i915_request.c revision 1.4 1 /* $NetBSD: i915_request.c,v 1.4 2021/12/19 01:51:27 riastradh Exp $ */
2
3 /*
4 * Copyright 2008-2015 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 *
25 */
26
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: i915_request.c,v 1.4 2021/12/19 01:51:27 riastradh Exp $");
29
30 #include <linux/dma-fence-array.h>
31 #include <linux/irq_work.h>
32 #include <linux/prefetch.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <linux/sched/signal.h>
36
37 #include "gem/i915_gem_context.h"
38 #include "gt/intel_context.h"
39 #include "gt/intel_ring.h"
40 #include "gt/intel_rps.h"
41
42 #include "i915_active.h"
43 #include "i915_drv.h"
44 #include "i915_globals.h"
45 #include "i915_trace.h"
46 #include "intel_pm.h"
47
48 struct execute_cb {
49 struct list_head link;
50 struct irq_work work;
51 struct i915_sw_fence *fence;
52 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
53 struct i915_request *signal;
54 };
55
56 static struct i915_global_request {
57 struct i915_global base;
58 struct kmem_cache *slab_requests;
59 struct kmem_cache *slab_dependencies;
60 struct kmem_cache *slab_execute_cbs;
61 } global;
62
63 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
64 {
65 return dev_name(to_request(fence)->i915->drm.dev);
66 }
67
68 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
69 {
70 const struct i915_gem_context *ctx;
71
72 /*
73 * The timeline struct (as part of the ppgtt underneath a context)
74 * may be freed when the request is no longer in use by the GPU.
75 * We could extend the life of a context to beyond that of all
76 * fences, possibly keeping the hw resource around indefinitely,
77 * or we just give them a false name. Since
78 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
79 * lie seems justifiable.
80 */
81 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
82 return "signaled";
83
84 ctx = i915_request_gem_context(to_request(fence));
85 if (!ctx)
86 return "[" DRIVER_NAME "]";
87
88 return ctx->name;
89 }
90
91 static bool i915_fence_signaled(struct dma_fence *fence)
92 {
93 return i915_request_completed(to_request(fence));
94 }
95
96 static bool i915_fence_enable_signaling(struct dma_fence *fence)
97 {
98 return i915_request_enable_breadcrumb(to_request(fence));
99 }
100
101 static signed long i915_fence_wait(struct dma_fence *fence,
102 bool interruptible,
103 signed long timeout)
104 {
105 return i915_request_wait(to_request(fence),
106 interruptible | I915_WAIT_PRIORITY,
107 timeout);
108 }
109
110 static void i915_fence_release(struct dma_fence *fence)
111 {
112 struct i915_request *rq = to_request(fence);
113
114 /*
115 * The request is put onto a RCU freelist (i.e. the address
116 * is immediately reused), mark the fences as being freed now.
117 * Otherwise the debugobjects for the fences are only marked as
118 * freed when the slab cache itself is freed, and so we would get
119 * caught trying to reuse dead objects.
120 */
121 i915_sw_fence_fini(&rq->submit);
122 i915_sw_fence_fini(&rq->semaphore);
123
124 DRM_DESTROY_WAITQUEUE(&rq->execute);
125 dma_fence_destroy(&rq->fence);
126 spin_lock_destroy(&rq->lock);
127 kmem_cache_free(global.slab_requests, rq);
128 }
129
130 const struct dma_fence_ops i915_fence_ops = {
131 .get_driver_name = i915_fence_get_driver_name,
132 .get_timeline_name = i915_fence_get_timeline_name,
133 .enable_signaling = i915_fence_enable_signaling,
134 .signaled = i915_fence_signaled,
135 .wait = i915_fence_wait,
136 .release = i915_fence_release,
137 };
138
139 static void irq_execute_cb(struct irq_work *wrk)
140 {
141 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
142
143 i915_sw_fence_complete(cb->fence);
144 kmem_cache_free(global.slab_execute_cbs, cb);
145 }
146
147 static void irq_execute_cb_hook(struct irq_work *wrk)
148 {
149 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
150
151 cb->hook(container_of(cb->fence, struct i915_request, submit),
152 &cb->signal->fence);
153 i915_request_put(cb->signal);
154
155 irq_execute_cb(wrk);
156 }
157
158 static void __notify_execute_cb(struct i915_request *rq)
159 {
160 struct execute_cb *cb;
161
162 lockdep_assert_held(&rq->lock);
163
164 if (list_empty(&rq->execute_cb))
165 return;
166
167 list_for_each_entry(cb, &rq->execute_cb, link)
168 irq_work_queue(&cb->work);
169
170 /*
171 * XXX Rollback on __i915_request_unsubmit()
172 *
173 * In the future, perhaps when we have an active time-slicing scheduler,
174 * it will be interesting to unsubmit parallel execution and remove
175 * busywaits from the GPU until their master is restarted. This is
176 * quite hairy, we have to carefully rollback the fence and do a
177 * preempt-to-idle cycle on the target engine, all the while the
178 * master execute_cb may refire.
179 */
180 INIT_LIST_HEAD(&rq->execute_cb);
181 }
182
183 static inline void
184 remove_from_client(struct i915_request *request)
185 {
186 struct drm_i915_file_private *file_priv;
187
188 if (!READ_ONCE(request->file_priv))
189 return;
190
191 rcu_read_lock();
192 file_priv = xchg(&request->file_priv, NULL);
193 if (file_priv) {
194 spin_lock(&file_priv->mm.lock);
195 list_del(&request->client_link);
196 spin_unlock(&file_priv->mm.lock);
197 }
198 rcu_read_unlock();
199 }
200
201 static void free_capture_list(struct i915_request *request)
202 {
203 struct i915_capture_list *capture;
204
205 capture = fetch_and_zero(&request->capture_list);
206 while (capture) {
207 struct i915_capture_list *next = capture->next;
208
209 kfree(capture);
210 capture = next;
211 }
212 }
213
214 static void remove_from_engine(struct i915_request *rq)
215 {
216 struct intel_engine_cs *engine, *locked;
217
218 /*
219 * Virtual engines complicate acquiring the engine timeline lock,
220 * as their rq->engine pointer is not stable until under that
221 * engine lock. The simple ploy we use is to take the lock then
222 * check that the rq still belongs to the newly locked engine.
223 */
224 locked = READ_ONCE(rq->engine);
225 spin_lock_irq(&locked->active.lock);
226 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
227 spin_unlock(&locked->active.lock);
228 spin_lock(&engine->active.lock);
229 locked = engine;
230 }
231 list_del_init(&rq->sched.link);
232 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
233 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
234 spin_unlock_irq(&locked->active.lock);
235 }
236
237 bool i915_request_retire(struct i915_request *rq)
238 {
239 if (!i915_request_completed(rq))
240 return false;
241
242 RQ_TRACE(rq, "\n");
243
244 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
245 trace_i915_request_retire(rq);
246
247 /*
248 * We know the GPU must have read the request to have
249 * sent us the seqno + interrupt, so use the position
250 * of tail of the request to update the last known position
251 * of the GPU head.
252 *
253 * Note this requires that we are always called in request
254 * completion order.
255 */
256 GEM_BUG_ON(!list_is_first(&rq->link,
257 &i915_request_timeline(rq)->requests));
258 rq->ring->head = rq->postfix;
259
260 /*
261 * We only loosely track inflight requests across preemption,
262 * and so we may find ourselves attempting to retire a _completed_
263 * request that we have removed from the HW and put back on a run
264 * queue.
265 */
266 remove_from_engine(rq);
267
268 spin_lock_irq(&rq->lock);
269 i915_request_mark_complete(rq);
270 if (!i915_request_signaled(rq))
271 dma_fence_signal_locked(&rq->fence);
272 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
273 i915_request_cancel_breadcrumb(rq);
274 if (i915_request_has_waitboost(rq)) {
275 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
276 atomic_dec(&rq->engine->gt->rps.num_waiters);
277 }
278 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
279 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
280 __notify_execute_cb(rq);
281 }
282 GEM_BUG_ON(!list_empty(&rq->execute_cb));
283 spin_unlock_irq(&rq->lock);
284
285 remove_from_client(rq);
286 list_del(&rq->link);
287
288 intel_context_exit(rq->context);
289 intel_context_unpin(rq->context);
290
291 free_capture_list(rq);
292 i915_sched_node_fini(&rq->sched);
293 i915_request_put(rq);
294
295 return true;
296 }
297
298 void i915_request_retire_upto(struct i915_request *rq)
299 {
300 struct intel_timeline * const tl = i915_request_timeline(rq);
301 struct i915_request *tmp;
302
303 RQ_TRACE(rq, "\n");
304
305 GEM_BUG_ON(!i915_request_completed(rq));
306
307 do {
308 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
309 } while (i915_request_retire(tmp) && tmp != rq);
310 }
311
312 static int
313 __await_execution(struct i915_request *rq,
314 struct i915_request *signal,
315 void (*hook)(struct i915_request *rq,
316 struct dma_fence *signal),
317 gfp_t gfp)
318 {
319 struct execute_cb *cb;
320
321 if (i915_request_is_active(signal)) {
322 if (hook)
323 hook(rq, &signal->fence);
324 return 0;
325 }
326
327 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
328 if (!cb)
329 return -ENOMEM;
330
331 cb->fence = &rq->submit;
332 i915_sw_fence_await(cb->fence);
333 init_irq_work(&cb->work, irq_execute_cb);
334
335 if (hook) {
336 cb->hook = hook;
337 cb->signal = i915_request_get(signal);
338 cb->work.func = irq_execute_cb_hook;
339 }
340
341 spin_lock_irq(&signal->lock);
342 if (i915_request_is_active(signal)) {
343 if (hook) {
344 hook(rq, &signal->fence);
345 i915_request_put(signal);
346 }
347 i915_sw_fence_complete(cb->fence);
348 kmem_cache_free(global.slab_execute_cbs, cb);
349 } else {
350 list_add_tail(&cb->link, &signal->execute_cb);
351 }
352 spin_unlock_irq(&signal->lock);
353
354 /* Copy across semaphore status as we need the same behaviour */
355 rq->sched.flags |= signal->sched.flags;
356 return 0;
357 }
358
359 bool __i915_request_submit(struct i915_request *request)
360 {
361 struct intel_engine_cs *engine = request->engine;
362 bool result = false;
363
364 RQ_TRACE(request, "\n");
365
366 GEM_BUG_ON(!irqs_disabled());
367 lockdep_assert_held(&engine->active.lock);
368
369 /*
370 * With the advent of preempt-to-busy, we frequently encounter
371 * requests that we have unsubmitted from HW, but left running
372 * until the next ack and so have completed in the meantime. On
373 * resubmission of that completed request, we can skip
374 * updating the payload, and execlists can even skip submitting
375 * the request.
376 *
377 * We must remove the request from the caller's priority queue,
378 * and the caller must only call us when the request is in their
379 * priority queue, under the active.lock. This ensures that the
380 * request has *not* yet been retired and we can safely move
381 * the request into the engine->active.list where it will be
382 * dropped upon retiring. (Otherwise if resubmit a *retired*
383 * request, this would be a horrible use-after-free.)
384 */
385 if (i915_request_completed(request))
386 goto xfer;
387
388 if (intel_context_is_banned(request->context))
389 i915_request_skip(request, -EIO);
390
391 /*
392 * Are we using semaphores when the gpu is already saturated?
393 *
394 * Using semaphores incurs a cost in having the GPU poll a
395 * memory location, busywaiting for it to change. The continual
396 * memory reads can have a noticeable impact on the rest of the
397 * system with the extra bus traffic, stalling the cpu as it too
398 * tries to access memory across the bus (perf stat -e bus-cycles).
399 *
400 * If we installed a semaphore on this request and we only submit
401 * the request after the signaler completed, that indicates the
402 * system is overloaded and using semaphores at this time only
403 * increases the amount of work we are doing. If so, we disable
404 * further use of semaphores until we are idle again, whence we
405 * optimistically try again.
406 */
407 if (request->sched.semaphores &&
408 i915_sw_fence_signaled(&request->semaphore))
409 engine->saturated |= request->sched.semaphores;
410
411 engine->emit_fini_breadcrumb(request,
412 request->ring->vaddr + request->postfix);
413
414 trace_i915_request_execute(request);
415 engine->serial++;
416 result = true;
417
418 xfer: /* We may be recursing from the signal callback of another i915 fence */
419 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
420
421 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
422 list_move_tail(&request->sched.link, &engine->active.requests);
423 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
424 }
425
426 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
427 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
428 !i915_request_enable_breadcrumb(request))
429 intel_engine_signal_breadcrumbs(engine);
430
431 __notify_execute_cb(request);
432
433 spin_unlock(&request->lock);
434
435 return result;
436 }
437
438 void i915_request_submit(struct i915_request *request)
439 {
440 struct intel_engine_cs *engine = request->engine;
441 unsigned long flags;
442
443 /* Will be called from irq-context when using foreign fences. */
444 spin_lock_irqsave(&engine->active.lock, flags);
445
446 __i915_request_submit(request);
447
448 spin_unlock_irqrestore(&engine->active.lock, flags);
449 }
450
451 void __i915_request_unsubmit(struct i915_request *request)
452 {
453 struct intel_engine_cs *engine = request->engine;
454
455 RQ_TRACE(request, "\n");
456
457 GEM_BUG_ON(!irqs_disabled());
458 lockdep_assert_held(&engine->active.lock);
459
460 /*
461 * Only unwind in reverse order, required so that the per-context list
462 * is kept in seqno/ring order.
463 */
464
465 /* We may be recursing from the signal callback of another i915 fence */
466 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
467
468 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
469 i915_request_cancel_breadcrumb(request);
470
471 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
472 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
473
474 spin_unlock(&request->lock);
475
476 /* We've already spun, don't charge on resubmitting. */
477 if (request->sched.semaphores && i915_request_started(request)) {
478 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
479 request->sched.semaphores = 0;
480 }
481
482 /*
483 * We don't need to wake_up any waiters on request->execute, they
484 * will get woken by any other event or us re-adding this request
485 * to the engine timeline (__i915_request_submit()). The waiters
486 * should be quite adapt at finding that the request now has a new
487 * global_seqno to the one they went to sleep on.
488 */
489 }
490
491 void i915_request_unsubmit(struct i915_request *request)
492 {
493 struct intel_engine_cs *engine = request->engine;
494 unsigned long flags;
495
496 /* Will be called from irq-context when using foreign fences. */
497 spin_lock_irqsave(&engine->active.lock, flags);
498
499 __i915_request_unsubmit(request);
500
501 spin_unlock_irqrestore(&engine->active.lock, flags);
502 }
503
504 static int __i915_sw_fence_call
505 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
506 {
507 struct i915_request *request =
508 container_of(fence, typeof(*request), submit);
509
510 switch (state) {
511 case FENCE_COMPLETE:
512 trace_i915_request_submit(request);
513
514 if (unlikely(fence->error))
515 i915_request_skip(request, fence->error);
516
517 /*
518 * We need to serialize use of the submit_request() callback
519 * with its hotplugging performed during an emergency
520 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
521 * critical section in order to force i915_gem_set_wedged() to
522 * wait until the submit_request() is completed before
523 * proceeding.
524 */
525 rcu_read_lock();
526 request->engine->submit_request(request);
527 rcu_read_unlock();
528 break;
529
530 case FENCE_FREE:
531 i915_request_put(request);
532 break;
533 }
534
535 return NOTIFY_DONE;
536 }
537
538 static int __i915_sw_fence_call
539 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
540 {
541 struct i915_request *request =
542 container_of(fence, typeof(*request), semaphore);
543
544 switch (state) {
545 case FENCE_COMPLETE:
546 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
547 break;
548
549 case FENCE_FREE:
550 i915_request_put(request);
551 break;
552 }
553
554 return NOTIFY_DONE;
555 }
556
557 static void retire_requests(struct intel_timeline *tl)
558 {
559 struct i915_request *rq, *rn;
560
561 list_for_each_entry_safe(rq, rn, &tl->requests, link)
562 if (!i915_request_retire(rq))
563 break;
564 }
565
566 static noinline struct i915_request *
567 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
568 {
569 struct i915_request *rq;
570
571 if (list_empty(&tl->requests))
572 goto out;
573
574 if (!gfpflags_allow_blocking(gfp))
575 goto out;
576
577 /* Move our oldest request to the slab-cache (if not in use!) */
578 rq = list_first_entry(&tl->requests, typeof(*rq), link);
579 i915_request_retire(rq);
580
581 rq = kmem_cache_alloc(global.slab_requests,
582 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
583 if (rq)
584 return rq;
585
586 /* Ratelimit ourselves to prevent oom from malicious clients */
587 rq = list_last_entry(&tl->requests, typeof(*rq), link);
588 cond_synchronize_rcu(rq->rcustate);
589
590 /* Retire our old requests in the hope that we free some */
591 retire_requests(tl);
592
593 out:
594 return kmem_cache_alloc(global.slab_requests, gfp);
595 }
596
597 static void __i915_request_ctor(void *arg)
598 {
599 struct i915_request *rq = arg;
600
601 spin_lock_init(&rq->lock);
602 i915_sched_node_init(&rq->sched);
603 i915_sw_fence_init(&rq->submit, submit_notify);
604 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
605
606 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
607
608 rq->file_priv = NULL;
609 rq->capture_list = NULL;
610
611 INIT_LIST_HEAD(&rq->execute_cb);
612 }
613
614 struct i915_request *
615 __i915_request_create(struct intel_context *ce, gfp_t gfp)
616 {
617 struct intel_timeline *tl = ce->timeline;
618 struct i915_request *rq;
619 u32 seqno;
620 int ret;
621
622 might_sleep_if(gfpflags_allow_blocking(gfp));
623
624 /* Check that the caller provided an already pinned context */
625 __intel_context_pin(ce);
626
627 /*
628 * Beware: Dragons be flying overhead.
629 *
630 * We use RCU to look up requests in flight. The lookups may
631 * race with the request being allocated from the slab freelist.
632 * That is the request we are writing to here, may be in the process
633 * of being read by __i915_active_request_get_rcu(). As such,
634 * we have to be very careful when overwriting the contents. During
635 * the RCU lookup, we change chase the request->engine pointer,
636 * read the request->global_seqno and increment the reference count.
637 *
638 * The reference count is incremented atomically. If it is zero,
639 * the lookup knows the request is unallocated and complete. Otherwise,
640 * it is either still in use, or has been reallocated and reset
641 * with dma_fence_init(). This increment is safe for release as we
642 * check that the request we have a reference to and matches the active
643 * request.
644 *
645 * Before we increment the refcount, we chase the request->engine
646 * pointer. We must not call kmem_cache_zalloc() or else we set
647 * that pointer to NULL and cause a crash during the lookup. If
648 * we see the request is completed (based on the value of the
649 * old engine and seqno), the lookup is complete and reports NULL.
650 * If we decide the request is not completed (new engine or seqno),
651 * then we grab a reference and double check that it is still the
652 * active request - which it won't be and restart the lookup.
653 *
654 * Do not use kmem_cache_zalloc() here!
655 */
656 rq = kmem_cache_alloc(global.slab_requests,
657 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
658 if (unlikely(!rq)) {
659 rq = request_alloc_slow(tl, gfp);
660 if (!rq) {
661 ret = -ENOMEM;
662 goto err_unreserve;
663 }
664 }
665
666 rq->i915 = ce->engine->i915;
667 rq->context = ce;
668 rq->engine = ce->engine;
669 rq->ring = ce->ring;
670 rq->execution_mask = ce->engine->mask;
671
672 kref_init(&rq->fence.refcount);
673 rq->fence.flags = 0;
674 rq->fence.error = 0;
675 INIT_LIST_HEAD(&rq->fence.cb_list);
676
677 ret = intel_timeline_get_seqno(tl, rq, &seqno);
678 if (ret)
679 goto err_free;
680
681 rq->fence.context = tl->fence_context;
682 rq->fence.seqno = seqno;
683
684 RCU_INIT_POINTER(rq->timeline, tl);
685 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
686 rq->hwsp_seqno = tl->hwsp_seqno;
687
688 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
689
690 /* We bump the ref for the fence chain */
691 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
692 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
693
694 i915_sched_node_reinit(&rq->sched);
695
696 /* No zalloc, everything must be cleared after use */
697 rq->batch = NULL;
698 GEM_BUG_ON(rq->file_priv);
699 GEM_BUG_ON(rq->capture_list);
700 GEM_BUG_ON(!list_empty(&rq->execute_cb));
701
702 /*
703 * Reserve space in the ring buffer for all the commands required to
704 * eventually emit this request. This is to guarantee that the
705 * i915_request_add() call can't fail. Note that the reserve may need
706 * to be redone if the request is not actually submitted straight
707 * away, e.g. because a GPU scheduler has deferred it.
708 *
709 * Note that due to how we add reserved_space to intel_ring_begin()
710 * we need to double our request to ensure that if we need to wrap
711 * around inside i915_request_add() there is sufficient space at
712 * the beginning of the ring as well.
713 */
714 rq->reserved_space =
715 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
716
717 /*
718 * Record the position of the start of the request so that
719 * should we detect the updated seqno part-way through the
720 * GPU processing the request, we never over-estimate the
721 * position of the head.
722 */
723 rq->head = rq->ring->emit;
724
725 ret = rq->engine->request_alloc(rq);
726 if (ret)
727 goto err_unwind;
728
729 rq->infix = rq->ring->emit; /* end of header; start of user payload */
730
731 intel_context_mark_active(ce);
732 return rq;
733
734 err_unwind:
735 ce->ring->emit = rq->head;
736
737 /* Make sure we didn't add ourselves to external state before freeing */
738 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
739 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
740
741 err_free:
742 kmem_cache_free(global.slab_requests, rq);
743 err_unreserve:
744 intel_context_unpin(ce);
745 return ERR_PTR(ret);
746 }
747
748 struct i915_request *
749 i915_request_create(struct intel_context *ce)
750 {
751 struct i915_request *rq;
752 struct intel_timeline *tl;
753
754 tl = intel_context_timeline_lock(ce);
755 if (IS_ERR(tl))
756 return ERR_CAST(tl);
757
758 /* Move our oldest request to the slab-cache (if not in use!) */
759 rq = list_first_entry(&tl->requests, typeof(*rq), link);
760 if (!list_is_last(&rq->link, &tl->requests))
761 i915_request_retire(rq);
762
763 intel_context_enter(ce);
764 rq = __i915_request_create(ce, GFP_KERNEL);
765 intel_context_exit(ce); /* active reference transferred to request */
766 if (IS_ERR(rq))
767 goto err_unlock;
768
769 /* Check that we do not interrupt ourselves with a new request */
770 rq->cookie = lockdep_pin_lock(&tl->mutex);
771
772 return rq;
773
774 err_unlock:
775 intel_context_timeline_unlock(tl);
776 return rq;
777 }
778
779 static int
780 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
781 {
782 struct dma_fence *fence;
783 int err;
784
785 GEM_BUG_ON(i915_request_timeline(rq) ==
786 rcu_access_pointer(signal->timeline));
787
788 fence = NULL;
789 rcu_read_lock();
790 spin_lock_irq(&signal->lock);
791 if (!i915_request_started(signal) &&
792 !list_is_first(&signal->link,
793 &rcu_dereference(signal->timeline)->requests)) {
794 struct i915_request *prev = list_prev_entry(signal, link);
795
796 /*
797 * Peek at the request before us in the timeline. That
798 * request will only be valid before it is retired, so
799 * after acquiring a reference to it, confirm that it is
800 * still part of the signaler's timeline.
801 */
802 if (i915_request_get_rcu(prev)) {
803 if (list_next_entry(prev, link) == signal)
804 fence = &prev->fence;
805 else
806 i915_request_put(prev);
807 }
808 }
809 spin_unlock_irq(&signal->lock);
810 rcu_read_unlock();
811 if (!fence)
812 return 0;
813
814 err = 0;
815 if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
816 err = i915_sw_fence_await_dma_fence(&rq->submit,
817 fence, 0,
818 I915_FENCE_GFP);
819 dma_fence_put(fence);
820
821 return err;
822 }
823
824 static intel_engine_mask_t
825 already_busywaiting(struct i915_request *rq)
826 {
827 /*
828 * Polling a semaphore causes bus traffic, delaying other users of
829 * both the GPU and CPU. We want to limit the impact on others,
830 * while taking advantage of early submission to reduce GPU
831 * latency. Therefore we restrict ourselves to not using more
832 * than one semaphore from each source, and not using a semaphore
833 * if we have detected the engine is saturated (i.e. would not be
834 * submitted early and cause bus traffic reading an already passed
835 * semaphore).
836 *
837 * See the are-we-too-late? check in __i915_request_submit().
838 */
839 return rq->sched.semaphores | rq->engine->saturated;
840 }
841
842 static int
843 __emit_semaphore_wait(struct i915_request *to,
844 struct i915_request *from,
845 u32 seqno)
846 {
847 const int has_token = INTEL_GEN(to->i915) >= 12;
848 u32 hwsp_offset;
849 int len, err;
850 u32 *cs;
851
852 GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
853
854 /* We need to pin the signaler's HWSP until we are finished reading. */
855 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
856 if (err)
857 return err;
858
859 len = 4;
860 if (has_token)
861 len += 2;
862
863 cs = intel_ring_begin(to, len);
864 if (IS_ERR(cs))
865 return PTR_ERR(cs);
866
867 /*
868 * Using greater-than-or-equal here means we have to worry
869 * about seqno wraparound. To side step that issue, we swap
870 * the timeline HWSP upon wrapping, so that everyone listening
871 * for the old (pre-wrap) values do not see the much smaller
872 * (post-wrap) values than they were expecting (and so wait
873 * forever).
874 */
875 *cs++ = (MI_SEMAPHORE_WAIT |
876 MI_SEMAPHORE_GLOBAL_GTT |
877 MI_SEMAPHORE_POLL |
878 MI_SEMAPHORE_SAD_GTE_SDD) +
879 has_token;
880 *cs++ = seqno;
881 *cs++ = hwsp_offset;
882 *cs++ = 0;
883 if (has_token) {
884 *cs++ = 0;
885 *cs++ = MI_NOOP;
886 }
887
888 intel_ring_advance(to, cs);
889 return 0;
890 }
891
892 static int
893 emit_semaphore_wait(struct i915_request *to,
894 struct i915_request *from,
895 gfp_t gfp)
896 {
897 /* Just emit the first semaphore we see as request space is limited. */
898 if (already_busywaiting(to) & from->engine->mask)
899 goto await_fence;
900
901 if (i915_request_await_start(to, from) < 0)
902 goto await_fence;
903
904 /* Only submit our spinner after the signaler is running! */
905 if (__await_execution(to, from, NULL, gfp))
906 goto await_fence;
907
908 if (__emit_semaphore_wait(to, from, from->fence.seqno))
909 goto await_fence;
910
911 to->sched.semaphores |= from->engine->mask;
912 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
913 return 0;
914
915 await_fence:
916 return i915_sw_fence_await_dma_fence(&to->submit,
917 &from->fence, 0,
918 I915_FENCE_GFP);
919 }
920
921 static int
922 i915_request_await_request(struct i915_request *to, struct i915_request *from)
923 {
924 int ret;
925
926 GEM_BUG_ON(to == from);
927 GEM_BUG_ON(to->timeline == from->timeline);
928
929 if (i915_request_completed(from))
930 return 0;
931
932 if (to->engine->schedule) {
933 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
934 if (ret < 0)
935 return ret;
936 }
937
938 if (to->engine == from->engine)
939 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
940 &from->submit,
941 I915_FENCE_GFP);
942 else if (intel_context_use_semaphores(to->context))
943 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
944 else
945 ret = i915_sw_fence_await_dma_fence(&to->submit,
946 &from->fence, 0,
947 I915_FENCE_GFP);
948 if (ret < 0)
949 return ret;
950
951 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
952 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
953 &from->fence, 0,
954 I915_FENCE_GFP);
955 if (ret < 0)
956 return ret;
957 }
958
959 return 0;
960 }
961
962 int
963 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
964 {
965 struct dma_fence **child = &fence;
966 unsigned int nchild = 1;
967 int ret;
968
969 /*
970 * Note that if the fence-array was created in signal-on-any mode,
971 * we should *not* decompose it into its individual fences. However,
972 * we don't currently store which mode the fence-array is operating
973 * in. Fortunately, the only user of signal-on-any is private to
974 * amdgpu and we should not see any incoming fence-array from
975 * sync-file being in signal-on-any mode.
976 */
977 if (dma_fence_is_array(fence)) {
978 struct dma_fence_array *array = to_dma_fence_array(fence);
979
980 child = array->fences;
981 nchild = array->num_fences;
982 GEM_BUG_ON(!nchild);
983 }
984
985 do {
986 fence = *child++;
987 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
988 i915_sw_fence_set_error_once(&rq->submit, fence->error);
989 continue;
990 }
991
992 /*
993 * Requests on the same timeline are explicitly ordered, along
994 * with their dependencies, by i915_request_add() which ensures
995 * that requests are submitted in-order through each ring.
996 */
997 if (fence->context == rq->fence.context)
998 continue;
999
1000 /* Squash repeated waits to the same timelines */
1001 if (fence->context &&
1002 intel_timeline_sync_is_later(i915_request_timeline(rq),
1003 fence))
1004 continue;
1005
1006 if (dma_fence_is_i915(fence))
1007 ret = i915_request_await_request(rq, to_request(fence));
1008 else
1009 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1010 fence->context ? I915_FENCE_TIMEOUT : 0,
1011 I915_FENCE_GFP);
1012 if (ret < 0)
1013 return ret;
1014
1015 /* Record the latest fence used against each timeline */
1016 if (fence->context)
1017 intel_timeline_sync_set(i915_request_timeline(rq),
1018 fence);
1019 } while (--nchild);
1020
1021 return 0;
1022 }
1023
1024 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1025 struct dma_fence *fence)
1026 {
1027 return __intel_timeline_sync_is_later(tl,
1028 fence->context,
1029 fence->seqno - 1);
1030 }
1031
1032 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1033 const struct dma_fence *fence)
1034 {
1035 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1036 }
1037
1038 static int
1039 __i915_request_await_execution(struct i915_request *to,
1040 struct i915_request *from,
1041 void (*hook)(struct i915_request *rq,
1042 struct dma_fence *signal))
1043 {
1044 int err;
1045
1046 /* Submit both requests at the same time */
1047 err = __await_execution(to, from, hook, I915_FENCE_GFP);
1048 if (err)
1049 return err;
1050
1051 /* Squash repeated depenendices to the same timelines */
1052 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1053 &from->fence))
1054 return 0;
1055
1056 /* Ensure both start together [after all semaphores in signal] */
1057 if (intel_engine_has_semaphores(to->engine))
1058 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1059 else
1060 err = i915_request_await_start(to, from);
1061 if (err < 0)
1062 return err;
1063
1064 /* Couple the dependency tree for PI on this exposed to->fence */
1065 if (to->engine->schedule) {
1066 err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1067 if (err < 0)
1068 return err;
1069 }
1070
1071 return intel_timeline_sync_set_start(i915_request_timeline(to),
1072 &from->fence);
1073 }
1074
1075 int
1076 i915_request_await_execution(struct i915_request *rq,
1077 struct dma_fence *fence,
1078 void (*hook)(struct i915_request *rq,
1079 struct dma_fence *signal))
1080 {
1081 struct dma_fence **child = &fence;
1082 unsigned int nchild = 1;
1083 int ret;
1084
1085 if (dma_fence_is_array(fence)) {
1086 struct dma_fence_array *array = to_dma_fence_array(fence);
1087
1088 /* XXX Error for signal-on-any fence arrays */
1089
1090 child = array->fences;
1091 nchild = array->num_fences;
1092 GEM_BUG_ON(!nchild);
1093 }
1094
1095 do {
1096 fence = *child++;
1097 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1098 i915_sw_fence_set_error_once(&rq->submit, fence->error);
1099 continue;
1100 }
1101
1102 /*
1103 * We don't squash repeated fence dependencies here as we
1104 * want to run our callback in all cases.
1105 */
1106
1107 if (dma_fence_is_i915(fence))
1108 ret = __i915_request_await_execution(rq,
1109 to_request(fence),
1110 hook);
1111 else
1112 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1113 I915_FENCE_TIMEOUT,
1114 GFP_KERNEL);
1115 if (ret < 0)
1116 return ret;
1117 } while (--nchild);
1118
1119 return 0;
1120 }
1121
1122 /**
1123 * i915_request_await_object - set this request to (async) wait upon a bo
1124 * @to: request we are wishing to use
1125 * @obj: object which may be in use on another ring.
1126 * @write: whether the wait is on behalf of a writer
1127 *
1128 * This code is meant to abstract object synchronization with the GPU.
1129 * Conceptually we serialise writes between engines inside the GPU.
1130 * We only allow one engine to write into a buffer at any time, but
1131 * multiple readers. To ensure each has a coherent view of memory, we must:
1132 *
1133 * - If there is an outstanding write request to the object, the new
1134 * request must wait for it to complete (either CPU or in hw, requests
1135 * on the same ring will be naturally ordered).
1136 *
1137 * - If we are a write request (pending_write_domain is set), the new
1138 * request must wait for outstanding read requests to complete.
1139 *
1140 * Returns 0 if successful, else propagates up the lower layer error.
1141 */
1142 int
1143 i915_request_await_object(struct i915_request *to,
1144 struct drm_i915_gem_object *obj,
1145 bool write)
1146 {
1147 struct dma_fence *excl;
1148 int ret = 0;
1149
1150 if (write) {
1151 struct dma_fence **shared;
1152 unsigned int count, i;
1153
1154 ret = dma_resv_get_fences_rcu(obj->base.resv,
1155 &excl, &count, &shared);
1156 if (ret)
1157 return ret;
1158
1159 for (i = 0; i < count; i++) {
1160 ret = i915_request_await_dma_fence(to, shared[i]);
1161 if (ret)
1162 break;
1163
1164 dma_fence_put(shared[i]);
1165 }
1166
1167 for (; i < count; i++)
1168 dma_fence_put(shared[i]);
1169 kfree(shared);
1170 } else {
1171 excl = dma_resv_get_excl_rcu(obj->base.resv);
1172 }
1173
1174 if (excl) {
1175 if (ret == 0)
1176 ret = i915_request_await_dma_fence(to, excl);
1177
1178 dma_fence_put(excl);
1179 }
1180
1181 return ret;
1182 }
1183
1184 void i915_request_skip(struct i915_request *rq, int error)
1185 {
1186 void *vaddr = rq->ring->vaddr;
1187 u32 head;
1188
1189 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1190 dma_fence_set_error(&rq->fence, error);
1191
1192 if (rq->infix == rq->postfix)
1193 return;
1194
1195 /*
1196 * As this request likely depends on state from the lost
1197 * context, clear out all the user operations leaving the
1198 * breadcrumb at the end (so we get the fence notifications).
1199 */
1200 head = rq->infix;
1201 if (rq->postfix < head) {
1202 memset((char *)vaddr + head, 0, rq->ring->size - head);
1203 head = 0;
1204 }
1205 memset((char *)vaddr + head, 0, rq->postfix - head);
1206 rq->infix = rq->postfix;
1207 }
1208
1209 static struct i915_request *
1210 __i915_request_add_to_timeline(struct i915_request *rq)
1211 {
1212 struct intel_timeline *timeline = i915_request_timeline(rq);
1213 struct i915_request *prev;
1214
1215 /*
1216 * Dependency tracking and request ordering along the timeline
1217 * is special cased so that we can eliminate redundant ordering
1218 * operations while building the request (we know that the timeline
1219 * itself is ordered, and here we guarantee it).
1220 *
1221 * As we know we will need to emit tracking along the timeline,
1222 * we embed the hooks into our request struct -- at the cost of
1223 * having to have specialised no-allocation interfaces (which will
1224 * be beneficial elsewhere).
1225 *
1226 * A second benefit to open-coding i915_request_await_request is
1227 * that we can apply a slight variant of the rules specialised
1228 * for timelines that jump between engines (such as virtual engines).
1229 * If we consider the case of virtual engine, we must emit a dma-fence
1230 * to prevent scheduling of the second request until the first is
1231 * complete (to maximise our greedy late load balancing) and this
1232 * precludes optimising to use semaphores serialisation of a single
1233 * timeline across engines.
1234 */
1235 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1236 &rq->fence));
1237 if (prev && !i915_request_completed(prev)) {
1238 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1239 i915_sw_fence_await_sw_fence(&rq->submit,
1240 &prev->submit,
1241 &rq->submitq);
1242 else
1243 __i915_sw_fence_await_dma_fence(&rq->submit,
1244 &prev->fence,
1245 &rq->dmaq);
1246 if (rq->engine->schedule)
1247 __i915_sched_node_add_dependency(&rq->sched,
1248 &prev->sched,
1249 &rq->dep,
1250 0);
1251 }
1252
1253 list_add_tail(&rq->link, &timeline->requests);
1254
1255 /*
1256 * Make sure that no request gazumped us - if it was allocated after
1257 * our i915_request_alloc() and called __i915_request_add() before
1258 * us, the timeline will hold its seqno which is later than ours.
1259 */
1260 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1261
1262 return prev;
1263 }
1264
1265 /*
1266 * NB: This function is not allowed to fail. Doing so would mean the the
1267 * request is not being tracked for completion but the work itself is
1268 * going to happen on the hardware. This would be a Bad Thing(tm).
1269 */
1270 struct i915_request *__i915_request_commit(struct i915_request *rq)
1271 {
1272 struct intel_engine_cs *engine = rq->engine;
1273 struct intel_ring *ring = rq->ring;
1274 u32 *cs;
1275
1276 RQ_TRACE(rq, "\n");
1277
1278 /*
1279 * To ensure that this call will not fail, space for its emissions
1280 * should already have been reserved in the ring buffer. Let the ring
1281 * know that it is time to use that space up.
1282 */
1283 GEM_BUG_ON(rq->reserved_space > ring->space);
1284 rq->reserved_space = 0;
1285 rq->emitted_jiffies = jiffies;
1286
1287 /*
1288 * Record the position of the start of the breadcrumb so that
1289 * should we detect the updated seqno part-way through the
1290 * GPU processing the request, we never over-estimate the
1291 * position of the ring's HEAD.
1292 */
1293 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1294 GEM_BUG_ON(IS_ERR(cs));
1295 rq->postfix = intel_ring_offset(rq, cs);
1296
1297 return __i915_request_add_to_timeline(rq);
1298 }
1299
1300 void __i915_request_queue(struct i915_request *rq,
1301 const struct i915_sched_attr *attr)
1302 {
1303 /*
1304 * Let the backend know a new request has arrived that may need
1305 * to adjust the existing execution schedule due to a high priority
1306 * request - i.e. we may want to preempt the current request in order
1307 * to run a high priority dependency chain *before* we can execute this
1308 * request.
1309 *
1310 * This is called before the request is ready to run so that we can
1311 * decide whether to preempt the entire chain so that it is ready to
1312 * run at the earliest possible convenience.
1313 */
1314 i915_sw_fence_commit(&rq->semaphore);
1315 if (attr && rq->engine->schedule)
1316 rq->engine->schedule(rq, attr);
1317 i915_sw_fence_commit(&rq->submit);
1318 }
1319
1320 void i915_request_add(struct i915_request *rq)
1321 {
1322 struct intel_timeline * const tl = i915_request_timeline(rq);
1323 struct i915_sched_attr attr = {};
1324 struct i915_request *prev;
1325
1326 lockdep_assert_held(&tl->mutex);
1327 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1328
1329 trace_i915_request_add(rq);
1330
1331 prev = __i915_request_commit(rq);
1332
1333 if (rcu_access_pointer(rq->context->gem_context))
1334 attr = i915_request_gem_context(rq)->sched;
1335
1336 /*
1337 * Boost actual workloads past semaphores!
1338 *
1339 * With semaphores we spin on one engine waiting for another,
1340 * simply to reduce the latency of starting our work when
1341 * the signaler completes. However, if there is any other
1342 * work that we could be doing on this engine instead, that
1343 * is better utilisation and will reduce the overall duration
1344 * of the current work. To avoid PI boosting a semaphore
1345 * far in the distance past over useful work, we keep a history
1346 * of any semaphore use along our dependency chain.
1347 */
1348 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1349 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1350
1351 /*
1352 * Boost priorities to new clients (new request flows).
1353 *
1354 * Allow interactive/synchronous clients to jump ahead of
1355 * the bulk clients. (FQ_CODEL)
1356 */
1357 if (list_empty(&rq->sched.signalers_list))
1358 attr.priority |= I915_PRIORITY_WAIT;
1359
1360 #ifdef __NetBSD__
1361 int s = splsoftserial();
1362 #else
1363 local_bh_disable();
1364 #endif
1365 __i915_request_queue(rq, &attr);
1366 #ifdef __NetBSD__
1367 splx(s);
1368 #else
1369 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1370 #endif
1371
1372 /*
1373 * In typical scenarios, we do not expect the previous request on
1374 * the timeline to be still tracked by timeline->last_request if it
1375 * has been completed. If the completed request is still here, that
1376 * implies that request retirement is a long way behind submission,
1377 * suggesting that we haven't been retiring frequently enough from
1378 * the combination of retire-before-alloc, waiters and the background
1379 * retirement worker. So if the last request on this timeline was
1380 * already completed, do a catch up pass, flushing the retirement queue
1381 * up to this client. Since we have now moved the heaviest operations
1382 * during retirement onto secondary workers, such as freeing objects
1383 * or contexts, retiring a bunch of requests is mostly list management
1384 * (and cache misses), and so we should not be overly penalizing this
1385 * client by performing excess work, though we may still performing
1386 * work on behalf of others -- but instead we should benefit from
1387 * improved resource management. (Well, that's the theory at least.)
1388 */
1389 if (prev &&
1390 i915_request_completed(prev) &&
1391 rcu_access_pointer(prev->timeline) == tl)
1392 i915_request_retire_upto(prev);
1393
1394 mutex_unlock(&tl->mutex);
1395 }
1396
1397 static unsigned long local_clock_us(unsigned int *cpu)
1398 {
1399 unsigned long t;
1400
1401 /*
1402 * Cheaply and approximately convert from nanoseconds to microseconds.
1403 * The result and subsequent calculations are also defined in the same
1404 * approximate microseconds units. The principal source of timing
1405 * error here is from the simple truncation.
1406 *
1407 * Note that local_clock() is only defined wrt to the current CPU;
1408 * the comparisons are no longer valid if we switch CPUs. Instead of
1409 * blocking preemption for the entire busywait, we can detect the CPU
1410 * switch and use that as indicator of system load and a reason to
1411 * stop busywaiting, see busywait_stop().
1412 */
1413 *cpu = get_cpu();
1414 t = local_clock() >> 10;
1415 put_cpu();
1416
1417 return t;
1418 }
1419
1420 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1421 {
1422 unsigned int this_cpu;
1423
1424 if (time_after(local_clock_us(&this_cpu), timeout))
1425 return true;
1426
1427 return this_cpu != cpu;
1428 }
1429
1430 static bool __i915_spin_request(const struct i915_request * const rq,
1431 int state, unsigned long timeout_us)
1432 {
1433 unsigned int cpu;
1434
1435 /*
1436 * Only wait for the request if we know it is likely to complete.
1437 *
1438 * We don't track the timestamps around requests, nor the average
1439 * request length, so we do not have a good indicator that this
1440 * request will complete within the timeout. What we do know is the
1441 * order in which requests are executed by the context and so we can
1442 * tell if the request has been started. If the request is not even
1443 * running yet, it is a fair assumption that it will not complete
1444 * within our relatively short timeout.
1445 */
1446 if (!i915_request_is_running(rq))
1447 return false;
1448
1449 /*
1450 * When waiting for high frequency requests, e.g. during synchronous
1451 * rendering split between the CPU and GPU, the finite amount of time
1452 * required to set up the irq and wait upon it limits the response
1453 * rate. By busywaiting on the request completion for a short while we
1454 * can service the high frequency waits as quick as possible. However,
1455 * if it is a slow request, we want to sleep as quickly as possible.
1456 * The tradeoff between waiting and sleeping is roughly the time it
1457 * takes to sleep on a request, on the order of a microsecond.
1458 */
1459
1460 timeout_us += local_clock_us(&cpu);
1461 do {
1462 if (i915_request_completed(rq))
1463 return true;
1464
1465 if (signal_pending_state(state, current))
1466 break;
1467
1468 if (busywait_stop(timeout_us, cpu))
1469 break;
1470
1471 cpu_relax();
1472 } while (!need_resched());
1473
1474 return false;
1475 }
1476
1477 struct request_wait {
1478 struct dma_fence_cb cb;
1479 #ifdef __NetBSD__
1480 bool complete;
1481 kcondvar_t cv;
1482 /* XXX lock, condvar, ...? */
1483 #else
1484 struct task_struct *tsk;
1485 #endif
1486 };
1487
1488 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1489 {
1490 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1491
1492 wake_up_process(wait->tsk);
1493 }
1494
1495 /**
1496 * i915_request_wait - wait until execution of request has finished
1497 * @rq: the request to wait upon
1498 * @flags: how to wait
1499 * @timeout: how long to wait in jiffies
1500 *
1501 * i915_request_wait() waits for the request to be completed, for a
1502 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1503 * unbounded wait).
1504 *
1505 * Returns the remaining time (in jiffies) if the request completed, which may
1506 * be zero or -ETIME if the request is unfinished after the timeout expires.
1507 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1508 * pending before the request completes.
1509 */
1510 long i915_request_wait(struct i915_request *rq,
1511 unsigned int flags,
1512 long timeout)
1513 {
1514 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1515 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1516 struct request_wait wait;
1517
1518 might_sleep();
1519 GEM_BUG_ON(timeout < 0);
1520
1521 if (dma_fence_is_signaled(&rq->fence))
1522 return timeout;
1523
1524 if (!timeout)
1525 return -ETIME;
1526
1527 trace_i915_request_wait_begin(rq, flags);
1528
1529 /*
1530 * We must never wait on the GPU while holding a lock as we
1531 * may need to perform a GPU reset. So while we don't need to
1532 * serialise wait/reset with an explicit lock, we do want
1533 * lockdep to detect potential dependency cycles.
1534 */
1535 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1536
1537 /*
1538 * Optimistic spin before touching IRQs.
1539 *
1540 * We may use a rather large value here to offset the penalty of
1541 * switching away from the active task. Frequently, the client will
1542 * wait upon an old swapbuffer to throttle itself to remain within a
1543 * frame of the gpu. If the client is running in lockstep with the gpu,
1544 * then it should not be waiting long at all, and a sleep now will incur
1545 * extra scheduler latency in producing the next frame. To try to
1546 * avoid adding the cost of enabling/disabling the interrupt to the
1547 * short wait, we first spin to see if the request would have completed
1548 * in the time taken to setup the interrupt.
1549 *
1550 * We need upto 5us to enable the irq, and upto 20us to hide the
1551 * scheduler latency of a context switch, ignoring the secondary
1552 * impacts from a context switch such as cache eviction.
1553 *
1554 * The scheme used for low-latency IO is called "hybrid interrupt
1555 * polling". The suggestion there is to sleep until just before you
1556 * expect to be woken by the device interrupt and then poll for its
1557 * completion. That requires having a good predictor for the request
1558 * duration, which we currently lack.
1559 */
1560 if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1561 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1562 dma_fence_signal(&rq->fence);
1563 goto out;
1564 }
1565
1566 /*
1567 * This client is about to stall waiting for the GPU. In many cases
1568 * this is undesirable and limits the throughput of the system, as
1569 * many clients cannot continue processing user input/output whilst
1570 * blocked. RPS autotuning may take tens of milliseconds to respond
1571 * to the GPU load and thus incurs additional latency for the client.
1572 * We can circumvent that by promoting the GPU frequency to maximum
1573 * before we sleep. This makes the GPU throttle up much more quickly
1574 * (good for benchmarks and user experience, e.g. window animations),
1575 * but at a cost of spending more power processing the workload
1576 * (bad for battery).
1577 */
1578 if (flags & I915_WAIT_PRIORITY) {
1579 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1580 intel_rps_boost(rq);
1581 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1582 }
1583
1584 wait.tsk = current;
1585 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1586 goto out;
1587
1588 for (;;) {
1589 set_current_state(state);
1590
1591 if (i915_request_completed(rq)) {
1592 dma_fence_signal(&rq->fence);
1593 break;
1594 }
1595
1596 if (signal_pending_state(state, current)) {
1597 timeout = -ERESTARTSYS;
1598 break;
1599 }
1600
1601 if (!timeout) {
1602 timeout = -ETIME;
1603 break;
1604 }
1605
1606 intel_engine_flush_submission(rq->engine);
1607 timeout = io_schedule_timeout(timeout);
1608 }
1609 __set_current_state(TASK_RUNNING);
1610
1611 dma_fence_remove_callback(&rq->fence, &wait.cb);
1612
1613 out:
1614 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1615 trace_i915_request_wait_end(rq);
1616 return timeout;
1617 }
1618
1619 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1620 #include "selftests/mock_request.c"
1621 #include "selftests/i915_request.c"
1622 #endif
1623
1624 static void i915_global_request_shrink(void)
1625 {
1626 kmem_cache_shrink(global.slab_dependencies);
1627 kmem_cache_shrink(global.slab_execute_cbs);
1628 kmem_cache_shrink(global.slab_requests);
1629 }
1630
1631 static void i915_global_request_exit(void)
1632 {
1633 kmem_cache_destroy(global.slab_dependencies);
1634 kmem_cache_destroy(global.slab_execute_cbs);
1635 kmem_cache_destroy(global.slab_requests);
1636 }
1637
1638 static struct i915_global_request global = { {
1639 .shrink = i915_global_request_shrink,
1640 .exit = i915_global_request_exit,
1641 } };
1642
1643 int __init i915_global_request_init(void)
1644 {
1645 global.slab_requests =
1646 kmem_cache_create("i915_request",
1647 sizeof(struct i915_request),
1648 __alignof__(struct i915_request),
1649 SLAB_HWCACHE_ALIGN |
1650 SLAB_RECLAIM_ACCOUNT |
1651 SLAB_TYPESAFE_BY_RCU,
1652 __i915_request_ctor);
1653 if (!global.slab_requests)
1654 return -ENOMEM;
1655
1656 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1657 SLAB_HWCACHE_ALIGN |
1658 SLAB_RECLAIM_ACCOUNT |
1659 SLAB_TYPESAFE_BY_RCU);
1660 if (!global.slab_execute_cbs)
1661 goto err_requests;
1662
1663 global.slab_dependencies = KMEM_CACHE(i915_dependency,
1664 SLAB_HWCACHE_ALIGN |
1665 SLAB_RECLAIM_ACCOUNT);
1666 if (!global.slab_dependencies)
1667 goto err_execute_cbs;
1668
1669 i915_global_register(&global.base);
1670 return 0;
1671
1672 err_execute_cbs:
1673 kmem_cache_destroy(global.slab_execute_cbs);
1674 err_requests:
1675 kmem_cache_destroy(global.slab_requests);
1676 return -ENOMEM;
1677 }
1678