Home | History | Annotate | Line # | Download | only in i915
      1  1.1  riastrad /*	$NetBSD: i915_syncmap.c,v 1.2 2021/12/18 23:45:28 riastradh Exp $	*/
      2  1.1  riastrad 
      3  1.1  riastrad /*
      4  1.1  riastrad  * Copyright  2017 Intel Corporation
      5  1.1  riastrad  *
      6  1.1  riastrad  * Permission is hereby granted, free of charge, to any person obtaining a
      7  1.1  riastrad  * copy of this software and associated documentation files (the "Software"),
      8  1.1  riastrad  * to deal in the Software without restriction, including without limitation
      9  1.1  riastrad  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  1.1  riastrad  * and/or sell copies of the Software, and to permit persons to whom the
     11  1.1  riastrad  * Software is furnished to do so, subject to the following conditions:
     12  1.1  riastrad  *
     13  1.1  riastrad  * The above copyright notice and this permission notice (including the next
     14  1.1  riastrad  * paragraph) shall be included in all copies or substantial portions of the
     15  1.1  riastrad  * Software.
     16  1.1  riastrad  *
     17  1.1  riastrad  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  1.1  riastrad  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  1.1  riastrad  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  1.1  riastrad  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  1.1  riastrad  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  1.1  riastrad  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  1.1  riastrad  * IN THE SOFTWARE.
     24  1.1  riastrad  *
     25  1.1  riastrad  */
     26  1.1  riastrad 
     27  1.1  riastrad #include <sys/cdefs.h>
     28  1.1  riastrad __KERNEL_RCSID(0, "$NetBSD: i915_syncmap.c,v 1.2 2021/12/18 23:45:28 riastradh Exp $");
     29  1.1  riastrad 
     30  1.1  riastrad #include <linux/slab.h>
     31  1.1  riastrad 
     32  1.1  riastrad #include "i915_syncmap.h"
     33  1.1  riastrad 
     34  1.1  riastrad #include "i915_gem.h" /* GEM_BUG_ON() */
     35  1.1  riastrad #include "i915_selftest.h"
     36  1.1  riastrad 
     37  1.1  riastrad #define SHIFT ilog2(KSYNCMAP)
     38  1.1  riastrad #define MASK (KSYNCMAP - 1)
     39  1.1  riastrad 
     40  1.1  riastrad /*
     41  1.1  riastrad  * struct i915_syncmap is a layer of a radixtree that maps a u64 fence
     42  1.1  riastrad  * context id to the last u32 fence seqno waited upon from that context.
     43  1.1  riastrad  * Unlike lib/radixtree it uses a parent pointer that allows traversal back to
     44  1.1  riastrad  * the root. This allows us to access the whole tree via a single pointer
     45  1.1  riastrad  * to the most recently used layer. We expect fence contexts to be dense
     46  1.1  riastrad  * and most reuse to be on the same i915_gem_context but on neighbouring
     47  1.1  riastrad  * engines (i.e. on adjacent contexts) and reuse the same leaf, a very
     48  1.1  riastrad  * effective lookup cache. If the new lookup is not on the same leaf, we
     49  1.1  riastrad  * expect it to be on the neighbouring branch.
     50  1.1  riastrad  *
     51  1.1  riastrad  * A leaf holds an array of u32 seqno, and has height 0. The bitmap field
     52  1.1  riastrad  * allows us to store whether a particular seqno is valid (i.e. allows us
     53  1.1  riastrad  * to distinguish unset from 0).
     54  1.1  riastrad  *
     55  1.1  riastrad  * A branch holds an array of layer pointers, and has height > 0, and always
     56  1.1  riastrad  * has at least 2 layers (either branches or leaves) below it.
     57  1.1  riastrad  *
     58  1.1  riastrad  * For example,
     59  1.1  riastrad  *	for x in
     60  1.1  riastrad  *	  0 1 2 0x10 0x11 0x200 0x201
     61  1.1  riastrad  *	  0x500000 0x500001 0x503000 0x503001
     62  1.1  riastrad  *	  0xE<<60:
     63  1.1  riastrad  *		i915_syncmap_set(&sync, x, lower_32_bits(x));
     64  1.1  riastrad  * will build a tree like:
     65  1.1  riastrad  *	0xXXXXXXXXXXXXXXXX
     66  1.1  riastrad  *	0-> 0x0000000000XXXXXX
     67  1.1  riastrad  *	|   0-> 0x0000000000000XXX
     68  1.1  riastrad  *	|   |   0-> 0x00000000000000XX
     69  1.1  riastrad  *	|   |   |   0-> 0x000000000000000X 0:0, 1:1, 2:2
     70  1.1  riastrad  *	|   |   |   1-> 0x000000000000001X 0:10, 1:11
     71  1.1  riastrad  *	|   |   2-> 0x000000000000020X 0:200, 1:201
     72  1.1  riastrad  *	|   5-> 0x000000000050XXXX
     73  1.1  riastrad  *	|       0-> 0x000000000050000X 0:500000, 1:500001
     74  1.1  riastrad  *	|       3-> 0x000000000050300X 0:503000, 1:503001
     75  1.1  riastrad  *	e-> 0xe00000000000000X e:e
     76  1.1  riastrad  */
     77  1.1  riastrad 
     78  1.1  riastrad struct i915_syncmap {
     79  1.1  riastrad 	u64 prefix;
     80  1.1  riastrad 	unsigned int height;
     81  1.1  riastrad 	unsigned int bitmap;
     82  1.1  riastrad 	struct i915_syncmap *parent;
     83  1.1  riastrad 	/*
     84  1.1  riastrad 	 * Following this header is an array of either seqno or child pointers:
     85  1.1  riastrad 	 * union {
     86  1.1  riastrad 	 *	u32 seqno[KSYNCMAP];
     87  1.1  riastrad 	 *	struct i915_syncmap *child[KSYNCMAP];
     88  1.1  riastrad 	 * };
     89  1.1  riastrad 	 */
     90  1.1  riastrad };
     91  1.1  riastrad 
     92  1.1  riastrad /**
     93  1.1  riastrad  * i915_syncmap_init -- initialise the #i915_syncmap
     94  1.1  riastrad  * @root: pointer to the #i915_syncmap
     95  1.1  riastrad  */
     96  1.1  riastrad void i915_syncmap_init(struct i915_syncmap **root)
     97  1.1  riastrad {
     98  1.1  riastrad 	BUILD_BUG_ON_NOT_POWER_OF_2(KSYNCMAP);
     99  1.1  riastrad 	BUILD_BUG_ON_NOT_POWER_OF_2(SHIFT);
    100  1.1  riastrad 	BUILD_BUG_ON(KSYNCMAP > BITS_PER_TYPE((*root)->bitmap));
    101  1.1  riastrad 	*root = NULL;
    102  1.1  riastrad }
    103  1.1  riastrad 
    104  1.1  riastrad static inline u32 *__sync_seqno(struct i915_syncmap *p)
    105  1.1  riastrad {
    106  1.1  riastrad 	GEM_BUG_ON(p->height);
    107  1.1  riastrad 	return (u32 *)(p + 1);
    108  1.1  riastrad }
    109  1.1  riastrad 
    110  1.1  riastrad static inline struct i915_syncmap **__sync_child(struct i915_syncmap *p)
    111  1.1  riastrad {
    112  1.1  riastrad 	GEM_BUG_ON(!p->height);
    113  1.1  riastrad 	return (struct i915_syncmap **)(p + 1);
    114  1.1  riastrad }
    115  1.1  riastrad 
    116  1.1  riastrad static inline unsigned int
    117  1.1  riastrad __sync_branch_idx(const struct i915_syncmap *p, u64 id)
    118  1.1  riastrad {
    119  1.1  riastrad 	return (id >> p->height) & MASK;
    120  1.1  riastrad }
    121  1.1  riastrad 
    122  1.1  riastrad static inline unsigned int
    123  1.1  riastrad __sync_leaf_idx(const struct i915_syncmap *p, u64 id)
    124  1.1  riastrad {
    125  1.1  riastrad 	GEM_BUG_ON(p->height);
    126  1.1  riastrad 	return id & MASK;
    127  1.1  riastrad }
    128  1.1  riastrad 
    129  1.1  riastrad static inline u64 __sync_branch_prefix(const struct i915_syncmap *p, u64 id)
    130  1.1  riastrad {
    131  1.1  riastrad 	return id >> p->height >> SHIFT;
    132  1.1  riastrad }
    133  1.1  riastrad 
    134  1.1  riastrad static inline u64 __sync_leaf_prefix(const struct i915_syncmap *p, u64 id)
    135  1.1  riastrad {
    136  1.1  riastrad 	GEM_BUG_ON(p->height);
    137  1.1  riastrad 	return id >> SHIFT;
    138  1.1  riastrad }
    139  1.1  riastrad 
    140  1.1  riastrad static inline bool seqno_later(u32 a, u32 b)
    141  1.1  riastrad {
    142  1.1  riastrad 	return (s32)(a - b) >= 0;
    143  1.1  riastrad }
    144  1.1  riastrad 
    145  1.1  riastrad /**
    146  1.1  riastrad  * i915_syncmap_is_later -- compare against the last know sync point
    147  1.1  riastrad  * @root: pointer to the #i915_syncmap
    148  1.1  riastrad  * @id: the context id (other timeline) we are synchronising to
    149  1.1  riastrad  * @seqno: the sequence number along the other timeline
    150  1.1  riastrad  *
    151  1.1  riastrad  * If we have already synchronised this @root timeline with another (@id) then
    152  1.1  riastrad  * we can omit any repeated or earlier synchronisation requests. If the two
    153  1.1  riastrad  * timelines are already coupled, we can also omit the dependency between the
    154  1.1  riastrad  * two as that is already known via the timeline.
    155  1.1  riastrad  *
    156  1.1  riastrad  * Returns true if the two timelines are already synchronised wrt to @seqno,
    157  1.1  riastrad  * false if not and the synchronisation must be emitted.
    158  1.1  riastrad  */
    159  1.1  riastrad bool i915_syncmap_is_later(struct i915_syncmap **root, u64 id, u32 seqno)
    160  1.1  riastrad {
    161  1.1  riastrad 	struct i915_syncmap *p;
    162  1.1  riastrad 	unsigned int idx;
    163  1.1  riastrad 
    164  1.1  riastrad 	p = *root;
    165  1.1  riastrad 	if (!p)
    166  1.1  riastrad 		return false;
    167  1.1  riastrad 
    168  1.1  riastrad 	if (likely(__sync_leaf_prefix(p, id) == p->prefix))
    169  1.1  riastrad 		goto found;
    170  1.1  riastrad 
    171  1.1  riastrad 	/* First climb the tree back to a parent branch */
    172  1.1  riastrad 	do {
    173  1.1  riastrad 		p = p->parent;
    174  1.1  riastrad 		if (!p)
    175  1.1  riastrad 			return false;
    176  1.1  riastrad 
    177  1.1  riastrad 		if (__sync_branch_prefix(p, id) == p->prefix)
    178  1.1  riastrad 			break;
    179  1.1  riastrad 	} while (1);
    180  1.1  riastrad 
    181  1.1  riastrad 	/* And then descend again until we find our leaf */
    182  1.1  riastrad 	do {
    183  1.1  riastrad 		if (!p->height)
    184  1.1  riastrad 			break;
    185  1.1  riastrad 
    186  1.1  riastrad 		p = __sync_child(p)[__sync_branch_idx(p, id)];
    187  1.1  riastrad 		if (!p)
    188  1.1  riastrad 			return false;
    189  1.1  riastrad 
    190  1.1  riastrad 		if (__sync_branch_prefix(p, id) != p->prefix)
    191  1.1  riastrad 			return false;
    192  1.1  riastrad 	} while (1);
    193  1.1  riastrad 
    194  1.1  riastrad 	*root = p;
    195  1.1  riastrad found:
    196  1.1  riastrad 	idx = __sync_leaf_idx(p, id);
    197  1.1  riastrad 	if (!(p->bitmap & BIT(idx)))
    198  1.1  riastrad 		return false;
    199  1.1  riastrad 
    200  1.1  riastrad 	return seqno_later(__sync_seqno(p)[idx], seqno);
    201  1.1  riastrad }
    202  1.1  riastrad 
    203  1.1  riastrad static struct i915_syncmap *
    204  1.1  riastrad __sync_alloc_leaf(struct i915_syncmap *parent, u64 id)
    205  1.1  riastrad {
    206  1.1  riastrad 	struct i915_syncmap *p;
    207  1.1  riastrad 
    208  1.1  riastrad 	p = kmalloc(sizeof(*p) + KSYNCMAP * sizeof(u32), GFP_KERNEL);
    209  1.1  riastrad 	if (unlikely(!p))
    210  1.1  riastrad 		return NULL;
    211  1.1  riastrad 
    212  1.1  riastrad 	p->parent = parent;
    213  1.1  riastrad 	p->height = 0;
    214  1.1  riastrad 	p->bitmap = 0;
    215  1.1  riastrad 	p->prefix = __sync_leaf_prefix(p, id);
    216  1.1  riastrad 	return p;
    217  1.1  riastrad }
    218  1.1  riastrad 
    219  1.1  riastrad static inline void __sync_set_seqno(struct i915_syncmap *p, u64 id, u32 seqno)
    220  1.1  riastrad {
    221  1.1  riastrad 	unsigned int idx = __sync_leaf_idx(p, id);
    222  1.1  riastrad 
    223  1.1  riastrad 	p->bitmap |= BIT(idx);
    224  1.1  riastrad 	__sync_seqno(p)[idx] = seqno;
    225  1.1  riastrad }
    226  1.1  riastrad 
    227  1.1  riastrad static inline void __sync_set_child(struct i915_syncmap *p,
    228  1.1  riastrad 				    unsigned int idx,
    229  1.1  riastrad 				    struct i915_syncmap *child)
    230  1.1  riastrad {
    231  1.1  riastrad 	p->bitmap |= BIT(idx);
    232  1.1  riastrad 	__sync_child(p)[idx] = child;
    233  1.1  riastrad }
    234  1.1  riastrad 
    235  1.1  riastrad static noinline int __sync_set(struct i915_syncmap **root, u64 id, u32 seqno)
    236  1.1  riastrad {
    237  1.1  riastrad 	struct i915_syncmap *p = *root;
    238  1.1  riastrad 	unsigned int idx;
    239  1.1  riastrad 
    240  1.1  riastrad 	if (!p) {
    241  1.1  riastrad 		p = __sync_alloc_leaf(NULL, id);
    242  1.1  riastrad 		if (unlikely(!p))
    243  1.1  riastrad 			return -ENOMEM;
    244  1.1  riastrad 
    245  1.1  riastrad 		goto found;
    246  1.1  riastrad 	}
    247  1.1  riastrad 
    248  1.1  riastrad 	/* Caller handled the likely cached case */
    249  1.1  riastrad 	GEM_BUG_ON(__sync_leaf_prefix(p, id) == p->prefix);
    250  1.1  riastrad 
    251  1.1  riastrad 	/* Climb back up the tree until we find a common prefix */
    252  1.1  riastrad 	do {
    253  1.1  riastrad 		if (!p->parent)
    254  1.1  riastrad 			break;
    255  1.1  riastrad 
    256  1.1  riastrad 		p = p->parent;
    257  1.1  riastrad 
    258  1.1  riastrad 		if (__sync_branch_prefix(p, id) == p->prefix)
    259  1.1  riastrad 			break;
    260  1.1  riastrad 	} while (1);
    261  1.1  riastrad 
    262  1.1  riastrad 	/*
    263  1.1  riastrad 	 * No shortcut, we have to descend the tree to find the right layer
    264  1.1  riastrad 	 * containing this fence.
    265  1.1  riastrad 	 *
    266  1.1  riastrad 	 * Each layer in the tree holds 16 (KSYNCMAP) pointers, either fences
    267  1.1  riastrad 	 * or lower layers. Leaf nodes (height = 0) contain the fences, all
    268  1.1  riastrad 	 * other nodes (height > 0) are internal layers that point to a lower
    269  1.1  riastrad 	 * node. Each internal layer has at least 2 descendents.
    270  1.1  riastrad 	 *
    271  1.1  riastrad 	 * Starting at the top, we check whether the current prefix matches. If
    272  1.1  riastrad 	 * it doesn't, we have gone past our target and need to insert a join
    273  1.1  riastrad 	 * into the tree, and a new leaf node for the target as a descendent
    274  1.1  riastrad 	 * of the join, as well as the original layer.
    275  1.1  riastrad 	 *
    276  1.1  riastrad 	 * The matching prefix means we are still following the right branch
    277  1.1  riastrad 	 * of the tree. If it has height 0, we have found our leaf and just
    278  1.1  riastrad 	 * need to replace the fence slot with ourselves. If the height is
    279  1.1  riastrad 	 * not zero, our slot contains the next layer in the tree (unless
    280  1.1  riastrad 	 * it is empty, in which case we can add ourselves as a new leaf).
    281  1.1  riastrad 	 * As descend the tree the prefix grows (and height decreases).
    282  1.1  riastrad 	 */
    283  1.1  riastrad 	do {
    284  1.1  riastrad 		struct i915_syncmap *next;
    285  1.1  riastrad 
    286  1.1  riastrad 		if (__sync_branch_prefix(p, id) != p->prefix) {
    287  1.1  riastrad 			unsigned int above;
    288  1.1  riastrad 
    289  1.1  riastrad 			/* Insert a join above the current layer */
    290  1.1  riastrad 			next = kzalloc(sizeof(*next) + KSYNCMAP * sizeof(next),
    291  1.1  riastrad 				       GFP_KERNEL);
    292  1.1  riastrad 			if (unlikely(!next))
    293  1.1  riastrad 				return -ENOMEM;
    294  1.1  riastrad 
    295  1.1  riastrad 			/* Compute the height at which these two diverge */
    296  1.1  riastrad 			above = fls64(__sync_branch_prefix(p, id) ^ p->prefix);
    297  1.1  riastrad 			above = round_up(above, SHIFT);
    298  1.1  riastrad 			next->height = above + p->height;
    299  1.1  riastrad 			next->prefix = __sync_branch_prefix(next, id);
    300  1.1  riastrad 
    301  1.1  riastrad 			/* Insert the join into the parent */
    302  1.1  riastrad 			if (p->parent) {
    303  1.1  riastrad 				idx = __sync_branch_idx(p->parent, id);
    304  1.1  riastrad 				__sync_child(p->parent)[idx] = next;
    305  1.1  riastrad 				GEM_BUG_ON(!(p->parent->bitmap & BIT(idx)));
    306  1.1  riastrad 			}
    307  1.1  riastrad 			next->parent = p->parent;
    308  1.1  riastrad 
    309  1.1  riastrad 			/* Compute the idx of the other branch, not our id! */
    310  1.1  riastrad 			idx = p->prefix >> (above - SHIFT) & MASK;
    311  1.1  riastrad 			__sync_set_child(next, idx, p);
    312  1.1  riastrad 			p->parent = next;
    313  1.1  riastrad 
    314  1.1  riastrad 			/* Ascend to the join */
    315  1.1  riastrad 			p = next;
    316  1.1  riastrad 		} else {
    317  1.1  riastrad 			if (!p->height)
    318  1.1  riastrad 				break;
    319  1.1  riastrad 		}
    320  1.1  riastrad 
    321  1.1  riastrad 		/* Descend into the next layer */
    322  1.1  riastrad 		GEM_BUG_ON(!p->height);
    323  1.1  riastrad 		idx = __sync_branch_idx(p, id);
    324  1.1  riastrad 		next = __sync_child(p)[idx];
    325  1.1  riastrad 		if (!next) {
    326  1.1  riastrad 			next = __sync_alloc_leaf(p, id);
    327  1.1  riastrad 			if (unlikely(!next))
    328  1.1  riastrad 				return -ENOMEM;
    329  1.1  riastrad 
    330  1.1  riastrad 			__sync_set_child(p, idx, next);
    331  1.1  riastrad 			p = next;
    332  1.1  riastrad 			break;
    333  1.1  riastrad 		}
    334  1.1  riastrad 
    335  1.1  riastrad 		p = next;
    336  1.1  riastrad 	} while (1);
    337  1.1  riastrad 
    338  1.1  riastrad found:
    339  1.1  riastrad 	GEM_BUG_ON(p->prefix != __sync_leaf_prefix(p, id));
    340  1.1  riastrad 	__sync_set_seqno(p, id, seqno);
    341  1.1  riastrad 	*root = p;
    342  1.1  riastrad 	return 0;
    343  1.1  riastrad }
    344  1.1  riastrad 
    345  1.1  riastrad /**
    346  1.1  riastrad  * i915_syncmap_set -- mark the most recent syncpoint between contexts
    347  1.1  riastrad  * @root: pointer to the #i915_syncmap
    348  1.1  riastrad  * @id: the context id (other timeline) we have synchronised to
    349  1.1  riastrad  * @seqno: the sequence number along the other timeline
    350  1.1  riastrad  *
    351  1.1  riastrad  * When we synchronise this @root timeline with another (@id), we also know
    352  1.1  riastrad  * that we have synchronized with all previous seqno along that timeline. If
    353  1.1  riastrad  * we then have a request to synchronise with the same seqno or older, we can
    354  1.1  riastrad  * omit it, see i915_syncmap_is_later()
    355  1.1  riastrad  *
    356  1.1  riastrad  * Returns 0 on success, or a negative error code.
    357  1.1  riastrad  */
    358  1.1  riastrad int i915_syncmap_set(struct i915_syncmap **root, u64 id, u32 seqno)
    359  1.1  riastrad {
    360  1.1  riastrad 	struct i915_syncmap *p = *root;
    361  1.1  riastrad 
    362  1.1  riastrad 	/*
    363  1.1  riastrad 	 * We expect to be called in sequence following is_later(id), which
    364  1.1  riastrad 	 * should have preloaded the root for us.
    365  1.1  riastrad 	 */
    366  1.1  riastrad 	if (likely(p && __sync_leaf_prefix(p, id) == p->prefix)) {
    367  1.1  riastrad 		__sync_set_seqno(p, id, seqno);
    368  1.1  riastrad 		return 0;
    369  1.1  riastrad 	}
    370  1.1  riastrad 
    371  1.1  riastrad 	return __sync_set(root, id, seqno);
    372  1.1  riastrad }
    373  1.1  riastrad 
    374  1.1  riastrad static void __sync_free(struct i915_syncmap *p)
    375  1.1  riastrad {
    376  1.1  riastrad 	if (p->height) {
    377  1.1  riastrad 		unsigned int i;
    378  1.1  riastrad 
    379  1.1  riastrad 		while ((i = ffs(p->bitmap))) {
    380  1.1  riastrad 			p->bitmap &= ~0u << i;
    381  1.1  riastrad 			__sync_free(__sync_child(p)[i - 1]);
    382  1.1  riastrad 		}
    383  1.1  riastrad 	}
    384  1.1  riastrad 
    385  1.1  riastrad 	kfree(p);
    386  1.1  riastrad }
    387  1.1  riastrad 
    388  1.1  riastrad /**
    389  1.1  riastrad  * i915_syncmap_free -- free all memory associated with the syncmap
    390  1.1  riastrad  * @root: pointer to the #i915_syncmap
    391  1.1  riastrad  *
    392  1.1  riastrad  * Either when the timeline is to be freed and we no longer need the sync
    393  1.1  riastrad  * point tracking, or when the fences are all known to be signaled and the
    394  1.1  riastrad  * sync point tracking is redundant, we can free the #i915_syncmap to recover
    395  1.1  riastrad  * its allocations.
    396  1.1  riastrad  *
    397  1.1  riastrad  * Will reinitialise the @root pointer so that the #i915_syncmap is ready for
    398  1.1  riastrad  * reuse.
    399  1.1  riastrad  */
    400  1.1  riastrad void i915_syncmap_free(struct i915_syncmap **root)
    401  1.1  riastrad {
    402  1.1  riastrad 	struct i915_syncmap *p;
    403  1.1  riastrad 
    404  1.1  riastrad 	p = *root;
    405  1.1  riastrad 	if (!p)
    406  1.1  riastrad 		return;
    407  1.1  riastrad 
    408  1.1  riastrad 	while (p->parent)
    409  1.1  riastrad 		p = p->parent;
    410  1.1  riastrad 
    411  1.1  riastrad 	__sync_free(p);
    412  1.1  riastrad 	*root = NULL;
    413  1.1  riastrad }
    414  1.1  riastrad 
    415  1.1  riastrad #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
    416  1.1  riastrad #include "selftests/i915_syncmap.c"
    417  1.1  riastrad #endif
    418