);
   1192   1.1  riastrad 
   1193   1.1  riastrad 		dma_fence_put(excl);
   1194   1.1  riastrad 	}
   1195   1.1  riastrad 
   1196   1.1  riastrad 	return ret;
   1197   1.1  riastrad }
   1198   1.1  riastrad 
   1199   1.1  riastrad void i915_request_skip(struct i915_request *rq, int error)
   1200   1.1  riastrad {
   1201   1.1  riastrad 	void *vaddr = rq->ring->vaddr;
   1202   1.1  riastrad 	u32 head;
   1203   1.1  riastrad 
   1204   1.1  riastrad 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
   1205   1.1  riastrad 	dma_fence_set_error(&rq->fence, error);
   1206   1.1  riastrad 
   1207   1.1  riastrad 	if (rq->infix == rq->postfix)
   1208   1.1  riastrad 		return;
   1209   1.1  riastrad 
   1210   1.1  riastrad 	/*
   1211   1.1  riastrad 	 * As this request likely depends on state from the lost
   1212   1.1  riastrad 	 * context, clear out all the user operations leaving the
   1213   1.1  riastrad 	 * breadcrumb at the end (so we get the fence notifications).
   1214   1.1  riastrad 	 */
   1215   1.1  riastrad 	head = rq->infix;
   1216   1.1  riastrad 	if (rq->postfix < head) {
   1217   1.8  riastrad 		memset(vaddr + head, 0, rq->ring->size - head);
   1218   1.1  riastrad 		head = 0;
   1219   1.1  riastrad 	}
   1220   1.8  riastrad 	memset(vaddr + head, 0, rq->postfix - head);
   1221   1.1  riastrad 	rq->infix = rq->postfix;
   1222   1.1  riastrad }
   1223   1.1  riastrad 
   1224   1.1  riastrad static struct i915_request *
   1225   1.1  riastrad __i915_request_add_to_timeline(struct i915_request *rq)
   1226   1.1  riastrad {
   1227   1.1  riastrad 	struct intel_timeline *timeline = i915_request_timeline(rq);
   1228   1.1  riastrad 	struct i915_request *prev;
   1229   1.1  riastrad 
   1230   1.1  riastrad 	/*
   1231   1.1  riastrad 	 * Dependency tracking and request ordering along the timeline
   1232   1.1  riastrad 	 * is special cased so that we can eliminate redundant ordering
   1233   1.1  riastrad 	 * operations while building the request (we know that the timeline
   1234   1.1  riastrad 	 * itself is ordered, and here we guarantee it).
   1235   1.1  riastrad 	 *
   1236   1.1  riastrad 	 * As we know we will need to emit tracking along the timeline,
   1237   1.1  riastrad 	 * we embed the hooks into our request struct -- at the cost of
   1238   1.1  riastrad 	 * having to have specialised no-allocation interfaces (which will
   1239   1.1  riastrad 	 * be beneficial elsewhere).
   1240   1.1  riastrad 	 *
   1241   1.1  riastrad 	 * A second benefit to open-coding i915_request_await_request is
   1242   1.1  riastrad 	 * that we can apply a slight variant of the rules specialised
   1243   1.1  riastrad 	 * for timelines that jump between engines (such as virtual engines).
   1244   1.1  riastrad 	 * If we consider the case of virtual engine, we must emit a dma-fence
   1245   1.1  riastrad 	 * to prevent scheduling of the second request until the first is
   1246   1.1  riastrad 	 * complete (to maximise our greedy late load balancing) and this
   1247   1.1  riastrad 	 * precludes optimising to use semaphores serialisation of a single
   1248   1.1  riastrad 	 * timeline across engines.
   1249   1.1  riastrad 	 */
   1250   1.1  riastrad 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
   1251   1.1  riastrad 						  &rq->fence));
   1252   1.1  riastrad 	if (prev && !i915_request_completed(prev)) {
   1253   1.1  riastrad 		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
   1254   1.1  riastrad 			i915_sw_fence_await_sw_fence(&rq->submit,
   1255   1.1  riastrad 						     &prev->submit,
   1256   1.1  riastrad 						     &rq->submitq);
   1257   1.1  riastrad 		else
   1258   1.1  riastrad 			__i915_sw_fence_await_dma_fence(&rq->submit,
   1259   1.1  riastrad 							&prev->fence,
   1260   1.1  riastrad 							&rq->dmaq);
   1261   1.1  riastrad 		if (rq->engine->schedule)
   1262   1.1  riastrad 			__i915_sched_node_add_dependency(&rq->sched,
   1263   1.1  riastrad 							 &prev->sched,
   1264   1.1  riastrad 							 &rq->dep,
   1265   1.1  riastrad 							 0);
   1266   1.1  riastrad 	}
   1267   1.1  riastrad 
   1268   1.1  riastrad 	list_add_tail(&rq->link, &timeline->requests);
   1269   1.1  riastrad 
   1270   1.1  riastrad 	/*
   1271   1.1  riastrad 	 * Make sure that no request gazumped us - if it was allocated after
   1272   1.1  riastrad 	 * our i915_request_alloc() and called __i915_request_add() before
   1273   1.1  riastrad 	 * us, the timeline will hold its seqno which is later than ours.
   1274   1.1  riastrad 	 */
   1275   1.1  riastrad 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
   1276   1.1  riastrad 
   1277   1.1  riastrad 	return prev;
   1278   1.1  riastrad }
   1279   1.1  riastrad 
   1280   1.1  riastrad /*
   1281   1.1  riastrad  * NB: This function is not allowed to fail. Doing so would mean the the
   1282   1.1  riastrad  * request is not being tracked for completion but the work itself is
   1283   1.1  riastrad  * going to happen on the hardware. This would be a Bad Thing(tm).
   1284   1.1  riastrad  */
   1285   1.1  riastrad struct i915_request *__i915_request_commit(struct i915_request *rq)
   1286   1.1  riastrad {
   1287   1.1  riastrad 	struct intel_engine_cs *engine = rq->engine;
   1288   1.1  riastrad 	struct intel_ring *ring = rq->ring;
   1289   1.1  riastrad 	u32 *cs;
   1290   1.1  riastrad 
   1291   1.1  riastrad 	RQ_TRACE(rq, "\n");
   1292   1.1  riastrad 
   1293   1.1  riastrad 	/*
   1294   1.1  riastrad 	 * To ensure that this call will not fail, space for its emissions
   1295   1.1  riastrad 	 * should already have been reserved in the ring buffer. Let the ring
   1296   1.1  riastrad 	 * know that it is time to use that space up.
   1297   1.1  riastrad 	 */
   1298   1.1  riastrad 	GEM_BUG_ON(rq->reserved_space > ring->space);
   1299   1.1  riastrad 	rq->reserved_space = 0;
   1300   1.1  riastrad 	rq->emitted_jiffies = jiffies;
   1301   1.1  riastrad 
   1302   1.1  riastrad 	/*
   1303   1.1  riastrad 	 * Record the position of the start of the breadcrumb so that
   1304   1.1  riastrad 	 * should we detect the updated seqno part-way through the
   1305   1.1  riastrad 	 * GPU processing the request, we never over-estimate the
   1306   1.1  riastrad 	 * position of the ring's HEAD.
   1307   1.1  riastrad 	 */
   1308   1.1  riastrad 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
   1309   1.1  riastrad 	GEM_BUG_ON(IS_ERR(cs));
   1310   1.1  riastrad 	rq->postfix = intel_ring_offset(rq, cs);
   1311   1.1  riastrad 
   1312   1.1  riastrad 	return __i915_request_add_to_timeline(rq);
   1313   1.1  riastrad }
   1314   1.1  riastrad 
   1315   1.1  riastrad void __i915_request_queue(struct i915_request *rq,
   1316   1.1  riastrad 			  const struct i915_sched_attr *attr)
   1317   1.1  riastrad {
   1318   1.1  riastrad 	/*
   1319   1.1  riastrad 	 * Let the backend know a new request has arrived that may need
   1320   1.1  riastrad 	 * to adjust the existing execution schedule due to a high priority
   1321   1.1  riastrad 	 * request - i.e. we may want to preempt the current request in order
   1322   1.1  riastrad 	 * to run a high priority dependency chain *before* we can execute this
   1323   1.1  riastrad 	 * request.
   1324   1.1  riastrad 	 *
   1325   1.1  riastrad 	 * This is called before the request is ready to run so that we can
   1326   1.1  riastrad 	 * decide whether to preempt the entire chain so that it is ready to
   1327   1.1  riastrad 	 * run at the earliest possible convenience.
   1328   1.1  riastrad 	 */
   1329   1.1  riastrad 	i915_sw_fence_commit(&rq->semaphore);
   1330   1.1  riastrad 	if (attr && rq->engine->schedule)
   1331   1.1  riastrad 		rq->engine->schedule(rq, attr);
   1332   1.1  riastrad 	i915_sw_fence_commit(&rq->submit);
   1333   1.1  riastrad }
   1334   1.1  riastrad 
   1335   1.1  riastrad void i915_request_add(struct i915_request *rq)
   1336   1.1  riastrad {
   1337   1.1  riastrad 	struct intel_timeline * const tl = i915_request_timeline(rq);
   1338   1.1  riastrad 	struct i915_sched_attr attr = {};
   1339   1.1  riastrad 	struct i915_request *prev;
   1340   1.1  riastrad 
   1341   1.1  riastrad 	lockdep_assert_held(&tl->mutex);
   1342   1.1  riastrad 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
   1343   1.1  riastrad 
   1344   1.1  riastrad 	trace_i915_request_add(rq);
   1345   1.1  riastrad 
   1346   1.1  riastrad 	prev = __i915_request_commit(rq);
   1347   1.1  riastrad 
   1348   1.1  riastrad 	if (rcu_access_pointer(rq->context->gem_context))
   1349   1.1  riastrad 		attr = i915_request_gem_context(rq)->sched;
   1350   1.1  riastrad 
   1351   1.1  riastrad 	/*
   1352   1.1  riastrad 	 * Boost actual workloads past semaphores!
   1353   1.1  riastrad 	 *
   1354   1.1  riastrad 	 * With semaphores we spin on one engine waiting for another,
   1355   1.1  riastrad 	 * simply to reduce the latency of starting our work when
   1356   1.1  riastrad 	 * the signaler completes. However, if there is any other
   1357   1.1  riastrad 	 * work that we could be doing on this engine instead, that
   1358   1.1  riastrad 	 * is better utilisation and will reduce the overall duration
   1359   1.1  riastrad 	 * of the current work. To avoid PI boosting a semaphore
   1360   1.1  riastrad 	 * far in the distance past over useful work, we keep a history
   1361   1.1  riastrad 	 * of any semaphore use along our dependency chain.
   1362   1.1  riastrad 	 */
   1363   1.1  riastrad 	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
   1364   1.1  riastrad 		attr.priority |= I915_PRIORITY_NOSEMAPHORE;
   1365   1.1  riastrad 
   1366   1.1  riastrad 	/*
   1367   1.1  riastrad 	 * Boost priorities to new clients (new request flows).
   1368   1.1  riastrad 	 *
   1369   1.1  riastrad 	 * Allow interactive/synchronous clients to jump ahead of
   1370   1.1  riastrad 	 * the bulk clients. (FQ_CODEL)
   1371   1.1  riastrad 	 */
   1372   1.1  riastrad 	if (list_empty(&rq->sched.signalers_list))
   1373   1.1  riastrad 		attr.priority |= I915_PRIORITY_WAIT;
   1374   1.1  riastrad 
   1375   1.4  riastrad #ifdef __NetBSD__
   1376   1.4  riastrad 	int s = splsoftserial();
   1377   1.4  riastrad #else
   1378   1.1  riastrad 	local_bh_disable();
   1379   1.4  riastrad #endif
   1380   1.1  riastrad 	__i915_request_queue(rq, &attr);
   1381   1.4  riastrad #ifdef __NetBSD__
   1382   1.4  riastrad 	splx(s);
   1383   1.4  riastrad #else
   1384   1.1  riastrad 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
   1385   1.4  riastrad #endif
   1386   1.1  riastrad 
   1387   1.1  riastrad 	/*
   1388   1.1  riastrad 	 * In typical scenarios, we do not expect the previous request on
   1389   1.1  riastrad 	 * the timeline to be still tracked by timeline->last_request if it
   1390   1.1  riastrad 	 * has been completed. If the completed request is still here, that
   1391   1.1  riastrad 	 * implies that request retirement is a long way behind submission,
   1392   1.1  riastrad 	 * suggesting that we haven't been retiring frequently enough from
   1393   1.1  riastrad 	 * the combination of retire-before-alloc, waiters and the background
   1394   1.1  riastrad 	 * retirement worker. So if the last request on this timeline was
   1395   1.1  riastrad 	 * already completed, do a catch up pass, flushing the retirement queue
   1396   1.1  riastrad 	 * up to this client. Since we have now moved the heaviest operations
   1397   1.1  riastrad 	 * during retirement onto secondary workers, such as freeing objects
   1398   1.1  riastrad 	 * or contexts, retiring a bunch of requests is mostly list management
   1399   1.1  riastrad 	 * (and cache misses), and so we should not be overly penalizing this
   1400   1.1  riastrad 	 * client by performing excess work, though we may still performing
   1401   1.1  riastrad 	 * work on behalf of others -- but instead we should benefit from
   1402   1.1  riastrad 	 * improved resource management. (Well, that's the theory at least.)
   1403   1.1  riastrad 	 */
   1404   1.1  riastrad 	if (prev &&
   1405   1.1  riastrad 	    i915_request_completed(prev) &&
   1406   1.1  riastrad 	    rcu_access_pointer(prev->timeline) == tl)
   1407   1.1  riastrad 		i915_request_retire_upto(prev);
   1408   1.1  riastrad 
   1409   1.1  riastrad 	mutex_unlock(&tl->mutex);
   1410   1.1  riastrad }
   1411   1.1  riastrad 
   1412   1.1  riastrad static unsigned long local_clock_us(unsigned int *cpu)
   1413   1.1  riastrad {
   1414   1.1  riastrad 	unsigned long t;
   1415   1.1  riastrad 
   1416   1.1  riastrad 	/*
   1417   1.1  riastrad 	 * Cheaply and approximately convert from nanoseconds to microseconds.
   1418   1.1  riastrad 	 * The result and subsequent calculations are also defined in the same
   1419   1.1  riastrad 	 * approximate microseconds units. The principal source of timing
   1420   1.1  riastrad 	 * error here is from the simple truncation.
   1421   1.1  riastrad 	 *
   1422   1.1  riastrad 	 * Note that local_clock() is only defined wrt to the current CPU;
   1423   1.1  riastrad 	 * the comparisons are no longer valid if we switch CPUs. Instead of
   1424   1.1  riastrad 	 * blocking preemption for the entire busywait, we can detect the CPU
   1425   1.1  riastrad 	 * switch and use that as indicator of system load and a reason to
   1426   1.1  riastrad 	 * stop busywaiting, see busywait_stop().
   1427   1.1  riastrad 	 */
   1428   1.1  riastrad 	*cpu = get_cpu();
   1429   1.1  riastrad 	t = local_clock() >> 10;
   1430   1.1  riastrad 	put_cpu();
   1431   1.1  riastrad 
   1432   1.1  riastrad 	return t;
   1433   1.1  riastrad }
   1434   1.1  riastrad 
   1435   1.1  riastrad static bool busywait_stop(unsigned long timeout, unsigned int cpu)
   1436   1.1  riastrad {
   1437   1.1  riastrad 	unsigned int this_cpu;
   1438   1.1  riastrad 
   1439   1.1  riastrad 	if (time_after(local_clock_us(&this_cpu), timeout))
   1440   1.1  riastrad 		return true;
   1441   1.1  riastrad 
   1442   1.1  riastrad 	return this_cpu != cpu;
   1443   1.1  riastrad }
   1444   1.1  riastrad 
   1445   1.1  riastrad static bool __i915_spin_request(const struct i915_request * const rq,
   1446   1.1  riastrad 				int state, unsigned long timeout_us)
   1447   1.1  riastrad {
   1448   1.1  riastrad 	unsigned int cpu;
   1449   1.1  riastrad 
   1450   1.1  riastrad 	/*
   1451   1.1  riastrad 	 * Only wait for the request if we know it is likely to complete.
   1452   1.1  riastrad 	 *
   1453   1.1  riastrad 	 * We don't track the timestamps around requests, nor the average
   1454   1.1  riastrad 	 * request length, so we do not have a good indicator that this
   1455   1.1  riastrad 	 * request will complete within the timeout. What we do know is the
   1456   1.1  riastrad 	 * order in which requests are executed by the context and so we can
   1457   1.1  riastrad 	 * tell if the request has been started. If the request is not even
   1458   1.1  riastrad 	 * running yet, it is a fair assumption that it will not complete
   1459   1.1  riastrad 	 * within our relatively short timeout.
   1460   1.1  riastrad 	 */
   1461   1.1  riastrad 	if (!i915_request_is_running(rq))
   1462   1.1  riastrad 		return false;
   1463   1.1  riastrad 
   1464   1.1  riastrad 	/*
   1465   1.1  riastrad 	 * When waiting for high frequency requests, e.g. during synchronous
   1466   1.1  riastrad 	 * rendering split between the CPU and GPU, the finite amount of time
   1467   1.1  riastrad 	 * required to set up the irq and wait upon it limits the response
   1468   1.1  riastrad 	 * rate. By busywaiting on the request completion for a short while we
   1469   1.1  riastrad 	 * can service the high frequency waits as quick as possible. However,
   1470   1.1  riastrad 	 * if it is a slow request, we want to sleep as quickly as possible.
   1471   1.1  riastrad 	 * The tradeoff between waiting and sleeping is roughly the time it
   1472   1.1  riastrad 	 * takes to sleep on a request, on the order of a microsecond.
   1473   1.1  riastrad 	 */
   1474   1.1  riastrad 
   1475   1.1  riastrad 	timeout_us += local_clock_us(&cpu);
   1476   1.1  riastrad 	do {
   1477   1.1  riastrad 		if (i915_request_completed(rq))
   1478   1.1  riastrad 			return true;
   1479   1.1  riastrad 
   1480   1.1  riastrad 		if (signal_pending_state(state, current))
   1481   1.1  riastrad 			break;
   1482   1.1  riastrad 
   1483   1.1  riastrad 		if (busywait_stop(timeout_us, cpu))
   1484   1.1  riastrad 			break;
   1485   1.1  riastrad 
   1486   1.1  riastrad 		cpu_relax();
   1487   1.1  riastrad 	} while (!need_resched());
   1488   1.1  riastrad 
   1489   1.1  riastrad 	return false;
   1490   1.1  riastrad }
   1491   1.1  riastrad 
   1492   1.1  riastrad struct request_wait {
   1493   1.1  riastrad 	struct dma_fence_cb cb;
   1494   1.3  riastrad #ifdef __NetBSD__
   1495   1.5  riastrad 	drm_waitqueue_t wq;
   1496   1.3  riastrad #else
   1497   1.1  riastrad 	struct task_struct *tsk;
   1498   1.3  riastrad #endif
   1499   1.1  riastrad };
   1500   1.1  riastrad 
   1501   1.1  riastrad static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
   1502   1.1  riastrad {
   1503   1.1  riastrad 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
   1504   1.1  riastrad 
   1505   1.5  riastrad #ifdef __NetBSD__
   1506   1.5  riastrad 	DRM_SPIN_WAKEUP_ALL(&wait->wq, fence->lock);
   1507   1.5  riastrad #else
   1508   1.1  riastrad 	wake_up_process(wait->tsk);
   1509   1.5  riastrad #endif
   1510   1.1  riastrad }
   1511   1.1  riastrad 
   1512   1.1  riastrad /**
   1513   1.1  riastrad  * i915_request_wait - wait until execution of request has finished
   1514   1.1  riastrad  * @rq: the request to wait upon
   1515   1.1  riastrad  * @flags: how to wait
   1516   1.1  riastrad  * @timeout: how long to wait in jiffies
   1517   1.1  riastrad  *
   1518   1.1  riastrad  * i915_request_wait() waits for the request to be completed, for a
   1519   1.1  riastrad  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
   1520   1.1  riastrad  * unbounded wait).
   1521   1.1  riastrad  *
   1522   1.1  riastrad  * Returns the remaining time (in jiffies) if the request completed, which may
   1523   1.1  riastrad  * be zero or -ETIME if the request is unfinished after the timeout expires.
   1524   1.1  riastrad  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
   1525   1.1  riastrad  * pending before the request completes.
   1526   1.1  riastrad  */
   1527   1.1  riastrad long i915_request_wait(struct i915_request *rq,
   1528   1.1  riastrad 		       unsigned int flags,
   1529   1.1  riastrad 		       long timeout)
   1530   1.1  riastrad {
   1531   1.1  riastrad 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
   1532   1.1  riastrad 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
   1533   1.1  riastrad 	struct request_wait wait;
   1534   1.1  riastrad 
   1535   1.1  riastrad 	might_sleep();
   1536   1.1  riastrad 	GEM_BUG_ON(timeout < 0);
   1537   1.1  riastrad 
   1538   1.1  riastrad 	if (dma_fence_is_signaled(&rq->fence))
   1539   1.1  riastrad 		return timeout;
   1540   1.1  riastrad 
   1541   1.1  riastrad 	if (!timeout)
   1542   1.1  riastrad 		return -ETIME;
   1543   1.1  riastrad 
   1544   1.1  riastrad 	trace_i915_request_wait_begin(rq, flags);
   1545   1.1  riastrad 
   1546   1.1  riastrad 	/*
   1547   1.1  riastrad 	 * We must never wait on the GPU while holding a lock as we
   1548   1.1  riastrad 	 * may need to perform a GPU reset. So while we don't need to
   1549   1.1  riastrad 	 * serialise wait/reset with an explicit lock, we do want
   1550   1.1  riastrad 	 * lockdep to detect potential dependency cycles.
   1551   1.1  riastrad 	 */
   1552   1.1  riastrad 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
   1553   1.1  riastrad 
   1554   1.1  riastrad 	/*
   1555   1.1  riastrad 	 * Optimistic spin before touching IRQs.
   1556   1.1  riastrad 	 *
   1557   1.1  riastrad 	 * We may use a rather large value here to offset the penalty of
   1558   1.1  riastrad 	 * switching away from the active task. Frequently, the client will
   1559   1.1  riastrad 	 * wait upon an old swapbuffer to throttle itself to remain within a
   1560   1.1  riastrad 	 * frame of the gpu. If the client is running in lockstep with the gpu,
   1561   1.1  riastrad 	 * then it should not be waiting long at all, and a sleep now will incur
   1562   1.1  riastrad 	 * extra scheduler latency in producing the next frame. To try to
   1563   1.1  riastrad 	 * avoid adding the cost of enabling/disabling the interrupt to the
   1564   1.1  riastrad 	 * short wait, we first spin to see if the request would have completed
   1565   1.1  riastrad 	 * in the time taken to setup the interrupt.
   1566   1.1  riastrad 	 *
   1567   1.1  riastrad 	 * We need upto 5us to enable the irq, and upto 20us to hide the
   1568   1.1  riastrad 	 * scheduler latency of a context switch, ignoring the secondary
   1569   1.1  riastrad 	 * impacts from a context switch such as cache eviction.
   1570   1.1  riastrad 	 *
   1571   1.1  riastrad 	 * The scheme used for low-latency IO is called "hybrid interrupt
   1572   1.1  riastrad 	 * polling". The suggestion there is to sleep until just before you
   1573   1.1  riastrad 	 * expect to be woken by the device interrupt and then poll for its
   1574   1.1  riastrad 	 * completion. That requires having a good predictor for the request
   1575   1.1  riastrad 	 * duration, which we currently lack.
   1576   1.1  riastrad 	 */
   1577   1.1  riastrad 	if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
   1578   1.1  riastrad 	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
   1579   1.1  riastrad 		dma_fence_signal(&rq->fence);
   1580   1.1  riastrad 		goto out;
   1581   1.1  riastrad 	}
   1582   1.1  riastrad 
   1583   1.1  riastrad 	/*
   1584   1.1  riastrad 	 * This client is about to stall waiting for the GPU. In many cases
   1585   1.1  riastrad 	 * this is undesirable and limits the throughput of the system, as
   1586   1.1  riastrad 	 * many clients cannot continue processing user input/output whilst
   1587   1.1  riastrad 	 * blocked. RPS autotuning may take tens of milliseconds to respond
   1588   1.1  riastrad 	 * to the GPU load and thus incurs additional latency for the client.
   1589   1.1  riastrad 	 * We can circumvent that by promoting the GPU frequency to maximum
   1590   1.1  riastrad 	 * before we sleep. This makes the GPU throttle up much more quickly
   1591   1.1  riastrad 	 * (good for benchmarks and user experience, e.g. window animations),
   1592   1.1  riastrad 	 * but at a cost of spending more power processing the workload
   1593   1.1  riastrad 	 * (bad for battery).
   1594   1.1  riastrad 	 */
   1595   1.1  riastrad 	if (flags & I915_WAIT_PRIORITY) {
   1596   1.1  riastrad 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
   1597   1.1  riastrad 			intel_rps_boost(rq);
   1598   1.1  riastrad 		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
   1599   1.1  riastrad 	}
   1600   1.1  riastrad 
   1601   1.5  riastrad #ifdef __NetBSD__
   1602   1.5  riastrad 	DRM_INIT_WAITQUEUE(&wait.wq, "i915req");
   1603  1.15  riastrad #else
   1604  1.15  riastrad 	wait.tsk = current;
   1605  1.15  riastrad #endif
   1606   1.5  riastrad 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
   1607   1.5  riastrad 		goto out;
   1608  1.15  riastrad 
   1609  1.15  riastrad #ifdef __NetBSD__
   1610   1.5  riastrad 	spin_lock(rq->fence.lock);
   1611   1.7  riastrad #define	C	(i915_request_completed(rq) ? 1 :			      \
   1612  1.12  riastrad 		    (spin_unlock(rq->fence.lock),			      \
   1613  1.12  riastrad 			intel_engine_flush_submission(rq->engine),	      \
   1614  1.12  riastrad 			spin_lock(rq->fence.lock),			      \
   1615  1.12  riastrad 			i915_request_completed(rq)))
   1616   1.5  riastrad 	if (flags & I915_WAIT_INTERRUPTIBLE) {
   1617   1.5  riastrad 		DRM_SPIN_TIMED_WAIT_UNTIL(timeout, &wait.wq,
   1618   1.5  riastrad 		    rq->fence.lock, timeout,
   1619   1.7  riastrad 		    C);
   1620   1.5  riastrad 	} else {
   1621   1.5  riastrad 		DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(timeout, &wait.wq,
   1622   1.5  riastrad 		    rq->fence.lock, timeout,
   1623   1.7  riastrad 		    C);
   1624   1.5  riastrad 	}
   1625   1.7  riastrad #undef	C
   1626  1.16  riastrad 	if (timeout > 0) {	/* succeeded before timeout */
   1627  1.16  riastrad 		KASSERT(i915_request_completed(rq));
   1628   1.6  riastrad 		dma_fence_signal_locked(&rq->fence);
   1629  1.16  riastrad 	} else if (timeout == 0) {	/* timed out */
   1630  1.16  riastrad 		timeout = -ETIME;
   1631  1.16  riastrad 	}
   1632   1.5  riastrad 	spin_unlock(rq->fence.lock);
   1633   1.5  riastrad #else
   1634   1.1  riastrad 	for (;;) {
   1635   1.1  riastrad 		set_current_state(state);
   1636   1.1  riastrad 
   1637   1.1  riastrad 		if (i915_request_completed(rq)) {
   1638   1.1  riastrad 			dma_fence_signal(&rq->fence);
   1639   1.1  riastrad 			break;
   1640   1.1  riastrad 		}
   1641   1.1  riastrad 
   1642   1.1  riastrad 		if (signal_pending_state(state, current)) {
   1643   1.1  riastrad 			timeout = -ERESTARTSYS;
   1644   1.1  riastrad 			break;
   1645   1.1  riastrad 		}
   1646   1.1  riastrad 
   1647   1.1  riastrad 		if (!timeout) {
   1648   1.1  riastrad 			timeout = -ETIME;
   1649   1.1  riastrad 			break;
   1650   1.1  riastrad 		}
   1651   1.1  riastrad 
   1652   1.1  riastrad 		intel_engine_flush_submission(rq->engine);
   1653   1.1  riastrad 		timeout = io_schedule_timeout(timeout);
   1654   1.1  riastrad 	}
   1655   1.1  riastrad 	__set_current_state(TASK_RUNNING);
   1656   1.5  riastrad #endif
   1657   1.1  riastrad 
   1658   1.1  riastrad 	dma_fence_remove_callback(&rq->fence, &wait.cb);
   1659  1.17  riastrad #ifdef __NetBSD__
   1660  1.17  riastrad 	DRM_DESTROY_WAITQUEUE(&wait.wq);
   1661  1.17  riastrad #endif
   1662   1.1  riastrad 
   1663   1.1  riastrad out:
   1664   1.1  riastrad 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
   1665   1.1  riastrad 	trace_i915_request_wait_end(rq);
   1666   1.1  riastrad 	return timeout;
   1667   1.1  riastrad }
   1668   1.1  riastrad 
   1669   1.1  riastrad #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
   1670   1.1  riastrad #include "selftests/mock_request.c"
   1671   1.1  riastrad #include "selftests/i915_request.c"
   1672   1.1  riastrad #endif
   1673   1.1  riastrad 
   1674   1.1  riastrad static void i915_global_request_shrink(void)
   1675   1.1  riastrad {
   1676   1.1  riastrad 	kmem_cache_shrink(global.slab_dependencies);
   1677   1.1  riastrad 	kmem_cache_shrink(global.slab_execute_cbs);
   1678   1.1  riastrad 	kmem_cache_shrink(global.slab_requests);
   1679   1.1  riastrad }
   1680   1.1  riastrad 
   1681   1.1  riastrad static void i915_global_request_exit(void)
   1682   1.1  riastrad {
   1683   1.1  riastrad 	kmem_cache_destroy(global.slab_dependencies);
   1684   1.1  riastrad 	kmem_cache_destroy(global.slab_execute_cbs);
   1685   1.1  riastrad 	kmem_cache_destroy(global.slab_requests);
   1686   1.1  riastrad }
   1687   1.1  riastrad 
   1688   1.1  riastrad static struct i915_global_request global = { {
   1689   1.1  riastrad 	.shrink = i915_global_request_shrink,
   1690   1.1  riastrad 	.exit = i915_global_request_exit,
   1691   1.1  riastrad } };
   1692   1.1  riastrad 
   1693   1.1  riastrad int __init i915_global_request_init(void)
   1694   1.1  riastrad {
   1695   1.1  riastrad 	global.slab_requests =
   1696   1.9  riastrad 		kmem_cache_create_dtor("i915_request",
   1697   1.1  riastrad 				  sizeof(struct i915_request),
   1698   1.1  riastrad 				  __alignof__(struct i915_request),
   1699   1.1  riastrad 				  SLAB_HWCACHE_ALIGN |
   1700   1.1  riastrad 				  SLAB_RECLAIM_ACCOUNT |
   1701   1.1  riastrad 				  SLAB_TYPESAFE_BY_RCU,
   1702   1.9  riastrad 				  __i915_request_ctor,
   1703   1.9  riastrad 				  __i915_request_dtor);
   1704   1.1  riastrad 	if (!global.slab_requests)
   1705   1.1  riastrad 		return -ENOMEM;
   1706   1.1  riastrad 
   1707   1.1  riastrad 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
   1708   1.1  riastrad 					     SLAB_HWCACHE_ALIGN |
   1709   1.1  riastrad 					     SLAB_RECLAIM_ACCOUNT |
   1710   1.1  riastrad 					     SLAB_TYPESAFE_BY_RCU);
   1711   1.1  riastrad 	if (!global.slab_execute_cbs)
   1712   1.1  riastrad 		goto err_requests;
   1713   1.1  riastrad 
   1714   1.1  riastrad 	global.slab_dependencies = KMEM_CACHE(i915_dependency,
   1715   1.1  riastrad 					      SLAB_HWCACHE_ALIGN |
   1716   1.1  riastrad 					      SLAB_RECLAIM_ACCOUNT);
   1717   1.1  riastrad 	if (!global.slab_dependencies)
   1718   1.1  riastrad 		goto err_execute_cbs;
   1719   1.1  riastrad 
   1720   1.1  riastrad 	i915_global_register(&global.base);
   1721   1.1  riastrad 	return 0;
   1722   1.1  riastrad 
   1723   1.1  riastrad err_execute_cbs:
   1724   1.1  riastrad 	kmem_cache_destroy(global.slab_execute_cbs);
   1725   1.1  riastrad err_requests:
   1726   1.1  riastrad 	kmem_cache_destroy(global.slab_requests);
   1727   1.1  riastrad 	return -ENOMEM;
   1728   1.1  riastrad }
   1729